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Abstract 

Perforated finite structures are prevalent in engineering and their mechanical integrity is 

often controlled by the stresses near geometric discontinuities. Theoretical stress analyses are 

virtually impossible and numerical analyses can be challenging for finite structures containing 

discontinuities. Theoretical and numerical analyses both necessitate knowing the loading, but such 

information is typically unavailable in practice. This thesis therefore presents an effective 

experimental-analytical-numerical hybrid-method to determine the stresses/strains/displacements 

reliably at and near geometric discontinuities in loaded, finite orthotropic or isotropic members. 

The technique processes measured information with a combination of Airy stress functions, 

conformal mapping, analytic continuation and least squares. Knowing the external loading is 

unnecessary. Since one often does not know a priori where the most serious stresses will occur in 

such structures, full-field analyses are required. Measured information at or near discontinuities is 

also typically unreliable. In addition to overcoming the latter difficulty, hybridizing experimentally 

measured data with the indicated analytical and numerical tools satisfies equilibrium, compatibility 
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and local traction-free boundary conditions. The approach is applied to round and elliptical holes 

and cracks in finite orthotropic composite plates as well as to perforated or notched isotropic 

members. In the latter cases, the structurally critical locations are far from any reliable measured 

input data.  

The technique provides reliable stresses and/or displacements throughout the structure, 

including along the edge of geometric discontinuities, from only a single component of measured 

information. Measured thermal or displacement data are employed. Stress intensity factors are 

available by post-processing the hybrid-determined stresses or displacements with fracture 

mechanics concepts. An advantage of the displacement-based approach is that it does not involve 

physically differentiating the measured data to obtain strains/stresses. Rather the method is 

established on strong mechanics-based algorithms. Results by the hybrid-method are validated 

using FEA, force equilibrium, strain-gages and other published information.  

The present hybrid-method can analyze extremely finite plates of any material properties 

containing virtually any types/sizes of holes or cracks. Ability to obtain reliable results at important 

locations but which are located very far from reliable measured input is a desirable feature of the 

current hybrid technique. The displacement-based approach is particularly well-suited to non-

laboratory-type environments. 
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  Introduction 

 

1.1. Background 

The structural reliability of engineering members tends to be highly influenced by their 

stresses. This thesis emphasizes the ability to stress analyze components fabricated of isotropic 

homogeneous or orthotropic composite materials by hybridizing experimental, analytical and 

numerical tools.  

Advanced composite structures are popular in a wide variety of engineering applications 

because of their high performance, low-weight, strength and designable properties. High strength-

to-weight ratios of composites makes them an attractive choice in designing moving structures due 

to the high performance-to-energy requirements. Safety-critical structures such as aerospace, 

automotive or marine structures, windmill blades and highway-bridge retrofits require designs that 

assure structural integrity for twenty years or more. Composite materials can be suitable for such 

structures as it is possible to manufacture composites with the desired properties. Desired 

constitutive composite properties can be achieved by using different fiber-matrix combinations, 

changing the fiber-to-matrix proportions, lamina orientations and stacking sequence [1]. High 

stiffness/strength, low maintenance, low thermal conductivity and fire-resistance properties are 

additional advantages composites can offer over other conventional monolithic materials.   

Real world structures and machine components frequently contain various cutouts due to 

their design requirements, access holes for assembling and/or feed-through cutouts for cables, 

wires and/or pipelines. Moreover, due to the manufacturing, handling and assembling processes, 

small cracks or voids can develop over time in a structure under normal operating conditions. The 
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presence of any discontinuities may significantly degrade structural strength and/or stiffness or 

give rise to locations of high stress concentration. Detailed knowledge on the behavior of loaded 

structures is necessary to ensure structural integrity. This requires stress analysis, especially near 

or at the edges of the discontinuities to guarantee safe operation. Of the common three ways of 

stress analyzing structures; theoretical, numerical and experimental methods only the latter is 

capable of doing so when the external loads are not known. This is typically the situation in 

practice. Stress/failure analysis in composites is much more complex than those in classical 

(isotropic, homogenous) materials.  

Theoretical stress analyses are based on fundamental principles of equilibrium and 

compatibility. They require knowing accurately the loading and boundary conditions and tend to 

be restricted to simple infinite geometries with simple loading. Anisotropy complicates analytical 

approaches to composites. Finite composite structures with complicated loading and geometry 

makes theoretical stress analyses virtually impossible. A numerical technique such as finite 

element analysis (FEA) is an attractive way to analyze such complicated structures. FEA simulates 

a physical phenomenon of a known geometry under the given loading and boundary conditions. It 

is effective for stress analyzing structures, reduces the need for physical prototypes and 

experiments, and improves productivity by allowing product optimization in their design phase. 

However, like analytical analysis, FEA requires knowing the geometry, material properties and 

the applied loading. Difficulty in providing accurate boundary and loading conditions greatly 

compromises the accuracy of the FEA results. On the other hand, experimental techniques are 

capable of analyzing structures which cannot be analyzed analytically or numerically. However, 

purely experimental techniques tend to be incapable of providing accurate information near or 

along the edge of structural discontinuities. The edges of structural discontinuities typically contain 
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the most critical stresses. Fatigue analyses in composites are sometimes based on residual stresses 

which can necessitate experimental analyses [2]. The inability of purely experimental methods to 

capture the high stresses/strains near geometric discontinuities can therefore miss the most serious 

stresses and consequently over-estimate structural integrity. 

The virtual inability to stress analyze finite structures theoretically or numerically when 

the applied loads are unknown motivates developing experimental-based approaches for such 

situations. The present research focuses on hybridizing experimental techniques with analytical 

and numerical tools to develop effective ways to full-field stress analyze perforated finite 

structures made of homogenous isotropic or composite materials. Because of their prevalence and 

structural consequences, cases involving cutouts are emphasized. Such hybrid techniques can 

overcome the difficulties associated with each of these techniques when used individually to 

analyze complicated situations.  

 

1.2. Research Objective 

A main objective of this study is to develop simple, non-destructive, non-contacting means 

of conducting full-field stress analyses of loaded, finite composite structures containing 

discontinuities based on mechanics-based principles. This is accomplished by employing only a 

single component of measured information and without requiring knowledge of the external 

loading. The general method is able to analyze structures having a variety of holes, notches or 

cracks and can be simplified to be applicable to isotropic materials. 
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1.3. Hybrid Stress Analysis Method 

The word hybrid stress analysis is used in this research to define an approach combining 

experimental-analytical-numerical techniques to stress analyze loaded, finite, mostly orthotropic 

composite structures. Measured information is processed using an Airy stress function in 

conjunction with concepts such as conformal mapping, analytic continuation, least squares and 

power-series expansion. Equilibrium, compatibility and traction-free conditions are satisfied 

analytically. Advantages of the hybrid stress analysis approach include the following: (1) not 

requiring knowing the external boundary conditions or loading; (2) processing, filtering and 

extrapolating measured data using mechanics-based principles instead of using arbitrary 

techniques; (3) not depending on measured information close to the traction-free boundaries 

(where most purely experimental techniques are unreliable); (4) analytically incorporating 

essential features of a loaded structure such as compatibility, equilibrium and traction-free 

boundary conditions in  the analysis; (5) simultaneous smoothing and inherent stress separation 

capabilities and (6) not requiring differentiation of measured quantities. When analyzing members 

made of isotropic materials, with thermoelastic data the hybrid stress analysis does not require 

knowing the structure’s material properties. The developed technique enjoys the unique feature of 

being able to provide reliable full-field states of stress and displacement information of a loaded 

structure with paucity of or absent experimental input data at structurally important locations either 

due to the configuration of the structure or experimental factors. Most purely experimental 

techniques fail to reliably stress analyze structures under such situations. The hybrid-method uses 

a combination of complex variables Airy stress functions, conformal mapping, analytic 

continuation, power-series expansion and measured information, and without requiring knowledge 

of the external boundary or loading conditions, to evaluate full-field stresses of finite, orthotropic 
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members containing discontinuities. Quantitative experimental techniques such as digital image 

correlation (DIC) and thermoelastic stress analysis (TSA) are used to obtain the measured data. 

All mathematical calculations and plots are generated using commercial numerical software 

MATLAB. Results are validated using FEA (ANSYS APDL) and/or commercial strain-gages.  

 A big advantage of the hybrid-method is its ability to handle virtually any shaped finite 

structure whose external loading is unknown. This is unlike purely numerical or theoretical 

approaches. Example includes boundary collocation where accuracy heavily depends on knowing 

all the exact boundary conditions [3]. Using an appropriate mapping function, the presented 

method is able to stress analyze orthotropic/isotropic structures having virtually any type of 

discontinuities such as circular, elliptical, triangular, square, polygonal openings and cracks which 

are anywhere located at any orientation. An additional excellent feature of this method is to provide 

reliable results when a paucity of experimentally measured information prevails at locations 

critical to ensure the structural integrity.  

 

1.4. Analytical Approach 

1.4.1. Airy Stress Function [4] 

For a two-dimensional member in the absence of body forces, the Airy stress function is a 

continuous function which satisfies equilibrium and compatibility. The Airy stress function was 

first proposed in 1862 by Royal George Biddel Airy at the Royal Society of London. He provided 

solutions to a 2D finite rectangular beam under flexure using his proposed theorem. Airy’s 

proposed paper was reviewed by Clerk Maxwell. Maxwell noticed a few deficiencies in the 

proposed theory and provided a more general function that satisfy the structural equilibrium based 
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on the theory of elasticity. It was Maxwell who first satisfied the stress equilibrium in a 2D member 

by introducing a stress function. Maxwell proposed to name the method as ‘Airy’s Function of 

Stress’. The theorem is commonly known as the Airy stress function or the Maxwell’s approach. 

Over time the theory has been accepted and its application extended by many researchers. The 

initial theory was extended to find the solution of Maxwell’s bi-harmonic equations in polar and 

rectangular coordinates, to determine u and v displacements, to analyze structures with regular or 

arbitrary shaped cutouts and also extended to the theory of anisotropic elasticity. Some of the 

important contributions toward developing the concept of Airy stress function will be discussed. 

John H. Michell was the first to provide the solution of the bi-harmonic equation in the polar 

coordinates. Mikhail Filonenko-Borodich showed how selecting the coordinate origin at locations 

other than the center of a hole can lead to multi-valued stresses. Emile Leonard Mathieu was the 

first to provide full mathematical properties of the bi-harmonic equation. Edouard Goursat 

proposed an arbitrary bi-harmonic function represented by two analytic functions to apply the 

concept to anisotropic media. Nikoloz Muskhelishvili also provided a similar theory as that of 

Goursat. Gury Kolosov introduced the concept of complex variables Airy stress functions to 2D 

elastic problems. Later Muskhelishvili considerably extended the theory by introducing the 

concept of Cauchy-integral and conformal mapping [4]. Using a compliance-based formalism, the 

fundamental solutions of 2D anisotropic elastic bodies were first provided by Sergei Gheorgievich 

Lekhnitskii [5].  

Detailed mathematical principles of the Airy stress function relevant to the presently 

proposed hybrid stress analysis technique are provided in Chapter 2. 
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1.4.2. Conformal Mapping 

Conformal mapping employs a function that transforms a certain geometry from one 

coordinate system to different geometry in a different coordinate system while preserving angles 

of the object in between the two different coordinate systems. The word ‘conformal’ refers to 

‘same form’ or ‘shape’. In some cases, conformal mapping preserves both angles and geometric 

shape but not necessarily the size. 

Around the 1500s conformal mapping was introduced in stereographic projection. Robust 

improvement and use of conformal mapping started during the nineteenth century by 

mathematicians like Carl Friedrich Gauss, Leonhard Euler and Bernhard Riemann. Conformal 

mapping was first introduced in the field of theory of elasticity by Kolosov and Muskhelishvili in 

the early 1900s. Since then conformal mapping has been successfully used in structural analyses 

involving holes of regular/arbitrary shapes and cracks. Its application has been extended to 

anisotropic materials [3,5–9].  

Conformal mapping is employed in structural analysis, fluid flow, heat transfer (both 

steady and transient), vibrations, acoustics, buckling analyses, electromagnetics, computer 

graphics, computer aided designs and in medical fields [10].  

If a geometry in the complex z = x + iy plane is transformed to another complex plane ζ = 

ξ + iη, then this transformation can be achieved using a complex mapping function of the complex 

variable ω = f(z). The latter is known as the conformal mapping function. The function ‘ω’ is 

analytic and during the mapping preserves magnitude and direction of angles between intersecting 

arcs. Laplace’s equation (∇ 𝑓 = 0) is satisfied in both the original and mapped coordinates. The 

solution governing Laplace’s partial differential equation remains invariant if a complicated 
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geometry from the original plane is transformed to a simpler or more convenient geometry in a 

mapped plane. The transformation is one-to-one and reversible. The conformal mapping function 

ω = f(z) defines the forward transformation and z = f − 1(ω) the inverse [10]. 

For a function to be considered as conformal, some mathematical properties need to be 

fulfilled. The mapping function should be analytic, i.e., single-valued and differentiable in the 

defined domain. Angles should be preserved during the transformation. The singe-valued property 

ensures the one-to-one mapping and the differentiability over the entire region (holomorphic 

function) is required to preserve the angles during the transformation. A holomorphic function, f, 

that maps a domain D into a domain D′ is called conformal if an inverse,  f − 1, of the holomorphic 

function exists mapping back domain D′ into domain D and its derivatives are non-zero 

everywhere on the domain. If the function is anti-holomorphic (conjugate to holomorphic function) 

it still preserves angles but reverses their orientation. In addition, the property of differentiability 

ensures continuity. An easy way to check the analyticity of a function is whether it is expandable 

by a finite series.  If a function can be expanded by the Taylor or Laurent series then it satisfies 

analyticity  [10,11]. 

The conformal mapping of any two simply-connected regions exists if the Riemann 

mapping theorem is satisfied. The derivative of f(z) exists at point z if and only if the partial 

derivative of ξ and η exists and satisfies the following Cauchy-Riemann relationship [12] 

 
𝜕𝜉

𝜕𝑥
=

𝜕𝜂

𝜕𝑦
   and    

𝜕𝜉

𝜕𝑦
= −

𝜕𝜂

𝜕𝑥
 (1-1) 
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Mapping functions relevant to and used in the proposed hybrid stress analysis technique of 

this research are provided in Chapter 2. 

 

1.4.3. Analytic Continuation 

An important mathematical concept that is used in conjunction with conformal mapping is 

analytic continuation. If function f1(z) is defined in domain D1 and f2(z) in domain D2, and if D1 

and D2 have a subregion for which  f1(z) = f2(z), then f2(z) is considered as the analytic continuation 

of f1(z). Analytic continuation is closely linked to Taylor and Laurent series and plays a role in 

Schwarz reflection principle [10]. Analytic continuation is employed advantageously in this thesis 

to satisfy traction-free boundary conditions.  

  

1.5. Measured Information 

Various forms of measured data can be processed by the hybrid-method to stress analyze 

a structure. Examples include displacements (from DIC, moiré, interferometry), stress (from TSA, 

PSA) and strain (from strain-gage, extensometer) data. However, in this research full-field 

experimental techniques of DIC and TSA were used due to their relative simplicity regarding 

experimental requirements. Point-wise techniques such as strain-gages and extensometers can lack 

the required spatial resolution to reliably capture the high-fidelity behavior of composites. The 

maximum strain can occur spatially at a length scale smaller than the size of the finite gages [13]. 

Moiré requires the application of rulings and traditionally necessitates the use of both in-plane 

displacement information to full-field stress analyze loaded components. Interferometric 



10 
 

 
 

techniques require special light sources and vibration isolation. Moreover, its results can be highly 

sensitive to environmental factors. 

DIC is used in this study to obtain experimental data in the form of in-plane displacements. 

It is one of the simplest non-contact, full-field experimental techniques in terms of experimental 

set-up and preparation. Images of an undeformed and deformed structure are captured and stored 

by the DIC system in digital form. Image analysis is performed based on correlating each image 

of the deformed pattern to the state of the undeformed pattern [14]. TSA is another full-field stress 

analysis technique. It records the thermoelastic effect, i.e., load-induced temperature changes of a 

cyclically loaded structure. Between DIC and TSA, DIC is probably more preferable due to not 

requiring cyclic loading and the additional testing needed to evaluate the thermoelastic coefficient. 

Not requiring cyclic loading of the structure renders DIC applicable for practical applications 

beyond a laboratory environment. While utilizing DIC-recorded displacement data with the current 

hybrid-method to conduct full-field structural analysis, unlike other displacement-based methods, 

does not require physically differentiating the displacement data to obtain strains and stresses. But 

like most experimental techniques, DIC also has its own perils. DIC data can be noisy due to the 

correlation process. Procedures such as use of filters to reduce noise can mask high strain gradients 

prevailing near the edge of a discontinuity. Spatial resolution, i.e., number of pixels near the 

discontinuity and correlation variables such as subset size and step size can affect the quality of 

DIC-measured displacements [13]. Some of these challenges are overcome by the present hybrid-

method as it does not rely on the correlation algorithm of commercial DIC software packages to 

calculate strains from recorded displacement data. By considering measured data away from edges, 

the present hybrid-method also enhances DIC results, particularly relative to evaluating stress 



11 
 

 
 

concentrations. Using DIC-measured information renders the present method a practical 

quantitative tool in stress analyzing structures in their actual operating environment.  

 

1.6. Summary  

The present hybrid stress analysis method is a very effective technique for assessing the 

structural integrity of engineering structures. It overcomes the challenges associated with purely 

theoretical, numerical or experimental means of stress analyses, especially for orthotropic 

materials. The present hybrid concept overcomes the limitations that most traditional 

displacement-based experimental techniques face while evaluating strain from measured 

displacement information, i.e., their inability to provide displacements/strains/stresses at the 

boundary of the structural discontinuities where the most critical stresses typically exist. The 

method does not require the (frequently unreliable) measured information close to the edge of a 

discontinuity. By employing measured quantities away from the location of interest, the method 

can effectively provide accurate information throughout a structure and at those locations where 

reliable experimental data are unavailable. It has the capability to work in presence of unreliable 

or missing data at structurally critical locations. The method can effectively analyze structures 

containing virtually any types of holes or cracks. Stress analysis is based on rigorous mechanics-

based algorithm rather than arbitrary schemes. Equilibrium, compatibility and traction-free 

boundary conditions are satisfied. Processing measured information using concepts of stress 

functions, conformal mapping and analytic continuation enable one to stress analyze finite 

structures. The method does not require knowing the external loading or boundary conditions. It 

does not involve differentiation of the measured data. Moreover, all these are achieved by just 
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utilizing a single component of measured information, i.e., one measured displacement field or 

one recorded temperature. The method can reliably stress analyze a finite structure under situations 

where most other purely experimental techniques fail due to inadequate material or structural 

information or where theoretical/numerical analyses are impossible due to structural and loading 

complexities.  
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 Analytical Analysis of Isotropic and Anisotropic 

Materials 

 

2.1. Hybrid Stress Analysis Method 

The present method demonstrates the analytical ability to stress analyze loaded, finite, 

orthotropic elastic engineering members by processing measured information. The in-plane 

displacements and stresses are evaluated full-field, including at the edge of the geometric 

discontinuities. Complex variables Airy stress functions are used to analytically represent the 

loaded structure. The process of combining measured data with the analytical representation of the 

Airy stress functions is referred to here as the ‘hybrid stress analysis method’. The method satisfies 

equilibrium, strain compatibility and traction-free boundary conditions. The technique is valid for 

plane-stress and plane-strain problems assuming no body forces are present. It is applicable to both 

isotropic and anisotropic materials. For isotropy the Airy stress function is the solution of a bi-

harmonic equation in terms of real variables whereas orthotropy involves complex variables. Using 

a measured single component of in-plane displacement is emphasized. 

 

2.2. Orthotropic Material 

Orthotropic materials with at least two planes of material symmetry requires nine elastic 

compliances in their constitutive matrices of the generalized Hooke’s law of equation (2-1). 
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 (2-1) 

where aij are the elastic compliances and can be expressed in terms of the elastic engineering 

properties as  

 𝑎 =  
 for 𝑖 = 𝑗

−  for 𝑖 ≠ 𝑗
 for 𝑖, 𝑗 = 1, 2, 3 and 𝑎 =  for 𝑖 =  𝑗 = 4, 5, 6 (2-2) 

 

2.3. Plane-Stress Orthotropy 

For an orthotropic two-dimensional loaded member under plane-stress (σzz = σyz = σzx = 0), 

the stress-strain relationship of equation (2-1) is simplified such that 

 𝜀 = 𝑎 𝜎 + 𝑎 𝜎 + 𝑎 𝜎  (2-3) 

 𝜀 = 𝑎 𝜎 + 𝑎 𝜎 + 𝑎 𝜎  (2-4) 

 𝛾 = 𝑎 𝜎 + 𝑎 𝜎 + 𝑎 𝜎  (2-5) 
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2.4. Equilibrium and Compatibility 

The fundamental equations for loaded elastic bodies are equilibrium and compatibility. To 

stress analyze a loaded engineering member analytically, stress equilibrium and strain 

compatibility must be fulfilled throughout the structure under the given boundary conditions. In 

absence of body forces, stress components in a body (isotropic or anisotropic) must satisfy the 

following equilibrium equations [5] 

 
𝜕𝜎

𝜕𝑥
+  

𝜕𝜎

𝜕𝑦
= 0,   

𝜕𝜎

𝜕𝑦
+  

𝜕𝜎

𝜕𝑥
= 0 (2-6) 

The strain-displacement relationships, experiencing small deformation are  

 𝜀 =  
𝜕𝑢

𝜕𝑥
,   𝜀 =  

𝜕𝑣

𝜕𝑦
,   𝛾 = 2𝜀 =

𝜕𝑢

𝜕𝑦
+  

𝜕𝑣

𝜕𝑥
 (2-7) 

Combining derivatives of u and v of equation (2-7) provides the following compatibility equation 

 
𝜕 𝜀

𝜕𝑦
+  

𝜕 𝜀

𝜕𝑥
= 2

𝜕 𝜀

𝜕𝑥𝜕𝑦
=  

𝜕 𝛾

𝜕𝑥𝜕𝑦
 (2-8) 

Under plane-elasticity in the absence of body forces, stresses in either isotropic or anisotropic 

members must satisfy the equilibrium condition of equations (2-6) and the strains must satisfy the 

compatibility relationship of equation (2-8) [5,15]. 
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Moreover, the surface equilibrium condition in terms of the external forces Xn and Yn in the x and 

y directions, respectively, with respect to a unit area and directions normal, n, to the component’s 

surface is  

 
𝜎 𝜎
𝜎 𝜎  

cos(𝑛, 𝑥)

cos(𝑛, 𝑦)
=  

𝑋
𝑌

 (2-9) 

 

2.5. Airy Stress Functions in Complex Variables 

The stress equilibriums of loaded structures are the same irrespective whether the material 

responses are isotropic or anisotropic. Stress equilibrium is not analytically affected by the 

material’s anisotropic behavior. Moreover, one can assume an Airy stress function, F(x, y), in the 

x-y rectangular Cartesian coordinates and satisfy the equilibrium by representing the stresses σxx, 

σyy and σxy of the equilibrium equations (2-6) in terms of the Airy stress function as  

 𝜎 =  
𝜕 𝐹

𝜕𝑦
,   𝜎 =  

𝜕 𝐹

𝜕𝑥
,    𝜎 =  −

𝜕 𝐹

𝜕𝑦𝜕𝑥
 (2-10) 

Introducing the expressions of in-plane strains from the Hooke’s law of equations (2-3) through 

(2-5) into the compatibility equation (2-8), and then expressing the stress components in terms of 

the Airy stress function, F(x, y), according to equation (2-10), for orthotropic components the 

following compatibility equation is obtained 
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𝜕 𝐹

𝜕𝑥
−

2𝑎

𝑎
 

𝜕 𝐹

𝜕𝑥 𝜕𝑦
+  

(2𝑎 + 𝑎 )

𝑎
 

𝜕 𝐹

𝜕𝑥 𝜕𝑦
−  

2𝑎

𝑎
 

𝜕 𝐹

𝜕𝑥𝜕𝑦
+  

𝑎

𝑎
 
𝜕 𝐹

𝜕𝑦
= 0 (2-11) 

This homogenous, partial differential equation (2-11) with constant coefficients, aij, is the 

compatibility equation for orthotropic components and must be satisfied by the stress functions. 

For orthotropic members, the solution of any elastic problem would only require solving this 

compatibility equation (2-11) based on the appropriate boundary conditions of equation (2-9). 

Thus, under classical theory of plane-elasticity, any problem can be reduced to just finding a stress 

function, F(x, y), such that it satisfies equation (2-11) under the subjected boundary conditions. 

Equation (2-11) can be written symbolically with linear differential operators in the following form 

 𝐷 𝐷 𝐷 𝐷 𝐹 = 0 (2-12) 

For an orthotropic material the operators Dj for j = 1, 2, 3, 4 of equation (2-12) are defined as 

 𝐷 =  
𝜕

𝜕𝑦
−  𝜇

𝜕

𝜕𝑥
,     𝑗 = 1, 2, 3, 4 (2-13) 

where µj are the complex material properties. For an orthotropic member relative to the principal 

axes of orthotropy, µj are the roots of the following characteristic equation (2-14) associated with 

the compatibility equation (2-11). 

 𝑎 𝜇 − 2𝑎 𝜇 + (2𝑎 + 𝑎 )𝜇 − 2𝑎 𝜇 + 𝑎 = 0 (2-14) 



18 
 

 
 

In general, the complex roots take the following form, μ1 = α + iβ, μ2 = γ + iδ, μ3 = �̅�  = α − iβ and 

μ4 = �̅�  = γ − iδ. Quantities α, β, γ and δ represent real numbers and both β and δ are positive. The 

complex roots, µj, can be either complex or purely imaginary but cannot be real numbers. They 

can be of the following three types: i) the roots are purely imaginary and unequal, μ1 = iβ and μ2 = 

iδ, ii) purely imaginary and equal μ1 = μ2 = iβ, and iii) distinct and complex μ1 = α ± iβ and μ2 = − 

α ± iβ or μ2 = γ ± iδ. For orthotropic materials loaded along the axes of material symmetry, i.e., 

directions 1 or 2, the roots are completely imaginary, μ1 = iβ, μ2 = iδ (α = γ = 0, β > 0, δ > 0, a16 = 

a26 = 0). For isotropic materials the roots are as μ1 =  μ2 = i (α = γ = 0 and β = δ = 1). 

In the absence of body forces under plane-stressed condition, the Airy stress function for 

orthotropic materials are expressed as the summation of two arbitrary analytic functions of the 

complex variables zj for j = 1, 2, [5] as such 

 𝐹 = 2𝑅𝑒[𝐹 (𝑧 ) + 𝐹 (𝑧 )] (2-15) 

where F1(z1) and F2(z2) are analytic functions of the complex variables z1 and z2, respectively, and 

‘Re’ represents the real part of the complex quantities. The complex variables, zj, for an orthotropic 

material are 

 𝑧 = 𝑥 + 𝜇 𝑦, 𝑗 = 1, 2 (2-16) 

When the orthotropic member is physically loaded along a principal axis of orthotropy, i.e., along 

direction 1 (typically the strong/stiff fiber direction) or 2 (transverse to strong/stiff fiber direction) 

the orthotropic characteristic equation (2-14) reduces to   
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 𝑎 𝜇 +  (2𝑎 + 𝑎 )𝜇 + 𝑎 = 0 (2-17) 

For such a loaded orthotropic structure, i.e., loaded along one of the axes of material symmetry, 

the elastic compliances of the generalized Hooke’s law, aij, reduce to 

 𝑎 =  
1

𝐸
, 𝑎 =  

−𝜈

𝐸
, 𝑎 = −

𝜈

𝐸
, 𝑎 =  

1

𝐸
, 𝑎 =  

1

𝐺
, 𝑎 = 𝑎 = 0 (2-18) 

and 

 
𝜈

𝐸
=  

𝜈

𝐸
 and 𝑎 = 𝑎  (2-19) 

Subscripts 1 and 2 represent directions parallel and perpendicular to the strong/stiff fiber direction 

of the laminate, respectively. Using the expressions of the elastic compliances from equation 

(2-18) into equation (2-17) the orthotropic characteristic equation consequently takes the following 

form 

 
𝜇 +  

𝐸

𝐺
− 2𝜐 𝜇 +  

𝐸

𝐸
= 0 (2-20) 

In equations (2-18) and (2-20), the material’s strong/stiff 1-direction is considered along the x-axis 

of the loaded member. 

The complex material properties, μj for j = 1, 2, can also be determined directly from the 

following closed-form equations [16,17] such that 
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 𝛽∗ =  ±
1

2

𝑎 + 2𝑎

2𝑎
 +

𝑎

𝑎
 (2-21) 

 𝛼∗ = ±
1

2

𝑎 + 2𝑎

2𝑎
 −

𝑎

𝑎
 (2-22) 

and expressing the complex variables zj for j = 1, 2, as 

 𝑧 = 𝑥 + 𝑖(𝛽∗ + 𝛼∗)𝑦   and   𝑧 = 𝑥 + 𝑖(𝛽∗ − 𝛼∗)𝑦 (2-23) 

where 

 𝜇 = 𝑖(𝛽∗ + 𝛼∗)   and   𝜇 = 𝑖(𝛽∗ − 𝛼∗)  (2-24) 

Knowing the orthotropic constitutive properties, the complex roots µ1 and µ2 are known 

either from the characteristic equation (2-17) or from equation (2-24) combined with equations 

(2-21) and (2-22). The in-plane stresses and displacements in the rectangular x-y coordinates of 

the physical plane, z = x + μjy for j = 1, 2, are then expressed in terms of the complex variables 

Airy stress functions as [5] 

 𝜎 = 2𝑅𝑒[𝜇 𝛷 (𝑧 ) + 𝜇 𝛹 (𝑧 )] (2-25) 
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 𝜎 = 2𝑅𝑒[𝛷 (𝑧 ) + 𝛹 (𝑧 )] (2-26) 

 𝜎 = − 2𝑅𝑒[𝜇 𝛷 (𝑧 ) +  𝜇 𝛹 (𝑧 )] (2-27) 

 𝑢 = 2𝑅𝑒[𝑝 𝛷(𝑧 ) + 𝑝 𝛹(𝑧 )] − 𝑤 𝑦 + 𝑢  (2-28) 

 𝑣 = 2𝑅𝑒[𝑞 𝛷(𝑧 ) + 𝑞 𝛹(𝑧 )] + 𝑤 𝑥 + 𝑣  (2-29) 

where the Airy stress functions, 𝛷(𝑧 ) =  
( )

 and 𝛹(𝑧 ) =  
( )

, and the primes of these 

functions represent differentiation with respect to the complex variables zj for j = 1, 2. These 

functions are also analytic in the complex zj plane. The stresses of equations (2-25) through (2-27) 

satisfy equilibrium and the associated strains satisfy compatibility. The displacement component 

u is in the x-direction and v is in the y-direction. The constants u0, v0 and w0 in equations (2-28) 

and (2-29) are from integrating the in-plane strains of equations (2-7) to obtain the in-plane 

displacements u and v. The constants u0 and v0 represent rigid body translations and w0 represents 

rigid body rotation. When testing a member physically and holding it securely between the grips, 

the contribution from rigid body motion can be ignored, i.e., u0 = v0 = w0 = 0. Quantities p1, p2, q1 

and q2 present in the expressions for the in-plane displacements of equations (2-28) and (2-29) 

depend only on the orthotropic elastic material properties and are defined as 
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 𝑝 = 𝑎 𝜇 + 𝑎 − 𝑎 𝜇    

𝑞 = 𝑎 𝜇 +  
𝑎

𝜇
− 𝑎  

𝑝 = 𝑎 𝜇 + 𝑎 − 𝑎 𝜇  

𝑞 = 𝑎 𝜇 +  
𝑎

𝜇
− 𝑎  

(2-30) 

When a member is physically loaded (u0 = v0 = w0 = 0) in a direction of material orthotropy 

(a16 = a26 = 0), the displacement components of equations (2-28) and (2-29) and the variables pj 

and qj (for j = 1, 2) of equation (2-30) reduce to 

 𝑢 = 2𝑅𝑒[𝑝 𝛷(𝑧 ) + 𝑝 𝛹(𝑧 )] (2-31) 

 𝑣 = 2𝑅𝑒[𝑞 𝛷(𝑧 ) + 𝑞 𝛹(𝑧 )] (2-32) 

and 

 𝑝 = 𝑎 𝜇 + 𝑎  

𝑞 = 𝑎 𝜇 +  
𝑎

𝜇
 

𝑝 = 𝑎 𝜇 + 𝑎  

𝑞 = 𝑎 𝜇 + 
𝑎

𝜇
 

(2-33) 

For plane-stress conditions, the stress-strain relationship in an orthotropic structure is 

expressed as equation (2-34). Therefore, from the evaluated in-plane stresses and measured 

orthotropic constitutive properties the in-plane strains can readily be derived, i.e., 
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 𝜀
𝜀
𝛾

=  

𝑎 𝑎 0
𝑎 𝑎 0
0 0 𝑎

𝜎
𝜎
𝜎

 (2-34) 

It should be noted that the [013/905/013] graphite-epoxy laminate used in this research has a 

balanced, symmetric construction. In addition to the displacements and strains being uniform 

through the thickness, and while 26 plies have their fibers in the loading direction and five plies 

have their fibers transverse to the direction of loading, the elastic laminate properties are based on 

the average through-the-thickness stresses. The stresses of equations (2-25) through (2-27) 

similarly represents through-the-thicknesses average stresses. The actual stresses in the 90° layers 

are different from those in the 0° layers, and both may be different from the averaged stresses. 

The concept of the complex variables Airy stress functions can be simplified to be 

applicable to isotropic materials. For an isotropic material with elastic modulus, E, Poisson’s ratio, 

ν, and shear modulus, G, the elastic material properties are related as such, E11 ≈ E22 = E, ν12 = ν21 

= ν and G = E/2(1 + ν). Thus, for isotropy the elastic compliances of equation (2-18) take the 

following form 

 𝑎 = 𝑎 =
1

𝐸
, 𝑎 = 𝑎 = −

𝜈

𝐸
, 𝑎 =

1

𝐺
   and   𝑎 = 𝑎 = 0 (2-35) 

Equation (2-12) then simplifies to the following bi-harmonic expression 

  𝛻 𝐹 =  𝛻 𝛷 = 0 (2-36) 
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where in the Cartesian x-y coordinates 

 ∇  =  
𝜕

𝜕𝑥
+ 2

𝜕

𝜕𝑥 𝜕𝑦
+  

𝜕

𝜕𝑦
 (2-37) 

Using the expressions of the isotropic elastic compliances from equation (2-35) into the 

characteristic equation (2-17), the complex material properties for isotropy become μ1 = μ2 = i and 

the complex variable as z = x + iy. 

 

2.6. Conformal Mapping  

The concept of Airy stress functions can be used to solve two-dimensional problems 

analytically if under the subjected boundary conditions, the stress functions Φ(z1) and Ψ(z2) are 

selected such that the stresses associated with these stress functions satisfy equilibrium, associated 

strains satisfy compatibility and the traction-free boundary condition are also analytically satisfied. 

The Airy stress functions satisfy equilibrium and compatibility. However, the stress functions can 

also be made to satisfy the traction-free boundary conditions along the edges of any present 

geometric discontinuities. This is accomplished by introducing the concept of conformal mapping. 

Analytical solutions of the Airy stress functions are mostly available for simple geometries. When 

stress analyzing engineering components with complicated geometries and loadings, conformal 

mapping can be an effective and useful tool to simplify the analytical procedure. 

In general, a complex geometry in a certain coordinate system can be transformed to a 

different geometry in a different coordinate system by using an appropriate mapping function. 
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Angles are preserved during the mapping. Solutions from the new mapped region are mapped back 

to the original coordinate. Despite being solved in different coordinates, these solutions are still 

valid for the original coordinate system. In order to aid mathematical computations in this study, 

a complicated geometry from the physical z-plane is mapped to a comparatively simpler geometry 

in the imaginary ζ-plane, Figure 2-1 and Figure 2-2. 

 

 

Figure 2-1: Conformal mapping of a half-plane from the ζ-plane into complicated geometries 
(such as a circular hole, elliptical hole or crack) in physical z-plane 
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Figure 2-2: Conformal mapping of a unit circular hole from the ζ-plane into complicated 
geometries (such as a circular hole, elliptical hole or crack) in physical z-plane 

 

The concept of conformal mapping is employed in the present hybrid stress analysis 

method to enable the complex variables Airy stress functions to analytically satisfy the traction-

free boundary conditions and also to simplify the related analytical procedures. By expressing the 

Airy stress functions in the expressions of the in-plane stress, strain and displacement components 

(equations (2-25) through (2-29) and equation (2-34)) with respect to the complex variables ζj  (for 
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j = 1, 2) of the mapped plane, the analytical procedure is simplified and the stresses/displacements 

analytically satisfy the traction-free boundary conditions.  

In general, a function, z = ω(ζ) maps a region Rζ of a simple shape in the ζ = ξ + iη plane 

into probably a more complicated region Rz in the physical z = x + iy plane of a loaded structure, 

Figure 2-1 or Figure 2-2. The comparatively simple shapes in the ζ-plane are usually in the form 

of a half-plane (Figure 2-1) or a unit circle (Figure 2-2). For orthotropic materials, the auxiliary 

planes are expressed as zj = x + μjy and ζj = ξ + µjη for j = 1, 2, and the associated mapping function 

according to equation (2-38). These induced mapping functions are invertible and perform one-to-

one affine transformation.  

 𝑧 = 𝑥 + 𝜇 𝑦 =  𝜔 𝜁 , 𝑗 = 1, 2 (2-38) 

It is now possible to express the Airy stress functions, Φ(z1) and Ψ(z2), as analytic functions 

of ζ1 and ζ2, respectively, as such 

 𝛷(𝑧 ) =  𝛷[𝜔 (𝜁 )]  ≡  𝛷(𝜁 ) (2-39) 

 𝛹(𝑧 ) =  𝛹[𝜔 (𝜁 )]  ≡  𝛹(𝜁 ) (2-40) 

Similarly, the derivative of the stress functions of equations (2-39) and (2-40) with respect to zj, 

can also be expressed as analytic functions of ζ1 and ζ2, respectively, i.e., 
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𝛷 (𝑧 ) =  𝛷  (𝜁 )

𝑑𝜁

𝑑𝑧
=  

𝛷 (𝜁 )

𝜔 (𝜁 )
 (2-41) 

 
𝛹 (𝑧 ) =  𝛹 (𝜁 )

𝑑𝜁

𝑑𝑧
=  

𝛹 (𝜁 )

𝜔 (𝜁 )
 (2-42) 

where differentiation of the mapping function, ωj, of equation (2-38) with respect to ζj (for j = 1, 

2) results in the following 

 𝑑𝑧

𝑑𝜁
=  𝜔 𝜁 ,     𝑗 = 1, 2 

(2-43) 

Equation (2-43) is used in equations (2-41) and (2-42) to replace  by 
 

 for j = 1, 2. The new 

form of the stress functions obtained from combining equations (2-41) and (2-42) with equation 

(2-43) is now used in equations (2-25) through (2-27) and the obtained in-plane stresses are 

 
𝜎 = 2𝑅𝑒 𝜇

𝛷 (𝜁 )

𝜔 (𝜁 )
+  𝜇

𝛹 (𝜁 )

𝜔 (𝜁 )
 (2-44) 

 
𝜎 = 2𝑅𝑒

𝛷 (𝜁 )

𝜔 (𝜁 )
+  

𝛹 (𝜁 )

𝜔 (𝜁 )
 (2-45) 

 
𝜎 = −2𝑅𝑒 𝜇

𝛷 (𝜁 )

𝜔 (𝜁 )
+  𝜇

𝛹 (𝜁 )

𝜔 (𝜁 )
 (2-46) 
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As the mapping functions are also analytic functions of ζ1 and ζ2, equilibrium and compatibility 

are satisfied throughout the region Rz of the physical z-plane in the above expressions of the in-

plane stresses of equations (2-44) through (2-46). Expressing the stress functions as analytic 

functions of ζj for j = 1, 2, according to equations (2-39) and (2-40) and substitution into equations 

(2-31) and (2-32) similarly provides the in-plane displacements as analytic functions of ζ1 and ζ2 

as 

 𝑢 = 2𝑅𝑒[𝑝 𝛷(𝜁 ) + 𝑝 𝛹(𝜁 )] (2-47) 

 𝑣 = 2𝑅𝑒[𝑞 𝛷(𝜁 ) + 𝑞 𝛹(𝜁 )] (2-48) 

  

2.7. Analytic Continuation 

Analytic continuation is another useful tool to stress analyze orthotropic structures. At 

regions close to the traction-free edge of a cutout, analytic continuation allows the stress functions 

Φ(z1) and Ψ(z2) to be related to each other. This simplifies the expressions for the in-plane stresses 

and displacements of equations (2-44) through (2-48) by employing only one stress function. 

Mathematical details of analytic continuation are now provided. 

In regions close to a traction-free boundary, Rz, analytic continuation enables the two stress 

functions Φ(z1) and Ψ(z2) to be expressed in terms of each other [8,9,18]. For a component of 

orthotropic material, if the traction-free boundary, Γz, and its exterior region, Rz, are mapped from 

the physical z-plane to a half-plane, Rζ, in the mapped ζ-plane with the traction-free boundary, Γζ, 
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along the real axis, ξ, analytical continuation relates the two stress functions throughout region, Rζ, 

and along the traction-free boundary, Γζ, i.e., [7–9,18] 

 𝛹(𝜁 ) = 𝐵𝛷(𝜁̅ ) + 𝐶𝛷(𝜁 ) (2-49) 

where B and C are complex material quantities and defined as 

 
𝐵 =  

�̅� −  �̅�

𝜇 −  �̅�
 (2-50) 

 
𝐶 =  

�̅� −  𝜇

𝜇 −  �̅�
 (2-51) 

Similarly, for orthotropy when the traction-free boundary, Γz, and its adjacent exterior region, Rz, 

from the physical z-plane are mapped along the traction-free boundary, Γζ, of a unit circle and to 

its exterior region, Rζ, then analytic continuation relates the two stress functions in region, Rζ, close 

to the traction-free boundary, Γζ, as following [8,19] 

 𝛹(𝜁 ) = 𝐵𝛷
1

𝜁̅
+ 𝐶𝛷(𝜁 ) (2-52) 

Therefore, no matter how the mapping is conducted, analytic continuation allows both the stress 

functions, Φ(ζ1) and Ψ(ζ2), to be expressed as a single stress function Φ(ζj) for j = 1, 2. 

 



31 
 

 
 

2.8. Mapping Collocation 

2.8.1. General Comments 

The individual stresses and displacements (equations (2-44) through (2-48)) of a loaded 

orthotropic structure either using equation (2-49) or (2-52) can now be evaluated using a single 

stress function, Φ(ζj) for j = 1, 2. This requires knowing the stress function Φ(ζj) to stress analyze 

the structure. For this purpose, the concept of finite power-series expansion of a function is utilized 

in this thesis. The single stress function, Φ(ζj), is expressed as a finite power-series expansion 

whose unknown complex coefficients are determined experimentally. Knowing the complex 

coefficients, the stress functions Φ(ζ1) and Ψ(ζ2) are evaluated and hence the individual stresses 

and displacements are available throughout the structure from equations (2-44) through (2-48). 

Once stresses are known, using them along with the orthotropic constitutive properties in equations 

(2-3) through (2-5) or equation (2-34), the in-plane strains are determined.   

Either a truncated Taylor series or a Laurent series is used to expand the stress functions. 

Gerhardt [8] provided information on when to use a Taylor series or  when to use a Laurent series. 

For problems where the mapping is such that the boundary of a discontinuity is mapped from the 

physical z-plane to along the real axis of the ζ-plane, the Taylor series is used to express the stress 

function Φ(ζj) (for j = 1, 2). If the mapping function maps the boundary of the traction-free cutout 

from the physical z-plane to a unit circle in the ζ-plane, the Laurent series is employed [8]. 
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2.8.2. Taylor Series Expansion 

A truncated Taylor series maps a portion of the real axis, Γζ, of the imaginary ζ-plane and 

its adjacent region, Rζ, onto the traction-free boundary of a cutout, Γz, and its exterior region, Rz, 

of the physical z-plane, Figure 2-1. For orthotropy the stress function Φ(ζj) for j = 1, 2, in the ζ-

plane using the Taylor series are expressed as [8] 

 
𝛷(𝜁 ) =  𝑐 (𝜁 −  𝜁 )

  

 (2-53) 

Introducing equation (2-53) for ζ2 into equation (2-49), the expression for Φ(ζ2) and hence for 

Ψ(ζ2) is obtained as such [8,18] 

 
𝛹(𝜁 ) =  𝑐̅ 𝐵 + 𝑐 𝐶 (𝜁 − 𝜁 )

  

 (2-54) 

where cj are the unknown complex Airy coefficients and 𝑐̅  are the complex conjugate of cj. The 

constant ζ0 is an arbitrary point along the real ξ-axis (η = 0) of the ζ-plane. The unknown complex 

Airy coefficients, cj, are complex numbers, i.e., cj = aj + ibj, where aj and bj are real numbers and 

are evaluated in this research from measured information. It is typically not possible to stress 

analyze finite structures of orthotropic materials purely analytically. Measured quantities are 

thereby combined with analytical representations to solve for the system unknowns. This 

transforms the stress analysis procedure into an experimental-analytical method. This simplifies 

the system complexity. Since interest here is mainly in finite structures, the present concept of 

processing measured quantities often provides the additional advantage of automatically imposing 
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the structure’s finiteness. The solutions of this hybrid-method thereby inherently account for the 

finite geometry of the structure. The finite boundary conditions can also be manually imposed.   

The stresses of equations (2-44) through (2-46) consists of the derivatives of the stress 

functions, Φ'(ζ1) and Ψ'(ζ2). When using Taylor series to express Φ(ζ1) and Ψ(ζ2) as equations 

(2-53) and (2-54), derivatives of these two stress functions with respect to ζ1 and ζ2, respectively, 

are 

 𝛷 (𝜁 ) = 𝑐 𝑗(𝜁 − 𝜁 )

  

 (2-55) 

and 

 𝛹 (𝜁 ) = 𝑗 𝑐̅ 𝐵 + 𝑐 𝐶 (𝜁 − 𝜁 )

  

 (2-56) 

Thus, using the concept of analytic continuation of equation (2-49) to relate the stress 

functions of equations (2-44) through (2-46) as a single stress function, Φ(ζj) for j = 1, 2, and 

expanding the latter using the Taylor series expansion, the in-plane stresses are obtained by 

combining equations  (2-55) and (2-56) in equations (2-44) through (2-46), i.e., 
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𝜎 = 2 𝑅𝑒

𝑗𝜇

𝜔 (𝜁 )
(𝜁 −  𝜁 ) + 

𝑗𝜇 𝐶

𝜔 (𝜁 )
(𝜁 − 𝜁 ) 𝑐

  

+  
𝑗𝜇 𝐵

𝜔 (𝜁 )
(𝜁 −  𝜁 ) 𝑐̅  

(2-57) 

 
𝜎 = 2 𝑅𝑒

𝑗

𝜔 (𝜁 )
(𝜁 −  𝜁 ) + 

𝑗𝐶

𝜔 (𝜁 )
(𝜁 − 𝜁 ) 𝑐

  

+  
𝑗𝐵

𝜔 (𝜁 )
(𝜁 −  𝜁 ) 𝑐̅  

(2-58) 

 
𝜎 = −2 𝑅𝑒

𝑗𝜇

𝜔 (𝜁 )
(𝜁 −  𝜁 ) +  

𝑗𝜇  𝐶

𝜔 (𝜁 )
(𝜁 −  𝜁 ) 𝑐

  

+  
𝑗𝜇 𝐵

𝜔 (𝜁 )
(𝜁 −  𝜁 ) 𝑐̅  

(2-59) 

where B and C are complex quantities which depends on the material’s elastic properties and are 

defined in equations (2-50) and (2-51) and ω′j(ζj) are the derivatives of the mapping functions of 

equation (2-38) with respect to the complex variables, ζj, for j = 1, 2. In the summation series, j = 

0 represents a constant related to the rigid body motion and is omitted. 

In a similar way, using equations (2-39), (2-40) and (2-49) with the expressions for the in-

plane displacements of equations (2-31) and (2-32), and expressing the stress functions as a Taylor 

series expansion according to equations (2-53) and (2-54), expressions for the in-plane 

displacements are obtained as 
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𝑢 = 2 𝑅𝑒 𝑝 (𝜁 −  𝜁 ) + 𝑝 𝐶(𝜁 −  𝜁 ) 𝑐 +  𝑝 𝐵(𝜁 −  𝜁 ) 𝑐̅  

  

 (2-60) 

 
𝑣 = 2 𝑅𝑒 𝑞 (𝜁 −  𝜁 ) + 𝑞 𝐶(𝜁 −  𝜁 ) 𝑐 +  𝑞 𝐵(𝜁 −  𝜁 ) 𝑐̅  

  

 (2-61) 

Thus, to evaluate the in-plane stress and displacement components from equations (2-57) 

through (2-61), one only needs to find the unknown Airy coefficients, cj. 

 

2.8.3. Laurent Series Expansion 

The Laurent series expansion is used when the boundary of the traction-free cutout is 

mapped from the physical z-plane to a unit circle in the complex ζ-plane. The Laurent series 

representation of the stress functions are  

 𝛷(𝜁 ) =  𝑐 𝜁

  

  
  

 (2-62) 

 𝛹(𝜁 ) =  𝑐̅ 𝐵𝜁 + 𝑐 𝐶𝜁

  

  
  

 (2-63) 

As mentioned previously, the Airy coefficients cj are complex numbers, i.e., cj = aj + ibj, where aj 

and bj are real numbers. B and C are complex material quantities which are obtained from equations 
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(2-50) and (2-51). The value of j = 0 in the summation series is related to the rigid body motion. 

As the plate is securely held between the grips when physically loaded, there is no contribution 

from the rigid body motions, j ≠ 0. Moreover, if the situation is such that one has symmetry over 

the four quadrants, the value of j is not an even number, m ≠ 2n for n = 1, 2, 3…∞. The series only 

sums the odd values of j, i.e., m = 2n − 1. For cases with geometric and loading symmetry about 

the x-y axes, analyzing just one quadrant is sufficient. Information in the other quadrants is known 

through symmetry. 

Derivatives of the stress functions of equations (2-62) and (2-63) with respect to the 

complex variables ζj for j = 1, 2, are  

 𝛷 (𝜁 ) =  𝑗𝑐 𝜁

  

  
  

 (2-64) 

 Ψ (𝜁 ) =  −𝑗𝑐̅ 𝐵𝜁 + 𝑗𝑐 𝐶𝜁

  

  
  

 (2-65) 

Furthermore, substitution of equations (2-64) and (2-65) into equations (2-41) and (2-42), the 

derivatives of the stress functions with respect to the complex variables zj for j = 1, 2, are obtained 

as 
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 𝛷 (𝑧 ) =  
𝛷 (𝜁 )

𝜔 (𝜁 )
=  

𝑗𝑐 𝜁

𝜔 (𝜁 )

  

  
  

 (2-66) 

 𝛹 (𝑧 ) =  
𝛹 (𝜁 )

𝜔 (𝜁 )
=  

−𝑗𝑐̅ 𝐵𝜁  +  𝑗𝑐 𝐶𝜁

𝜔 (𝜁 )

   

  
  

 (2-67) 

Combining equations (2-52), (2-62) and (2-63), with equations (2-47) and (2-48) provides the in-

plane displacements in x- and y-directions as 

 

𝑢 = 2

⎝

⎜
⎛

𝑅𝑒 𝑝 𝜁 + 𝑝 𝐶𝜁 + 𝐵𝜁 𝑎 + 𝑖 𝑝 𝜁 + 𝑝 𝐶𝜁 − 𝐵𝜁 𝑏

  

 
  ⎠

⎟
⎞

 (2-68) 

 𝑣 = 2

⎝

⎜
⎛

𝑅𝑒 𝑞 𝜁 + 𝑞 𝐶𝜁 + 𝐵𝜁 𝑎 + 𝑖 𝑞 𝜁 + 𝑞 𝐶𝜁 − 𝐵𝜁 𝑏

  

 
  ⎠

⎟
⎞

 (2-69) 

Similarly, combining equations (2-66) and (2-67) with equations (2-44) through (2-46) gives the 

following expressions for the in-plane stresses 
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 𝜎 = 2

⎝

⎜
⎛

𝑅𝑒 𝜇
𝑗𝑐 𝜁

𝜔 (𝜁 )
+  𝜇

−𝑗𝑐̅ 𝐵𝜁 +  𝑗𝑐 𝐶𝜁  

𝜔 (𝜁 )

  

  
  ⎠

⎟
⎞

 (2-70) 

 𝜎 = 2

⎝

⎜
⎛

𝑅𝑒
𝑗𝑐 𝜁

𝜔 (𝜁 )
+  

−𝑗𝑐̅ 𝐵𝜁 +  𝑗𝑐 𝐶𝜁  

𝜔 (𝜁 )

  

  
  ⎠

⎟
⎞

 (2-71) 

 𝜎 = −2

⎝

⎜
⎛

𝑅𝑒 𝜇
𝑗𝑐 𝜁

𝜔 (𝜁 )
+ 𝜇

−𝑗𝑐̅ 𝐵𝜁 +  𝑗𝑐 𝐶𝜁  

𝜔 (𝜁 )

  

  
  ⎠

⎟
⎞

 (2-72) 

where ω'j are the derivatives of the mapping functions ωj for j = 1, 2, of equation (2-38). Once the 

stresses in the x-y rectangular Cartesian coordinates are determined from equations (2-70) through 

(2-72), using coordinate transformation matrix of equation (2-73) the stresses can be transformed 

from the Cartesian coordinates to the polar coordinates. The in-plane strains are available from a 

stress-strain relationship such as that of equation (2-34). 

 
𝜎
𝜎
𝜎

=
cos 𝜃 sin 𝜃 2 sin 𝜃 cos 𝜃
sin 𝜃 cos 𝜃 −2 sin 𝜃 cos 𝜃

−sin 𝜃 cos 𝜃 sin 𝜃 cos 𝜃 cos 𝜃 − sin 𝜃

𝜎
𝜎
𝜎

 (2-73) 

 By using conformal mapping and analytic continuation, the stresses of equations (2-57) 

through (2-59) or equations (2-70) through (2-72) can be made to satisfy local traction-free 
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boundary conditions and equilibrium throughout the entire structure. The associated strains satisfy 

compatibility. 

The current approach can be extended to isotropic materials according to elastic modulus, 

E11 = E22 = E, Poisson’s ratio, ν, and shear modulus, G = E/2(1 + ν). This method is capable of 

processing measured data in a variety of forms, i.e., the Airy stress coefficients can be determined 

from virtually any measured data. Examples include measured displacement u or v in equation 

(2-60) or (2-61) or in equation (2-68) or (2-69). Measured isopachic stresses can be used in a 

combination of equations (2-57) and (2-58) or of equations (2-70) and (2-71). Although applicable 

to a variety of experimental techniques, this research emphasizes stress analyzing loaded structures 

using a single displacement component measured by digital image correlation (DIC). With rapid 

advancements in image technologies and computer processing power, DIC is becoming a highly 

promising and convenient experimental tool for structural assessment. 

To facilitate solving various real-world applications involving orthotropic structures with 

discontinuities, conformal mapping functions of several commonly found cutouts in mechanical 

structures or machine components are provided here.  

 

2.9. Common Mapping Functions 

2.9.1. Circular Cutouts, Notches and Fillets 

2.9.1.1. Taylor Series 

Consider an orthotropic component with a circular hole, notch or fillet of radius R and 

center located at zc, Figure 2-1. To map a region, Rζ, (half-plane) from the ζ-plane into a region, 
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Rz, adjacent to the circular opening of the physical z-plane, the following mapping function is used 

[9] 

 𝑧 =  𝜔 𝜁 =
𝑖𝑅

2
1 − 𝑖𝜇 𝑒 − 1 + 𝑖𝜇 𝑒 + 𝑧 ,   𝑗 = 1, 2 (2-74) 

The region along the real axis, Γζ,, in the ζ-plane is mapped onto the traction-free boundary, Γz, of 

the z-plane. Such mapping functions are employed when expressing the stress functions using the 

Taylor series expansion. The following inverse of the mapping function of equation (2-74) maps 

the circular hole of radius R and region, Rz, adjacent to it from the physical z-plane to a half-plane, 

Rζ, along and above the real axis of the ζ-plane. 

 𝜁 =  𝜔 𝑧 =  𝑖 ln

⎣
⎢
⎢
⎡𝑧 − 𝑧  ± 𝑧 − 𝑧 − 𝑅 1 +  𝜇

𝑖 𝑅 1 − 𝑖𝜇
⎦
⎥
⎥
⎤

,   𝑗 = 1, 2 (2-75) 

The branch of the square root of equation (2-75) is chosen so that Im(ζj) ≥ 0, i.e., | eiζj
 | ≥ 1 for  j = 

1, 2. The center of the cutout is at zc = xc + μjyc for j = 1, 2.  Keeping the origin of the coordinate 

system at the center of the circular hole eliminates zc, i.e., zc = 0 in equations (2-74) and (2-75). 

 

2.9.1.2. Laurent Series 

Consider an orthotropic component with a circular hole, notch or fillet of radius R and 

center located at zc, Figure 2-2. According to the Laurent series expansion, to transform the unit 
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circle from the ζ-plane to a circular boundary of radius R in the z-plane, the mapping function of 

equation (2-76) is used to map the traction-free boundary, Γζ, of the unit circle and its exterior 

adjacent region, Rζ, from ζ-plane onto the traction-free edge, Γz, of the circular hole and its exterior 

region, Rz, in the z-plane, Figure 2-2, [8]. The inverse of this function maps the original circular 

cutout/fillet of radius R from the z-plane to the unit circle in the ζ-plane, equation (2-77). 

 𝑧 =  𝜔 𝜁 =  
𝑅

2
1 − 𝑖𝜇 𝜁 +  

1 +  𝑖𝜇

𝜁
+ 𝑧 , 𝑗 = 1, 2 (2-76) 

and 

 
𝜔 𝑧 =  𝜁 =  

𝑧 − 𝑧  ±   𝑧 − 𝑧 −  𝑅 1 + 𝜇

𝑅 1 − 𝑖𝜇
 , 𝑗 = 1, 2 (2-77) 

The branch of the square root of the above equation (2-77) is chosen so that, | ζj | ≥ 1 for j = 1, 2. 

 

2.9.2. Elliptical Cutouts or Notches 

2.9.2.1. Taylor Series 

For an orthotropic loaded structure with an elliptical cutout of major radius, a, and minor 

radius, b, and the ellipse center located at zc, the mapping function to map the region Rζ from the 

ζ-plane into the region Rz of the z-plane (Figure 2-1) is [8] 
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𝑧 =  𝜔 𝜁 =  

𝑎 − 𝑖𝑏𝜇

2

𝑖 −  𝜁

𝑖 +  𝜁
+ 

𝑎 + 𝑖𝑏𝜇

2

𝑖 +  𝜁

𝑖 −  𝜁
+ 𝑧 ,     𝑗 = 1, 2 (2-78) 

The above mapping function considers the major radius of the ellipse, a, to be along the x-axis and 

minor radius, b, along the y-axis. Using the inverse of the mapping function of equation (2-78), 

the traction-free elliptical boundary, Γz, and its exterior adjacent region, Rz, from the physical z-

plane is mapped into a half-plane of region, Rζ, with the traction-free boundary mapped along a 

section of the real ξ-axis (η = 0) in the ζ-plane as  

 

𝜁 =  𝜔 𝑧 = 𝑖

𝑎 − 𝑖𝑏𝜇 − 𝑧 − 𝑧 +  𝑧 − 𝑧 − 𝑎 − 𝑏 𝜇

𝑎 − 𝑖𝑏𝜇 + 𝑧 − 𝑧 +  𝑧 − 𝑧 − 𝑎 − 𝑏 𝜇

,    

 𝑗 = 1, 2 

(2-79) 

The branch of the square root of equation (2-79) is chosen so that Imζj ≤ 0 for j = 1, 2. Selecting 

the coordinate origin at the center of the elliptical cutout will simplify the mapping function by 

eliminating zc. 

 

2.9.2.2. Laurent Series 

To conformally map the same elliptical cutout just discussed from a unit circle the Laurent 

series expansion is used. To map the boundary of a unit circle and its exterior region from the ζ-

plane into the exterior region of the elliptical hole in the z-plane, Figure 2-2, the mapping function 
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of equation (2-80) is used. This function maps the boundary of a unit circle, Γζ, and region, Rζ, 

adjacent to it from the ζ-plane to the traction-free boundary, Γz, along an elliptical hole of radii a 

and b, and region, Rz, exterior to it in the physical z-plane as [8] 

 
𝑧 =  𝜔 𝜁 =  

𝑎 + 𝑖𝑏𝜇

2

1

𝜁
+ 

𝑎 − 𝑖𝑏𝜇

2
𝜁 + 𝑧 ,    𝑗 = 1, 2 (2-80) 

The inverse of the mapping function of equation (2-80) maps the boundary of the elliptical hole, 

Γz, and region, Rz, close to it from the physical z-plane onto along the boundary, Γζ, of a unit circle 

and region, Rζ, exterior to it in the mapped ζ-plane. 

 

𝜁 =  𝜔 𝑧 =  
 𝑧 − 𝑧  ± 𝑧 − 𝑧 −  𝑎 −  𝑏 𝜇

𝑎 − 𝑖𝑏𝜇
,   𝑗 = 1, 2 

(2-81) 

The branch of the square root of equation (2-81) is chosen in such a way that, | ζj | ≥ 1 for j = 1, 2. 

While equations (2-80) and (2-81) theoretically assumes infinite geometry [5], Chapter 5 

demonstrates these are applicable for highly finite members. 

 

2.9.3. Inclined Elliptical Cutouts 

2.9.3.1. Laurent Series 

For an elliptical hole inclined at an angle α to the x-axis (x-axis aligned along strong/stiff 

material direction 1) and with the coordinate origin at the center of the hole (zc = 0), Figure 2-3, 
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the mapping function to map the region, Rζ, adjacent to a unit circle in the ζ-plane to an elliptical 

hole oriented at an angle α and its exterior region, Rz, in the physical z-plane, (similar to Figure 

2-2) is [20] 

 𝑧 =  𝜔 𝜁 =
𝑎 − 𝑖𝜇 𝑏

2
𝜁 +  

𝑎 + 𝑖𝜇 𝑏

2
𝜁 , for 𝑗 = 1, 2 (2-82) 

where 

 𝑎 = 𝑎 cos 𝛼 + 𝑖𝑏 sin 𝛼   and   𝑏 = 𝑏 cos 𝛼 + 𝑖𝑎 sin 𝛼 (2-83) 

Quantities 𝑎  and 𝑏  are the complex conjugates of a' and b', respectively. 
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Figure 2-3: Orthotropic plate with inclined elliptical hole 

 

After re-arranging, the inverse of the mapping function of equation (2-82) is [3] 

 
𝜁 =

𝑧 + 𝑧  ± (𝑎 𝜋 + 𝑏 𝜋 )

𝑎𝜋 ± 𝑖𝑏𝜋
, 𝑗 = 1, 2 

(2-84) 

where 

 

𝜋 = cos 𝛼 +  𝜇 sin 𝛼 + 𝜇 sin 2𝛼        𝜋 =  cos 𝛼 +  𝜇 sin 2𝛼 

𝜋 = sin 𝛼 +  𝜇 cos 𝛼 ±  𝜇 sin 2𝛼       𝜋 =  𝜇 cos 𝛼 ± sin 𝛼 

(2-85) 
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The branch of the square root of equation (2-84) is chosen so that | ζj | ≥ 1 for j = 1, 2. For the zj = 

x + μjy plane, expressions for x and y are  

 

𝑥 = 𝑎 cos 𝜃 cos 𝛼 ± 𝑏 sin 𝜃 sin 𝛼 

𝑦 = 𝑎 sin 𝛼 cos 𝜃 + 𝑏 cos 𝛼 sin 𝜃 

(2-86) 

 

2.9.4. Cracks 

2.9.4.1. Taylor Series 

For an orthotropic material with a crack located at y' → 0 and x' ≤ 0 and inclined at an angle 

α with the x-axis, the mapping function to map the region, Rζ, (half-plane) from the ζ-plane to the 

region surrounding the crack, Rz, in the physical z-plane is [18,21] 

 𝑧 =  𝜔 𝜁 =  − 𝜁 , 𝑗 = 1, 2 (2-87) 

The local coordinate system x'-y' is aligned and normal to the crack and x-y are the plate’s global 

Cartesian coordinates, Figure 2-1. The inverse of the mapping function of equation (2-87) and 

which maps the traction-free region of the crack from the z-plane onto a section of the real axis of 

the ζ-plane, is  

 𝜁 =  𝜔 𝑧 = 𝑖 𝑧 , 𝑗 = 1, 2 (2-88) 
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The branch of the square root of equation (2-88) is chosen so that Im(ζj) ≥ 0 for j = 1, 2. 

 

2.9.4.2. Laurent Series 

Consider a crack of length 2a with center located at zc and oriented at an angle α with 

respect to the plate’s orthotropic material direction x, Figure 2-2. Equation (2-89) maps a region, 

Rζ, surrounding a unit circle in the ζ-plane into a region, Rz, close to the traction-free boundary of 

the crack into the physical z-plane [22] 

 𝑧 =  𝜔 𝜁 =
𝑎

2
𝑐𝑜𝑠𝛼 + 𝑢 𝑠𝑖𝑛𝛼 𝑒 𝜁 +  𝑒 𝜁 + 𝑧 , 𝑗 = 1, 2 (2-89) 

The inverse of the above mapping function of equation (2-89) is  

 
𝜁 =  

𝑒 𝑧 − 𝑧 ± 𝑧 − 𝑧 − 𝑎 𝑐𝑜𝑠𝛼 + 𝜇 𝑠𝑖𝑛𝛼

𝑎(𝑐𝑜𝑠𝛼 +  𝜇 𝑠𝑖𝑛𝛼)
,   𝑗 = 1, 2 

(2-90) 

For a crack aligned along the x-axis, i.e., α = 0, equations (2-89) and (2-90) simplifies to  

 𝑧 =  𝜔 𝜁 =
𝑎

2
𝜁 +  𝜁 + 𝑧 , 𝑗 = 1, 2 (2-91) 

and 
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𝜁 =  

𝑧 − 𝑧 ± 𝑧 − 𝑧 − 𝑎

𝑎
,   𝑗 = 1, 2 

(2-92) 

The branch of the square root of the above equations (2-90) and (2-92) are chosen so that, | ζj | ≥ 1 

for j = 1, 2.  

 

2.9.5. Straight lines 

2.9.5.1. Taylor Series 

Equation (2-93) maps a half-plane, Rζ, from the ζ-plane into a region, Rz, adjacent to a 

straight line inclined at an angle α with the x-axis in the physical z-plane, Figure 2-4 [9] 

 𝑧 =  𝜔 𝜁 = 𝑐𝑜𝑠𝛼 +  𝜇 𝑠𝑖𝑛𝛼 𝜁 + 𝑧 ,    𝑗 = 1, 2   (2-93) 

The inverse of the above mapping function is 

 𝜁 =  𝜔 𝑧 =
𝑧 − 𝑧

𝑐𝑜𝑠𝛼 + 𝜇 𝑠𝑖𝑛𝛼
,   𝑗 = 1, 2 (2-94) 

where z0 = x0 + μjy0 is an arbitrary point in the physical z-plane. 
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Figure 2-4: Mapping a half-plane from ζ-plane into a region close to a straight line in z-plane 

 

2.9.6. Parabolic Notch 

2.9.6.1. Taylor Series 

For a parabolic notch with a radius of curvature ρn at its root (Figure 2-5) the following 

mapping function maps a half-plane, Rζ, from the ζ-plane to the region adjacent to the parabolic 

notch, Rz, in the z-plane as such [9] 

 𝑧 =  𝜔 𝜁 =  𝜇 𝜁 + 2𝑞𝜁 −  𝜇 𝑞 ,    𝑗 = 1, 2 (2-95) 

The inverse of the mapping function that maps the region Rz from the physical z-plane to Rζ in the 

ζ-plane is 

 𝜁 =  𝜔 𝑧 =  −
𝑞

𝜇
+ 𝑞 1 +

1

𝜇
+

𝑧

𝜇
,    𝑗 = 1, 2 (2-96) 
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The branch of the square root of equation (2-96) is chosen so that Im(ζj) ≤ 0 for j = 1, 2. 

 

 

Figure 2-5: Mapping a half-plane from ζ-plane into a region close to a parabolic notch in z-plane 

 

The parabolic notch of Figure 2-5 is represented as 

 𝑦 =
𝑥

2𝜌
−

𝜌

2
  and 𝑞 =

𝜌

2
 (2-97) 

 

2.9.7. Rectangular Opening 

2.9.7.1. Laurent Series 

For a rectangular hole of major length 2a and minor length or width 2b and inclined at an 

angle α with the x-axis (Figure 2-6), the mapping function to map an region, Rζ, exterior to a unit 
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circle in the ζ-plane into an area exteriorly adjacent to the rectangular boundary, Rz, in the z-plane 

is [6,23,24] 

 𝑧 =  𝜔(𝜁) = 𝑅  𝜁 +
𝑐∗

𝜁
  

 (2-98) 

where Rc is a hole size constant and 𝑐∗  for k = 2j -1 and j = 1, 2, 3…n, are the mapping function 

coefficients. The mapping coefficients, 𝑐∗ , are defined as [24]  

 

𝑐∗ =
1

2
𝑒 ( ) + 𝑒 ( )  

𝑐∗ =
1

24
𝑒 ( ) − 𝑒 ( )  

𝑐∗ =
1

80
𝑒 ( ) − 𝑒 ( ) 𝑒 ( ) − 𝑒 ( )  

(2-99) 

where α is the inclination of the rectangular hole with the x-axis and λT is characterization side 

ratio of the rectangular hole, i.e., λT = a/b, Figure 2-6. Details regarding the mapping function can 

be found in Reference [24]. 
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Figure 2-6: Mapping a unit circle from the ζ-plane into a region close to a rectangular boundary 
in the z-plane  

 

For an orthotropic material, by substituting z = x + iy as zj = x + μjy for j = 1, 2, into the 

mapping function of equation (2-98), the mapping function subsequently takes the following form 

[24] 

 𝑧 =  𝜔 𝜁 =
𝑅

2
 1 + 𝑖𝜇

1

𝜁
+ 𝑐∗

  

𝜁 + 1 − 𝑖𝜇 𝜁 +
𝑐∗

𝜁
  

 (2-100) 

The summation series consider the odd values of k, i.e., k = 2n – 1 for n = 1, 2, 3, … 
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2.9.8. Other Cutouts 

The mapping functions for few other commonly-shaped cutouts are provided in this 

section. The functions of equations (2-101) through (2-103) map regions, Rζ, above a half-plane in 

the ζ-plane into regions, Rz, adjacent to a square hole, triangular hole or oval hole, respectively, in 

the physical z-plane, Figure 2-7. Equation (2-101) is used to map a square hole with rounded 

corners and side length a from the ζ-plane into the physical z-plane [9] 

 𝑧 =  𝜔(𝜁) = 𝑅
1

𝜁
−  

𝜁

6
+

1

56
𝜁 + 𝑧  (2-101) 

where Rc is a constant related to the scale and orientation of the square opening. Equation (2-102) 

is useful in mapping an equilateral triangular hole with side length a [25] 

 𝑧 =  𝜔(𝜁) =
√3𝑎

4
𝜁 −

1

3
𝜁 +

1

45
𝜁 + 𝑧  (2-102) 

The following approximate mapping function can be employed for an oval opening with major 

and minor radii of a and a/3, respectively, [25] 

 𝑧 = 𝜔(𝜁) =
17

24
𝑎 𝜁 +

8

17
𝜁 −

1

17
𝜁 + 𝑧  (2-103) 

where zc is the center of the cutouts. 
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Figure 2-7: Mapping a half-plane from ζ-plane to various shaped cutouts (oval, square or 
triangle) in physical z-plane  

 

Determining the inverse of the mapping functions of equations (2-101) through (2-103) 

requires the equations be arranged in the form of polynomial equations with the complex variable 

ζ as the roots. For example, equation (2-101) can be re-arranged as equation (2-104). The roots of 

the polynomial equation (2-104) contain the inverse of the mapping function and can be 

numerically obtained. The root that satisfies the condition | ζ | ≤ 1 is selected as the inverse of the 

mapping function [9]. 
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 3𝜁 − 28𝜁 −
168𝑧

𝑅
𝜁 + 168 = 0 (2-104) 

The mapping function of equation (2-101) can be simplified by retaining only the first two 

terms as such [25] 

 𝑧 =  𝜔(𝜁) = 𝑅
1

𝜁
− 

𝜁

6
 (2-105) 

In this case the polynomial equation to solve for the inverse mapping function also simplify to 

 𝜁 +
6𝑧

𝑅
𝜁 − 6 = 0 (2-106) 

To apply these mapping functions for orthotropic members, the complex variables zj = x + μjy for 

j = 1, 2, needs to be combined individually with equations (2-101) through (2-103). 

Equations (2-107) and (2-109) can be used to map a region, Rz, adjacent to a hole having 

ns number of sides, i.e., a polygon into the physical z-plane, from an area, Rζ, adjacent to a unit 

circle in the ζ-plane and vice-versa [26]  

 𝑧 = 𝜔(𝜁) = 𝑅 𝜁 + 𝑅 𝜁( )
∏ (𝑗 − 1)𝑛 − 2  

𝑛 (1 − 𝑛 𝑘)(𝑘!)
  

 (2-107) 
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where ns is the number of sides of the polygon, Rc is the hole size coefficient and Π represents the 

products of the terms in the series. Rc is obtained from the theory that the given polygon will be 

inscribed in a circle with a diameter equal to 2Rc(1 + Tk), where Tk is  

 𝑇 =
∏ (𝑗 − 1)𝑛 − 2  

𝑛 (1 − 𝑛 𝑘)(𝑘!)
  

 (2-108) 

By introducing the complex parameters μj for j = 1, 2, the mapping function of equation 

(2-107) takes the following form for orthotropic members 

 

𝑧 = 𝜔 𝜁 =
𝑅

2
𝑎 𝜁 + 𝑏 𝜁

+ 𝑎 𝜁
( )

+ 𝑏 𝜁
( ) ∏ (𝑗 − 1)𝑛 − 2

𝑛 (1 − 𝑛 𝑘)(𝑘!)
,   𝑗 = 1, 2 

(2-109) 

where 

 𝑎 = 1 + 𝑖𝜇  and 𝑏 = 1 − 𝑖𝜇 ,    𝑗 = 1, 2 (2-110) 

The technique of using conformal mapping in the hybrid stress analysis method becomes 

comparatively complicated when treating anisotropic structures with highly complicated-shaped 

cutouts. An alternative in these cases can be the Schwarz-Christoffel mapping. Another alternative 

can be approximate solutions based on a characterization parameter accounting for the deviation 

of a certain cutout from that of an elliptical or circular opening [27]. However, these techniques 

have their own limitations. 
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This thesis considered some of these mapping functions, i.e., analyzed finite orthotropic 

plates with a circular cutout, elliptical cutout or double-edge cracks experimentally and plates with 

central or single-edge crack or a circular annular plate numerically. Additional mathematical 

details for each of these cases are included in the respective chapters.  

 

2.10. Airy Stress Function with Real Variables 

For isotropic materials under plane-stress or plane-strain conditions in the absence of body 

forces, the Airy stress function is the solution of the following bi-harmonic equation that satisfy 

equilibrium and compatibility [28] 

 ∇ 𝛷 = 0 (2-111) 

where ∇  is the Laplacian operator and in the polar coordinates is expressed as  

 ∇ =  
𝜕

𝜕𝑟
+

1

𝑟
 

𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝜃
 (2-112) 

The general solution of the bi-harmonic equation (2-111) in the polar coordinates is  
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𝛷 = 𝑎 + 𝑏 𝑙𝑛 𝑟 + 𝑐 𝑟 + 𝑑 𝑟 𝑙𝑛𝑟 +  (𝐴 + 𝐵 𝑙𝑛𝑟 + 𝐶 𝑟 + 𝐷 𝑟 𝑙𝑛𝑟)𝜃

+  𝑎 𝑟 + 𝑏 𝑟𝑙𝑛𝑟 +
𝑐

𝑟
+ 𝑑 𝑟 𝑠𝑖𝑛(𝜃)

+  𝑎 𝑟́ + 𝑏 𝑟𝑙𝑛𝑟 +  
𝑐 ́

𝑟
+ 𝑑 𝑟 𝑐𝑜𝑠(𝜃) + (𝐴 𝑟

+ 𝐵 𝑟𝑙𝑛𝑟)𝜃𝑠𝑖𝑛(𝜃) + 𝐴 𝑟 + 𝐵 𝑟𝑙𝑛𝑟 𝜃𝑐𝑜𝑠(𝜃)

+  𝑎 𝑟 + 𝑏 𝑟 + 𝑐 𝑟 + 𝑑 𝑟 ( )

, , …

𝑠𝑖𝑛(𝑛𝜃)

+  𝑎 ́ 𝑟 + 𝑏 𝑟 + 𝑐 ́ 𝑟 + 𝑑 𝑟 ( ) 𝑐𝑜𝑠(𝑛𝜃)

, , …

 

(2-113) 

where r is the radial coordinate and θ is the angle measured counter-clockwise from the x-axis.  

The individual components of stresses are expressed in terms of the Airy stress function, Φ, as 

(initially provided by Soutas-Little [28] but corrected according to Foust’s thesis [29]) 

 𝜎 =  
1

𝑟
 
𝜕𝛷

𝜕𝑟
+  

1

𝑟
 
𝜕 𝛷

𝜕𝜃
 (2-114) 

 𝜎 =  
𝜕 𝛷

𝜕𝑟
 (2-115) 

 𝜎 =  − 
𝜕

𝜕𝑟
 

1

𝑟
 
𝜕𝛷

𝜕𝜃
 (2-116) 

Using the expression of the Airy stress function, Φ, of equation (2-113) into equations (2-114) 

through (2-116),  the individual stresses in the polar coordinate are expressed as  
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𝜎 =
𝑏

𝑟
+ 2𝑐 + 𝑑 (2𝑙𝑛𝑟 + 1) +

𝐵 𝜃

𝑟
+ 2𝐶 𝜃 + 𝐷 (2𝑙𝑛𝑟 + 1)𝜃

+
𝑏

𝑟
−

2𝑐

𝑟
+ 2𝑟𝑑  𝑠𝑖𝑛(𝜃) +

𝑏

𝑟
−

2𝑐

𝑟
+ 2𝑟𝑑 𝑐𝑜𝑠(𝜃)

+
2𝐴

𝑟
𝑐𝑜𝑠(𝜃) −

2𝐴

𝑟
𝑠𝑖𝑛(𝜃) +

𝐵

𝑟
𝜃𝑠𝑖𝑛(𝜃) +

𝐵

𝑟
𝜃𝑐𝑜𝑠(𝜃)

+
2𝐵

𝑟
𝑙𝑛𝑟 𝑐𝑜𝑠(𝜃) −  

2𝐵

𝑟
𝑙𝑛𝑟 𝑠𝑖𝑛(𝜃)

− 𝑎 𝑛(𝑛 − 1)𝑟 + 𝑏 (𝑛 + 1)(𝑛 − 2)𝑟

, ,…

+ 𝑐 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 − 1)(𝑛 + 2)𝑟 sin(𝑛𝜃)

− 𝑎 𝑛(𝑛 − 1)𝑟 + 𝑏 (𝑛 + 1)(𝑛 − 2)𝑟

, ,…

+ 𝑐 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 − 1)(𝑛 + 2)𝑟 cos(𝑛𝜃) 

(2-117) 
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𝜎 =
−𝑏

𝑟
+ 2𝑐 + 𝑑 (2𝑙𝑛𝑟 + 3) −  

𝐵 𝜃

𝑟
+ 2𝐶 𝜃 + 𝐷 (2𝑙𝑛𝑟 + 3)𝜃

+
𝑏

𝑟
+

2𝑐

𝑟
+ 6𝑟𝑑  𝑠𝑖𝑛(𝜃) +

𝑏

𝑟
+

2𝑐

𝑟
+ 6𝑟𝑑 𝑐𝑜𝑠(𝜃)

+
𝐵

𝑟
𝜃𝑠𝑖𝑛(𝜃) +

𝐵

𝑟
𝜃𝑐𝑜𝑠(𝜃)

+ 𝑎 𝑛(𝑛 − 1)𝑟 + 𝑏 (𝑛 + 1)(𝑛 + 2)𝑟

, ,…

+ 𝑐 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 − 1)(𝑛 − 2)𝑟 𝑠𝑖𝑛(𝑛𝜃)

− 𝑎 𝑛(𝑛 − 1)𝑟 + 𝑏 (𝑛 + 1)(𝑛 + 2)𝑟

, ,…

+ 𝑐 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 − 1)(𝑛 − 2)𝑟 𝑐𝑜𝑠(𝑛𝜃) 

(2-118) 
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𝜎 =
𝐴

𝑟
+ 𝐵

𝑙𝑛𝑟 − 1

𝑟
− 𝐶 − 𝐷 (𝑙𝑛𝑟 + 1)𝜃 + −

𝑏

𝑟
+

2𝑐

𝑟
− 2𝑟𝑑  𝑐𝑜𝑠(𝜃)

− −
𝑏

𝑟
+

2𝑐

𝑟
− 2𝑟𝑑 𝑠𝑖𝑛(𝜃) −

𝐵

𝑟
𝑠𝑖𝑛(𝜃) −

𝐵

𝑟
𝑐𝑜𝑠(𝜃)

−
𝐵

𝑟
𝜃𝑐𝑜𝑠(𝜃) +

𝐵

𝑟
𝜃𝑠𝑖𝑛(𝜃)

− 𝑎 𝑛(𝑛 − 1)𝑟 + 𝑏 𝑛(𝑛 + 1)𝑟

, ,…

− 𝑐 𝑛(𝑛 + 1)𝑟 ( ) − 𝑑 𝑛(𝑛 − 1)𝑟 𝑐𝑜𝑠 (𝑛𝜃)

+ 𝑎 𝑛(𝑛 − 1)𝑟 + 𝑏 𝑛(𝑛 + 1)𝑟

, ,…

+ 𝑐 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 𝑛(𝑛 − 1)𝑟 𝑠𝑖𝑛(𝑛𝜃) 

(2-119) 

where N is the terminating index of the finite summation series. The Airy coefficients for isotropy 

are real numbers. The coefficients a0, a1 and 𝑎  are absent in the above equations (2-117) through 

(2-119) due to differentiation of the Airy stress function of equation (2-113) according to equations 

(2-114) through (2-116). Based on the geometry and external loading, one can often omit many of 

the Airy coefficients. This simplifies the Airy stress function hence the associated stress, strain 

and displacement components. The number of Airy coefficients can often be further reduced 

depending on finite or infinite geometry, symmetry about specific axis/axes, location of the 

coordinate’s origin, any self-equilibrated boundaries, and ensuring that the 

stresses/strains/displacements are single valued functions. One can sometimes advantageously 

impose known boundary conditions discretely or analytically. 
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Having determined the Airy coefficients, the individual in-plane stresses are evaluated 

from the equations (2-117) through (2-119). Knowing the stresses, equations (2-120) and (2-121) 

provide the individual in-plane strain components. The strain-displacement relationship (under 

small deformation) of these equations (2-120) and (2-121) can also be utilized to find the in-plane 

displacement components.  

 𝜀 =
𝜕𝑢

𝜕𝑟
=

1

𝐸
(𝜎 − 𝜈𝜎 ) (2-120) 

 𝜀 =
1

𝑟

𝜕𝑢

𝜕𝜃
+

𝑢

𝑟
=

1

𝐸
(𝜎 − 𝜈𝜎 ) (2-121) 

 

2.11. Summary and Conclusions 

The present experimental-analytical hybrid-method to stress analyze structures fabricated 

from isotropic or anisotropic materials only requires knowing the unknown Airy coefficients to 

stress analyze the structures. The unknown Airy coefficients can be determined using displacement 

components measured by DIC or isopachic stresses recorded by TSA. This hybrid-method fulfills 

equilibrium, satisfy strain compatibility and local traction-free boundary conditions.  

Purely analytical solutions tend to be available for only simple, finite geometries subjected 

to simple loading. Real-world problem often involves complex, finite shapes and complicated 

boundary conditions. The present technique of processing measured data using stress functions 

enable one to obtain solutions to complicated, finite shapes subjected to complicated loading. 

However, one should be careful while analyzing certain cases using this technique. For example, 
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while results of Chapter 5 demonstrates reliable results for a finite elliptically-perforated 

component, the mapping function employed assumes infinite geometry.  
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 Experimental Techniques 

 

3.1. General Comments 

Increasing energy cost and a need for reduction in carbon emissions have necessitated the 

interest in designing safety-critical aerospace, naval and automotive structures using light-weight 

composite materials. Accurate assessment of structural integrity is critical for such structures. 

Analytical theories, finite element analyses and experimental techniques are common ways to 

evaluate structural integrity. However, when treating structures with complicated geometry and 

loading, all of the above-mentioned approaches face challenges and involve compromises in the 

final results. Material anisotropy can further complicate the situation. 

Among the numerous available full-field experimental techniques to stress analyze 

composite materials non-destructively are photoelasticity (PSA), thermoelastic stress analysis 

(TSA) and optical forms such as interferometric or non-interferometric optical techniques. 

Common  interferometric techniques are holography, moiré and speckle interferometry and non-

interferometric techniques include grid methods and digital image correlation (DIC) [30].  

Each of the above methods faces limitations regarding the type of applied load, any surface 

preparation or experimental requirements, plus what mechanical quantities or experimental data 

are extracted. Such examples are PSA requiring sensitive coating on opaque materials, TSA 

requires cyclic loading to ensure adiabatic condition and interferometric techniques have strict 

stability requirements [31]. Interferometric methods such as digital/electrical speckle pattern 

interferometry (DSPI) or laser shearography can be difficult to use outside the laboratory due to 

their high sensitivity to environmental conditions, rigid body motion, vibration and air-flow. Slight 
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interruption in any of these factors can affect the reliability of the displacement/strain 

measurements. Examples include where vibration isolation is needed [32]. However, DSPI 

possibly offers the highest sensitivity and accuracy for full-field displacement measurements of 

very small displacements. 

Many challenges associated with several of the above-mentioned experimental techniques 

are overcome by DIC and TSA. DIC is becoming an extremely popular and robust experimental 

mechanics tool due to its minimal surface preparation requirements, ease of implementation, 

simple testing requirements and capability at various scales [33–35] and speed [36]. DIC-

measurements tend to be less sensitive to rigid body motions than some other methods [32]. 

However, due to the speckle pattern requirements and its sensitivity to fluctuation in source light 

intensity, DIC can be challenging when working with very large deformations or under elevated 

temperature conditions. Reference [32] discusses aspects such as suitable DIC paints and 

illuminations to employ for very large deformation measurements. TSA is another contactless 

technique for full-field stress analysis of loaded members. TSA requires cyclically loading the 

structure, which might not always be practical. However, an advantage of TSA is not requiring 

differentiating the recorded data. 

 

3.2. Digital Image Correlation (DIC) 

3.2.1. General Overview 

DIC is an effective optical tool for full-field deformation measurements [14]. It can provide 

important information regarding structural design, optimization, mechanical integrity, quality 

control and assurance. DIC is based on the principle of tracking common points on two or more 
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images. Advancement in computer processing power and imaging technologies are contributing 

factors in the rapid popularity and prevalence of DIC. It finds applications in experimental 

mechanics and optics for deformation, shape and motion measurements. DIC has been addressed 

in the literature by several different names, e.g., digital speckle correlation method (DSCM), 

texture correlation, electronic speckle photography (ESP) and computer-aided speckle 

interferometry (CASI) [30].  

DIC offers large measurement ranges and is suitable for static and dynamic measurements. 

DIC surface deformation measurements range from macroscopic to microscopic to nanoscopic 

scale [32]. The methodology is based on processing grey-scale values of digital images 

representing the specimen surface before and after deformation. The associated data analysis 

software is based on well-established subset-based correlation algorithms. DIC has evolved into a 

very effective and popular experimental technique due to the simplicity it offers in full-field, non-

contact displacement and hence strain measurements. DIC can be used to quantitatively determine 

the deformation fields for virtually any materials and loads. These includes metals, composites, 

woods, polymers and biological materials under mechanical, thermal or other forms of loading 

[30,32].  

Measurement accuracy in DIC can be affected by several factors, e.g., sub-pixel 

optimization algorithm, subset shape function, subset size, sub-pixel intensity interpolation 

scheme, camera resolution, camera lens optical quality, lens distortion and image noise [30]. When 

using DIC to stress analyze composite materials, additional factors such as laminate ply 

orientation, anisotropic material properties, size of any discontinuities and filter size can affect 

accuracy [13]. DIC-measurements are also influenced by human handling factors [30].   
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3.2.2. Basic Working Principle of DIC 

DIC is an optical method that utilizes techniques such as image tracking and registration 

to accurately measure two-dimensional or three-dimensional changes in digital images [14]. It 

compares the speckle patterns between any two deformation states of a loaded structure’s surface. 

The applied speckle pattern imposes a certain grey-value distribution over the surface of interest 

and thus creates a virtual grid of subsets of a certain size and shape. A camera is used to record 

this pattern when the loaded structure undergoes deformation [14,37]. 

 

3.2.3. Advantages of DIC 

Advantages of using DIC over other experimental techniques include the following: 

provides full-field displacement information, non-contacting, non-destructive and does not require 

cyclic loading. DIC is a relatively inexpensive, simple but accurate technique. It requires minimal 

surface preparation and is cost effective compared to other techniques such as speckle 

interferometry. The DIC experiments can easily be repeated and provide better result accuracy 

than manual measurements. Moreover, DIC is not limited to laboratory environment. The method 

essentially requires no special lighting and for self-textured materials does not even require any 

surface preparation. 

 

3.2.4. Applications of DIC 

DIC is applicable to a wide variety of engineering problems. Examples include [38] 

displacement/strain measurement in diverse range of materials, fracture studies to locate crack-tip 
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and monitor crack propagation, detecting damage development in anisotropic members, fatigue 

[39], structural deflection monitoring, high temperature strain mapping such as in laser welding 

[40,41], vibrational analysis, impact studies, infrastructure inspection and assessment and medical 

image tracking and scanning.  

 

3.2.5. Historical Development of DIC 

Though in the early 1950’s Gilbert Hobrough first attempted a form of DIC, the ground-

breaking developments of DIC started in the early 1980’s. In 1982 Peters and Ranson [42] first 

proposed the use of DIC-like computer-based image acquisition and deformation measurements 

in material systems. With developed numerical algorithms and optically recorded images, Sutton 

and colleagues [14,43,44] significantly contributed in developing the original concept of DIC and 

made it practically suitable for variety of applications. Around 2005 DIC made rapid development 

in the field of experimental mechanics and optics [14,30]. The DIC correlation algorithm gradually 

developed and hence improved DIC accuracy and efficiency. The original DIC concept by Peters 

and Ranson [42] had one-pixel accuracy, while Sutton et al. [43], using a technique called coarse-

fine method and bi-linear interpolation between the pixels, improved the accuracy. Bruck et al. 

[44] subsequently introduced the Newton-Rapson search method and bi-cubic pixel interpolation 

which improved the measurement accuracy and computational time by an order of a magnitude. 

Chen et al. [45] further improved the DIC accuracy by using spline interpolation. Methods such as 

the gradient method [46] and curve fitting method [47] are faster than the Newton-Rapson method 

but less accurate. Pan et al. [48–51] made significant contribution in decreasing the computational 

time of the Newton-Rapson based DIC algorithms.  
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3.2.6. Principle of Correlation Algorithm 

DIC measures displacement by tracking grey-scale pattern in small neighborhoods 

(typically called subsets) of the unloaded and loaded structure during the deformation process. In 

general, the correlation algorithm used in DIC calculates a correlation coefficient, c, that represents 

the similarity between the grey-scale distribution of the subsets in different images of a structure. 

The correlation coefficient, c, is defined in equation (3-1) as [32] 

 
𝑐(∆𝑥, ∆𝑦) =

∑ ∑ 𝐼 (𝑥, 𝑦)𝐼 (𝑥 + ∆𝑥, 𝑦 + ∆𝑦)

∑ ∑ 𝐼 (𝑥, 𝑦)𝐼 (𝑥 + ∆𝑥, 𝑦 + ∆𝑦)

 
(3-1) 

where, subscripts 1 and 2 represent image 1 (typically, the undeformed situation) and image 2 (the 

deformed configuration), respectively. I1 and I2 are the pixel intensities at location (x, y) of image 

1 and at location (x + Δx, y + Δy) of image 2, respectively. The maximum value of the correlation 

coefficient, c, is one. At c = 1 represents the grey-scale distribution of the two subsets being 

identical. Thus, the closer the value of c is to one, the more similar the two subsets are. This is the 

fundamental principle of the correlation techniques. DIC tracks a point by finding the maximum 

correlation coefficient, c, for all the subsets between the initial (undeformed) and subsequent 

(deformed) images to provide full-field displacement measurements of a loaded structure [32]. 

Once the displacements are measured by DIC, these displacement data are then numerically 

differentiated to obtain strains. Among other factors, accuracy of the DIC strains also depends on 

the type of equations used to evaluate strains from the measured displacements. The following 

Lagrangian strain model is well suited for determining strains in DIC [32]  
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 𝜀 =
𝜕𝑢

𝜕𝑥
+

1

2

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑥
 (3-2) 

 𝜀 =
𝜕𝑣

𝜕𝑦
+

1

2

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑦
 (3-3) 

 𝛾 =
1

2
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𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
 (3-4) 

where 𝜀 , 𝜀  and 𝛾  are Lagrangian normal and shear strains in x-y coordinates, respectively. 

Equations (3-2) through (3-4) shows that for accurate DIC strain determination involving large 

deformations, a 3D-DIC is needed as it provides information regarding the out-of-plane motion, 

w. The Lagrangian strains can be transformed to engineering and true strains with the help of 

relevant transformation equations. 

 

3.2.7. Experimental Details for DIC 

Displacement measurement using DIC involves the use of high-performance digital 

cameras with CCD sensors and a high-quality optical lens, and high-capacity data acquisition and 

post-processing software. In addition to laboratory customized and designed DIC packages, there 

are several powerful commercially available DIC packages.  

To perform a DIC test necessitates a random speckle pattern to be applied to the specimen 

surface. For 2D-DIC, the surface to be analyzed must be flat and parallel to the camera’s CCD 

sensor. This is to ensure that the camera’s optical axis is perpendicular to the test specimen’s 
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surface. For 2D-DIC, the out-of-plane motion (acknowledging the Poisson’s effect) of the loaded 

specimen should be small enough to be neglected. Image noise should be minimal. Digital images 

of the loaded structures are typically recorded at certain load intervals. A digital image of the 

unloaded structure is also taken to serve as a reference image for the correlation process. The DIC 

images are captured and post-processed by the correlation algorithm-based software. 

 

3.2.8. Speckle Pattern 

A random speckle pattern on the specimen surface is a pre-requisite for DIC. The random 

pattern works as unique markers to correlate displacement between the undeformed and deformed 

states of the loaded member. The random speckle pattern provides a random grey-intensity 

distribution over the DIC specimen. When the structure is loaded, the speckle pattern deforms 

along with the specimen and serves as a carrier for the deformation information [30]. Many 

techniques have been used to generate unique and reproducible speckle patterns. The natural 

textures of certain material surfaces can serve as the speckle pattern or the latter can be artificially 

applied by using paints (either by spraying/stamping or otherwise), hand drawing, chemical 

etching, computer generated images, atomization process, laser-beam and speckle-projections 

[52]. Errors in the DIC-measurements based on how the speckle patterns were applied have been 

analyzed. The naturally-textured surfaces provide the least unique pattern and can result in high 

measurement errors. The technique of manual drawing on the test object is time consuming and 

not practical for large scale or bulk quantity testing. Laser-beam and speckle-projection techniques 

face the challenge of adverse refection effects. Computer-generated images are popular due to their 

uniqueness, ease to generate, well-controlled deformation and reduced-noise characteristics. 
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However, the most popular way of generating speckle patterns for DIC-measurements is the paint-

spraying technique. For specimens with paint sprayed speckle patterns, the DIC-measurements 

contained the least amount of error. However, manually applied speckle pattern quality can be 

highly dependent on personal features of the person applying the paint. Thus sprayed speckle 

patterns might not always provide the least amount of DIC-measurement errors [52–54]. 

DIC-measurement heavily depends on the quality of the applied speckle pattern. Speckle 

quality refers to the grey-scale distribution characteristics, speckle sizes, density and contrast 

between the applied dots and its background. Minimizing errors in DIC-measurements necessitates 

a systematic unique speckle pattern with repeatability [52]. Measurements have been taken to 

evaluate the quality of the speckle pattern using standard parameters such as image histogram, 

mean speckle size, mean subset grey-value fluctuation and sum of the squares of subset intensity 

gradients [52,54].  Optimal subset size typically varies from 2 to 5 speckles per pixel. High mean 

intensity gradient and subset fluctuation are desirable in the speckle pattern as they contribute to 

less error in the DIC-measurements [52].  

 

3.2.9. Image Source 

The correlation process of DIC is not restricted to certain kinds of optical images, thus 

allowing for a wide range of sources and flexibility for the DIC images. Surface roughness maps, 

conventional CCD or personal digital cameras, high speed videos, macroscopic or microscopic 

images can all be used as DIC images [38]. 
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3.2.10. Illumination Source 

Initially both the white-light speckle patterns (patterns with random grey-scale intensity) 

and laser-speckle patterns were used in DIC. However, laser-speckle patterns require a coherent 

light source such as a laser to illuminate the test objects surface. Highly unacceptable de-

correlation effects were found when using laser-speckle pattern under some conditions. Thus, the 

white-light speckle pattern method has become the most popular form of DIC. White-light speckle 

pattern DIC employs white light, halogen light or natural light illumination [30]. 

 

3.2.11. Calibration 

Calibration of the DIC system is performed before recording the speckle images. 

Calibration is done to obtain the DIC results in physical units rather than in pixels. The DIC 

calibration process creates a 3D-coordinate system on the specimen’s surface and removes 

measurement bias. The process also calculates the camera’s intrinsic and extrinsic parameters, 

triangulates the camera’s position and removes lens distortions [55]. 

The DIC system calibration can be done in two different ways. For 2D-DIC utilizing one 

camera, simple and easy software-based calibration is done. The image contains a known distance 

on the specimen surface. Using the correlation software, a physical dimension is used manually to 

replace the pixels of the previously known distance. The second process is a nearly automatic 

calibration process which is used when conducting 3D-DIC using two cameras. The system 

calibration is achieved by moving, imaging and analyzing a rigid calibration target in front of the 

pair of stereo cameras. A rigid calibration target or grid is typically included with a commercial 

DIC package (Correlated Solution, Inc., for the current research). The grids come in various sizes. 
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A calibration grid of a size that is compatible with the size of the specimen’s area of interest, is 

considered appropriate for the calibration process [55]. 

 

3.2.12. Subset Size 

A subset size directly determines the unit area of the specimen surface being used to track 

the displacements between the reference and target images of the unloaded and loaded specimens, 

respectively. The subset size is user-defined and must be selected before conducting the image 

correlation procedure. The subset size can vary from several pixels to more than a hundred pixels 

depending on the speckle quality and the size of the specimen’s area of interest [54]. Accuracy of 

the DIC-measured displacements may depend heavily on an appropriate selection of the subset 

size. The subset should be large enough to contain sufficient distinct intensity pattern to be 

distinguishable from other subsets. However, for a small subset the load-induced deformation can 

be readily and accurately approximated with a first or second-order subset shape function. Larger 

subset size usually gives rise to larger error while approximating the underlying deformations. 

Therefore to achieve reliable displacement measurements from DIC, a smaller subset size is 

desirable [54]. Smaller subsets also have a better capability in suppressing random noise [56]. 

Based on the practical engineering problem and the applied speckle density, an optimum choice 

for subset size is made from these two contradictory demands on the size of the subset.  

In practical applications attributes due to personal handling makes the subset size selection 

more complicated. While using the paint spraying technique to apply the speckle pattern, if the 

speckle pattern is applied to identical specimens but by different people, then it is most likely that 

the DIC results of these identical specimens under the same load and test conditions will not be 
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the same. Due to personal features the speckle patterns will have slightly different image contrast 

and speckle sizes, thus slight differences in the grey-scale distribution and substantially small 

differences in the DIC-measurements [54]. Moreover, the reason behind the correlation process 

taking place over a square subset rather than on an individual pixel is that the square subset offers 

more uniqueness due to it having wider variation in the grey-levels [30]. 

.  

3.2.13. Step Size 

Step size defines the spacing of the points that are analyzed in DIC. A step size of one 

means that the correlation analysis will be performed at every pixel over the user-defined area of 

interest. DIC analysis time is inversely proportional to the square of the step size [55]. A small 

step size means more data for the analysis and thus will require longer correlation process time. 

 

3.2.14. Experimental Aspects to Improve DIC-Measurement Accuracy  

While working with DIC both experimental factors and correlation algorithm details have 

the potential to influence accuracy of the result. In most cases DIC users have very little control 

over the commercial correlation algorithm, other than selecting some correlation variables such as 

the image grid size, computation speed and the filter size. However, users have full control over 

the experimental set-ups and procedure. Making small changes in the DIC experimental details 

have the potential to significantly improve the accuracy. To ensure better accuracy while using 

DIC the following measures should be taken [30]: 
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- High contrast speckle pattern - obtained in this research by using a combination of black 

and white paints. 

- Placement of camera lens absolutely parallel to the specimen surface. 

- Use of telecentric lens or placing the DIC camera slightly away from the specimen surface. 

- Use of high-quality, low noise stereo cameras. 

- Keep the camera stable - a tripod was used presently for this purpose. 

- Ensure even illumination during specimen loading. 

- Take care in selecting subset, step and filter sizes. 

- Not allowing anything bright or reflective to be placed behind the test specimen. 

 

3.2.15. Limitations and Challenges of DIC 

3.2.15.1. DIC-Measurement Accuracy 

The correlation algorithm details can affect the accuracy of the DIC-measured 

displacements. The underlying algorithm details include sub-pixel registration algorithm, shape 

function and pixel interpolation scheme. Related studies have suggested using higher order 

interpolation schemes and second order shape functions in the correlation algorithm to reduce the 

systematic errors in the DIC computed displacements [30]. Moreover, noise in various forms is 

unavoidably present in the recorded digital images of the loaded structure. These noises are 

commonly in the form of shot noise (variation in the number of photons sensed by the image sensor 

at a given exposure level), thermal noise, and cut-off noise. Illumination light fluctuation during 

specimen loading often induces noise in the images. Measured displacement accuracy decreases 

proportionally with increase in noise variance [57]. Image noise can be alleviated by the use of 
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high-performance hardware, frame averaging during image acquisition and by the use of correct 

correlation criterion. 

   

3.2.15.2. Strain Measurements from DIC 

Strains involve displacement gradients and are obtained by numerical differentiation of the 

DIC displacements. For the displacement gradients, the initial pixel position is obtained from the 

reference image and final position from the deformed image. To numerically conduct the 

differentiation process of the DIC-measured displacements to obtain the displacement gradients or 

strains, algorithms such as Genetic, Newton-Raphson, and Lavenberg-Marquart are commonly 

used. Any error or noise associated with the measured displacements will be amplified by the 

numerical differentiation process [58]. Though the numerical differentiation of displacements to 

obtain strains is mathematically possible, in practice it can be an extremely unreliable and risky 

procedure. An example of how image noise or errors in the DIC-measured displacements affect 

the DIC strain accuracy is presented here from a review on DIC by Pan et al. [30]. For DIC-

estimated displacements, if there is a ± 0.02 pixels error in the displacement estimation, and the 

grid step is 5 pixels, then the error in the computed strains by forward difference is Δε = (|± 0.02| 

+ |± 0.02|)/5 = 8,000 με and from central difference is Δε = (|± 0.02| + |± 0.02|)/10 = 4,000 με. Such 

errors will likely mask the underlying strain of the tested object. Thus to improve the accuracy of 

the estimated strains, smoothing of the DIC-measured displacement data are done before 

differentiating them [30]. 

Accuracy of the DIC-estimated strains highly depends on the accuracy of the DIC-

measured displacements and on the local displacement filtering window size. To improve strain 
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accuracy, smoothing of the displacement data before the displacement-differentiation process is a 

standard procedure employed in commercial DIC software. Selecting the appropriate filtering 

window size for the smoothing process is extremely critical. A smaller window size might not 

properly filter out the noise in the DIC images, hence in the DIC-measured displacements. On the 

other hand, a larger window size has the possibility to corrupt the estimated strain data by masking 

out the high/critical strain values  [13,30,58].  

 

3.2.15.3. In-situ Application of DIC 

When working with DIC outside of the laboratory environment, one might face additional 

difficulties associated with environmental effects, e.g., temperature/humidity/air-flow effects, 

changes in surface conditions due to weathering and/or oxidation, fluctuation in image illumination 

intensity, issues with specimen size and geometry and difficulty with accessing a good optical 

view of the specimen surface [38]. However, its less sensitive experimental requirements and not 

requiring cyclic loading or a coherent light source makes DIC a better choice for practical in-situ 

applications than most other experimental techniques. 

 

3.3. Thermoelastic Stress Analysis (TSA) [59] 

3.3.1. General Overview 

Thermoelastic stress analysis (TSA) is an experimental technique for full-field, non-

destructive stress assessment of structures under cyclic loading. TSA measures the small 

temperature changes associated with stress changes, i.e., the thermoelastic effect of a cyclically 
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loaded structure. The cyclic loading is applied at a frequency that provides adiabatic thermal 

condition in the test object. TSA is applicable virtually to any material and used in a variety of 

applications where stress or damage assessment is necessary. It has sensitivity similar to that of 

commercial strain-gages. Stress sensitivity depends on the material’s thermoelastic coefficient, K. 

 

3.3.2. Basic Working Principle of TSA 

The thermoelastic behavior of a solid is somewhat similar to that of a gaseous substance 

subjected to variation in volume. When compressed, the temperature of gas increases and when 

expanded it decreases. A similar phenomenon occurs in solids. The temperature of a solid structure 

increases under compression and decreases under tension. However, such temperature variations 

in a loaded structure are quite insignificant and previously were hard to measure. With advanced 

infrared photon detectors and imaging technologies, it is now possible to effectively and accurately 

measure these small load-induced temperature variations. Staring array sensors have enabled 

instantaneous full-field data recording. 

  

3.3.3. Advantages of TSA 

TSA is a contactless, full-field experimental technique. TSA requires little to no surface 

preparation. Neither vibration isolation nor special external illumination are required. TSA does 

not involve differentiating the measured data. The latter is a computationally unreliable procedure.  
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3.3.4. Applications of TSA 

Under sufficient cyclic loading TSA applies to almost all kind of materials, be they 

isotropic or orthotropic. TSA has been successfully performed on metals, metal-alloys, ceramics, 

composites, polymers, woods, bones, bricks and concretes. TSA has a variety of applications in 

structural integrity analysis, fracture mechanics, fatigue, residual stress analysis, vibrational 

analysis and in medical science. 

 

3.3.5. Historical Development of TSA 

In 1853 Lord Kelvin [60] was the first to theoretically describe the thermoelastic effect in 

solids. Compton and Webster [61] experimentally verified Kelvin’s theory in 1915. In 1950 Biot 

[62] modified the basic theory to extend it to anisotropic materials. The first TSA-measurements 

were done by Belgen [63] in 1967. Mountain and Webber [64] were the first to develop a 

commercial TSA (SPATE) system. With developments in infrared cameras and computer 

processing power, TSA has become an effective experimental tool to assess structural integrity 

and is used in many studies. 

 

3.3.6. Thermoelasticity Theory 

For a cyclically loaded isotropic member under adiabatic and reversible conditions, the 

variations of in-phase temperatures are related to the changes in the first stress invariant or the sum 

of the principal stresses/strains. In 1953 the fundamental equation to describe the thermoelastic 

effect was introduced by Darken and Gurry [65] as 
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𝛿𝑇

𝑇
= −𝐾. 𝛿𝜎 (3-5) 

where T is the ambient temperature, σ = σI + σII + σIII is the first stress invariant, and K is the 

thermoelastic coefficient. K is a function of the elastic material properties and defined as  

 𝐾 =
𝛼

𝜌 𝑐
 (3-6) 

where αT is the coefficient of thermal expansion, ρm is the mass density and cp is the specific heat 

at constant pressure. For an isotropic member, the thermoelastic effect of equation (3-5) is directly 

proportional to the first stress invariant, which is related to the variation of volume. The negative 

sign indicates that a positive δσ corresponds to a negative variation in temperature and vice-versa. 

For an isotropic material under plane-stressed condition equation (3-5) can be written as  [59] 

 𝑆∗ = 𝐾∆(𝜎 + 𝜎 ) = 𝐾∆𝑆 (3-7) 

where S* is the measured thermal signal, σI and σII are the principal stresses and S is the isopachic 

stress. The basic principle of thermoelasticity (equations (3-5) and (3-7)) assumes that the 

material’s elastic and thermal properties remains constant throughout the process. 

Anisotropy complicates the material’s thermoelastic response. For a cyclically loaded 

orthotropic member, the thermoelastic effect is expressed as [66] 
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𝛿𝑇

𝑇
= −

1

𝜌 𝑐
𝛼 𝛿𝜎  (3-8) 

For plane-stress, equation (3-8) simplifies to  

 
𝛿𝑇

𝑇
= −

1

𝜌𝑐
𝛼 𝛿𝜎 +  𝛼 𝛿𝜎 = −(𝐾 𝛿𝜎 + 𝐾 𝛿𝜎 ) (3-9) 

where the subscripts 1 and 2 represent principal material directions.  

   

3.3.7. TSA Experimental Procedure 

The main component of the TSA system is a highly sensitive infrared camera capable of 

detecting small temperature changes in a cyclically loaded specimen. The infrared detector 

converts the incident radial energy from the loaded structure into electrical signals. Modern TSA 

cameras employ a sensitive focal-plane array sensor. These cameras require manual focusing. 

The present TSA research uses a commercial Delta Therm system (by Stress Photonic, Inc., 

Madison, WI). The provided Delta Therm DT1410 camera consists of an indium antimonide 

(InSb) focal-plane array with a photon response wave bandwidth of 3-5 μm. The 256 × 230 or 256 

× 256 arrays are commonly used, but infrared detectors with 1,024 × 1,024 array resolution are 

also available. 

To improve the camera’s infrared detectivity and reduce background radiation effects, one 

typically cools the camera detector to about 77 K when recording. For this the camera detector is 
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surrounded by a dewar filled with liquid nitrogen to keep it sufficiently cool. The detector cooling 

process takes about 20 minutes to an hour to achieve thermal stability.  

To perform a thermoelastic test the specimen is cyclically loaded at a suitable frequency to 

achieve adiabaticity. The applied cyclic load is selected such that without damaging the specimen 

it ensures good TSA signals with low signal-to-noise ratio [66]. The load-induced temperature 

variations of the loaded specimen surface are recorded by the infrared camera. The system is 

equipped with an analog lock-in unit device. The lock-in unit serves as the system’s signal 

processing unit. The applied load is indicated in the lock-in unit as the reference signal. The 

reference signal is usually generated by the loading-frame’s function generator. The lock-in unit 

combines and filters the reference signal with the infrared detector’s output signal from which it 

extracts the specimen’s actual thermoelastic response. The present Stress Photonics infrared 

camera captures several images of the loaded specimen surface per unit time (1,000 frames per 

second) to compensate for signal noise. The TSA images are processed and correlated to the 

associated dynamic stresses by algorithms based on thermodynamics principles.  

 

3.3.8. TSA Surface Preparation  

TSA specimens require minimum surface preparation. To improve thermal emissivity and 

reduce reflection of incident radiations from the test object’s surface, a thin black coating is 

typically applied on the test surface before performing TSA. Metals and materials with gloss-finish 

surfaces mostly requires the black coating. To avoid non-adiabatic effects and reduced 

thermoelastic response from the TSA specimen, the coating thickness should be within 20-30 μm 
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and the loading frequency between 5–200 Hz [59]. Commercial high-temperature flat black paints 

with emissivity greater than 0.9 are suitable for the TSA surface coating. 

 

3.3.9. TSA Calibration 

Performance and reliability of TSA depends on calibrating the temperature changes of the 

system signal, S*, with the load-induced stress, S, in the structure. A common TSA calibration 

procedure is to experimentally evaluate the test material’s thermoelastic coefficient, K. The 

calibration specimens generally employ a simple geometry and loading. Examples of common 

types of calibration specimens include uniaxial tensile coupons, beams subjected to four-point 

bending and diametrically loaded disks. The TSA calibration specimen and test structure must be 

of the same material and have the same surface coating. They should be tested on the same day 

using the same loading frequency and under the same environmental conditions. Orthotropic 

materials require testing two calibration coupons, one in each of the two in-plane principal material 

directions. 

 

3.3.10. Adiabaticity and Phase Condition Monitoring 

The fundamental concept of TSA assumes system adiabaticity and reversibility. Therefore, 

the selected load frequency should ensure adiabatic material response. A suitable frequency 

required to achieve (essentially) adiabaticity depends on the test material’s thermal conductivity 

and stress gradients present in the loaded structure. The loading frequency is a function of the 
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material’s thermal conductivity. For aluminum and graphite-epoxy composite the 20-25 Hz 

frequency range is typically suitable to ensure adiabatic response under cyclic loading. 

The adiabatic condition of the loaded system is monitored by checking the phase-shift 

between the response and reference signals. Any heat transfer occurring within the test specimen 

or surface coating will be indicated by a shift between the two signals, i.e., a phase-shift will 

indicate non-adiabatic response. Adiabaticity can be a major concern in laminated composite 

structures as there is a possibility of heat transfer between the adjacent laminate plies as well as 

high stress gradients at the edge of cutouts. Heat transfer between a loaded component (of virtually 

any material) and its surrounding is assumed to be negligible. 

 

3.3.11. Limitations and Challenges with TSA 

3.3.11.1. Orthotropic Material Testing 

Stress distribution in composite materials depends on its constitutive material properties, 

fiber orientation and laminate ply stacking sequence. This complicates TSA in composites. In 

laminated composites, internal heat transfer between adjacent plies might be significant. 

Thermoelastic response might therefore no longer only depend on the external surface-ply 

response.  
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3.3.11.2. Image Noise 

TSA images typically contain some noise, especially near edges and therefore require noise 

filtration. For structures with cracks and notches that give rise to large spatial gradients or 

singularities when loaded, TSA signal filtering can mask the most critical stresses. This affects the 

measurement accuracy. 

 

3.3.11.3. Unreliable Edge Data 

Recorded TSA information at and near edges is typically unreliable. This is due to the 

detector having finite spatial resolution. The camera’s infrared detector, when detecting a pixel 

along an edge, takes information partly from the loaded specimen and partly from the stress-free 

background. TSA information along an edge is hence unreliable. The quality of the TSA-measured 

edge information is further affected adversely by the applied cyclic loading. As a result of the 

cyclic loading, an individual point on the specimen surface will generate different radiation signals 

while occupying different spatial locations. 

 

3.3.11.4. Adiabaticity Concerns 

Inadequate loading frequencies, anisotropic material response and the surface coating can 

compromise the adiabatic response of a thermoelastic analysis. If working with TSA outside the 

laboratory environment, cyclically loading of the structure might not be possible. Also, under 

hostile environmental conditions (elevated temperature and high humidity) the surface coating 

might experience viscoelastic changes and contaminate the TSA results. 



87 
 

 
 

3.4. Discussion and Conclusions 

TSA and DIC are versatile structural stress assessment techniques. Both methods are 

comparatively simple relative to experimental and specimen requirements. The availability of 

advanced software and hardware, signal and image processing technologies, and computers having 

high processing capability, enable new developments and applications of TSA and DIC. However, 

each of the method faces some challenges. The cyclic loading requirement of TSA is not always 

practical for real world and/or industrial applications. Differentiating DIC-measured displacement 

data to obtain strains is not a numerically reliable procedure. Regions close to or along the edges 

of structural discontinuities typically contain the most critical stresses. However, neither DIC nor 

TSA provides reliable information near the boundaries of a cutout. Fortunately, many of these 

challenges can be overcome by processing the recorded information (thermal or displacement) 

using stress functions as done in this thesis. 
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 Hybrid Photomechanical Stress Analysis of Finite 

Orthotropic Plate with Central Circular Hole using Single 

Measured Displacement Component 

 

4.1. Introduction 

Stresses, particularly those at geometric discontinuities, can influence structural integrity 

of engineering components. Motivated by the prevalence of cutouts in components, the objective 

of this study is to demonstrate ability to stress analyze finite, circularly-perforated, orthotropic 

composite plates whose external loading may be unknown. Recognizing difficulties in obtaining 

purely theoretical or numerical solutions, this study presents a hybrid means of stress analyzing 

such structures. Individual stresses, including on the edge of the hole, are obtained in a loaded, 

finite, graphite-epoxy [013/905/013] laminated composite containing a round hole by processing 

measured values of a single displacement component with an Airy stress function in complex 

variables. Displacement information is obtained by digital image correlation (DIC). Traction-free 

conditions are satisfied analytically at the edge of the hole using conformal mapping and analytic 

continuation. Stresses satisfy equilibrium and strains satisfy compatibility. Significant features of 

the technique include its wide applicability, it smooths the measured information, does not require 

knowing the applied loading, and the rigorous mechanics foundation by which strains are 

determined from measured displacements. Results agree with those from FEM and force 

equilibrium. 
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4.2. General Overview 

Composite structures with geometric discontinuities are widely used as load bearing 

components in various engineering applications. High strength- and stiffness-to-weight ratios 

often make composite materials popular over conventional isotropic, monolithic materials. 

Structural integrity is influenced by the stresses. While extensive stress information associated 

with holes or notches is available for isotropic materials, relatively little such data exists for 

orthotropic materials [67]. Stresses in composite structures depend on the material properties.  

Anisotropy often complicates the stress distributions near geometric discontinuities and their 

determination is important to prevent failure [68,69]. The orthotropic behavior can influence where 

along the boundary of a hole the most serious stresses occur [70]. Few theoretical analyses of finite 

orthotropic structures having cutouts are available. Like finite element analyses, they require 

knowing the boundary conditions. Such are often unknown in practice. Purely experimental 

techniques tend not to provide reliable data near the edge of a geometric discontinuity. Moreover, 

traditional displacement-based experimental methods of stress analysis have the additional 

challenge of having to differentiate the displacement data to obtain stresses. Differentiating 

measured data can be unreliable. Recognizing these difficulties, this study utilizes a hybrid 

complex variables method to perform full-field stress analysis of a loaded, finite, orthotropic plate 

containing a central circular hole from recorded single component of displacement. Needing only 

one displacement field is advantageous. For example, experimental techniques such as moiré, 

holography, grids or electronic speckle pattern interferometry (ESPI) necessitate additional rulings 

and/or optics to record two versus one in-plane component of displacement. Situations can also 

occur where there is a paucity or inferior quality of one or other of the in-plane displacements. 
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The present method of combining recorded displacement data with complex variables Airy 

stress functions, conformal mapping, analytic continuation and least squares is effective for full-

field stress analyzing perforated, finite, orthotropic structures using only a single component of 

displacement without requiring knowledge of the external loading conditions. The digital image 

correlation (DIC)-measured displacement data in the loading direction starting slightly away from 

the cutout are processed with an Airy stress function which satisfies equilibrium. Using conformal 

mapping and analytic continuation techniques, traction-free conditions are satisfied along the 

boundary of the circular hole.  

The present hybrid technique simultaneously smooths the measured displacement data, 

satisfies equilibrium and compatibility, and determines individual stresses full-field, including on 

the edge of the hole without requiring measured information near the cutouts or knowledge of the 

external loading. Fatigue analysis and strength criteria necessitate knowing the independent 

stresses. An additional strength of the present approach is the rigorous mechanics foundation by 

which strains are determined from measured displacement data. Experimental reliability is 

demonstrated by FEM and force equilibrium.  

 

4.3. Literature Review 

Lekhnitskii [5] and Savin [6] pioneered stress analyzing perforated infinite anisotropic 

plates using complex variables techniques. Analytical solutions were provided for such structures 

based on a complex variables method which was originally proposed by Muskhelishvili [15].  
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Recent researchers have advantageously utilized some of these concepts by processing 

measured data with Airy stress functions. Experimental techniques such as moiré, strain-gages, 

photoelasticity (PSA), thermoelasticity (TSA) and DIC have been employed for isotropic 

materials. Examples include those to cracks and holes. However, orthotropy complicates the 

situation by introducing two complex variable planes not coinciding with the physical plane.  

Publications [18,19,22,71–74] utilized complex-variables Airy stress functions to 

experimentally stress analyze orthotropic plates containing geometric discontinuities. These 

studies used strain-gage, moiré or TSA-measured information or in some cases FEA-simulated 

data. Lin and Rowlands [18] employed TSA to stress analyze a loaded perforated composite plate, 

where Taylor series representation of the stress functions with relevant mapping functions were 

used. Their study contributed significantly to the development of the analytical background of the 

present hybrid stress analysis method. Baek and Rowlands employed a somewhat similar hybrid 

concept as here to stress analyze orthotropic materials based on moiré [72] and strain-gage data 

[71]. Using similar fundamental mathematical principles, Baek et al. [73] and Khaja [74] 

subsequently stress analyzed a perforated glass-epoxy orthotropic plate using FEM-simulated 

displacement data. The input information in these approaches were FEM-predicted displacement 

data instead of experimentally measured information. Rhee and Rowlands used conformal 

mapping and stress analyzed orthotropic plates using thermoelastic information [22] and hybrid-

FEM [75]. Chen [76] used conformal mapping and complex Airy stress functions to stress analyze 

composites plates with elliptical cutout with his developed hybrid-FEM. Lin et al. [77] employed 

a somewhat similar mathematical approach and Taylor expansion to stress analyze loaded plates 

containing cracks. Emery and Dulieu-Barton [78] employed TSA calibrated strain data to analyze 

a glass reinforced polymer composite plate having a circular cutout. 
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Gerhardt [8] also used conformal mapping and gave information on when to use a Taylor 

series and when to use a Laurent series. Lagattu et al. [79] and Ashrafi and Tuttle [13] employed 

DIC-measured displacement information to stress analyze orthotropic composites containing 

round holes. These latter two stress analyses necessitated measured values of both in-plane 

displacement components and experienced difficulties in obtaining reliable stresses on the edge of 

the hole. Caminero et al. [80] used DIC-estimated strain data and X-ray radiography to analyze 

and monitor damage in a circularly-perforated composite plate. In their study DIC-provided strain 

values were compared with FEA-predictions. Laurin et al. [81] studied damage patterns in 

composite plates with multiple circular holes using DIC.  

Influenced by Lekhnitskii [5] and Gerhardt [8], a Laurent series and complex variables 

Airy stress functions are utilized here to process a single component of DIC-recorded displacement 

data and thereby evaluate the Airy coefficients. Whereas the previous moiré analyses necessitated 

employing both measured u- and v-displacements, the present stress analysis employs only a single 

component of measured displacement and is capable of providing reliable results near and at the 

hole’s boundary. Moreover, DIC is a more simple and practical experimental approach compared 

to TSA, PSA and moiré.  

 

4.4. Relevant Equations  

The analytical analysis was performed based on the mathematical concepts elaborated in 

Chapter 2. Stresses and in-plane displacements in rectangular coordinates (x, y) of the physical 

plane, zj = x + µjy for j = 1, 2; of an orthotropic plate can be expressed as a combination of Airy 

stress functions, conformal mapping, analytic continuation and power-series expansion (from 
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equations (2-68) through (2-72)). Moreover, the in-plane displacements and stresses are found to 

be a function of the complex variables in the mapped plane ζj (j = 1, 2), orthotropic elastic 

properties and the Airy stress coefficients cj as [8] 

 𝑢 = 2

⎝

⎜
⎛

𝑅𝑒 𝑝 𝜁 + 𝑝 𝐶𝜁 + 𝐵𝜁 𝑎 + 𝑖 𝑝 𝜁 + 𝑝 𝐶𝜁 − 𝐵𝜁 𝑏

  

  
  ⎠

⎟
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and 
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 (4-5) 

The complex material properties, μj (for j = 1, 2), are the roots of the characteristic equation (2-17). 

The complex quantities pj, qj (for j = 1, 2), B and C are defined in equations (2-33), (2-50) and 

(2-51), respectively, and depends only on the orthotropic constitutive material properties. In these 

expressions of in-plane displacements and stresses the traction-free boundary conditions are 

satisfied by conformal mapping and analytic continuation (according to equation (2-52)) in regions 

adjacent to the cutout. Laurent series was used to expand the complex stress functions as the 

circular hole from the physical z-plane is mapped to a unit circle in the ζ-plane, Figure 4-1. The 

variables ζj for j = 1, 2 are obtained from the inverse of the mapping function and are also a function 

of the plates x-y coordinate locations and elastic properties.  

For orthotropic plates with circular cutouts, the following mapping function is used for the 

conformal transformation of a unit circle and its exterior region, Rζ, in the ζ-plane to a circular hole 

of radius R and its exterior region, Rz, in the z-plane, Figure 4-1, [19,22,73,74] 

 𝑧 =  𝜔 𝜁 =  
𝑅

2
1 − 𝑖𝜇 𝜁 +  

1 +  𝑖𝜇

𝜁
,    𝑗 = 1, 2 (4-6) 

 



95 
 

 
 

 

Figure 4-1: Mapping edge of circular hole from physical z-plane to unit circle in ζ-plane 

 

The inverse of the mapping function in equation (4-7) maps the circular hole of radius R 

from the z-plane to a unit circle in the ζ-plane, Figure 4-1.  

 
𝜔 𝑧 =  𝜁 =  

𝑧  ±  𝑧 −  𝑅 1 +  𝜇

𝑅 1 − 𝑖𝜇
, 𝑗 = 1, 2 (4-7) 

The branch of the square root of the above equation (4-7) is chosen so that, | ζj | ≥ 1 for j = 1, 2. 

For convenience, the coordinate system is chosen so that, the coordinate origin is at the center of 

the plate’s circular cutout. The variables ω′j(ζj) in the expression for the in-plane stresses of 

equations (4-3) through (4-5) are the derivatives of the mapping functions ωj(ζj) of equation (4-6) 

with respect to the complex variables ζj for j = 1, 2, as such 

 𝜔 𝜁 =  
𝑅

2
1 − 𝑖𝜇  −  

1 + 𝑖𝜇

𝜁
, 𝑗 = 1,2 (4-8) 
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In the expressions for the in-plane displacements and stresses of equations (4-1) through 

(4-5) the only unknowns are the Airy coefficients cj. The Airy coefficients cj are complex numbers, 

i.e., cj = aj + ibj, where aj and bj are real numbers. For the loaded plate with central hole, and due 

to the symmetry, the value of j never equals zero nor an even number. Moreover, as the plate is 

symmetric with respect to both the x- and y-axes, Figure 4-2, it is sufficient to analyze just one 

quadrant of the plate. Using DIC-measured displacement data in equation (4-1) or (4-2), combined 

with equation (4-7), the Airy coefficients cj are evaluated. Knowing the Airy coefficients, the full-

field stress analysis of the circularly-perforated orthotropic plate is possible from combining 

equations (4-1) through (4-5) with equations (4-7) and (4-8). 

 

4.5. Material Properties 

The orthotropic plate was made from a [013/905/013] graphite-epoxy laminate. Material 

properties of the composite laminate were determined experimentally. Tension tests were 

conducted along each of the strong/stiff (highest fiber) direction, perpendicular to the strong/stiff 

direction and ± 45° to the strong/stiff direction to get E11, E22, ν12 and G12, respectively, Table 4-1. 

Details on the tested material properties are attached in Appendix A. 
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Table 4-1: Material properties of the [013/905/013] graphite-epoxy laminate according to the 
coordinates of Figure 4-2 

Material Property Symbol Value Units 

Elastic modulus in strong/stiff direction E11 or Exx 104.1 GPa 

Major Poisson’s ratio ν12 or νxy 0.155 Dimensionless 

Elastic modulus perpendicular to strong/stiff 
direction 

E22 or Eyy 28.1 GPa 

Shear modulus G12 or Gxy 3.0 GPa 

 

4.6. Plate Preparation  

4.6.1. Plate Geometry 

A finite-width, orthotropic plate containing a central circular hole (Figure 4-2) was 

prepared and its displacement data were measured using DIC. The plate is L = 27.94 cm (11") 

long, W = 7.62 cm (3") wide and t = 5.28 mm (0.208") thick. The central circular hole has a 

diameter of D = 2.54 cm (1"), Figure 4-2 and Table 4-2. The plate is symmetric both about the 

horizontal and vertical axes. 
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Figure 4-2: Circularly-perforated loaded [013/905/013] graphite-epoxy laminated plate 
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Table 4-2: Details of circularly-perforated orthotropic plate and loading 

Material [013/905/013] graphite-epoxy orthotropic laminate 

Supplier Kinetic Composite, Inc., Oceanside, California 

Thickness, t 5.28 mm (0.208") 

Length, L 27.94 cm (11") 

Width, W 7.62 cm (3") 

Diameter, D 2.54 cm (1") 

Plate finiteness, D/W 0.33 

Symmetry Both horizontally and vertically 

Loading for DIC analysis From 0 to 11.6 kN (2,600 lbs) in intervals of 889.6 
N (200 lbs) 

Load for DIC-hybrid stress analysis, F* 4.5 kN (1,000 lbs) 

 

4.6.2. Plate Fabrication 

Water-jet cutting was used to prepare the composite plate with the central circular hole 

from a sheet of graphite-epoxy laminate. A water pressure of 413.69 MPa (60,000 psi) along with 

abrasive substances were used in this technique to generate the highly pressurized water-jet. 

Details on how to create finite orthotropic plates with cutouts using water-jet cutting and steps 

followed to avoid any fabrication induced defects in the plates are provided in Appendix B. 

 

4.6.3. Application of Speckle Pattern 

A speckle pattern needs to be applied on the plate’s surface to conduct the DIC test. Using 

the pixel location of the speckle pattern on the unloaded plate, a correlation is made with the 
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patterns of the loaded plate. The speckle pattern must be random. White random dots on a black 

surface were used to create the speckle pattern, Figure 4-3. To avoid any reflection from the plate 

surface and to provide sharp contrast between the black background and white dots, the surface 

was first coated with a thin layer of black paint. 

The machined plate surface was first lightly polished using 400-grit emery cloth and 

cleaned using a water-based mild cleaner (M-Prep Conditioner A followed by M-Prep Neutralizer 

5A) from Vishay Precision Group - Micro-Measurements [82]. Special care was taken while 

polishing the plate, to avoid rounding off the hole boundary or changing the actual hole geometry. 

The cleaned surface was painted with Rust–Oleum Ultra Cover-Flat black paint and allowed to 

dry. Only a very thin layer of the black paint was applied so that it properly covers the entire 

surface area of the plate and does not change the shape of the surface or induce shearing effects 

due to coating thickness [83]. On top of the dried black paint, the white dots were created using 

Rust–Oleum Ultra Cover–Flat white paint. The dots were achieved by lightly applying pressure 

on the paint container trigger to get a discontinuous spray of paint. The paint container was held 

perpendicular at a distance from the plate’s surface so that the paint drops randomly fall on the 

surface. 
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(a) (b) 

Figure 4-3: (a) Plate covered with a thin layer of black paint and (b) Speckle pattern on the plate 

 

4.7. Experimental Set-up and Details 

4.7.1. Plate Loading 

The 89 kN (20,000 lbs) capacity, open-loop, hydraulic-grip, MTS machine located at UW 

– Madison’s Fatigue Lab was used to load the plate. The plate was carefully mounted between the 

hydraulic-grips to avoid any out-of-plane bending. To achieve symmetrical loading, care was taken 

to mount the plate symmetrically about the horizontal y-axis to ensure that the gripped areas on 

the top and bottom of the plate were exactly at the middle. A 3D-DIC test was conducted using 

two cameras. The 3D-DIC test includes information regarding the out-of-plane displacement, 

Figure C-1 of Appendix C. The plate was only subjected to uniaxial tensile load so there should 
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be no out-of-plane motion other than Poisson’s effect. From the DIC-recorded data, the absence 

of the rigid out-of-plane motion while conducting the experiment was confirmed. Although both 

2D- and 3D-DIC data were collected, the plane-stress analysis was conducted using the 2D-DIC 

information. The 3D-DIC testing was only conducted to ensure no out-of-plane motion occurred 

beyond the Poisson’s effect. 

Using the MTS loading machine, a vertical tensile static load varying from essentially zero 

to 11.6 kN (2,600 lbs) was applied in increments of 889.6 N (200 lbs) load in the strong/stiff 

direction of the plate (x-direction). National Instrument’s universal analog input module was used 

to monitor the applied loads. For each load, a digital image of the plate’s surface was taken using 

the Correlated Solution’s data acquisition software Vic-Snap. Information from the 2D-DIC was 

utilized to conduct the stress analysis. 

 

 

Figure 4-4: DIC experimental set-up 
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4.7.2. DIC Details [55] 

Correlated Solution, Inc.’s (Columbia, SC 29063, USA) commercial DIC package 

equipped with high efficiency data acquisition and post-processing software was used in this 

research to measure the displacement information. The DIC package includes a pair of Point Gray 

digital cameras, several pairs of Schneider Xenoplan lenses with varying focal ratios and lengths, 

and Correlated Solution’s Vic-Snap data acquisition and Vic-2D/3D post-processing software. The 

DIC package details are contained in the below Table 4-3. 

.  

Table 4-3: Correlated Solution, Inc.’s DIC details 

Parameter Equipment or Setting 

Cameras The Grasshopper (Point Grey Research), Model GRAS-
50S5M-C 

Imaging sensor Sony ICX625 CCD, 2/3′′ Sensor Format, 3.45 μm pixel size  

Lens CM120 BK 15 COMPACT-0901 (focal ratio: 1.9 and focal 
length: 35 mm) 

Sensor/digitization 2,448 × 2,048 at 15 FPS (framing rate) 

Pixel to inch conversion 1 pixel = 0.05 mm  

Strain Resolution 50 με 

Lighting Ambient white light (for this research) 

 

4.7.3. Calibration [55] 

For calibrating the present DIC system using two cameras (3D-DIC), a calibration grid of 

the appropriate size was selected and placed over the area of interest. A calibration grid of the size 



104 
 

 
 

12 mm × 9 mm × 5 mm was used, Figure 4-5. Images of the calibration grid in different orientations 

and different angles were captured. These pictures were used subsequently to conduct the 

calibration analysis using the Correlation Solution’s post-processing Vic-3D software. When using 

one camera (2D-DIC), the calibration was done by manually correlating pixel size for a known 

distance through Correlation Solution’s Vic-2D software, i.e., marking a known distance and 

providing the length in terms of physical units. 

 

 

Figure 4-5: Orthotropic plate calibration with Correlated Solution, Inc.’s calibration grid 

 

4.7.4. Subset and Step Size 

DIC requires the use of a random and dense speckle pattern on the specimen that can 

provide unique markers to search for between the unloaded and loaded images. The DIC post-

processing software assigns a predefined mesh of subsets or grids over the speckle image. From 

the random speckle pattern within each of these subsets, the correlation algorithm measures 
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displacements by matching the reference subsets in the undeformed image with the target subsets 

of the deformed images. The subset and step sizes are user defined. The accuracy of the measured 

displacement critically depends on the subset size and correlation speed on the step size. For this 

analysis, a subset size of 21 and a step size of 8 were used. Details on DIC systems working 

principles are provided in Chapter 3. 

 

4.7.5. DIC Data Analysis 

For the current analysis using Correlated Solution’s Vic-2D software, the captured images 

were processed and correlated. In DIC, a set of images for the plate loaded at different loads need 

to be provided along with a reference image (digital image captured by the DIC system at zero 

load representing undeformed condition of the plate). The correlation algorithm tracks a group of 

pixels/subset and shifts the subset until the deformed image matches the reference image. 

Calibration scale is set using the Vic-2D/3D software so that the subset shifting can be expressed 

as physical units such as displacements. Once the reference image, area of interest (AOI) and 

calibration scale are set, the software can perform the analysis and find the speckle displacements.  

User specifies the area of interest and subtracts any discontinuity from it, then using the 

selected subset size and step size the Vic-2D or Vic-3D software performs the analysis over the 

area of interest. 
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4.8. Finite Element Method 

A motivation for developing the present technique is to enable stress analyzing orthotropic 

cases experimentally which cannot be analyzed numerically (e.g., inadequate knowledge of the 

external loads), yet FEM is used here. However, the present geometry and loading were selected 

so that one could obtain reliable FEM results with which to compare those from the present hybrid-

method. 

Having geometric and loading symmetry about both the x-y axes, only one quarter of the 

plate was modeled (Figure 4-6) numerically using commercial FEA tool ANSYS APDL. 

isoparametric elements, i.e., ANSYS element type Plane 182 with 4 nodes and 2 degrees of 

freedom per nodes were used to model the plate. The plate was modeled with the origin of the 

coordinate system located at the center of the hole. Symmetrical boundary conditions were 

manually imposed. High mesh density was utilized near the hole. A far-field stress of σ0 = 11.05 

MPa (1.6 ksi) was applied along the x-axis (strong/stiff direction) based on the applied load and 

the far-field cross-sectional area of the plate, using equation (4-9). The quarter-plate model consists 

of 26,000 elements and 26,371 nodes. The x-y coordinates of all the nodes, along with the 

displacement and stress components, were imported into MATLAB for post-processing and 

correlating the FEM-predictions with those from the DIC-hybrid analysis.  

 𝜎 =
𝐹∗

𝑊𝑡
=

4,448.2

76.2 ×  5.28
 

N

mm
= 11.05 MPa (4-9) 
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(a) (b) 

Figure 4-6: FEM of the orthotropic plate with the central circular cutout 

 

(a) (b) (c) 

Figure 4-7: Contour plots for stresses (a) σxx, (b) σyy and (c) σxy from FEM (units in Pa) 
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4.9. Data Reduction and Analysis 

The composite plate was physically loaded such that its top edge was stationary while the 

bottom edge moved vertically downward, Figure 4-8(a). To simulate the top and bottom ends of 

the laminate being extended equally, the DIC-recorded displacement data in the loading 

(strong/stiff direction, vertical x) direction of Figure 4-8(a) were post-processed to be zero along 

the horizontal (x = 0) axis. Acknowledging the then geometric and mechanical symmetry about 

the x- and y-axes, Figure 4-8(b) shows the resulting vertical displacements, u, throughout the first 

quadrant. Coordinate x is the loading direction. These measured u-displacements are processed as 

such because the analytical procedure considers the plate being extended equally from the plane 

passing through the coordinate origin located at the center of the hole/plate. 

  

(a) (b) 

Figure 4-8: DIC-measured vertical displacements u/R in vertical loading direction x, (a) DIC raw 
data and (b) Processed so u = 0 along y-axis at x = 0 
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From the u-displacement data of Figure 4-8(b), nDIC = 6,448 essentially equally spaced 

DIC-recorded values of u were selected. Since DIC data at and near an edge are not reliable, no 

such displacement information was employed within a distance 0.1R (= 1.27 mm) from the edge 

of the hole (Figure 4-9). In addition to the nDIC = 6,448 DIC-measured u-displacements, some 

symmetry and boundary conditions were employed. Stress σxy = 0 was imposed at h1 = 3,601 

equally spaced locations along x = 0, and σxy = 0 and v = 0 were similarly imposed at h2 = 3,601 

equally located points along y = 0. A total of ntotal = nDIC + h1+ 2 × h2 = 6,448 + 3,601 + 2 × 3,601 

= 17,251 side conditions (pieces of information) were used to evaluate the Airy coefficients, where 

nDIC = 6,448 are DIC-recorded u-displacement data and h = h1 + 2 × h2 = 10,803 represents the 

applied conditions. 

 

(a) (b) 

Figure 4-9: Source locations of DIC evaluated u-displacements, (a) Available processed 
averaged over one quadrant of the plate and (b) nDIC = 6,448 (black region in (a)) considered for 

the hybrid analysis 
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From equations (4-1), (4-2) and (4-5) one obtains,  

 

𝑢
𝜎 = 0

𝑣 = 0
   

= 2𝑅𝑒
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(4-10) 

which can be written as  

 [𝐴] × ( ){𝑐} ( )× =  {𝑑} ×  (4-11) 

where m = 1, 3…. and for j = m there are 2(m+1) real Airy coefficients or k = (m + 1) complex 

Airy coefficients. In equation (4-11), matrix [A] depends on the plate’s material properties and the 

x-y coordinate locations, vector {c} consists of the Airy coefficients and {d} includes the DIC-

recorded displacement data along with the imposed symmetry and boundary conditions. The only 

unknowns in the above equation (4-11) are the Airy coefficients in vector {c} which can be 

evaluated from equation (4-12) by least squares method. The backlash (‘\’) operator in MATLAB 

was used to evaluate the unknown complex Airy coefficients, cj, according to equation (4-12). 

 {𝑐} =  [𝐴]\{𝑑} (4-12) 
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In the overdetermined system of linear equations (equation (4-11)), to account for experimental 

scatters in the measured quantities, the number of equations, ntotal, is much greater than the number 

of evaluated real unknown coefficients, 2(m+1), i.e., ntotal >> 2(m+1).  

 

4.9.1. Evaluating the Number of Airy Coefficients to Use 

In this analysis for ntotal = 17,251 data values, the complex coefficient k = 2 (motivated by 

Figure 4-10 through Figure 4-13) were found to be an appropriate number of complex Airy 

coefficients to use.  

The number of Airy coefficients to use was initially determined by plotting the root mean 

squares (RMS) of the difference between the magnitudes of the nDIC = 6,448 DIC-recorded u-

displacements, {d}, with those {d′} predicted by equation (4-1) and the h = 10,803 side conditions 

in equations (4-2) and (4-5), i.e., all measured information and side conditions in equation (4-10), 

Figure 4-10. The decision was narrowed down from the plots of condition numbers of Figure 4-11 

and Figure 4-12. Although Figure 4-10 and Figure 4-12 suggests using 2 ≤ k ≤ 10 and k ≤ 4, 

respectively, would be reasonable, employing as few coefficients as acceptable minimizes the 

mathematical computation. Moreover, comparing the measured and the reconstructed 

displacements (from equation (4-1)) confirms the rational use of k = 2 complex coefficients, Figure 

4-13(a). As the number of employed coefficients increases, the reproduced displacements of 

Figures 4-13(b) and (c) starts to deviate from the DIC-recorded data. Table 4-4 contains the values 

of the four real Airy coefficients. 
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Figure 4-10: Plot of RMS versus number of complex coefficients, k, using ntotal = 17,251 data 
values and Laurent series 

 

 

Figure 4-11: Plot of condition number, C, versus number of complex coefficients, k, using ntotal = 
17,251 data values and Laurent series 
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Figure 4-12: Plot of log10(C) versus number of complex coefficients, k, using ntotal = 17,251 data 
values and Laurent series 

 

Table 4-4: Airy Coefficients, cj = aj + ibj, from DIC-hybrid analysis involving a circularly-
perforated, finite, graphite-epoxy plate 

Airy Coefficients for m = 1 or k = 2 

a-1 -49.32 

b-1 -0.28 

a1 -43.26 

b1 0.39 
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(a) 

  

(b) (c) 

Figure 4-13: Comparing u/R-displacement contours obtained from DIC (left side) with 
reconstructed (right side) from the DIC-hybrid complex analysis for ntotal = 17,251 and k =2, 4 

and 10, respectively 

 

4.10. Results 

For the DIC-hybrid complex method, full-field stress analysis of the orthotropic plate was 

conducted employing the Laurent power series expansion, ntotal = nDIC + h = 17,251 side conditions 

and k = 2 complex coefficients. From equation (4-10), the unknown Airy coefficients, cj, were 

evaluated using displacements u at all the nDIC = 6,448 locations selected in Figure 4-9(b) and the 
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h = 10,803 locations where symmetry and boundary conditions were imposed. Knowing the 

complex coefficients and their substitution into equations (4-1) through (4-5), the individual 

components of displacements and stresses are obtained. The results obtained from this method are 

compared with the FEM-predictions in Figure 4-14 through Figure 4-19. The v-displacement 

information of Figure 4-15 was obtained from equation (4-2) based on the DIC u-displacements 

determined Airy coefficients. All figures are generated using the commercial software MATLAB. 

Displacement components are normalized with respect to the radius, R, of the circular hole and the 

stress components are normalized with respect to the far-field applied stress, σ0 = 11.05 MPa, 

according to equation (4-9).  

All experimental results are based on the DIC-recorded u–displacement data. Good 

agreement prevails between the experimentally determined DIC-hybrid method results with the 

FEM-predictions. As expected, the DIC-hybrid analysis and FEM results for σrr and σrθ on the 

edge of the hole are extremely small, if not zero, Figure 4-19.  
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Figure 4-14: Contours of displacements u/R from FEA (left side) and DIC-hybrid method (right 
side) for k = 2 and ntotal = 17,251 from measured u-displacements 

 

 

Figure 4-15: Contours of displacements v/R from FEA (left side) and DIC-hybrid method (right 
side) for k = 2 and ntotal = 17,251 from measured u-displacements 
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Figure 4-16: Contours of stresses σxx/σ0 from FEA (left side) and DIC-hybrid method (right side) 
for k = 2 and ntotal = 17,251 from measured u-displacements 

 

 

Figure 4-17: Contours of stresses σyy/σ0 from FEA (left side) and DIC-hybrid method (right side) 
for k = 2 and ntotal = 17,251 from measured u-displacements 
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Figure 4-18: Contours of stresses σxy/σ0 from FEA (left side) and DIC-hybrid method (right side) 
for k = 2 and ntotal = 17,251 from measured u-displacements 

 

 

Figure 4-19: Plot of stresses σθθ /σ0, σrr /σ0 and σrθ /σ0 along the boundary of the hole from 
ANSYS and DIC-hybrid analysis using k = 2 and ntotal = 17,251 at r = R 
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The normalized tangential, radial and shear stress components along the boundary of the 

quarter of the round hole are plotted in Figure 4-19, from the DIC-hybrid complex analysis and 

are compared with the FEM-predictions. For the normalized tangential stresses, DIC-hybrid results 

agree well with those from FEM along the entire boundary of the cutout. These radial stress 

components are obtained from the rectangular components by stress transformation. For the 

normalized radial stresses and shear stresses along the traction-free region, the DIC-hybrid analysis 

gives zero stresses, which is expected theoretically. This is due to the fact that, theoretically along 

the traction-free region of a cutout σyy = 0 and σxy = 0. The FEM, due to complicated algorithms 

and processing, does not fully satisfy the traction-free conditions and is thus incapable of providing 

zero radial and shear stresses along the boundary of the cutout. However, these values are small. 

 

4.11. Load Equilibrium 

The reliability of the DIC-hybrid complex method was further evaluated by checking the 

load equilibrium from the stresses determined by this method in the loading direction. The load 

equilibrium is checked by integrating the DIC-based stresses σxx (based on DIC-recorded vertical 

displacement, u) over the width of the loaded plate using equation (4-13).  

 𝐹∗ =  𝜎 𝑑𝐴 = 2 𝜎 𝑡𝑑𝑦     at 𝑥 ≥ 𝑅 (4-13) 

where t is the thickness and W is the width of the plate. The trapezoidal rule of MATLAB was 

used to compute the integration. This was evaluated at various locations of x (= 0, R, 1.3R, 1.5R, 
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1.7R, 2R, W/2). The computed load was found to be within 2% of the physically applied 4.45 kN 

(1,000 lbs) load at each of these locations. 

 

4.12. Summary, Discussion and Conclusions 

The presented hybrid-DIC complex method is an effective tool to evaluate the stresses, 

including those on and near the edge of a discontinuity, in perforated, finite-width, tensile loaded 

orthotropic structures. The displacement data are synergized with a complex variables power series 

expansion of Airy stress functions, conformal mapping, analytic continuation and least squares. 

The technique was validated for a [013/905/013] graphite-epoxy circularly-perforated, finite, 

orthotropic composite plate where the stresses are determined full-field from a single DIC-

measured displacement field. Unlike finite element or theoretical/analytical analyses, the method 

does not require knowing far-field boundary conditions. This is important as external loads are 

often unknown in practice. Virtually all theoretically stressed orthotropic members are restricted 

to infinitely large geometry. Moreover, a difficulty with most purely experimental techniques is 

their inability to provide reliable information at and near the edge of cutouts [13,79]. The present 

DIC-hybrid analysis was done without experimental input data near the edge of the hole. Source 

data locations considered for the analysis were selected over a region away from the traction-free 

region; and for such cases the DIC-hybrid analysis gave results which are compatible with those 

from FEM and force equilibrium. Thus, this method overcomes the challenge that other methods 

face, i.e., which is not providing reliable data near the cutouts. Locations close to the cutout are 

the primary areas of interest as those locations typically contain the most serious stresses and 

displacements. 
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Many DIC approaches differentiate the displacements with schemes which lack a strong 

theoretical or analytical basis. Such processes can be highly sensitive to the quality and noise in 

the measured data and consequently give poor results [83]. This drawback is overcome in the 

present DIC-hybrid method where, to evaluate strains/stresses, the measured data are not 

differentiated using arbitrary methods. Instead the measured data are used in analytical 

formulations which are based on the Airy stress functions satisfying the equilibrium and 

compatibility. Moreover, conformal mapping and analytic continuation satisfy the traction-free 

boundary conditions.  

One could measure the displacement data by other than DIC. However, the herein ability 

to need only one in-plane displacement field is significant. Recording both u and v by moiré, 

electronic speckle pattern interferometry (ESPI) or grids necessitates fairly complicated 

experimental set-ups. Irrespective of how the displacement data are recorded, it is not unusual to 

have locations where one of the u or v is of poor quality. The present need for only one of u or v 

is consequently advantageous. 

In summary this hybrid-method is an effective and experimentally simple way to evaluate 

the full-field state of stress in finite composite members involving discontinuities in cases where 

the boundary conditions are unknown. Results of this chapter have been published [84]. 
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 Hybrid Photomechanical Stress Analysis of 

Elliptically-Perforated Finite Orthotropic Plate using 

Single Measured Displacement Field 

 

5.1. Introduction 

An elliptically-perforated, finite, orthotropic laminate is stress analyzed by processing 

measured displacement data with a combination of Airy stress functions, conformal mapping, 

analytic continuation and least squares. Using only a single measured in-plane displacement field 

provides the complete displacements and stresses full-field, including at the edge of the hole. 

Compatible with real-world applications, this information is obtained without knowing either the 

external loading or measured values near the boundary of the cutout or having to differentiate the 

measured data. Unlike other techniques, virtually any shaped finite external boundary can be 

readily handled. Experimental results are supported by FEM and load equilibrium. 

 

5.2. General Overview 

The high stiffness- and strength-to-weight ratios of composite materials render them 

popular load bearing components for various applications. However, their orthotropy can greatly 

complicate their stress analyses, particularly with respect to holes and notches. One consequently 

does not enjoy the extensive stress concentration information with composites which is available 

for isotropic materials [67]. Stress analyzing finite-width orthotropic structures are challenging as 

theoretical analyses are mostly limited to infinite members with simple geometries. Moreover, like 
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with numerical analyses, their results are highly sensitive to the boundary conditions and loading. 

The latter are often unknown in practice. Purely experimental techniques often do not provide 

reliable data at the edges of geometric discontinuities. Traditional displacement-based 

experimental techniques are challenged by having to differentiate the measured information. 

Differentiating measured data is prone to errors. Engineering designs often involve cutouts, and 

the structural integrity must be ensured in the presence of such discontinuities. The use of elliptical 

openings in composite pressure vessels, aerospace and transportation members motivates having 

the ability to stress analyze finite, elliptically-perforated orthotropic structures from measured 

displacement data, Figure 5-1.  

 

 

Figure 5-1: Schematic of finite composite plate with central-elliptical hole 
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The presented hybrid-method consists of complex variables Airy stress functions, least 

squares, conformal mapping, analytic continuation and power-series expansion of the stress 

functions and involves a digital image correlation (DIC) recorded single displacement field. The 

latter commence slightly away from the edge of the cutout. Traction-free conditions are satisfied 

along the boundary of the elliptical hole by conformal mapping and analytic continuation. 

Equilibrium and compatibility are satisfied by the Airy stress functions. Using either of the 

measured in-plane displacements provides the complete state of stress full-field. This method 

requires no knowledge of the external loading or measured data near the boundary of the cutout. 

Moreover, the measured displacement data are differentiated by employing a rigorous mechanics-

based algorithm rather than using arbitrary polynomials. Although the basic equations theoretically 

assume infinite geometry, through extensive studies they are shown here to give reliable results 

for reasonably-finite structures. 

 

5.3. Literature Review 

The concept of complex variables technique developed by Lekhnitskii [5] and later 

modified by Savin [6] to stress analyze perforated infinite anisotropic plates is expanded here to 

stress analyze orthotropic plates of finite-width. Measured data are processed with Airy stress 

functions. In the previous Chapter 4 [84], an orthotropic plate with a circular cutout was stress 

analyzed with DIC-measured u-displacements. This study extends the previous work to investigate 

the hybrid-method’s capability in handling cutout with aspect ratios other than a/b = 1 in 

orthotropic materials while utilizing DIC-measured displacement information. As the ellipse 

becomes narrower the stress concentration increases and can lead to more scatter in the 
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experimental behavior. This chapter also focuses on investigating how finite of a plate can be 

reliably analyzed by the current hybrid stress analysis approach. Moreover, the present analytical 

procedure is simplified to analyze isotropic plates. 

 Few studies involving perforated, finite, orthotropic members are found in literature. 

Samad and Rowlands [83,85] stress analyzed an elliptically-perforated symmetrical isotropic plate 

using DIC and with TSA for asymmetrical loading. Ambur and McGown [3] studied arbitrarily 

oriented, elliptically-notched composite plates using boundary collocation. They compared their 

numerical results with those from strain-gages. Lin and Ko [86] and Xu et al. [87] also employed 

boundary collocation to analyze elliptically-perforated composite plates. These studies by Ambur 

and McGowan [3], Lin and Ko [86] and Xu et al. [87] satisfied the boundary conditions at the hole 

by a mapping function and on the external edge by boundary collocation, and all three analyses 

involved rectangular external boundaries. Contrasted with using boundary collocation, the present 

ability to satisfy the internal boundary conditions analytically and external conditions 

experimentally is advantageous. 

Alshaya et al. [88] stress analyzed an elliptically-perforated orthotropic plate from recorded 

thermal data. Lin and Rowlands [18], Lin [9] and Rhee and Rowlands [22] also stress analyzed 

orthotropic structures having cutouts using thermoelastic stress analysis (TSA) data, whereas Baek 

and Rowlands [71] employed strain-gage data. However, TSA requires cyclic loading which is 

often unrealistic for real-world applications. Baek and Rowlands [72] and Rhee et al. [70] stress 

analyzed orthotropic materials using moiré. Their methods necessitated using both measured u and 

v information. The present analysis employs only a single measured displacement component from 

DIC. Unlike with moiré or strain-gages, the latter is a non-contacting, full-field stress analysis 

technique. Unlike thermal elastic methods, DIC does not require cyclic loading. Since strain-gages 
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are finite in size and records only the local strains, it is difficult to evaluate the most serious stresses 

on the edge of a geometric discontinuity in an orthotropic composite using strain-gages unless one 

knows where it occurs a priori. 

Gerhardt [8] utilized a hybrid-finite element to analyze perforated orthotropic plates. Using 

modified complex potentials, Zakharov and Becker [89] determined a theoretical solution for an 

elliptically-perforated orthotropic laminate having an elliptical external boundary and subjected to 

combined bending-extension. By applying variational concepts of equilibrium to the potential 

energy, Madenci et al. [90] obtained a system of equations containing unknown coefficients and 

whose solutions provide the stresses and displacements. The approach is applicable to external 

polygonal shapes and the boundary conditions at the cutout are satisfied using a mapping function. 

Tan [91] analytically related the ratio of stress concentration factors in finite and infinitely-wide 

perforated plates. His study [91] does not include any experimental finite width correction factor 

(FWCF) data for elliptically-perforated, finite, orthotropic composites. 

Gerhardt [8], Ambur and McGowan [3], Chen [76], Lin and Ko [86] and Medanci et al. 

[90] also successfully used the mapping function used in this study to stress analyze elliptically-

perforated, finite, orthotropic structures. Unlike References [3,86,87,89,90], the herein approach 

of combining DIC-measured information with analytical and numerical tools can readily handle 

virtually any externally-shaped boundary. Moreover, the current analysis includes rational means 

of assessing how many coefficients to retain in the series representation of the stress functions and 

whose magnitudes are obtained by least-squares. None of the cited relevant references seems to 

offer any such consideration. Experience indicates how many coefficients to retain is important. 
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Ashrafi and Tuttle [13] analyzed perforated composite plates from DIC-measured data and 

commercial DIC strain calculation algorithms. However, in addition to necessitating the use of 

both in-plane displacement components to obtain strains, results were unreliable at the edges of 

the holes. 

 

5.4. Relevant Equations 

For an orthotropic plate in absence of body forces and rigid body motion, using a 

combination of complex variables Airy stress functions, conformal mapping, analytic continuation 

and Laurent power-series expansion, the in-plane stress and displacement components in the 

rectangular coordinates (x, y) of the physical plane, zj = x + μjy for j = 1, 2, are expressed as such 

[8,74] 
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where the complex material properties μj for j = 1, 2, are the roots of the characteristic expression 

of equation (2-20) (x-direction along the strong/stiff material direction 1) of Chapter 2 for a plane-

stressed orthotropic material loaded along a principal axis of material orthotropy. Complex 

material quantities pj and qj for j = 1, 2, are defined in equations (2-33) and complex quantities B 

and C in equations (2-50) and (2-51), respectively. In equations (5-1) through (5-5), the Airy 

coefficients, cj, are complex numbers, i.e., cj = aj + ibj, where aj and bj are real numbers. Detailed 

derivations of these equations are provided in Chapter 2. 

The DIC-hybrid method uses a conformal mapping in order to transform a complex 

geometry from the physical plane into a simpler geometry in the mapped plane while preserving 

angles during the mapping. As the stress functions are expressed here by the Laurent series, a 

mapping function that maps the elliptical hole between the original physical z-plane to the unit 
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circle in the mapped ζ-plane is required. The function ωj(ζj) of Figure 5-2, maps a region, Rζ, 

adjacent to the unit circle in the ζj = ξ + μjη plane into a region, Rz, exterior to an elliptical hole in 

the physical plane zj = x + μjy for j = 1, 2; of the loaded structure, i.e., [5] 

 
𝑧 =  𝜔 𝜁 =  

𝑏 +  𝑖𝑎𝜇

2
 
1

𝜁
 +  

𝑏 −  𝑖𝑎𝜇

2
 𝜁 ,    𝑗 = 1, 2 (5-6) 

where a and b are the major and minor radii of the elliptical hole, respectively. The inverse of the 

mapping function is used to map the elliptical geometry from z-plane to the unit circle in the ζ-

plane (Figure 5-2), i.e.,  

 

𝜁 =  𝜔 𝑧 =  

 𝑧  ±  𝑧  − 𝑏  −  𝑎 𝜇

𝑏 −  𝑖𝑎𝜇
,   𝑗 = 1, 2 

(5-7) 

The branch of the square root of equation (5-7) is chosen so that, | ζj | ≥ 1 for j = 1, 2, and the 

system coordinate origin is at the center of the elliptical hole, zc = 0. The quantity ω′j(ζj) in 

equations (5-1) through (5-3) represents differentiation of equation (5-6) with respect to the 

complex variables ζj for j = 1, 2, as equation (5-8). Details regarding the mapping function of 

equation (5-6) for the plate of Figure 5-1 are provided in Appendix D. 
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Figure 5-2: Mapping elliptical hole from physical z-plane to unit circle in ζ-plane and vice-versa 

 

 𝜔 𝜁 =  
𝑏 −  𝑖𝑎𝜇

2
 −  

𝑏 +  𝑖𝑎𝜇

2

1

𝜁
,    𝑗 = 1, 2 (5-8) 

The current orthotropic plate having [013/905/013] graphite-epoxy lay-up is a balanced, 

symmetric laminate. Twenty-six plies have their fibers in the loading direction and five plies have 

their fibers transverse to the loading direction. The in-plane strains and displacements are uniform 

through the thickness. The elastic laminate properties and stresses of equations (5-1) through (5-3) 

are based on through-the-thickness average stresses. 

The current analytical concept of complex variables Airy stress functions can be simplified 

to stress analyze isotropic members. For an isotropic material with elastic modulus, E11 ≈ E22 = E, 

Poisson’s ratio, ν12 = ν21 = ν, and shear modulus, G = E/2(1 + ν), the elastic compliances are 

expressed according to equation (2-35). By substituting the expression of the isotropic elastic 

compliances from equation (2-35) into the characteristic equation (2-17), the complex material 

properties for isotopy are obtained as μ1 = μ2 = i. 
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5.5. Plate Preparation and Experimental Set-up 

5.5.1. Plate Details 

A finite-width, [013/905/013] graphite-epoxy orthotropic plate containing a central elliptical 

cutout (Figure 5-1) was prepared and its displacement data were measured using DIC. The finite 

orthotropic laminate of length, L = 27.94 cm (11"), width, W = 7.62 cm (3") and thickness, t = 5.28 

mm (0.208") contains a central elliptical cutout with a major radius a = 1.9 cm (0.75") and a minor 

radius b = 0.95 cm (0.375"), (Figure 5-1 and Table 5-1). The plate is symmetrical about both the 

horizontal and vertical axes.  

 

Table 5-1: Elliptically-perforated orthotropic plate and loading details 

Material [013/905/013] graphite-epoxy orthotropic laminate 

Supplier Kinetic Composite, Inc., Oceanside, California 

Thickness, t 5.28 mm (0.208") 

Length, L 27.94 cm (11") 

Width, W 7.62 cm (3") 

Ellipse major diameter, 2a 3.81 cm (1.5") 

Ellipse minor diameter, 2b 1.9 cm (0.75") 

Symmetry Both horizontally and vertically 

Loading for DIC analysis From 0 to 11.6 kN (2,600 lbs) in intervals of 889.6 
N (200 lbs) 

Loading for DIC-hybrid stress analysis 4.5 kN (1,000 lbs) 
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5.5.2. Material Properties 

From Table 4-1, the measured elastic properties of the orthotropic [013/905/013] graphite-

epoxy laminate are E11 = 104.1 GPa, E22 = 28.1 GPa, ν12 = 0.155 and G12 = 3.0 GPa, with the 1-

direction being in the vertical x-orientation of Figure 5-1. Details regarding the composite 

laminate’s material properties and their determination are provided in Appendix A. 

 

5.5.3. Plate Fabrication 

The elliptically-perforated plate of Figure 5-1 was machined from the [013/905/013] 

graphite-epoxy orthotropic laminate provided by Kinetic Composite, Inc., Oceanside, CA. The 

279.4 mm × 76.2 mm × 5.28 mm plate was fabricated from the composite laminate using an electric 

saw and the 38.1 mm × 19 mm elliptical hole was later introduced using a carbide end mill in a 

CNC milling machine. 

 

5.5.4. Application of Speckle Pattern 

The random speckle pattern required for DIC was applied on the elliptically-perforated, 

orthotropic plate following the standard guidelines for DIC speckle pattern application (details 

provided in Chapter 4, Section 4.6.3). 

The dense, random speckle pattern of Figure 5-3 was applied to the surface of the plate for 

pixel correlation between the (essentially) unloaded and loaded conditions. Being careful not to 

round off the edges of the hole, the plate was lightly polished initially with 400-grit emery cloth 
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and cleaned with a water-based mild cleaner (Vishay Precision Group - Micro-Measurements M-

Prep Conditioner A followed by M-Prep Neutralizer 5A) [82]. The cleaned plate was painted with 

a thin layer of black paint, after which a random pattern of white dots was applied. The random 

pattern was achieved by lightly applying pressure to the trigger of the white paint container while 

holding the container perpendicular to the surface of the plate to provide a discontinuous spray. 

Rust Oleum Ultra-Cover paints were used. 

 

 

Figure 5-3: Elliptically-perforated plate with speckle pattern 

 

5.5.5. Plate Loading 

The plate was loaded in a 89 kN (20,000 lbs) capacity, closed-loop, hydraulic grip MTS 

machine taking care to ensure symmetrical loading and avoid any out-of-plane bending. To 

achieve symmetrical loading, special care was taken so that the plate was mounted symmetrically, 

Figure 5-4(a). The commercially available Correlated Solution, Inc.’s (Columbia, SC 29063, USA) 

DIC package was used to measure the displacements. The DIC package includes a pair of Point 

Gray digital cameras with 2,448 × 2,048-pixel resolution, three pairs of Schneider Xenoplan lenses 
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(lens pair with 1.9 focal ratio and 35 mm focal length were used), and Correlated Solutions’ Vic-

Snap data acquisition and Vic-2D/3D post-processing software (details in Table 4-3 of Chapter 4). 

A 3D-DIC test was conducted initially using two cameras to obtain the in- and out-of-plane 

displacement information and ensure there was no out-of-plane motion beyond the Poisson’s 

effect. From the DIC-recorded data it can be seen that there was no out-of-plane motion while 

conducting the experiment, Figure E-1 of Appendix E. Being satisfied having no out-of-plane plate 

bending, a 2D-DIC test (Figure 5-4(b)) was done with the same loading set-up using one camera, 

the data from which were utilized for the stress analysis.  

Vertical tensile static loading varying from essentially zero to 11.6 kN (2,600 lbs) was 

applied in the strong/stiff (x-) direction of the plate in 889.6 N (200 lbs) load increments. Reported 

results are those at 4.45 kN (1,000 lbs). An oscilloscope was used to monitor the applied loads. A 

digital image of the plate was taken using the Correlated Solution DIC camera coupled with Vic-

Snap data acquisition software at each load increment using ambient lighting, Figure 5-4(b). 
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(a) (b) 

Figure 5-4: (a) Loaded plate with speckle pattern and (b) Experimental set-up 

 

5.5.6. Calibration 

When using two cameras (3D-DIC), system calibration was achieved by moving, imaging 

and analyzing a rigid calibration grid (for the current study Correlated Solution Inc.’s 12 mm × 9 

mm × 5 mm calibration grid was used) in front of the two cameras. When using one camera (2D-

DIC), the calibration was done by manually correlating pixel size for a known distance through 

Vic-2D post-processing software, i.e., marking down a known distance and providing the length 

in terms of the physical units. 
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5.5.7. Subset and Step Size 

A subset size of 21 and a step size of 5 were used.  

 

5.5.8. DIC Data Analysis 

The captured DIC images were processed and correlated using Correlated Solution Vic-2D 

correlation software to obtain the measured displacement information. A set of images at different 

loads were obtained along with a reference image at essentially zero load. Figure 5-5 shows how 

the analysis using the Vic-2D software is done. Figure 5-5(a) shows an image of the loaded plate 

captured by the DIC camera coupled with Vic-Snap software. The user specifies the area of 

interest, subtracts any discontinuity in the plate manually and specifies the subset and step size. In 

Figure 5-5(b) the shaded area is the area of interest (AOI) over which the analysis will take place. 

Figure 5-5(c) indicates the analysis completed by the Vic-2D software showing the displacement 

in the strong/stiff (vertical) x-direction. 

Note that the Vic-Snap and Vic-2D software were only used to record the DIC images and 

extract the raw DIC displacement information by image correlation, respectively. Once this was 

obtained, the commercial software had no further use in this study. Rather, the DIC-recorded data 

were processed by the Airy stress functions. 
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(a) (b) (c) 

Figure 5-5: Processing of the digital images using Vic-2D post-processing software; (a) Initial 
captured DIC image, (b) Area of interest (AOI) selected using Vic-2D software and (c) 

Correlating the images conducting DIC analysis over the AOI (showing vertical displacement)  

  

5.6. Finite Element Model 

Having geometric and loading symmetry about both x-y axes, only one quarter of the plate 

was modeled in ANSYS APDL using isoparametric elements Plane 182 (4 nodes per element with 

translations u and v per node), Figure 5-6(a). The origin of the coordinate system is located at the 

center of the hole and symmetrical boundary conditions were numerically satisfied. Since the plate 

thickness is small compared to other dimensions, plane-stress with thickness option was used. The 

model had a very fine mesh at and near the edge of the hole. The mesh was refined until the 

maximum stress on the edge of the hole changed by less than 0.25% regardless of any further 

reduction in the element size. The final FEM quarter model involves 51,755 elements and 52,353 

nodes. The plate experienced a far-field stress, σ0 = 11.06 MPa (1.6 ksi), along x-axis based on the 

applied load and the far-field cross-sectional area of the plate according to equation (5-9). The 

coordinate values of all the nodes, along with the displacement and stress components of the FEM, 
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were imported into MATLAB for post-processing and correlating the data to those from the DIC-

hybrid complex analysis. 

 
𝜎 =

𝐹∗

𝑊 × 𝑡
=

4,448.22 N

76.2 mm ×  5.28 mm
= 11.06 MPa (1,604.12 psi) (5-9) 

A stated motivation for developing the present technique is to enable stress analyze 

orthotropic cases experimentally which cannot be analyzed numerically due to the lack of 

knowledge on the actual loading and boundary conditions. However, FEM is used here. The 

geometry, loading and mesh quality of the plate (Figure 5-1) in this study were deliberately 

selected such that one could obtain reliable FEM results (Figure 5-7) with which to compare results 

of the present hybrid-method. 

 

   

(a) (b) 

Figure 5-6: (a) FEM of the elliptically-perforated quarter plate and (b) Area near the elliptical 
hole with dense element mesh 
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(a) (b) (c) 

Figure 5-7: Contour plots, for stresses σxx, σyy and σxy from FEM (units in psi) 

 

5.7. Data Reduction and Analysis 

The plate is geometrically and mechanically symmetrical about both the x-y axes. The top 

grip of the MTS load frame (Figure 5-4(a)) is stationary and the bottom grip moves down to apply 

the tensile load. Figure 5-8(a) shows the associated non-symmetrical displacement pattern about 

the horizontal y-axis. These DIC-measured displacements in the loading direction (strong/stiff 

direction, x-direction) of Figure 5-8(a) were processed to shift the origin so it passes through the 

center of the hole and also to simulate both the top and bottom ends of the plate being equally 

extended vertically (Figure 5-8(b)), i.e., were post-processed considering the displacement in the 

loading direction should be zero along the horizontal center-line of the plate. These processed 

displacements were averaged over the four quadrants of the plate to cancel out any measurement 
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asymmetry and reduce scatters. The resulting averaged vertical displacements, u, are plotted 

throughout the top right quadrant of the plate in Figure 5-8(c). 

 

  
(a) (b) 

 
(c) 

Figure 5-8: DIC-recorded displacement data, u/a, in vertical loading direction, x, : (a) DIC-
recorded normalized u-data, (b) Processed so u = 0 at x = 0 (magnitude only) and (c) Averaged 

u-displacements over the four quadrants and discarding edge data 
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From the processed averaged vertical u-displacement data, nDIC = 20,704 essentially 

equally spaced experimental values of u were selected, originating at a distance 0.05a (= 1 mm) 

away from the edge of the hole, Figure 5-8(c) and Figure 5-9. For these nDIC = 20,704 source data 

values, the RMS plot of Figure 5-10 indicates employing k ≥ 4 coefficients will yield less 

difference between the recorded, d, and reconstructed, d′, displacement data. However, the plot of 

the condition number, C, and the natural logarithm of the condition number, log10(C), of Figure 

5-11 and Figure 5-12, respectively, suggests k = 2 to 8 would be an appropriate number of Airy 

coefficients to retain.  

 

 

 Figure 5-9: DIC data source locations, of nDIC = 20,704 data points for the DIC-hybrid method 
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Figure 5-10: Plot of RMS versus number of complex coefficients, k, for nDIC = 20,704 for vertical 
displacements, u 

 

 

Figure 5-11: Plot of condition number, C, versus number of complex coefficients, k, for nDIC = 
20,704 for vertical displacements, u 
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Figure 5-12: Plot of log10(C) versus number of complex coefficients, k, for nDIC = 20,704 for 
vertical displacements, u 

 

To further aid in the selection of the number of coefficients to use in the summation series, 

the DIC-recorded u-displacement contours, d, were compared with the reconstructed u-

displacement contours, d′, from equation (5-4), for varying number of stress coefficients, k, in 

Figure 5-13. As the plate of Figure 5-1 has only a single central elliptical hole, there should not be 

any sudden deviation in the stress lines away from the boundary of the hole. Figure 5-13(b) shows 

that as the number of Airy coefficients is increased to k = 4 from k = 2 (Figure 5-13(a)), the stress 

lines at location 1 and 2 starts to show sudden slight deviations. This becomes more prominent in 

Figure 5-13(c) for k = 6. Moreover, unusual deviation in the stress lines at location 3 is observed 

in Figure 5-13(c). It should be kept in mind that traditional DIC methods are incapable of providing 

reliable results near or at the edges of a structure and this accounts for the large scatter in measured 

data near the right vertical edge of Figure 5-13(a). 
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Based on all the above-mentioned observations, for the nDIC = 20,704 DIC-measured u-

displacement information in the DIC-hybrid method to stress analyze the finite orthotropic plate 

of Figure 5-1, k = 2 is an optimum number of Airy coefficients to retain. 

 

 ,  

(a) 

(b) (c) 

Figure 5-13: Comparing u/a-displacement contours obtained from DIC (right side) with 
reconstructed (left side) from the DIC-hybrid complex analysis for nDIC = 20,704 u-

displacements and k =2, 4 and 6, respectively 

 

1

2 

1 

2 
3 3 

1 

2 

3 

2 

3 
1 



145 
 

 
 

Note withstanding the above, it is worth observing that as the number of Airy coefficients was 

increased from k = 2 in equations (5-1) through (5-3), the stresses in the loading direction, σxx, 

showed slight change from the FEM-prediction, with a slight decrease in the maximum stress value 

from that of k = 2. However, the comparatively smaller stresses, i.e., the normal stresses in the 

direction transverse to the loading direction, σyy, and the shear stresses, σxy, showed significant 

deviation from the FEM-predictions for k = 4, Figure F-1 of Appendix F. 

Acknowledging that the magnitudes of the displacements in the loading direction, u, are 

comparatively greater than those transverse to the loading direction, v, this DIC-based stress 

analysis emphasized using the former (higher magnitude) displacement data. However, to assess 

the reliability when employing the smaller displacement component, v, an additional DIC-hybrid 

stress analysis was conducted based on measured v-displacement data as input. Similar to the 

previous case, the DIC-recorded v-displacement data of Figure 5-14(a) were post-processed to be 

zero along vertical center-line y = 0. Due to appreciable scatter of the raw v-displacements about 

y-axis at x = 0, Figure 5-14(b), they were averaged over the four quadrants to minimize 

experimental scatter and asymmetry, Figure 5-14(c). From these processed and averaged 

experimental information, at a distance 0.05a ≈ 1 mm or greater from the boundary of the hole, 

nDIC = 20,704 displacement v values were selected. This is the same number of measured v inputs 

as those of the u-displacements of Figure 5-9. When using DIC-recorded v-displacements, k = 6 

was chosen based on RMS plot of Figure 5-15. This choice of k = 6 was also supported by the 

plots of the condition number of Figure 5-16 and Figure 5-17. Using either k = 2 or 8 in the 

summation series was found to have little effect on the DIC-hybrid computed in-plane stresses 

other than slight decrease in the maximum tangential stress along the boundary of the hole 
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compared to the FEM-prediction. This supports using k = 6 for the nDIC = 20,704 horizontal v-

displacement data to stress analyze the orthotropic plate. 

  
(a) (b) 

 
(c) 

Figure 5-14: DIC-recorded v/a displacements transverse to loading direction x, (a) Raw DIC-
recorded normalized v-data, (b) Processed so v = 0 at y = 0 (magnitude only) and (c) Averaged v-

displacements over the four quadrants and discarding edge data 
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Figure 5-15: Plot of RMS versus number of complex coefficients, k, for nDIC = 20,704 horizontal 
displacements, v 

 

 

Figure 5-16: Plot of condition number, C, versus number of complex coefficients, k, for nDIC = 
20,704 horizontal displacements, v 
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Figure 5-17: Plot of log10(C) versus number of complex coefficients, k, for nDIC = 20,704 
horizontal displacements, v 

 

Using the nDIC = 20,704 DIC-measured u- or v-displacement data in either equation (5-4) 

or (5-5), the Airy coefficients can be evaluated, i.e., 

 

{𝑑}    = 2 𝑅𝑒 𝑠 𝜁 + 𝑠 𝐶𝜁 + 𝐵𝜁 𝑖 𝑠 𝜁 + 𝑠 𝐶𝜁 − 𝐵𝜁
𝑎

𝑏

  

 
  

= {DIC Displacement Data}    

(5-10) 

where d = u or v and sj = pj or qj for u or v, respectively, and j = 1, 2. Equation (5-10) can be re-

written as  

 [𝐴]  × (   ){𝑐} (   )× =  {𝑑}  ×  (5-11) 
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A simultaneous system of linear equations is formed according to equation (5-11) where the 

number of equations/input displacements, nDIC, is much higher than the number of unknowns/real 

Airy coefficients, 2(m + 1), i.e., nDIC >> 2k = 2(m + 1). Matrix [A] depends on the material 

properties, the mapping function and the source locations of the recorded input displacement 

values, vector {c} involves the Airy coefficients and {d} consists of the DIC-recorded 

displacement data. The only unknowns in the above equation (5-11) are the Airy coefficients in 

vector {c}. They are evaluated by the least-squares method. MATLAB’s backlash operator of 

equation (5-12) is used for this purpose, i.e., 

 {𝑐} =  [𝐴]\{𝑑} (5-12) 

It should be noted that equation (5-11) solves for 2(m + 1) real coefficients (aj and bj) from which 

k = (m + 1) complex coefficients, cj, are obtained. Only the real part of the Airy coefficients, aj, 

are utilized from equation (5-12) to evaluate the in-plane displacements and stresses from 

equations (5-1) through (5-5) combined with equations (5-7) and (5-8). For orthotropic materials 

with purely imaginary complex parameters (μ1 = 5.87i and μ2 = 0.34i for Figure 5-1 and Table 4-1) 

and direction of material symmetry parallel-perpendicular to the direction of applied loading, and 

with geometric-mechanical symmetry about the x- and y-axes requires retaining only the real and 

odd terms in the finite-series expansions of the stress functions, Φ(ζ1) and Ψ(ζ2), of equations 

(2-62) and (2-63) [71]. The value j = 0 in equations (5-1) through (5-5), represents a rigid body 

constant which is omitted when the plate is loaded in a testing machine. Moreover, for the central 

elliptical hole, and due to the plate’s symmetry about the x-y axes, the value of j never equals an 

even number. Thus, the value of j also never equals zero nor an even number. As the plate has 
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geometric and loading symmetry with respect to the x- and y-axes, Figure 5-1, just one quadrant 

of the plate was analyzed. Information in the other quadrants is obtained through symmetry.  

This analysis is done without imposing any symmetry and/or near or far-field boundary 

conditions. A desirable feature of the present hybrid approach is that, it does not require knowing 

the external loading or boundary conditions. This is a big advantage over numerical techniques 

such as FEM, FD or boundary collocations where reliability depends heavily on the known 

external boundary conditions. This can be very useful in real-world applications involving 

complex geometry and/or loading as situations can occur where imposing boundary or symmetry 

conditions may not always be possible. Moreover, the actual external loading is often unknown in 

practice. 

 

5.8. Results 

Each of the DIC-measured u and v displacement components was used individually with 

the relevant equations (5-4) or (5-5) to evaluate the Airy coefficients. Knowing these coefficients, 

both in-plane displacements and the complete state of stress were available throughout the region 

engulfing the hole from equations (5-1) through (5-5). These results are compared in Figure 5-18 

through Figure 5-23 with FEM-predictions. All figures were generated using MATLAB. 

Displacement components and distances are normalized with respect to the major elliptical hole 

radius, a = 1.9 cm, and the stresses are normalized with respect to the far-field applied stress, σ0 = 

11.06 MPa according to equation (5-9). Good agreement exists between the DIC-hybrid stress 

analyses and FEM-predictions. Discrepencies in Figure 5-19(b) and Figure 5-21(a) between the 

FEM-prediction and DIC-hybrid method are not significant. In the first case the σyy values are 
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smaller than σxx, the ones in the loading direction. The Figure 5-21(a) displacement in the loading 

direction, u, is computed from using the displacement transverse to loading direction, v, as input 

in the DIC-hybrid model.  

Overall, good agreement prevails between the DIC-hybrid complex stress analyses and 

those obtained from the FEA, using Airy coefficients k = 2 for nDIC = 20,704 values of vertical 

displacements, u, or k = 6 for nDIC = 20,704 values of horizontal displacements, v, and using the 

Laurent series expansion to express the complex variables Airy stress functions. It must be noted 

that all of the DIC results are based on using either only the vertical, u, or horizontal, v, recorded 

displacement field as input data, not both together. This is unlike traditional displacement-based 

methods which require both u and v. Needing only one measured displacement field is 

advantageous since there can be situations where there is a paucity or poor quality of one or other 

of the recorded displacement fields.  

The polar stress components of Figure 5-20 and Figure 5-23 were obtained by stress 

transformation from rectangular components of stress. 

 

  
(a) (b) 

Figure 5-18: Contours of (a) u/a and (b) v/a from FEM (left side) and hybrid-method based on 
DIC-measured displacement information, u, in the vertical loading direction (right side)  
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(a)  (b)  

 
(c) 

Figure 5-19: Contours of (a) σxx/σ0, (b) σyy/σ0 and (c) σxy/σ0 from FEM (left side) and hybrid-
method based on DIC-measured displacement information, u, in vertical loading direction (right 

side) 
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(a) 

 

(b) (c) 

Figure 5-20: Plot of (a) σθθ /σ0, (b) σrr /σ0 and (c) σrθ /σ0 along boundary of elliptical hole from 
hybrid-method based on DIC-measured displacement information, u, in vertical loading direction 

and FEM  
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(a) (b) 

Figure 5-21: Contours of (a) u/a and (b) v/a from FEM (left side) and hybrid-method based on 
DIC-measured displacement, v, in direction transverse to vertical loading direction (right side) 

 

(a) (b) 

 

(c) 

Figure 5-22: Contours of (a) σxx/σ0, (b) σyy/σ0 and (c) σxy/σ0 from FEM (left side) and hybrid-
method based on DIC-measured displacement information, v, in the direction transverse to 

vertical loading direction (right side) 
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`(a) 

  

(b) (c) 

Figure 5-23: Plot of (a) σθθ /σ0, (b) σrr /σ0 and (c) σrθ /σ0 along boundary of elliptical hole from 
hybrid-method based on DIC-measured displacement information, v, in the direction transverse 

to vertical loading direction and FEM 

 

The normalized tangential stresses along the boundary of the elliptical hole (one quarter of 

the elliptical hole) is plotted in Figure 5-20 and Figure 5-23, based on the DIC-hybrid complex 
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analyses using the Laurent series expansion and is compared with the FEM-predictions. Hybrid 

results agree well with the FEM results of the tangential stresses along the entire edge of the hole.  

 

5.8.1. Load Equilibrium 

The load equilibrium was also checked to further assess the reliability of the DIC-hybrid 

method. By integrating the DIC-based computed stress component σxx along horizontal lines 

through the width of the loaded plate using equation (5-13), the computed load, 𝐹∗, from the DIC-

hybrid analysis was determined, i.e., 

 𝐹∗ = 𝜎 𝑑𝐴 = 2 𝜎 𝑡𝑑𝑦    at  𝑥 = 0 (5-13) 

where t is the thickness and W is the width of the plate. Computing the integration using 

MATLAB’s trapezoidal rule, the computed applied load at x = 0 is 4.63 kN (1,040 lbs) for the first 

case, where recorded u-displacements were used as input to compute σxx. For the second case, 

where σxx was calculated using recorded v-displacements as input, the computed load at x = 0 is 

4.45 kN (1,001.6 lbs). These computed loads are within 4.06% and 0.16%, respectively, of the 

physically applied load. The DIC-hybrid method therefore satisfies the load equilibrium.   

Figure 5-24 shows the effect of the number of Airy coefficients on the DIC-hybrid method 

computed load in the vertical x-direction at x = 0 from the load equilibrium of equation (5-13), 

when using u-displacements as input. The difference between the computed and physically applied 

loads increase as the number of Airy coefficients is increased to evaluate σxx from the DIC-hybrid 
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method. This further validates using k = 2 for nDIC = 20,704 vertical displacements, u, as input in 

the DIC-hybrid method to stress analyze the finite orthotropic plate. 

 

 

Figure 5-24: Plot of percentage of error between physically applied and DIC-hybrid method 
computed loads versus number of complex coefficients, k, for nDIC = 20,704 vertical 

displacements, u, as input 

 

Table 5-2 compares the real part, aj, (imaginary part is zero) of the complex Airy 

coefficients from the DIC-hybrid analyses when separately using vertical u-displacements or 

horizontal v-displacements as input. It is observed that for both the cases the dominating Airy 

coefficients (a-1 and a1 when using either u- or v-displacements as input) are quite similar to each 

other giving rise to similar results irrespective of using u or v-displacement data to stress analyze 

the plate. 
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Table 5-2: Comparing Airy coefficients from DIC-hybrid stress analysis involving an 
elliptically-perforated, finite, orthotropic plate from measured u- or v-displacement data 

Airy coefficients 
aj 

From measured u and 
k = 2 

From measured v and 
k = 6 

a-1 -69.47 -66.97 

a1 -59.59 -57.39 

a-3 - 2.28 

a3 - 1.89 

a-5 - 0.24 

a5 - 0.22 

 

5.9. Validity of Presented Hybrid-Method for Finite-Width Plates 

The reliability of the present experimental-analytical hybrid stress analysis method in 

treating a finite-width plate is demonstrated in this section. FEM analyses of the elliptically-

perforated graphite-epoxy orthotropic plates were generated using ANSYS APDL for varying 

elliptical hole-opening, 2a, to plate-width, W, ratios, i.e., for 0.2 ≤ 2a/W ≤ 0.9. A plate with 2a/W 

close to 0.8 or above represents a very finite plate and those with 2a/W close to 0.2 represent a 

more infinitely-width plate.  

FEM-simulated displacements, u, in the loading direction x, were used as input for the 

hybrid stress analysis method (in equation (5-4) to find cj) and the plates were full-field stress 

analyzed (substituting cj in equations (5-1) through (5-5)). The stress concentration factor (SCF), 

KT, of a perforated plate is defined as the ratio of the maximum stress to nominal stress according 

to equation (5-14). For the elliptically-perforated graphite-epoxy plates similar to Figure 5-1 but 

with varying 2a/W ratios, when loaded along the strong/stiff fiber direction x, the maximum stress 
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occurs at the base of the elliptical hole, i.e., at x = 0, y → a. This is observed from both FEM-

predicted and DIC-hybrid (based on DIC-measured u or v input) computed σxx contours of Figure 

5-19(a) and Figure 5-22(a), respectively. From the hybrid-method (using FEA-predicted u-

displacements) computed in-plane stresses in the loading direction, σxx, the SCF, KT, was evaluated 

using equation (5-14). These FEA-hybrid results are provided in Table 5-3. Similarly, the SCF, 

KT, were determined directly by using the FEM-generated in-plane stresses in the loading 

direction, σxx, in equation (5-14), Table 5-3. Results of obtained KT by FEA-hybrid method agree 

well with those derived from a direct FEA, Table 5-3 and Figure 5-25. The experimentally derived 

SCF from the DIC-hybrid method computed σxx using DIC-measured u-displacement data as input 

(for Figure 5-1) is overlaid with the FEA-hybrid and FEA, KT in Figure 5-25. These experimental 

and FEA-based KT results at 2a/W = 0.5 agree well with each other. Note that all of the plates for 

these analyses (Table 5-3 and Figure 5-25) have an elliptical hole-opening ratio or sharpness of 

two, i.e., a/b = 2 and are of the same length, L = 27.94 cm (11''). All plates of Table 5-3 and Figure 

5-25 have the same material properties, Table 4-1, and KT were calculated using the gross cross-

sectional area (equation (5-9)). Moreover, using FEA-predicted u-displacement data as input in 

the hybrid stress analysis method to stress analyze the plates is defined here as the FEA-hybrid 

method. 

 𝐾 =  
𝜎

𝜎
=

𝜎 (0, 𝑎)

𝜎
 (5-14) 

Tan [92] provided a closed-form equation to evaluate the SCF for an infinitely-wide 

orthotropic plate with an elliptical hole of major and minor radii a and b, respectively, as  
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 𝐾 = 1 +  
𝑎

𝑏
 

2

𝑆
 𝑆 𝑆  − 𝑆  +  

𝑆 𝑆  − 𝑆

2𝑆
 (5-15) 

where Sij are the in-plane stiffnesses of the laminate and subscripts 1- and 2- denote the directions 

parallel and transverse to the loading direction, respectively. For the current [013/905/013] graphite-

epoxy plate of Figure 5-1, the strong/stiff material direction 1 being parallel to the loading direction 

x, the above equation (5-15) can be re-written as 

 𝐾 = 1 +  
𝑎

𝑏
2

𝐸

𝐸
 −  𝜈  + 

𝐸

𝐺
 (5-16) 

Tan also defined the ratio of the SCF, KT, of a finite-width plate over the SCF for the same plate 

but of infinite-width with respect to the hole-opening 2a, KT
∞, as the finite width correction factor 

(FWCF) and this accounts for the effect of a plate’s finite-width on its stress concentration [91], 

i.e., 

 FWCF =
𝐾

𝐾
 (5-17) 

For the present [013/905/013] graphite-epoxy plate with a/b = 2 using the constitutive 

material properties of Table 4-1 and equation (5-16), KT
∞ is found to be 13.5. Using all this 

information in equation (5-17), i.e.,  the SCFs, KT, evaluated for the graphite-epoxy plates with a/b 

= 2 and 0.2 ≤ 2a/W ≤ 0.9 from FEA, FEA-hybrid and DIC-hybrid method and KT
∞ of 13.5, the 
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FWCF of the plates with varying 2a/W are determined, Table 5-3 and Figure 5-26. The obtained 

FWCF values by the three different methods, show good agreement. 

 

Table 5-3: Comparison of SCF and FWCF for various ratios of 2a/W and a/b = 2 

2a/W 

KT from 

FEM 
analysis  
directly 

FWCF 
determined 
from FEM 

analysis 
directly 

KT based on 
FEM 

simulated 
displacement 
information in 

hybrid-
method 

(FEA-hybrid) 

FWCF based 
on FEM 

simulated 
displacement 
information 
in hybrid-
method 

(FEA-hybrid) 

KT from 
DIC 

determined 
data for 

finite-width 
plate 

FWCF 
based on 

DIC 
determined 

data for 
finite-width 

plate 

0.2 15.32 1.14  15.5  1.16   

0.3 15.41 1.15 14.79 1.10   

0.35 15.52 1.16 14.86 1.11   

0.5 16.43 1.22 15.89 1.18 15 1.11 

0.52 16.45 1.23 15.44 1.15   

0.54 16.75 1.25 15.65 1.17   

0.56 16.94 1.26 16.01 1.19   

0.58 17.32 1.29 16.22 1.21   

0.6 17.71 1.32 17.48 1.3   

0.62 18.08 1.35 17.94 1.34   

0.64 18.5 1.38 18.42 1.37   

0.75 22.66 1.69 21.31 1.59   

0.8 25.39 1.89 25.58 1.91   

0.85 31.12 2.32 29.89 2.23   

0.9 41.27 3.08 39.28 2.93   
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Figure 5-25: SCF, σxx/σ0, of elliptically-perforated plates for various 2a/W ratios from FEA, 
FEA-hybrid and DIC-hybrid stress analyses 

 

 

Figure 5-26: FWCF of elliptically-perforated plates for various 2a/W ratios from FEA, FEA-
hybrid and DIC-hybrid stress analyses 
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Tan [91] developed closed-form solutions to estimate a plate’s FWCF that account for the 

effect of the plate’s finite-width on the SCF. For an orthotropic plate with an elliptical-opening the 

approximate FWCF is 

 

𝐾

𝐾
=

𝜆

(1 − 𝜆 )
+

(1 − 2𝜆 )

(1 − 𝜆 )
1 + (𝜆 − 1)

2𝑎

𝑊

−
𝜆

(1 − 𝜆 )

2𝑎

𝑊
1 + (𝜆 − 1)

2𝑎

𝑊

+  
𝜆

2

2𝑎

𝑊
𝐾 − 1 −

2

𝜆
1 + (𝜆 − 1)

2𝑎

𝑊

−
2𝑎

𝑊
1 + (𝜆 − 1)

2𝑎

𝑊
 

(5-18) 

Tan [91] later proposed the following modified version for the FWCF of the above equation (5-18)  
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𝐾

𝐾
=

𝜆

(1 − 𝜆 )
+

(1 − 2𝜆 )

(1 − 𝜆 )
1 + (𝜆 − 1)

2𝑎

𝑊
𝑀

−
𝜆

(1 − 𝜆 )

2𝑎

𝑊
𝑀 1 + (𝜆 − 1)

2𝑎

𝑊
𝑀

+  
𝜆

2

2𝑎

𝑊
𝑀 𝐾 − 1 −

2

𝜆
1 + (𝜆 − 1)

2𝑎

𝑊
𝑀

−
2𝑎

𝑊
𝑀 1 + (𝜆 − 1)

2𝑎

𝑊
𝑀  

(5-19) 

where λT = b/a, KT
∞ is a function of the plate’s elastic material properties and the hole ratio a/b 

and is evaluated from equation (5-16). The quantity Mf is a magnification factor expressed in 

equation (5-20), and is only a function of the plate’s 2a/W ratio. 

 
𝑀 =

1 − 8  
3 1 −

2𝑎
𝑊

2 + 1 −
2𝑎
𝑊

− 1 − 1

2
2𝑎
𝑊

 
(5-20) 

For the current elliptically-perforated, finite orthotropic plate of Figure 5-1, in-plane 

stresses in the loading direction, x, along the horizontal center-line (x = 0) evaluated by the DIC-

hybrid method were also checked against other approximate solutions available in the literature. 

For the plate coordinates of Figure 5-1, according to Tan’s study [92], the normalized in-plane 
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stresses, σxx, in the loading direction x, along the plate’s horizontal center-line at x = 0 from y = a 

to y = W/2 can be represented as the following equation (5-21), where κ = y/a. 

 

𝜎 (0, 𝑦)

𝜎
=

𝜆

(1 − 𝜆 )
+

(1 − 2𝜆 )𝜅

(1 − 𝜆 ) 𝜅 − 1 + 𝜆
+

𝜆 𝜅

(1 − 𝜆 )(𝜅 − 1 + 𝜆 )

−
𝜆

2
𝐾 − 1 −

2

𝜆
 

5𝜅

(𝜅 − 1 + 𝜆 )
−

7𝜆 𝜅

(𝜅 − 1 + 𝜆 )
 

(5-21) 

From a study by Bao et al. [93] for a tensile-loaded orthotropic plate of width W with an 

central notch of length 2a, the SCF and the in-plane stresses in the loading direction (considered 

as x- here) along a horizontal center-line are expressed as  

 𝐾 = 𝜎 √𝜋𝑎𝑌(𝜌) 1 − 0.025
2𝑎

𝑊
+ 0.06

2𝑎

𝑊
sec

𝜋𝑎

𝑊
 (5-22) 

where for the plate of Figure 5-1, 

 𝜌 =  
(𝐸 𝐸 )

2𝐺
− (𝜈 𝜈 )  (5-23) 

and 

 𝑌(𝜌) = 1 + 0.1(𝜌 − 1) − 0.016(𝜌 − 1) + 0.002(𝜌 − 1)  (5-24) 
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𝜎 (0, 𝑦)

𝜎
=

𝐾

𝜎 √2𝜋𝑟
 (5-25) 

where r is measured along the horizontal center-line (x = 0) of the plate of Figure 5-1 from y → a 

to y = W/2. As these equations were originally designed to treat orthotropic plates with cracks and 

consider the stress singularities near the crack-tip, the distance r is considered slightly away from 

the location y = a. 

The in-plane stresses in the loading direction, σxx, computed from the DIC-hybrid stress 

analysis method (using u-displacements as input) is plotted in Figure 5-27, as are those evaluated 

from equation (5-21) and from combining equations (5-22) through (5-24) into equation (5-25), 

along the horizontal center-line passing through y = a to W/2 at x = 0. The DIC-hybrid method 

computed stress distribution agrees with the approximate solutions provided by Tan [91] except at 

x = 0 for y = a where the DIC-hybrid method provides higher maximum stress, Figure 5-27.  

 

Figure 5-27: Normalized in-plane stresses in the loading direction, σxx/σ0, from DIC-hybrid 
method, Tan’s method [92] and Bao’s method [93] of elliptically-perforated plate of Figure 5-1 
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For the current elliptically-perforated [013/905/013] graphite-epoxy plate of Figure 5-1, with 

2a/W of 0.5, the SCF, KT, was derived from all the above-mentioned approaches and compared 

with that experimentally obtained from the DIC-hybrid method computed stresses. All such results 

of KT are summarized in Table 5-4. For the elastic properties of the plate (Table 4-1), the SCF for 

an infinitely-width plate, KT
∞, is evaluated from equation (5-16). The KT of the finite, elliptically-

perforated plate is obtained from Tan’s FWCF approach (equation (5-18)) and modified FWCF 

approach (equation (5-19)) and Bao’s approach (equation (5-22)). In addition, KT of the plate for 

2a/W = 0.5 from direct FEA-predictions and from using FEA predicted u-displacement data in the 

hybrid stress analysis method are obtained, i.e., FEA-hybrid method (from Table 5-3) and 

compared. The DIC-hybrid predicted KT agrees well with those evaluated from these other 

approaches. This further validates the presented DIC-hybrid method’s ability to reliably stress 

analyze finite-width plates. 

 

Table 5-4: SCF and FWCF of the elliptically-perforated plate with 2a/W of 0.5 

From KT KT
∞ KT/ KT

∞ 

Present DIC-Hybrid Stress Analysis 15 

13.5 

equation 
(5-16) 

1.11 

FEA-Hybrid Stress Analysis (input FEA simulated u) 15.89 1.18 

FEA 16.43 1.22 

Tan’s FWCF (a/b ≤ 1) (equation (5-18)) 13.8 1.02 

Tan’s Modified FWCF (a/b ≤ 4) (equation (5-19)) 17.9 1.33 

Bao’s Method (essentially for plates with central cracks) 

(equation (5-22)) 

12.9 0.96 
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5.10. Hybrid-Method Validity for Various Hole-Opening Ratios (a/b) 

In this section the effect of the plate’s elliptical hole-opening sharpness, i.e., the ratio of 

the major to minor radii, a/b, on the SCF is studied. For the graphite-epoxy laminate of Table 4-1, 

FEAs were generated and analyzed in ANSYS for varying a/b and 2a/W. The SCF of the different 

plates were determined directly from the FEA-predicted in-plane normal stresses in the loading 

direction and from those computed by the hybrid stress analysis by using FEA-predicted u-

displacements as input, i.e., FEA-hybrid analysis. Results are presented in Table 5-5. All plates 

analyzed have the same length (L = 27.94 cm) and thickness (t = 5.28 mm). For the graphite-epoxy 

plates with varying a/b and 2a/W, the KT results obtained from FEA and FEA-hybrid method show 

good agreement. 

 

Table 5-5: SCF of elliptically-perforated graphite-epoxy plates for material properties of Table 
4-1 from FEA and FEA-hybrid  

From FEA FEA-Hybrid FEA FEA-Hybrid FEA FEA-Hybrid 

2a/W a/b 1.5 1.5 2 2 2.5 2.5 

0.4 11.65 11.69   20.16 19.36 

0.5 12.42 12.32 16.43 15.89 20.59 19.62 

0.6 13.77 13.62 17.71 17.48 21.81 20.40 

0.7 16.19 15.91   24.85 22.18 

0.8 20.87 20.63 25.39 25.58 30.89 27.42 
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5.11. Hybrid-Method Validity for Various Materials 

The present DIC-hybrid stress analysis method is capable of analyzing both isotropic and 

orthotropic plates of essentially any elastic material properties. This is demonstrated here by 

analyzing plates with different material properties. The material properties of Table 5-6 were 

selected such that they represent an orthotropic member with very little anisotropy (E11/E22 = 1.03 

≈ 1), i.e., the loaded plate behavior is almost isotropic. FEAs of these new plates were generated 

for several hole-opening ratios (a/b) and hole-opening to plate-width ratios (2a/W). The SCF of 

these plates were evaluated directly from FEA and FEA-hybrid method, Table 5-7. As the 

orthotropic material properties of Table 5-6 are close to isotropy, the SCF of isotropic elliptically-

perforated finite plates under axial loading from Isida [67] and Durelli et al. [94] (Appendix G) 

were obtained for several hole-opening to plate-width ratios, 2a/W, for the hole-opening ratios, a/b 

of 2 and 4, Table 5-8. The obtained SCF for isotropic plates (Table 5-8) and slightly orthotropic 

plates of Table 5-6 (Table 5-7) are compared in Figure 5-28 for varying a/b and 2a/W ratios. 

Whereas the results of Table 5-8 are those determined by the respective authors, Figure 5-28 

demonstrates good agreement between the KT results obtained from the FEA-hybrid stress analysis 

method with those directly from FEA, Isida [67] and Durelli et al. [94].  

 

Table 5-6: Slightly orthotropic elliptically-perforated plate’s material properties 

Properties Symbol Value Units 

Elastic modulus in strong/stiff direction E11 or Exx 210.29 GPa 

Major Poisson’s ratio ν12 or νxy 0.25 Dimensionless 

Elastic modulus perpendicular to direction -1 E22 or Eyy 203.39 GPa 

Shear modulus G12 or Gxy 82.74 GPa 
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Table 5-7: SCF for elliptically-perforated plate with material properties of Table 5-6 

From  FEA FEA-Hybrid FEA FEA-Hybrid FEA FEA-Hybrid 

2a/W a/b 2 2 3 3 4 4 

0.4 5.88 5.78 8.08 8.09 10.51 10.38 

0.5 6.53 6.51 8.86 8.85 11.22 11.13 

0.6 7.58 7.55 10.06 10.07 12.59 12.51 

0.7 9.39 9.15 12.11 12.08 14.95 14.89 

0.8 13.04 12.42 16.17 15.66 19.57 19.26 

 

Table 5-8: SCF for elliptically-perforated isotropic finite-width plates 

From Isida [67] Durelli [94] 

2a/W a/b 2 4 2 4 

0.4 5.8 10.2 5.7 9.5 

0.5 6.48 11.18 6.3 10.5 

0.6 7.55 12.58 7.6 11.7 

0.7 9.4 14.9 9.5 14.1 

0.8 13 19.4 14.2 18.95 
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Figure 5-28: Comparison of SCF for slightly orthotropic elliptically-perforated plates (Table 5-6) 
from FEA, FEA-hybrid method and isotropic plates from Isida [67] and Durelli et al. [94] 

 

The reliability of the hybrid stress analysis method in treating highly anisotropic plates was 

also demonstrated by analyzing such plates with material properties of Table 5-9 [95] for E11/E22 

= 19.19. FEAs of the plates were created in ANSYS APDL and KT were evaluated directly from 

FEA-predictions and FEA-hybrid method using u-displacements as input, equation (5-14), Table 

5-10. Good agreement exists between the FEA and FEA-hybrid method evaluated KT values.  

It can be concluded that the experimental-analytical hybrid means of stress analysis is 

capable of analyzing orthotropic finite-width plates of any degree of anisotropy, i.e., of virtually 

any elastic material properties. 
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Table 5-9: Material properties of highly anisotropic graphite-epoxy plate from Daniel and Ishai 
[95] 

Parameters Symbol Value Units 

Elastic modulus in strong/stiff direction E11 or Exx 190 GPa 

Major Poisson’s ratio ν12 or νxy 0.35 Dimensionless 

Elastic modulus perpendicular to direction -1 E22 or Eyy 9.9 GPa 

Shear modulus G12 or Gxy 7.8 GPa 

 

 

Table 5-10: SCF for highly anisotropic plates of Table 5-9 

From  FEA FEA-Hybrid FEA FEA-Hybrid 

2a/W a/b 2 2 4 4 

0.4 14.68 14.73 35.42 35.49 

0.5 15.18 15.16 36.26 35.89 

0.6 16.56 16.15 36.88 36.34 

0.7 19.33 19.19 38.28 38.48 

0.8 24.65 24.36 45.67 45.21 

0.9 39.24 39.63 66.36 66.96 

 

A FEA of an isotropic plate with the same dimensions as those of the orthotropic graphite-

epoxy plate of Figure 5-1, i.e., with 2a/W = 0.5 and a/b = 2, was also analyzed. The SCF of the 

isotropic plate was evaluated individually from direct FEA and the FEA-hybrid method, Table 

5-11. It is interesting to note that the present tensile SCF exceeds that for the equivalent isotropic 

case by approximately 132% (KT | Isotropic = 6.47). 
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Table 5-11: SCF of an isotropic (aluminum) plate with 2a/W of 0.5 

From FEA FEA-Hybrid Isida Durelli Neuber 

2a/W a/b 2 2 2 2 2 

0.5 6.49 6.47 6.5 6.3 7.2 

 

In Figure 5-29 and Figure 5-30, the in-plane stress and displacement contours from FEA 

and FEA-hybrid analysis show excellent correlation. This further validates the hybrid stress 

analysis method’s ability in providing reliable results for plates with virtually any type of material 

properties. 

 

  
(a) (b) 

Figure 5-29: Contours of (a) u/a and (b) v/a from FEA (left side) and FEA-hybrid method (right 
side) based on FEA-predicted displacement information, u, in loading direction for elliptically-

perforated, 2a/W = 0.5 and a/b = 2, isotropic plate (aluminum) 
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(a) 

  
(b) (c) 

Figure 5-30: Contours of (a) σxx/σ0, (b) σyy/σ0 and (c) σxy/σ0 from FEA (left side) and FEA-hybrid 
method (right side) based on FEA-predicted displacement information, u, in loading direction for 

elliptically-perforated, 2a/W = 0.5 and a/b = 2, isotropic plate (aluminum) 

 

These analyses demonstrate that, the hybrid stress analysis method can provide reliable 

results for virtually any type of plates, i.e., plates with any material properties (isotropic or 

orthotropic), any hole-opening sharpness, a/b, and of any plate width with respect to the hole size, 

2a/W. Although the herein-employed equations assume infinite geometry [5], the contents of 

Sections 5.9 through 5.11 illustrate that they can be used reliably for finite geometries (at least 

over wide ranges of 2a/W, a/b and material properties), i.e., particularly for the present DIC-

analyzed [013/905/013] graphite-epoxy plate of Figure 5-1 with 2a/W = 0.5. The method’s ability to 

effectively analyze plates experiencing variety of loadings is also demonstrated in Appendix H. 
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5.12. Summary, Discussion and Conclusions 

Hybridizing measured displacement data, i.e., processing them with a combination of 

complex variables Airy stress functions, conformal mapping, analytic continuation, least squares 

and power-series expansions provides an excellent method to evaluate the stresses, including those 

on and near the edge of a discontinuity, in loaded, perforated, finite-width orthotropic structures. 

This includes plates with elliptically-perforated holes. Advantages of this method over techniques 

such as numerical methods (finite elements, finite differences or boundary collocation), analytical 

models, purely experimental methods or commercial stress analysis packages include not requiring 

either of the following: (1) knowledge of the external loading or boundary conditions; (2) 

experimental data near the edge of any cutouts; (3) recorded information of both u and v 

displacements or (4) differentiating them using arbitrary methods. The simultaneous smoothing of 

the measured data and separation into the individual stress components are additional desirable 

features of the present approach. DIC avoids the contact requirements of strain-gage or moiré 

techniques, or the cyclic-loading needs of thermoelastic stress techniques. 

The present study applies these hybrid concepts to determine the stresses and 

displacements in an elliptically-perforated [013/905/013] graphite-epoxy orthotropic finite-width 

plate. The measured data were processed using strong mechanics-based analytical formulations of 

Airy stress functions satisfying equilibrium and compatibility, conformal mapping and analytic 

continuation satisfying traction-free boundary conditions. No additional symmetry or boundary 

conditions were imposed. DIC-hybrid results are supported by those from FEM, load equilibrium 

and other published information. 
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A previous study using DIC to stress analyze a perforated laminated plate reported 

difficulties in obtaining reliable results at the edge of the hole. Reference [13] used Correlated 

Solution, Inc.’s commercial correlation software to obtain the recorded displacement data and 

estimate strains. Their study failed to provide strain information near the edge of the hole. 

Displacements were calculated slightly away from the hole’s edge resulting in no strain data along 

those areas. Strain distribution of laminated composites was also found to be highly depended on 

the spatial resolution, step, subset and filtering size when using commercial software to find strains 

from measured displacements. Use of higher filter sizes can lead to the possibility of masking the 

high strain gradients. Such challenges have no effect on the present technique. This is because the 

stress/strain components at and near the discontinuity are determined by excluding data near the 

cutout, i.e., maximum stress/strain gradients are evaluated from data away from the locations 

where the maximum values actually occur. 

The DIC-hybrid technique is employed here to stress analyze an elliptically-perforated 

orthotropic plate. However, the general concepts are applicable to other composite problems, e.g., 

other shaped cutouts, other external geometries and/or more complicated loading and other forms 

of measured data. Although employing the recorded displacement data in the loading direction is 

emphasized here, the presently successful use of those in the transverse direction is illustrated.  

The author is unaware of any previous study whereby the displacement field transverse to the 

loading direction alone was used to stress analyze a perforated orthotropic structure. Unlike most 

of the herein cited analyses for finite composites, the presented technique can handle virtually any 

external geometry. The present ability to satisfy the internal boundary conditions analytically is 

also advantageous. The method is applicable for various types of loading, Appendix H. 
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Albeit the infinite-width assumption in the analytical expressions [5], the current DIC-

hybrid method gives good results for finite laminate material up to at least 2a/W = 0.85 to 0.9. This 

is well beyond the physically-tested case of 2a/W = 0.5, Figure 5-1. Extensive studies conducted 

here demonstrates that the present equations are reliable for 2a/W up to at least 0.9 for a variety of 

orthotropic materials and for different elliptical-hole sharpness ratios, a/b. The technique can also 

reliably analyze isotropic members.  
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 Stress Analysis of Circularly-Perforated Tensile 

Plate with Absent Experimental Data Near the Edge of the 

Hole 

 

6.1. Introduction 

The present chapter experimentally assesses the structural integrity of a loaded, finite, 

asymmetrically-perforated plate with absent experimental input at critical locations near the 

cutout. Despite missing data at important locations, the technique of hybridizing measured 

quantities with analytical concepts and numerical tools is capable of providing reliable stress 

information at those important locations of missing data. This is accomplished by processing 

distant measured load-induced temperature information with an Airy stress function plus some 

applied boundary conditions. The approach involves neither knowing the plate’s elastic properties 

or external loading condition, nor requires differentiating the measured data. Reliability is 

confirmed by force equilibrium and result from a strain-gage and FEM. 

 

6.2. General Overview 

Strength criteria, fatigue considerations or assessing the integrity of structural members 

necessitates knowing the stresses. However, stress analyses of asymmetrically-perforated loaded, 

finite plates are difficult by purely analytical or theoretical stress analysis methods. Such 

approaches tend to be limited to simple situations involving infinite geometries. Moreover, and 

like numerical approaches such as the finite element method (FEM), analytical/theoretical analyses 
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depend on reliable knowledge of the boundary conditions and external loading. The latter are 

commonly unknown in practice. Purely experimental techniques suffer from their inability to 

provide reliable information near the edge of the cutouts, these often being locations of greatest 

mechanical interest. Thermoelastic stress analysis (TSA) is a contemporary technique of 

determining stresses experimentally. Advantages of TSA include being applicable to both isotropic 

or orthotropic materials and virtually requires no surface preparation. In addition, TSA does not 

require knowing the constitutive material properties, nor is it necessary to differentiate the 

measured data. The relationship between the local temperature and state of stress in TSA 

presupposes an adiabatic response. This is usually addressed by cyclically loading the member of 

interest. However, depending on the loads needed, it can be problematic to cyclically load a 

member sufficiently rapidly to achieve adiabatic conditions in regions of high stress gradient, e.g., 

at fillets, where the most serious stress typically occurs. The prospects of not locally satisfying 

adiabaticity adequately, combined with the reality that recorded-TSA information is unreliable 

within several pixels of an edge, can render it challenging to obtain dependable important stresses 

in situations such as near-by multiple holes or notches, or at geometric discontinuities near member 

edges. While approaches have been proposed for correcting the local lack of adiabaticity, a method 

is provided here whereby reliable solutions are obtainable by just avoiding the use of unreliable 

experimental information. Therefore, the ability to reliably stress analyze, finite-width, perforated 

loaded members in the presence of unreliable/absent data can be important to ensure their structural 

integrity. 

Recognizing the above, the present analysis demonstrates the ability to evaluate stresses 

experimentally at a structurally important location engulfed within a significantly large region 

throughout which there is no dependable input information. The particular case considered 
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involves a hole near an edge of the vertically loaded aluminum plate illustrated in Figure 6-1. The 

hole being located very close to the right vertical edge of the plate, no reliable experimental data 

are obtained at locations adjacent to the hole boundary close to the right edge of the plate. Under 

such condition, the quality of the stress at point A in Figure 6-1 is of major concern here.  

 

 

Figure 6-1: Schematic of off-axis perforated aluminum tensile plate 

 

The present hybrid approach involves processing the measured thermal information with 

an Airy stress function. Notwithstanding the ‘assumption’ that there are no dependable measured 

input data within 19-pixels of location A, the TSA results agree with those from a strain-gage, 

FEM and force equilibrium.  In practice, unreliable TSA information in a region surrounding point 
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A of Figure 6-1 could be due to effects such as inadequate adiabaticity and/or a deficient layer of 

black paint. Albeit, the cyclic loading effect could be more serious at the top and bottom of the 

hole than at location A in Figure 6-1. Issues associated with inadequate adiabatic response might 

be more serious in orthotropic composites because of their very high stress 

concentrations/gradients. 

This study signifies the extent to which the hybrid stress analysis method (combining 

measured data with an Airy stress function) can be used to provide important reliable stress 

information in perforated-plates. Most other techniques would fail to do so due to the lack of 

measured information along the traction-free edges or at critical locations. 

 

6.3. Literature Review 

Lin et al. [96] used thermoelasticity with Airy stress function to stress analyze a finite plate 

with a near-edge circular hole under a concentrated load and Wang et al. [97] used photoelasticity 

(PSA) to study a similar situation involving a semi-finite plate using Hertz contact theory. One of 

the advantage of using TSA over PSA is that desired information is extracted from the TSA-

measured isopachic stresses [96] using linear least squares whereas photoelastic isopachic stresses 

[97] requires non-linear least squares. Lin et al. [98] also used TSA-measured data and Airy stress 

function to stress analyze a loaded, finite, centrally-perforated rectangular plate, i.e., the cutout 

was located at the center of the plate instead near the edge of the plate and measured-information 

was available near the cutout. Ryall et al. [99] proposed a method that combines TSA, Airy stress 

function, non-linear least squares to evaluate both the first and second thermoelastic isopachic 

stresses to analyze perforated plates with cutouts. 
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Khaja [74], Lin et al. [100], Philip [101], Alshaya [19] and Paneerselvam et al. [102] all 

analyzed finite plates with  near-edge cutouts under concentrated load using an Airy stress function 

and measured data. Apart from Philip [101], who analyzed a finite plate with an asymmetrical 

complex-shaped cutout, the other authors studied finite plates with circular cutouts. Paneerselvam 

et al. [102] worked with displacement data from DIC, whereas the other studies involved TSA data 

to stress analyze the finite plates. Though most of these studies employed a real variables Airy 

stress function, Alshaya [19] used complex variables Airy stress functions and conformal mapping 

for the stress analysis. Khaja [74] simplified the current Airy stress equations used in his study, 

which were previously used by Lin et al. [96,100]. All the above-mentioned studies involved a 

near edge cutout located under a concentrated compressive load in a finite plate and combined 

Airy stress function with measured data excluding data near the edges. All are capable of providing 

reliable information at and near the edge of the cutout. 

Thermoelastically measured information can be highly sensitive to factors such as the 

paint-coating thickness, non-adiabaticity due to inadequate loading frequency or presence of any 

near-by edges. These can give rise to regions without any reliable TSA-measured data. McKelvie 

[103] and Mackenzie [104] have analyzed the thermoelastic consequences of factors such as 

variations in thickness of the paint coating, whereas Quinn and Dulieu-Barton [105] identified 

causes of non-adiabatic behavior. Joglekar [106] considered an aluminum tensile plate containing 

a hole near a vertical edge somewhat similar to the current situation. Unlike the present emphasis, 

his objective was to evaluate the influence of the amount and source locations of the recorded TSA 

information on the stresses. However, he encountered adiabatic concerns in that the initial testing 

system used was unable to cycle as rapidly as desired at the magnitude of the loads needed. He 

had to subsequently employ a different testing system in a different laboratory. References [107–
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110] discuss non-adiabatic thermoelastic studies and in some cases provide means of correcting 

for the lack of adiabaticity.   

The main highlight of this study is that the cutout being located extremely close to the 

plate’s right vertical edge leads to a wide range of absent/unreliable measured data over a large 

region containing the most serious stresses. Despite having a significant amount of 

absent/unreliable data in regions close to the cutout, the present hybrid-method provides reliable 

stress information at and near the cutout by using a real-variables Airy stress function along with 

distant reliable TSA-recorded data. No knowledge of the external loading or the elastic material 

properties of the plate are required. 

 

6.4. Relevant Equations  

In absence of body forces and for plane-stressed problems involving isotropy, an Airy 

stress function is the solution of the bi-harmonic differential expression of equation (6-1) and 

which is the representation of equilibrium and compatibility [28]. 

 ∇ 𝛷 = 0 (6-1) 
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𝛷 = 𝑎 + 𝑏 ln 𝑟 + 𝑐 𝑟 + 𝑑 𝑟 ln 𝑟 +  (𝐴 + 𝐵 ln 𝑟 + 𝐶 𝑟 + 𝐷 𝑟 ln 𝑟)𝜃

+  𝑎 𝑟 + 𝑏 𝑟 ln 𝑟 +  
𝑐

𝑟
+ 𝑑 𝑟 sin 𝜃

+  𝑎 𝑟́ + 𝑏 𝑟 ln 𝑟 + 
𝑐 ́

𝑟
+ 𝑑 𝑟 cos 𝜃

+  (𝐴 𝑟 + 𝐵 𝑟 ln 𝑟)𝜃 sin 𝜃 +  𝐴 𝑟 + 𝐵 𝑟ln𝑟 𝜃 cos 𝜃

+  𝑎 𝑟 + 𝑏 𝑟 + 𝑐 𝑟 + 𝑑 𝑟 ( )

, , …

sin(𝑛𝜃)

+  𝑎 ́ 𝑟 + 𝑏 𝑟 + 𝑐 ́ 𝑟 + 𝑑 𝑟 ( ) cos(𝑛𝜃)

, , …

 

(6-2) 

The expression for Φ consists of numerous terms, i.e., real Airy stress coefficients. 

Imposing certain information/conditions often enables one to simplify the expression for Φ by 

eliminating many of these coefficients. Such imposed conditions can be based on whether the 

structure of interest is finite or infinite, where the coordinate origin is located, whether the 

geometry is mechanically and/or geometrically symmetric about specific axis/axes, whether the 

relevant Airy stress function is an even or odd function and whether the desired engineering 

quantities are single-valued. For the finite plate of Figure (6-1), that things are symmetric about 

the horizontal x-axis, the coordinate origin is at the center of the circular hole and there is in no 

resultant force at the origin, simplifies the expression for Φ. That the displacements, strains or 

stresses are not multivalued functions of θ further simplifies the expression of the Airy stress 

function of equation (6-1). All these conditions of the present plate makes the following 

coefficients zero [96], 

𝑑 = 𝐵 = 𝐶 = 𝐷 = 𝐴 = 𝐴 = 𝐵 = 𝐵 = 𝑏 = 𝑏 = 0 
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Thus, for the finite plate of Figure 6-1, the Airy stress function of equation (6-2) reduces to 

(originally provided by Soutas-Little [28] but later corrected by Foust [29]) 

 

𝛷 = 𝑎 + 𝑏 ln 𝑟 + 𝑐 𝑟 +  𝐴 𝜃 + 𝑎 𝑟 +
𝑐

𝑟
+ 𝑑 𝑟 sin 𝜃

+  𝑎 𝑟́ +  
𝑐 ́

𝑟
+ 𝑑 𝑟 cos 𝜃

+  𝑎 𝑟 + 𝑏 𝑟 +  𝑐 𝑟 + 𝑑 𝑟 ( )

, , …

sin(𝑛𝜃)

+  𝑎 ́ 𝑟 + 𝑏 𝑟 +  𝑐 ́ 𝑟 + 𝑑 𝑟 ( ) cos(𝑛𝜃)

, , …

 

(6-3) 

The plate being symmetric about the horizontal x-axis, the stresses at any angle, θ = + β are same 

as those at an angle θ = − β. This suggests that the Airy stress function for the finite plate of Figure 

6-1 is an even function, i.e., Φ(r, − θ) = Φ(r, θ). This condition omits all the θ and sin θ terms from 

equation (6-3), i.e., A0, a1, c1, d1 and an, bn, cn, dn (for n ≥ 2) equates to zero. Therefore, the Airy 

stress function of equation (6-3) further reduces to 

 

𝛷 = 𝑎 + 𝑏 ln 𝑟 + 𝑐 𝑟 +  𝑎 𝑟́ +  
𝑐 ́

𝑟
+ 𝑑 𝑟 cos 𝜃

+  𝑎 ́ 𝑟 + 𝑏 𝑟 + 𝑐 ́ 𝑟 + 𝑑 𝑟 ( ) cos(𝑛𝜃)

, , …

 

(6-4) 

where r is the radial coordinate measured from the center of the circular hole, θ is the angle 

measured counter-clockwise from the horizontal x-axis, Figure 6-1, and N is the terminating index 

of the finite summation series. 
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The individual components of the in-plane stresses are expressed in terms of the Airy stress 

function as [28] 

 𝜎 =  
1

𝑟
 
𝜕𝛷

𝜕𝑟
+  

1

𝑟
 
𝜕 𝛷

𝜕𝜃
 (6-5) 

 𝜎 =  
𝜕 𝛷

𝜕𝑟
 (6-6) 

 𝜎 =  − 
𝜕

𝜕𝑟
 

1

𝑟
 
𝜕𝛷

𝜕𝜃
 (6-7) 

Substituting equation (6-4) into equations (6-5) through (6-7), the final expressions for the in-plane 

stresses in the polar coordinates in terms of the Airy stress function, Φ, involving real coefficients 

become 

 

𝜎 =  
𝑏

𝑟
+ 2𝑐 −  

2𝑐 ́

𝑟
cos 𝜃 + 2𝑟𝑑 cos 𝜃

−  𝑎 ́ 𝑛(𝑛 − 1)𝑟( ) + 𝑏 (𝑛 − 2)(𝑛 + 1)𝑟

, …

+ 𝑐 ́ 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 + 2)(𝑛 − 1)𝑟 cos(𝑛𝜃) 

(6-8) 
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𝜎 =  − 
𝑏

𝑟
+ 2𝑐 +  

2𝑐 ́

𝑟
cos 𝜃 + 6𝑟𝑑 cos 𝜃

+  𝑎 ́ 𝑛(𝑛 − 1)𝑟( ) + 𝑏 (𝑛 + 2)(𝑛 + 1)𝑟

, …

+ 𝑐 ́ 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 − 2)(𝑛 − 1)𝑟 cos(𝑛𝜃) 

(6-9) 

 

 

𝜎 =  − 
2𝑐 ́

𝑟
sin 𝜃 + 2𝑟𝑑 sin 𝜃

+  𝑎 ́ 𝑛(𝑛 − 1)𝑟( ) +  𝑏 𝑛(𝑛 + 1)𝑟

, …

−  𝑐 ́ 𝑛(𝑛 + 1)𝑟 ( ) − 𝑑 𝑛(𝑛 − 1)𝑟 sin(𝑛𝜃) 

(6-10) 

Although for the present plate of Figure 6-1, in the reduced Airy stress function, Φ, of 

equation (6-4) the coefficients a0 and a′1 are present, they are absent in the expressions for the 

individual stress components of equations (6-8) through (6-10). This is due to the Airy stress 

function of equation (6-4) being differentiated according to equations (6-5) through (6-7), to obtain 

equations (6-8) through (6-10), respectively.  

For isotropic materials under proportional loading, the TSA-recorded thermal information 

is linearly proportional to the change in the isopachic stress, S, which is the summation of the 

normal stresses, i.e.,  
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 𝑆∗ = 𝐾∆𝑆 =  𝐾 ∆ 𝜎 +  𝜎 =  𝜎 + 𝜎  (6-11) 

where S* is the system output signal associated with the local stress-induced temperature changes 

and K is the TSA calibration coefficient. Equation (6-11) assumes thermodynamic adiabaticity, 

which implies cyclically loading the structure. Combining equations (6-8) and (6-9), into equation 

(6-11), one obtains the following equation for the isopachic stress 

 

𝑆 =
𝑆∗

𝐾
= 4𝑐 + 8𝑟𝑑 cos 𝜃

+  [𝑏 4(𝑛 + 1)𝑟 − 𝑑 4(𝑛 − 1)𝑟 ] cos(𝑛𝜃)

, …

 

(6-12) 

However, the individual stress components of equations (6-8) through (6-10), contains the 

Airy coefficients b0, c′1, a′n, c′n (for n ≥ 2) which are absent in the expression for the isopachic 

stress of equation (6-12). Therefore, combining measured TSA data, S*, with equation (6-12) is 

not sufficient to determine all the Airy stress coefficients. The present method is thus incapable of 

stress analyzing the current plate through the use of equations (6-8) through (6-10) while 

processing TSA-measured information in the isopachic stress, S, expression of equation (6-12). 

However, it is possible to overcome this situation by imposing the traction-free boundary 

conditions analytically along the boundary of the hole. Thus, by imposing the traction-free 

boundary conditions σrθ = σrr = 0 at r = R ( = 9.53 mm or 0.375''),  the in-plane stress components 

of equations (6-8) through (6-10) are re-written as [74] 
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𝜎 =  
1

𝑟
− 

3𝑟

2𝑅
+  

𝑟

2𝑅
𝑏 + 2 −  

3𝑟

𝑅
+  

𝑟

𝑅
𝑐

+  − 
2𝑅

𝑟
+ 2𝑟 𝑑 cos 𝜃 + 3𝑅 1 − 

𝑅

𝑟
𝑏 cos(2𝜃)

+  
1

𝑅
+  

3𝑅

𝑟
− 

4

𝑟
𝑑 cos(2𝜃)

+  
24𝑟

𝑅
−  

12𝑟

𝑅
− 

12

𝑟
𝑐 ́ cos(3𝜃)

+  
18𝑟

𝑅
−  

8𝑟

𝑅
−  

10

𝑟
𝑑 cos(3𝜃)

+  [(𝑛 − 1)𝑟( )

, …

𝑅 − (𝑛 + 1)(𝑛 − 2)𝑟

− (𝑛 + 1)𝑟 ( )𝑅( )]𝑏 cos(𝑛𝜃)

+  (𝑛 − 1)𝑟( )𝑅 ( ) − (1 − 𝑛 )𝑟 ( )𝑅

− (𝑛 − 1)(𝑛 + 2)𝑟 𝑑 cos(𝑛𝜃)  

(6-13) 
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𝜎 =  −
1

𝑟
+  

3𝑟

2𝑅
−  

5𝑟

2𝑅
𝑏 + 2 +  

3𝑟

𝑅
−  

5𝑟

𝑅
𝑐

+  
2𝑅

𝑟
+ 6𝑟 𝑑 cos 𝜃 + −3𝑅 + 12𝑟 +  

3𝑅

𝑟
𝑏 cos(2𝜃)

−  
1

𝑅
+  

3𝑅

𝑟
𝑑 cos(2𝜃)

+  −
24𝑟

𝑅
 +  

60𝑟

𝑅
 +  

12

𝑟
𝑐 ́ cos(3𝜃)

+  −
18𝑟

𝑅
+  

40𝑟

𝑅
+  

2

𝑟
𝑑 cos(3𝜃)

+  [− (𝑛 − 1)𝑟( )

, …

𝑅 + (𝑛 + 1)(𝑛 + 2)𝑟

+ (𝑛 + 1)𝑟 ( )𝑅( )]𝑏 cos(𝑛𝜃)

+  − (𝑛 − 1)𝑟( )𝑅 ( ) + (1 − 𝑛 )𝑟 ( )𝑅

+ (𝑛 − 1)(𝑛 − 2)𝑟 𝑑 cos(𝑛𝜃)  

(6-14) 
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𝜎 =  
3𝑟 tan(3𝜃)

2𝑅
−  

3𝑟 tan(3𝜃)

2𝑅
𝑏 +  

3𝑟 tan(3𝜃)

𝑅
−  

3𝑟 tan(3𝜃)

𝑅
𝑐

−  
2𝑅

𝑟
− 2𝑟 𝑑 sin 𝜃 − 3𝑅 − 6𝑟 +  

3𝑅

𝑟
𝑏 sin(2𝜃)

−  
1

𝑅
−  

3𝑅

𝑟
+ 

2

𝑟
𝑑 sin(2𝜃)

−  
24𝑟

𝑅
−  

36𝑟

𝑅
+ 

12

𝑟
𝑐 ́ sin(3𝜃)

−  
18𝑟

𝑅
−  

24𝑟

𝑅
+ 

6

𝑟
𝑑 sin(3𝜃)

+   [− (𝑛 − 1)𝑟( )

, …

𝑅 + 𝑛(𝑛 + 1)𝑟

− (𝑛 + 1)𝑟 ( )𝑅( )]𝑏 sin(𝑛𝜃)

+  − (𝑛 − 1)𝑟( )𝑅 ( ) − (1 − 𝑛 )𝑟 ( )𝑅

−  𝑛(𝑛 − 1)𝑟 𝑑 sin(𝑛𝜃)  

(6-15) 

The new expression for the isopachic stress, 𝑆 , based on equations (6-13) and (6-14) in 

equation (6-11) includes all the Airy stress coefficients present in the individual stress components 

of equations (6-13) through (6-15). It is therefore now possible to evaluate the three individual 

stress components from the TSA-measured S* data. 
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𝑆 =  −
2𝑟

𝑅
𝑏 + 4 −  

4𝑟

𝑅
𝑐 + 8𝑟𝑑 cos 𝜃 +  12𝑟 𝑏 cos(2𝜃)

−  
4

𝑟
𝑑 cos(2𝜃) +  

48𝑟

𝑅
𝑐 ́ cos(3𝜃)

+  
32𝑟

𝑅
−  

8

𝑟
𝑑 cos(3𝜃)

+  4(𝑛 + 1)𝑟 𝑏 cos(𝑛𝜃) − 4(𝑛 − 1)𝑟 𝑑 cos(𝑛𝜃)

, …

 

(6-16) 

Knowing the stresses in the polar coordinates, the stress transformation relationship of 

equation (6-17) is used to transfer the stresses from the polar coordinates into those in the Cartesian 

coordinates. 

 

𝜎
𝜎
𝜎

=  
cos 𝜃 sin 𝜃 −2 sin 𝜃 cos 𝜃
sin 𝜃 cos 𝜃 2 sin 𝜃 cos 𝜃

sin 𝜃 cos 𝜃 − sin 𝜃 cos 𝜃 cos 𝜃 −  sin 𝜃

 

𝜎
𝜎
𝜎

 (6-17) 

 

6.5. Plate Preparation and Experimental Set-up 

6.5.1. Plate Details 

An aluminum (6061-T6) plate (Figure 6-1 and Table 6-1) of length, L = 26.67 cm (10.5"), 

width, W = 5.08 cm (2") and thickness, t = 6.35 mm (0.25") with an offset circular hole of radius 

R = 9.53 mm (0.375") was stress analyzed by processing the TSA-measured thermal data with an 

Airy stress function. The center of the hole is located at a distance 10.80 mm (0.425") from the 
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center of the plate. The plate was cyclically loaded at 1,334.47 N ± 889.64 N at 20 Hz frequency 

and had a TSA calibration coefficient, K, of 218.95 U/MPa. 

 

Table 6-1: Details of perforated aluminum plate and TSA  

Material Aluminum 6061-T6 

Thickness, t 6.35 mm (0.25") 

Length, L 26.67 cm (10.5") 

Width, W 5.08 cm (2") 

Hole diameter, D = 2R 1.905 cm (0.75") 

Symmetry Horizontally  

Elastic modulus, E 69 GPa (10 × 106 psi) 

Poisson’s ratio, ν 0.33 

Loading for TSA, F* 1,334.47 N ± 889.64 N (300 lbs ± 200 lbs) 

Loading frequency 20 Hz 

Thermoelastic coefficient, K  218.95 U/MPa (1.51 U/psi) 

 

6.5.2. Plate Surface Preparation 

For TSA, minimum surface preparation is required compared to other full-field 

experimental techniques such as DIC. The aluminum plate was initially degreased (with CSM-2 

by Vishay Precision Group) and polished with 400-grit emery cloth while taking extreme care not 
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to round off the edges of the hole. The polished plate was cleaned with a water-based mild cleaner 

(Vishay Precision Group - Micro-Measurements M-Prep Conditioner A followed by M-Prep 

Neutralizer 5A) and allowed to dry. Just prior to testing, the plate was sprayed with Krylon Ultra-

Flat black paint and the paint allowed to dry for an hour. The plate was painted black to achieve 

uniform and enhanced thermal emissivity and also to avoid any reflection from the plate during 

testing; which might compromise the image quality. 

 

6.5.3. TSA System 

Using a commercially sensitive Delta Therm DT1410 infrared camera (by Stress 

Photonics, Inc., Madison, WI), the temperature information of the loaded plate was recorded, 

Figure 6-2. The Delta Therm camera employs an indium antimonide (InSb) focal-plane array 

sensor with 256 × 256 resolution. With the liquid nitrogen, the camera detectors are kept cooled 

to 77 K to improve the result accuracy. The camera responds in the 3–5 μm wavelength range with 

a peak response at 5.3 μm. It records at a speed of 1000 frames per second and the captured images 

have a temperature resolution of 0.001 °C. The system has a mechanical resolution compatible to 

that of commercial foil strain-gages. 
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Figure 6-2: TSA experimental set-up 

 

6.5.4. Loading and Data Acquisition 

The plate was sinusoidally loaded at 1,334.47 N ± 889.64 N (300 lbs ± 200 lbs) at 20 Hz 

frequency using a 89 kN (20 kips) capacity, closed-loop, hydraulic-grip MTS machine, Figure 6-2. 

The mean load was 1,334.47 N (300 lbs) while the maximum and minimum loads were 2,224.11 

N (500 lbs) and 444.83 N (100 lbs), respectively. An oscilloscope was used to monitor the 

frequency and applied load with precision. The 20 Hz cyclic frequency was selected based on prior 

experiences [59].   

The load-induced TSA data, i.e., TSA images, were recorded using the TSA Delta Therm 

model DT1410 infrared camera and the phase condition and TSA images of the loaded plate were 

monitored using the TSA Stress Photonics Delta Vision data acquisition software. Phase condition 

monitoring is important to ensure that system adiabaticity is maintained at the selected cyclic 

loading frequency. The TSA Delta Therm model DT1410 infrared camera consists of a 256 × 256-
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pixel sensor array and which is maintained at very low temperature to provide accurate load-

induced temperature readings. Liquid nitrogen is used for this purpose. Care needs to be taken to 

mount the plate in the MTS grips to ensure symmetrical loading along the vertical y–axis and the 

camera needs to be mounted exactly perpendicularly to the plate’s surface at a minimum distance 

of eight inch. The thermoelastic signals, S*, were recorded and then processed by the TSA Delta 

Therm system. Using the Delta Therm DT1410 camera, a series of TSA images were captured 

over a time interval of two minutes and the data were stored and averaged over the time interval 

by the Delta Vision software. The TSA-recorded data were imported into Excel as a 256 × 256 

matrix. 

 

6.5.5. Maintaining Adiabatic Condition 

High loading frequency of 20 Hz was selected as it was found to give good results in 

previous studies [59]. By keeping the loading frequency higher than the heat flow rate, it is possible 

to essentially avoid local heat transfer, i.e., ensure adiabaticity, Figure 6-3.  
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Figure 6-3: Checking TSA phase condition using Delta Vision software to ensure adiabaticity 
during the test, TSA load-induced temperature information, S* (uncalibrated units U), plotted 

along y-axis 

 

6.5.6. TSA Calibration 

The thermoelastic coefficient, K, of equations (6-11) and (6-12) was determined from a 

separate 6061-T6 aluminum uniform L = 200.66 mm (7.9") long, W = 50.8 mm (2") wide and t = 

6.35 mm (0.25") thick tensile coupon. The aluminum calibration coupon was painted and tested 

on the same day of painting and recording the TSA data of the perforated plate. Both the perforated 

plate and calibration coupon were loaded at the same frequency and under the same ambient 

condition. Reasons behind painting and testing the calibration and test coupons on the same day 

are provided in Appendix I. The calibration coupon was cyclically loaded at 8,446.08 N ± 6,227.51 

N (1,900 lbs ± 1,400 lbs) at 20 Hz frequency and K was found to be 218.95 U/MPa (1.51 U/psi), 

where U denotes the uncalibrated TSA signal output, Figure 6-4.  
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(a) (b) 

Figure 6-4: TSA calibration tensile aluminum coupon (a) Surface prepared and (b) TSA load-
induced temperature information, S* (uncalibrated units U) 

 

6.6. Experimental Data Analysis, Reduction and Selection 

6.6.1. Data Processing 

The raw thermoelastic data, which were recorded as a 256 × 256 matrix by the Delta Vision 

software, were subsequently converted to physical units knowing the dimensions of the plate and 

the thermoelastic coefficient, K. From the 65,563 pixels of the 256 × 256 matrix, a total of 29,304 

pixels covered the loaded plate with a pixel spacing of 0.37 mm (0.0152"), Figure 6-5. The x-y 

coordinates were normalized by the hole radius, R, and the stress-induced thermoelastic data, S*, 

by the far-field stress, σ0 = 5.52 MPa according to equation (6-18), Figure 6-5 and Figure 6-6. The 

white space in Figure 6-5 represents no data while the colored contours represents the 29,304 

pixels over the loaded plate. 
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Figure 6-5: TSA-measured raw stress-induced thermal information provided in pixels 

 

 

Figure 6-6: TSA-measured thermoelastic data, S* (uncalibrated units U) 
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 𝜎 =
𝐹∗

𝑊 × 𝑡
=

1779.29 N

50.8 mm × 6.35 mm
= 5.52 MPa (800 psi) (6-18) 

Since the plate was geometrically and mechanically symmetrical about the x-axis, the TSA-

recorded thermoelastic data, S*, were averaged about the x-axis to cancel any possible scatter. The 

resulting averaged normalized S* data are plotted throughout the top half of the plate in Figure 6-7. 

 

 

 

 

(a)  (b) 

Figure 6-7: (a) Averaged measured load-induced TSA data S* (uncalibrated units U) and (b) 
Source locations of TSA averaged measured S* and region Rz 

 

Experimental techniques tend not to provide reliable data at or near edges. TSA can be 

particularly bad in this regard. In addition to the consequences of the cyclic motion, TSA-recorded 

values at and close to an edge are unreliable as pixels at an edge combines information partly from 

the stressed structure and partly from the stress-free background. No recorded thermal information 

was therefore used within 3 pixels from either of the sides (along the plates vertical edge) or around 

the edge of the plate’s hole, i.e., within 0.1R (≈ 1 mm) distance from the hole’s boundary, Figure 

RZ 
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6-8. The hole was located close to the right edge of the plate. Acknowledging that TSA information 

at and near edges is unreliable, there was, at best, then only a short region between the right edge 

of the hole and the neighboring edge of the plate within which reliable TSA data might prevail. In 

view of the above, and for the present purpose, it was assumed that no sufficiently reliable TSA 

data existed throughout the region to the right of the hole up as far as y/R = 0.75 in Figure 6-8. 

Such local data-deficient situations could occur due to a defective camera (damaged pixels), lack 

of thermal adiabaticity or an uneven layer of paint [103–106]. Excluding all the ‘assumed’ 

unreliable data, only a net number of nTSA = 12,592 TSA-measured value of S* were considered 

for the analysis, Figure 6-8. In addition to these nTSA TSA-measured pieces of information, σxy = 

σxx = 0 were discretely imposed at h = 122 locations along the y-axis (61 locations on each vertical 

side) of the unloaded edges (at x = Q and x = - (W – Q)), Figure 6-9. 

 

 

 

 (a) (b) 

Figure 6-8: (a) Source locations of recorded TSA data and (b) Nearest data considered from 
point ‘A’ 

 

Y /R = 0.75 

19 Pixels 

A 
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Figure 6-9: Source locations of utilized nTSA = 12,592 TSA data and 2h = 244 boundary 
conditions 

 

TSA-measured information can be noisy and involve some scatter. This is overcome by 

employing the number of side conditions, nt = nTSA + 2h, much higher than the number of the 

unknown Airy coefficients, k.   

 

6.6.2. Computing the Unknown Airy Coefficients 

The Airy coefficients of equations (6-13) through (6-15) are evaluated from the equally-

spaced 12,592 TSA-measured values of S* and the 2h = 244 imposed boundary conditions using 

equation (6-19). The latter, i.e., equation (6-19), employs Snew from equation (6-16) and σxx and σxy 

from equations (6-13) through (6-15) into polar to Cartesian stress transformation of equation 

(6-17). Equation (6-19) was solved employing the least squares method, where the number of 
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equations, nt, substantially exceeds the number of unknown Airy coefficients, k, to compensate for 

the scatter in the measured TSA information. 

 

𝑆  (𝑏  𝑐  𝑑  𝑏  𝑑  𝑐 ́  𝑑 … .  𝑏  𝑑 )

𝜎 (𝑏  𝑐  𝑑  𝑏  𝑑  𝑐 ́  𝑑 ….  𝑏  𝑑 )
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𝐵𝐶 𝑠 (𝜎 = 0)

𝐵𝐶 𝑠 (𝜎 = 0)

 (6-19) 

To apply the boundary conditions σxy = 0 and σxx = 0 in equation (6-19), the stresses in the 

polar coordinates were transformed to those in the Cartesian coordinates using the transformation 

relationship of equation (6-17). Equation (6-19) can be re-written as 

 [𝐴]{  × }{𝑐}{  × } =  {𝑠}{  × } (6-20) 

where k = 7 + 2(n – 3) for n = 4, 5…N. The matrix [A] involves the locations (r and θ) of the nTSA 

= 12,592 values of TSA-measured S* data and the h = 122 locations (x, y) where boundary 

conditions σxy = σxx = 0 were imposed. Vector {c} contains the unknown Airy coefficient’s and 

vector {s} consists of the TSA-measured S* data and imposed boundary conditions. For the set of 

linear equations, the number of equations, nt, is much higher than the number of unknown Airy 

coefficients, k, i.e., nt >> k. Therefore, equation (6-20) becomes an overdetermined system of linear 

equations which can be numerically solved by least squares. This compensates for noise in the 
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measured data in the final results of the evaluated coefficients. Equation (6-20) was solved using 

the backslash operator (‘\’) in MATLAB, i.e., equation (6-21). The Airy coefficients were 

evaluated using nTSA = 12,592 TSA-measured S* in equation (6-16) and 2h = 244 imposed 

boundary conditions by combining equations (6-13) through (6-15) in equation (6-17), i.e., a total 

of nt = nTSA + 2h = 12,836 input values. Knowing the values of the Airy coefficients, the individual 

stresses in the polar coordinates were evaluated using equations (6-13) through (6-15) throughout 

the region Rz of Figure 6-7(b), including along the edge of the cutout where the measured data 

were excluded and locations close to the plate’s edge where measured data were missing.  

 {𝑐} =  [𝐴]\{𝑠} (6-21) 

 

6.6.3. Evaluating Number of Coefficients to Employ 

The Airy coefficients were evaluated using nTSA = 12,592 TSA-measured S* in equation 

(6-16) and 2h = 244 imposed boundary conditions, i.e., a total of nt = nTSA + 2h = 12,836 input 

values. k = 21 real Airy stress coefficients were evaluated. Using these Airy coefficients in 

equations (6-13) through (6-15) provide the stresses throughout the plate of Figure 6-1. Therefore, 

one must assess a realistic number of Airy coefficients to employ. Too few Airy coefficients give 

poor results while too many coefficients can cause computational difficulties and/or the solution 

to blow up, i.e., become infinite.  

The number of Airy coefficients to use was determined based on the plot of the root mean 

square (RMS) of equation (6-22) in Figure 6-10, the condition number of the matrix [A] (of 

equation (6-20)) in Figure 6-11 and by comparing contour plots of the experimentally recorded 
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TSA thermal data, S*, and reconstructed, S*', (from equation (6-16) into equation (6-11)) in Figure 

6-12 for different numbers of Airy coefficients, k. 

The RMS of equation (6-22) is a measure of the difference between the experimentally 

derived TSA data {S*} and the reconstructed data {S*'} for varying k in equation (6-16) combined 

with equation (6-11), Figure 6-10. The RMS plot of Figure 6-10 suggests that using k = 9 to 23 

real coefficients nearly has the same effect.  

 

(𝑆∗ − 𝑆) = 𝑆∗ − 𝑆 /12,836

,

  

 (6-22) 

 

 

Figure 6-10: Root mean square of the measured and reconstructed TSA signal, (S*' – S*), versus 
the number of real Airy stress coefficients, k 
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The condition number of the matrix [A] of equation (6-20) was evaluated for different 

number of Airy coefficients. Figure 6-11 shows as the number of Airy coefficients, k, increases 

from 21 to 23, the condition number suddenly increases, affecting the accuracy of the result. 

Therefore, the number of Airy coefficients to use should be between k = 9 to 21. 

 

 

Figure 6-11: Plot of condition number, C, versus the number of real coefficients, k 

 

The third method that was employed before finalizing the number of Airy coefficients to 

use was comparing the raw measured thermoelastic data S* with those reconstructed by the TSA-

hybrid method for varying number of Airy coefficients using equations (6-16) and (6-11) (Figure 

6-12). The experimental data near the edge of the hole is unreliable or missing and S* should be 

highest along the boundary of the hole. Figures 6-12(b) and (c) show that using either too few (k 

= 9) or too many (k = 25) Airy coefficients, the reconstructed thermoelastic values do not exceed 
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5125.2 U (uncalibrated units) which the original experimental TSA values gave, Figure 6-6. 

Reconstructed thermoelastic data of Figure 6-12 (b) do not represent the real stress distribution of 

the plate. For θ → 0, at a location r = R the stress value should be higher than at any location of r 

> R. For too many Airy coefficients such as k = 25, the contour of the reconstructed thermoelastic 

data also starts to deviate from the ones originally obtained from TSA, (Figure 6-12 (c)). Using 

Airy coefficients k = 19 or 21 yields reconstructed thermoelastic data contours that match well 

with the ones obtained from TSA and give values higher than 5125.2 U at locations r = R and θ → 

0. However, between k = 19 and k = 21, Figure 6-10 shows k = 21 gives rise to slightly less 

difference between the measured and reconstructed TSA thermal information than using k = 19. 

Moreover, from the contour lines of Figure 6-13 it is seen that for k = 21 compared to k = 9 there 

is better match between the TSA-recorded and hybrid-method reconstructed stress induced thermal 

data distribution in regions between points 1 and 2 and along line number 3. Considering the results 

obtained from all these three different analyses suggests choosing k = 21 Airy coefficients. Table 

J-1 of Appendix J provides further support for selecting k = 21. 
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(a) (b) 

 

(c) 

Figure 6-12: (a) Experimental TSA S* (bottom) and reconstructed S*' (top) contours for (a) k = 21 
best match of contour lines, (b) k = 9 reconstructed thermoelastic data along the hole’s right edge 
does not exceed the measured TSA thermal information slightly away from the right edge of the 

hole, and (d) k = 25 leads to computational errors 
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(a) (b) 

Figure 6-13: Contour lines comparison between locations 1 to 2 and line 3 for experimental TSA, 
S*, (bottom) and reconstructed, S*', (top) for (a) k = 21 and (b) k = 9 

 

 

6.7. Finite Element Model 

 A motivation for formulating the ability to experimentally evaluate the stresses in loaded 

finite structures having a dearth of measured data acknowledges not having to know the external 

loading condition, something which FEA requires. However, the present situation was deliberately 

selected due to its known external boundary conditions and therefore able to obtain reliable FEA 

results with which to compare the TSA results. 

The plate was modeled with commercial FEA tool, ANSYS APDL using isoparametric 

element Plane 182. These elements consist of four nodes with two degrees of freedom (translations 

1 2 

3 

3 

1 2 

3 

3 
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in nodal x-y directions) at each node. Plane-stress option was selected as the TSA analyzed plate 

is plane-stressed. Whereas the current analytical-experimental hybrid approach does not require 

knowing the material properties or external loading of the plate, the FEA requires knowing the 

material properties and external loading to provide accurate results with which to compare the 

TSA-based results. As the plate is symmetrical about the horizontal x-axis, only the top half of the 

plate was modeled, Figure 6-14. Appropriate symmetrical boundary conditions were imposed 

numerically. The origin of the coordinate system was located at the center of the off-set hole to 

make the FEA-simulated results compatible with the assumptions used to reduce the Airy stress 

function, Φ, according to equation (6-4). The plate dimensions, material properties and external 

loading for the FEM were those of Table 6-1. Knowing the plate dimensions and the effective load, 

F* = 1.8 kN (400 lbs) on the plate during TSA testing, the FEM of the plate was subjected to a far-

field uniform stress, σ0, of 5.52 MPa (800 psi), using equation (6-18). The FEA model of one half 

of the physical plate consists of 4,365 elements and 4,515 nodes. ANSYS predicted nodal 

information such as in-plane displacements and stresses in polar coordinates (Figure 6-15) were 

exported to MATLAB to enable comparing the FEA results with those provided by the TSA-

hybrid method. 
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Figure 6-14: FEM of loaded off-axis perforated plate 

 

 

   
(a) (b) (c) 

Figure 6-15: FEA-predicted in-plane stresses, (a) σrr, (b) σθθ and (c) σrθ of loaded off-axis 
perforated plate (units in psi) 
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6.8. Results 

6.8.1. TSA Results 

Results from the TSA-hybrid analysis were compared with those from FEA and good 

agreements were found. Figure 6-16 through Figure 6-18 compare the normalized stress contours 

for the individual polar component of stresses and Figure 6-19 compares the normalized stress 

contours of  stresses in the loading y-direction in the Cartesian coordinates of the loaded plate from 

TSA-hybrid analysis and FEA. Figure 6-20 compares the TSA-hybrid method determined 

normalized tangential stresses along the boundary of the cutout with those predicted by the FEA, 

which again exhibits excellent agreement between the two methods. All coordinate values are 

normalized by the hole radius, R, and the stresses by the far-field uniform stress, σ0 = 5.52 MPa 

(800 psi), according to equation (6-18). 

 

 

Figure 6-16: Stress contours of σθθ/σ0 from TSA-hybrid method (top) and FEM (bottom) 
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Figure 6-17: Stress contours of σrr/σ0 from TSA-hybrid method (top) and FEM (bottom) 

 

 

Figure 6-18: Stress contours of σrθ/σ0 from TSA-hybrid method (top) and FEM (bottom) 
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Figure 6-19: Stress contours of σyy/σ0 from TSA-hybrid method (top) and FEM (bottom) 

 

 

Figure 6-20: Plot of stresses σθθ /σ0 along edge of hole from FEM and TSA for nt = 12,836 and k 
=21 
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6.8.2. Strain-Gage Analysis 

Relative to the physical set-up of Figure 6-21, the reliability of the TSA method was further 

assessed by comparing the stresses at locations ‘A’ and ‘B’ (on the right boundary of the hole and 

right vertical edge of the plate; at r = R or 9.5 mm and r = Q or 14.6 mm, respectively, for θ = 0 in 

Figure 6-1) evaluated by TSA-hybrid method and predicted by FEA with those obtained from 

strain-gages (Table 6-2 and Figure 6-22). The compared stresses are those in the Cartesian 

coordinate in the loading, y-direction. The lack of experimental information between the hole and 

right edge of the plate is manifested by poor TSA-based results at location B (outside edge of plate) 

in Figure 6-22. However, this is not highly significant structurally as the stress at point B is only 

50% of that at location A. Figure 6-23 contains photographs of the strain-gaged plate. All gages 

employed were Micro-Measurement MM CEA-13-032UW-120 (gage factor: 2.13). Since the 

gages were self-compensated for aluminum, they were mounted and the plate tested at room 

temperature, no dummy gages were utilized. 
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Figure 6-21: Strain-gage mounted loaded plate 

 

Table 6-2: Comparison of stress at location ‘A’ from TSA, FEA and strain-gage for nt = 12,836 
and k =21 

Normalized stress in loading direction, σyy/σ0 TSA FEA Strain-Gage 

At point ‘A’ 5.43 5.67 5.34 

Absolute % of error with TSA-hybrid method - 4.51 1.49 
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Figure 6-22: σyy/σ0 from TSA, FEM and strain-gages at and between locations A and B 

 

  
(a)  (b) 

Figure 6-23: Strain-gages mounted on (a) Inside edge of the hole at location ‘A’ and (b) On the 
right vertical boundary of the plate at location ‘B’ 
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6.8.3. Load Equilibrium 

Load equilibrium is another effective mean of checking the reliability of the TSA-based 

hybrid stress analysis method. Load equilibrium was checked by numerically integrating the TSA-

determined vertical stresses σyy along the x-axis at y = R according to equation (6-23).  

 
𝐹∗ =  𝜎 𝑑𝐴 =  𝜎 𝑡𝑑𝑥

( )

,    at   𝑦 ≥ 𝑅 (6-23) 

where t, W, R and Q are the plate thickness, width, hole radius and distance of the hole center from 

nearest plate edge, respectively. The trapezoidal rule in MATLAB was used to compute the 

integration. The evaluated load was found to be 1,785.52 N (401.4 lbs) which is within 0.34% of 

the physically applied load of 1,779.3 N (400 lbs). 

 

6.9. Summary, Discussion and Conclusions 

When experimentally evaluating stresses in engineering members, it is not uncommon to 

encounter situations, or at least regions, of inferior or unreliable measured input information. Some 

factors contributing to unreliable TSA-recorded information are lack of local adiabaticity, uneven 

paint layer, light reflection from the tested specimen compromising the image quality, TSA camera 

sensor not properly cooled, improper evaluation of thermoelastic coefficient, K, or damaged 

specimen. In such cases an option might be to repeat the entire test procedure. However, that might 

not be possible to do so due to time or fiscal limitations. In some situations, an alternative might 

be to improve the initially measured unsatisfactory results through advance post-processing. For 

example, TSA methods have been proposed to handle non-adiabaticity [107–110]. Alternatively, 
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if a structurally important location is engulfed within a region of unreliable or inadequate 

experimental input information, but reliable measured information exits elsewhere at distant 

locations in the member, then combining analytical and numerical tools with the distant reliable 

experimental data might enable one to obtain accurate stresses at the location of interest. The strong 

mechanics-based concept processes the distant measured data with an Airy stress function. 

Available/suitable boundary conditions can also be utilized.  

The present example demonstrates the ability to determine thermoelastically the stresses 

on the edge of an asymmetrically located hole in a finite tensile plate in the absence of local 

measured data by processing recorded distant load-induced temperature information with an Airy 

stress function. This is accomplished without knowing the constitutive material properties or the 

external loading.  Moreover, this method does not require differentiating the measured data and 

the analysis can be done in isotropic materials with real variables. Reliability is supported by FEA, 

load equilibrium and strain-gage results. The ability to obtain reliable stresses along the boundary 

of the hole in the absence of local measured data is important. As mentioned earlier, one can 

encounter practical situations where there is a paucity of, or at least poor quality, measured 

information. Recognizing recorded TSA or DIC data are traditionally unreliable as one approaches 

an edge, such could occur whenever edges approach each other, such as happens in Figure 6-1. 

Thermoelastic values are normally reliable only beyond approximately one millimeter 

(mm) inside an edge. When processing the measured information by a stress function, one 

therefore typically only uses recorded input data at least two or three pixels from and beyond an 

edge. In the present situation, the closest temperature information employed is 7.31 mm from the 

location of prime concern, i.e., point A in Figure 6-1.   
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The present approach is applicable to more complicated situations, different types/shapes 

of cutouts, to infinitely-width or finite-width plates with any shaped external boundaries. The 

concept is also extendable to stress analyze orthotropic composite materials by using complex 

variables. The present general concept could also be used with displacement-based techniques like 

moiré or DIC. 

Appendix K considers results of variation of the present analysis. This study considers the 

consequence of omitting input data from one or two, rather than three pixels from along the vertical 

edges of the plate and enlarging the region between the hole and right plate edge where recorded 

TSA data are unreliable.  
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 Stress Analysis of Diametrically-Loaded Isotropic 

Ring in Absence of Adequate Measured Displacement 

Information 

 

7.1. Introduction 

It is not uncommon in experimental mechanics to have regions with a paucity of, or poor 

quality, recorded data. The situation can be particularly serious if knowledge of the stresses in 

locations of inadequate experimental information is critical to the integrity of the machine or 

structural component. Motivated by this challenge, the objective of this study is to demonstrate the 

ability to evaluate stresses experimentally at a structurally important location engulfed within a 

significantly large region throughout which there is no dependable input information. An example 

is a diametrically-loaded ring and measured information of a single displacement component. 

Reliability is demonstrated by comparison with results from FEM and a strain-gage. 

 

7.2. General Overview 

The integrity of a machine or structural member can be highly influenced by its stresses. 

Purely analytical or theoretical stress analysis methods tend to be limited to situations involving 

simple infinite geometries, whereas most practical problems involve non-trivial, finite shapes. 

Moreover, like numerical approaches such as the finite element method (FEM), 

analytical/theoretical analyses depend on reliable knowledge of the external loading. The latter are 

commonly unknown in practice. Recognizing the above motivates the use of experimental methods 
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such as thermoelastic stress analysis (TSA) or digital image correlation (DIC). The capability of 

the hybrid experimental-analytical method to work with distant TSA information in the absence 

of adequate reliable measured information at structurally important locations was demonstrated in 

Chapter 6. The current study investigates the ability of the hybrid stress analysis method to 

effectively work with a limited amount of DIC data in similar situations, i.e., with missing 

measured information at critical locations of the loaded structure. 

DIC is a popular and contemporary optical technique for recording displacements [14] and 

is applicable to both isotropic and orthotropic materials. It is more amendable than TSA to 

engineering applications beyond a laboratory environment. Although it enjoys the advantage of 

not requiring cyclic loading, DIC does necessitate the surface being interrogated to have a suitable 

random pattern. Moreover, the measured displacement data must be differentiated to obtain strains. 

Differentiating measured data can be unreliable. Stresses can be obtained from the strains if the 

constitutive material properties are known. DIC-determined information by traditional methods 

using commercial systems tends to be unavailable at and near geometric discontinuities due to an 

inability to track a group of pixels (subset) which lack neighboring pixels. Reference [83] 

illustrated the errors which can occur at the edge of a geometric discontinuity by traditional DIC.  

An inferior or damaged speckle pattern, poor user defined correlation variables such as unsuitable 

subset or step size, fluctuation in the image light and/or inappropriate filter size can produce 

unreliable displacements and inaccurately differentiated displacement data can result in erroneous 

strains. Therefore, both experimental factors and correlation variables, or either one of these, can 

contribute to unreliable DIC-measured information. An alternative can be re-doing the entire 

experiment which includes reapplying the speckle pattern, repeating the DIC test and redoing the 

post-processing. However, an alternative can be to work with the compromised measured 



223 
 

 
 

information, i.e., using distant reliable measured information to obtain reliable information at the 

critical locations containing inadequate/unreliable local measured information. 

The present DIC-hybrid stress analysis technique involves processing a DIC-measured 

single displacement field by a strong mechanics-based algorithm based on a combination of Airy 

stress function, discretely imposed traction-free boundary conditions and numerical methods such 

as least squares to aid the mathematical computation.  

The current study involves an annular aluminum plate with diametrically-loaded 

concentrated loads, Figure 7-1. Such plates are commonly used in load cells, rocket shells, gun 

barrels, high pressure piping and rock/concrete and earth excavation cutters [74]. The present full-

field technique stress analyzes the isotropic ring, including along its traction-free boundaries, using 

a DIC-measured single displacement field away from the geometric discontinuities or edges. Major 

advantages of this method over other stress analyses techniques include the following: full-field, 

non-contacting stress analysis with simple and easy experimental requirements (unlike strain-

gages), independent of external boundary conditions or loadings or unreliable edge data, does not 

require differentiating measured quantities using arbitrary methods, simultaneous smoothing and 

automatic stress separation of the experimental data, no cyclic loading or additional calibration 

coupon required like thermoelastic stress analysis and does not necessitate using both the in-plane 

displacement components (such as with moiré or electronic speckle).   

The experimental data were not always deficient in some of the regions considered here to 

be so but are conjectured as such to demonstrate ability to obtain reliable results at important 

locations which are engulfed within a region whose experimental information is not dependable.  
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Figure 7-1: Diametrically-loaded aluminum ring 

   

7.3. Literature Review 

Theoretical analysis of annular plates are available but limited to only a fixed outer-to-

inner diameter ratio of two [111]. Such structures with outer-to-inner diameter ratio other than two 

have been studied experimentally using techniques such as photoelasticity [67] and strain-gages 

[74]. A diametrically-loaded isotropic ring was studied by Khaja [74] using strain-gages. The ring, 

mounted with several strain-gages, necessitated multiply loadings in order to change the gage 

orientation with respect to the loading points. This was done to increase the number of data outputs 

from the limited number of mounted strain-gages and thereby to ensure sufficient input data for 

the stress analysis. The analytical expressions were based on Airy stress function with real 

variables. Serati et al. [112] investigated displacement and stress components of annular rings 

under different types of loading by employing the Michell’s expansion in the polar coordinates 

and Fourier series representation of the boundary conditions. Stress concentration factors of 
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annular rings with various inner-to-outer diameter ratios have been reported in Reference [67] by 

using photoelasticity. The present study stress analyzes an annular ring using only a single DIC-

measured displacement field and processing that information with Airy stress function and 

discretely imposing the boundary conditions. The present technique is applicable to a ring of any 

inner-to-outer diameter ratio using simple non-contacting full-field experimental set-ups and 

rigorous mechanics-based algorithms. 

 

7.4. Relevant Equations 

Acknowledging the ring’s mechanical and geometric symmetry about the x- and y-axes, 

the inner and outer boundaries being self-equilibrated, the stresses, strains and displacements being 

single-valued functions of θ, under plane-stress and no body forces, equation (7-1) is a relevant 

Airy stress function, Φ, for the isotropic ring of Figure 7-1 [28,83]. 

 

𝛷 = 𝑎 + 𝑏 ln 𝑟 + 𝑐 𝑟

+  𝑎 𝑟 + 𝑏 𝑟 +  𝑐 𝑟 + 𝑑 𝑟 ( ) cos(𝑛𝜃)

  , …

 
(7-1) 

Substituting the expression of the Airy stress function, Φ, from equation (7-1) into equations (6-5) 

through (6-7), the in-plane stresses in the polar coordinates are  
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𝜎 =  
𝑏

𝑟
+ 2𝑐

− 𝑎 𝑛(𝑛 − 1)𝑟( ) + 𝑏 (𝑛 − 2)(𝑛 + 1)𝑟

  , …

+ 𝑐 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 + 2)(𝑛 − 1)𝑟 cos(𝑛𝜃) 

(7-2) 

 

 

𝜎 = −
𝑏

𝑟
+ 2𝑐

+ 𝑎 𝑛(𝑛 − 1)𝑟( ) + 𝑏 (𝑛 + 2)(𝑛 + 1)𝑟

  , …

+ 𝑐 𝑛(𝑛 + 1)𝑟 ( ) + 𝑑 (𝑛 − 2)(𝑛 − 1)𝑟 cos(𝑛𝜃) 

(7-3) 

 

 
𝜎 = 𝑎 𝑛(𝑛 − 1)𝑟( ) +  𝑏 𝑛(𝑛 + 1)𝑟 −  𝑐 𝑛(𝑛 + 1)𝑟 ( )

  , …

− 𝑑 𝑛(𝑛 − 1)𝑟 sin(𝑛𝜃) 

(7-4) 

The polar radial coordinate, r, is measured from the center of the ring and angle θ is 

measured counter clock-wise from the horizontal x-axis. N is the terminating index of the 

summation series. Note that equation (7-1) does not account for the contacting top and bottom 

concentrated loads. In order to evaluate the Airy stress coefficients from the DIC-measured 

displacement data, expressions for the in-plane displacements for the current diametrically-loaded 

ring (Figure 7-1) need to be established. Utilizing Hooke’s law and the stresses of equations (7-2) 
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and (7-3), expressions for the in-plane strains can be obtained, from which by integration the 

expressions of the in-plane displacements are established. Combining equations (7-2) and (7-3) 

with 2D-Hooke’s law, the normal in-plane strain components in polar coordinates are 

 
𝜕𝑢

𝜕𝑟
=  𝜀 =  

1

𝐸
(𝜎 −  𝜈𝜎 ) (7-5) 

 
1

𝑟

𝜕𝑢

𝜕𝜃
=  𝜀 −  

𝑢

𝑟
=  

1

𝐸
(𝜎 −  𝜈𝜎 ) −  

𝑢

𝑟
 (7-6) 

The relationship between in-plane strains and displacements are utilized in equations (7-5) and 

(7-6). Rearranging equation (7-6) one obtains 

 
𝜕𝑢

𝜕𝜃
=

𝑟

𝐸
(𝜎 −  𝜈𝜎 ) − 𝑢  (7-7) 

Integrating equation (7-5) gives ur, as equation (7-8). Substituting the expression of ur from 

equation (7-8) into equation (7-7), and integrating, the in-plane displacement component in the 

polar coordinates uθ is obtained, as equation (7-9).  
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𝑢 =
1

𝐸
−

𝑏 (1 + 𝜈)

𝑟
+ 2𝑐 (1 − 𝜈)𝑟

− 𝑎 𝑛(1 + 𝜈)𝑟 + 𝑏 [(𝑛 − 2) + 𝜈(𝑛 + 2)]𝑟

  , …

− 𝑐 𝑛(1 + 𝜈)𝑟 ( ) − 𝑑 [(𝑛 + 2) + 𝜈(𝑛 − 2)]𝑟 cos(𝑛𝜃)

+ 𝑆 𝑐𝑜𝑠(𝜃) − 𝑆 sin(𝜃)  

(7-8) 

 

 

𝑢 =
1

𝐸
𝑎 𝑛(1 + 𝜈)𝑟 + 𝑏 [𝑛(1 + 𝜈) + 4]𝑟

  , …

+ 𝑐 𝑛(1 + 𝜈)𝑟 ( ) + 𝑑 [𝑛(1 + 𝜈) − 4]𝑟 sin(𝑛𝜃)

− 𝑆 𝑐𝑜𝑠(𝜃) − 𝑆 sin(𝜃) + 𝑅∗𝑟  

(7-9) 

Quantities S1, S2 and R* represent the rigid body motions and are present in these equations as a 

result of integrating strains to obtain displacements. When physically loading in a testing machine, 

S1, S2 and R* are zero. 

DIC provides displacements in the Cartesian x-y coordinates. Thus, to aid the mathematical 

procedure, the displacements in the polar coordinates, ur and uθ, (equations (7-8) and (7-9)) are 

transformed to those, u and v, in the x-y Cartesian coordinates according to Figure 7-2, i.e., 
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 𝑢 = 𝑢 𝑐𝑜𝑠𝜃 − 𝑢 𝑠𝑖𝑛𝜃 (7-10) 

 𝑣 = 𝑢 𝑠𝑖𝑛𝜃 + 𝑢 𝑐𝑜𝑠𝜃 (7-11) 

 

 

Figure 7-2: Relation between displacement components in polar and Cartesian coordinates 

 

Using the expressions of ur and uθ from equations (7-8) and (7-9) in equation (7-11), the expression 

for the displacement component in the vertical loading direction-y in the Cartesian coordinate is 

as  
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𝑣 =
1

𝐸
−

𝑏 (1 + 𝜈)

𝑟
+ 2𝑐 (1 − 𝜈)𝑟

+ 𝑛[sin(𝑛𝜃) cos 𝜃 − cos(𝑛𝜃) sin 𝜃](1 + 𝜈)𝑟 𝑎

  , …

+ ([(2 − 𝑛) + 𝜈(𝑛 + 2)] cos(𝑛𝜃) sin 𝜃

+ [𝑛(1 + 𝜈) + 4] sin(𝑛𝜃) cos 𝜃)𝑟 𝑏

+ 𝑛[cos(𝑛𝜃) sin 𝜃 + sin(𝑛𝜃) cos 𝜃](1 + 𝜈)𝑟 ( )𝑐

+ ([(𝑛 + 2) + 𝜈(𝑛 − 2)] cos(𝑛𝜃) sin 𝜃

+ [𝑛(1 + 𝜈) − 4] sin(𝑛𝜃) cos 𝜃)𝑟 𝑑  

(7-12) 

It should be noted that, when treating an isotropic perforated structure with an Airy stress 

function in real variables, the in-plane stresses of equations (7-2) through (7-4) are independent of 

the elastic material properties. However, the in-plane displacements of equations (7-8) through 

(7-12) are not, i.e., to evaluate the displacement components, or to use them to find the Airy 

coefficient, requires knowing the material properties E and ν. 

 

7.5. Ring Details 

The aluminum 6061-T6 (from Weidenbeck, Inc., Madison, WI) ring had inner and outer 

radii of Ri = 25.4 mm (1.0") and R0 = 49.9 mm (1.96"), respectively, and a thickness of t = 19.05 

mm (0.75"), Table 7-1.   
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Table 7-1: Details of aluminum ring and loading 

Material Aluminum 6061-T6 

Supplier Weidenbeck, Inc., Madison, WI 

Inner diameter, Di 50.8 mm (2.00") 

Outer diameter, D0 99.8 mm (3.92") 

Thickness, t 19.05 mm (0.75") 

Elastic Modulus, E 69 GPa (10 × 106 psi) 

Poisson’s ratio, ν 0.33 

Symmetry Both horizontally and vertically 

Loading for DIC analysis From 0 to 6.67 kN (1,500 lbs) in 
increments of 1.1 kN (250 lbs) 

Loading for DIC-hybrid stress analysis 6.67 kN (1,500 lbs) 

 

7.6. DIC Experimental Details 

7.6.1. Ring Surface Preparation 

Standard DIC surface preparation, i.e., speckle application protocol as mentioned in  

Chapter 4, was followed to apply the random speckle pattern on the ring. The plate was initially 

degreased using a solvent (CSM-2 by Vishay Precision Group), polished lightly with a fine (400-

grit) emery cloth and cleaned with water-based mild cleaners. The cleaned surface was covered 

with a coat of white paint over which random black dots of paint were applied, Figure 7-3. Rust-
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Oleum Ultra Cover paints were used. Details regarding application of speckle pattern are provided 

in Chapter 4, Section 4.6.3. 

 

 

Figure 7-3: Aluminum ring with applied speckle pattern 

 

7.6.2. Loading and Correlation Details 

The prepared ring was loaded using a 4.45 kN (10,000 lbs) capacity, electro-mechanical, 

Sintech MTS machine from essentially 0 to 6.67 kN (1,500 lbs) in load increments of 1.1 kN (250 

lbs), Figure 7-4. The reported results are for a load of 6.67 kN (1,500 lbs). The loading-frame is 

equipped with a computerized data acquisition and monitoring system through which the applied 

load on the ring was monitored. The DIC test was conducted using ambient lighting. While 

loading, the ring was placed on the compression fixture of the lower stationary crosshead and 

compressive load was applied through the compression fixture of the top crosshead. This simulated 

the ring being diametrically-compressed by concentrated loads from the two vertical ends.  
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Figure 7-4: DIC experimental set-up for isotropic ring 

 

For the DIC test of the ring, Correlated Solution, Inc.’s commercial DIC package was 

employed. Details regarding the DIC package are available in Chapter 4, Table 4-3. A single digital 

camera was used since the ring experiences no out-of-plane motion beyond the Poisson’s effect 

(care was taken to ensure the camera is exactly perpendicular to the plate’s surface). Digital images 

of the ring were taken with the digital camera controlled by Vic-Snap image acquisition software. 

The applied load on the ring was held constant while capturing the digital image for each load 

increment. The load for each DIC image was recorded manually. To calibrate the system, a picture 

of an appropriate calibration grid was taken by the DIC camera and Vic-Snap software. The 

supplier’s calibration grid was placed on the load-frame’s compression fixture at the exact same 

distance from the camera as was the aluminum ring. This was achieved by marking the location of 

the ring’s front surface using a piece of tape, Figure 7-5, and later using the tape as a marker to 

place the calibration grid at the exact same location of the aluminum ring. Through this process 
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the same depth of field for the calibration image and the speckle images was achieved. The system 

was then calibrated using the thus obtained calibration image in Vic-2D correlation software’s 

calibration scale option, i.e., previously known distance of the grid was marked and provided in 

physical units. A subset size of 26 and step size 5 were used. Vic-2D software was used to correlate 

the reference and deformed images and provide the DIC-measured displacements.   

 

(a) (b) 

Figure 7-5: Calibration of the DIC system, (a) Tape on compression fixture to indicate placement 
of the calibration grid and (b) DIC system capturing calibration image 

 

7.7. Data Reduction and Analysis 

When loaded physically, the bottom of the ring remained stationary while the top was 

vertically compressed. The recorded v-displacement data in the loading y-direction were 

consequently unsymmetrical about the horizontal x-axis, Figure 7-6(a). However, the ring is 

geometrically and mechanically symmetrical about the x-y axes. The recorded DIC vertical v-
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displacement data were processed to shift the origin to the center of the ring and reorganized to 

simulate the plate being compressed vertically equally from its top and bottom, i.e., v = 0 along 

the horizontal center-line passing through y = 0 of Figure 7-1. The processed displacement data 

were then averaged over the four quadrants to remove any experimental scatter or any asymmetry. 

Figure 7-6(b) illustrates the averaged result in the first quadrant. 

 

  

(a) (b) 

Figure 7-6: DIC-measured v-displacements in loading direction y for the diametrically-loaded 
ring, (a) Recorded data after shifting the origin to the center of the ring and (b) Processed and 

averaged over the four quadrants, v = 0 at y = 0 

 

The ability to determine reliably by DIC the tensile stress at point A on the inside of the 

diametrically-compressed ring of Figure 7-1 is now demonstrated. This is possible even though 

location A is contained within a large region throughout which there are no dependable measured 

displacement data. In reality, there was reasonable DIC information throughout the ring (except 
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near the edges). However, only that within the black region (nDIC = 2,222) of Figure 7-7 is assumed 

here to be dependable. Moreover, only the vertical displacement information, v, is assumed to be 

available/reliable. 

To observe the effect of the data selection range on the overall results of the DIC-hybrid 

stress analysis method, a second analysis was conducted with measured data over a slightly larger 

and distributed region (nDIC = 3,326) of the ring as shown in Figure 7-8. 

 

 

Figure 7-7: One quarter of the ring of Figure 7-1 showing region of reliable displacement data 
(black region) and locations of imposed boundary conditions (circular markers) for nDIC + h = 

2,222 + 28 
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Figure 7-8: One quarter of the ring of Figure 7-1 showing region of reliable displacement data 
(black region) and locations of imposed boundary conditions (circular markers) for nDIC + h = 

3,326 + 37 

 

For both cases, in addition to processing the selected measured DIC v-displacement data 

with an Airy stress function, some boundary conditions were used to obtain the stresses at the 

location of interest, point A, Figure 7-1. The boundary condition σrθ = 0 was applied discretely 

along Ri between 0 ≤ θ ≤ 90° and along R0 between 0 ≤ θ ≤ 85°. Although not done so, one could 

also impose σrr = 0 at discrete locations on the inner and outer radii of the ring. In addition, the 

averaged v-displacement data automatically satisfied the condition v = 0 at y = 0. 

For the analysis of Figure 7-7, along with the nDIC = 2,222 DIC-measured v-displacement 

information, the traction-free boundary condition σrθ = 0 was imposed at h1 = 10 equally spaced 

locations along r = Ri and at h2 = 18 equally spaced locations along r = R0. Similarly, for the 

analysis of Figure 7-8 along with the nDIC = 3,326 v-displacements, the number of imposed 

boundary conditions were h1 = 19 and h2 = 18 at r = Ri and r = R0, respectively. 
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These processed, averaged and selected DIC-measured displacement data in the loading 

direction, v, were used in equation (7-12) with the traction-free boundary condition σrθ = 0 in 

equation (7-4) to evaluate the Airy coefficients. The response in the loaded ring can analytically 

be expressed as equation (7-13). This can further be expressed in terms of matrices of equation 

(7-14), where the matrix [A] involves plate’s material properties and the locations (r and θ) of the 

nDIC locations of DIC-measured v-displacement data and the h (= h1 + h2) locations (r and θ) where 

boundary condition σrθ = 0 was imposed. Vector {c}contains the unknown Airy coefficient’s and 

vector {d} includes the DIC-recorded displacement data and the imposed traction-free boundary 

conditions. In equation (7-14) the only unknowns are the Airy coefficients of vector {c} and they 

were evaluated by least squares. For these studies the backslash operator ‘\’ in MATLAB was used 

to compute the least square values of the Airy coefficients of vector {c}.  

 
𝑣 (𝑏  𝑐  𝑎  𝑏  𝑐  𝑑 )

𝜎 (𝑎  𝑏  𝑐  𝑑 )

⎩
⎪
⎨

⎪
⎧

𝑏
𝑐
𝑎
𝑏
𝑐
𝑑 ⎭

⎪
⎬

⎪
⎫

=
DIC(𝑣)

BC s (𝜎 = 0)
 (7-13) 

 

 [𝐴]( ) × {𝑐}  × =  {𝑑}( ) ×  (7-14) 

Number n = 2, 4, 6,….N in the summation series of equations (7-4) and (7-12), and the number of 

Airy coefficients k = (2n + 2) in equation (7-14). To account for experimental scatter in the DIC-

recorded information, at x ≥ R the over-determined system of linear equations of equation (7-14) 

employs more side conditions, nDIC + h, than the number of unknown Airy coefficients, k. 
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7.8. Finite Element Model 

A finite element analysis of the aluminum ring was conducted against which to compare 

the results of the DIC-hybrid stress analysis method. As accuracy of the FEA results is highly 

dependent on the external loading and boundary conditions, the geometry, boundary conditions 

and loading of the present ring was deliberately selected to obtain accurate FEA results with which 

to compare the present DIC-hybrid results. The 2D-FEM with plane-stress condition was generated 

using commercial FEA tool ANSYS APDL. The plate having mechanical and geometrical 

symmetry about both the x-y axes, only one quarter of the plate was modeled with the coordinate 

origin located at the center of the ring. Appropriate symmetrical boundary conditions were 

numerically imposed. ANSYS isoparametric elements Plane 183 with eight nodes per element 

with translations u and v per node were used to model the ring, Figure 7-9. The annular ring was 

meshed throughout with quadrilateral elements and the mesh density was selected as such that 

increasingly denser meshes had no effect on the maximum stress concentration. A point load was 

applied at the top center of the ring to represent a concentrated load. As only a quarter of the ring 

was modeled, half of the physically applied 6.67 kN (1,500 lbs) load, i.e., 3.34 kN (750 lbs) load 

was applied. This results in an average/nominal stress of 7.18 MPa (= 1.04 ksi) according to 

equation (7-15). The final quarter-FEM ring had 2,911 nodes and 2,800 elements. 

 
𝜎 =

𝐹∗

(𝐷 − 𝐷 ) × 𝑡
=

6.67 kN 

2 × (49.9 − 25.4) mm × 19.05 mm 

=   7.18 MPa or 1,041.67 psi 

(7-15) 

Figure 7-10 and Figure 7-11 contains FEM results. 
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Figure 7-9: FEM of one quarter of the aluminum ring 

 

 

Figure 7-10: Contours of v-displacement from FEM (units in inches) 
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Figure 7-11: Contours of tangential stresses, σθθ, from FEM (units in psi) 

 

7.9. Strain-Gage Analysis 

To further assess the reliability of the DIC-based stress analysis method, a strain-gage was 

mounted on the inner boundary of the ring (Figure 7-12) and loaded (Figure 7-13 and Figure 7-14), 

the results from which were compared with those from FEM and DIC. The Micro-Measurement’s 

strain-gage was of type EA-06-015LA-120 with a gage factor of 2.01 and 1.2% transverse 

sensitivity. By rotating the ring with respect to the vertically applied loading, it was possible to 

record strains along the ring’s inner circumference, r = Ri, from 0° to 90° at locations of 10° 

intervals (Figure 7-1), Figure 7-14. The gaged ring was loaded using the 4.45 kN (10,000 lbs), 

electro-mechanical, Sintech MTS loading-frame, coupled with National Instruments modular 

hardware and software for the strain measurements, Figure 7-13. The strain-gage being tuned for 

aluminum, it was mounted and the ring tested at room temperature without the use of any dummy 

gages. The elastic modulus, E = 69 GPa (10 × 106 psi) of the ring was used to convert the recorded 

strains to stresses. 



242 
 

 
 

 

Figure 7-12: Mounted strain-gage on the inner surface of the aluminum ring 

 

 

Figure 7-13: Loading and strain data acquisition of strain-gage mounted aluminum ring 
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(a) (b) 

Figure 7-14: Ring loading with respect to strain-gage location to record (a) Tensile strain at 
location A and (b) Compressive strain at location B of Figure 7-1, respectively 

 

7.10. Evaluating Number of Airy Coefficient to Employ 

The present number of Airy coefficient to employ was chosen based on the root mean 

square (RMS) between the experimentally measured displacement data, d, and those reconstructed 

by the DIC-hybrid method, d′, according to equation (7-13) (Figure 7-15 and Figure 7-16) and the 

condition number, C, of the matrix [A] of equation (7-14) (Figure 7-17 and Figure 7-18). In 

addition, the contours of the tangential stress component of equation (7-3) for varying number of 

Airy stress coefficients, k, from the DIC-hybrid method are compared with those from FEM in 

Figure 7-19 and Figure 7-20. From the analyses, for nDIC = 3,326 and h = 37 of Figure 7-8, k = 10 

was found to be a reasonable choice. The RMS plot of Figure 7-15 suggest k ≥ 14 but the condition 

number data of Figure 7-17(b) suggest k ≤ 10 be retained in the summation series. The contour 
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plots of the tangential stresses from the DIC-hybrid method and FEM of Figure 7-19 show that for 

k = 6, the DIC-hybrid method over-estimates the maximum tangential stress and for k = 14 the 

stress contours start to deviate from the expected behavior.  For the case of Figure 7-7, for nDIC = 

2,222 and h = 28, k = 6 was found to be a realistic choice for the DIC analysis of the compressed 

ring. The RMS plot of Figure 7-16 suggests use k = 10, 14 or 18 over k = 6,  but the plot of the 

natural logarithm of the condition number, log10(C), (Figure 7-18(b)) and the comparison of the 

tangential stress contours (Figure 7-20) highly recommend using k = 6. For values of k > 6, the 

system mathematically becomes ill-conditioned resulting in huge computational errors. As such k 

= 6 were selected for nDIC = 2, 222 and h = 28, and k = 10 for nDIC = 3,326 and h = 37. 

 

 

Figure 7-15: RMS of the measured and reconstructed displacement data versus the number of 
Airy stress coefficients, k, for nDIC = 3,326 and h = 37 of Figure 7-8 
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Figure 7-16: RMS of the measured and reconstructed displacement data versus the number of 
Airy stress coefficients, k, for nDIC = 2,222 and h = 28 of Figure 7-7 

 

(a) (b) 

Figure 7-17: (a) Condition number, C, and (b) log10(C) for varying number of Airy stress 
coefficients, k, for nDIC = 3,326 and h = 37 of Figure 7-8 
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(a) (b) 

Figure 7-18: (a) Condition number, C, and (b) log10(C) for varying number of Airy stress 
coefficients, k, for nDIC = 2,222 and h = 28 of Figure 7-7 

 

 

Figure 7-19: Contours of σθθ/σnet from DIC-hybrid method (right) and FEM (left) for nDIC = 3,326 
and h = 37 of Figure 7-8 and Airy stress coefficients, k = 6 and k = 14, respectively 
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Figure 7-20: Contours of σθθ/σnet from DIC-hybrid method (right) and FEM (left) for nDIC = 2,222 
and h = 28 of Figure 7-7 and Airy stress coefficients, k = 6 and k = 10, respectively 

 

 

7.11. Results 

The Airy coefficients are evaluated according to equation (7-13), from DIC-measured v-

displacement field of equation (7-12) and imposed traction-free boundary condition of equation 

(7-4). Knowing the Airy coefficients, the in-plane stresses of the ring are determined from 

equations (7-2) through (7-4) and in-plane displacements in the polar coordinates from equations 

(7-8) and (7-9), whereas in Cartesian coordinates from equations (7-10) and (7-11).   

Figure 7-21 through Figure 7-26 compare the results obtained from the DIC-measured 

displacement data with those predicted by FEM. All distances and displacements are normalized 

by the inner radius of the ring, Ri = 25.4 mm, and stresses with respect to the nominal stress, σnet = 

7.18 MPa of equation (7-15). The DIC-hybrid results are further supported by the strain-gage 

readings at locations of θ = 0° and 90° in Table 7-2, Figure 7-23 and Figure 7-26. 

While using nDIC = 2,222 of Figure 7-7 in this DIC-hybrid method, Figure 7-26 indicates 

appreciable discrepancies between DIC and FEM results away from θ = 0° or 90°. However, the 
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0° and 90° locations are structurally the most significant, and at those locations the agreement is 

excellent. Based on the results (Figure 7-21 through Figure 7-26 and Table 7-2), Figure 7-7 

represents the worse of the two situations considered. The analysis of Figure 7-8, utilizes a larger 

number of DIC-measured v-displacement values and which are better distributed over the plate 

than that of Figure 7-7. The DIC-hybrid computed σθθ of Figure 7-8 in Figure 7-23 agrees 

somewhat better with the FEM-predictions and strain-gage results along the rings inner boundary 

from θ = 0° to 90° than just at locations θ = 0° and 90° as in Figure 7-26. 

 

 

Figure 7-21: Contours of v/Ri displacements from DIC-hybrid method (right) and FEM (left) of 
the ring for nDIC = 3,326 and h = 37 of Figure 7-8 
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Figure 7-22: Contours of σθθ/σnet tangential stresses from DIC-hybrid method (right) and FEM 
(left) of the ring for nDIC = 3,326 and h = 37 of Figure 7-8 

 

 

Figure 7-23: Plot of tangential stresses, σθθ /σnet, along edge of the inner radius of the ring from 
strain-gage, FEM and DIC-hybrid for nDIC = 3,326 and h = 37 of Figure 7-8 
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Figure 7-24: Contours of v/Ri displacements from DIC-hybrid method (right) and FEM (left) of 
the ring for nDIC = 2,222 and h = 28 of Figure 7-7 

 

 

Figure 7-25: Contours of σθθ/σnet stresses from DIC-hybrid method (right) and FEM (left) of the 
ring for nDIC = 2,222 and h = 28 of Figure 7-7 
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Figure 7-26: Plot of tangential stresses, σθθ /σnet, along edge of the inner radius of the ring from 
strain-gage, FEM and DIC-hybrid for nDIC = 2,222 and h = 28 of Figure 7-7 

 

 

Table 7-2: Comparison of stresses at location A and B (Figure 7-1) of the ring from DIC-hybrid, 
FEM and strain-gage  

Angle θ 

σθθ /σnet   

DIC, nDIC = 
2,222 and h =28 

DIC, nDIC = 3,326 
and h = 37 

FEM 
Strain-
Gage 

0° -5.79 -5.34 -5.77 -5.58 

90° 6.57 7.22 6.67 6.59 

  

The DIC-recorded information of Figure 7-6 includes the effect of the top concentrated 

load. However, the stress function of equation (7-1), and hence the associated expressions for the 
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stresses and displacements, do not. This simplicity in the form of stress function contributes to the 

unreliable stress information in the upper region of the ring.  

 

7.12. Summary, Discussion and Conclusions  

DIC is a prevalent experimental method for evaluating stresses in engineering members. 

Like with any experimental technique, for a variety of reasons with DIC, one can encounter 

situations, or at least regions, of inferior or unreliable experimental information. An option might 

be to repeat the test, but that can face time and/or fiscal challenges. In some cases, initially 

unsatisfactory results can perhaps be improved post-experiment. For example, displacement 

smoothing in correlation algorithms. Alternatively, if the difficulty involves an important location 

within a region of unreliable or lacking experimental input information, but reliable measured data 

exists elsewhere in the member, it is demonstrated here that, at least in some cases, analytical and 

numerical tools can be combined with the distant reliable experimental data to obtain accurate 

stresses at the location of interest. The concept involves more than just extrapolation using a stress 

function. Available/suitable boundary conditions are also utilized. Importantly, the stress function 

possesses a strong mechanics basis. In the case of Figure 7-7, the closest reliable DIC input values 

are 30 mm, respectively, away from the locations of structural interest. As with the current ring, 

most practical serious concerns tend to involve a single stress component occurring at a traction-

free re-entrant geometry (e.g., a hole or notch). An advantage of the current DIC-hybrid method is 

that it does not require knowing the external loading. This is a great advantage as most engineering 

problems have complicated geometry and loading, and the loading is unknown or poorly defined.  
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DIC typically records at least both in-plane displacements, but the present diametrically-

compressed ring case assumes only some v information is available. This was motivated by the 

fact that, although moiré and electronic speckle are alternative means of recording displacement 

information, to measure more than one in-plane displacement by these latter techniques 

necessitates considerable effort beyond that when recording only a single in-plane displacement 

component. 

Future prospects of developing superior and reliable techniques to obtain accurate stresses 

in situations involving poor or inadequate DIC-measured data exceeds the scope of this chapter. 

However, the present use of stress functions and boundary conditions are certainly applicable to 

orthotropic composite materials, and the concept of analytic continuation provides a powerful 

means of handling traction-free conditions when employing complex variables. The aluminum 

ring of Figure 7-1 was stress analyzed using the concepts of complex variables Airy stress 

functions, conformal mapping, analytic continuation and Laurent series, Appendix L and 

Appendix M. FEA-determined v-displacement data were processed with the complex variables 

technique in Appendix L, whereas the complex-hybrid analysis of Appendix M was done using 

DIC-measured v-displacement data. 
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 Review of Concepts to Determine Stress Intensity 

Factors for Orthotropic Plates 

 

8.1. Introduction 

This chapter considers a variety of techniques to analyze cracks in orthotropic materials 

and assesses their feasibility in providing important fracture information such as stress intensity 

factor (SIF) when combined with the herein proposed hybrid stress analysis method. By using an 

appropriate mapping function and displacement information, the hybrid-method is developed to 

obtain full-field state of stress in orthotropic structures with cracks. This includes regions close to 

the crack-tip with singular stress and displacement fields. The hybrid-method computed 

displacement and stress information is processed using fracture theories to obtain the SIF. The 

study numerically demonstrates/discusses the capability of this method to provide SIF from 

displacement information for virtually any cracked orthotropic plate, i.e., plate with any type of 

cracks, any crack-length to plate-width ratios and of any composite material properties. The 

reliability of the displacement-based hybrid-method is established in this chapter by comparing 

the obtained SIF results with those available in literature. 

 

8.2. General Overview 

Wide spread use of composite materials in structural designs have precipitated interest in 

studies of such configurations with holes, cracks or discontinuities of any other form. In linear 

elastic fracture mechanics (LEFM) for a member containing crack, the stress intensity factor (SIF) 
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characterizes the theoretical state of stress near the crack arising from the stress singularities 

present in that region. Accurate estimation of the SIF is important to reliably predict structural 

strength. Whether a crack will grow can be assessed by comparing the SIF of a loaded structure 

with its critical SIF. Anisotropy complicates fracture analysis of members made of orthotropic 

materials, relative to that of isotropic materials. Among other things, the magnitude of SIF now 

also depends on the orthotropic constitutive properties and the material directions [113]. SIF for a 

component with crack can be determined analytically, semi-analytically or using numerical 

techniques based on finite element method (FEM) or boundary element method (BEM). 

For relatively simple infinite geometries and simple loading, it is possible to evaluate the 

SIF analytically or experimentally. Semi-analytical methods such as the weight function approach 

introduced by Bueckner [114] and generalized by Rice [115] is capable of solving a variety of 

fracture problems. The approach involves finding an arbitrary SIF from a reference solution for a 

certain mode of fracture, then uses a weight function to relate the arbitrary SIF to find the actual 

SIF for the same geometry but under different load. The method faces the challenge of finding a 

suitable reference solution for certain fracture problems [116]. 

For more complicated geometries and loadings, numerical techniques such as FEA and 

BEM can provide reasonable estimates of SIF. FEA-predicted results highly depend on the 

structure’s exact loading and boundary conditions. In practice knowing the exact boundary 

condition and loading is not always possible. In most practical engineering situations, the loading 

is poorly defined or very complicated. Moreover, to accurately estimate the high stress gradients 

near a crack by FEA requires the use of special elements. BEM does not require discretization of 

the region close to the crack-tip like FEM does, but the theory related to BEM is more complicated 

than that of FEM. 
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Conventional FEA techniques are incapable of accurately representing the singular stress 

field adjacent to the crack-tip. This has led to the approach of including stress singularity over a 

finite region near the crack-tip in standard finite element analysis programs and superimposing the 

analytical and finite element solutions. This technique is commonly known as hybrid-FEA. 

Commercial FEA packages now include special crack-tip elements or process to skew the regular 

elements close to the crack-tip to accurately represent the crack nearby singular stress fields. 

However, numerical-analyses results face the challenge of heavily depending on accurate 

information of the loading and boundary conditions irrespective of what measures are taken to 

accurately represent the structure’s behavior near the crack. 

Experimental techniques of stress or SIF evaluation are another means of finding 

information of members containing cracks under complex situations. Such techniques include 

thermoelastic stress analysis (TSA), photoelastic stress analysis (PSA), digital image correlation 

(DIC), caustics and strain-gages. Besides not providing reliable edge data, traditional full-field 

experimental techniques have the drawback of not determining the individual stress components. 

TSA and PSA provide the sum and difference of the principal stresses, respectively, and DIC 

provides the displacements of the loaded structure. The first two techniques necessitate special 

experimental requirements (e.g., cyclic loading or special light source) and stress separation 

techniques. The latter typically requires differentiating the displacement data to obtain 

strains/stresses. Differentiating displacements to obtain strains is a numerically unreliable and 

risky procedure. The strain-gage determined SIF accuracy is affected by factors such as the crack’s 

strain gradient effects on the finite gage size, exact orientation and location of the gage with respect 

to the crack and possible three-dimensional effects near the crack-tip [117]. 
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All of the above challenges associated with theoretical, numerical and experimental stress 

analyses can be overcome by the present technique of stress analyzing loaded, finite, orthotropic 

components with cracks. The present study finds nearby crack-tip displacements/stresses and 

consequently SIF information based on DIC-recorded single displacement field at locations 

slightly away from the crack-tip. Stress separation and/or measured data differentiation are 

accomplished based on rigorous mechanics foundation by combining the measured data with a 

complex variables Airy stress function. The singularity does not need to be additionally imposed 

as it is inherently included in the measured quantities and included analytically by using an 

appropriate mapping function. The traction-free conditions of the crack-face is also imposed 

analytically by the mapping function and analytic continuation. This approach eliminates the need 

of using any FEA or hybrid-FEA programs with specially-formulated crack nearby elements. The 

method requires no information of the actual loading or boundary conditions. Once the stress fields 

in the plate are known including along the crack-face and adjacent to the crack-tip, the SIF can be 

determined subsequently by using concepts such as near crack stress/strain/displacement fields 

[16,17,22,118] or path independent integrals such as J-integral [77].  

With developments in computers processing capability and major improvements in digital 

cameras, full-field structural information such as displacement measurement is now readily 

possible, such as with digital image correlation (DIC). Acknowledging the numerous advantages 

DIC offers over other available experimental techniques, the present study utilizes FEA-predicted 

displacement information to replicate the DIC-measured displacement information in the 

developed displacement-based complex hybrid-method to obtain nearby crack-tip states of stress 

and displacement. The herein displacement-based hybrid-methods which use FEM-predicted 

simulated measurement input data are analogous to the DIC-hybrid method. 
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8.3. Literature Review 

8.3.1. FEA in Fracture Analysis 

Finite element analysis (FEA) is a popular tool for fracture analysis. Field variables in 

traditional FEA are interpolated using polynomials and are incapable of accurately representing 

the crack-tip square root singular stress fields. Without employing any special elements or 

formulations for the near-crack elements, conventional FEA requires a very fine mesh near the 

crack-tip to provide reliable results in those locations. This leads to slow convergence and 

significantly increases the computation time. These difficulties motivated the development of 

special crack-tip elements (CTE) in FEA tools. CTE were introduced in FEA to analyze fracture 

problems in the 1970s. The special CTE’s are formulated with shape functions that account for the 

crack-tip singular stress fields. This approach employs special element/elements in regions 

adjacent to the crack-tip and regular elements for rest of the structural domain and computes the 

crack analysis by matching the analytical solution of the region near the crack-tip with the finite 

element solution of its surrounding. This approach is commonly known as hybrid-finite element 

analysis. Though hybrid-FEA successfully fracture analyzes structures, the approach is mostly 

restricted to laboratory purposes. The major drawback that prevents hybrid-FEA to be used in 

commercial FEA programs is the shape function of the CTE not always being compatible with 

conventional FEM elements. Implementation of CTE in commercial FEA codes also causes 

algorithmic difficulties. However, these difficulties were overcome by the introduction of crack-

tip quarter-point elements (QPE). Significant growth and development in fracture mechanics was 

made with the use of QPEs in commercial FEA tools. Barsoum [119] and Henshell and Shaw [120] 

individually first proposed the idea of QPEs. By placing the mid-side node near the crack-tip at a 

quarter-point position, an inverse square root singularity is generated in the element. This 
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singularity arises from the non-linear mapping between the original and shifted local coordinates 

in the element. Unlike CTE, the QPE allows the entire structure to be modeled using the same 

element. This automatically satisfies the compatibility of the shape functions between adjacent 

QPE and regular elements near the crack-tip. In this present research collapsed quarter-point eight-

node quadrilateral elements are used by collapsing a side of an eight-node isoparametric 

quadrilateral element and moving the mid-side node of the crack-tip element to the quarter-point 

position [121]. Commercial FEA packages now include several in-built commands to calculate 

important fracture parameters such as SIF, J-integral, virtual crack extension and energy release 

rates. However, most of these commands are only applicable to homogenous isotropic materials. 

FEA packages ABAQUS and NASTRAN provides more flexibility in fracture analyzing cracked 

members. ABAQUS evaluates contour integrals for any linear fracture problem. However, quarter-

points elements are automatically generated only in ANSYS and requires to be manually created 

in ABAQUS. 

Recent developments such as extended finite element method (XFEM) and complex-

variable finite element method (ZFEM) are enabling FEM to handle more complex, non-linear 

fracture problems. Commercial finite element software such as ALTAIR and ABAQUS have 

XFEM implemented in their algorithms.  

 

8.3.2. Fracture Analysis of Composite Members 

Composite materials with directional properties and high strength- and stiffness-to-weight 

ratios have gained much attention as mechanical structures for a variety of applications. This has 

led to increased research interest in the field of structural mechanics and similarly in fracture 
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mechanics for refining classical concepts to handle anisotropic elasticity and in finding analytical 

solutions/numerical techniques to fracture analyze anisotropic materials. 

In solid mechanics Lekhnitskii [5] first provided analytical solutions for plane theory of 

rectilinear anisotropy using analytical functions of complex variables. Savin [6] refined some of 

these solutions and introduced several numerical solutions. In fracture mechanics, Sih, Paris and 

Irwin [122] were the pioneers to introduce rectilinear anisotropy.  

Bowie et al. utilized variety of techniques to analyze fracture in elastic members [7,123–

125]. Bowie and Neal [123] used complex variable techniques, i.e., a combination of a stress 

functions and conformal mapping with boundary collocation arguments in their modified boundary 

collocation method to analyze problems involving cracks. Stress functions were based on 

Muskhelishvili’s [15] continuation arguments to satisfy the traction-free boundary conditions 

along the crack-face and collocation method was utilized for the remaining boundary conditions 

[123]. Bowie and Freese [7] used Airy stress functions, conformal mapping, Laurent power-series 

expansion, boundary collocation and least squares to find SIFs of orthotropic rectangular sheets 

with central cracks. Meyerson [126] and Li and Cheng [127] also used conformal mapping in 

fracture analyses. 

Tong et al. [128] used the concept of complex variables technique with hybrid-FEA to 

successfully analyze cracks in homogenous materials. With the same efficiency and accuracy 

compared to isotropic materials, Tong [21] later extended this approach to rectilinear anisotropy. 

Joshi and Manepatil [129] employed boundary collocation to demonstrate the effects of variations 

in principal material directions and crack length on SIFs for inclined and/or eccentric cracks in 

finite orthotropic plates. Mandell et al. [130] obtained SIF for fractured anisotropic plates and 
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beams using hybrid stress model FEA which were supported by compliance tests. Saxce and Kang 

[131] used hybrid mongrel displacement FEA concept. Abdullah [132] compared the stress 

distributions in finite isotropic and orthotropic tensile plates containing a mode-I central crack. 

Arakere et al. [133] used FEA tool ANSYS along with FRANC3D fracture analysis software to 

determine mixed-mode SIF in an anisotropic foam material, results were supported 

experimentally. 

Feng et al. [134,135] used moiré displacement data with a smoothing function to find SIF 

in orthotropic members. Rhee and Rowlands [22] used the concept of Airy stress functions, 

conformal mapping, Laurent power-series expansion and expressions for crack-tip nearby stress 

fields with TSA-measured thermal information to find SIFs in orthotropic cracked members. They 

obtained KI for a central crack in a tensile glass-epoxy laminate by evaluating the associated stress 

functions from recorded thermoelastic data around the external boundary of a subregion containing 

the crack. Lin et al. [77] provided the concept of using TSA thermal data with Airy stress functions, 

conformal mapping, Taylor series expansion and J-integral to find SIF for orthotropic plates with 

cracks. Lin et al. analyzed an aluminum plate with centrally located crack from actual measured 

thermal data. Numerically-simulated input was employed for a central and single-edge crack 

orthotropic composite plates. He and Rowlands [136] again determined KI for a central crack in a 

composite by evaluating the associated stress functions from recorded temperature information 

away from the crack. They employed decomposed stress functions. Khalil et al. [118] employing 

Airy stress functions and conformal mapping developed expressions for the crack-tip nearby stress 

fields in their developed hybrid-FEA. Ju and Rowlands determined SIF for orthotropic members 

by least squares with distant measured TSA data [137,138] or FEA-predicted displacement data  

[139] based on the analytical concept provided by Khalil et al. [118]. In reference [140] Ju and 
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Rowlands demonstrated a method to determine exact crack-tip coordinates from measured TSA 

data and least squares. Baek et al. [141] utilized simulated isochromatic data, Airy stress functions, 

conformal mapping, non-linear least squares to find SIF for mixed-mode problems. Farahani et al. 

[142] used a hybrid experimental-numerical method based on TSA thermal data and analytical 

expressions of crack-tip nearby stress fields from William’s series to analyze mode-I fracture in 

an aluminum alloy. 

Using the coherent gradient sensing method, Liu et al. [143] evaluated KI for a crack 

extending vertically upward from the bottom edge of a composite beam subjected to four-point 

bending. Pariasamy and Tippur [144] also used coherent gradient sensing method to obtain crack-

tip deformation and SIF in an acrylic plate with a single-edge crack. Dai et al. [145] studied the 

deformation and fracture behavior associated with an opening-mode single-edge crack in a tensile 

glass-reinforced composite by digital speckle correlation.  

Shukla et al. [16] and Debaleena et al. [117] used strain-gages to find SIF in composite 

materials. Shukla et al. [16] determined KI in a single-edge notched glass-epoxy composite from a 

strain-gage which was appropriately positioned and orientated relative to the crack. 

Kim [146] numerically determined the SIFs in finite composites having single- and 

doubled-edge cracks using a path-independent J-integral which involves the tractions and 

displacements on a contour surrounding the crack. Perry and McKelvie [147] obtained the energy 

release rate in a cantilevered composite beam by evaluating the J-integral from recording both in-

plane displacement components using interferometric moiré. Kawahara and Brandon [148] and 

Frediani [149] used strain-gages and J-integral as line integral to develop direct experimental 

technique of measuring J-integrals for isotropic rectangular plates with cracks. However, Rice 
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[150] was the first to introduce the concept of J-integral in fracture mechanics. He showed that in 

a two-dimensional strain field of an elastic or elastic-plastic material the contour path integral or 

J-integral is independent of the path around the tip of a crack. Vavrik and Jandejsek [151] used 

DIC-measured information to obtain various fracture information including J-integral and used X-

ray radiography to observe the crack behavior in highly ductile aluminum alloys. Valaire et al. 

[152] used the concepts of J-integral to develop an approach to analyze fracture in composites and 

elastoplastic materials under mode-I and mixed-mode loading. Hein and Kuna [153] derived 

analytical expressions of J-integral to account for temperature dependent behavior of functionally 

graded materials, the approach was incorporated in FEM to analyze such material with a surface 

crack. Rabbolini et al. [154] processed DIC-measured information with least-squares regression 

algorithm to directly evaluate mode-I and mode-II stress intensity factor ranges for anisotropic 

single crystal materials. Dag et al. [155] developed a computational method established on J-

integral concept to analyze functionally graded materials with mixed-mode fracture. The results 

of the computational method were compared with those obtained experimentally from DIC. 

Similar technique by Dag [156] based on equivalent domain integral provided mode-I SIF for 

functionally graded materials under thermal loading. Lee et al. [157] evaluated the mode-I and 

mixed-mode SIFs in a single-edge notched graphite-epoxy plate from DIC measurements 

combined with Sih et al. [122] provided fracture concepts for quasi-static loading and Stroh [158] 

formulation for impact loading. The following References involves the concept of J-integral in 

fracture analyzing anisotropic materials: Tracy et al. [159], Cahill et al. [160], Catalanotti et al. 

[161], Gonzáles et al. [162] and Hedan et al. [163]. 

DIC due to its simplicity and ease of implementation is widely used in fracture studies. 

Using equations from Reference [16] and DIC measured information, Mogadpalli and 
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Parameswaran [17] determined KI for a single-edge crack aligned parallel to the fibers in a 

unidirectional laminate. Pataky et al. [164] measured stress intensity factors in anisotropic single-

crystal stainless steel using DIC measurements. Samarasinghe and Kulasiri [165] used DIC data 

combined with fracture concepts from Sih et al. [122] to evaluate SIF of a wood block containing 

a single-edge crack under tangential-longitudinal opening-mode loading. Meite et al. [166] used 

DIC-measured displacements and FEM based on Mθ-integral to study mixed-mode fracture 

characteristics in wood. Nunes and Reis [167] studied fracture parameters in a glass-fiber 

reinforced polymer composite with a single-edge crack under three-point bending using DIC. 

Koohbor et al. [168] used DIC to analyze an orthogonally woven composite member containing 

single-edge crack. Mallon et al. [169] also analyzed orthogonally woven composites with cracks 

using 3D-DIC, where SIF was obtained by utilizing DIC-determined displacement and strain data 

with an over-deterministic approach. Han et al. [170] used DIC to find fracture information for 

CFRP composite with a single-edge crack under uniaxial tension and three-point bending. The 

study also involved investigating the effect of pre-stress on fracture components. 

The analytical concepts behind the present hybrid experimental-analytical method are 

similar to the hybrid-FEA approach except this technique can conduct the crack analysis without 

requiring the need of any special element generation or its stiffness matrix formulation, nor 

requiring any FEA tools. The main advantages of this technique include not having to know the 

loading or boundary conditions like FEA or hybrid-FEA methods or not depending on 

experimental information near the crack-tip or edges which purely experimental techniques lack 

providing. It also offers inbuilt stress separation and simultaneous smoothing of the evaluated 

results and does not require differentiating measured displacement data.   
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The present approach utilizes a single displacement component to determine SIF for finite, 

tensile-loaded, orthotropic plates with fracture. The detail analytical approach of the fracture 

techniques to post-process the hybrid-method evaluated results are illustrated in this chapter. The 

method is validated using FEA-simulated data and the evaluated SIFs are compared with those 

found in the literature.  

 

8.4. Analytical Fracture Analysis of Orthotropic Plates 

8.4.1. General Comments 

Relative to determine the SIF of an orthotropic plate with crack, this section initially 

develops a hybrid-model to evaluate the in-plane stress and displacement fields in a loaded, finite, 

orthotropic plate containing a crack. This is accomplished by processing numerically predicted 

information (mostly displacement information) with complex variables Airy stress functions, 

conformal mapping, analytic continuation, power-series expansion of the stress functions and least 

squares to evaluate the unknown Airy stress coefficients. Knowing the Airy stress coefficients, the 

in-plane stresses, strains and displacements at locations near the crack-tip are known from the 

hybrid-model. The second part of the analysis utilizes the hybrid-method computed in-plane stress, 

strain and displacement components to find the SIF. This can be done in several different ways. 

Here some established fracture analysis methods available in literature are discussed that can 

effectively evaluate the SIF by post-processing the hybrid-method evaluated states of stress and/or 

displacement. 

Analytical procedures to evaluate SIF by these various methods are discussed in this 

section. However, details regarding the analytical background of the displacement-based hybrid-
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method are discussed in Chapter 2. The relevant mapping functions used to develop the hybrid-

method for stress analyzing orthotropic members with different crack configurations will be 

discussed subsequently. 

 

8.4.2. Laurent Series and Mapping Functions  

8.4.2.1. Central Crack 

For a plate with a central crack of length 2a at an angle α with one of the orthotropic 

material directions and crack center at zc = xc + μjyc for j = 1, 2, the general mapping function to 

map a unit circle, Γζ, and its exterior from region, Rζ, of the ζ-plane into a crack, Γz, and to its 

exterior region, Rz, in the physical z-plane is, Figure 8-1 [22,145] 

 𝑧 =  𝜔 𝜁 =
𝑎

2
𝑐𝑜𝑠𝛼 + 𝜇 𝑠𝑖𝑛𝛼 𝑒 𝜁 +  𝑒 𝜁 + 𝑧 ,   𝑗 = 1, 2 (8-1) 

The following inverse of equation (8-1) maps the crack, Γz, and its exterior region, Rz, from the 

physical z-plane to a unit circle, Γζ, and its exterior region, Rζ, in the ζ-plane [22] 

 
𝜁 =  

𝑒 𝑧 − 𝑧 ± 𝑧 − 𝑧 − 𝑎 𝑐𝑜𝑠𝛼 + 𝜇 𝑠𝑖𝑛𝛼

𝑎(𝑐𝑜𝑠𝛼 +  𝜇 𝑠𝑖𝑛𝛼)
,   𝑗 = 1, 2 

(8-2) 
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Figure 8-1: Conformal mapping of an inclined central crack from z-plane to unit circle in ζ-plane 
for a loaded orthotropic plate using equation (8-2) 

 

For a crack aligned along the x-axis of the material orthotropy, i.e., for α = 0, the expression 

for the mapping function of equation (8-1) and the inverse of the mapping function of equation 

(8-2) reduce to the following [7,22] 

 𝑧 =  𝜔 𝜁 =  
𝑎

2
𝜁 + 

1

𝜁
+  𝑧 , 𝑗 = 1, 2 (8-3) 

 

𝜔 𝑧 =  𝜁 =  
(𝑧 −  𝑧 )  ±  𝑧 −  𝑧 −  𝑎

𝑎
, 𝑗 = 1, 2 

(8-4) 

where a is the half crack length and zc = xc + μjyc is the center of the crack. The branch of the square 

root of the above equation (8-4) is chosen so that, | ζj | ≥ 1 for j = 1, 2. The derivative of the mapping 

function, ωj(ζj), of equations (8-1) and (8-3) with respect to the complex variables ζj for j = 1, 2, 

are respectively, 
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 𝜔 𝜁 =  
𝑎

2
𝑐𝑜𝑠𝛼 + 𝑢 𝑠𝑖𝑛𝛼 𝑒 −  

𝑒

𝜁
, 𝑗 = 1,2 (8-5) 

 and 

 
𝜔 𝜁 =  

𝑎

2
1 −  

1

𝜁
, 𝑗 = 1,2 (8-6) 

 

8.4.2.2. Edge Crack 

Consider a plate with an edge crack of length a within region Rz, and R′z as the region 

containing the reflection of the edge crack, Figure 8-2. Equation (8-7) maps a unit circle, Γζ + Γ′ζ, 

and its exterior region, Rζ + R′ζ, of the ζ-plane to the edge crack and its reflection, Γz + Γ′z, and its 

exterior region, Rz + R′z, into the physical z-plane, Figure 8-2. The crack is perpendicular to the 

loading direction [171,172]. Details on the mapping function of equation (8-7) are provided in 

Appendix N. 

 𝜔 𝜁 = 𝑧 =
𝑖𝑎𝜇

2
𝜁 −  𝜁 + 𝑧 ,   𝑗 = 1, 2 (8-7) 

The inverse of the mapping function of equation (8-7) is 
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𝜁 =  

− 𝑧 − 𝑧 ±  𝑧 − 𝑧
 

− 𝑎 𝜇

𝑖𝑎𝜇
,   𝑗 = 1, 2 

(8-8) 

where a is the edge crack length and zc is the location of the edge of the crack. The branch of the 

square root of the above equation (8-8) is chosen so that, | ζj | ≥ 1 for j = 1, 2. 

 

 

Figure 8-2: Conformal mapping of an edge crack from z-plane to unit circle in ζ-plane for a 
vertically loaded orthotropic plate according to the inverse mapping function of equation (8-8) 

 

Differentiation of the mapping function of equation (8-7) with respect to the complex variables ζj 

for j = 1, 2, is 

 𝜔 𝜁 =  − 
𝑖𝑎𝜇

2
1 + 

1

𝜁
,   𝑗 = 1, 2 (8-9) 
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8.4.3. Stresses, Strains and Displacements 

Combining the concepts of complex variables Airy stress functions, analytic continuation 

and Laurent power series expansion, the complete states of stress and displacement in a plane-

stressed orthotropic member can be expressed as equations (2-70) through (2-72), and equations 

(2-68) and (2-69), respectively. Depending on the crack type and its orientation with respect to 

material direction x, the mapping function in equations (2-68) through (2-72) changes. For a 

centrally inclined crack one uses equations (8-2) and (8-5), for a central crack along material 

symmetry x-axis one employs equations (8-4) and (8-6), and for an edge crack one uses equations 

(8-8) and (8-9) as ζj and ω′j(ζj) for j = 1, 2, respectively, in equations (2-68) through (2-72). Once 

the expressions for the in-plane displacements and stresses are developed for a certain crack type, 

the DIC-recorded u- or v-displacement data (in this case FEA-predicted displacement information) 

selected at locations away from the crack-tip are incorporated into either equation (2-68) or 

equation (2-69), from which the unknown complex variables Airy stress coefficients, cj, are 

derived. Knowing the Airy coefficients and using them in equations (2-68) and (2-69), the in-plane 

displacements and in equations (2-70) through (2-72), the in-plane stresses are obtained throughout 

the plate. This includes at locations close to the crack-tip. Substituting the known in-plane stresses 

of equations (2-70) through (2-72) into equation (2-34) gives the in-plane strains. 

 

8.4.4. Taylor Series and Mapping Function 

Although the use of the Laurent series to express the stress functions is emphasized here, 

the same could have been done using a Taylor series. A detailed example of this will be 

demonstrated in the following Chapter 9. When using the Taylor series, a mapping function that 
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maps a half-plane from the ζ-plane to a crack in the physical z-plane is selected, equation (8-10). 

The crack is considered to be located along the negative x-axis with the crack-tip at the coordinate 

origin, i.e., at z = 0 [21,77]. 

 𝑧 = 𝜔 𝜁 = − 𝜁 , 𝑗 = 1, 2 (8-10) 

The inverse of the mapping function of equation (8-10) is 

 𝜁 = 𝜔 𝑧 =  𝑖 𝑧  , 𝑗 = 1, 2 (8-11) 

The branch of the square root of the above equation is chosen so that Imζj ≥ 0 for j = 1, 2. When 

using the Taylor series to expand the stress functions, in-plane stresses and displacements are 

evaluated from equations (2-57) through (2-61).  

 

8.4.5. Evaluating the SIF 

8.4.5.1. Method-1 (Khalil/Ju’s Concept) 

The technique was originally proposed by Khalil et al. [118] and later used by Ju and 

Rowlands [137] and Ju [139] to study orthotropic plates with inclined cracks. Khalil et al. [118] 

developed a super element for their hybrid-finite element approach to find SIF in anisotropic 

materials. To formulate the stiffness matrix of the super elements they used the mathematical 

concept of complex variables Airy stress functions for anisotropic members provided by 

Lekhnitskii [5] along with conformal mapping. The individual stress functions were expressed as 
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simple polynomials of the complex variables in the mapped plane and related to each other by the 

surface tractions on the boundaries. The crack-tip singularity of the stress field was included 

through the use of conformal mapping of equation (8-12). The coordinate system was taken such 

that the sharp crack lay along the negative portion of the z-plane with the crack-tip at z = 0 and zj 

= x + μjy for j = 1, 2 [118]. 

 𝑧 = 𝜔 𝜁 = 𝜁 , 𝑗 = 1, 2 (8-12) 

The complex material properties, μj = αj ± iβj, used in the expression of the complex variables, zj 

= x + μjy for j = 1, 2, are obtained from the roots of the complex variables Airy stress functions 

characteristic equation (2-14).  

The SIF of the plane anisotropic member near the crack-tip were evaluated based on the 

following expressions provided by Sih, Paris and Irwin [122] 

 

𝐾 +
𝐾

𝜇
= −√2

𝜇

𝜇
− 1 lim

→ 
𝛷 (𝜁 ) 

𝐾 +
𝐾

𝜇
= √2 1 −

𝜇

𝜇
lim

→ 
𝛹 (𝜁 ) 

(8-13) 

Khalil expressed the near crack-tip displacement fields in an anisotropic material as [118,139] 

 𝑢 = 𝐷 (𝑧 , 𝑧 )𝛾

  

 (8-14) 
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 𝑣 = 𝐸 (𝑧 , 𝑧 )𝛾

  

 (8-15) 

The γj are stress coefficients and N is the number of displacement terms retained, where for N = 1, 

j = 2N = 2, i.e., for one displacement term there are two stress coefficients, γj and γj+N. The terms 

Dj and Ej are functions of the orthotropic material properties and coordinate locations as following 

 𝐷 = 2𝑅𝑒 𝑝 𝑧 +  𝑝 𝑀 𝑧  (8-16) 

 𝐷 =  2𝑅𝑒 𝑖𝑝 𝑧 +  𝑝 𝑀 𝑧  (8-17) 

 𝐸 = 2𝑅𝑒 𝑞 𝑧 +  𝑞 𝑀 𝑧  (8-18) 

 𝐸 =  2𝑅𝑒 𝑖𝑞 𝑧 +  𝑞 𝑀 𝑧  (8-19) 

where pj and qj for j = 1, 2, are complex material properties and are defined in equations (2-30). 

Also [118,139] 

 𝑀 =  −   and  𝑀 =  
 

− 𝑖    for odd values of j (8-20) 
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 𝑀 =  −1 +  𝑖
 

  and  𝑀 = −𝑖     for even values of j (8-21) 

According to Khalil’s concept the singular stress fields near the crack-tips are expressed as 

[118,137] 

 𝜎 = 𝐴 (𝑧 , 𝑧 )𝛾

  

 (8-22) 

 𝜎 = 𝐵 (𝑧 , 𝑧 )𝛾

  

 (8-23) 

 𝜎 = 𝐶 (𝑧 , 𝑧 )𝛾

  

 (8-24) 

where Aj, Bj and Cj are also functions of the orthotropic material properties and coordinate locations 

of the area being analyzed. These are expressed as [118,137] 

 𝐴 = 𝑗𝑅𝑒 𝜇 𝑧 + 𝜇 𝑀 𝑧  (8-25) 

 𝐴 = 𝑗𝑅𝑒 𝑖𝜇 𝑧 +  𝜇 𝑀 𝑧  (8-26) 



275 
 

 
 

 𝐵 = 𝑗𝑅𝑒 𝑧 + 𝑀 𝑧  (8-27) 

 𝐵 = 𝑗𝑅𝑒 𝑖𝑧 +  𝑀 𝑧  (8-28) 

 𝐶 = −𝑗𝑅𝑒 𝜇 𝑧 +  𝜇 𝑀 𝑧  (8-29) 

 𝐶 = −𝑗𝑅𝑒 𝑖𝜇 𝑧 +  𝜇 𝑀 𝑧  (8-30) 

Khalil et al. showed that at locations very close to the crack-tip, the stresses are dominated 

by the two stress coefficients γ1 and γ1+N, which again can be expressed in terms of SIF, KI and KII, 

respectively, as [118,137,139] 

 𝐾 = √2𝜋 1 −
𝛽

𝛽
𝛾 + 

𝛼 −  𝛼

𝛽
𝛾  (8-31) 

 𝐾 = −√2𝜋 𝛼 − 𝛼
𝛽

𝛽
𝛾 +  𝛽 −  𝛽 + 𝛼

𝛼 − 𝛼

𝛽
𝛾  (8-32) 

Therefore, to evaluate the complete states of stress and displacement of an orthotropic member 

from equations (8-22) through (8-24) and equations (8-14) and (8-15), respectively, one needs to 

know the stress coefficients γj. This can be achieved by processing measured (FEM-predicted in 

this case) information with any one or a combination of these equations and using least squares. A 
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simultaneous system of linear equations is formed by utilizing measured information with 

individual/combined analytical expressions of the in-plane displacements and/or stresses. The 

number of utilized measured quantities are kept higher than the number of unknowns. Such 

examples include utilizing measured displacement data in the loading direction, v, in equation 

(8-15) to obtain equation (8-33), where Ej just depends on equations (8-18) through (8-21). If both 

the in-plane displacements, u and v, are utilized then by using equations (8-14) through (8-21) the 

expression of equation (8-34) is obtained. If the orthotropic plate’s complete states of stress and 

displacement are used to find the stress coefficients, such can occur while using FEA-predicted 

information, then combining equations (8-14) through (8-30) gives equation (8-35).  

 {𝑣} = [𝐸 𝐸 … 𝐸 𝐸 … 𝐸 𝐸 ] 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛾
𝛾
⋮

𝛾
𝛾

⋮
𝛾

𝛾 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (8-33) 

or, 

 
𝑢
𝑣

=
𝐷 𝐷 … 𝐷 𝐷 … 𝐷 𝐷

𝐸 𝐸 … 𝐸 𝐸 … 𝐸 𝐸
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛾
𝛾
⋮

𝛾
𝛾

⋮
𝛾

𝛾 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (8-34) 

or, 
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⎩
⎪
⎨

⎪
⎧

𝑢
𝑣

𝜎
𝜎
𝜎 ⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐷 𝐷 … 𝐷 𝐷 … 𝐷 𝐷

𝐸 𝐸 … 𝐸 𝐸 … 𝐸 𝐸

𝐴 𝐴 … 𝐴 𝐴 … 𝐴 𝐴

𝐵 𝐵 … 𝐵 𝐵 … 𝐵 𝐵

𝐶 𝐶 … 𝐶 𝐶 … 𝐶 𝐶 ⎦
⎥
⎥
⎥
⎥
⎤

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛾
𝛾
⋮

𝛾
𝛾

⋮
𝛾

𝛾 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (8-35) 

Equations (8-33) through (8-35) can be re-written as equation (8-36) which can be solved for the 

stress coefficients, γj, using least squares. 

 {Input Values} =  [Constants] Stress Coefficients 𝛾  (8-36) 

The number of terms to retain in the summation series can be determined based on any of 

the following techniques: (1) by checking the root mean square; (2) by comparing the contours 

between the input and reconstructed quantities or (3) by checking the condition number of the 

matrix [Constants] in equation (8-36) and all (1) - (3) techniques for varying number of stress 

coefficients. Knowing the stress coefficients, the respective SIFs can then be obtained from 

equations (8-31) and/or (8-32). 

 

8.4.5.2. Method-2 (J-Integral Concept) 

For 2-D problems the contour integral J is defined as [148–150] 
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 𝐽 = 𝑊 𝑑𝑥 − 𝑻.
𝑑𝒖

𝑑𝑥
𝑑𝑠  (8-37) 

where Γ is a contour surrounding the crack, 𝑊 =  ∫ 𝜎 𝑑𝜀   is the strain energy density at points 

on Γ, T is the traction vector along Γ, u is the displacement vector for points on Γ, ds is a selected 

arc length on Γ and x1′ and x2′ are directions along and perpendicular to the crack-face, respectively, 

(Figure 8-3). If deformation-induced geometric changes are negligible in a material, then some 

properties of the J-integral are [148,150]  

- The value of J is path-independent. The J-integral can be evaluated knowing the 

stresses/strains and displacement gradients either close or far from the crack-tip.  

- The value of J is a measure of crack-tip stress-strain intensity field.  

- With respect to the crack length, J equals the variation rate of the total potential energy. 

According to the directions of the coordinate system and path Γ shown in Figure 8-3, the 

J-integral for a plane-stressed elastically deformed material can be written as [149] 

 𝐽 =
1

2
(𝜎 𝜀  +  𝜎 𝜀 +  2𝜎 𝜀 )𝑑𝑥 −  𝜎 𝑛

𝜕𝑢

𝜕𝑥
𝑑𝑠  (8-38) 

or, 
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𝐽 =
1

2
(𝜎 𝜀  +  𝜎 𝜀 +  2𝜎 𝜀 )𝑑𝑥 − (𝜎 𝑛

𝜕𝑢

𝜕𝑥
 

+  𝜎 𝑛
𝜕𝑢

𝜕𝑥
 +  𝜎 𝑛

𝜕𝑢

𝜕𝑥
 +  𝜎 𝑛

𝜕𝑢

𝜕𝑥
)𝑑𝑠  

(8-39) 

where direction 1' is along the crack length and direction 2' is perpendicular to the crack. The path 

Γ starts from the lower flank of the crack and proceed to the upper flank in a counter-clockwise 

direction. Typically, measurement of J along any path Γ is relatively difficult. However, this can 

be simplified by selecting suitable integration paths. 

 

 

Figure 8-3: Coordinate system for J-integral 
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The in-plane stresses and strains required to evaluate the J-integral according to equation 

(8-39) are known from the hybrid stress analysis method. However, the displacement gradients 

need to be evaluated. This can be done by the same analytical concept used to find the in-plane 

stresses and displacements from the hybrid stress analysis approach. As the stress functions Φ(z1) 

and Ψ(z2) are analytic functions, the Cauchy-Reimann condition for an analytic function F(z) of 

equation (8-40) is applicable when differentiating the displacements u and v of equations (2-68) 

and (2-69), respectively, with any coordinate axis. For a crack along the negative x-axis, 

differentiating the displacement components of equations (2-47) and (2-48) with respect to x one 

can obtain the normal strain εxx and rotation component  as equations (8-41) and (8-42), 

respectively. 

 
𝜕𝑅𝑒𝐹(𝑧)

𝜕𝑥
=  

𝜕𝐼𝑚𝐹(𝑧)

𝜕𝑦
= 𝑅𝑒

𝑑𝐹(𝑧)

𝑑𝑧
 and  

𝜕𝐼𝑚𝐹(𝑧)

𝜕𝑥
= − 

𝜕𝑅𝑒𝐹(𝑧)

𝜕𝑦
= 𝐼𝑚

𝑑𝐹(𝑧)

𝑑𝑧
 (8-40) 

and 

 
𝜀 =  

𝜕𝑢

𝜕𝑥
= 2𝑅𝑒{𝑝 𝛷 (𝑧 ) + 𝑝 𝛹 (𝑧 )} (8-41) 

 𝜕𝑣

𝜕𝑥
= 2𝑅𝑒{𝑞 𝛷 (𝑧 )  +  𝑞 𝛹 (𝑧 )} (8-42) 

Using the expressions of Φ′(z1) and Ψ′(z2) from equations (2-66) and (2-67), respectively, in 

equations (8-41) and (8-42) the following new expressions for normal strain εxx and rotation 

component  of equations (8-43) and (8-44), respectively, are obtained (when using a Laurent 
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series for the stress functions). Similarly, when using a Taylor series, the expressions of Φ′(z1) and 

Ψ′(z2) from equations (2-55) and (2-56), respectively, into equations (8-41) and (8-42) give εxx and 

 as equations (8-45) and (8-46), respectively. 

 

𝜕𝑢

𝜕𝑥
= 𝜀 = 2

⎝

⎜
⎛

𝑅𝑒 𝑝
𝑗𝑐 𝜁

𝜔 (𝜁 )
 +  𝑝

−𝑗𝑐̅ 𝐵𝜁 +  𝑗𝑐 𝐶𝜁  

𝜔 (𝜁 )

  

  
  ⎠

⎟
⎞

 (8-43) 

and 

 

𝜕𝑣

𝜕𝑥
= 2

⎝

⎜
⎛

𝑅𝑒 𝑞
𝑗𝑐 𝜁

𝜔 (𝜁 )
 +  𝑞

−𝑗𝑐̅ 𝐵𝜁 +  𝑗𝑐 𝐶𝜁  

𝜔 (𝜁 )

  

  
  ⎠

⎟
⎞

 (8-44) 

or, 

 
𝜕𝑢

𝜕𝑥
= 𝜀 = 𝑅𝑒 𝑖 𝑗𝑝 𝜁  +  𝑗𝑝 𝐶𝜁 𝑐 −  𝑖 𝑗𝑝 𝐵𝜁 𝑐̅

  

 (8-45) 

and 

 
𝜕𝑣

𝜕𝑥
= 𝑅𝑒 𝑖 𝑗𝑞 𝜁  +  𝑗𝑞 𝐶𝜁 𝑐 −  𝑖 𝑗𝑞 𝐵𝜁 𝑐̅

  

 (8-46) 
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where the expressions for pj, qj (for j = 1, 2), B and C are provided in equations (2-30), (2-50) and 

(2-51), respectively.  

To simplify the analytical procedures involved in computing the J-integration, the J-

integral is evaluated along a square path ABCDEFG at a distance, dint, from the crack-tip, z = x + 

μjy = 0, Figure 8-4. For each line segment of the integration path the contribution to J-integral is 

derived separately and then added to find the total J-integral. For a crack aligned along x-axis, the 

contribution of the J-integral from the individual line segments according to Figure 8-4 are 

 

 

Figure 8-4: J-integral square path Γ 

 

For line AB: nx = − 1, ny = 0 and ∫ 𝑑𝑠 =  − ∫ 𝑑𝑦, equation (8-39) simplifies to 



283 
 

 
 

 
𝐽 =  

1

2
𝜎 𝜀  +  𝜎 𝜀  +  𝜎 𝛾 𝑑𝑦 −  𝜎

𝑑𝑢

𝑑𝑥
  +  𝜎

𝑑𝜈

𝑑𝑥
𝑑𝑦  (8-47) 

For line BC: nx = 0, ny = − 1, dy = 0 and ∫ 𝑑𝑠 =  ∫ 𝑑𝑥, equation (8-39) simplifies to 

 
𝐽 =  𝜎

𝑑𝑢

𝑑𝑥
  +  𝜎

𝑑𝜈

𝑑𝑥
𝑑𝑥  (8-48) 

For line CDE: nx = 1, ny = 0, dx = 0 and ∫ 𝑑𝑠 =  ∫ 𝑑𝑦, equation (8-39) simplifies to 

 
𝐽 =  

1

2
𝜎 𝜀  +  𝜎 𝜀  +  𝜎 𝛾 𝑑𝑦 − 𝜎

𝑑𝑢

𝑑𝑥
  +  𝜎

𝑑𝜈

𝑑𝑥
𝑑𝑦  (8-49) 

For line EF: nx = 0, ny = 1, dy = 0 and ∫ 𝑑𝑠 =  − ∫ 𝑑𝑥, equation (8-39) simplifies to 

 
𝐽 =  𝜎

𝑑𝑢

𝑑𝑥
 +  𝜎

𝑑𝜈

𝑑𝑥
𝑑𝑥  (8-50) 

For line FG: nx = − 1, ny = 0 and ∫ 𝑑𝑠 =  − ∫ 𝑑𝑦, equation (8-39) simplifies to 

 
𝐽 =  

1

2
𝜎 𝜀  +  𝜎 𝜀  +  𝜎 𝛾 𝑑𝑦 − 𝜎

𝑑𝑢

𝑑𝑥
  +  𝜎

𝑑𝜈

𝑑𝑥
𝑑𝑦  (8-51) 

As the integrands of J are comparatively complex, a numerical integration based on the Gaussian 

Quadrature rule and employing higher number of Gaussian points is used to compute the J-integral. 
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The integrations are conducted along the preselected path Γ, i.e., the square AB-BC-CD-DE-EF-

FG of Figure 8-4. It is not necessary that the integration path and the region over which measured 

data are utilized to determine the Airy coefficients coincide. Knowing the Airy coefficients, in-

plane stresses, strains and displacement slopes throughout the plate, including on the traction-free 

region and along the integration path, are evaluated from which the J-integral thus the SIF is 

determined. 

J-integral is related to the SIF, K, and the Griffith’s strain energy release rate function, G. 

For a plane-stressed, orthotropic, tensile-loaded plate with a crack along the negative x-axis and 

the strong/stiff material direction 1 aligned along the crack-face, i.e., along x-axis, Griffith’s strain 

energy release rate function, G, and SIF, K, for opening-mode (mode-I, GI, KI) and shear-mode 

(mode-II, GII, KII) can be related as follows [77,173,174] 

 

𝐺 =  
𝐾

(2𝐸 𝐸 )
 

𝐸

𝐸
 +  

𝐸

2𝐺
 −  𝜈  (8-52) 

 

𝐺 =  
𝐾

𝐸 √2
 

𝐸

𝐸
 +  

𝐸

2𝐺
 −  𝜈  (8-53) 

A more general expression to relate  KI and GI in terms of orthotropic material’s elastic 

compliances is [130] 
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 𝐺 = 𝐾
𝑎 𝑎

2

𝑎

𝑎
 +  

2𝑎  +  𝑎

2𝑎
 (8-54) 

where ai'j' are the elastic compliance from the generalized Hooke’s law with direction 1′ being 

parallel to the crack and direction 2′ perpendicular to the crack. For linear elasticity, J is expressed 

in terms of both GI and GII as [150] 

 𝐽 = 𝐺  +  𝐺  (8-55) 

For mode-I crack, KII = GII = 0 and thus GI = J. Substituting this into equation (8-52) and re-

arranging, the SIF can be expressed in terms of J-integral and orthotropic plate’s material 

properties as 

 
𝐾 =  

𝐽 𝐸 𝐸

(𝛼∗ +  𝛽∗)/2
 (8-56) 

where 𝛼∗ = 𝐸 /𝐸  and 𝛽∗ = (𝐸 /2𝐺 − 𝜈 ) and strong/stiff material direction 1 is parallel 

to the crack-face along x-direction. However, from equation (8-54), for a plate with a crack along 

the x-axis and the strong/stiff material direction 1 perpendicular to the crack, one can obtain the 

following relation between KI and J 
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 𝐾 =  
𝐽 𝐸 𝐸

(𝛼∗ +  𝛽∗)/2
 (8-57) 

where 𝛼∗ = 𝐸 /𝐸  and 𝛽∗ = (𝐸 /2𝐺 −  𝜈 𝐸 /𝐸 ) and strong/stiff material direction 1 

is perpendicular to the crack which is located along the x-direction. 

 

8.4.5.3. Method-3 (Mogadpalli and Parameswaran’s Concept) 

For an orthotropic member containing an edge crack, Shukla et al. [16] developed 

expressions for the crack-tip strain fields which Mogadpalli and Parameswaran [17] later expanded 

to crack-tip displacement fields. Shukla et al. [16] used the semi-inverse method suggested by 

Westergaard [175] and later modified by Sanford [176] to solve the biharmonic characteristic 

equation of the Airy stress function for mode-I crack, with the crack located at y = 0. For a crack 

in an orthotropic plate aligned along one of the principal material axes under opening-mode 

loading, the near crack-tip strain fields are expressed as [16] 

 

𝜀 =  
𝛼 − 𝛽

2𝛼
{𝑎 − 𝑎 (𝛼 + 𝛽) }𝑅𝑒𝑍 +  

𝛼 + 𝛽

2𝛼
{𝑎 − 𝑎 (𝛽 − 𝛼) }𝑅𝑒𝑍

+
𝛽

2𝛼
{𝑎 (𝛼 + 𝛽) − 𝑎 }𝑅𝑒𝑌 +

𝛽

2𝛼
{𝑎 − 𝑎 (𝛽 − 𝛼) }𝑅𝑒𝑌  

(8-58) 
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𝜀 =  
𝛼 − 𝛽

2𝛼
{𝑎 − 𝑎 (𝛼 + 𝛽) }𝑅𝑒𝑍 +  

𝛼 + 𝛽

2𝛼
{𝑎 − 𝑎 (𝛽 − 𝛼) }𝑅𝑒𝑍

+
𝛽

2𝛼
{𝑎 (𝛼 + 𝛽) − 𝑎 }𝑅𝑒𝑌 +

𝛽

2𝛼
{𝑎 − 𝑎 (𝛽 − 𝛼) }𝑅𝑒𝑌  

(8-59) 

 𝛾 =
𝑎

2𝛼
(𝛼 − 𝛽 ){𝐼𝑚𝑍 − 𝐼𝑚𝑍 } −

𝑎 𝛽

2𝛼
{(𝛽 + 𝛼)𝐼𝑚𝑌 − (𝛽 − 𝛼)𝐼𝑚𝑌 } (8-60) 

where Zk and Yk for k = 1, 2 are complex functions and for a finite plate are  

 𝑍 (𝑧 ) = 𝑀 𝑧

  

,    𝑘 = 1, 2 (8-61) 

 𝑌 (𝑧 ) = 𝑁 𝑧 ,

  

    𝑘 = 1, 2 (8-62) 

and 

 𝑧 = 𝑥 + 𝑖(𝛽 + 𝛼)𝑦,    𝑧 = 𝑥 + 𝑖(𝛽 − 𝛼)𝑦   and   𝑖 =  √−1 (8-63) 

 2𝛽 =  
  

 + ,     2𝛼 =  
  

 −  (8-64) 

According to the strain-displacement relations of equation (2-7), integrating equation 

(8-58) with respect to x and equation (8-59) with respect to y, the u and v displacement components 

in the x-y plane are obtained as [17] 
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𝑢 =  
𝛼 − 𝛽

2𝛼
{𝑎 − 𝑎 (𝛼 + 𝛽) }𝑅𝑒�̅� +  

𝛼 + 𝛽

2𝛼
{𝑎 − 𝑎 (𝛽 − 𝛼) }𝑅𝑒�̅�

+
𝛽

2𝛼
{𝑎 (𝛼 + 𝛽) − 𝑎 }𝑅𝑒𝑌 +

𝛽

2𝛼
{𝑎 − 𝑎 (𝛽 − 𝛼) }𝑅𝑒𝑌

+ 𝑔(𝑦) 

(8-65) 

 

𝑣 =  {𝑎 − 𝑎 (𝛼 + 𝛽) }
( )

+  
( )

{𝑎 − 𝑎 (𝛽 − 𝛼) }
( )

+

{𝑎 (𝛼 + 𝛽) − 𝑎 }
( )

+ {𝑎 − 𝑎 (𝛽 − 𝛼) }
( )

+ 𝑓(𝑥)  

(8-66) 

where 

 �̅� (𝑧 ) =
2

2𝑗 + 1
𝑀 𝑧

  

,     𝑘 = 1, 2 (8-67) 

 𝑌 (𝑧 ) =
1

𝑗 + 1
𝑁 𝑧 ,    𝑘 = 1, 2

  

 (8-68) 

The above-mentioned equations are derived by taking the origin of the coordinate at the crack-tip 

and crack aligned along x-axis at y = 0. Here aij are the elastic compliances of the orthotropic 

material. M and N in equations (8-61) through (8-62) and equations (8-67) and (8-68) are the 

number of terms required for accurate representation of the strain and displacement fields, 

respectively. The coefficients Mj and Nj are real and are chosen in such a way that the boundary 

conditions are satisfied. The terms f(x) and g(y) in the displacement expressions of equations (8-65) 
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and (8-66) are unknown functions of integration and expressed as equations (8-69) and (8-70), 

where C0, D1 and D2 are constants from the structure’s rigid body motion.  

 𝑓(𝑥) = 𝐶 𝑥 + 𝐷  (8-69) 

 𝑔(𝑦) =  −𝐶 𝑦 + 𝐷  (8-70) 

Shukla et al. [16] showed that the coefficient M0 is directly related to the opening-mode SIF, KI, 

as 

 𝐾 = 𝑀 √2𝜋 (8-71) 

To evaluate KI from equation (8-71) one needs to know the coefficient M0, which can be obtained 

by processing measured displacement data with equations (8-65) and/or (8-66). The process of 

using measured displacement data in the loading direction, v, to evaluate KI will be demonstrated. 

To aid the analysis process, equation (8-66) is simplified and re-written as  

 𝑣 = 𝐿 𝐼𝑚�̅� + 𝐿 𝐼𝑚�̅� + 𝐿 𝐼𝑚𝑌 + 𝐿 𝐼𝑚𝑌  (8-72) 

where 
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𝐿 =
𝛼 − 𝛽

2𝛼(𝛼 + 𝛽)
{𝑎 − 𝑎 (𝛼 + 𝛽) }, 𝐿 =

𝛼 + 𝛽

2𝛼(𝛽 − 𝛼)
{𝑎 − 𝑎 (𝛽 − 𝛼) },

𝐿 =
𝛽

2𝛼(𝛼 + 𝛽)
{𝑎 (𝛼 + 𝛽) − 𝑎 }, 

𝐿 =
𝛽

2𝛼(𝛽 − 𝛼)
{𝑎 − 𝑎 (𝛽 − 𝛼) } 

(8-73) 

For the physically loaded plate, the contribution from the rigid body motion, i.e., f(x) can 

be neglected. Combining equations (8-67) and (8-68) into equation (8-72) (where Lj for j = 1 to 4 

are provided in equation (8-73)) and re-writing in matrix form gives equation (8-74). The only 

unknowns in equation (8-74) are the coefficients Mj and Nj. All other values are either known 

measured values (v) or quantities that depend on the plate’s material properties and x-y coordinate 

locations (equation (8-75)). Equation (8-74) can be written as (8-76) and solved for coefficients 

Mj and Nj using least squares. 

 {𝑣} = 𝐼𝑚[𝑔 𝑔 … 𝑔 𝑔 𝑔 … 𝑔 ] 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑀
𝑀

⋮
𝑀

𝑁
𝑁
⋮

𝑁 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (8-74) 

where 
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𝑔 = 2 𝐿 𝑧 + 𝐿 𝑧 , 𝑔 =
2

3
𝐿 𝑧 + 𝐿 𝑧 ,  

𝑔 =
2

2𝑗 + 1
𝐿 𝑧 + 𝐿 𝑧 , 𝑔 = 𝐿 𝑧 + 𝐿 𝑧 ,  

𝑔 =
1

2
(𝐿 𝑧 + 𝐿 𝑧 ), 𝑔 =

1

𝑗 + 1
𝐿 𝑧 + 𝐿 𝑧  

(8-75) 

 {Input Values} =  [Constants] Coefficients (𝑀 + 𝑁 )  (8-76) 

Mogadpalli and Parameswaran suggested [17] using at least M + N ≥ 12 terms in the series 

expansion of the displacements to obtain an accurate SIF. 

 

8.4.5.4. Method-4 (Sih, Paris and Irwin’s Concept) 

Sih, Paris and Irwin’s near crack-tip approximation for orthotropic materials in terms of 

the three modes of loading is utilized here. For an opening-mode or mode-I crack, the stresses and 

displacements in the vicinity of the crack-tip can be expressed as [22,122]  

 𝜎 =  
𝐾

(2𝜋𝑟)
𝑅𝑒

𝜇 𝜇

𝜇 −  𝜇
 

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
− 

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
 (8-77) 

 𝜎 =  
𝐾

(2𝜋𝑟)
𝑅𝑒

1

𝜇 −  𝜇
 

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
−  

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
 (8-78) 
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 𝜎 =  
𝐾

(2𝜋𝑟)
𝑅𝑒

𝜇 𝜇

𝜇 −  𝜇
 

1

(cos 𝜃 +  𝜇 sin 𝜃) /
− 

1

(cos 𝜃 +  𝜇 sin 𝜃) /
 (8-79) 

 𝑢 = 𝐾 √2𝜋𝑟𝑅𝑒
1

𝜇 − 𝜇
𝜇 𝑝 cos 𝜃 + 𝜇 sin 𝜃 − 𝜇 𝑝 cos 𝜃 + 𝜇 sin 𝜃  (8-80) 

 𝑣 = 𝐾 √2𝜋𝑟𝑅𝑒
1

𝜇 − 𝜇
𝜇 𝑞 cos 𝜃 + 𝜇 sin 𝜃 − 𝜇 𝑞 cos 𝜃 + 𝜇 sin 𝜃  (8-81) 

For mode-II loading the stresses and displacements in the vicinity of the crack-tip are as [22,122] 

 𝜎 =  
𝐾

(2𝜋𝑟)
𝑅𝑒

1

𝜇 −  𝜇
 

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
−  

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
 (8-82) 

 𝜎 =  
𝐾

(2𝜋𝑟)
𝑅𝑒

1

𝜇 − 𝜇
 

1

(cos 𝜃 +  𝜇 sin 𝜃) /
−  

1

(cos 𝜃 +  𝜇 sin 𝜃) /
 (8-83) 

 𝜎 =  
𝐾

(2𝜋𝑟)
𝑅𝑒

1

𝜇 −  𝜇
 

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
−  

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
 (8-84) 

 𝑢 = 𝐾 √2𝜋𝑟𝑅𝑒
1

𝜇 − 𝜇
𝑝 cos 𝜃 + 𝜇 sin 𝜃 − 𝑝 cos 𝜃 + 𝜇 sin 𝜃  (8-85) 

 𝑣 = 𝐾 √2𝜋𝑟𝑅𝑒
1

𝜇 − 𝜇
𝑞 cos 𝜃 + 𝜇 sin 𝜃 − 𝑞 cos 𝜃 + 𝜇 sin 𝜃  (8-86) 
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Coordinates r and θ are measured from the crack-tip. For a crack along the X-axis of 

material orthotropy, i.e., α = 0, Figure 8-1, equations (8-78) and (8-84) give the SIF for mode-I 

and mode-II cracks at θ = 0 , r << a, respectively [22] 

 𝐾 =  𝜎 √2𝜋𝑟 (8-87) 

 𝐾 =  𝜎 √2𝜋𝑟 (8-88) 

where σyy and σxy of equations (8-87) and (8-88) are obtained from the hybrid stress analysis 

method. For a plate with an inclined crack, i.e., α ≠ 0, a stress transformation between the plate’s 

global and crack’s local coordinates need to be established. 

 

8.4.5.5. Method-5 (Bao’s Concept) 

According to Bao et al. [93], for a plane-stressed finite orthotropic member with a crack 

along principal directions of material symmetry and taking into account the rescaling from the 

plate’s dimensionality, linearity and orthotropy, the SIF for an orthotropic material under opening-

mode loading can be expressed as 

 𝐾 =  𝜎 √𝜋𝑎𝑌(𝜌)𝐻
𝑎

𝑊
 (8-89) 

where Y(ρ) is the correction factor due to material orthotropy and H(a/W) is the correction factor 

for geometry dependence (accounts for the plate’s finite/infinite width with respect to the crack 
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length). For λ1/4 (L/W) ≥ 2.0 the effect of plate’s length over its width can be neglected. Here λ and 

ρ are dimensionless parameters expressed in terms of the composite’s elastic compliances and 

were first proposed and defined by Suo [177] as 

 𝜆 =
𝑎

𝑎
,   𝜌 =

1

2
(2𝑎 + 𝑎 )(𝑎 𝑎 ) /    (8-90) 

where directions 1 and 2 represent the plate’s orthotropic material directions and for Suo’s analyses 

the material direction 1 was taken along the crack-face in the x-direction. Thus direction 1 is along 

the crack-face. Bao et al. [93] provided an single expression for the function Y(ρ) which they claim 

is 95% - 98% accurate for a central, single-edge or double-edge notched plate. Bao’s expression 

for Y(ρ) is 

 𝑌(𝜌) = 1 + 0.1(𝜌 − 1) − 0.016(𝜌 − 1) + 0.002(𝜌 − 1)  (8-91) 

Bao et al. [93] showed that the rescaling factor H(a/W) for geometry dependence of an 

orthotropic plate is the same function as that for isotropic materials provided by Tada et al. [178]. 

The expression of H(a/W) for plates with three different types of cracks under opening-mode 

loading are [93] 



295 
 

 
 

 𝐻
𝑎

𝑊
=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1 + 0.122 cos
𝜋𝑎

𝑊

𝑊

𝜋𝑎
tan

𝜋𝑎

𝑊
                                              DEC

2𝑊

𝜋𝑎
tan

𝜋𝑎

2𝑊

0.752 + 2.02
𝑎
𝑊

+ 0.37 1 − sin
𝜋𝑎
2𝑊

cos
𝜋𝑎
2𝑊

 SEC

1 − 0.025
2𝑎

𝑊
+ 0.06

2𝑎

𝑊
sec

𝜋𝑎

𝑊
                               CC

 (8-92) 

where a is the half crack length for a central crack and length of each of the edge cracks for a 

single- or double-edge crack, W is the plate’s width. Bao’s expressions for SIF are typically valid 

for materials with 0 ≤ ρ ≤ 4 and 0.05 ≤ λ ≤ 20. 

 

8.4.5.6. Shukla’s Analytical Method for SIF in Single-Edge Crack 

Plate 

Shukla et al. [16] provided a closed-form solution to find the SIF of orthotropic plates with 

a single-edge crack based on equations (8-93) and (8-94).  

 𝐾 = 𝐻(𝑎/𝑊)𝜎 √𝑎 (8-93) 

where H(a/W) is a calibration factor of a SEC-plate and is defined in terms of the crack-length, a, 

to plate-width, W, ratio, a/W, as 

 𝐻(
𝑎

𝑊
) = 1.99 − 0.41

𝑎

𝑊
+ 18.7

𝑎

𝑊
− 38.48

𝑎

𝑊
+ 53.85

𝑎

𝑊
 (8-94) 
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8.5. Numerical Analyses 

Four different plates were considered to demonstrate the displacement-based hybrid-

method’s ability to stress analyze fracture in orthotropic plates. The plates had different 

dimensions, crack types, material properties, fiber orientations and crack-opening to plate-width 

ratios. The plates were selected intentionally to observe the effect of these various factors (plate 

type/crack type/material type) on the DIC-hybrid (here based on using FEA-predicted 

displacement data) evaluated displacements and stresses. 

 

8.5.1. Plate Details 

The first orthotropic plate analyzed (plate-1) contains a centrally-located crack of 2a/W = 

0.2, Figure 8-5(a). The second orthotropic plate (plate-2) has a single-edge crack of a/W = 0.3, 

Figure 8-5(b). Plate details are provided in Table 8-1 (dimensions and loading) and in Table 8-2 

(material properties). The two plates were analyzed by Lin et al. [77]. Plate-1 (plate with central 

crack) was also analyzed by Bowie and Freese [7] and by Saxce and Kang [131]. Plate-2 (plate 

with the single-edge crack) was originally analyzed by Mandell et al. [130] and then by Saxce and 

Kang [131]. Plate-1 has the principal material direction 1 along the crack surface in the x-direction. 

For plate-2 the principal material direction 1 is perpendicular to the crack-face and in the loading 

direction.  

The second set of plates analyzed are orthotropic plates with a single-edge crack of a/W = 

0.37 (plate-3), Figure 8-5(c), and double-edge cracks of 2a/W = 0.75 (plate-4), Figure 8-5(d). Both 

of these plates have the strong/stiff material direction 1 along the crack-face in x-direction. 

Dimensions and loading details of the plates and their material properties are provided in Table 
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8-3 and Table 8-4, respectively. Plate-3 was originally analyzed by Mogadpalli and Parameswaran 

[17]. Plate-4 is the same as that of plate-3 except it has double-edge cracks instead of a single-edge 

crack. Plate-4 has 2a/W = 0.75 whereas a/W = 0.37 for plate-3.  

From the externally applied load, F*, and the far-field dimensions of the plates, the far-

field applied stress, σ0, on the plates were calculated according to equation (8-95), Table 8-1 and 

Table 8-3. 

 𝜎 = 𝐹∗/𝑊𝑡 (8-95) 
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(a) (b) 

 
 

(c) (d) 

Figure 8-5: Nomenclatures for plate with (a) Central crack (Plate-1), (b) Single-edge crack 
(Plate-2), (c) Single-edge crack (Plate-3) and (d) Double-edge cracks (Plate-4). The coordinate 

directions are selected based on the respective mapping functions used to stress analyze the 
plates 
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Table 8-1: Details [77] for plate-1 with central crack from Bowie and Freese [7] and plate-2 with 
single-edge crack from Mandell et al. [130] 

Plate Parameters Central Crack 

(Plate-1)  

Single-Edge Crack 

(Plate-2) 

Crack length, a 12.7 mm (half of 
total crack length 2a) 

38.1 mm 

Crack-opening to plate-width ratio  2a/W = 0.2 a/W = 0.3 

Width, W  127 mm 127 mm 

Length, L 127 mm 762 mm 

Thickness, t 5.28 mm 5.28 mm 

Applied load, F* 4.45 kN (1,000 lbs) 4.45 kN (1,000 lbs) 

Far-field stress, σ0 6.64 MPa 6.64 MPa 

 

Table 8-2: Material properties for plate-1 with central crack from Bowie and Freese [7] and 
plate-2 with single-edge crack from Mandell et al. [130] 

Plate’s Elastic Properties Central Crack 

(Plate-1) 

Single-Edge Crack 

(Plate-2) 

Elastic modulus in strong/stiff 
direction, E11 

206.85 GPa (30 × 106 psi) 144.8 GPa (18.3 × 106 psi) 

Elastic modulus in transverse 
direction, E22 

82.74 GPa (12 × 106 psi) 11.7 GPa (1.7 × 106 psi) 

Major Poisson’s ratio, ν12 0.3 0.27 

Shear modulus, G12 50.47 GPa (7.32 × 106 psi) 8.3 GPa (1.2 × 106 psi) 
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Table 8-3: Details for plate-3 with single-edge crack from Mogadpalli and Parameswaran [17] 
and similar plate-4 with double-edge cracks 

Plate Parameters Single-Edge Crack 

(Plate-3) 

Double-Edge Cracks 

(Plate-4) 

Crack length, a 11.2 mm 11.2 mm 

Crack-opening to plate-width ratio a/W = 0.37 2a/W = 0.75 

Width, W 30 mm 30 mm 

Length, L 130 mm 130 mm 

Thickness, t 3.6 mm 3.6 mm 

Applied load, F* 300 N (67.4 lbs) 300 N (67.4 lbs) 

Far-field stress, σ0 2.78 MPa 2.78 MPa 

 

Table 8-4: Material properties for plate-3 with single-edge crack from Mogadpalli and 
Parameswaran [17] and similar plate-4 with double-edge cracks  

Plate’s Elastic Properties 
SEC (Plate-3) and  

DEC (Plate-4) 

Elastic modulus in strong/stiff direction, E11 39.8 GPa (30 × 106 psi) 

Elastic modulus in transverse direction, E22 17.7 GPa (12 × 106 psi) 

Major Poisson’s ratio, ν12 0.29 

Shear modulus, G12 5 GPa (7.32 × 106 psi) 

 

8.5.2. Finite Element Model 

FEA tool ANSYS APDL was used to generate FEAs of the four plates according to the 

dimensions and loading conditions provided in Table 8-1 and Table 8-3. All plates were modeled 
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using isoparametric element Plane 183 with eight-nodes per element. Plate-1 and plate-4 have 

geometric and loading symmetry about both the x- and y-axes so only one quarter of those plates 

were modeled. Plate-2 and plate-3, being symmetrical about the horizontal center-line, only half 

of these plates were modeled. Appropriate symmetrical boundary conditions were imposed and 

for all four plates the origin of the coordinate system was at the crack-tip. Assigned material 

properties are those of Table 8-2 and Table 8-4 for the respective plates. ‘KSCON’ command was 

used to generate focused mesh at the crack-tip and ‘skewed element’ option was used to make the 

crack-tip elements singular, Figure 8-6. The final quarter plate FEM model for plate-1 with central 

crack had 2,166 eight-node quadratic isoparametric elements (which includes 6 quarter-point 

elements at the crack-tip) and a total of 6,599 nodes, Figure 8-7(a). The half model of Plate-2, with 

the single-edge crack, had 6,135 quadratic isoparametric elements (including 6 quarter-point 

elements) and 18,676 nodes, Figure 8-7(b). The half FEM model of Plate-3 with the single-edge 

crack had a total of 3,391 elements (including the quarter-point elements) and 10,316 nodes, Figure 

8-8(a). The quarter FEM model of Plate-4 (double-edge cracks) had 2,100 elements (including the 

quarter-point elements) and 6,443 nodes, Figure 8-8(b). Both plate-3 and -4 had 16 quarter-point 

elements at the crack-tips. Due to the far-field applied external load, F*, and plate dimensions, all 

plates experienced a far-field stress of σ0 according to equation (8-95).  
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Figure 8-6: ANSYS quarter-point elements near crack-tip 

 

 
 

(a) (b) 

Figure 8-7: FEMs of orthotropic plate with (a) Central crack (quarter model of plate-1) and (b) 
Single-edge crack (half model of plate-2) 
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(a) (b) 

Figure 8-8: FEMs of orthotropic plate with (a) Single-edge crack (half model of plate-3) and (b) 
Double-edge cracks (quarter model of plate-4) 

 

8.6. Displacement-Based Hybrid Stress Analysis 

8.6.1. Data Selection and Stress and Displacement Evaluation 

All of the nodal information, i.e., node coordinates, stress and displacement information 

from ANSYS APDL computed FEA results were exported into Excel and post-processed using 

MATLAB to stress analyze the respective plates.  

Using the mapping function of equation (8-3) for plate-1, a Laurent series expansion for 

the Airy stress functions of equations (2-68) through (2-72) enables one to full-field stress analyze 

the plate. By combining equation (8-4) with either equation (2-68) or (2-69) and using nFEA = 2,076 
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FEA-predicted u- or v-displacements, respectively, it is possible to solve the developed system of 

linear equations for the unknown Airy coefficients, cj = aj + ibj, by least squares. Employing the 

evaluated Airy coefficients, cj, in equations (2-68) and (2-69) plus equation (8-4) provides the in-

plane displacement components. By similarly combining equations (8-4) and (8-6) with equations 

(2-70) through (2-72) gives the in-plane stresses. The number of coefficients to use in equations 

(2-68) through (2-72) was selected based on the RMS plot of Figure 8-9 and by comparing the 

FEA-predicted and hybrid-method reconstructed input displacement contours. By these k = 8 was 

selected.  

The same procedure as those for plate-1 were followed to full-field stress analyze plate-2 

from FEA-predicted displacement data. The only difference is that the inverse mapping function 

of equation (8-8) was used to map the edge crack of plate-2 from the Z = X + μjY-plane to a unit 

circle in ζ-plane. This analysis was done using both the in-plane displacements u and v as input 

and applying the symmetry boundary condition σXY = 0 at h = 81 equally spaced locations beyond 

the crack, i.e., along Y = 0 to (W – a) at X = 0. The plate was loaded in the X-direction as the 

mapping function considers the crack being transverse to the loading direction [171]. To evaluate 

the unknown coefficients nFEA = 2 × 3,835 FEA-predicted u- and v-displacements (in equations 

(2-68) and (2-69)) and h = 81 imposed symmetry conditions (in equation (2-72)) were utilized. 

The number of Airy coefficients to retain in the summation series was chosen based on the RMS 

plot of Figure 8-10 which suggests using k = 8. 

Plate-3 and -4 were analyzed using the mapping function of equation (8-10) and the Taylor 

series expansion of the Airy stress functions. The inverse of the mapping function of equation 

(8-11) was used in equation (2-61) to obtain the expression for the in-plane v-displacement field. 

Using nFEA (Table 8-5) FEA-predicted v-displacement values in this newly obtained expression of 
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v, the unknown Airy coefficients, cj, were obtained by least squares. Substitution of the evaluated 

cj in equations (2-57) through (2-61) enabled full-field stress/displacement analyses of the plates. 

Again, the number of Airy coefficients to full-field stress analyze the plates were chosen based on 

the RMS plot of Figure 8-11 and Figure 8-12. The RMS suggestions for k were re-checked by 

comparing the FEA-predicted and hybrid-method reconstructed input displacement contours for 

varying k. For plate-3 and -4, k = 5 and k = 10 were selected, respectively. For both plates k ≥ 5 

had no significant effect on the evaluated results. 

Details on the hybrid-methods are provided in Table 8-5. It must be noted that the stress 

analyses for the plates were essentially done by just using either only v or u displacement data and 

without imposing any symmetry or finite boundary conditions, except for plate-2. This was done 

intentionally to investigate whether the accuracy of the hybrid-method depends on knowing the 

finite boundary conditions or not. 
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Figure 8-9: RMS of the FEA-predicted and reconstructed displacement data versus the number 
of Airy stress coefficients, k, for nFEA = 2,076 u- or v-displacements of plate-1 and Laurent series 

 

 

Figure 8-10: RMS of the FEA-predicted and reconstructed displacement data versus the number 
of Airy stress coefficients, k, for nFEA = 2 × 3,835 u- and v- displacements plus h = 81 of plate-2 

and Laurent series 
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Figure 8-11: RMS of the FEA-predicted and reconstructed displacement data versus the number 
of Airy stress coefficients, k, for nFEA = 3,499 v-displacements of plate-3 and Taylor series 

 

 

Figure 8-12: RMS of the FEA-predicted and reconstructed displacement data versus the number 
of Airy stress coefficients, k, for nFEA = 2,277 v-displacements of plate-4 and Taylor series 

 



308 
 

 
 

Table 8-5: Hybrid analyses details for plate-1 through -4  

Plate 
No. 

Complex 
material 

properties 

Hybrid-method’s 
input quantity 

Employed 
FEA-predicted 
displacements 

Imposed 
boundary 
condition 

No. of 
complex Airy 
coefficients 
employed 

1 
μ1 = 1.58i 

μ2 = i 
u or v nFEA = 2,076 h = 0 

k = 8 

(Laurent) 

2 
μ1 = 3.73i 

μ2 = 0.88i 

u, v and 

symmetrical BC 
nFEA = 2×3,835 h = 81 

k = 8 

(Laurent) 

3 
μ1 = 2.66i 

μ2 = 0.56i 
v nFEA = 3,499 h = 0 

k = 5 

(Taylor) 

4 
μ1 = 2.66i 

μ2 = 0.56i 
v nFEA = 2,277  h = 0 

k = 10 

(Taylor) 

 

8.6.2. Determination of SIF 

Once the complete states of displacement and stress are known in an orthotropic, finite-

width, member involving crack from the hybrid stress analysis method, the stress and/or 

displacement information can be used in any of the established crack analysis approaches to 

determine the SIF. Determination of SIF or other crack related parameters is thus just an additional 

post-processing of the hybrid-method provided information on the structure’s state of stress. 

Accuracy of the obtained SIF strongly depends on the accuracy of results from the hybrid-method. 

Any reliable fracture technique can be coupled with the hybrid-method to evaluate the SIF. From 

the numerous fracture analysis techniques available in literature, five methods are mainly 

discussed here. The SIF results obtained from these methods based on the hybrid-method 

computed (based on FEM input data) or direct FEM-provided stress or displacement information 
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are compared with values reported in the literature. In some cases, SIF results from a closed form 

solution are also provided for comparison. 

For plate-1 and -2 according to method-4 (Sih, Paris and Irwin’s concept), the hybrid-

method computed in-plane stresses in the loading direction are used in equation (8-87), 

respectively. From this the mode-I SIF, KI, is evaluated. Results will be reported in Table 8-6 for 

plate-1 and Table 8-7 and Table 8-8 for plate-2. SIF determination is a post-processing of the 

hybrid-method evaluated results. For plate-2 the state of stress is obtained from the hybrid-method 

relative to the X-Y global coordinates and the SIF is obtained from the Sih, Paris and Irwin’s 

method relative to the x-y crack local coordinates, Figure 8-5(b). 

The concept of J-integral was also used to evaluate the SIF for plate-1. The hybrid-method 

provided complete states of displacement and stress near a crack were obtained from equation 

(2-68) through (2-72). Using the stresses of equations (2-70) through (2-72) and the elastic 

compliances of equation (2-18) in equations (2-3) through (2-5), the in-plane strains were obtained. 

Thus, the in-plane stresses and strains in the expression for J-integral of equation (8-39) are known. 

The expressions for the displacement gradients ∂u/∂x and ∂v/∂x used in equation (8-39) are 

obtained from equations (8-43) and (8-44). The J-integral is evaluated along a square path 

enclosing the crack in a counter clock-wise direction from the crack’s lower flank to the upper 

flank according to Figure 8-4. The expression for the J-integral of equation (8-39) is simplified 

according to equations (8-47) through (8-51) for each of the path segments. The integration is 

computed using numerical integration based on the Gaussian Quadrature rule. The contributions 

of J from the various line segments are added to evaluate the total J value. SIF for mode-I loading, 

KI, is obtained using the evaluated J in equation (8-56). 
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For plate-3 and -4, KI are also evaluated using the concept of J-integral. The same 

procedure as that outlined for plate-1 is followed to evaluate KI for plate-3 and -4 using J-integral. 

However, for these analyses the Airy stress functions were expanded by the Taylor series. The in-

plane displacements and stresses were computed from equations (2-57) through (2-61) using the 

mapping function of equation (8-10). The displacement gradients ∂u/∂x and ∂v/∂x were evaluated 

from equations (8-45) and (8-46). KI were also evaluated for plate-3 and -4 from Bao’s [93] closed 

form solutions of equations (8-89) through (8-92). 

 

8.7. Khalil’s Concept 

The states of stress/displacement and SIFs of plate-1 and -2 were also evaluated using the 

analytical procedure provided by Khalil et al. [118] and later utilized by Ju and Rowlands 

[137,139]. For both plates v-displacements were processed according to equation (8-15) combined 

with equations (8-18) through (8-21). The system can thus be expressed as equation (8-33). The 

unknown stress coefficients of equation (8-33) are evaluated by least squares according to equation 

(8-36). Knowing the stress coefficients, the displacement components u and v are evaluated using 

equations (8-14) through (8-21). Similarly, the in-plane stresses are obtained from equations (8-20) 

through (8-30). The SIF under mode-I loading is then obtained from equation (8-31). The data 

selection ranges of utilized v did not have significant effect on the evaluated results. These two 

analyses were done only using v-displacements nFEA = 2,031 for plate-1 and nFEA = 2,858 for plate-

2. The selected FEA-predicted v-displacement data originated at a radial distance r = 0.1a away 

from the crack-tip. 
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An additional analysis was done using both the in-plane displacements and all three of the 

in-plane stresses as input in this method to obtain better correlation for plate-1 between the FEA-

predicted v-displacements and reconstructed v-displacements (from Khalil’s method). This was 

achieved using the expression of u and v from equations (8-14) and (8-15) combined with 

equations (8-16) through (8-21) plus using the expressions of σxx, σyy and σxy from equations (8-22) 

through (8-30) along with equations (8-20) and (8-21). This provided a system of linear 

expressions of equations (8-35) and which was solved according to equation (8-36) using least 

squares. 

The number of terms to retain in the summation series was selected based on the RMS plot 

of the FEA-predicted and Khalil’s method reconstructed input quantity/quantities. While utilizing 

only v-displacement data to stress analyze the plates according to Figure 8-13 for plate-1, γ2N = 16 

and for plate-2 according to Figure 8-14, γ2N = 36 was utilized. For the second analysis of plate-1 

utilizing all in-plane displacements and stresses as input, Figure 8-15 suggests γ2N = 8.  
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Figure 8-13 RMS versus number of stress coefficients, γ2N, for plate-1 from Khalil’s method 
using FEM-predicted v-displacements as input 

 

 

Figure 8-14: RMS versus number of stress coefficients, γ2N, for plate-2 from Khalil’s method 
using FEM-predicted v-displacements as input 

 



313 
 

 
 

 

Figure 8-15: RMS versus number of stress coefficients, γ2N, for plate-1 from Khalil’s method 
using FEM-predicted u, v, σxx, σyy and σxy as input 

 

8.8. Results 

8.8.1. Hybrid Stress Analysis Results 

Using only the FEA-predicted u- or v–displacement data in the hybrid stress analysis 

method for plate-1, -3 and -4, the in-plane displacements and stresses in the cracked plates were 

determined and compared with the direct FEA predictions. For plate-2, both u- and v-

displacements were used along with imposed symmetrical boundary conditions. For each of the 

plates good agreement prevails between the reconstructed displacements and stresses from the 

hybrid complex stress analysis with those initially predicted by FEA. All location and 

displacement data are normalized by the crack length, a; for a central crack ‘a’ is half of the total 

crack length and for edge cracks ‘a’ is the length of an individual crack. The stresses are 

normalized by the far-field stress, σ0, according to equation (8-95). Figure 8-16 through Figure 

8-20 compare the hybrid-method computed in-plane displacements and stresses with the input 
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FEA-predictions for the four different plates. The good agreement between the hybrid (based on 

FEM simulated input) and direct/conventional FEM results indicates the high reliability of the 

hybrid-method. Accurate evaluation of SIFs by utilizing these hybrid-based results are therefore 

substantiated.  

 

  
(a) (b) 

Figure 8-16: Contours of (a) v/a and (b) u/a for plate-1 from hybrid-method (top half) using nFEA 
= 2,076 FEM-predicted u-displacements, Laurent series expansion and k = 8 and from FEA 

(bottom half) 
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(a) (b) 

  
(c) (d) 

 Figure 8-17: Contours of (a) σyy/σ0, (b) σxx/σ0, (c) σxy/σ0 and (d) εxx for centrally-cracked plate-1 
from hybrid-method (top half) using nFEA = 2,076 FEM-predicted u-displacements, Laurent 

series and k = 8 and from FEA (bottom half) 
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(a) (b) 

  

(c) (d) 

Figure 8-18: Contours of (a) u/a, (b) σXX/σ0, (c) σYY/σ0 and (d) σXY/σ0 for SEC plate-2 from 
hybrid-method (top half) using nFEA= 2 × 3,835 FEM-predicted u- and v-displacements, Laurent 

series and k = 8 and from FEA (bottom half) 
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(a) (b) 

Figure 8-19: Contours of (a) v/a and (b) σyy/σ0 from hybrid-method (top half) for SEC plate-3 
based on nFEA = 3,499 FEM-predicted v-displacements, Taylor series and k = 5 and FEA (bottom 

half)  
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(a) (b) 

  

(c) (d) 

 Figure 8-20: Contours of (a) v/a, (b) σyy/σ0, (c) σxx/σ0 and (d) σxy/σ0 for DEC plate-4 from hybrid-
method (top half) based on nFEA = 2,277 FEM-predicted v-displacements, Taylor series and k = 

10 and FEA (bottom half)  
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8.8.2. SIF Results 

The SIFs for the four orthotropic plates are evaluated by processing the hybrid-method 

evaluated in-plane displacements and stresses with fracture analysis techniques available in the 

literature. For plate-1 the SIF is evaluated individually using the concept of J-integral (method-2) 

and Sih, Paris and Irwin concept (method-4), Table 8-6. The original results by Bowie and Freese 

[7] plus those by Saxce and Kang [131] and Lin et al. [77] are also provided in Table 8-6. The SIF 

evaluated by hybrid-method combined with the J-integral method or Sih, Paris and Irwin’s concept 

exactly agree with those provided by Bowie and Freese [7], Saxce and Kang [131] and Lin et al. 

[77]. This validates the hybrid-method’s ability to accurately evaluate the state of stress of a 

centrally-cracked orthotropic plate-1. That the hybrid result is independent of the J-integral path, 

dint, or the distance from the crack-tip, r, for r  <<  a are also noticeable and significant. 

 

Table 8-6: SIF results for plate-1 from hybrid-method and the literature 

Distance 
from crack-
tip, r or dint 
= 

Normalized SIF, 
√

 

Hybrid + J-
integral 

with FEM v 

Hybrid + Sih, 
Paris & Irwin’s 

Method with 
FEM v 

Bowie 
and 

Freese 
[7] 

Saxce 
and 

Kang 
[131] 

Lin et al. 
[77] 

0.1a 1.0366 - 

1.04 1.048 1.036 

0.2a 1.0367 1.040 

0.3a 1.0367 1.043 

0.5a 1.0367 1.052 

0.7a 1.0368 1.067 

 



320 
 

 
 

For plate-2 the SIF are obtained employing the Sih, Paris and Irwin’s concept for varying 

distance, r, from the crack-tip using either a single displacement component or both the 

displacement components, Table 8-7 and Table 8-8, respectively. SIF results for plate-2 of Table 

8-8 agree well with those originally provided by Mandell et al. [130] (hybrid-FEA supported by 

compliance tests) and later by Saxce and Kang [131] (hybrid-FEA). These results again 

demonstrate the reliability of the hybrid stress analysis method. 

 

Table 8-7: SIF for plate-2 from hybrid-method (using only FEM-predicted u as input) and the 
literature 

Distance 
from crack-
tip, r = 

Normalized SIF, 
√

 

Hybrid + Sih, 
Paris & Irwin’s 

method and FEM v 

Mandell at al. 
[130] 

Saxce 
and Kang 

[131] 

0.1a 1.751 

1.768 1.758 0.2a 1.645 

0.3a 1.603 
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Table 8-8: SIF for plate-2 from hybrid-method (using FEM-predicted both u and v as input) and 
the literature 

Distance 
from crack-
tip, r = 

Normalized SIF, 
√

 

Hybrid + Sih, 
Paris & Irwin’s 

method and 
FEM v and u 

Mandell et al. 
[130] 

Saxce and 
Kang [131] 

0.1a 1.848 

1.768 1.758 

0.2a 1.842 

0.3a 1.838 

0.5a 1.838 

0.7a 1.866 

 

For plate-3 and -4 the SIFs are evaluated using the J-integral method, and the closed-form 

solutions provided by Bao et al. [93], Table 8-9. For plate-3 the obtained SIF results from the 

hybrid-method (with FEA predicted input) combined with the J-integral approach and directly 

from Bao’s closed-form solutions are compared with that originally evaluated by Mogadpalli and 

Parameswaran [17]. The SIF results show good agreement, especially between those from the 

hybrid-method and Mogadpalli and Parameswaran. KI for plate-3 was also obtained using the 

closed-form solution provided by Shukla et al., i.e., using equations (8-93) and (8-94), Table 8-9. 

For the similar DEC plate-4 the SIF obtained from hybrid-method results processed by J-integral 

agree well with that estimated by Bao’s method. 

 

 



322 
 

 
 

Table 8-9: SIF results for SEC plate-3 and similar DEC plate-4 

Plate 
type 

KI/σ0√a from  

Hybrid and J-
integral using 

FEM-
predicted v-

displacements 

Bao et al. [93] 

Directly from 
Mogadpalli and 
Parameswaran 

[17] 

Shukla et al. 
[16] 

SEC 

(Plate-3) 
3.77 

3.99 

(KI = 1.2 MPa.√m) 

3.65 

(KI = 1.1 MPa.√m) 
3.46 

DEC 

(Plate-4) 
2.90 

2.75 

(KI = 0.82 
MPa.√m) 

- - 

 

8.8.3. Khalil’s Fracture Analysis Method 

Plate-1 was analyzed according to Khalil’s method [118] by using FEA-predicted v-

displacement (Figure 8-21) or all the in-plane displacements and stresses (Figure 8-22). Plate-2 

was analyzed according to this method using only FEA-predicted v-displacement, Figure 8-23.  

The somewhat poor match (plate-1) between the FEA-provided and Khalil’s method reconstructed 

displacement v of Figure 8-21(a), is what motivated further analyzing the plate utilizing FEA 

predicted all displacement and stress information, Figure 8-22.  

The RMS plots of Figure 8-13 and Figure 8-15 for plate-1 suggested using γ2N ≥ 16 and γ2N 

≥ 8, respectively, in the summation series for the respective analyses. The plots of the normalized 

SIF of Figure 8-24 and Figure 8-25 of plate-1 show that after γ2N = 10 (Figure 8-24) and γ2N = 8 

(Figure 8-25) the evaluated KI are reasonably constant. For second analysis of plate-1 the evaluated 

SIFs after γ2N = 8 up to γ2N = 30, changes within 1.22 % - 4.34 %, Figure 8-25 and Table 8-10. For 
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the first analysis of plate-1, γ2N = 16 (Figure 8-21) and for the second analysis γ2N = 8 (Figure 8-22) 

were used. 

For plate-2 the RMS plot (Figure 8-14) suggests using γ2N ≥ 36 whereas the plot of 

normalized KI for varying γ2N  in Figure 8-26 and Table 8-11 shows little difference between the 

evaluated SIF for γ2N = 28 to 50. The stress analysis (Figure 8-23) was conducted for γ2N = 36. 
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(a) (b) 

  

(c) (d) 

Figure 8-21: Contours of (a) v/a, (b) σyy/σ0, (c) σxx/σ0 and (d) σxy/σ0 for plate-1 from Khalil’s 
concept (top half) using nFEA = 2,031 FEM-predicted v-displacements and γ2N = 16 and from 

FEA (bottom half) 
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(a) (b) 

  

(c) (d) 

Figure 8-22: Contours of (a) v/a, (b) σyy/σ0, (c) σxx/σ0 and (d) σxy/σ0 for plate-1 from Khalil’s 
concept (top half) using nFEA = 5 × 2,031 u, v, σxx, σyy and σxy FEM-predicted displacements and 

stresses and γ2N = 8 and from direct FEA (bottom half) 
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(a) (b) 

  

(c) (d) 

Figure 8-23: Contours of (a) v/a, (b) σyy/σ0, (c) σxx/σ0 and (d) σxy/σ0 for plate-2 from Khalil’s 
concept (top half) using nFEA = 2,858 FEM-predicted v-displacements and γ2N = 36 and from 

direct FEA (bottom half) 
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Figure 8-24: Effect of number of stress coefficients, γ2N, utilized on the evaluated SIF for plate-1 
from Khalil’s concept using FEM-predicted v-displacements as input 

 

 

Figure 8-25: Effect of number of stress coefficients, γ2N, utilized on the evaluated SIF for plate-1 
from Khalil’s concept using FEM-predicted displacements and stresses u, v, σxx, σyy and σxy as 

input 
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Table 8-10: Effect of number of employed stress coefficients on the evaluated SIF for plate-1 
from Khalil’s method using FEM-predicted v or u, v, σxx, σyy and σxy as input 

No. of stress 
coefficients, γ2N 

Normalized SIF, 
√

 for input of 

 FEM v FEM u, v, σxx, σyy and σxy 

8 1.02 0.899 

10 1.08 0.91 

16 1.07 0.86 

20 1.06 0.87 

30 1.03 0.90 

 

 

Figure 8-26: Effect of number of stress coefficients, γ2N, utilized on the evaluated SIF for plate-2 
from Khalil’s concept using nFEA = 2,858 FEM-predicted v-displacements 
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Table 8-11: Effect of number of employed stress coefficients on the evaluated SIF for plate-2 
from Khalil’s method using FEM-predicted v-displacements as input 

No. of stress 
coefficients, γ2N 

Normalized SIF, 

√
 

28 1.6338 

32 1.6344 

36 1.6365 

40 1.6358 

44 1.6342 

48 1.6346 

50 1.6352 

 

Results demonstrate that when working with the Khalil’s method to stress analyze a plate, 

it is typically insufficient to employ only a single component of measured displacement as input, 

Figure 8-21. More input information is required to better predict the overall behavior of the loaded 

plate, Figure 8-22. A higher number of stress coefficients is also required when using only a single 

component of measured information, i.e., γ2N = 16 (Figure 8-13) in Khalil’s method compared to 

k = 8 (Figure 8-10) in hybrid-method for plate-1 when employing a single component of measured 

displacement to stress analyze the plate. The present hybrid-method (i.e., combining measured 

information with analytical expression) does not experience these limitations and can very easily 

predict the behavior of an orthotropic cracked plate using only a single component of measured 

displacement and by utilizing only a few Airy stress coefficients. 
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8.8.4. Results for Single-Edge Crack Orthotropic Plate 

Table 8-12 compares the SIF obtained for plate-2 using results from various crack analysis 

studies with the plate available in literature, directly from Khalil’s method [118] and from the 

hybrid-method coupled with Sih, Paris and Irwin’s [122] fracture analysis method using FEA v- 

or both v- and u-displacement data. Also the SIF of the plate is obtained from the closed-form 

solutions provided by Bao et al. [93] and Shukla et al. [16] to find KI in single-edge cracked 

orthotropic plate, i.e., using equations (8-89) through (8-92) and equations (8-93) and (8-94), 

respectively, Table 8-12. 

All of these analyses are for the same orthotropic plate (Plate-2 details provided in Table 8-1 and 

Table 8-2) with a single-edge crack either from the various cited papers or which are evaluated by 

the author using FEM data for the various crack analyses techniques mentioned in this chapter. 
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Table 8-12: Comparison of SIF for plate-2 from various present methods and the literature 

Methods used to evaluate SIF 
𝐾

𝜎 √𝜋𝑎
 

Hybrid-method (with FEM-predicted displacements in the 

loading direction as input and Laurent series expansion) 

plus Sih, Paris and Irwin’s concept 

1.67 (from analysis using FEM 

single displacement component in 

hybrid-method coupled with Sih, 

Paris and Irwin’s approach) 

Hybrid-method (with FEM-predicted both displacement 

components as input and Laurent series expansion) plus 

Sih, Paris and Irwin’s concept 

1.74 (from analysis using FEM 

both displacement components in 

hybrid-method coupled with Sih, 

Paris and Irwin’s approach) 

Khalil’s method (with FEM-predicted displacements in 

loading direction as input) 

1.63 (from analysis using FEM 

single displacement component in 

Khalil’s method) 

Mandell et al. [130] 1.79 (done by Mandell et al.) 

Saxe and Kang [131]  1.78 (done by Saxce and Kang) 

Lin et al. [77] (FEA-simulated isopachic stresses as input 

and Taylor series expansion) 

1.70 (done by Lin et al. using S* in 

hybrid-method and J-integral) 

Bao et al. [93] 1.49 (using Bao’s equations) 

Shukla et al. [16] 
1.66 (using Shukla’s closed form 

equations) 
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8.9. Complex Variables Hybrid-Method and Concept of J-Integral in 

Isotropic Fracture Analysis 

The ability of the displacement-based complex variables hybrid-method combined with the 

concepts of J-integral to fracture analyze isotropic plates containing cracks were investigated, 

Appendix O. FEA-determined displacements in the loading direction, v, were employed for an 

orthotropic plate with a very low degree of anisotropy (plate’s material properties were close to 

isotropy) and a steel plate. Both plates had double-edge cracks. J-integral values obtained by post-

processing the hybrid-method evaluated results were compared with those obtained from ANSYS 

APDL built-in command ‘CINT’ to calculate J-integral from linear fracture analysis of members 

made of isotropic materials, Appendix O. The study demonstrates the hybrid-method’s ability to 

reliably fracture analyze isotropic plates containing cracks. The effect of the hybrid-method 

selected input data source locations on the evaluated hybrid results were also studied, Appendix 

P. 

 

8.10. Summary, Discussion and Conclusions 

This chapter demonstrates that processing a single component of displacement information 

with a combination of Airy stress functions, conformal mapping, analytic continuation, power-

series expansion and least squares provides a hybrid means of stress/displacement analyzing of 

orthotropic members containing cracks. Subsequently processing the hybrid-method evaluated 

stress or displacement information in the neighborhood of the crack with fracture mechanics 

concepts provides an accurate value of the structure’s SIF. Present results show the SIF can be 

accurately evaluated based on measured input data either at locations close to the crack-tip, i.e., r 
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or dint = 0.1a; to at locations considerably away from the crack-tip, i.e., r or dint = 0.7a. This 

demonstrates the method’s independence on the near crack measured information and on the 

integration path. This has practical significance. Most of the provided SIFs are obtained utilizing 

only a single component of measured information. No symmetry or finite boundary conditions are 

required. Measured input information is not needed close to the crack-tip or crack surface. No 

knowledge of the external loading or boundary conditions is needed. The method can effectively 

analyze plates of any type (finite or infinite) with any type of cracks (SEC/CC/DEC) and of any 

material properties (isotropic or orthotropic with any degree of anisotropy). 

The concept of the hybrid-method is established on strong mechanics-based algorithms. 

Along with the traction-free boundary conditions, the singular stress fields near the crack-tip are 

satisfied by the conformal mapping. The Airy stress functions satisfies equilibrium and 

compatibility. Displacement information is not differentiated by arbitrary numerical schemes 

which lack the required accuracy and reliability. Combining the hybrid concept with reliable 

fracture mechanics theory is an effective and reliable way to stress analyze cracked orthotropic 

structures. Reliability of the concept depends on the accuracy of the hybrid-method evaluated 

(stress, displacement) results. Once the states of stress and displacement are known, finding 

important fracture parameters such as the SIF involves only post-processing the evaluated hybrid-

method results according to a fracture mechanics theory. Employing the Taylor series in the stress 

functions provides superior flexibility in analyzing any type of cracks located anywhere at any 

orientation utilizing a single mapping function. It is expected that employing mapping techniques 

such as the Schwarz-Christoffel mapping will enable the present technique to analyze more 

complicated crack shapes.  

 



334 
 

 
 

 Experimental Determination of Stress Intensity 

Factor of a Finite Orthotropic Plate with Double-Edge 

Cracks  

 

9.1. Introduction 

This method demonstrates the ability to find the stress intensity factor (SIF) in loaded, 

finite, orthotropic composite plate from a digital image correlation (DIC) provided single-

displacement field. Combining experimental-analytical stress analysis with concepts such as 

reasonably-distant crack-tip stress/displacement fields or J-integral, the SIF of a double-edge 

cracked (DEC) loaded, finite-width, orthotropic plate is determined experimentally. 

Stress/strain/displacement information near the crack-tip are obtained by processing measured 

displacement data with complex variables Airy stress functions, conformal mapping, analytic 

continuation and numerical methods. Using the known stress and displacement fields in 

expressions for displacement/stress singular fields or closed form integrals such as the J-integrals, 

the SIF can be determined from a single measured information without knowing the external 

loading. Requiring neither knowledge of the external loading nor use of any hybrid-FEA tools nor 

depending on experimental information very near the crack-tip are some of the advantages of this 

technique over other crack analysis approaches available in literature. 
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9.2. General Overview 

The experimental-analytical hybrid means of stress analysis, i.e., processing measured 

information with analytical expressions of Airy stress functions, conformal mapping, analytic 

continuation, power-series expansion and numerical methods such as least squares is expanded 

here to stress analyze, with distant measured data, orthotropic, finite-width, loaded, components 

involving cracks. The challenges in obtaining reliable experimental data near crack-tips motivated 

developing this method to stress analyze fracture problems in orthotropic members. Knowing the 

near-crack displacement/stress/strain fields from this hybrid stress analysis method, a variety of 

concepts can be used to evaluate stress intensity factors (SIFs). The method provides for any degree 

of anisotropy, any types of cracks (i.e., central, edge-, double-edge or inclined) or any plate-width 

to crack ratios. It is thus capable of analyzing a wide range of fracture-type problems in orthotropic 

plates under plane-stress condition. Not requiring knowing the external loading is an additional 

advantage of this method.  

Digital image correlation (DIC) recorded single-displacement field was used to stress 

analyze a finite-width, graphite-epoxy orthotropic plate with double-edge cracks (DEC), Figure 

9-1. As situations can occur where there is a paucity or poor quality, of either of the measured 

displacements, the present use of a single in-plane displacement field away from the crack-tip is 

advantageous. Recording reliable information reasonably near a crack-tip is a challenge for 

virtually any purely experimental technique. 

Chapter 5 demonstrate this hybrid stress analysis method’s capability in providing reliable 

results for elliptically-perforated finite-width plates with the ellipse size to plate-width ratio, 2a/W, 

up to 0.85 ~ 0.9. For the current DEC-plate (Figure 9-1), the ratio of 2a/W is 0.6.   
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Figure 9-1: DEC finite-width, orthotropic plate 

 

9.3. Literature Review 

While the literature contains numerous experimental determinations of stress intensity 

factors in isotropic materials, there are comparatively few applications of experimental techniques 

to fracture in composites. Bowie and Freese [7] used conformal mapping along with modified 

boundary collocation method to evaluate the SIF in orthotropic, finite plates with central cracks. 

Tong et al. used conformal mapping in their developed super element for the hybrid-finite element 

analysis to determine SIF in isotropic materials having plane cracks [128]. Later Tong [21] 

expanded the concept to handle cracks in anisotropic materials. Khalil et al. [118] in their 

developed hybrid-finite element method, further modified Tong’s [21] approach to incorporate 
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cracks inclined to the materials axes of symmetry. References [22,77,136–139] combined stress-

induced temperature information with a variety of analytical/numerical tools to evaluate the SIFs 

associated with opening- or mixed-mode cracks in composite members. Lin et al. [77], without 

requiring the use of any super elements, directly determined the SIF in finite, orthotropic materials 

using FEA-simulated thermoelastic data in expressions of Airy stress functions and J-integrals. 

They analyzed a centrally-cracked aluminum plate from measured thermal data. Ju [139] and Ju 

and Rowlands [137] employed concepts from Khalil et al. [118] to thermoelastically determine KI 

and KII associated with inclined cracks in tensile composites. Rhee and Rowlands [22] obtained KI 

for a central crack in a tensile glass-epoxy laminate by evaluating the associated stress functions 

from recorded thermoelastic data around the external boundary of a subregion containing the 

crack. He and Rowlands [136] again determined KI for a central crack in a composite by evaluating 

the associated stress functions from recorded temperature information away from the crack. 

However, unlike Rhee’s [22] subregion concept, they employed decomposed stress functions. 

Shukla et al. [16] determined KI in a single-edge notched glass-epoxy composite from a strain-

gage which was appropriately positioned and orientated relative to the crack. References [17] and 

[164] applied DIC to fracture-type problems involving orthotropic materials. Mogadpalli and 

Parameswaran [17] used DIC-measured displacement data in expressions for near crack-tip 

displacement fields to find the SIF of a single-edge cracked orthotropic plate. Pataky et al. [164] 

measured stress intensity factors in anisotropic single-crystal stainless steel. These methods faced 

some difficulties. The study done by Shukla et al. [16]  required knowing a priori through complex 

algebraic calculations where to place the strain-gages. That by Mogadpalli and Parameswaran [17] 

suffered from difficulties associated with the correlation technique and analysis was sensitive to 

rigid body motion. Liu et al. [143] evaluated KI for a crack extending vertically upward from the 
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bottom edge of a composite beam subjected to four-point bending. Dai et al. [145] studied the 

deformation and fracture behavior associated with an opening-mode single-edge crack in a tensile 

glass-reinforced composite by digital speckle correlation. By evaluating the J-integral from 

recording both in-plane displacement components using interferometric moiré, Perry and 

McKelvie [147] obtained the energy release rate in a cantilevered composite beam. 

Although SIFs have been determined in several different finite composite structures from 

recorded thermoelastic information [22,77,136–138], that the technique necessitates cyclically 

loading the member renders the approach impractical for many engineering applications. Unlike 

the present approach, TSA is also not particularly suitable outside of a laboratory environment. 

Huang and Kardomateas [179] analytically determined the SIFs for single- and double-

edge cracks in infinite orthotropic plates, whereas Joshi and Manepatil [129] employed boundary 

collocation to demonstrate the effects of variations in principal material directions and crack length 

on SIFs for inclined and/or eccentric cracks in finite orthotropic plates. Employing FEA, 

References [130,131] analyzed centrally, single- and double-edge cracked finite orthotropic plates. 

Saxce and Kang [131] employed mongrel displacement FEA whereas numerically predicted SIF 

of Mandell et al. [130] was supported by compliance tests. Abdullah [132] compared the stress 

distributions in finite isotropic and orthotropic tensile plates containing a mode-I central crack. 

Kim [146] numerically determined the SIFs in single- and doubled-edged finite composites using 

a path-independent integral which involves the tractions and displacements on a contour 

surrounding the crack. 

Bao et al. [93] provided closed-form solutions to find SIF in orthotropic materials by 

incorporating the material orthotropy with fracture equations for isotropic materials. The method 
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lacks guidance regarding the direction of material orthotropy with respect to the crack-face and 

has some limitations regarding its validity relative to certain orthotropic material properties. Bažant 

et al. [180] also conducted similar studies.   

The author is unaware of any previous experimentally-determined SIF in a DEC, finite-

width, orthotropic composite plate by utilizing only a single component of measured displacement.  

 

9.4. Analytical Analyses 

9.4.1. Stresses, Strains and Displacements 

For an orthotropic plate under plane-stress containing a traction-free crack located at y → 

0 and x ≤ 0, the following mapping function maps a section of the real axis of the ζ-plane, Γζ, from 

the Rζ region into the traction-free boundaries, Γz, of the region Rz surrounding the crack surface 

in the physical z-plane, Figure 9-2 [21,77] 

 𝑧 = 𝜔 𝜁 = − 𝜁 , 𝑗 = 1, 2 (9-1) 

where 

 𝑧 = 𝑥 + 𝜇 𝑦, −𝜋 < 𝐴𝑟𝑔 𝑧 ≤ 𝜋, 𝜁 = 𝜉 + 𝜇 𝜂, 𝑗 = 1, 2 (9-2) 

Knowing the orthotropic plate’s constitutive elastic properties, the complex material properties, μj, 

are obtained from the roots of equation (2-17) (general expression) or (2-20) (especially for plate 
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of Figure 9-1). For the orthotropic plate under current consideration, the y-axis is perpendicular to 

the crack-face as shown in Figure 9-1. 

 

Figure 9-2: Conformal mapping of edge crack of a loaded orthotropic plate from z-plane to half-
plane in ζ-plane 

 

 

The inverse of the mapping function of equation (9-1) is 

 𝜁 = 𝜔 𝑧 =  𝑖 𝑧  , 𝑗 = 1, 2 (9-3) 

where 𝑖 = √−1 and the branch of the square root of the above equation (9-3) is chosen so that Imζj 

≥ 0 for j = 1, 2.  

For orthotropic members in absence of body forces and rigid body motions, and knowing 

the constitutive elastic properties, the in-plane components of stresses (of equations (2-25) through 

(2-27)) and displacements (of equations (2-31) and (2-32)) in the rectangular coordinates (x, y) of 

the physical plane, zj = x + μjy, for j = 1, 2, can be expressed using two complex Airy stress 

functions Φ(z1) and Ψ(z2). Further, the concept of analytic continuation of equation (2-49) enables 



341 
 

 
 

these two complex Airy stress functions to be expressed in terms of each other while continuously 

satisfying the traction-free boundary conditions along the crack surface, Γz. The single stress 

function is further expressed using a truncated power-series expansion. For this analysis the stress 

functions are expressed using a finite Taylor series expansion as [21]  

 𝛷(𝜁 ) =  − 𝑖𝑐 𝜁

  

 (9-4) 

and 

 𝛹(𝜁 ) =  − 𝑖 − 𝑐̅ 𝐵 + 𝑐 𝐶

  

𝜁  (9-5) 

where the Airy coefficients, cj, are complex numbers, i.e., cj = aj + ibj, and aj and bj are real 

numbers. 𝑐̅  are the complex conjugate of cj. For the finite simply connected region Rζ, the stress 

functions, Φ(ζ1) and Ψ(ζ2), are single valued analytic functions. The complex quantities B and C 

are defined in equations (2-50) and (2-51). 

The derivatives of the stress functions being analytic functions of ζ1 and ζ2, respectively, 

and re-writing equations (2-41) and (2-42), one obtains 

 𝛷 (𝑧 ) =  
𝛷′(𝜁 )

𝜔 (𝜁 )
   and   𝛹 (𝑧 ) =  

𝛹′(𝜁 )

𝜔 (𝜁 )
 (9-6) 
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The expression for the stress components of equations (2-25) through (2-27) requires the 

derivatives of the stress functions with respect to the complex variables zj for j = 1, 2. Thus, 

according to equation (9-6), to express the stress components in terms of the complex stress 

functions requires the differentiation of both the mapping functions and the stress functions with 

respect to the complex variables ζj for j = 1, 2. Differentiating the mapping functions of equation 

(9-1) with respect to the complex variables ζj and differentiating equations (9-4) and (9-5) with 

respect to the complex variables ζj, the following equations (9-7) and (9-8) - (9-9) are obtained, 

respectively. 

 𝜔 𝜁 = −2𝜁 , 𝑗 = 1, 2 (9-7) 

and  

 𝛷 (𝜁 ) =  − 𝑖𝑗𝑐 𝜁

  

 (9-8) 

 𝛹 (𝜁 ) =  − 𝑖𝑗 −𝑐̅ 𝐵 + 𝑐 𝐶 𝜁

  

 (9-9) 

Using the Taylor series to express the stress functions, the in-plane displacement and stress 

components are obtained by combining equations (9-4) and (9-5) with equations (2-31) and (2-32) 

or equations (2-47) and (2-48), and equations (9-7) through (9-9) with equations (2-44) through 

(2-46), respectively, as 
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 𝑢 = 2 𝑅𝑒 −𝑖 𝑝 (𝜁 ) + 𝑝 𝐶(𝜁 ) 𝑐 +  𝑖 𝑝 𝐵(𝜁 ) 𝑐̅  

  

 (9-10) 

 𝑣 = 2 𝑅𝑒 −𝑖 𝑞 (𝜁 ) + 𝑞 𝐶(𝜁 ) 𝑐 +  𝑖 𝑞 𝐵(𝜁 ) 𝑐̅  

  

 (9-11) 

 𝜎 = 𝑅𝑒 𝑖 𝑗𝜇 𝜁 + 𝑗𝜇 𝐶𝜁 𝑐 −  𝑖 𝑗𝜇 𝐵𝜁 𝑐̅

  

 (9-12) 

 𝜎 = 𝑅𝑒 𝑖 𝑗𝜁 + 𝑗𝐶𝜁 𝑐 −  𝑖 𝑗𝐵𝜁 𝑐̅

  

 (9-13) 

 𝜎 = − 𝑅𝑒 𝑖 𝑗𝜇 𝜁 + 𝑗𝜇 𝐶𝜁 𝑐 −  𝑖 𝑗𝜇 𝐵𝜁 𝑐̅

  

 (9-14) 

 

𝜀
𝜀
𝛾

=  

𝑎 𝑎 0
𝑎 𝑎 0

0 0 𝑎

𝜎
𝜎
𝜎

 (9-15) 

where ai'j' are the elastic compliances and are defined below for the coordinate system shown in 

Figure 9-1 

 𝑎 =
1

𝐸
, 𝑎 =  

−𝜈

𝐸
=

−𝜈

𝐸
, 𝑎 =  

1

𝐸
 and 𝑎 =  

1

𝐺
 (9-16) 
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Directions 1' and 2' are parallel and perpendicular to the crack-face and directions 1 and 2 are along 

and transverse to the strong/stiff orthotropic material directions, respectively. For the graphite-

epoxy orthotropic plate of interest direction, y is along the strong/stiff orthotropic direction 1. 

Once the in-plane stresses are known from equations (9-12) through (9-14), using those in 

equation (9-15), the stresses are transformed to strains. To find the complete state of stress of a 

member containing crack using the present analytical approach (finding in-plane displacements, 

stresses and strains from equations (9-10) through (9-15)), the only unknowns that needs to be 

found are the Airy stress coefficients, cj. The presently defined DIC-hybrid method utilizes DIC-

measured displacement data either in equation (9-10) or (9-11) and numerical techniques to 

evaluate the unknown Airy coefficients. Once the Airy coefficients are known, substituting those 

back into equations (9-10) through (9-15) enables one to evaluate the complete states of 

stress/strain and displacement of a loaded, finite-width, orthotropic plate containing a crack. 

Therefore, knowing the complete state of stress of the orthotropic member having crack 

from the above-mentioned DIC-hybrid stress analysis method, this information can be combined 

with various well-established techniques to find the SIF. Four separate techniques are used in this 

study to individually evaluate the SIF of the DEC, finite-width, graphite-epoxy plate. 

 

9.4.2. Determining SIF 

9.4.2.1. Method-1 (Khalil’s Concept) 

The first technique used here was originally proposed analytically by Khalil et al. [118] 

and later exploited numerically by Ju [139] and experimentally by Ju and Rowlands [137] to study 
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fracture behavior of orthotropic plates with inclined cracks. Khalil et al. used Airy stress functions 

along with conformal mapping to formulate super elements in their hybrid-finite element approach 

to find SIFs in anisotropic materials. The traction-free condition of the crack-face was considered 

by the use of conformal mapping. For the coordinate system with the sharp crack along the 

negative portion of the z-plane and the crack-tip at z = 0, according to this method, displacement 

and stress fields near the crack-tip in an anisotropic material can be expressed as [118,137,139] 

 𝑣 = 𝐸 (𝑧 , 𝑧 )𝛾

  

 (9-17) 

 𝜎 = 𝐵 (𝑧 , 𝑧 )𝛾

  

 (9-18) 

where zj = x + μjy, for j = 1, 2. The γj are the stress coefficients and N is the number of displacement 

terms retained, where for one displacement term, i.e., N = 1, there are two stress coefficients, γj 

and γj+N. The displacement component in the loading direction y, v, is utilized here to evaluate the 

SIF, KI, for the present DEC graphite-epoxy plate. Expressions for the terms Ej of equation (9-17) 

are as below 

 𝐸 = 2𝑅𝑒 𝑞 𝑧 +  𝑞 𝑀 𝑧  (9-19) 

 𝐸 =  2𝑅𝑒 𝑖𝑞 𝑧 +  𝑞 𝑀 𝑧  (9-20) 
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Also, expressions for Bj of equation (9-18) are 

 𝐵 = (−1) 𝑗𝑅𝑒 𝜇 𝑧 +  𝜇 𝑀 𝑧  (9-21) 

 𝐵 = (−1) 𝑗𝑅𝑒 𝑖𝜇 𝑧 + 𝜇 𝑀 𝑧  (9-22) 

here (-1)p = 1 for p = 0, 2 and (-1)p = -1 for p = 1. 

And, 

 𝑀 =  −     and   𝑀 =  
 

− 𝑖    for odd values of j (9-23) 

 𝑀 =  −1 +  𝑖
 

    and   𝑀 = −𝑖     for even values of j (9-24) 

where μj = αj + iβj for j =1, 2. For the coordinate system shown in Figure 9-1 and for in-plane 

stresses in the loading direction y, p = 0. To find in-plane displacement along the x-axis, qj for j = 

1, 2 in equations (9-19) and (9-20) only needs to be replaced by pj. Similarly, to find in-plane 

normal stresses along the x-axis and in-plane shear stresses, the constant p in equations (9-21) and 

(9-22) is 2 and 1, respectively. 

Khalil et al. and Ju et al. showed that, at locations very close to the crack-tip, stresses are 

dominated by the two stress coefficients γ1 and γ1+N, which again for mode-I loading can be 

expressed in terms of the SIF, KI, as such [118,137,139] 
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 𝐾 = √2𝜋 1 −
𝛽

𝛽
𝛾 + 

𝛼 −  𝛼

𝛽
𝛾  (9-25) 

DIC-measured v-displacement data are used in equation (9-17) to evaluate the stress 

coefficients γj. Once the stress coefficients are known, their substitution into equation (9-25) 

provides KI. Using DIC-measured data in Khalil/Ju’s approach, one can use either of the in-plane 

displacements to evaluate the stress coefficients and thus the SIF. Note that one can also use the 

DIC-hybrid stress analysis method (rather than just DIC-measured displacement data) to determine 

all the in-plane displacements and stresses (i.e., equations (9-17) and/or (9-18)), providing 

flexibility in using any one of the in-plane displacement or stress expressions from Khalil/Ju’s 

approach to find the SIF.  

 

9.4.2.2. Method-2 (J-Integral Concept) 

For an orthotropic plate with a crack lying along the negative x-axis and the y-axis being 

perpendicular to the crack’s surface, the J-integral in Cartesian x-y coordinate can be written as 

[150] 

 𝐽 =  𝑊 𝑑𝑦 −  𝚻.
∂𝐮

∂x
𝑑𝑠  (9-26) 

where Γ is an arbitrarily preselected curve which surrounds the tip of the crack in Figure 9-3.  𝑊 =

 ∫ 𝜎 𝑑𝜀  is the strain energy density, σij and εij are the stress and strain tensors, respectively, T 

is the traction vector defined according to the outward normal vector n along Γ, Ti = σijnj, u is the 
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displacement vector and ds is an element of arc length along Γ, Figure 9-3. The path Γ starts from 

the lower flank of the crack and proceeds to the upper flank in a counter-clockwise direction. For 

an elastically deformed material under plane-stress for a path Γ, the J-integral can be expressed as 

[77,149]  

 

𝐽 =
1

2
𝜎 𝜀 +  𝜎 𝜀 + 𝜎 𝛾 𝑑𝑦

−  𝜎 𝑛
𝜕𝑢

𝜕𝑥
+  𝜎 𝑛

𝜕𝑢

𝜕𝑥
+  𝜎 𝑛

𝜕𝜈

𝜕𝑥
+ 𝜎 𝑛

𝜕𝜈

𝜕𝑥
𝑑𝑠  

(9-27) 

 

 

Figure 9-3: J-integral nomenclatures 

 

For this expression of the J-integral, the in-plane stresses σxx, σyy and σxy, the in-plane strains 

εxx or , εyy and γxy are already known from the DIC-hybrid stress analysis (equations (9-12) 
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through (9-15)). The rotation component  can also be derived in a similar manner from the 

analytical concepts of the DIC-hybrid analysis. Differentiating the displacement components of 

equations (2-31) and (2-32) with respect to direction x, the following expressions for the normal 

strain εxx and rotation component  are obtained [77]. The Cauchy-Reimann condition of equation 

(8-40) is followed while differentiating the analytic functions Φ(z1) and Ψ(z2) with respect to the 

real coordinate axis x, Figure 9-1. 

 𝜀 =  
𝜕𝑢

𝜕𝑥
= 2𝑅𝑒{𝑝 𝛷 (𝑧 ) + 𝑝 𝛹 (𝑧 )} (9-28) 

 
𝜕𝑣

𝜕𝑥
= 2𝑅𝑒{𝑞 𝛷 (𝑧 ) + 𝑞 𝛹 (𝑧 )} (9-29) 

Combining equations (9-7) through (9-9) in equation (9-6), the expressions for Φ′(z1) and Ψ′(z2) 

are obtained and used in the above equations (9-28) and (9-29) to establish the expressions for 

normal strain and rotation component as [77] 

 
𝜕𝑢

𝜕𝑥
= 𝜀 = 𝑅𝑒 𝑖 𝑗𝑝 𝜁 + 𝑗𝑝 𝐶𝜁 𝑐 −  𝑖 𝑗𝑝 𝐵𝜁 𝑐̅

  

 (9-30) 

 
𝜕𝑣

𝜕𝑥
= 𝑅𝑒 𝑖 𝑗𝑞 𝜁 + 𝑗𝑞 𝐶𝜁 𝑐 −  𝑖 𝑗𝑞 𝐵𝜁 𝑐̅

  

 (9-31) 

All required quantities to evaluate the J-integral using equation (9-27) are now known 

along any closed path Γ enclosing the crack. The J-integrals are path independent and equation 
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(9-27) should yield the same value irrespective along which path the integration is carried out as 

long as the path surrounds the crack in a counter clock-wise direction from the lower flank of the 

crack to the upper flank. 

For a plane-stressed, orthotropic, tensile-loaded plate with a crack along negative x-axis 

and strong/stiff direction 1 perpendicular to the crack-face, for opening-mode fracture Griffith’s 

strain energy release rate function, GI, and SIF, KI, are related as below [77,130] 

 𝐺 =  
𝐾

(2𝐸 𝐸 )
 

𝐸

𝐸
+  

𝐸

2𝐺
−  

𝜈 𝐸

𝐸
 (9-32) 

For linear elasticity and mode-I (i.e., GII = 0) crack, the J-integral is expressed as [77,150] 

 𝐽 = 𝐺  (9-33) 

Substituting equation (9-33) into equation (9-32) and re-arranging, KI is expressed in terms of the 

J-integral and orthotropic plate’s material properties as 

 𝐾 =  
𝐽 𝐸 𝐸

(𝛼∗ +  𝛽∗)/2
 (9-34) 

where 𝛼∗ = 𝐸 /𝐸  and 𝛽∗ = −   
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Figure 9-4: J-integral path ABCDEFG for the plate of Figure 9-1 

 

Although the J-integral is path independent, prudent selection of the path Γ can reduce 

computational complexities to a great extent. Keeping this in mind, the J-integral here is evaluated 

along a square path ABCDEFG in a counter clock-wise direction from the lower to upper flank of 

the crack according to Figure 9-4 for various distances, dint, from the crack-tip. For this purpose, 

for each line segment of the integration path that contributes to the J-integral is derived separately 

and then summed up to find the total J. For each line segment, the expression for J-integral can be 

simplified according to Table 9-1. 
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Table 9-1: Simplified expression of J-integral for sections of the ABCDEFG integration path 

Line AB 

nx = − 1, ny = 0 and ∫ 𝑑𝑠 =  − ∫ 𝑑𝑦 

𝐽 =  
1

2
𝜎 𝜀 +  𝜎 𝜀 +  𝜎 𝛾 𝑑𝑦 −  𝜎

𝜕𝑢

𝜕𝑥
+  𝜎

𝜕𝜈

𝜕𝑥
𝑑𝑦  

Line BC 

nx = 0, ny = − 1, dy = 0 and ∫ 𝑑𝑠 =  ∫ 𝑑𝑥 

𝐽 =  𝜎
𝜕𝑢

𝜕𝑥
+ 𝜎

𝜕𝜈

𝜕𝑥
𝑑𝑥  

Line CDE 

nx = 1, ny = 0, dx = 0 and ∫ 𝑑𝑠 =  ∫ 𝑑𝑦 

𝐽 =  
1

2
𝜎 𝜀 +  𝜎 𝜀 +  𝜎 𝛾 𝑑𝑦 −  𝜎

𝜕𝑢

𝜕𝑥
+ 𝜎

𝜕𝜈

𝜕𝑥
𝑑𝑦  

Line EF 

nx = 0, ny = 1, dy = 0 and ∫ 𝑑𝑠 =  − ∫ 𝑑𝑥 

𝐽 =  𝜎
𝜕𝑢

𝜕𝑥
+  𝜎

𝜕𝜈

𝜕𝑥
𝑑𝑥  

Line FG 

nx = − 1, ny = 0 and ∫ 𝑑𝑠 =  − ∫ 𝑑𝑦 

𝐽 =  
1

2
𝜎 𝜀 +  𝜎 𝜀 +  𝜎 𝛾 𝑑𝑦 −  𝜎

𝜕𝑢

𝜕𝑥
+ 𝜎

𝜕𝜈

𝜕𝑥
𝑑𝑦  

 

As the integrands of J are comparatively complex, a numerical integration based on the 

Gaussian Quadrature rule and employing 15 Gaussian points is used to compute the J-integral. The 

integrations are carried along the preselected path Γ, i.e., the square AB-BC-CD-DE-EF-FG, i.e., 

individually along the six lines. Symmetry about x-axis requires only half of the integration path, 
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i.e., AB-BC-CD or DE-EF-FG to be evaluated [77]. Knowing the Airy coefficients from the DIC-

hybrid method, the in-plane stresses, strains and displacement slopes throughout the plate, 

including on the traction-free region and along the integration path are evaluated, from which the 

J-integral and thus the SIF, KI, is determined. 

 

9.4.2.3. Method-3 (Mogadpalli and Parameswaran’s Concept) 

Mogadpalli and Parameswaran [17] derived the near crack-tip displacement fields for 

single-edge cracked orthotropic members and used these to evaluate the SIF. For a single-edge 

crack in an orthotropic plate aligned along one of the principal material axes and the coordinate 

origin being located at the crack-tip, for opening-mode loading, the displacement component in 

the loading direction is expressed as [17] 

 

𝑣 =  {𝑎 − 𝑎 (𝛼 + 𝛽) }
( )

+  
( )

{𝑎 − 𝑎 (𝛽 − 𝛼) }
( )

+

{𝑎 (𝛼 + 𝛽) − 𝑎 }
( )

+ {𝑎 − 𝑎 (𝛽 − 𝛼) }
( )

  

(9-35) 

where 

 �̅� (𝑧 ) =
2

2𝑗 + 1
𝑀 𝑧 ,     𝑘 = 1, 2

  

 (9-36) 
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 𝑌 (𝑧 ) =
1

𝑗 + 1
𝑁 𝑧

  

,     𝑘 = 1, 2 (9-37) 

 𝑧 = 𝑥 + 𝑖(𝛽 + 𝛼)𝑦,    𝑧 = 𝑥 + 𝑖(𝛽 − 𝛼)𝑦 (9-38) 

 2𝛽 =  + ,     2𝛼 =  −  (9-39) 

For the DEC-plate of Figure 9-1, the strong/stiff orthotropic direction 1 being along y-axis, the 

elastic compliances, aij, are expressed accordingly in equation (9-16). For the physically tested 

plate the contribution from the rigid body motion is neglected in the expression of v in equation 

(9-35). 

The coefficients Mj and Nj present in equations (9-36) and (9-37) are real coefficients and 

Shukla et al. showed that, the coefficient M0 is directly related to the opening-mode SIF, KI, as 

[16,17] 

 𝐾 = 𝑀 √2𝜋 (9-40) 

Using either measured or predicted in-plane displacements in the loading direction, v, in 

equation (9-35), the coefficients Mj and Nj are evaluated by least squares. From the evaluated 

coefficient, M0 is used in equation (9-40) to find KI. Details regarding evaluating Mj and Nj from 

v-displacement information are provided in Chapter 8: equations (8-72) through (8-76). 
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The number of terms to use in the summation series is selected by finding the root mean 

square (RMS) between the input displacements and the reconstructed displacements (from 

equation (9-35)) for various number of coefficients, M + N, and using the number of coefficients 

that gives rise to lower values of RMS1. The analysis can similarly be done using the measured- 

or predicted-displacement in the direction transverse to the loading direction, u, whose expression 

is provided in Chapter 8: equation (8-65) combined with equations (8-67), (8-68) and (8-70). 

 

9.4.2.4. Method-4 (Sih, Paris and Irwin’s Concept) 

Sih, Paris and Irwin’s near crack-tip singular stress field approximation for orthotropic 

materials is utilized here. For an opening-mode or mode-I crack, the in-plane stress component 

perpendicular to the crack-face in regions close to the crack-tip can be expressed as equation (9-41) 

[22,122]. The crack coordinate system is shown in Figure 9-5. 

 𝜎 =  
𝐾

(2𝜋𝑟)
𝑅𝑒

1

𝜇 − 𝜇
 

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
−  

𝜇

(cos 𝜃 +  𝜇 sin 𝜃) /
 (9-41) 

                                                 

1 Mogadpalli and Parameswaran [17] used Bao et al. [93] provided closed-form equations 

to find a SIF value which they considered as the exact SIF. They increased M + N in the summation 

series until the computed SIF values matched closely to the expected SIF value. 
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where distance r is measured from the crack-tip (i.e., zj = x + μjy = 0 as the x-y coordinate origin is 

at the crack-tip) and angle θ is in a counter clock-wise direction from the crack-face or x-axis. 

 

  

Figure 9-5: Crack coordinate system (x, y) with respect to plate’s global Cartesian coordinates 
(X, Y) 

 

For a crack that lies along the x-axis of material orthotropy, and crack-face aligned with 

global X-axis, i.e., α = 0, Figure 9-1, then along θ = 0 for r << a, from the above equation (9-41), 

for mode-I loading the SIF can be expressed as [22] 

 𝐾 =  𝜎 √2𝜋𝑟 (9-42) 

where σyy is the in-plane stress component in the loading direction of the plate, Figure 9-1, and is 

obtained from equation (9-13) of the DIC-hybrid method.  
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9.5. Experimental Details 

9.5.1. Plate Details 

The DEC-orthotropic plate of length, L = 29.21 cm (11.5''), width, W = 63.5 mm (2.5''), 

thickness, t = 5.28 mm (0.208'') and with each crack length, a = 19.05 mm (0.75''), was analyzed 

using DIC. The rectangular plate was prepared from a 5.28 mm thick [013/905/013] graphite-epoxy 

laminate sheet (from Kinetic Composite, Inc., Oceanside, CA) using water-jet cutting, Table 9-2. 

The 0.15 mm wide by a = 19.05 mm long edge cracks were prepared by electrical discharge 

machining (EDM) (by Wire Works, Madison, WI) and sharpened with a razor blade. From prior 

experience, in order to avoid any machining-induced defects such as fiber breakage or 

delamination, the graphite-epoxy plate was clamped between two aluminum plates when the 

cracks were prepared by EDM. The adverse effects of directly introducing a discontinuity in an 

orthotropic plate under high pressure are discussed in the Appendix B. 
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Table 9-2: DEC-plate and experimental details 

Material [013/905/013] graphite-epoxy orthotropic laminate 

Supplier Kinetic Composite, Inc., Oceanside, CA 

Thickness, t 5.28 mm (0.208") 

Length, L 29.21 cm (11.5") 

Width, W 6.35 cm (2.5") 

Individual crack length, a 19.05 mm (0.75") 

Symmetry Both horizontally and vertically 

Loading for DIC analysis From 0 to 8.9 kN (2,000 lbs) in 889.6 N (200 lbs) steps 

Loading for DIC-hybrid model 7.1 kN (1,600 lbs) 

 

The measured elastic properties of the DEC-plate are E11 = 104.1 GPa, E22 = 28.1 GPa, ν12 = 0.155 

and G12 = 3.0 GPa, with the 1-direction being in the vertical y-orientation of Figure 9-1, Table 4-1 

and Appendix A.  

 

9.5.2. Surface Preparation  

The random and dense speckle pattern of Figure 9-6 was applied to the surface of the plate 

to act as unique markers for pixel correlation between the unloaded and loaded plate. The plate 

was lightly buffed initially with 400-grit emery cloth and the cracks carefully sharpened with a 

razor blade. The polished surface was cleaned with water-based mild cleaners (Vishay Precision 

Group - Micro-Measurements M-Prep Conditioner A followed by M-Prep Neutralizer 5A) and 
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allowed to dry. A thin layer of black paint was applied to the cleaned surface, after which the 

random pattern of white dots was applied. A suitable speckle pattern was achieved by applying a 

light pressure to the trigger of the paint container. Rust Oleum Ultra-Cover paints were used. 

 

 

Figure 9-6: DEC-plate with applied speckle pattern 

 

9.5.3. Plate Loading 

The plate was loaded using a 89 kN (20,000 lbs), closed-loop, hydraulic-grip MTS 

machine, Figure 9-7. With care to ensure symmetrical loading about the x-y axes, the plate was 

mounted in the hydraulic grips and loaded from 0 to 8.9 kN (2,000 lbs) at load increments of 889.6 

N (200 lbs). An oscilloscope was used to monitor the applied load with better accuracy than just 

relying on the control panel of the load frame. A digital image at each load increment, along with 

an image of the undeformed plate, was captured by the Correlated Solution, Inc.’s commercial 

DIC package. The properly aligned loaded plate experienced no out-of-plane motion other than 

the Poisson’s effect. A 2D-DIC was conducted, the data from which were used to do the stress 

analysis. 
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(a) (b) 

Figure 9-7: a) Experimental set-up for DIC of the finite, orthotropic, graphite-epoxy plate with 
DEC and b) Loaded plate with speckle pattern 

 

9.5.4. DIC Details 

A digital image of the plate was taken at each load using Correlated Solution, Inc.’s 

(Correlated Solutions, Inc., Irmo, SC 29063) DIC package. Only one camera was employed as the 

problem is plane-stress. The 2D-DIC system was manually calibrated by correlating pixel size for 

a known distance through Vic-2D software. A set of images at different loads was taken by the 

DIC camera equipped with Vic-Snap software along with a reference image, i.e., image at 

essentially zero load representing undeformed condition of the plate. Room lighting was used. The 

displacement correlation was done using Vic-2D software. A subset size of 45 and step size of 5 

were used. DIC details are provided in Table 4-3. Each pixel of the DIC image was 0.17 mm 

(0.0067'') = 0.009a in size.  
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9.6. Finite Element Model 

Having geometric and loading symmetry about both the x- and y-axes, only a quarter of the 

plate was modeled using FEA tool ANSYS APDL with element type Plane 183. The plate length 

between the grips was considered in the FEA. Appropriate symmetrical boundary conditions were 

imposed and the origin of the coordinate system was located at the crack-tip. Assigned material 

properties are those discussed in Section 9.5.1, (Table 4-1). ‘KSCON’ command of the FEA tool 

was used to generate focused mesh at the crack-tip and the ‘skewed element’ option was used to 

make the crack-tip elements singular. The final quarter FEM of the plate had 14,989 eight-node 

quadratic isoparametric elements. This includes 48 quarter-point elements at the crack-tip and a 

total of 45,336 nodes. The quarter-point element size near crack-tip is 0.013 mm (0.0005''). This 

corresponds to 0.0007a and 0.0024t. An external vertical load of 7.1 kN (1,600 lbs) was applied 

in the strong/stiff direction of the plate. This corresponds to a nominal stress, σ0, of 21.23 MPa 

(3.1 ksi) according to equation (9-43) based on the far-field cross-section of the plate. 

 𝜎 =
𝐹∗

𝑊 ×  𝑡
=

7,117.15 N

63.5 mm ×  5.28 mm
= 21.23 MPa (3,076.92 psi) (9-43) 

The FEA quarter-model, with appropriate symmetrical boundary conditions and loading, is shown 

in Figure 9-8(a) and the crack opening behavior under the loading in Figure 9-8(b). Figure 9-9 and 

Figure 9-10 represent FEM-predicted in-plane displacements, v, and the stresses, σyy, in the loading 

direction y. FEM-predicted in-plane displacements and stresses for each node, along with x-y 

coordinates, were exported to Excel for further post-processing in MATLAB. 
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ANSYS APDL offers built-in commands such as ‘KCALC’ to calculate mixed-mode SIFs 

or ‘CINT’ to evaluate the J-integral for fracture problems. However, these commands are restricted 

to isotropic materials. The analytical concepts under Section 9.4.2. were therefore used to evaluate 

the J-integral (Section 9.4.2.2) and KI’s for the present orthotropic plate essentially using FEM-

predicted v-displacement data. 

 

  

(a) (b) 

Figure 9-8: (a) FEM quarter model of graphite-epoxy DEC-plate and (b) Crack opening under 
mode-I loading 
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Figure 9-9: In-plane displacements, v, in loading direction from FEM (units in inches) 

 

 

 

 

(a) (b) 

Figure 9-10: FEM-predicted in-plane stress component (a) σyy, in loading direction, (b) σyy stress 
distribution near crack-tip, (units in psi) 
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9.7. System Validation Data Analyses and Results 

To check the reliability of the experimentally determined SIF, a few additional analyses 

were conducted on the DEC graphite-epoxy plate with FEM-predicted information based on the 

methods mentioned previously in Section 9.4.2. These studies will be called “system validation 

analyses”. To avoid compromising results due to discrepancies from experimental scatters in 

measured quantities, these studies were based mostly on FEA-predicted v-displacement data. SIF 

results from DIC-hybrid model utilizing DIC-measured v-displacement data are then compared 

with those obtained from the system validation analyses.  

 

9.7.1. From Method-1 (Khalil/Ju’s Concept) 

The first system validation analysis was done according to method-1 (Khalil et al. [118] , 

Ju [139] and Ju and Rowlands [137]), using FEA-predicted displacement data, v, in the loading 

direction in equation (9-17) and combining equations (9-19), (9-20), (9-23) and (9-24) with 

equation (9-17). The simultaneous system of linear equations was formed keeping the number of 

equations higher than the number of unknowns. The only unknowns in this overdetermined system 

were the stress coefficients, γj, which were evaluated from the v-displacement data and using least 

squares. The number of terms to retain in the summation series was determined by checking the 

root mean square (RMS) between the FEA v-displacements, d, and the reconstructed v-

displacements, d′, using equation (9-17) for varying number of stress coefficients, γ2N, where for j 

= 1, 2,…N;  γ2N = 2j. Once the stress coefficients, γj, were evaluated, the SIF for opening-mode 

loading, KI, was determined from equation (9-25). Acknowledging Shukla’s [16] suggestion to not 

use measured data less than 50% of the plate thickness from the crack-tip, the selected FEM data 
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originated at distances greater than r = 0.5t ≈ 0.15a from the crack-tip [16,17]. Analyses were done 

for FEA-predicted v-displacement data selected over the left quadrant of the plate at distances r = 

0.2a, 0.3a, 0.4a and 0.5a away from the crack-tip. For each data range, the analyses were done 

involving various number of stress coefficients, γ2N, in equation (9-17). This was done in order to 

observe the effect of the selected data ranges and the number of stress coefficients, γ2N, on the 

reconstructed displacement data and thus on the calculated SIF, KI, Table 9-3.  

 

Table 9-3: Normalized SIF from method-1 (Khalil/Ju’s concepts) for various ranges of FEM 
source v-data locations and number of utilized stress coefficients 

Data selection 
radius, r 

Normalized SIF, 
√

 for number of stress coefficients, γ2N = 

14 16 18 20 24 28 30 34 36 40 50 

= 0.2a = 0.72t 2.27 2.27 2.29 2.29 2.30 2.30 2.29 2.3 2.28 2.25 1.06 

= 0.3a 2.28 2.28 2.31 2.31 2.32 2.34 2.33 2.34 2.27 2.25 0.99 

= 0.4a 2.29 2.29 2.33 2.32 2.33 2.37 2.36 2.38 2.31 2.25 0.94 

= 0.5a 2.30 2.30 2.34 2.34 2.35 2.39 2.38 2.43 2.30 2.25 0.89 

 

For a finite series, using too few coefficients produces error in the computed results due to 

insufficient terms to express the quantities properly. Just like evaluating Airy coefficients from 

measured data, using too many coefficients leads to numerical problems. For this method, selecting 

data too far from the crack-tip also affects the results. Selecting data at a distance r ≥ 0.5a from 
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the crack-tip did not show any stable trend in the obtained SIF results and were discarded. As for 

selecting data beyond r ≥ 0.5a, there are very little input data close to the crack-tip. Use of γ2N = 

14 to 44 is considered optimum as it gives minimum difference between the input displacements 

and computed displacements, Figure 9-11. Beyond γ2N = 36, there is a sudden decrease in the 

normalized SIF values, Table 9-3 and Figure 9-12. It is hard to make a concluding statement about 

the SIF from this analysis, so a new analysis was conducted and will be further discussed. 

 

 

Figure 9-11: RMS for various number of γ2N for four sets of FEM v-displacement data as input in 
method-1 (Khalil/Ju’s concepts) 
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Figure 9-12: Normalized SIF from method-1(Khalil/Ju’s method) for various ranges of data 
source location and number of utilized stress coefficients, γ2N, for FEM v-displacements as input 

 

Using method-1 (based on Khalil/Ju’s concepts) and FEM-provided information, another 

set of analyses was conducted. In this case, the measured input included all the in-plane 

displacement and stress components. Combining equations (9-19) and (9-20) with equation (9-17), 

with once replacing qj with pj for j = 1, 2; the expressions for both the in-plane displacements, v 

and u, are obtained, respectively. Similarly combining equations (9-21) and (9-22) with equation 

(9-18), and equating p = 0, 1 and 2 respectively, expressions for σyy, σxy and σxx are established, 

respectively. Upon solving the system of linear equations for the stress coefficients, γj, KI, is 

obtained from equation (9-25). In both cases expression of M1j and M2j of equations (9-23) and 

(9-24) were utilized. The RMS plot of Figure 9-13 now suggests using γ2N = 14 to 38. Computed 

normalized KI from Table 9-4 shows highly consistent results for γ2N = 14 to 36 in the summation 

series, where normalized KI is found to vary essentially between 2.25 and 2.27. Figure 9-14 
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compares the reconstructed in-plane displacement component, v, and the stress components from 

method-1 (Khalil/Ju’s method) with the FEM-predictions. The good agreement between the 

respective contours confirms the validity of the computed SIF. All computed/predicted stresses are 

normalized by σ0 = 21.23 MPa from equation (9-43). 

 

 

Figure 9-13: RMS for various number of γ2N for FEM v, u, σyy, σxx and σxy as input in method-1 
(Khalil/Ju’s concepts) 
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Table 9-4: Normalized SIF vs number of stress coefficients, for v, u, σyy, σxx and σxy as input in 
method-1(Khalil/Ju’s concept) 

Data 
selection 
radius, r 

Normalized SIF, 
√

, for number of stress coefficients, γ2N = 

14 16 18 20 24 28 30 34 36 40 44 

=0.2a = 0.72t 2.21 2.23 2.25 2.26 2.25 2.25 2.25 2.26 2.26 2.25 0.01 

= 0.3a 2.18 2.22 2.24 2.27 2.25 2.26 2.25 2.26 2.26 2.17 0.01 

= 0.4a 2.16 2.21 2.24 2.27 2.25 2.26 2.25 2.27 2.27 2.02 0.07 

= 0.5a 2.14 2.20 2.24 2.27 2.25 2.27 2.24 2.29 2.25 1.84 0.08 
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(a) (b) 

  

(c) (d) 

Figure 9-14: Contours of (a) v/a, (b) σyy/σ0, (c) σxx/σ0 and (d) σxy/σ0 from using FEA-predicted in-
plane displacements u and v and in-plane stresses σxx, σyy and σxy as input in Khalil/Ju’s method 

(top) and FEM (bottom) 
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9.7.2. From Hybrid Stress Analysis and J-Integral 

FEA-predicted v-displacement data were used in the hybrid stress analysis method to 

perform a full-field stress analysis of the DEC graphite-epoxy plate. Full-field states of stress and 

displacement information were computed from the hybrid-method and later post-processed using 

the J-integral concept to evaluate the SIF. For the FEA-hybrid analysis of the DEC-plate FEA-

predicted v-displacement data were used in equation (9-11) to obtain the Airy coefficients, cj. From 

equations (9-10) through (9-15) and (9-31), the components of in-plane displacements, stresses, 

strains and rotation components required to evaluate J-integral from equation (9-27) were then 

obtained. Knowing the J-integral and using equation (9-34), KI, was obtained for various 

integration paths, Table 9-5. From the RMS plot of Figure 9-15, k = 7 was used in the analysis. 

Figure 9-16 compares the reconstructed in-plane displacement and the stress components from the 

hybrid stress analysis method for FEA v-displacements as input with the direct FEM-predictions. 

The agreement is again very good. Table 9-5 shows the independence of the integration path on 

the computed SIF. 

 

Table 9-5: SIF by FEA-hybrid stress analysis and J-integral 

dint 
0.1a 0.2a = 

0.72t 

0.3a 0.4a 0.5a 0.6a 

𝐾

𝜎 √𝑎
 2.274 2.275 2.275 2.276 2.277 2.281 
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Figure 9-15: RMS for various number of complex Airy coefficients, k, for FEM-predicted v-
displacements as input in the hybrid stress analysis method using Taylor series 
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(a) (b) 

  

(c) (d) 

Figure 9-16: Contours of (a) v/a, (b) σyy/σ0, (c) σxx/σ0 and (d) σxy/σ0 by using FEA-predicted v-
displacements in the hybrid stress analysis method as input (top) and from FEM (bottom) 
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9.7.3. From Method-3 (Mogadpalli and Parameswaran’s Concept) 

The third analysis was done according to method-3 (Mogadpalli and Parameswaran [17]). 

FEA-simulated displacement information in the loading direction, v, was used in equation (9-35) 

and from combining equations (9-36) through (9-39) in equation (9-35), the unknown coefficients 

(Mj and Nj) were evaluated using least squares. Knowing the coefficients Mj and Nj, the SIF was 

determined from equation (9-40). The input data were selected at a distance of at least 50% of the 

plate thickness from the crack-tip as suggested by Shukla et al. [16] and as followed by Mogadpalli 

and Parameswaran [17] to essentially eliminate three-dimensional effects. A study similar to that 

by Mogadpalli and Parameswaran [17] is carried out here to check whether data selection and the 

number of coefficients retained to reconstruct the displacements by least squares have any 

significant effect on the resulting SIF. Resulting normalized SIF are presented in Table 9-6 and 

Figure 9-17. 

Table 9-6: Normalized SIF for various ranges of data locations and number of utilized stress 
coefficients for FEM v-displacements as input in method-3 (Mogadpalli and Parameswaran’s 

concept) 

Data selection 
radius, r 

Normalized SIF, 
√

, for M + N = 

2 4 6 8  10 12 14 16 18 20 

= 0.2a = 0.72t 1.80 2.36 2.29 2.29 2.29 2.28 2.26 2.26 2.25 2.24 

= 0.3a 1.77 2.36 2.29 2.29 2.29 2.28  2.26 2.26 2.25 2.24 

= 0.4a 1.76 2.36 2.30 2.30 2.30 2.29  2.26 2.27 2.25 2.24 

= 0.5a 1.73 2.36 2.3 2.3 2.3 2.29  2.26 2.27 2.25 2.24 
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Figure 9-17: Normalized SIF for various ranges of FEM v-displacement input data source 
locations and number of utilized stress coefficients, M + N, in method-3 (Mogadpalli and 

Parameswaran’s concept) 

 

For all the four data ranges, the normalized SIF for 6 ≤ M + N ≤ 12 are close to each other, 

Table 9-6 and Figure 9-17. For M + N > 12, there is a sudden slight decrease in the normalized SIF 

values. However, the normalized SIF for 14 ≤ M + N ≤ 20 again agree well. The RMS plot of 

Figure 9-18 show that for 8 ≤ M + N ≤ 24 in the summation series have essentially the same effect. 

Mogadpalli and Parameswaran [17] recommended the use of M + N  ≥ 12. Therefore, the final SIF 

was selected by taking the average of all these 20 SIF values between 12 ≤ M + N ≤ 20 in Table 

9-6. The resulting mean normalized SIF, KI is 2.26. 
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Figure 9-18: RMS for various number of stress coefficients, M + N, for FEM-predicted v-
displacements as input in method-3 (Mogadpalli and Parameswaran’s concept) 

 

9.8. DIC Data Processing 

DIC-measured data were exported into MATLAB for further processing. DIC images have 

a pixel size/spacing of 0.18 mm (0.0072''). While physically loading the plate, Figure 9-7, the top 

grip of the MTS load frame remained stationary and the bottom grip moved down to apply the 

tensile load. Figure 9-19 shows the non-symmetrical displacement pattern about the horizontal x-

axis due to such loading. As the plate geometry and loading are symmetrical about both the x-y 

axes, and the analytical expressions assume that the origin of the final coordinate system is located 

at the crack-tip and that the plate extends equally in both vertical directions, the DIC-measured v 

-displacement data (Figure 9-19) in the loading direction (strong/stiff direction, y-direction) were 

processed (so that, v = 0 through the horizontal center-line) and averaged over the four quadrants 
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to cancel any measurement asymmetry and to reduce scatter. For the averaged v-displacement data 

in the loading direction, the plate’s origin was then shifted for the coordinate system to pass 

through the crack-tip. The resulting averaged vertical displacements, v, are plotted over the top left 

quadrant of the plate in Figure 9-20a. Results in other quadrants are obtained through symmetry.  

 

 

Figure 9-19: Normalized DIC raw v-displacement data in the strong/stiff y-direction 
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(a) (b) 

Figure 9-20: (a) Recorded v-displacements averaged throughout the four quadrants and (b) 
Information of (a) post-processed to relocate coordinate origin at crack-tip and discarding 

unreliable crack-face data 

 

The current DIC-hybrid complex variables stress analysis utilizes the Taylor power-series 

to express the complex variables Airy stress functions. From the averaged DIC v-displacement 

data (Figure 9-20(a) and Figure 9-21(a)), the measured information was considered at a distance 

≥ y/a = 0.1 (12 pixels) away vertically from the crack surface (Figure 9-20b). A total of nDIC = 

25,718 equally-spaced DIC-recorded vertical displacements, v, were employed throughout the 

region defined by − 0.9 ≤ x/a ≤ 0.6 and 0.1 ≤ y/a ≤ 1.5. Locations of the nDIC = 25,718 DIC v-

displacement input values are shown in Figure 9-21(b). In addition to the DIC v-displacement 

information, symmetry condition v = 0 (equation (9-11)) was imposed at h1 = 6 locations along the 

horizontal x-axis beyond the crack at y = 0, and stress σxy = 0 (equation (9-14)) was imposed at h2 

= 3 locations discretely along the vertical axis of symmetry (y-axis at x/a = 0.67, i.e., at the center 

of the plate). Finite boundary condition, stress σxy = 0 (equation (9-14)) was imposed at h3 = 3 
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locations along vertical y-axis at x/a = − 1 (left edge of plate). All the above-mentioned symmetry 

and boundary conditions were imposed at equally-spaced locations. Similar DIC-hybrid stress 

analysis results were obtained without imposing any symmetry or boundary conditions. In that 

case only DIC-measured v-displacement data were used as the system input, Appendix Q. 

For the DIC-hybrid stress analysis and for the nt = nDIC + h1 + h2 + h3 = 25,730 data values, 

the root mean square (RMS) between the DIC-measured v-displacements and imposed conditions, 

d, and the reconstructed v-displacements plus imposed conditions, d′, were prepared for varying 

number of complex Airy stress coefficients, k, Figure 9-22. The RMS plot decreases little beyond 

k = 7 which suggests employing seven complex coefficients is reasonable. For a selected set of 

data, choosing an appropriate number of Airy coefficients in the stress functions can be very 

crucial. One typically wants to use as few coefficients as reasonable, but employing too few 

coefficients can give erroneous results. On the other hand, utilizing too many coefficients can 

cause computational problems and the solution to become singular.  

The 14 real coefficients were evaluated from the nDIC = 25,718 DIC v-displacement data, 

h1 = 6 symmetry condition v = 0 in equation (9-11), h2 = 3 symmetry condition σxy = 0 at x = (W/2 

– a) and h3 = 3 finite boundary condition σxy = 0 at x = − a in equation (9-14) and using least 

squares. Knowing the Airy coefficients and using equations (9-10) through (9-15), the in-plane 

displacement, stress and strain components were determined.  
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(a) (b) 

Figure 9-21: (a) Quarter DEC-plate with DIC-measured v-displacements and (b) Source 
locations of utilized nDIC = 25,718 DIC-measured v information 

 

 

Figure 9-22: RMS values of (d - d′) versus the number of complex coefficients, k, for DIC-
recorded nDIC = 25,718 v-displacements and h = 12 imposed conditions in DIC-hybrid method 

using Taylor series 
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9.9. Results  

9.9.1. DIC-Hybrid Stress Analysis  

In-plane displacement and stress contours from the DIC-hybrid system are compared with 

FEM-predictions in Figure 9-23 through Figure 9-26. Contour plots show good agreement for the 

displacement and stress components derived from the two completely different methods, i.e., DIC-

hybrid stress analysis method and FEA. Displayed results are for a load of F* = 7.1 kN (1,600 lbs). 

Locations and displacement data are normalized with respect to the crack length, a, and stresses 

with respect to the far-field stress, σ0 = 21.23 MPa, obtained from equation (9-43). 

 

  
(a) (b) 

Figure 9-23: Displacement v/a contours in strong/stiff y-direction from DIC-hybrid method (top) 
and FEM (bottom) for (a) Region of Figure 9-20(a) and (b) Region close to the crack-tip 
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Figure 9-24: Stress σyy/σ0 contours in region close to the crack-tip from DIC-hybrid method (top) 
and FEM (bottom) 

 

 

Figure 9-25: Stress σxx/σ0 contours in region close to the crack-tip from DIC-hybrid method (top) 
and FEM (bottom) 
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Figure 9-26: Shear stress σxy/σ0 contours in region close to the crack-tip from DIC-hybrid method 
(top) and FEM (bottom) 

 

9.9.2. SIF Determination 

Knowing the full-field state of stress (in-plane displacements/stresses/strains) of the 

graphite-epoxy, finite-width, orthotropic plate with DEC under mode-I loading from the DIC-

hybrid stress analysis method, the information was post-processed utilizing several of the 

previously mentioned concepts (of Section 9.4.2 ‘Determining SIF’) to evaluate KI. Obtained 

results from these various methods using DIC-measured information are compared with those 

obtained from the system validation analyses using FEM predictions. As a result of using data 

from different sources (i.e., DIC vs. FEA) and different methodologies to process the data, slight 

differences between the obtained KI were observed but all are within an acceptable range. The 

largest difference observed is from which source the utilized data is obtained, i.e., whether using 
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DIC-measured data or FEA-predicted data. The dependence of the results on the data selection 

ranges and length of the used finite series were also analyzed. 

SIF was evaluated by processing DIC-measured in-plane displacements in the loading 

direction, v, according to the procedure illustrated in method-1 (based on Khalil/Ju’s concepts). 

For this the DIC-recorded v-displacements were used in equation (9-17) to evaluate the unknown 

stress coefficients, whereas the expressions for Ej were obtained from equations (9-19), (9-20)  

combined with equations (9-23) and (9-24). Knowing the stress coefficients, KI was obtained using 

equation (9-25). Details on evaluating the stress coefficients and hence KI from measured v-

displacement data based on Khalil/Ju’s concept is provided in Chapter 8: equations (8-33) and 

(8-36). To observe the effect of the selected data range and the number of terms retained in the 

summation series, KI was evaluated for various ranges of input data source locations and for 

varying number of stress coefficients, Table 9-7. The normalized KI data of Table 9-7 and the RMS 

plot of Figure 9-27 show that the evaluated magnitudes of KI  are essentially independent of the 

source locations of the input data and number of retained terms in the summation series for γ2N > 

10. The independence of the source locations of the measured input displacement data is of 

particular significance in practice.  
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Table 9-7: Normalized SIF from method-1(Khalil/Ju’s concepts) for various ranges of DIC-
measured v-displacement input locations and number of utilized stress coefficients, γ2N 

Data selection 
radius, r 

Normalized SIF, 
√

, for number of stress coefficient, γ2N = 

6 10 12 14 20 28 32 40 

= 0.2a = 0.72t 1.92 2.11 2.08 2.08 2.08 2.08 2.08 2.08 

= 0.3a 1.85 2.12 2.08 2.09 2.08 2.08 2.08 2.08 

= 0.4a 1.79 2.13 2.08 2.08 2.08 2.08 2.08 2.08 

= 0.5a 1.74 2.14 2.08 2.07 2.08 2.08 2.08 2.08 

0.2a ≤ r≤ 0.5a 2.02 2.10 2.08 2.09 2.08 2.08 2.08 2.08 

 

 

Figure 9-27: RMS for various number of stress coefficients, γ2N, for four set of data locations 
using DIC-measured v-displacements as input in method-1 (Khalil/Ju’s concept) 
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For the second experimental analysis, the DIC-hybrid method evaluated complete state of 

stress for the orthotropic DEC-plate (Figure 9-23 through Figure 9-26) was processed with the J-

integral method to determine KI. For various lengths of the integration path, dint, of Figure 9-4, the 

J-integral for each separate integration path was determined using the equations of Table 9-1. 

Summing up the individual contribution of each segment of the square path, the total J value was 

determined and used in equation (9-34) to determine the SIF. Normalized KI obtained by 

combining DIC-hybrid method and J-integral are shown in Table 9-8 for different integration 

paths.  

The DIC-based experimentally determined values of KI by the two methods, i.e., 

Khalil/Ju’s concepts and J-integral agree very well with each other, Table 9-7 and Table 9-8. The 

FEM-based results are approximately 8% higher. That the evaluated values of KI by the J-integral 

method (Table 9-8) are independent of the location of the integration paths (i.e., source locations 

of input data) is significant for practical applications.  

 

Table 9-8: Normalized SIF for a finite orthotropic DEC-plate from DIC-hybrid and method-2 (J-
integral) for various integration paths 

Normalized SIF, 
√

, from hybrid-method and J-integral for 

Arm length of square integration path, dint FEA (v) DIC (v) 

0.1a = 1.9 mm 2.274 2.079 

0.2a = 0.72t 2.275 2.073 

0.3a 2.275 2.056 

0.4a 2.276 2.036 

0.5a 2.277 2.022 

0.6a = 11.4 mm  2.281 2.021 
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The integration path for the J-integral is selected only up to dint = 0.6a. A distance dint = 0.667a 

would reach the center of the DEC-plate. Note that dint is measured from the crack-tip. There is 

also an edge crack on the right side of the center-line and results should not be influenced by the 

right-edge crack. Therefore, the plate was not analyzed beyond r = 0.6a. 

The SIF, KI, was also determined according to the concepts of method-4 (Sih, Paris and 

Irwin’s concept). Using DIC-hybrid computed in-plane stresses, σyy, in direction perpendicular to 

the crack-face, in this case also in the loading direction, y, in equation (9-42) provides the SIF, KI. 

The obtained normalized KI at various distance along x-axis for y = 0 of  Figure 9-1 from the crack-

tip are presented in Table 9-9. Over the range 0.16a = 3 mm ≤ r ≤ 0.5a = 9.5 mm from the crack-

tip, KI changes by less than 3%. This essential independence of location from crack-tip is 

significant for practical applications. 

 

Table 9-9: Normalized KI from method-4 (Sih, Paris and Irwin’s concept) using DIC-hybrid 
computed normal stresses perpendicular to crack-face, σyy, at various locations, r, from the crack-

tip along y = 0 

Distance from 
crack-tip, r = 0.16a 

   0.2a 

= 0.72t 
0.3a 0.35a 0.4a 0.45a 0.5a 

Normalized 

SIF, 
√

 2.09 2.09 2.10 2.11 2.12 2.13 2.14 
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The determined opening-mode SIF, KI, of the DEC graphite-epoxy plate by the various 

methods demonstrated here from either FEM-predicted or DIC-measured input data are shown in 

Table 9-10. The first three values are experimentally determined normalized KI from method-1, -

2 and -4 and the last three are normalized KI obtained for FEM data from method-1, -2 and -3. 

Results, which show dependence of the evaluated SIF on the different data sources (i.e., 

experimental or predicted), demonstrate excellent agreement between the obtained SIF from the 

different methods when the data source is the same. 

For Khalil/Ju’s concept, the FEM-prediction/DIC-measured information is directly utilized 

to find the SIF. For the other two determinations, the predicted or experimental v-data is used in 

the hybrid-method to find structural information near the crack-tip from which the SIF are 

obtained. 

The values of KI by the three experimental schemes agree within 2% of each other, as do 

those among the three FEM-based analyses. Compatible with the good agreement between the 

FEM-predicted and DIC-based displacements and stresses of Figure 9-23 through Figure 9-26, the 

average DIC- and FEM-based values of KI agrees within 8% of each other. Acknowledging the 

comment by Shukla et al. [16] to keep r ≥ 0.5t to avoid any local plasticity, present results for r ≥ 

0.5t = 0.15a should be emphasized.  
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Table 9-10: Comparison between results of averaged normalized KI 

Averaged normalized SIF, 
√

, from 

DIC-measured displacement, v FEM-predicted displacement, v 

Method-1 Method-2 Method-4 Method-1 Method-2 Method-3 

(Khalil/Ju) (J-integral) (Sih, Paris 
and Irwin) 

(Khalil/Ju) (J-integral) (Mogadpalli and  
Parameswaran) 

2.08 2.10 2.11 2.26 2.27 2.26 

   
(v, u, σxx, 
σyy, σxy) 

  

  

 The DEC plate of Figure 9-1 was also analyzed using the concepts provided by Bao et 

al. [93] which are included in Appendix R. Details regarding the Bao’s concepts are provided in 

Chapter 8, Section 8.4.5.5. Analytical concepts from fracture analyses with composites done by 

Bažant et al. [180] are also provided in Appendix R. The analytical concepts of Bažant’s study are 

similar to those of Bao’s [93]. 

 

9.10. Summary, Discussion and Conclusions 

Combining experimentally measured information with strong mechanics-based analytical 

expressions of complex variables Airy stress functions, conformal mapping, analytic continuation, 

power-series expansions and least squares is an effective means of stress analyzing loaded, finite-

width, orthotropic members with various cutouts [9,22,70,72,84,88]. This approach can be 

extended to analyze both isotropic and anisotropic loaded, finite, plates involving cracks.  
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DIC-determined stress and/or displacement fields near the crack-tip are used with concepts 

such as J-integrals or analytical expressions of near crack-tip singular stress/displacement fields 

to find the SIF. Obtained results from these several different techniques exhibits good agreement. 

Experimental reliability is demonstrated by FEM. 

Not requiring experimental data very near the crack-tip or along the crack surfaces or near 

any other edges, nor requiring any knowledge of the external loading are advantages of this 

approach over other crack-analysis techniques. The (fairly) near crack-tip displacement/stress 

information is achieved employing measured displacement data with rigorous mechanics-based 

formulations of Airy stress functions instead of arbitrary schemes typically used in commercially 

available software. Reasonable near crack-tip states of stress and displacement are achieved 

without having any experimental information in those regions. This is important as experimental 

data very near the crack is often very unreliable.  

Expressions of crack-tip nearby singular stress/displacement fields or path independent J-

integrals are used to find the SIF directly from each of FEM-predictions, DIC-measured v-

displacement data or from the DIC-hybrid method computed stresses and displacements. 

Experimental fracture analysis methods tend to need reliable input data very close to the crack-tip. 

In real world applications, one might face the challenge of not having reliable stress/strain 

information sufficiently near the crack-tip. Much of this challenge is overcome by the present 

experimental-analytical hybrid concept as it does not require measured data very near the crack. 

Using the near crack-tip singular stress field expression (method-4 Sih, Paris and Irwin’s concept) 

is computationally a very simple way to find SIF from known stresses. On the other hand, the 

method of combining the concepts of J-integral with DIC-hybrid stress analysis (method-2) 

involves cumbersome, relatively complicated calculation procedures but enables one to accurately 
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evaluate SIF at locations either close or away from the crack-tip. The approach (method-1 Khalil’s 

concept) where experimental displacement data are used in expressions of the near-by crack-tip 

displacement/stress fields based on Airy stress functions and conformal mapping is a 

computationally effective way to find SIF based on measured data originating close or far from 

the crack-tip. 

The presented hybrid-method provides reliable techniques to determine SIFs in orthotropic 

composites from recorded displacement information without requiring measured data in the 

immediate vicinity of the crack. The general approach is applicable to orthotropic or isotropic 

materials, operating in a field or industrial environment (i.e., not restricted to the laboratory) and 

the concepts can be extended to other shaped or loaded structures and other crack configurations 

(Chapter 8). Using different mapping functions such as the Schwarz-Christoffel mapping could 

enable application to highly complicated crack shapes. Virtually any form of experimental data or 

external loading (Appendix H) can be handled by this method, as can isotropic cases (Appendix 

O). That the experimental results by each of the three methods are independent of the widely 

varying source locations is significant.  

Determining KI in a finite DEC tensile orthotropic plate is of interest in its own right.  

However, this geometry and loading benefited from being able to conduct a reliable FEA with 

which to compare the experimental results. A desirable advantage of the herein developed 

technique is its ability to determine SIFs in situations which preclude obtaining a confident FEA, 

e.g., when not knowing the loading conditions. The latter are often unknown with real-

world/practical structures. Unlike the present approach, it is extremely difficult to obtain SIFs for 

general but finite situations by purely theoretical or numerical methods if the external loading is 

unknown. 
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 Summary, Discussion and Conclusions 

 

Motivated by practical needs, the presented hybrid technique enables one to stress analyze 

finite structures containing cutouts/cracks full-field, including along the boundaries of the 

discontinuities. This is accomplished without knowing the external loading or boundary conditions 

and is applicable to isotropic or orthotropic composite materials. The method overcomes the 

shortcomings of purely experimental/analytical/numerical methods. Major contributions of this 

thesis include the following:  

1. Experimentally demonstrated the ability to reliably stress analyze tensile-loaded, finite, 

orthotropic plates which contain either a circular hole, elliptical hole or double-edge cracks. 

2. Numerically substantiated the hybrid-method’s capability to stress analyze isotropic or 

orthotropic plates of virtually any elastic material, having essentially any hole-size to plate-

width ratio (infinite or finite plates based on 2a/W) and with any hole-opening ratio or 

sharpness (a/b). This demonstrates that when processing measured displacement data with 

conformal mapping and analytic continuation concepts, Lekhnitskii’s theory of anisotropic 

elasticity can reliably analyze finite geometries. 

3. The presented technique is capable of analyzing structures with significant amount of 

missing or unreliable input data at structurally critical locations by processing (highly) 

distant reliable measured information. This demonstration also illustrates the method’s 

ability to analyze a plate with non-rectangular outer boundary. 
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4. Numerically illustrated the hybrid-method’s ability to provide reliable fracture information 

for essentially any type of cracked plate (plates with any type of cracks and material 

properties) under mode-I loading. 

5. Although both TSA and DIC measured data are employed, this thesis emphasized the use 

of a single component of measured displacement. Among other features, this acknowledges 

the comparatively simple experimental set-up and requirements of DIC. 

6. Detailed analytical procedures are included for rectangular or polygonal cutouts, inclined 

elliptical openings or inclined cracks. 

7. A systematic procedure is provided to select an appropriate number of coefficients to use. 

8. This rigorous mechanics-based hybrid-method does not require knowing the external 

loading or boundary conditions or measured input information near the cutouts, it 

automatically/simultaneously separates and smooths the displacement and stress 

components, and does not involve differentiating the measured quantities using arbitrary 

techniques. Equilibrium and compatibility are satisfied. Boundary conditions can be 

involved/satisfied. 

9. The successful ability to synergize several different fracture models with the hybrid-method 

and evaluate SIFs was demonstrated. The J-integral proved to be particularly effective in 

evaluating important fracture information in cracked orthotropic finite plates. 

10. The use of Taylor series to fracture analyze cracked orthotropic materials offers an effective 

way to analyze plates having variety of crack configurations employing only a single 

mapping function. 
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 Future Considerations 

 

1. Stress analyze orthotropic structures containing parabolic, triangular, rectangular, oval, 

polygonal, inclined elliptical openings/notches or inclined cracks. Of particular interest 

would be to assess if the present approach is able to handle these correctly as highly finite 

geometries. 

2. Determine stresses in pinned/bolted joints in orthotropic composites from DIC-recorded 

displacement data. Consider using a stress function and imposing available/appropriate 

boundary conditions. 

3. Stress analyze inclined-loaded perforated orthotropic plates, i.e., the applied loading not in 

a direction of material symmetry. 

4. Stress analyze natural fiber composite/green composite (NFC) [181–183] structures and 

natural composites such as wood and orthopedic structures [184]. 

5. Stress analyze structures containing multiple geometric discontinuities and/or those with 

different/varying material properties, e.g., functionally-graded materials. 

6. Analyze composite plates with cracks emanating from edge of a hole or notch. Might 

consider mapping the crack using the Taylor series. 

7. Extend the approach to analyze interface cracks between dissimilar anisotropic materials 

[177,185] or elastoplastic heterogeneous materials [186].  
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8. Consider the research to structures fabricated from non-linear/non-elastic materials, e.g., 

plasticity, non-linear elasticity [187], viscoelasticity or polymers. 

9. Extend concepts to plates/beams under bending, complex loaded plates and/or non-

symmetrical cases. 

10. Assess the feasibility of applying present DIC concepts to situations involving vibrations 

and/or fatigue. 

11. Combine the present hybrid approach into commercial displacement-based (e.g., DIC) 

algorithm software. Such would provide accurate displacements and strains at and near the 

boundaries of cutouts without having to filter or differentiate the displacement information. 

This should eliminate the drawbacks of conventional displacement-based experimental 

techniques, i.e., not providing reliable measured information or masking high strain 

gradients near geometric discontinuities as a result of filtering the measured data.   

12. Extend the concepts of Chapters 6 and 7 to orthotropic materials. 

13. Extend the concept to analyze orthotropic structures with complicated arbitrary cutouts by 

using the Schwarz-Christoffel mapping function for polygons [188].  

14. Extend the present hybrid-DIC concepts to perforated structures whose internal and external 

geometries are both highly complicated (e.g., Reference [189]). 

15. Extend the approach to thermal stress analysis of orthotropic structures with discontinuities, 

i.e., structures under thermal loading [190]. 
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16. Consider the approach for analyzing plates undergoing large deformation due to bending, 

where along with the Airy stress function the effect of the transverse displacements need to 

be considered in terms of a non-linear partial differential equation representing the structural 

behavior [191]. 

17. Consider extending the approach to non-flat/curved surfaces.  
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Appendices 

Appendix A. Elastic Properties of [013/905/013] Graphite-

Epoxy Laminate  

 

Material properties E11, E22, ν12 and G12 of the orthotropic [013/905/013] graphite-epoxy 

laminate (from Kinetic Composites, Inc., Oceanside, CA) were measured. Two sets of uniaxial 

tests were conducted on two sets of three different types of composite tensile coupons. Coupons 

were tested in the 0°, 90° and ± 45° directions with respect to the strong/stiff laminate orientation. 

All the coupons were prepared from the same graphite-epoxy laminate sheet with a thickness, t = 

5.28 mm (0.208''). The test specimens were tested according to ASTM standard D3039M-00 

guidelines. Strain-gages were mounted on the specimens both in the loading direction and 

perpendicular to the loading direction, Figure A-1(a). Standard procedures (provided by Vishay 

Precision Micro-Measurements Group [82]) were followed for specimen surface preparation and 

gage installation. The coupons were tensile loaded along the strong/stiff direction and 

perpendicular to the strong/stiff direction to obtain E11, ν12 and E22, respectively. A tensile test was 

conducted with applied load ± 45° with respect to the principal laminate direction of material 

symmetry to measure E45. Using the transformation relation of equation (A-1) and the measured 

values of E11, E22, E45 and ν12 the shear modulus G12 was obtained.  

The 0° and 90° tensile coupons had a width, W = 12.7 mm (0.5'') and length, L = 25.4 cm 

(10'') and the ± 45° tensile coupons had a width, W = 9.53 mm (0.375'') and length, L = 27.94 cm 

(11'').  Tests were conducted using two different loading-frames. The first set of tensile tests was 

conducted using a 4.5 kN (10,000 lbs) capacity Sintech machine with screw driven wedge grips 
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and a MTS extensometer, Figure A-1(b). The load and strain readings were recorded using the 

data acquisition system equipped with the Sintech load-frame. The second set of tests was done 

using a 89 kN (20,000 lbs) capacity hydraulic-grip MTS machine. In this case the applied loads 

were monitored with an oscilloscope and the strain-gage outputs were recorded using a strain 

conditioner, Figure A-2. For all the tests, load and strain data were recorded upon loading and 

unloading the coupons.  

The 0° coupons were loaded from essentially 0 to 17.79 kN (4,000 lbs) at an increment of 

2.22 kN (500 lbs), the 90° coupons from 0 to 4.45 kN (1,000 lbs) in increments of 445 N (100 lbs) 

and the ± 45° coupon from 0 to 2.67 kN (600 lbs) in increments of 222 N (50 lbs). The maximum 

load for each type of specimen was selected based on approximate strength calculations for the 

graphite-epoxy composite according to lamination theory. 

The laminate’s stiffness, i.e., elastic modulus in any orientation x with respect to the axes 

of material symmetry 1 and 2, gives the following relationship 

 1

𝐸
=  

𝑚

𝐸
(𝑚 −  𝑛 𝜐 ) +  

𝑛

𝐸
(𝑛 − 𝑚 𝜐 ) +  

𝑚 𝑛

𝐺
 (A-1) 

where m = sin (θ) and n = cos (θ), and θ is measured from direction 1 in a counter clock-wise 

direction. For θ = ± 45° the above equation (A-1) provides the elastic modulus in the ± 45° 

direction with respect to the strong/stiff fiber direction, i.e., Exx = E45° for θ = 45° (equation (A-2)). 

G12 was consequently evaluated from measured values of E11, E22, E45 and ν12 in equation (A-2). 
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1

𝐸
=  

(0.5)

𝐸
((0.5) −  (0.5) 𝜐 ) + 

(0.5)

𝐸
((0.5) − (0.5) 𝜐 )

+  
(0.5) (0.5)

𝐺
 

(A-2) 

Obtained test results from the first set of loading (Sintech machine and extensometer) are 

provided in Figure A-3 through Figure A-9, and for the second set of loading (MTS and strain-

gages) in Figure A-10 through Figure A-13, respectively. 

 

  

(a) (b) 

 Figure A-1: (a) Composite coupon mounted with strain-gages and (b) Loaded composite coupon 
with extensometer  
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Figure A-2: Experimental set-up for tensile testing of strain-gaged graphite-epoxy coupon using 
a strain-conditioner 

 

 

Figure A-3: Measured material property E11 for specimen 1 from test 1  
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Figure A-4: Measured material property E11 for specimen 2 from test 1 

 

 

Figure A-5: Measured material property ν12 from test 1 
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Figure A-6: Measured material property E22 for specimen 1 from test 1 

 

 

Figure A-7: Measured material property E22 for specimen 2 from test 1 
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Figure A-8: Measured material property E45 for specimen 1 from test 1 

 

 

Figure A-9: Measured material property E45 for specimen 2 from test 1 
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Figure A-10: Measured material property E11 from test 2 

 

 

Figure A-11: Measured material property E22 from test 2 
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Figure A-12: Measured material property ν12 from test 2 

 

 

Figure A-13: Measured material property E45 from test 2 
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Averaging the values of each of the respective material properties obtained from specimen 

1 and 2 in the first set of tests (Figure A-3 through Figure A-9) gives E11 = 107.6 GPa (15.6 × 106 

psi), E22 = 30.5 GPa (4.4 × 106 psi), E45 = 11.1 GPa (1.6 × 106 psi) and ν12 = 0.16. Knowing these 

material quantities, averaged G12 = 3.12 GPa (0.453 × 106 psi) is obtained from equations (A-1) 

and (A-2). For the second set of tests, each test was done multiple times on a single coupon. Using 

the data from these tests (Figure A-10 through Figure A-13) the following averaged values are E11 

= 100.7 GPa (14.6 × 106 psi), E22 = 25.7 GPa (3.7 × 106 psi), E45 = 10.2 GPa (1.5 × 106 psi) and 

ν12 = 0.16. From equation (A-2), G12 = 2.9 GPa (0.418 × 106 psi). The average of these two set of 

test results are used as material properties for the [013/905/013] graphite-epoxy laminate (provided 

by Kinetic Composites, Inc.) for all analyses conducted in this thesis. The final averaged material 

properties are E11 = 104.1 GPa, E22 = 28.1 GPa, G12 = 3.0 GPa and ν12 = 0.16. 
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Appendix B. Machining Perforated Composite Plates using 

Water-Jet Cutting 

 

Composites, due to their non-homogeneity and strength, requires special cutting tools when 

machining composite parts. Use of conventional machining tools for composite cutting often leads 

to early tool wear. The machined parts can also experience fiber breakage or pull-out, cracking, 

fraying and/or delamination, and thus a possible compromise in the material’s strength. Water-jet 

cutting is a reliable, cost effective and fast machining technique for composites. Abrasive water-

jet cutting can cut most materials with high precision. Water-jet cutting relies on supersonic 

erosion to cut materials rather than on friction and shearing like conventional cutting techniques. 

This generates satin-finished edges in the final product (eliminates the need for secondary 

finishing), reduces machining induced defects and has no thermal damages. It is also an 

environment friendly procedure as it produces no toxic fumes or cut dust/particles or unnecessary 

wastage of the raw materials [192,193]. 

Water-jet cutting (located at UW-Madison College of Engineering Student Shop) was used 

to machine circularly-perforated graphite-epoxy plates from a 5.28 mm (0.208'') thick laminate. A 

water pressure of 413.69 MPa (60,000 psi), along with abrasive substances (garnet), were used for 

the water-jet. To avoid any machining induced defects while creating the holes, the composite was 

clamped between aluminum plates and a small starter hole was initially drilled. Using the abrasive 

impregnated water-jet around the starter hole, the final hole diameter was achieved, Figure 4-3(a). 

 Some challenges exist when water-jet cutting high-strength composite laminates and 

measures taken to avoid these will be discussed. To cut composite coupons, if the water-jet directly 
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impacts the composite laminate, sudden exposure to a high-pressurized jet can cause delamination 

or flaking of the composite. Therefore, the cutting path is selected such that initially the water-jet 

starts at a location exterior to the laminate and then slowly moves on to the composite laminate. 

After a component is made by the water-jet according to desired dimensions, then one should move 

the water-jet to an exterior location before it is turned off. A few different procedures were tested 

to create round holes, not all of which were successful. In the first attempt the water-jet itself was 

used to pierce a small hole and gradually go around in a circular path to create the desired round 

cutout. This procedure led to severe delamination (Figure B-1). In the second attempt a piece of 

stainless-steel was held on top of the graphite-epoxy laminate and again the water-jet was used to 

initially pierce through the steel and the laminate and eventually create the circular hole. This was 

less aggressive on the laminate, but the composite plate still suffered noticeable delamination 

(Figure B-2). The third attempt involved drilling a small pre-hole in the laminate and then the 

water-jet was used to remove more material long the circumference of the start-up hole and create 

the circular hole of desired radius. This avoided any composite delamination but drilling the start-

up hole initiated flaking of the material around the edge of the hole (Figure B-3).  The final attempt 

involved clamping the composite between two aluminum plates (like a sandwich structure with 

the composite plate as the core). A very small central pre-hole was initially drilled through the 

sandwich plate. By water-jet cutting around the start-up hole, a circular hole was eventually 

machined to the final diameter. This procedure avoided any machining induced defects in the 

machined circularly-perforated graphite-epoxy plate (Figure 4-3(a)) and was used for the DIC 

experiment. 
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Figure B-1: Severe delamination in the composite laminate due to creating a circular hole 
directly using water-jet cutting 

 

 

Figure B-2: Delamination in the composite laminate when using a stainless-steel plate on top of 
the composite coupon when creating a circular hole using water-jet cutting 
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Figure B-3: Flaking in the composite laminate when directly drilling into the coupon to create a 
start-up hole 
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Appendix C. Out-of-Plane Displacement Monitoring in 

Circularly-Perforated Orthotropic Plate 

 

  

(a) (b) 

 

(c) 

Figure C-1: Contours of 3D-DIC provided raw displacements (a) u/R, (b) v/R and (c) w/R, 
showing no sign of out-of-plane bending for the loaded circularly-perforated plate of Figure 4-2 
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From the 3D-DIC measured raw data of the above Figure C-1 for the circularly-perforated 

orthotropic plate of Figure 4-2, it can be seen that the out-of-plane displacements, w, is 

significantly smaller than the in-plane displacements along the loading direction, u, and transverse 

to the loading direction, v. The maximum value of u is 88.88 times larger than the maximum value 

of w. Similarly, the maximum value of v is 36.08 times larger than the maximum value of w.  This 

indicates there was no out-of-plane bending other than Poisson’s effect while loading the 

circularly-perforated orthotropic plate (Figure 4-4). 
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Appendix D. Mapping Function for Elliptical Hole 

 

While using a conformal mapping function to map an elliptical cutout from the physical z-

plane into a unit circle in the mapped ζ-plane, along the contour of the ellipse in the x-y plane, the 

contour of the unit circle in the ζ-plane is as [5] 

 𝜁 = 𝜁 = 𝜁 =  𝑒  (D-1) 

For the plate of Figure 5-1, i.e., an ellipse with major-axis, 2a, and minor-axis, 2b, along y and x 

axis, respectively, the equation for the ellipse is  

 
𝑥

𝑏
+

𝑦

𝑎
= 1 (D-2) 

For the coordinate system shown in Figure 5-1, the polar to Cartesian coordinate transformation 

takes place according to 

 𝑥 = 𝑟 cos 𝜃   and   𝑦 = 𝑟 sin 𝜃 (D-3) 

where r is the radial coordinate measured from the center of the ellipse and angle θ is measured 

clock-wise from the vertical x-axis. Substituting x and y of equations (D-3) into equation (D-2) 

gives 
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 𝑟 =
𝑎𝑏

√𝑎 cos 𝜃 + 𝑏 sin 𝜃
 (D-4) 

In Figure 5-1, at θ = 0° and (x, y) = (b, 0), equation (D-4) gives, r = b. Substituting this 

expression for r in equation (D-3) produces x = b cos θ. Similarly, at θ = 90° and (x, y) = (0, a), 

from equation (D-4) the expression of r comes out to be r = a. Substituting this into equation (D-3) 

gives y = a sin θ. Moreover, expressing the sine and cosine functions as weighted sums of the 

exponential function and combining equation (D-1) with it one gets the following  

 

𝑐𝑜𝑠 𝜃 = 𝑅𝑒 𝑒 =
𝑒 + 𝑒

2
=

𝜁 + 𝜁

2
 

𝑠𝑖𝑛 𝜃 = 𝐼𝑚 𝑒 =  
𝑒 −  𝑒

2𝑖
= −𝑖

𝜁 − 𝜁

2
 

(D-5) 

Expressing cos θ and sin θ according to equations (D-5), and substituting x = b cos θ and y = a 

sinθ into the expression of the complex variables zj = ωj(ζj) = x + μjy of equation (2-38), the 

mapping function for an elliptical hole in an orthotropic plate is thereby expressed as equation 

(D-6). 

 𝑧 = ω 𝜁 = 𝑥 +  𝜇 𝑦 = 𝑏
𝜁 + 𝜁

2
− 𝑖𝑎𝜇

𝜁 − 𝜁

2
,   𝑗 = 1, 2 (D-6) 

After re-arranging equation (D-6), the mapping function takes the following form 
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 𝑧 =  𝜔 𝜁 =  
𝑏 + 𝑖𝑎𝜇

2

1

𝜁
+

𝑏 − 𝑖𝑎𝜇

2
𝜁 ,   𝑗 = 1, 2 (D-7) 

which is that of equation (5-6). Equation (5-6) or (D-7) differ slightly from the mapping 

expressions for an elliptical hole appearing in sources such as References [5] and [8]. This is 

because of the x-y coordinate orientation relative to the major and minor elliptical axes and from 

where θ is measured.  



416 
 

 
 

Appendix E. Out-of-Plane Displacement Monitoring for 

Elliptically-Perforated Orthotropic Plate 

 

  

(a) (b) 

 

(c) 

Figure E-1: Contours of 3D-DIC provided raw displacements (a) u/a, (b) v/a and (c) w/a, 
showing no sign of out-of-plane bending for elliptically-perforated plate of Figure 5-1 
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Figure E-1(c) show that the 3D-DIC recorded raw out-of-plane displacements, w, are 

significantly less (negligible) compared to in-plane displacements of Figures E-1(a) and (b). The 

maximum in-plane displacement in the loading direction, u, is 2.24 × 103 times larger than w and 

that transverse to the loading direction, v, is 31.40 times larger than w, Figure E-1. Therefore, 

showing there was no out-of-plane motion other than Poisson’s effect when loading (Figure 5-4) 

the elliptically-perforated plate of Figure 5-1. The comparison among the three components of the 

displacement was done from unprocessed raw DIC data to keep everything consistent. The 

measured data at locations r = 0.45a beyond the hole’s boundary were considered to exclude the 

unreliable edge data.  
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Appendix F. Effect of Number of Airy Coefficients, k, on the 

Elliptically-Perforated, Finite, Orthotropic Plate 

 

 

 (a)  

 

(b) 

Figure F-1: Contours of stresses (a) σyy/σ0 and (b) σxy/σ0 from FEM (left side) and hybrid-method 
based on DIC-measured displacement information, u, in vertical loading direction for k = 4 (right 

side) 

 

Figure F-1 further supports the selection of k = 2 in DIC-hybrid method to stress analyze 

the elliptically-perforated, finite, orthotropic graphite-epoxy plate of Figure 5-1. Although their 

magnitudes are relatively small, as the number of Airy coefficients is increased to k = 4, the in-

plane normal stresses transverse to the loading direction, Figure F-1(a), and the shear stresses, 
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Figure F-1(b), start to deviate from their expected behavior. The in-plane normal stresses in the 

loading direction remains essentially unchanged. 
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Appendix G. Determination of Experimental Stress 

Concentration Factor from Durelli et al. [94]  

 

 

Figure G-1: Experimental stress concentration factor versus hole-opening to plate-width ratio for 
finite, elliptically-perforated, isotropic plate from Durelli et al. [94] 
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Durelli et al. [94] in Figure G-1 used the symbols K for the experimentally-determined 

stress concentration factor, λ for the elliptical hole-opening to plate-width ratio, 2a/W, and μ for 

the ratio of the minor to major ellipse radii, b/a. Stress concentration factor results obtained from 

Neuber’s rule are also included in Figure G-1. It should be noted that for the elliptically-perforated 

plates of Chapter 5, including the plate of Figure 5-1, all presented results consider the hole-

opening sharpness as the ratio of the major to the minor ellipse radii, a/b, which is the inverse of 

the μ used in Figure G-1. 
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Appendix H. Complex Variables Hybrid-Method Validity for 

Bi-Axial Tensile and In-Plane Shear Loading 

 

The displacement-based complex variables method was utilized in this section to 

individually analyze a bi-axial tensile and an in-plane shear loaded, finite, orthotropic plate with a 

central circular hole. The plate dimensions and material properties are provided in Table H-1 and 

Table H-2, respectively. Quarter-FEA models of the two plates were created in ANSYS APDL 

using isoparametric elements Plane 183. The FEM details are provided in Chapter 4, Section 4.8. 

The plates individually experienced bi-axial tensile stresses and in-plane shear stresses of 11.05 

MPa (1.6 ksi) along all far-field boundaries, Figure H-1.  

 

Table H-1: Details of bi-axial tensile or in-plane shear loaded circularly-perforated orthotropic 
plate 

Plate Parameters Orthotropic Circularly-Perforated Plate   

Circular hole diameter, D 25.4 mm (1'') 

Hole-opening to plate-width ratio  D/W = 0.33 

Width, W  76.2 mm (3'') 

Length, L 279.4 mm (11'') 

Thickness, t 5.28 mm (0.208'') 

Far-field stress, σ0 11.05 MPa 

Degree of anisotropy, E11/E22 1.03 

Symmetry Horizontally and vertically 
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Table H-2: Material properties of bi-axial tensile or in-plane shear loaded circularly-perforated 
orthotropic plate 

Properties Symbol Value Units 

Elastic modulus in strong/stiff direction E11 or Exx 210.29 GPa 

Major Poisson’s ratio ν12 or νxy 0.25 Dimensionless 

Elastic modulus perpendicular to direction -1 E22 or Eyy 203.39 GPa 

Shear modulus G12 or Gxy 82.74 GPa 

 

 

 
(a) 

 
(b) 

Figure H-1: Quarter-plate FEMs of circularly-perforated orthotropic plate under (a) Bi-axial 
tensile and (b) In-plane shear stresses 

 

The plates were analyzed using FEA-determined displacements in the x-direction, u. The 

direction x is along the plate’s strong/stiff material direction 1. FEA-predicted u-displacements 
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were processed by the complex variables hybrid stress analysis method according to the procedure 

outlined in Chapter 4, Section 4.4. The FEA-determined u-displacements (individually for either 

the bi-axial tensile or shear loaded plate) were processed with equation (4-1) combined with 

equation (4-7) to evaluate the Airy coefficients, cj. Once the Airy coefficients are known, using 

them in equations (4-1) through (4-5) the in-plane displacements and stresses in the plate under bi-

axial tensile or in-plane shear loading were evaluated individually. Both the analyses were done 

for nFEA = 31,087 FEA-predicted displacements in the x-direction, u. Based on the respective RMS 

plots, number of Airy coefficients, k = 8 and k = 10, were employed in the Laurent series expansion 

of the stress functions for the plates under bi-axial tensile and in-plane shear loading, respectively. 

The method requires no knowledge of the external loading or boundary conditions.  

Hybrid-method provided results are compared with the direct FEA-predictions in Figure 

H-2 through Figure H-5. All distances and displacements are normalized by the radius of the 

circular hole, R = 12.7 mm (0.5''), and stresses with respect to the applied external stress, σ0 = 

11.05 MPa (1.6 ksi). The stress concentration factor (SCF) of the plates were determined using 

either direct FEA-predicted or complex variables hybrid-method evaluated in-plane stresses, σxx, 

in the loading direction at x = 0 for y = R, in equation (5-14), Table H-3. SCFs from direct FEA 

prediction and obtained by using FEA-predicted u-displacements in the complex hybrid-method 

show good agreement. In addition, from a study by Kotousov and Wang [194] done with a similar 

isotropic plate under in-plane shear as of the current orthotropic plate with E11/E22 = 1.03 

experiencing shear loading, Figure H-1(b), the SCF was evaluated and compared with the ones 

from FEA and complex variables hybrid-method, Table H-3. Kotousov and Wang [194] studied 

infinite plates whereas the present plate under shear loading has a finite-width compared to the 

hole diameter, i.e., D/W = 0.33. Thus, the evaluated KT for the current in-plane shear loaded plate 
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as expected is slightly higher than that from Kotousov and Wang’s study. From Figure 2 of 

Kotousov and Wang’s paper [194], for a circularly-perforated infinite isotropic plate the KT are 

determined as a function of the plate’s half thickness to hole radius ratio, i.e., t/2R = 0.208 for the 

current plate and for Poisson’s ratio, ν = 0.25 ≈ 0.3. 

The agreement between the displacement-based hybrid and FEA results demonstrate the 

complex variables hybrid-method’s ability to reliably analyze a bi-axially tensile loaded plate or a 

plate experiencing in-plane shear loading. This validate the hybrid-method’s ability to analyze 

orthotropic plates under a variety of loading. When analyzing orthotropic plates under various in-

plane loading, the concept of the complex variables hybrid-method is computationally more 

convenient than other approaches available in literature. Such example is a study done by Lim et 

al. [195] to analyze bi-axially loaded anisotropic plates. 

 

  

(a) (b) 

Figure H-2: Contours of (a) u/a and (b) v/a from FEA (left side) and hybrid-method (right side) 
based on FEA-predicted displacement information, u, for circularly-perforated, D/W = 0.33, 

orthotropic plate with E11/E22 = 1.03 under bi-axial tensile load 
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(a) (b) 

 

(c) 

Figure H-3: Contours of (a) σxx/σ0, (b) σyy/σ0 and (c) σxy/σ0 from FEA (left side) and hybrid-
method (right side) based on FEA-predicted displacement information, u, for circularly-
perforated, D/W = 0.33, orthotropic plate with E11/E22 = 1.03 under bi-axial tensile load 

 

 

  

(a) (b) 

Figure H-4: Contours of (a) u/a and (b) v/a from FEA (left side) and hybrid-method (right side) 
based on FEA-predicted displacement information, u, for circularly-perforated, D/W = 0.33, 

orthotropic plate with E11/E22 = 1.03 under in-plane shear loading 
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(a) (b) 

 

(c) 

Figure H-5: Contours of (a) σxx/σ0, (b) σyy/σ0 and (c) σxy/σ0 from FEA (left side) and hybrid-
method (right side) based on FEA-predicted displacement information, u, for circularly-

perforated, D/W = 0.33, orthotropic plate with E11/E22 = 1.03 under in-plane shear loading 

 

Table H-3: SFC for circularly-perforated orthotropic plates with D/W = 0.33 and E11/E22 = 1.03 
under variety of loadings 

Load type 

SCF, KT, from 

Hybrid-method FEA Literature 

Bi-axial tension 2.04 2.04 - 

In-plane shear 4.96 4.95 4.02 (for similar infinite plate from 
Kotousov and Wang [194]) 
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Appendix I. Environmental Effects on Thermoelastic 

Coefficient, K 

 

To stress analyze mechanical members employing thermoelastic stress analysis (TSA) 

requires the TSA-recorded load-induced temperature signal, S*, be converted to the first invariant 

of stresses or the isopachic stress, S. This is done by experimentally knowing the thermoelastic 

coefficient, K. Therefore, accuracy of the TSA-stresses depends on accurately determining K. 

To avoid reflection from the TSA specimen surface and to provide uniform and enhanced 

thermal emissivity, one typically applies a layer of black paint to the TSA specimen surface priori 

to testing. The TSA coefficient, K, can be determined from a uniform tensile coupon also coated 

with a thin layer of the same black paint. It is good practice to paint and load the calibration coupon 

on the same day under the same temperature and humidity conditions and cyclic rate as those of 

the TSA test specimen. Following these steps avoids any environmental or time-dependent effects. 

 The studies conducted in this research involve graphite-epoxy laminates and aluminum. 

Neither of these materials experiences time-dependent deformation at room temperature. 

However, as the TSA specimens are provided with a thin layer of paint, the effects of temperature 

and humidity on the paint need to be investigated. Any influence of time-dependent deformation 

or environmental factors can contaminate the TSA-recorded information and/or the measured 

thermoelastic coefficient, K, and therefore compromise the resulting stress analysis. 

The effects of temperature and humidity on the applied paint layer was experimentally 

investigated. Two aluminum tensile plates of width, W = 5.08 cm (2'') and thickness, t = 6.34 mm 

(0.25''), were surface prepared and coated with a thin layer of Krylon Ultra-Flat black paint and 
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allowed to dry for an hour. This is slightly more than the paint manufacturer’s suggested cure time 

of 30 minutes. A TSA test was conducted on each of the two painted plates just shortly after the 

one-hour cure time. The plates were cyclically loaded in a 89 kN capacity, closed-loop, hydraulic-

grip MTS loading-frame. The thermoelastic coefficients, K, were determined with the Delta Therm 

Stress Photonics TSA system software and Delta Therm DT1410 infrared camera. The specimens 

were cyclically loaded at 8,896.4 N ± 5,337.7 N (2,000 lbs ± 1,200 lbs). Tests were conducted at 

loading frequencies of 10 Hz and 20 Hz. The initial thermoelastic coefficients are determined 

essentially just an hour after applying the paint layer and are considered as the reference K value 

for the respective testing.  

One of the aluminum plate was exposed to relatively elevated temperature (maximum of 

110 °F) and high humidity (50% RH) for a time duration. The other aluminum plate was kept at 

room environment. Determined values of K were determined intermittently and plotted against the 

exposure time. Values of K were calculated from the TSA-measured data according to equation 

(I-1) 

 𝐾 = 𝑆∗/∆𝜎 (I-1) 

where S* is the TSA-recorded thermal information. For a uniform tensile calibration plate/coupon 

under proportional loading, ∆σ is related to the stress range it experiences under the applied cyclic 

load. The highest and lowest peaks of the cyclic loading were recorded using an oscilloscope. 

Using these maximum-minimum loads and the uniform cross-sectional area of the specimen, the 

stress range, ∆σ, of the applied cyclic load is calculated. K has a unit of U/MPa or U/psi, where 

‘U’ denotes the uncalibrated TSA-recorded signal output. 
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For the aluminum plate kept at room enviorment, Figure I-1, there were slight variations 

in the measured values of K. For the 10 Hz frequency over a time interval of 53 days, the measured 

thermoelastic coefficient, K, varied within 1% to 6% (% of error) from the reference K value and 

from 1% to 5% for 20 Hz frequency. For the plate exposed to elevated conditions over 24 days, 

Figure I-2, it was seen that after the first exposure to extreme conditions there was a noticeable 

change in the obtained thermoelastic coefficient, K; 24% for 10 Hz frequency and 17% for 20 Hz 

frequency compared to the reference K values, respectively. Subsequent relative changes were 

smaller. The K values of Figure I-1 and Figure I-2 are normalized with respect to the stress 

amplitude (∆σ/2) of the cyclically applied load. 

Results show that at room/ambient conditions, the paint exhibits only slight or negligible 

changes in the K values over time. The paint’s melting temperature is not provided by the 

manufacture. When exposed to elevated conditions of temperature and % RH, the thermoelastic 

coefficient, K, noticeably changes after the first exposure. The viscoelastic effect of the coating 

probably plays a role here. Any change in the K values can significantly affect the TSA-determined 

stresses. The present results suggest it is good practice to paint and test the TSA test specimen and 

calibration plate/coupon on the same day, at the same frequency and under same environmantal 

conditions. 
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Figure I-1: Cyclic effect on thermoelastic coefficient, K (ambient conditions) 

 

 

Figure I-2: Effect of elevated temperature and high humidity on thermoelastic coefficient, K 
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Appendix J. Effect of Varying Number of Airy Coefficients, 

k, for the Circularly-Perforated, Finite, Isotropic Plate 

 

The computed load 𝐹∗ of Table J-1 further validates the use of k = 21 in the TSA stress 

analysis of the plate of Figure 6-1. k = 21 best satisfies the load equilibrium. Note that the TSA-

computed load, 𝐹∗, was calculated using the expression of the load equilibrium of equation (6-23) 

at y = R. 

 

Table J-1: Comparison between applied load (1,779.29 N) and TSA-computed load versus 
number of Airy coefficients, k, for nt = 12,592 + 244   

No. of Airy 
coefficients, k 

Computed load, 𝐹∗, from 
TSA-hybrid method (N) 

% of error with 
physically applied load 

9 1,719.82 3.34 

11 1,693.39 4.83 

13 1,717.41 3.48 

15 1,707.14 4.05 

17 1,759.05 1.34 

19 1,766.43 0.72 

21 1,785.43 0.34 

25 1,590.86 10.59 
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Appendix K. How Far Should One Stay Away from an Edge 

 

For the off-axis perforated aluminum plate of Chapter 6 (Figure 6-1), some additional 

analyses were conducted to demonstrate the effect of the TSA-recorded data selection ranges on 

the TSA results. The initial analysis used nTSA = 12,592, excluded three pixels of TSA-recorded 

data along the two vertical sides of the plate and omitted data within 0.1R (≈ 1 mm) distance from 

the hole’s boundary. In addition, an assumption was made of having no sufficiently reliable TSA-

recorded information throughout the region to the right of the hole up as far as y/R = 0.75 (19 

pixels from point ‘A’) from the plate’s horizontal center-line, Figure 6-8. A total of 2h = 244 

boundary conditions, σxy = σxx = 0, were imposed along the two vertical edges of the plate at 61 

equally-spaced locations and k = 21 Airy coefficients were employed. The additional analyses 

investigate how the TSA data selection along the plate’s vertical edges and the varying amount of 

missing/unreliable data at structurally critical locations affects the overall performance of the TSA 

method.  

For the first of these two analyses, while keeping everything else the same as the initial 

analysis, the number of excluded pixels of input data along the vertical edges of the plate was 

changed from three pixels to two pixels (nTSA = 12,882) then to one pixel (nTSA = 12,998), 

respectively. The TSA evaluated stresses at location ‘A’ (Figure 6-1) for these situations are 

compared with those obtained from FEA and strain-gage, Table K-1. Load equilibrium was also 

checked, Table K-1. 

From comparison of the TSA results with strain-gage data, Table K-1, it is observed that 

as more TSA data are excluded from the two vertical edges of the plate, the TSA results improve, 
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i.e., TSA-computed stress at location ‘A’ agrees better with the strain-gage result. The load 

equilibrium is also better satisfied when excluding recorded data within three pixels from each of 

the vertical edges. These results suggest improved results by excluding possibly unreliable data 

from the TSA analysis. 

 

Table K-1: TSA-hybrid method computed stress at location ‘A’ for various data ranges and k = 
21 

No. of pixels omitted 
from each vertical side 

TSA-hybrid method 
utilized data,            
nt = nTSA + 2h 

% of error between TSA-hybrid method 

Computed stresses at 
location ‘A’ with Computed and 

physically 
applied load  FEA Strain-gage 

1 12, 998 + 2×122 2.12 3.73 2.84 

2 12, 882 + 2×122 2.94 2.97 3.20 

3 12, 592 + 2×122 4.51 1.49 0.34 

 

For the third analysis, TSA-recorded data were excluded within three pixels from each 

vertical side of the plate, and the region to the right of the hole where no reliable TSA-measured 

S* data existed (Figure 6-8) was slightly enlarged. The TSA-measured S* data were now considered 

unreliable/absent up to y/R = 1 from the horizontal center-line instead of y/R = 0.75, Figure K-1 

and Figure 6-8, respectively. The closest available TSA-recorded data from location ‘A’ is now 25 

pixels away vertically, instead of the initial 19 pixels, from location ‘A’. The utilized TSA-

measured load-induced thermal information, S*, for this analysis reduced to nTSA = 12,479, Figure 

K-1. Results obtained from this analysis are tabulated in Table K-2 and Figure K-2. 
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Figure K-1: Utilized data source locations of S* 

 

Table K-2: TSA computed stress at location ‘A’ for nt = nTSA + 2h = 12,723 and unreliable data 
up to y/R = 1 

TSA Absolute % of error compared with 

No. of Coefficients, k σyy/σ0 FEA, σyy/σ0 = 5.67  Strain-gage, σyy/σ0 = 5.34 

17 5.26 7.23 1.50 

19 5.34 5.82 0.10 

21 5.30 6.53 0.75 

23 5.31 6.35 0.56 

 

Based on the strain-gage information compared with the three situations of Table K-1, 

results of  Table K-2 suggest that omitting additional questionable TSA-measured data between 

y/R = 1 

y/R = 0.75 
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right edge of the hole and the right vertical edge of the plate enables the TSA result at point ‘A’ to 

agree more closely with the strain-gage result. However, the FEA results suggest otherwise. Note 

that the case of Table K-2 now involves less input data and the closet input values are further away 

from point ‘A’ then are those of Table K-1. 

 

 

Figure K-2: Plot of σθθ /σ0 along the hole’s boundary from FEM and TSA-hybrid method for nt = 
12,723, missing data up to y/R = 1 and k = 21 

 

For the two cases where the experimental information is unreliable vertically up to y/R = 1 

(Figure K-2) and y/R = 0.75 (Figure 6-20) to the right of the hole, comparing the tangential stresses 

it can be seen that the largest changes in the TSA results along the hole’s boundary are at θ = 0°, 

i.e., location ‘A’. Elsewhere along the hole’s boundary both the analyses give similar results. 

Experience suggests that it is good practice to not use TSA data within two-to-three pixels of edges. 
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Since TSA pixels are usually about 0.3 mm in size, this implies typically staying away at least one 

millimeter from an edge. 

The objective of these additional analyses was not to find the worst-case scenario under 

which the present TSA-hybrid method is capable of providing reliable information at structurally 

important locations. This is investigated in Chapter 7 using DIC-measured displacement 

information. Instead these analyses were intended to see how the close-to-edge experimental data 

filtration can affect the TSA results.  
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Appendix L. Complex Variables Hybrid Stress Analysis of 

Isotropic Ring with FEA-Predicted v-Displacements 

 

The isotropic ring of Figure 7-1 and Table 7-1 was stress analyzed using the complex 

variables hybrid-method, i.e., displacement information was processed with a combination of 

complex variables Airy stress functions, conformal mapping, analytic continuation and least 

squares. No symmetry or external boundary conditions were imposed. The analytical procedures 

outlined in Chapter 4, Section 4.4 were followed, i.e., equations (4-1) through (4-8). The mapping 

function of equation (4-7) for R = Ri, was used to map the inner circular hole of the ring and its 

adjacent exterior region from the physical z-plane to a unit circle and its exterior region in the 

mapped ζ-plane. The Laurent series expansion of the stress functions were employed and the 

complete states of stress and displacement of the ring were determined employing equations (4-1) 

through (4-5). For isotropy the elastic compliances of equation (2-18) are simplified according to 

elastic modulus, E22 = E and E11 ≈ E, Poisson’s ratio, ν12 = ν and shear modulus, G12 = G = E11/2(1 

+ ν). For the aluminum ring of Figure 7-1 the direction 1 is considered in the ring’s Cartesian y-

direction. For isotropy from equation (2-17) one gets the complex material properties as μ1 = μ2 ≈ 

i. 

FEA-predicted displacements in the loading direction, v, (Figure 7-10) from the quarter 

FEM of the isotropic ring of Figure 7-9 were employed to conduct the full-field stress analysis. 

Details regarding the FEM are provided in Chapter 7, Section 7.8. FEA-predicted v-displacement 

data were selected within the range of 1.08Ri ≤ r ≤ 0.95Ri, Figure M-1, where radial direction r is 

measured from the center of the ring and Ri is the ring’s inner radius, Figure 7-1. Within this 
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selected region data were omitted over a small region close to the center of the ring where the 

concentrated load was applied, Figure M-1. This was done acknowledging that the FEA 

information of Figure 7-10 includes the effect of the top concentrated load. However, the stress 

functions and its associated stress and displacement expressions, do not.  A total number of nFEA = 

2,225 FEA-predicted v-displacements along the loading direction y were selected.  

 

 

Figure L-1: One quarter of the ring of Figure 7-1 showing regions of FEA-provided (black dots) 
and hybrid-method utilized (blue star) v-displacements source data locations 

 

The nFEA = 2,225 FEA-predicted v-displacements, Figure L-1, were employed in equation 

(4-2) along with the expression of ζj for j = 1, 2, and R = Ri from equation (4-7) to find the Airy 

stress coefficients, cj = aj + ibj, according to the following equation (L-1) by least squares. Equation 

(L-1) can be re-written in terms of matrices as equation (L-2). 
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{𝑑}    

= 2 𝑅𝑒 𝑞 𝜁 + 𝑞 𝐶𝜁 + 𝐵𝜁 𝑖 𝑞 𝜁 + 𝑞 𝐶𝜁 − 𝐵𝜁
𝑎

𝑏

  

  
  

= {FEA 𝑣 − Displacement Data}    

(L-1) 

 [𝐴]  × ( ){𝑐} ( ) × =  {𝑑}  ×  (L-2) 

where for m = 1, 3… there are 2(m + 1) real Airy coefficients and k = m + 1 complex coefficients. 

Matrix [A] depends on the material properties, the mapping function and the source locations of 

the recorded input displacement values, vector {c} involves the Airy coefficients and {d} consists 

of the FEA-predicted v-displacement data. The only unknowns in the above equation (L-2) are the 

Airy coefficients in vector {c}. They are evaluated by the least-squares method. MATLAB’s 

backlash operator is used for this purpose, equation (L-3). In these overdetermined system of linear 

equations (L-1) and (L-2), the number of equations, nFEA, are kept higher than the number of 

unknown, 2(m + 1), real Airy coefficients, aj and bj. 

 {𝑐} =  [𝐴]\{𝑑} (L-3) 

For the selected nFEA = 2,225 FEA-predicted v-displacements, from the RMS plot of Figure 

L-2 and the plot of condition number of Figures L-3, the number of Airy coefficients to employ in 

the finite summation series was chosen as k = 14. Details regarding selecting the appropriate 

number of Airy coefficients to use in the hybrid-method are provided in Chapter 4, Section 4.9.1. 
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Figure L-2: RMS of the measured and reconstructed displacement data versus the number of 
Airy stress coefficients, k, for nFEA = 2,225 of Figure L-1 

 

  

(a) (b) 

Figure L-3: (a) Condition number, C, and (b) log10(C) for varying number of Airy stress 
coefficients, k, for nFEA = 2,225 of Figure L-1 
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Results 

Employing the FEA-predicted v-displacement data the Airy coefficients are evaluated 

according to equations (L-1) through (L-3). The analysis involves no imposed boundary 

conditions. The traction-free boundary conditions were analytically satisfied by the conformal 

mapping function and the outer circular boundary conditions inherently by the measured (in this 

case FEA simulated) information. Knowing the Airy coefficients, the in-plane Cartesian 

displacements and stresses of the ring are determined from equations (4-1) through (4-5), whereas 

stresses in polar coordinates from equation (2-73). Angle θ is measured from the horizontal x-axis 

in a counter clock-wise direction, Figure 7-1. 

Figure L-4 through Figure L-9 compare the results obtained from the hybrid-method based 

on FEA-predicted v-displacement data with those directly predicted by FEA. All distances and 

displacements are normalized by the inner radius of the ring, Ri = 25.4 mm, and stresses with 

respect to the nominal stress, σnet = 7.18 MPa of equation (7-15). The hybrid and FEA results are 

also compared with strain-gage readings in between locations of θ = 0° to 90° at 10° intervals, 

Figure L-10. Details regarding the strain-gage analysis are provided in Chapter 7, Section 7.9. 

The hybrid-method evaluated displacement and stress contours of Figure L-4 through 

Figure L-9 show very good agreement with the direct FEA-predictions. The tangential stresses 

along the inner boundary of the ring match exactly with those directly predicted by FEA and the 

strain-gage readings, Figure L-10. 
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Figure L-4: Contours of displacements v/Ri (displacements along the loading direction) from 
complex variables hybrid-method (right) and FEM (left) for nFEA = 2,225 and Laurent series of 

the aluminum ring loaded along direction y  

 

 

Figure L-5: Contours of displacements u/Ri (displacements transverse to the loading direction) 
from complex variables hybrid-method (right) and FEM (left) for nFEA = 2,225 and Laurent 

series of the aluminum ring loaded along direction y  
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Figure L-6: Contours of stresses σyy/σnet from complex variables hybrid-method (right) and FEM 
(left) for nFEA = 2,225 and Laurent series of the aluminum ring loaded along direction y  

 

 

Figure L-7: Contours of stresses σxx/σnet from complex variables hybrid-method (right) and FEM 
(left) for nFEA = 2,225 and Laurent series of the aluminum ring loaded along direction y  
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Figure L-8: Contours of stresses σxy/σnet from complex variables hybrid-method (right) and FEM 
(left) for nFEA = 2,225 and Laurent series of the aluminum ring loaded along direction y  

 

 

Figure L-9: Contours of stresses σθθ/σnet from complex variables hybrid-method (right) and FEM 
(left) for nFEA = 2,225 and Laurent series of the aluminum ring loaded along direction y  
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Figure L-10: Plot of tangential stresses, σθθ /σnet, along inner boundary of the aluminum ring from 
strain-gage, direct FEA and complex variables hybrid-method (FEA-predicted v-displacements 

as input) for nFEA = 2,225 and Laurent series 

 

Summary, Discussion and Conclusions 

The hybrid-method results demonstrate good agreement with those from direct FEA-

predictions and strain-gage readings. This supports the present hybrid-method’s ability to reliably 

stress analyze members with non-rectangular outer boundaries and non-uniform loading by 

processing a single measured displacement component with mechanics-based algorithms 

established on the concepts of complex variables Airy stress functions, conformal mapping, 

analytic continuation and Laurent series combined with numerical method such as least squares. 

In addition, the hybrid-method’s ability to reliably analyze isotropic materials is demonstrated. 
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Appendix M. Complex Variables Hybrid Stress Analyses of 

Aluminum Ring with DIC-Measured v-Displacements 

 

In this section the aluminum ring of Figure 7-1 and Table 7-1 was experimentally stress 

analyzed using the complex variables hybrid-stress analysis concepts according to the details 

provided in Appendix L. DIC-measured displacement data in the loading direction, v, were utilized 

in the analytical expressions based on the concepts of complex variables Airy stress functions, 

conformal mapping, analytic continuation and power-series expansion combined with numerical 

tools such as least squares. Details regarding the DIC surface preparation, loading, data acquisition 

and processing are provided in Chapter 7, Sections 7.6 and 7.7. From the processed and averaged 

DIC-measured v-displacements of Figure 7-6, nDIC = 22,039 input v-data were selected by omitting 

measured data close to inner and outer boundaries and near the location where the concentrated 

external load was applied. These selected DIC-measured information was processed according to 

the procedures outlined in Appendix L, i.e., according to Chapter 4, Section 4.4, equations (4-1) 

through (4-8) for R = Ri, E22 = E,  E11 ≈ E, ν12 = ν, G12 = G = E11/2(1 + ν) and μ1 = μ2 ≈ i. 

The Airy stress coefficients, cj, were evaluated using the nDIC = 22,039 DIC-measured v-

displacements in equations (4-2). The number of Airy coefficients retained in the summation 

series, k = 4 or m = 8 , were selected based on the RMS plot of Figure M-2 and plot of condition 

numbers of Figure M-3. Here k is the number of complex Airy coefficients, cj, and m is the number 

of real Airy coefficients, aj and bj. 

Using the hybrid-method evaluated Airy stress coefficients in equations (4-1) through (4-5) 

the complete states of displacement and stress are obtained for the aluminum ring, Figure M-4 
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through Figure M-7. Knowing the in-plane stresses in the Cartesian coordinates from equations 

(4-3) through (4-5), using those in equation (2-73) the in-plane stresses in the Polar coordinates 

are obtained. The tangential stress contours are provided in Figure M-8. The hybrid displacement 

and stress contours obtained from DIC-measured v-displacements are compared with those directly 

predicted by FEA in Figure M-4 through Figure M-9. All distances and displacements are 

normalized by the inner radius of the ring, Ri = 25.4 mm, and stresses with respect to the nominal 

stress, σnet = 7.18 MPa of equation (7-15). 

A strain-gage analysis was conducted on the aluminum ring of Figure 7-1 as outlined in 

Chapter 7, Section 7.9. The tangential stresses along the inner boundary of the ring obtained from 

the DIC-hybrid method, direct FEA and strain-gage reading are plotted in Figure M-9. For the 

current aluminum ring the 0° and 90° locations are structurally the most significant. At these two 

locations the agreement between all the three approaches are significant, Figure M-9. However, 

noticeable discrepancies occur between DIC results with FEA and strain-gage readings away from 

θ = 0° or 90° locations, Figure M-9. Imposing certain boundary conditions and working with 

measured data very close to the inner boundary are possible ways of overcoming these 

discrepancies.  
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Figure M-1: One quarter of the ring of Figure 7-1 showing regions of DIC-provided (black dots) 
and hybrid-method utilized (blue star) v-displacements source data locations 

 

 

Figure M-2: RMS of the DIC-measured and hybrid-method reconstructed displacement data 
versus the number of Airy stress coefficients, k, for nDIC = 22,039 of Figure M-1 
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(a) (b) 

Figure M-3: (a) Condition number, C, and (b) log10(C) for varying number of Airy stress 
coefficients, k, for nDIC = 22,039 of Figure M-1 

 

 

Figure M-4: Contours of displacements v/Ri from complex variables DIC-hybrid method (right) 
and FEM (left) of the aluminum ring loaded along direction y for DIC-measured nDIC = 22,039 v-

displacements and Laurent series 
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Figure M-5: Contours of displacements u/Ri (displacements transverse to the loading direction) 
from complex variables DIC-hybrid method (right) and FEM (left) of the aluminum ring loaded 

along direction y for DIC-measured nDIC = 22,039 v-displacements and Laurent series 

 

 

Figure M-6: Contours of stresses σyy/σnet from complex variables DIC-hybrid method (right) and 
FEM (left) of the aluminum ring loaded along direction y for DIC-measured nDIC = 22,039 v-

displacements and Laurent series 
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Figure M-7: Contours of stresses σxx/σnet from complex variables DIC-hybrid method (right) and 
FEM (left) of the aluminum ring loaded along direction y for DIC-measured nDIC = 22,039 v-

displacements and Laurent series 

 

 

Figure M-8: Contours of stresses σθθ/σnet from complex variables DIC-hybrid method (right) and 
FEM (left) of the aluminum ring loaded along direction y for DIC-measured nDIC = 22,039 v-

displacements and Laurent series 
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Figure M-9: Plot of tangential stresses, σθθ /σnet, along inner boundary of the ring from strain-
gage, direct FEA and complex variables DIC-hybrid method (DIC v-displacements as input) for 

nDIC = 22,039 and Laurent series 
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Appendix N. Edge-Crack Mapping Function and Laurent 

Series 

 

The mapping function of equation (8-7), which maps a unit circle and its exterior region 

from the ζ-plane to an edge crack and its exterior region in the z-plane, Figure 8-2, is a special case 

of Andersson’s mapping. For an orthotropic material in the physical plane z = x + μjy, for j = 1, 2, 

Andersson’s mapping function is [22,172] 

 

𝜔 𝜁 = 𝑧 = 𝑎𝜁 𝜁 − 1 𝜁 + 1 +

𝑎𝜁 𝜁 − 1 𝜁 + 1 + 𝑧            j = 1, 2 

(N-1) 

where the edge crack is inclined by an angle kπ/2 to the x-axis. Using k = 1 in equation (N-1) gives 

the mapping function of equation (8-7) in which the edge crack is transverse to the x-axis. The 

mode-I loading is in the x-direction of the plate perpendicular to the crack-face. 
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Appendix O. Complex Variables Hybrid-Method and J-

Integral to Fracture Analyze Isotropic Plates Containing 

Cracks 

 

General Overview 

The ability of the displacement-based complex variables hybrid-method combined with the 

J-integral concepts to fracture analyze members fabricated with isotropic materials containing 

cracks is demonstrated here. A double-edge crack (DEC) plate (plate-5) with dimensions according 

to Figure 9-1 and material properties of Table O-1 was modeled and analyzed in ANSYS APDL. 

The orthotropic material properties of plate-5 (Table O-1) have directional properties with very 

low degree of anisotropy, E11/E22 = 1.034, i.e., properties of plate-5 are similar to an isotropic 

material. In addition, FEA of a steel DEC-plate (plate-6) with dimensions and elastic properties of 

Figure 9-1 and Table O-2, respectively, was conducted. 

 

Hybrid-Method 

FEM quarter models of plate-5 and -6 were created and analyzed using ANSYS APDL 

with the coordinates and dimensions as shown in Figure 9-1 and properties of Table O-1 and Table 

O-2, respectively. Details regarding the FEA models are provided in Chapter 9, Section 9.6. FEA 

predicted v-displacements were processed by the hybrid-method combined with the J-integral 

approach according to Chapter 9, Sections 9.4.1 (displacement-based hybrid-method) and 9.4.2.2 
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(J-integral concepts). The FEA-predicted v-displacements are processed with equation (9-11) 

combined with the mapping function of equation (9-3) to evaluate the Airy coefficients, cj. The 

mapping function maps an edge crack and its surrounding region from the z-plane to a half-plane 

with the crack-face along the real axis in the mapped ζ-plane and vise-versa. Knowing the Airy 

coefficients and plate’s material properties and using equations (9-11) through (9-15) and 

equations (9-30) and (9-31) the plate’s states of stress, displacement and rotation components are 

evaluated. From these hybrid-method evaluated results in equation (9-27) the J-integral of the 

DEC-plates are obtained along a path surrounding the crack from the lower flank to the upper flank 

in a counter clock-wise direction at a distance dint from the crack-tip, Figure 9-4. Details regarding 

evaluating the J-integral for each of the line segments of the path shown in Figure 9-4 are provided 

in Table 9-1. Once the J-integral is evaluated one can obtain SIF, KI from equation (9-34). Only 

the v-displacements were employed in the hybrid analyses without requiring to use any other 

boundary conditions. 

 

Hybrid Analyses Details 

While processing the FEA-predicted v-displacements using the displacement-based 

complex hybrid-method for both plate-5 and -6, nFEA = 2,404 displacements were selected close 

but slightly away from the crack-face and -tip over the region 0.1a ≤ y ≤ 0.2(L/2), − a ≤ x ≤ (W/2 

– a) and r ≥ 0.1a, Figure O-1. This is due to the fact that measured data close to the crack-face are 

unreliable and also to avoid any three-dimensional effect prevailing close to the crack-tip. For 

these nFEA = 2,404 selected FEA-predicted v-displacements to obtain reliable results the RMS plot 

of Figure O-2 suggests using k ≥ 14 Airy coefficients in the finite series employed in the analytical 
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expressions of displacements, stresses and rotation components. For the current analyses k = 30 

were selected. Some details regarding the hybrid analyses for plate-5 and 6 are provided in Table 

O-3. Using the evaluated cj in equations (9-10) through (9-15) the in-plane displacements, stresses 

and strains were obtained, Figure O-4 through Figure O-7 for plate-5 and Figure O-9 through 

Figure O-12 for plate-6. 

 

  Fracture Analyses Details 

ANSYS APDL provides built-in commands to find important fracture-related parameters 

for isotropic materials, Figure O-8 and Figure O-13. For the steel plate-6 ANSYS APDL command 

‘CINT’ was used to evaluate the J-integral around contours surrounding the edge crack of the 

quarter FEM model of the DEC-plate, Figure O-13. As plate-5 has properties close to an isotropic 

material, the J-integral of the plate was also evaluated using ANSYS command ‘CINT’, Figure 

O-8. 

The J-integrals of plate-5 and -6 also evaluated by post-processing the hybrid-method 

provided information according to the J-integral concepts of Chapter 9, Section 9.4.2.2, are 

provided in Table O-4 and Table O-5, respectively. The integrations were computed using the 

Gaussian-Quadrature rule employing 15 Gaussian points. 
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Table O-1: Material properties of almost isotropic plate-5 with double-edge cracks 

Plate’s Elastic Properties Double-Edge Cracks 
(Almost Isotropic) 

Elastic modulus in loading direction, E22 or Eyy 203.39 GPa (29.5 × 106 psi) 

Elastic modulus transverse to loading direction, 
E11 or Exx  

210.29 GPa (30.5 × 106 psi) 

Major Poisson’s ratio, ν12 or νxy 0.25 

Shear modulus, G12 or Gxy 82.74 GPa (12 × 106 psi) 

 

Table O-2: Material properties of isotropic plate-6 with double-edge cracks 

Plate’s Elastic Properties Double-Edge Cracks (Isotropic) 

Elastic modulus, E  206.84 GPa (30 × 106 psi) 

Poisson’s ratio, ν 0.25 

Shear modulus, G  84.12 GPa (12.2 × 106 psi) 
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Figure O-1: Hybrid-method utilized FEM-predicted v-displacements source locations for plate-5 
and plate-6 for 0.1a ≤ y ≤ 0.2(L/2), − a ≤ x ≤ (W/2 – a) and r ≥ 0.1a 

 

4.2  

Figure O-2: RMS of the FEA-predicted and hybrid-method reconstructed v-displacement data 
versus the number of Airy stress coefficients, k, for nFEA = 2,404 of the almost isotropic DEC-

plate-5 and Taylor series 
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Figure O-3: RMS of the FEA-predicted and hybrid-method reconstructed v-displacement data 
versus the number of Airy stress coefficients, k, for nFEA = 2,404 of steel DEC plate-6 and Taylor 

series 

 

Table O-3: Hybrid analyses details for plate-5 and -6 

Plate Type 
Complex 
material 

properties 

Hybrid-
method’s 

input 
quantity 

Employed 
FEA-

predicted 
displacements 

Imposed 
boundary 
condition 

No. of 
complex Airy 
coefficients 
employed 

DEC almost 
isotropic 
(E11/E22 = 
1.034) 

μ1 = − 0.0472 
+ 1.0073i 

μ2 = 0.0472 + 
1.0073i 

v nFEA = 2,404 h = 0 k = 30 

(Taylor series) 

DEC isotropic 
(E11/E22 = 
1.00) 

μ1 = μ2 = 
1.00i 

 

v nFEA = 2,404 h = 0 k = 30 

(Taylor Series) 
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Results 

For plate-5 (almost isotropic DEC-plate) Figure O-4 through Figure O-7 and for plate-6 

(steel DEC-plate) Figure O-9 through Figure O-12 compare the results obtained from the hybrid-

method employing FEA-predicted v-displacement data with those directly predicted by FEA. All 

distances and displacements are normalized by the length of the individual edge crack, a = 19.05 

mm, and stresses with respect to the far-field stress, σ0 = 21.23 MPa according to equation (9-43). 

The J-integrals evaluated using the ANSYS in-build ‘CINT’ command, Figure O-8 and 

Figure O-13, agree well with those evaluaed by the hybrid-method combined with the J-integral 

concepts, Table O-4 and Table O-5, for various integration paths, dint. 

The excellent agreement between the hybrid-method reconstructed and direct FEA-

predicted displacement and stress contours of Figure O-4 through Figure O-7 and Figure O-9 

through Figure O-12 for plate-5 and -6, respectively, demonstrate the hybrid-method’s capability 

in reliably stress analyzing members fabricated of  isotropic or orthotropic materials with lower 

degree of anisotropy containg cracks. The hybrid-methods capability in effectively treating 

orthotropic members with different material properties and crack types was demonstrated in 

Chapter 9. 

The J-integral value obtained from ANSYS relates closely with those obtained from the 

hybrid-method, within  0.017% − 0.717% for plate-5 and 0.096% − 0.296% for plate-6 , Table O-4 

and Table O-5, respectively. This validates that the hybrid-method combined with the J-integral 

concept is an effective approach to reliably analyze istropic members involving cracks.  
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Figure O-4: Contours of displacements v/a for almost isotropic DEC plate-5 from hybrid-method 
(top half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from 

FEA (bottom half) 

 

 

Figure O-5: Contours of stresses σyy/σ0 for almost isotropic DEC plate-5 from hybrid-method (top 
half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from FEA 

(bottom half) 
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Figure O-6: Contours of stresses σxx/σ0 for almost isotropic DEC plate-5 from hybrid-method 
(top half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from 

FEA (bottom half) 

 

 

Figure O-7: Contours of stresses σxy/σ0 for almost isotropic DEC plate-5 from hybrid-method 
(top half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from 

FEA (bottom half) 
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Figure O-8: J-integral along various paths enclosing the crack for the almost isotropic DEC 
plate-5 using ANSYS APDL ‘CINT’ command (units of J, i.e., ‘CINT’ along y-axis are in inch-

lbs/inch2) 

 

Table O-4: Hybrid-method computed J-integral values for various paths surrounding the crack 
and J-integral value from FEA for almost isotropic DEC plate-5 

dint J value (hybrid-method) J (FEA) 

0.2a 
202.56 Joules/m2 

(1.15647 inch-lbs/inch2) 

202.60 Joules/m2 

(1.1567 inch-lbs/inch2) 
0.4a 

202.56 Joules/m2 

(1.15649 inch-lbs/inch2) 

0.6a 
201.14 Joules/m2 

(1.14836 inch-lbs/inch2) 
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Figure O-9: Contour of displacements v/a for isotropic (steel) DEC plate-6 from hybrid-method 
(top half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from 

FEA (bottom half) 

 

 

Figure O-10: Contour of stresses σyy/σ0 for isotropic (steel) DEC plate-6 from hybrid-method (top 
half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from FEA 

(bottom half) 
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Figure O-11: Contour of stresses σxx/σ0 for isotropic (steel) DEC plate-6 from hybrid-method (top 
half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from FEA 

(bottom half) 

 

 

Figure O-12: Contour of stresses σxy/σ0 for isotropic (steel) DEC plate-6 from hybrid-method (top 
half) using nFEA = 2,404 FEM-predicted v-displacements, Taylor series and k = 30 and from FEA 

(bottom half) 
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Figure O-13: J-integral along various paths enclosing the crack for the steel DEC plate-6 using 
ANSYS APDL ‘CINT’ command (units of J, i.e., ‘CINT’ along y-axis are in inch-lbs/inch2) 

 

Table O-5: Hybrid-method computed J-integral values for various path surrounding the crack 
and J-integral value from FEA for steel DEC plate-6 

dint J value (hybrid-method) J (FEA) 

0.2a 
200.99 Joules/m2 

(1.1475 inch-lbs/inch2) 

201.09 Joules/m2 

(1.1481 inch-lbs/inch2) 
0.4a 

201.28 Joules/m2 

(1.1492 inch-lbs/inch2) 

0.6a 
200.49 Joules/m2 

(1.1447 inch-lbs/inch2) 
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Discussion and Conclusions  

The displacement-based complex hybrid-method combined with the J-integral concepts is 

an effective and reliable means of fracture analyzing both orthotropic and isotropic members 

involving cracks. The method can reliably analyze virtually any type of plates. The use of the 

Taylor series further allows any type of crack configuration to be analyzed using a single mapping 

function. The stress and fracture analyses were done employing only a single component of 

measured information (in this case FEA-predicted v-displacements in the loading direction). No 

other boundary condition needs to be imposed nor the method require knowing the external 

loading.  

It was observed from these analyses that for the complex hybrid-method instead of 

selecting input displacement data over the entire plate, selecting data closer to the crack-face 

improved the hybrid results. This will be further discussed in Appendix P. A limitation of the 

hybrid-method especially when treating edge cracks is the difficulty in evaluating the transverse 

displacement component, u, from using displacements in the loading direction, v, as input and 

vice-versa. The hybrid-method evaluated u by using FEA v as the hybrid-method’s input does not 

exactly match with the ones directly predicted by FEA. However, as u-displacements are 

significantly smaller compared to v-displacements. 
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Appendix P. Effect of Source Data Locations on Complex 

Hybrid-Method Evaluated J-Integral Values 

 

This study observes the effect of the hybrid-method selected input ranges and locations on 

the J-integral results evaluated by processing the hybrid-method computed information. The 

analyses were done for the orthotropic DEC plate-5 (with elastic properties close to isotropy) using 

FEA-predicted v-displacements, according to the procedures outlined in Appendix O. For various 

ranges of data source locations using the FEA-predicted v-displacements in the complex hybrid-

method the plate was analyzed. The hybrid-method computed results were processed with the 

concept of J-integrals to evaluate fracture parameter J-value, which is related to the SIF of the 

crack plate. The J-integral of the almost isotropic DEC plate-5 was also determined using the 

ANSYS APDL command ‘CINT’ in Appendix O and found to be  202.60 Joules/m2 (1.1567 inch-

lbs/inch2). It is observed from the analyses done under this section that as the hybrid-method input 

data are selected closer to the crack-face improves the method’s result accuracy and subsequently 

provides better estimation of the J-integral value. The hybrid-method obtained J-integral values 

for the varying data source locations are compared to that provided by the FEA ‘CINT’ command.  

The analyses first considers v-displacement data over the entire plate, Figure P-1, and 

gradually reduces the amount of data selected considering input data closer to the crack-face, 

Figure P-2 and Figure P-3. Then the analyses were conducted selecting reasonably amount of input 

data considerably close to the crack-face, Figure O-1. Finally, the analysis was done by considering 

limited amount of data close to the crack-face. Results from these analyses are provided in Table 

P-1. 
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Obtained results demonstrate that as one selects the hybrid-method input data close to the 

crack-face, cases 4 through 7 of Table P-1, better results for the J-integral are obtained with respect 

to that evaluated from FEA, compared to selecting data over a larger region, cases 1 through 3 of 

Table P-1. However, if the selected data source locations are adjacent to the crack-face but over a 

comparatively small region, then the small number of selected input quantity are not sufficient to 

reliably analyze the plate, thus effecting the hybrid-method’s accuracy. For case 8 of Table P-1 

due to inadequate number of input quantities, the hybrid-method evaluated states of stress and 

displacement contours start to deviate from the ones directly determined from the FEA.  

 

 

Figure P-1: Hybrid-method utilized FEM-predicted v-displacement data source locations for 
plate-5 for 0.1a ≤ y ≤ (L/2), − a ≤ x ≤ (W/2 – a) and r ≥ 0.1a 
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Figure P-2: Hybrid-method utilized FEM-predicted v-displacement data source locations for 
plate-5 for 0.1a ≤ y ≤ 0.6(L/2), − a ≤ x ≤ (W/2 – a) and r ≥ 0.1a 

 

 

Figure P-3: Hybrid-method utilized FEM-predicted v-displacement data source locations for 
plate-5 for 0.1a ≤ y ≤ 0.4(L/2), − a ≤ x ≤ (W/2 – a) and r ≥ 0.1a 
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Table P-1: Effect of hybrid-method input v-displacement data source locations on the evaluated 
J-integral value 

Case 
Selected region for 

input v-displacements 

Radius from 
crack-tip 
beyond 

which input 
data are 
selected 

Employed FEM-
predicted v-

displacement 
input, nFEA 

Computed J-
integral value 

1 

(Figure P-1) 

0.1a ≤ y ≤ (L/2),        
− a ≤ x ≤ (W/2 – a) 

r ≥ 0.1a 4,066 

189.62 Joules/m2 

(1.0826 inch-
lbs/inch2) 

2 
0.1a ≤ y ≤ 0.8(L/2), 

− a ≤ x ≤ (W/2 – a) 
r ≥ 0.1a 3,432 

189.04 Joules/m2 

(1.0793 inch-
lbs/inch2) 

3 

(Figure P-2) 

0.1a ≤ y ≤ 0.6(L/2),   
− a ≤ x ≤ (W/2 – a) 

r ≥ 0.1a 3,099 

194.17 Joules/m2 

(1.1086 inch-
lbs/inch2) 

4 

(Figure P-3) 

0.1a ≤ y ≤ 0.4(L/2),   
− a ≤ x ≤ (W/2 – a) 

r ≥ 0.1a 2,746 

201.62 Joules/m2 

(1.1511 inch-
lbs/inch2) 

5 

(Figure O-1) 

0.1a ≤ y ≤ 0.2(L/2),   
− a ≤ x ≤ (W/2 – a) 

r ≥ 0.1a 2,404 

202.56 Joules/m2 

(1.1565 inch-
lbs/inch2) 

6 
0.1a ≤ y ≤ 0.1(L/2),   
− a ≤ x ≤ (W/2 – a) 

r ≥ 0.1a 2,157 

202.75 Joules/m2 

(1.1576 inch-
lbs/inch2) 

7 
0.1a ≤ y ≤ 0.08(L/2), 
− a ≤ x ≤ (w/2 – a) 

r ≥ 0.1a 2,044 

202.91 Joules/m2 

(1.1585 inch-
lbs/inch2) 

8 
0.1a ≤ y ≤ 0.05(L/2), 

− a ≤ x ≤ (w/2 – a) 
r ≥ 0.1a 1,677 

203.10 Joules/m2 

(1.1596 inch-
lbs/inch2) 

(contours start to 
deviate) 
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Appendix Q. DIC-Hybrid Results for DEC-Plate using only 

Measured v-Displacements 

 

(a) (b) 

(c) (d) 

Figure Q-1: Contours of (a) v/a, (b) σyy/σ0, (c) σxx/σ0 and (d) σxy/σ0 from DIC-hybrid method (top) 
and FEM (bottom) with only DIC v-displacements as input for Figure 9-1 
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In Figure Q-1, in-plane stress and displacement contours of Figure 9-1 are evaluated from 

the DIC-hybrid stress analysis method by only using DIC-measured v-displacements as input and 

without imposing any symmetry or finite boundary conditions. Here k = 6 and nDIC = 27,221 were 

used. 
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Appendix R. Evaluating SIF for the [013/905/013] Graphite-

Epoxy DEC-Plate using Bao’s Closed-Form Solutions 

 

Bao et al. [93] provided closed-form solutions to find SIFs for orthotropic plates containing 

various shaped cracks. According to Bao’s study for an orthotropic DEC-plate under a uniform 

stress of σ0, the mode-I SIF, KI, is of the following form  

 𝐾 =  𝜎 √𝜋𝑎𝑌(𝜌)𝐻
𝑎

𝑊
 (R-1) 

where λ and ρ are the dimensionless parameters and equation (R-2) provides the general expression 

of these quantities in terms of the material’s elastic compliances [177]. For the orthotropic 

[013/905/013] graphite-epoxy DEC-plate of Figure 9-1 with elastic properties of those provided in 

Table 4-1, λ and ρ are obtained from the below expressions 

 𝜆 =
𝑎

𝑎
,   𝜌 =

1

2
(2𝑎 + 𝑎 )(𝑎 𝑎 )    (R-2) 

According to the coordinate system of Figure 9-1 the elastic compliances for the present DEC-

plate are 

 𝑎 =
1

𝐸
, 𝑎 =  

−𝜈

𝐸
=

−𝜈

𝐸
, 𝑎 =  

1

𝐸
 and 𝑎 =  

1

𝐺
 (R-3) 
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where coordinates 1'-2' define directions parallel and perpendicular to the crack-face and 

coordinates 1-2 represent directions along and transverse to the strong/stiff fiber direction, 

respectively. 

Thus, combining equation (R-3) into equation (R-2), the material constants λ and ρ are 

 𝜆 =
𝐸

𝐸
= 3.7 and  𝜌 =  

(𝐸 𝐸 )

2𝐺
− (𝜈 𝜈 ) = 8.7 (R-4) 

For a tensile-loaded orthotropic plate the material orthotropy correction factor, Y(ρ), and for a 

DEC-plate the geometry dependence rescaling factor, H(a/W), are provided in equations (R-5)  and 

(R-6), respectively, [93] 

 𝑌(𝜌) = 1 + 0.1(𝜌 − 1) − 0.016(𝜌 − 1) + 0.002(𝜌 − 1)  (R-5) 

and 

 𝐻
𝑎

𝑊
= 1 + 0.122 cos

𝜋𝑎

𝑊

𝑊

𝜋𝑎
tan

𝜋𝑎

𝑊
 (R-6) 

Moreover, the KI becomes independent of plate’s length-to-width ratio, L/W, and the degree 

of material anisotropy, λ, if the composite parameter λ1/4(L/W) ≥ 2. For the present plate of Figure 

9-1 the value of λ1/4(L/W) is 6.38. Thus, the theory by Bao et al. would suggest the effects of λ and 

L/W on KI are negligible. 



477 
 

 
 

For the current [013/905/013] graphite-epoxy DEC-plate using ρ of equation (R-4) into 

equation (R-5), Y(ρ) is obtained. From the double-edge cracks length to plate-width ratio, 2a/W, 

of 0.6 and equation (R-6), H(a/W) is obtained. Substituting the values of Y(ρ) and H(a/W) into 

equation (R-1) gives KI. The normalized SIF, KI/σ0√a, is 3.7, which is much higher than those 

evaluated by the previously-mentioned methods, Table 9-10. One possible reason is that, the value 

of ρ for the current graphite-epoxy DEC-plate is 8.7. However, the expression of KI provided by 

Bao et al. [93] in equation (R-1) is typically valid for materials with 0 ≤ ρ ≤ 4 and 0.05 ≤ λ ≤ 20. 

The value of ρ for the current plate exceeds the highest limit of 0 ≤ ρ ≤ 4 by a factor of 2.2 and 

equation (R-1) over-estimates KI. Again Bao et al. [93] study was conducted considering the crack 

to be aligned with material orthotropy direction 1, i.e., most compliant direction.  

However, if the expression of equation (R-1) did not include the mathematical constant √π, 

i.e., the expression of KI was as of that provided in equation (R-7), then the KI normalized by σ0√a 

comes out to be 2.09, which agrees with the normalized KI obtained from the other methods 

illustrated in Chapter 9, Table 9-10. 

 𝐾 =  𝜎 √𝑎𝑌(𝜌)𝐻
𝑎

𝑊
 (R-7) 

A similar study done by Bažant et al. [180] provides slightly different expressions for the 

SIF of an orthotropic structure containing cracks. For composite laminates involving fracture 

Bažant study considers the structural size effect, i.e., effect of the structure’s characteristic 

dimension, on its nominal strength and fracture characteristics. Bažant combined the concept of 

the size effect of a structure with Bao’s concept. The KI for an orthotropic structure according to 

Bažant’s study is 
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 𝐾 =  𝜎 𝜋𝐷 𝛼 𝑌(𝜌)𝐻(𝛼 ) (R-8) 

where Dc is the characteristic structure size, αc is the ratio of crack length, a, to characteristic size, 

Dc, and σN is the nominal stress. Expression of these parameters are provided as below 

 𝐷 =
𝑊,  for SEC

𝑊/2,  for DEC
 ,   𝛼 = 𝑎/𝐷    and    𝜎 = 𝑃/𝐷 𝑡 (R-9) 

The material parameter Y(ρ) in equation (R-8) is a function of the orthotropic material coefficient, 

ρ, from Bao’s study provided in equation (R-4). However, the expression of Y(ρ) provided in 

Bažant’s study is as 

 𝑌(𝜌) = [1 + 0.1(𝜌 − 1) − 0.015(𝜌 − 1) + 0.002(𝜌 − 1) ]
1 +  𝜌

2

/

 (R-10) 

The geometry correction factor H(αc) in this case is a function of αc. Expressions for  H(αc) are 

provided below and for DEC configuration is the same as equation (R-6). 

 𝐻(𝛼 ) =

⎩
⎨

⎧
1 + 0.122 cos

𝜋𝛼

2

2

𝜋𝛼
tan

𝜋𝛼

2
                                for DEC

1.122 − 0.231𝛼 + 10.55𝛼 − 21.71𝛼 + 30.38𝛼    for SEC

 (R-11) 

For the DEC plate of Figure 9-1 with dimensions and properties in Table 9-2 and Table 4-1, 

respectively, combining equations (R-9) through (R-11) in equation (R-8) the mode-I KI is 

obtained. The normalized SIF, KI/σN√a, is obtained as 2.63, which is 13.56% larger than the 
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normalized KI obtained from the hybrid-method using FEA-predicted v-displacements and 19.67% 

larger when using DIC-measured v-displacement data, Table 9-10.  
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