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Abstract 

 
The human gut microbiome is widely studied primarily through compositional and 

descriptive studies. Different human health and disease statuses have been linked to 

both the gut microbiome composition and function. To understand the role of the human 

microbiome in human health and disease, in this thesis, I have paired compositional 

characterizations with functional potential via metabolic reconstruction. I utilized human 

samples paired with participant metadata to understand the role of the gut microbiome 

in three different health conditions: colorectal cancer (CRC), multiple sclerosis (MS), 

and group B Streptococcus (GBS) colonization. I investigated the role of bacterial sulfur 

cycle potential in the human gut and its impact on colorectal cancer (CRC) by 

describing the scope of the bacterial sulfur cycle in the human gut and associations of 

particular microbial sulfidogenic pathways with colorectal cancer using ~17,000 bacterial 

genomes from a cohort of 667 individuals (chapter 2). We found bacterial sulfur cycle 

genes are common in the gut and several genes are associated with CRC.  Next, I 

determined the prevalence of group B Streptococcus in the human gut in the general 

adult population using stool samples, and evaluated dietary and health risk factors for 

GBS colonization using 754 stool samples from adults in Wisconsin (chapter 3). In this 

work, we found GBS is present in 18% of stool samples and an increased abundance of 

GBS is associated with decreased dental hygiene and increased frequency of iron 

consumption. Finally, I investigated the role of bacteria and bacteriophages in relapsing 

remitting multiple sclerosis (RRMS) by evaluating the bacterial and phage composition 

and functional landscape of the gut microbiome in 75 individuals with RRMS compared 

to controls from a community in Wisconsin (chapter 4). We found the overall bacterial 
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and phage composition of the gut similar between controls and participants with RRMS. 

We found the Semi-phosphorylative Entner-Doudoroff pathway, was less likely to be 

present in in the assembled genomes of participants with MS on disease modifying 

therapy than those who are not on disease modifying therapy and tryptophan 

biosynthesis was more likely to be present in bacterial genomes of individuals with 

RRMS not on disease modifying therapy compared to controls. By understanding the 

composition and functional capacity of the microbiome in different disease states using 

human samples, we can better understand how to combine therapeutic approaches to 

change the composition and function of the microbiome (Figure 1). 

 
Figure 1. Overview of general approach taken for the projects in this thesis. I will 
use human stool samples to characterize the gut microbiome composition and 
functional potential for three different disease states. I paired the microbial analysis with 
participant metadata in the three disease states to investigate associations between 
health determinants and the gut microbiome to further our insight into the disease state. 
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Chapter 1: Introduction - The human gut microbiome and health 
Overall Background and Significance 

The human body is a complex ecosystem with trillions of microorganisms collectively 

known as the microbiome both inside and on the body. The human gut, primarily the 

colon, contains the highest density and diversity of microbes of all the human body 

associated microbiomes with 100 billion microbial cells per gram of stool 1–4. The gut 

microbiome orchestrates a symphony of interactions that profoundly impact our health.  

 

The human gut microbiome is diverse and readily studied via stool samples. Work has 

been done to characterize the microbial composition of the human gut in different 

populations and disease states via microbial DNA extracted from stool samples. 

Microbial communities consist of bacteria, archaea, eukaryotes, and viruses, but the 

majority of human gut microbiome work has focused on bacterial composition. Bacteria 

play a substantial role in the human gut including producing certain vitamins, digesting 

carbohydrates that human cells cannot digest, transforming bile, and they play a role in 

human immune system development 5.  

 

Diversity and Abundance 

The human gut microbiome is diverse, harboring trillions of microorganisms that 

represent over 1,000 different species. This microbial diversity is essential for overall 

health, as each species contributes unique functions that collectively support human 

well-being 6. 

 

Impact on Digestion and Nutrient Absorption 
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One of the primary roles of the gut microbiome is to aid in digestion and nutrient 

absorption for the human host. Gut microbes break down complex carbohydrates and 

fibers that humans cannot digest, providing essential nutrients such as vitamins and 

short-chain fatty acids (SCFAs). SCFAs serve as energy sources for gut cells and play 

a vital role in regulating metabolism and inflammation 5,7. 

 

Immune System Modulation 

The gut microbiome interacts closely with the immune system, influencing its 

development and function. The gut microbiome helps train the immune system to 

distinguish between beneficial and harmful microbes, preventing the body from 

attacking its own tissues. A diverse and balanced gut microbiome promotes immune 

tolerance and can reduce the risk of autoimmune diseases 8,9. 

 

The Effects of Diet and Exercise on the Gut Microbiome  

Exercise has been shown to impact the gut microbiome by promoting high diversity and 

decreasing transit time for stool. Some studies have shown exercise can promote so 

called “beneficial” species in the gut microbiome 10,11. In addition to exercise, diet has 

been shown to be a major driver in the composition and functionality of the gut 

microbiome. A diet rich in fruits, vegetables, and whole grains promotes a diverse and 

balanced gut microbiome, while a diet high in processed foods, sugary drinks, and 

artificial sweeteners can lead to an imbalance, potentially increasing the risk of disease. 

Several studies have also demonstrated that temporary and long term dietary shifts 

alter the gut microbiome 12–16.  
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The Gut Microbiome and Human Health 

The human gut microbiome is an intricate ecosystem that plays a profound role in 

human health. Its impact extends beyond digestion, influencing the immune system, 

mental health, and overall well-being. The gut microbiome has been associated with not 

only gastrointestinal diseases, but also many diseases that are not traditionally thought 

of to have an intestinal component. The breadth of diseases, including cardiovascular, 

neurologic, metabolic, autoimmune, infectious, and gastrointestinal, associated with the 

gut microbiome demonstrates the effects of the microbial community go beyond the 

intestinal walls 1,3–5,8,17–20.  

 

The Human Virome 

The human virome consists of all viral components of the human microbiome including 

eukaryotic viruses and bacteriophages (phages). Phages comprise the majority of the 

human virome 21. Phages are viruses that infect bacteria and can drive bacterial ecology 

by conferring functional genes into the bacterial genome in the case of 

temperate/lysogenic phages or causing cell death in the case of lytic phages. Both lytic 

and lysogenic phages have been shown to play a role in human health and disease. 

The overall virome landscape of the human microbiome remains an understudied area, 

however, it has been shown that the human gut virome is highly stable within 

individuals, similar to the gut bacteriome and varies between healthy and diseased 

individuals 22–26.  
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Gap in Human Gut Microbiome Research 

While there are many studies on the human gut microbiome, most have focused on the 

bacterial composition with little work done on other microbial members and the overall 

functional capacity of the microbiome. To understand the role of the human microbiome 

in human health and disease, in this thesis, I have examined understudied drivers of 

microbiome composition and function. I paired compositional characterizations with 

functional potential via metabolic reconstruction to study the role of the human 

microbiome, including bacteria and phages, in human health and disease. I used human 

stool samples with participant metadata to understand the microbiome in three health 

conditions: colorectal cancer (CRC), Group B Streptococcus (GBS) colonization, and 

multiple sclerosis. In chapter 2, I performed metabolic reconstructions of the gut 

microbiomes of an international cohort of participants with and without CRC to describe 

the scope of the bacterial sulfur cycle in the human gut and associations of particular 

microbial sulfidogenic pathways with colorectal cancer. In chapter 3, I determined the 

abundance and prevalence of GBS in the gut of the general adult population in 

Wisconsin and investigated host and microbiome factors that influence GBS gut 

colonization. Finally in chapter 4, I began to compare the gut microbiomes of patients 

with and without multiple sclerosis in one community in Wisconsin to understand the 

microbiome composition and functional landscape of the gut microbiome in the 

relapsing remitting phenotype of multiple sclerosis.  

 

The Human Gut Microbiome and the Wisconsin Idea 
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In 1904, the current University of Wisconsin-Madison President, Charles Van Hise said 

that he would, “never be content until the beneficent influence of the university reaches 

every family in the state", which summarizes the Wisconsin Idea 27,28. The Wisconsin 

Idea is that the university should benefit the entire state and people of Wisconsin and 

reach beyond the bounds of the campus. During my time at UW-Madison, I have come 

to truly believe in the Wisconsin Idea and having the work done at the university benefit 

the people across the state and shared with the people in the state. While my thesis 

contains three very different projects investigating different human diseases, the work 

embodies the Wisconsin Idea. I took skills that I learned during my dissertation to 

answer questions and perform research with samples from participants within the state 

of Wisconsin. In my initial project, chapter 2, investigating the role of the bacterial sulfur 

cycle in the human gut in CRC pathogenesis, I relied on publicly available data from an 

international cohort of participants. I build a computational skillset using these data. In 

my next project, chapter 3, investigating the prevalence of GBS in the human gut and 

host and microbial factors that can influence the frequency and abundance of GBS, I 

used a cohort of participants from across the state of Wisconsin. I built on the skills I 

learned in chapter 2 to investigate a question using only individuals from Wisconsin. I 

took the skills from the previous two chapters to answer a question with a specific group 

of individuals from one community in Wisconsin in chapter 3. My dissertation has 

extended outside the borders of University of Wisconsin-Madison’s campus.  
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Chapter 2: Diversity and distribution of sulfur metabolic genes in the human gut 
microbiome and their association with colorectal cancer 
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Abstract  

Background: Recent evidence implicates microbial sulfidogenesis as a potential trigger 

of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur 

metabolism within the human gut Microbial sulfidogenesis produces genotoxic hydrogen 

sulfide (H2S) in the human colon using inorganic (sulfate) and organic 

(taurine/cysteine/methionine) substrates, however the majority of studies have focused 

on sulfate reduction using dissimilatory sulfite reductases (Dsr). 

  

Results: Here we show that genes for microbial sulfur metabolism are more abundant 

and diverse than previously observed and are statistically associated with CRC. Using 

~17,000 bacterial genomes from publicly available stool metagenomes, we studied the 

diversity of sulfur metabolic genes in 667 participants across different health statuses: 

healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial 

genera and both organic and inorganic sulfidogenic genes were associated with 

carcinoma. Significantly, the anaerobic sulfite reductase (asr) gene was twice as 

abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate 

reduction in the human gut than Dsr.  We identified twelve potential pathways for 

reductive taurine metabolism and discovered novel genera harboring these pathways. 

Finally, prevalence of metabolic genes for organic sulfur indicate that these 

understudied substrates may be the most abundant source of microbially derived H2S. 

  

Conclusions: Our findings significantly expand knowledge of microbial sulfur 

metabolism in the human gut. We show that genes for microbial sulfur metabolism in 
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the human gut are more prevalent than previously known, irrespective of health status 

(i.e., in both healthy and diseased states). Our results significantly increase the diversity 

of pathways and bacteria that are associated with microbial sulfur metabolism in the 

human gut. Overall, our results have implications for understanding the role of the 

human gut microbiome and its potential contributions to the pathogenesis of CRC.  
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Background 

The human gut is a dynamic nutrient rich environment that harbors a diverse 

metabolically active microbial community. Human health and disease are inextricably 

linked to microbial composition, however much remains unknown regarding the 

functional capacity of human gut microbes 29–31. This has manifested in bacteria or their 

niches being loosely characterized as “beneficial”, “commensal”, or “deleterious”, which 

is problematic as microbial functionality is often species-specific and microbes are 

capable of metabolic shifts based on available substrates 32,33. Genomic approaches 

have enabled rapid discovery of novel bacteria whose functional characteristics have 

yet to be characterized 34. These discoveries have filled gaps in knowledge regarding 

the metabolic capacity of human gut microbes and allow design of hypothesis-driven 

interventions that create beneficial shifts in microbial communities. This approach may 

have particularly important implications in human diseases for which associations 

between microbial composition, dietary intake, and disease risks have been 

established.  

 

For example, there is strong evidence linking a diet high in red and processed meat with 

colorectal cancer (CRC) 35. In addition, bacteria capable of producing hydrogen sulfide 

(H2S) are associated with a western diet 36,37, colonic inflammation 38, and CRC 39–47. At 

μM concentrations 48, endogenously produced H2S can act as a vasorelaxant  49, reduce 

endoplasmic reticulum stress 50, and prevent apoptosis 51. At millimolar concentrations, 

as commonly found in the colon, H2S inhibits cytochrome oxidase causing reductive 

stress and is genotoxic 52–55. Previous work investigating microbial sulfidogenesis in the 
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human gut have mostly focused on sulfate reducing bacteria (SRB) that perform 

inorganic sulfur metabolism 56. However, recent evidence indicates that organic sulfur 

metabolism by gut bacteria may be a key mechanism linking diet and CRC 57. Indeed, 

CRC-associated bacteria have been shown to produce H2S via metabolism of sulfur 

amino acids 34, and the taurine metabolizing Bilophila wadsworthia was found previously 

to be a significant indicator of CRC 39. Consumption of a diet high in red and processed 

meat increases colonic concentrations of organic sulfur, which may increase colonic 

concentrations of microbially derived H2S to genotoxic levels 39,58,59. This suggests that 

sulfur metabolism in the human gut microbiome may be more widespread than originally 

believed and exposes current gaps in our knowledge of the metabolic functions of CRC-

associated bacteria.  

 

Thus, the objective of this study was to use genomic and metagenomic tools to gain a 

greater understanding of the sulfidogenic capacity of the human gut microbiome. To do 

so, we investigated the prevalence of sulfidogenic genes in gastrointestinal bacterial 

genomes, established a network of sulfur metabolic transformations, and identified 

novel sulfidogenic bacteria. Using newly developed gene databases, 16,936 publicly 

available bacterial metagenome assembled genomes (MAGs) from human gut 

microbiomes were mined to compare the relative contribution of inorganic and organic 

sulfidogenic genes to microbial sulfur metabolism. Gene presence was then compared 

among disease states in five CRC microbiome studies to evaluate potential 

contributions of microbial H2S production to CRC risk. This study provides the most 

comprehensive analysis of microbial sulfur metabolism in the human gut to date, and 
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thereby provides a platform for hypothesis-driven experiments characterizing the role of 

sulfur metabolites in CRC and other inflammatory-associated gut disorders. 

 

Results 

Common pathways of microbial sulfur metabolism are prevalent in human gut 

microbiomes  

 To understand the diversity, distribution, and ecology of microbial sulfur metabolism in 

the human gut and its implications in disease, we investigated the complex pathways for 

sulfur transformations (Fig. 1).  
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Stool shotgun metagenomic sequence data were used from 5 publicly available studies 

that investigated the gut microbiome in healthy subjects and patients who had adenoma 

Figure 1. Potential microbial sulfur transformations in the human gut microbiome. 
Microbial sulfur metabolism results in the production of genotoxic H2S (dashed box) via 
metabolism of inorganic sulfate (yellow) or organic sulfur amino acids like cysteine and 
methionine (maroon), or taurine (orange). Previous studies of microbial sulfidogenesis in the 
human gut have focused mainly on genes harbored by Bilophila, Fusobacterium, and the sulfate 
reducing bacteria (bolded with a “^”). All genes listed were analyzed in this study except those 
listed in gray. Reactions are not balanced and only the main sulfur component reactants and 
products are shown. Some intermediate steps are not shown. 
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or carcinoma of the colon. Collectively, 265 healthy participants, 112 participants with 

adenoma, and 290 participants with carcinoma were examined. Participant location, 

associated metadata, and study references are listed in Table 1 45,60–63. A total of 

16,936 bacterial metagenome assembled genomes (MAGs) were recovered from a 

previous study that used standardized bioinformatic pipelines for metagenome 

assembly 64.  

 

Table 1. Overview of original datasets used for this study. 

Study Country of 
Participant 
Recruitment 

Disease State Number of 
Participants 

Number of 
MAGs 

Feng 60 Austria 

Control/Healthy 61 1690 

Adenoma 47 1421 

Carcinoma 46 1418 

Hannigan 62 United States, 
Canada 

Control/Healthy 26 101 

Adenoma 23 57 

Carcinoma 26 78 

Vogtmann 61 United States 

Control/Healthy 58 1863 

Adenoma 0 0 

Carcinoma 52 1622 

Yu 63 China 

Control/Healthy 54 1397 

Adenoma 0 0 

Carcinoma 75 1910 

Zeller 45 France 
Control/Healthy 66 1839 

Adenoma 42 956 
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A concatenated ribosomal protein tree was created to examine the full diversity of the 

samples used in this study with the majority of genomes being classified in the phyla 

Firmicutes, Proteobacteria, and Actinobacteria (Fig. S1). Open reading frames (ORFs) 

were then predicted followed by homology-based identification of 79 genes associated 

with microbial sulfur metabolism (Table S1) using available and custom Hidden Markov 

Models (HMMs). These analyses revealed the breadth of themicrobial sulfur metabolic 

potential in the human gut and its associations with CRC (Table S2, Fig. S1).  

 

 

To understand the prevalence of microbial sulfur metabolism in a representative human 

gut microbiome, 514 fecal microbial genomes were obtained from the Human 

Microbiome Project (HMP) and surveyed for common metabolic pathways associated 

with H2S production from cysteine, taurine, and sulfate/sulfite. Functional genes 

encoding proteins for cysteine metabolism made up the majority of sequences and 

included cystathionine-β-lyase (malY, metC) (11.8%), cystathionine-β-synthase (CBS) 

(27.5%), cysteine desulfhydrase (lcd) (2.6%), D-cysteine desulfhydrase (dcyD) (17.9%), 

and methionine-γ-lyase (mgl) (14.7%). In contrast, dissimilatory sulfite reductases 

(dsrAB) catalyzing the final step of sulfate and taurine respiration to form H2S, made up 

only 18.2% of identified genes (Fig. S2). In total, 313 sulfidogenic genes were identified 

Carcinoma 91 2584 

Totals  

Control/Healthy 265 6890 

Adenoma 112 2434 

Carcinoma 290 7612 
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from 183 bacterial genomes (35.6% of total genomes), and spanned across six phyla 

including Proteobacteria (36.1%), Firmicutes (26.2%), Bacteroidetes (20.2%), 

Fusobacteria (15.8%), Actinobacteria (1.1%), and Synergistetes (0.5%). This key finding 

demonstrates that pathways for sulfur metabolism were prevalent in human gut 

microbiome genomes and that cysteine may be an underestimated substrate for 

microbial sulfur metabolism in the gut.  

 

Genes for anaerobic sulfite reductases (asrABC) are more prevalent than 

dissimilatory sulfite reductases (dsrAB) in the human gut   

 

Of the limited literature regarding human colonic sulfidogenic bacteria, the most well 

studied are the SRB which are capable of reducing inorganic sulfate supplied 

exogenously by diet or endogenously by degradation of sulfated bile acids and mucins 

(estimated 1.5-16 and 0.96- 2.6 mmol/day respectively) 56,65–68. Two enzymes are able 

to complete the final step of the reaction which catalyzes the six-electron reduction of 

sulfite to H2S — dissimilatory sulfite reductase (Dsr) and anaerobic sulfite reductase 

(Asr) (Fig. 1). It has been proposed that sulfite reduction takes place as a series of two 

electron transfers to DsrAB from the DsrMKJOP complex via DsrC 69. Genes for the Dsr 

pathway, dsrAB, are highly conserved among SRB and diversely distributed among 

phyla in environmental samples 70. However, culture and PCR based studies of SRB 

diversity in human stool and colonic mucosa indicate that dsrAB is harbored by only five 

resident genera namely Bilophila spp., Desulfovibrio spp., Desulfobulbus spp., 

Desulfobacter spp., and Desulfotomaculum spp. 71–74.  
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Within our database, dsrAB genes were present in 121 MAGs of 16,936 bacterial MAGs 

(<1% of total MAGs), from human gut samples and in 17.4% of total subjects (Table 

S3). Taxonomic classification demonstrated genera commonly associated with Dsr 

activity in the gut microbiota were represented including Desulfovibrio spp. and Bilophila 

spp. In addition,  six genera were revealed that are not commonly ascribed as human 

gut SRBs namely Collinsella spp., Eggerthella spp., Enterococcus spp., Flavinofracter 

spp., Gordonibacter spp., and Roseburia spp (Tables S2, S4). Since previous 

phylogenetic analyses in environmental samples indicated that dsrAB acquisition was 

often the result of multiple lateral gene transfer events 70, a concatenated gene tree was 

generated with a reference database of dsrAB sequences to observe the consensus 

phylogeny of dsrAB sequences in human gut bacteria. DsrAB sequences from sample 

MAGs separated into three distinct clusters which corresponded with the respective 

phyla: Actinobacteria, Firmicutes, and Proteobacteria (Fig. 2A). This suggests that 

lateral gene transfer of dsrAB  may be less common in SRBs of the human gut than 

those observed in environmental studies 70.  
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Figure 2. Concatenated protein trees for dissimilatory sulfate reduction 
pathways. A. Concatenated protein tree showing the diversity of bacteria that 
possess genes for the final enzyme of the dissimilatory sulfate reduction 
pathway — dsrAB. B. Concatenated protein tree showing the diversity of 
bacteria that possess genes for anaerobic sulfite reductase (asrABC), an 
enzyme also capable of dissimilatory sulfate reduction. Gray clades only contain 
reference sequences, darker gray clades contain reference sequences and sequences 
from this study. Bracketed numbers indicate the sequence origin within each clade: 
[number of sequences from our study, number of sequences from references]. 
Bacterial genera (dsr) or orders (asr) originating from study samples are bolded. Pie 
charts indicate the disease state associated with sequences within each clade with 
blue indicating healthy, yellow adenoma, and maroon carcinoma. Clades outlined in 
black contain Fusobacterium sequences.  
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While SRBs may be the most well studied sulfur metabolizing bacteria of the human gut 

microbiota, studies have focused mainly on bacteria harboring Dsr enzymes. Similar to 

Dsr enzymes, Asr performs a 6-electron reduction of sulfite to H2S (Fig. 1). A recent 

analysis of environmental diversity of the asrABC complex revealed its presence in 

common residents of the gut microbiome including Fusobacterium nucleatum and 

Clostridium intestinale 75.  To determine if gut bacteria harbor asrABC, we searched the 

MAG database, revealing that asrABC genes were more prevalent in all MAGs and 

participants than dsrAB genes. The asrABC genes were present in approximately 2% of 

total MAGs (388, 390, and 375 MAGs, respectively), and approximately 35% of total 

subjects (Table S3). Intriguingly, less than a quarter of the subjects that harbored 

asrABC genes also possessed genes for dsrAB (53 of 239 subjects). Taxonomic 

assignments showed thirty-one genera possessed asrABC, spread among five phyla 

including Actinobacteria, Firmicutes, Fusobacteria, Spirochaetes, and a phylum not 

previously shown to possess asrABC — Bacteroidetes 75. A consensus tree of 

reference and sample MAG concatenated asrABC sequences revealed clustering of 

asrABC genes across six nodes that were distinct from sample MAG phylogeny. 

Notably, asrABC genes possessed by Fusobacterium spp. did not cluster together, but 

were observed in three separate nodes suggesting this pathway was acquired via 

multiple lateral gene transfers (Fig. 2B). Together, these data indicate that Asr enzymes 

may be more important contributors to sulfate and sulfite reduction than Dsr in the 

human gut, and that bacteria acquired these enzymes via a divergent phylogenetic 

history.  
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Diverse bacteria harbor pathways for taurine metabolism 

Sulfonates are organic sulfur compounds with a SO3- moiety that are abundant in 

marine sediments and detergents, and play an important role in the environmental sulfur 

cycle 76. While less is known about the role of sulfonates in the human intestine, there is 

evidence that metabolism of sulfonates like isethionate and taurine is performed by 

resident gut microbes 77,78. Microbial taurine metabolism has gained considerable 

interest after it was implicated as a potential dietary mechanism of colitis and CRC 

disparities 38,39. Representing 18.3% of total free amino acids in the colonic mucosa 

(13.6 ± 0.5 mmol/kg), taurine is the second most abundant free amino acid in this tissue 

79. Taurine is provided as a substrate to the human gut microbiota either directly through 

diet or through hydrolysis of taurine conjugated bile acids by the enzyme bile salt 

hydrolase (BSH). Excess consumption of taurine and cysteine increases tauro-

conjugation of secreted bile acids, thus potentially providing additional substrates for 

bacteria with BSH activity 57. The bsh gene was identified to be present in 15% of total 

MAGs, and in 89% of total subjects (Table S3). This prevalence was unsurprising, as it 

has been proposed that hydrolysis of conjugated bile acids may be a detoxification 

strategy to decrease bile acid toxicity 80, or may serve as a source of nutrients for 

microbial growth and energy metabolism 56.  

 

Once liberated via BSH or made available through dietary intake, taurine can be 

metabolized by gut bacteria via oxidative or reductive pathways. Taurine oxidation using 

the enzyme taurine dioxygenase (TauD) is generally not considered in the literatures a 

source of H2S production in the anaerobic environment of the human colon. However, 
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previous studies have reported an increase of aerotolerant bacteria adherent to the 

mucosal surface suggesting a luminal gradient of oxygen provided by host tissues 81. 

Assessment of tauD gene abundance demonstrated that while the enzyme was present 

in only 1% of total MAGs, these MAGs were present in 23% of subjects (Table S3). As 

expected, tauD genes were present in six facultative genera (Escherichia spp., 

Enterobacter spp., Citrobacter spp., Morganella spp., Hafnia spp., and Raoultella spp.), 

however none of these genera possessed genes for anaerobic or dissimilatory sulfite 

reduction (Table S4). Thus, TauD appears to be primarily used for taurine assimilation 

and not H2S production.  

 

The only known bacterium to possess the reductive pathway of taurine metabolism in 

the human gut is B. wadsworthia. However, given the taurine rich environment of the 

colon, it is likely that other bacteria capable of performing this metabolism remain to be 

discovered. Thus, to identify candidates that may have the capacity to produce H2S 

from taurine in an anaerobic environment, HMM searches of the described cohorts were 

performed targeting pathways as shown in Fig. 3. Pathway 1 describes the putative 

taurine reduction pathway previously thought to be possessed by B. wadsworthia 56 Our 

search confirmed that this pathway was not possessed by Bilophila spp., as recently 

described 82. Instead, analyses revealed two genera that harbor genes for this pathway, 

namely Desulfovibrio spp. and Flavonifractor spp. The first step of taurine reduction 

involves the liberation of the nitrogenous group from taurine producing pyruvate or 2-

oxoglutarate via the enzymes taurine-pyruvate aminotransferase (Tpa) or taurine-2-

oxoglutarate transaminase (Toa), respectively (Pathway 2). For all MAGs that possess 
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the latter two genes of this pathway, the genes tpa and toa co-occur. Notably, 

Flavonifractor spp. also harbors genes for the AsrABC complex, indicating an 

alternative final step of the taurine reductive pathway (Pathway 2). Additionally, 

evaluation of three-step pathway combinations revealed 34 genera that possessed the 

first and final pathway steps, suggesting the pervasiveness of metabolic cooperation in 

Figure 3. Characterized and proposed pathways of microbial taurine reduction to 
H2S. Pathway 1 - the canonical pathway of taurine reduction in Bilophila wadsworthia. 
Pathway 2 - putative 3-step reactions for taurine reduction analyzed in this study. 
Pathway 3 - the recently characterized pathway for taurine reduction in Bilophila 
wadsworthia. Pathway 4 - putative 4-step reactions for taurine reduction analyzed in 
this study. No complete pathways were found involving genes that are struck through. 
Genera possessing genes for each complete pathway are listed. Only genera listed 
were found to have complete pathways. Pie charts indicate the disease state 
associated with MAGs of each genus with the specified pathway with blue indicating 
healthy, yellow indicating adenoma, and maroon indicating carcinoma. 



 

22 

the gut and  potentially revealing targets for the identification of novel sulfoacetaldehyde 

acetyltransferases (Xsc) (Fig. 3) (Tables S4, S5). 

 

Pathway 3 represents the recently characterized pathway for taurine reduction in B. 

wadsworthia (Fig. 3) 82. Gene searches corroborated that Bilophila spp. harbored all 

four genes in this newly defined pathway. However, contrary to what was recently 

reported, all four genes were also observed in Desulfovibrio spp. Since MAGs are 

unable to allow for granularity at the species level, future work is needed to determine if 

this pathway is indeed more widespread in resident Desulfovibrio species of the human 

gut. Seven MAGs annotated as Desulfovibrio spp. and Bilophila spp. also possessed 

toa in the absence of tpa, together, this indicates an alternative first step to this pathway 

(Pathway 4). Notably, unlike the three step Pathway 2, MAGs that possess all genes for 

the four-step pathway harbor only dsrAB and not asrABC. In addition, evaluation of four 

step pathway combinations revealed seven genera missing either the second or third 

step of the pathway revealing additional targets for gene discovery (Fig. 3) (Tables S4, 

S5).           

 

Cysteine and methionine are understudied and abundant sources of microbially-

derived H2S in the human gut 

 

Cysteine is a conditionally essential amino acid, which is provided to the intestine 

directly by diet or the decomposition of methionine (Fig. 1). Methionine restriction alters 

microbial composition of the gut and down-regulates inflammatory pathways related to 
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oxidative stress 83,84. In addition, the production of H2S via cysteine degradation 

supports microbial growth and protects from oxidative stress in response to antibiotic 

treatment 85. Cysteine metabolizing bacteria are implicated as a source of oral abscess, 

breath malodor, and delayed wound healing in the oral cavity 86–89, and have been 

repeatedly associated with CRC 40,42,44,45. Of late, F. nucleatum has been of particular 

interest in CRC 42,44,90. Studies have demonstrated association between F. nucleatum 

and the tumor surface in a subset of CRC 40,42,91, F. nucleatum DNA in CRC tumors 

correlate with reduced survival 92,93, and two subspecies of F. nucleatum (vincentii and 

animalis) have been proposed as part of a microbial signature for fecal-based CRC 

classification 45.  However, few studies appreciate that F. nucleatum is sulfidogenic, and 

many other bacteria can also produce H2S from cysteine in the human gut.  

To gain an appreciation of the abundance of cysteine metabolism within the human 

microbiome, MAGs were searched for the following genes associated with cysteine 

metabolism dcyD, malY, metC, mgl, as well as cysteine synthase (cysK, cysM), 

cysteine desulfurase (iscS, sufS), and cystathionine-γ-synthase (metB), and the three 

human orthologs cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE/mccB), 

and 3-mercaptopyruvate sulfurtransferase (3MST). Genes for upstream pathways of 

methionine and homocysteine metabolism were also analyzed (Fig. 1, Table S1). 

Searches revealed that all cysteine metabolizing genes were highly present, with cysK, 

lcd, malY, and sufS observed at least once in over 96% of subjects (Table S3). Even 

those genes that were observed in only 2-5% of total MAGs — namely dcyD, metC, 

cysM, and mgl — were still observed to be present in at least 40% of subjects (Table 

S3). In accordance with this, genes for microbial pathways for methionine metabolism 
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were also highly present in subjects, indicating that methionine may be an important 

source of microbial derived cysteine in the human gut (Table S3). In addition to being 

abundantly present, genes for cysteine metabolism were also diversely distributed 

among 13 phyla and 141 genera. Amongst these, 84 genera have not been previously 

characterized as being sulfidogenic. (Table S4). This may be particularly important in 

the context of a western diet, as studies using fecal homogenates demonstrate higher 

production of H2S from organic sulfur amino acids compared to inorganic sulfate 94, and 

higher protein intake increases ileal output of protein (2.69 vs. 7.45 g/day) and free 

amino acids (6.90 vs. 20.48 µmol/mL) 95. Although additional work is needed to 

comprehensively resolve cysteine metabolism, together these data indicate that the 

sulfur amino acids cysteine and methionine may be an understudied and abundant 

source of microbially-derived H2S in the human gut.  

Microbial sulfur metabolism is statistically associated with colorectal cancer 

Sulfate reducing bacteria and H2S have been implicated in CRC pathogenesis 

52,53,58,96,97, however associations of other microbial sulfur metabolism genes with CRC 

have been less well studied. The proportion of participants in each health status 

(healthy, adenoma, or carcinoma as evaluated by colonoscopy) category with at least 

one copy of each gene was determined along with the proportion of the total number of 

MAGs in each health status with the gene (Fig. 4, Table S3). Genes involved with 

cysteine and methionine metabolism were generally abundant regardless of health 

status (Fig. 4A, size of dots) and abundant in many MAGs (Fig. 4A, color of dots). 

Genes involved in sulfur and taurine metabolism were variable in their distribution 

among participants in the three health states and in MAGs (Fig. 4).  
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Figure 4. Genes for microbial sulfur metabolism are abundant and 
significantly associated with colorectal cancer. Dot plots of selected 
genes related to microbial cysteine and methionine metabolism (A) and 
taurine and sulfur metabolism (B) across three disease states: healthy, 
adenoma, and carcinoma. The size of each dot indicates the proportion 
of participants in each disease state with at least 1 copy of the indicated 
gene in their bacterial MAGs and the color of each dot indicates the 
mean number of MAGs with that gene in the subset of participants that 
have at least 1 copy of the gene. Genes that have a non-random 
distribution across disease status as analyzed by chi-squared analysis 
are indicated by asterisks. P-value corrections were done using the 
Benjamini-Hochberg (BH) Procedure. 
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To determine if sulfur metabolism was associated with CRC, we conducted statistical 

tests to study the distribution of sulfur genes in participants across each health status. 

Genes for tetrathionate metabolism, which was previously implicated as an electron 

acceptor provided by gut inflammation 98, were present in less than 1% of MAGs and 

were not significantly different among the three health statuses. Genes involved in 

cysteine and methionine metabolism including cysM, dcyD, mgl, metB, metH, and sdo, 

exhibiteddistributions that were statistically significantly different (at least p-value < 0.05) 

among participants in the three health states (Fig. 4A, Table S6, Fig. S3, S4), with sdo, 

cysM, mgl, metB, and metH being more likely to be found in carcinoma. While 92 

genera with cysteine metabolizing genes have been associated with CRC previously, 

our results indicate that this association may involve sulfidogenesis. Indeed, MAGs for 

cysteine metabolizing genes were pervasive in genera most commonly associated with 

CRC, corroborating recent work that observed that genes for cysteine metabolism were 

significantly more abundant in subjects with CRC 99 (Fig. S5). Sulfur and taurine 

metabolism genes, asrA, asrB, dsrC, and sqr, had distributions that were statistically 

significantly different (at least p-value< 0.05) among the three health states with all 

being more likely to be found in carcinoma (Fig. 4B, Table S6, Fig. S3, S4).  

 

Intriguingly, for genes related to dissimilatory sulfate reduction, different organisms 

exhibited different clustering patterns based on both phylogeny and disease state. For 

the Dsr pathway, the majority of Desulfovibrio spp., Bilophila spp., Flavinofracter spp., 

and Roseburia spp. were harbored by participants with carcinoma while the majority of 

Collinsella spp., Eggerthella spp., and Gordonibacter spp. originated from healthy 
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participants (Fig. 2A - pie charts). For the Asr pathway, the majority of sequences were 

recovered from participants with carcinoma (Fig. 2B - pie charts). These data along with 

the associations presented in Fig. 4B demonstrate that genes for sulfate reduction are 

associated with carcinoma.  

 

To gain a deeper understanding of the ecology of microbial sulfur metabolism during 

colorectal carcinogenesis, we first determined the associations of sulfidogenic genes 

among different CRC stages from the three datasets that reported staging data, and 

then investigated growth rates of selected taxa previously considered to be microbial 

markers of CRC 39,45. The likelihood of patients having sulfidogenic genes was not 

significantly different among stages (Supplemental Table 7). However, participants were 

more likely to have genes for inorganic sulfur metabolism in earlier stages of CRC, while 

participants having genes for organic sulfur metabolism was uniformly high independent 

of stage (Fig S6). Mgl — an organic sulfur metabolizing gene — was increasingly 

present across advancing cancer stages. This is intriguing as mgl has been shown 

recently to be the most highly transcribed of cysteine metabolizing genes 99. Growth rate 

analysis of bacterial indicator species of CRC did not reveal statistically significant 

differences among disease states for any species analyzed, however this analysis was 

restricted by the limited presence of these species within healthy subjects (Fig. S7, 

Table S8, S9). Future analyses of microbial species that are present across all disease 

states is needed to determine if other keystone species play a role in CRC 

pathogenesis than determined previously by taxa abundance.  
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Discussion 

There is compelling evidence implicating microbial H2S production as an environmental 

trigger of CRC, however ongoing studies investigating this link have been hampered by 

the field’s incomplete knowledge of sulfur metabolism within the human gut. Here, we 

performed a comprehensive characterization of the functional capacity of the human gut 

microbiome to conduct sulfur transformations and produce H2S. Our investigation into 

the diversity and ecology of inorganic sulfur metabolism pathways observed that highly 

conserved functional genes encoding the final step of the sulfate reduction pathway — 

dsrAB — was harbored by six genera not typically targeted as SRB. Additionally, this 

investigation revealed that asrABC, which encodes an enzyme with the same 

biochemical activity to Dsr, was both twice as abundant in total MAGs and was present 

in twice as many subjects than dsrAB. Together, these data highlight that genes for 

inorganic sulfur metabolism in the human gut are more widespread than previously 

established and that asrABC may be an important marker to measure the capacity of 

microbial sulfate reduction within cohorts. Since the diversity of microbial sulfatases 

have not been characterized, studies that compare substrate specificity and the catalytic 

efficiencies of  these enzymes are needed to truly understand the implications of this 

expanded view of inorganic sulfur metabolism in the human gut.  

 

While previous investigations of microbial H2S production and human disease have 

focused on SRB, bacteria that metabolize sulfur from organic sources have been 

consistently associated with CRC risk. Prior to this work, Bilophila wadsworthia was the 

only bacterium known to produce H2S via taurine respiration. However, our analysis 
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revealed Desulfovibrio spp. harbors genes for the characterized 4-step reductive 

pathway of taurine respiration, and an exploration of twelve taurine reduction pathways 

revealed two genera with genes for the complete 3-step reduction pathway. Further, 41 

unique genera were found to have nearly complete 3- and 4-step pathways, disclosing 

microbial targets for novel enzyme discovery or investigations of cooperative taurine 

metabolism. Finally, analyses of diverse pathways for microbial cysteine and methionine 

degradation revealed these sulfidogenic genes were distributed among diverse bacterial 

phyla and were abundantly present among subjects. Collectively, these analyses 

demonstrate that bacteria harboring pathways for organic sulfur metabolism are 

pervasive in the human gut and likely constitute the most abundant source of microbially 

derived H2S.  

 

To determine whether sulfur metabolism was differentially associated along the 

colorectal carcinoma sequence (healthy → adenoma → carcinoma), presence of 

sulfidogenic genes was compared between healthy subjects, and patients with 

adenoma or carcinoma. Genes for both inorganic and organic sulfur metabolism were 

significantly associated with carcinoma, which is intriguing as both sulfate and taurine 

metabolism share a final metabolic step. These associations along with the 

pervasiveness of genes for organic sulfur metabolism in studied MAGs supports the 

unique hypothesis that organic sulfur metabolism by gut bacteria is a key mechanism 

linking a western diet and CRC risk (Fig. 5).  
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A limitation of our study is that our analyses utilized MAGs which do not use all 

available metagenomic reads as a consequence of assembly and binning. Thus, it is 

possible that the abundance of sulfur genes present in the human gut is even greater 

than reported herein. However, the use of MAGs enabled taxonomic information, 

Figure 5. Organic sulfur metabolism by gut bacteria may be a key mechanism 
linking a western diet and CRC risk. The degradation of sulfomucins by mucolytic 
bacteria are a key source of inorganic sulfate for sulfate reducing bacteria. At µM 
concentrations, basal production of H2S through inorganic sulfate reduction exerts 
beneficial effects including gut barrier protection and fermentative hydrogen disposal. 
Intake of a western diet abundant in red and processed meat amplifies the production 
of taurine conjugated bile acids and increases colonic exposure to dietary sulfur 
amino acids (taurine, methionine, cysteine). In the context of a western diet, 
metabolism of organic sulfur amino acids by gut microbes drives the production of 
H2S to genotoxic and pro-inflammatory levels (mM concentration). Simplified 
pathways demonstrate genes for sulfur metabolism that were significantly associated 
with CRC. ^ indicates inorganic sulfur sources primarily provided by sulfated bile 
acids and sulfamucins. ^^ indicates organic sulfur sources provided by dietary sulfur 
amino acids and conjugated bile acids.  
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reconstruction of full pathways, and calculation of growth rates for selected CRC 

associated bacteria, thus providing robust new information regarding microbial sulfur 

metabolism in the human gut. In addition, this work focused on the functional capacity of 

the gut microbiome for sulfur metabolism based on genetic content. Future work that 

demonstrates metabolic activity of microbes and their enzymes in vitro, as well as 

metabolic flux in a complex microbial community, are needed to verify these 

conclusions.  

Conclusions 

Overall, the data demonstrate that genes for microbial sulfur metabolism are more 

diverse than previously recognized, are widely distributed in the human gut microbiome, 

and are significantly associated with CRC. These data expand what was previously 

known regarding the diversity of bacteria with the genetic capacity to perform sulfur 

metabolism, and indicate that genes for organic sulfur metabolism may be the most 

important contributor of H2S in the human gut. Our findings provide a foundation for 

future work characterizing the activity of sulfidogenic enzymes in diverse microbial 

species, exploring the expression of these genes as affected by health status, and 

examining microbial H2S induced tumorigenesis in animal models of CRC and human 

disease.   

 

Methods 

Genomic survey of sulfidogenic genes in Human Microbiome Project genomes 

An initial genomic survey was performed using 514 gastrointestinal genomes obtained 

from the Human Microbiome Project (HMP) in Fall 2018 100,101. Reference sequences 
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were obtained from the National Center for Biotechnology Information (NCBI) using 

searches for sulfidogenic genes from known residents of the human gut including 

“cysteine desulfhydrase”, “Cdl”, “Lcd”, “cystathionine-beta-synthase”, “L-methionine–

gamma-lyase”, “dissimilatory sulfite reductase”, “dsrA”, “dsrB” and “dsrAB”. Searches of 

the HMP genes were then performed using BLAST (BLASTv2.8.1+) 102, and alignments 

with greater than 60% identity and a minimum query coverage of 40 amino acids were 

retained. To filter non-homologous proteins, gene hits were compared to KEGG. 

 

Sulfur pathway visualization 

Sulfur cycle reactions were created in ChemDraw Prime 16.0 and further modified in 

Affinity Designer. 

 

Downloading MAGs and accessing metadata  

The previously reconstructed MAGs from the five cohorts were downloaded from 

https://opendata.lifebit.ai/table/sgb.The associated file that was downloaded, 

“download_files.sh” was used to download all 16,936 genomes from the 5 studies 64. 

The link to download the metadata 

(https://www.dropbox.com/s/ht0uyvzzal6exs2/Nine_CRC_cohorts_taxon_profiles.tsv?dl

=0) was found at http://segatalab.cibio.unitn.it/data/Thomas_et_al.html from two studies 

103,104 and filtered to only include the 5 cohorts used in our study. For samples that had 

AJCC TNM (Tumor, lymph Node, Metastasis) classification without a stage, the 

American Cancer Society guidelines to annotate stage based on TNM classification was 

used. For this study, all “high” (>90% complete, <5% contamination, <0.5% strain 

https://www.dropbox.com/s/ht0uyvzzal6exs2/Nine_CRC_cohorts_taxon_profiles.tsv?dl=0
https://www.dropbox.com/s/ht0uyvzzal6exs2/Nine_CRC_cohorts_taxon_profiles.tsv?dl=0
http://segatalab.cibio.unitn.it/data/Thomas_et_al.html
http://segatalab.cibio.unitn.it/data/Thomas_et_al.html


 

33 

heterogeneity) and “medium” (>50% complete, <5% contamination) quality MAGs were 

included 64,105. 

 

Gene annotation of MAGs 

Prodigal module (prodigal version 2.6.3) of METABOLIC was used to run multiple 

threads with the -p meta option to annotate open reading frames (ORFs) on all MAGs 

106,107.  

 

Sulfur gene identification in MAG database 

HMM - Hidden Markov Model (HMM) searches for protein sequences were performed 

using either hmm profiles from KEGG or custom profiles against a concatenated file of 

predicted ORFs from all 16,936 MAGs used for this study with HMMSearch version 

3.3.0 108, using trusted cut offs for all sulfur related sequences (Table S1). All HMMs 

used in this study are available at 

https://github.com/escowley/HumanGutBacterialSulfurCycle.  

 

Microbial sulfur pathway literature search 

To determine the breadth of current knowledge regarding characterized H2S production 

in human gut bacteria and their association with CRC, a literature search was 

performed on genera revealed in our analysis. For MAGs that possessed sulfidogenic 

genes, the annotations for the “closest genus” were recorded. Web-searches were 

performed for each genus using the key words “colorectal cancer”, “sulfide”, and “H2S”. 
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Genera  previously associated with CRC or who have species  characterized previously 

to produce H2S are noted in Supplemental Table 4.  

 

Taxonomic classifications of MAGs 

Taxonomic classifications, “closest” designators, were determined previously by binning 

the MAGs with a reference set of genomes 64. To verify taxonomic classifications for 

MAGs, a concatenated ribosomal protein tree, GTDB-Tk classification, and 16S rRNA 

alignment were done. Taxonomic classifications from the original study, GTDB-tk, and 

16S rRNA genes can be found in Supplemental Table 10. 16S rRNA sequences were 

extracted from the MAGs using the ssu_finder function of checkM (version 1.0.11) 109.  

From the 16,936 MAGs, 2531 16S rRNA sequences were extracted. Extracted 16S 

rRNA sequences were classified using with SINA aligner (version v1.2.11) (general 

options - bases remaining unaligned at the end should be attached to the last aligned 

base, reject sequences below 70% identity) using the search and classify feature 

(search and classify options - min identity with query sequence 0.95, number of 

neighbors per query sequence 10, sequence collection used - Ref-NR, search kmer 

candidates 1000, lca-quorum 0.8, search k-mer len 10, search kmer mm 0, search no 

fast, taxonomies used for classification SILVA, RDP, GTDB, LTP, EMBL-EBI/ENA), 

which classifies 16S rRNA sequences based on the least common ancestor and the 

SILVA reference database (release 138.1) 110–112. Taxonomy was assigned using 

GTDB-Tk (version 1.3.0) with database release 95 with the classify_wf function 113–115.  
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For the concatenated ribosomal protein tree, a curated Hidden Markov Models (HMM) 

database for single-copy ribosomal proteins (rpL2, rpL3, rpL4, rpL5, rpL6, rpL14, rpL14, 

rpL15, rpL16, rpL18, rpL22, rpL24, rpS3, rpS3, rpS8, rpS10, rpS17, rpS19) 116  was 

used to identify these genes in all MAG using hmmsearch (version 3.3.0) using noise 

cutoffs (--cut_nc) 108. Once identified, the protein sequences were extracted from the 

predicted ORFs and imported into Geneious Prime (v 11.1.5). Each sequence was 

aligned with a reference set using MAFFT (v 7.450, parameters Algorithm: Automatic, 

Scoring Matrix: BLOSUM62, Gap penalty: 1.53, Offset value: 0.123) 117. The alignments 

were manually trimmed and a 95% gap masking threshold was applied to the resulting 

alignment. The resulting alignments were concatenated for each gene set. The 

concatenated alignments were exported in fasta format from Geneious and used as the 

input for making phylogenetic trees with IQTree using version 1.6.9 (-nt AUTO -m MFP -

bb 1000 -redo -mset WAG,LG,JTT,Dayhoff -mrate E,I,G,I+G -mfreq FU -wbtl) 118. The 

resulting tree file was imported into iToL for visualization and collapsing of nodes 

followed by final modifications in Affinity Designer 119. 

 

Concatenated protein trees for dissimilatory sulfate reduction genes 

To create the concatenated protein trees for asrABC and dsrAB, reference sequences 

for each set of genes from a diverse set of environments were utilized  75. Hmmsearch 

(version 3.3.0) was used to identify asr and dsr sequences in the database of predicted 

ORFs 108. The identified genes were extracted from the predicted ORFs and 

concatenation and tree building were done according to the protocol previously 

described for the ribosomal proteins.  
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Summary calculations and statistical analysis for association of sulfur genes with 

disease state and stage of CRC 

Summary calculations of total number of MAGs with the gene of interest per disease 

state, mean, median, and standard deviations were performed in R. Summary 

information can be found in Supplemental Table 3. To identify potential associations 

between presence of specific microbial sulfur genes and disease state, chi squared 

tests were performed. First, for each gene, each participant was binarized as either 

“presence” (at least 1 MAG with at least 1 copy of the gene of interest) or “absence” (no 

MAGs recovered from the participant’s sample had any copies of the gene of interest). 

For each gene, total presence and absence were tallied for each disease state (healthy, 

adenoma, carcinoma). Chi square tests were performed for each gene on a 2X3 matrix 

of presence/absence totals and disease states. P-value corrections were done using the 

Benjamini-Hochberg (BH) Procedure for final reported p-values. A significant p-value 

indicates the distribution of the gene among the disease states is not random. Summary 

values and statistics were all performed in R. Uncorrected and corrected p-values can 

be found in Supplemental Table 6. Dot plot visualizations with the proportion of 

participants in each of the three disease states with at least one copy of the gene in 

their MAGs normalized to total number of participants with that disease state as the size 

of the dot and mean number of MAGs with a copy of the gene per participant with at 

least one copy as the color of the dot were made using R with the cowplot package. 

Data used for these plots can be found in Supplemental Table 3.  
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Similarly, to identify associations between presence of specific microbial sulfur genes 

and colorectal cancer stage,  the subset of studies with staging data was binarized as 

described above and binomial logistic regressions were performed. Rao score tests 

were performed on the resulting binomial logistic regressions to evaluate for 

significance of each gene having evidence of association with staging of CRC. P-value 

corrections were done using the Benjamini-Hochberg (BH) Procedure for final reported 

p-values. Uncorrected and corrected p-values can be found in Supplemental Table 7. 

Presence/absence values for each gene in each stage were normalized to the total 

number of participants in that particular stage to generate distribution plots (Fig. S6).  

 

Metabolic reconstruction of MAGs 

Metabolic reconstruction of each MAG was accomplished using the METABOLIC-G 

program of METABOLIC (version 4.0) 107. Summary information is available at 

https://github.com/escowley/HumanGutBacterialSulfurCycle.  

 

Determination of growth rates for colorectal cancer indicator bacteria  

To determine the growth rates of  bacteria previously implicated as indicators of 

colorectal cancer in the gut community 39,45,  the original reads were downloaded and 

used to generate these genomes from the Hannigan, Yu, Zeller, and Feng studies. For 

the reads from the Hannigan study,  the fasterq-dump (version 2.9.4) module of the 

SRA toolkit 120was used, for the reads from the Yu and Zeller studies, the Aspera 121 

command line interface (CLI) ascp program (v3.9.1.168954) was used, and for the 

reads from the Feng study, the Aspera CLI ascp program (v3.9.3.177167) was used, 

https://github.com/escowley/HumanGutBacterialSulfurCycleLink
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respectively. For reads from the Zeller study, multiple read sets are deposited for each 

participant, and the first listed paired-end read set for each genome listed in the 

European Nucleotide Archive (ENA) metadata was chosen. Reads from the Hannigan 

study were trimmed and quality filtered with metaWRAP (v1.2.2) using the read_qc122 

module with the option “--skip-bmtagger”.  Bowtie2 (v2.3.4.1)123–125 was used with the 

option “--reorder” to map MAGs classified as those bacteria to the original read sets and 

shrinksam 126 version 0.9.0 with the “-u” flag to compress mapping files.  Growth rates 

were determined by generating un-filtered indexes of replication with iRep (version 1.10) 

127. Growth rates for the following organisms were determined based on the closest 

taxonomic designator: Fusobacterium mortiferum, Fusobacterium ulcerans, 

Fusobacterium nucleatum, Desulfovibrio piger, Bacteroides fragilis, Escherichia coli, 

Pyramidobacter piscolens, Clostridium difficile, Clostridium hylemonae, Porphyromonas 

asaccharolytica, Peptostreptococcus stomatis, Bilophila wadsworthia, and Odoribacter 

splanchnicus (Table S8). Genomes from the species F. nucleatum, P. piscolens, and O. 

splanchnicus were not plotted. To determine differences in growth rates between CRC 

and healthy samples for all 3 studies, a Kruskal Wallis test was performed for each 

organism. To determine differences in growth rates across all disease states within a 

study for a particular organism, a Kruskal Wallis test was performed for each organism.  

P-value corrections were done using the Benjamini-Hochberg (BH) Procedure for final 

reported p-values. Uncorrected and corrected p-values can be found in Table S9. Code 

for statistical analysis and generation of plots can be found at 

https://github.com/escowley/HumanGutBacterialSulfurCycleLink.  

 

https://github.com/escowley/HumanGutBacterialSulfurCycleLink
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Abstract 

Background: Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal 

Gram-positive bacterium found in the human gastrointestinal and urogenital tracts. 

Much of what is known about GBS relates to the diseases it causes in pregnant people 

and neonates. However, GBS is a common cause of disease in the general population 

with 90% of GBS mortality occurring in non-pregnant people. There are limited data 

about the predisposing factors for GBS and the reservoirs in the body. To gain an 

understanding of the determinants of gastrointestinal GBS carriage, we used stool 

samples and associated metadata to determine the prevalence and abundance of GBS 

in the gut microbiome of adults and find risk factors for GBS status. 

 

Methods: We used 754 stool samples collected from adults in Wisconsin from 2016-

2017 to test for the prevalence and abundance of GBS using a Taqman probe-based 

qPCR assay targeting two GBS-specific genes: cfp and sip. We compared the 

microbiome compositions of the stool samples by GBS status using 16S rRNA 

analysis. We compared associations with GBS status and 557 survey variables 

collected during sample acquisition (demographics, diet, overall health, and 

reproductive health) using univariate and multivariate analyses.  

 

Results: We found 137/754 (18%) of participants had detectable GBS in their stool 

samples with a median abundance of 104 copies per nanogram of starting DNA. There 

was no difference in GBS status or abundance based on gender. Beta-diversity, Bray-

Curtis and Unweighted UniFrac, was significantly different based on carrier status of the 
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participant. Prior to p-value correction, 59/557 (10.6%) survey variables were 

significantly associated with GBS carrier status and 11/547 (2.0%) variables were 

significantly associated with abundance (p-value<0.05). After p-value correction, 2/547 

(0.4%) variables were associated with GBS abundance: an increased abundance of 

GBS was associated with a decreased frequency since last dental checkup (p<0.001) 

and last dental cleaning (p<0.001). Increased GBS abundance was significantly 

associated with increased frequency of iron consumption (p=0.007) after p-value 

correction in multivariate models.  

 

Conclusions: GBS is found in stool samples from adults in Wisconsin at similar 

frequencies as pregnant individuals screened with rectovaginal swabs. We did not find 

associations between risk factors historically associated with GBS in pregnant people, 

suggesting that risk factors for GBS carriage in pregnancy may differ from those in the 

general population. We found that frequency of iron consumption and dental hygiene 

are risk factors for GBS carriage in Wisconsin adults. Given that these variables were 

not assayed in previous GBS surveys, it is possible they also influence carriage in 

pregnant people. Taken together, this work serves as a foundation for future work in 

developing approaches to decrease GBS abundance in carriers.  

 

Keywords: Human gut microbiome, cross-sectional population-based study, 

Streptococcus agalactiae, Group B Streptococcus 
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Background 

 

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a Gram-

positive commensal bacterium in the gastrointestinal (GI) and urogenital (UG) tracts of 

humans 128,129. While GBS typically colonizes asymptomatically at these body sites, it 

can cause illnesses such as bacteremia, pneumonia, meningitis, and soft tissue 

infections especially in adults and children with co-morbidities 130–132.  

 

Much of what is known about GBS is related to diseases in pregnant individual, fetuses, 

and infants. GBS colonization rates of pregnant people as detected by rectovaginal 

swabs range from 10-35%, globally, with rates in the United States ranging from 10-

30% 133,134. Based on selective culturing of rectovaginal swabs and urine samples, the 

risk factors for GBS colonization are history of tobacco use, hypertension, black race, 

and younger age 135. This colonization can result in urinary tract infections, 

chorioamnionitis, post-partum endometritis, and bacteremia in pregnant people 136,137. 

Invasive disease has been associated with pregnancy loss, stillbirth, and preterm 

delivery 138. GBS can vertically transmit to the neonate during vaginal delivery or infect 

in utero, where it causes early onset GBS disease (0-6 days of life) and is a risk factor 

for late onset GBS disease (7-89 days of life), which are the leading causes of neonatal 

sepsis and meningitis 139–143. In these contexts, GBS causes over 400,000 symptomatic 

maternal, fetal, and infant cases globally per year 138. Historically, it has been accepted 

that the GI tract is the reservoir for GBS leading to vaginal colonization in pregnant 
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people and work in nonpregnant females has shown that rectal colonization is a strong 

predictor of vaginal colonization 144,145. 

 

While much of what is known about GBS and human disease is in the context of 

pregnancy, GBS presents a significant disease burden in non-pregnant adults by 

causing bacteremia, sepsis, and soft tissue infections 130–132. GBS disease in 

nonpregnant adults has steadily increased from 3.6 cases per 100,000 in 1990 to 7.3 in 

2007 and 10.9 cases per 100,000 in 2016 with even higher incidences observed among 

those over the age of 65 years old 130,146. These clinical data support that the current 

GBS disease burden is predominantly in non-pregnant people, which is likely due to 

widely implemented prophylactic strategies to reduce pregnancy-related transmission of 

GBS to neonates 147–149. 

 

Risk factors for GBS disease in the general population include obesity, diabetes, 

increased age, and black race 130,150. Despite this morbidity and mortality, little is known 

about the factors that dictate GBS colonization. GBS has been documented in the GI 

and UG tracts of non-pregnant adults, where between 9-32% of healthy adults have 

detectable GBS via oral swab, urine sample, or anorectal swab 151–155. Although GBS 

can be found at these body sites, it is unclear what the risk factors are for colonization 

at these body sites in the general population. Taken together with the diseases caused 

by GBS in pregnant people, fetuses, and neonates, there is a need to better understand 

the reservoirs of GBS and risk factors for its asymptomatic carriage, which can inform 

our understanding of invasive disease and transmission to at-risk patient populations. 
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Considering the profound consequences of GBS infections in pregnant patients and 

neonates, characterizing the presence of GBS in the general population will aid in our 

understanding of a possible reservoir and mode of transmission of GBS to pregnant 

patients. 

 

To gain an understanding of the determinants of gastrointestinal GBS carriage in the 

general adult population, we used stool samples collected by Survey of Health of 

Wisconsin (SHOW) for the Winning the War on Antibiotic Resistance (WARRIOR) 

project to determine the frequency and prevalence of GBS in the gut microbiomes of 

adults in Wisconsin 156. The samples from the WARRIOR study are from a 

representative cross section of adults in Wisconsin. The study collected extensive data 

from the participants on demographics, health, and diet. Understanding the prevalence 

of GBS in the general population and factors that may be associated with a higher 

abundance of GBS will further our understanding of the pathophysiology of GBS and 

inform new therapeutic options. Using samples from the general population will help us 

identify risk factors for GBS carriage that can inform our understanding of GBS ecology 

and help guide alternative approaches to coping with this pathogen in a variety of at-risk 

human populations.  

 

Methods 

Stool samples 

Human stool samples were previously collected and banked by SHOW from 2016-2017 

as part of the WARRIOR project, which was reviewed and approved by the University of 
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Wisconsin-Madison Institutional Review Board (Protocol #2013-0251) 156,157. For our 

study, we used 754 WARRIOR stool samples from participants who agreed to have 

their samples used in future research. Our study was reviewed and approved by the 

University of Wisconsin-Madison Institutional Review Board (Protocol #2021-0025). 

 

DNA extractions from stool 

Two methods were used to extract DNA from the stool samples. A subset of samples 

(455/754, 60%) had DNA remaining from a previous extraction and were used in this 

study 156. Briefly, DNA was extracted using a bead-beating protocol with additional 

enzymatic lysis containing mutanolysin, lysostaphin, and lysozyme to help lyse Gram-

positive bacterial cell walls. For the remaining 299 stool samples, in order to complete 

extractions in a high throughput manner, we extracted DNA using the DNeasy 

PowerSoil Pro kit (Qiagen) following the manufacturer’s instructions, starting with 50-

250 mg stool and using a TissueLyzer II at 4°C for the homogenization followed by 

elution of DNA in 75 mL of solution C6.  

 

DNA extractions from bacterial cultures 

For positive controls for quantitative polymerase chain reaction (qPCR) assays, we 

grew three strains of S. agalactiae in tryptic soy broth (Neogen NCM0004A) aerobically 

overnight at 37°C, including: S.agalactiae COH1, S. agalactiae 10/84, and S. agalactiae 

A909 (obtained from Katy Patras, Baylor College of Medicine). For a negative control, 

we grew Clostridioides difficile 630 in brain heart infusion broth (Neogen NCM0016A) 

anaerobically overnight at 37°C. One milliliter of each overnight culture was pelleted and 
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the supernatants were removed. The DNA from the remaining cell pellets were 

extracted using the DNeasy Blood and Tissue kit (Qiagen) according to the 

manufacturer’s instructions for Gram-positive bacteria. 

 

DNA quantification 

All DNA used in qPCR assays was quantified in duplicate on 96 well plates using the 

Quant-iT double stranded DNA broad range kit (Invitrogen) with a standard curve from 0 

ng/mL – 100 ng/mL DNA. Fluorescent signal was read with Synergy HTX plate reader 

with excitation of 485/20 and emission of 528/20 and an auto-gain setting. Final DNA 

quantities in the samples were determined against the standard curve and by averaging 

duplicate readings.  

 

qPCR to quantify GBS prevalence and abundance in stool samples 

We developed a multiplexed Taqman-based qPCR approach targeting two GBS-

specific genes, cfb and sip. These genes were previously used in qPCR protocols to 

identify the bacterium 158–161 and the assay we developed was based on a protocol 

previously created for sip 162.  

 

For sip, we used the primers: 5’-CAG CAA CAA CGA TTG TTT CGC C-3’ and 5’-CTT 

CCT CTT TAG CTG CTG GAA C-3’, targeting a 171 base pair region. The Taqman 

probe for sip was: 5’-FAM-AGA CAT ATT - ZEN - CTT CTG CGC CAG CTT TG-3IAkfQ-

3’. For cfb, we used the primers: 5’-GAA ACA TTG ATT GCC CAG C-3′ and 5′.-AGG 

AAG ATT TAT CGC ACC TG-3′, targeting a 99 base pair region. The Taqman probe for 
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cfb was 5’-HEX-CCA TTT GAT AGA CGT TCG TGA AGA G-3BHQ-1 -3'. We ran each 

reaction in triplicate with both sip and cfb probes and included positive controls (DNA 

from three GBS strains), a negative control (DNA from C. difficile), and we created a 

standard curve for each gene from 5x10-3 ng/µL to 5x10-11 ng/µL using serial dilutions of 

synthetic copies of target genes (gBlocks, IDT). All reactions totaled 19.25 µL and 

included 5 µL of DNA (either extracted from cultures of bacteria, extracted from stool 

samples, or synthetic DNA for the standard curve), 7.5 µL TaqPath qPCR Master Mix, 

CG, 0.75 µL of  a 10 µM stock each primer (1 reverse and 1 forward for each gene 

target for 4 total primers), 0.3 µL of a 10 µM stock of each probe, and 3.15 µL water. 

Samples were held at 96°C for 5 minutes followed by 50 cycles of 96°C for five 

seconds, 58°C for 10 seconds, and 72°C for 20 seconds 162. All qPCR was performed 

on an Applied Biosystems QuantStudio 7 instrument.  

 

We determined GBS status by comparing the threshold cycle of each sample to the 

negative control. Samples with threshold cycles below the negative control for both sip 

and cfb were considered negative for GBS. Samples with threshold cycles above the 

negative control for both genes were positive for GBS and the abundance was 

determined by comparing cycle threshold against the standard curve.  

 

 

16S rRNA marker gene analysis  

We used 16S rRNA marker gene data previously generated for the WARRIOR samples 

156. Briefly, the V4 region of the 16S rRNA gene was sequenced on an Illumina MiSeq 



 

51 

using 2 × 250 paired-end reads at the University of Wisconsin Biotechnology Center. 

Negative controls were included during each step of extraction and amplified and 

sequenced with the same protocol as described above.  

 

The resulting fastq files were processed with the software QIIME 2 v2021.4 163. 

Demultiplexed raw sequences were imported using the Casava 1.8 format and 

denoised using DADA2 164 (via qiime-dada2 plugin) to generate a feature table 

containing amplicon sequence variants (ASV). ASVs were aligned with MAFFT to 

construct a phylogenetic tree with fasttree 165. Taxonomy was assigned using the 

classify-sklearn naive Bayes taxonomy classifier 166 against the Silva_138 database for 

16S rRNA genes 167. A feature and a taxonomy table, together with the phylogenetic 

tree were imported in R 4.1.2 as a phyloseq object 168 for further analysis. A total of 756 

samples, including 29 negative controls and 727 stool samples, were processed with R. 

Contaminationwas accounted for by eliminating features based on the prevalence of 

ASVs in the negative controls using the  Decontam package 169, and by removing 

eukaryotic, chloroplast, mitochondrial or unassigned sequences. Finally, samples 

without GBS-associated data or with less than 5000 reads were removed. The resulting 

693 samples were processed as follows.  

 

For the alpha and beta diversity analysis, samples were rarefied to an even depth of 

8396, corresponding to the minimum read count in the dataset. Alpha diversity metrics 

(Shannon, inverse Simpson, and total observed ASVs) metrics were calculated with 

Phyloseq.  Beta diversity was used to quantify the dissimilarities between the samples. 
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First, we calculated 3 different types of distance matrices (Bray-Curtis, weighted and 

unweighted UniFrac and then plotted the ordinations using a principal component 

analysis (PCoAs). PCoAs were plotted for GBS carrier status, and the logarithmic 

transformation of the average copy number of GBS. Moreover, to confirm our findings, 

we extracted the distances for each matrix and plotted the average distance between 

and within sample types. Average distances were plotted as box plots and significant 

differences based on the carrier status of GBS were tested using a one-way ANOVA 

and Tukey’s HSD post-hoc test. 

 

Linear correlations with GBS prevalence 

To evaluate associations with alpha diversity, simple linear regressions were calculated 

for prevalence and copy number against the Inverse Simpson’s, Observed features, and 

Shannon’s indices. For these analyses, we included only the samples where GBS was 

detectable via qPCR. 

 

Differential taxonomic abundance 

Differential taxonomic abundance was obtained using the ANCOM-BC package in R 

using default parameters and Benjamini-Hochberg procedure for P-value corrections 

170. Linear discriminant analysis effect size (Lefse) 171 was done using the R package 

microbiomeMarker 172. Finally, the QCAT package was used to evaluate microbiome 

markers using copy numbers as it allows for continuous variables 173.   

 

Random forest classification 
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To identify taxa that discriminate between the presence and absence of GBS, we used 

a random forest classifier algorithm from the random forest R package 174. In summary, 

we trained and tested our model using the "out of bag" (OOB) error to estimate our 

model error. The number of trees was set to 1000 and only ASVs with relative 

abundances ≥ 0.01% were included as input. The classifier was trained on a random 

selection of 70% of the database composed of 693 samples and 1099 ASVs and 

validated using the remaining 30%. Finally, prediction performance was measured by 

the OOB error rate and the mean decrease in Gini coefficient, a measure of how each 

variable contributes to the homogeneity of the nodes and leaves in the resulting random 

forest, for each ASV. 

 

Metadata variable acquisition and selection 

We acquired participant metadata from SHOW, which biobanks the samples and 

manages the data repository associated with the samples. For our analysis of all 

samples, we selected relevant variables that fit into three categories: demographics, 

health, and diet. For participants who identified as female, we also analyzed data on 

reproductive health. Data were collected for some study participants across multiple 

years, we selected variables relevant for the years the stool samples were collected 

(2016-2017). 

 

Analysis of WARRIOR study metadata 

Differences in GBS outcome by self-identified gender 
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To determine differences in carriage of GBS by self-identified gender, we used 

Pearson's Chi-squared test with Yates' continuity correction. To determine differences in 

abundance of GBS by self-identified gender and for those individuals with detectable 

GBS, we used Welch’s two sample t-test with unequal variances. We used R version 

4.2.2 to run these comparisons.  

 

Binary outcome 

To determine associations between a binary outcome of GBS (presence or absence of 

GBS in the stool) and other predictors, we used a logistic regression model and 

reported odds ratios and confidence intervals. We conducted a univariate analysis first 

(each predictor in a bivariate analysis), then significant predictors from the independent 

models were used to construct three multivariate (adjusted) logistic models. Model 1 

examined significant predictors from the univariate analysis, model 2 examined 

predictors commonly associated with GBS carriage or disease risk, as shown in the 

literature (African American, Type 2 Diabetes Mellitus, and smoking status)135, and 

model 3 combined predictors from models 1 and 2.  Odds ratio plots were created using 

log transforms of the odds ratios and 95% confidence intervals. Variables with missing 

data were addressed using the complete case analysis method. In this instance, any 

subject with no observations was removed from the specific analysis being conducted. 

After adjusting for missing data, a total of 555 variables were used for the binary 

outcome comparisons All analyses were conducted using STATA version 17 

(StataCorp. 2021. Stata Statistical Software: Release 17. College Station, TX: 

StataCorp LLC). 
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Continuous outcome 

Predictors associated with the abundance of GBS for participants with detectable GBS 

were examined using a linear regression model with coefficient estimates and 95% 

confidence intervals. We used a similar approach used above see Binary outcome 

above. Each predictor was independently tested and determined to either be fit for a 

multivariate model or not included in the model. We constructed the same three models 

specified above for the binary outcome. We constructed odds ratio plots as described 

above. Variables with less than 5% missing data were negligible and used as is, 

variables with up to 40% missing data were inputted using multiple imputation methods 

and variables with greater than 50% missing data were excluded from the analysis 

altogether. After adjusting for missing data, a total of 547 variables were used for the 

continuous outcome comparisons. All analyses were conducted using STATA version 

17 (StataCorp. 2021. Stata Statistical Software: Release 17. College Station, TX: 

StataCorp LLC). 

 

 

Subgroup analysis 

A sub-group analysis in females was conducted using the same statistical tests for 

either the binary outcome or the continuous outcome with the same independent 

variables for each outcome. All analyses were conducted using STATA version 17 



 

56 

(StataCorp. 2021. Stata Statistical Software: Release 17. College Station, TX: 

StataCorp LLC). 

 

 

Diagnostics and missing data 

We ran collinearity diagnostics to identify independent variables with significant relations 

as this is disruptive to models. We used a variance inflation factor (VIF) to measure the 

tolerance of variance. Variables with a VIF value greater than 10 were removed from 

the models. Secondary pairwise correlations were conducted to supplement our 

decision to remove collinear variables. We corrected for multiple comparisons effect on 

the p-value using a false discovery rate (FDR) using the Benjamini-Hochberg (BH) 

procedure. All p-values were assigned a rank within the outcome group and a critical 

value using the BH procedure was calculated using false discovery rates of 5% and 

10% to discover which worked best for the data. Critical values less than the significant 

original p-values were also regarded as significant. We graphed the odds from the 

multivariate analysis using coefficient plots with confidence intervals. All analyses were 

conducted using STATA version 17 (StataCorp. 2021. Stata Statistical Software: 

Release 17. College Station, TX: StataCorp LLC). 

 

Results 

Participant Demographics 

For this study, we used stool samples from 754 unique individuals across the state of 

Wisconsin, collected between 2016-2017. Our samples came from 432 (57%) self-
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identified females and 322 (43%) self-identified males with ages ranging from 18 to 57 

(Table 1).  

 
Table 1. Baseline demographics of participants.  

Characteristic n(%) 
Total 
participants 
= 754 

Self-Identified 
Gender 

 

Female 432 (57%) 

Male 322 (43%) 

Age (years) 
 

Minimum 18 

Maximum 94 

Median 57 
 
GBS is present in gut microbiomes of at widely variable abundances 

Using a qPCR-based method, we found that 137/754 (18%) of all participants had 

detectable GBS in their stool samples with 79/432 (18%) of self-identified females and 

58/322 (18%) of self-identified males having detectable GBS (Figure 1A). There was no 

significant difference in proportion of either gender based on GBS status. For samples 

with detectable GBS, we quantified the amount using a standard curve. The samples 

contained between 5 to 6,800,532 copies of GBS target DNA per starting nanogram of 

total DNA (Figure 1B). There was no difference in abundances of GBS in the stool 

based on the gender of the study participants.  
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Figure 1. Carriage of GBS and abundance by self-identified gender. A. Presence or 

absence of GBS in stool samples as determined by qPCR. No significant difference was 
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found in the prevalence of GBS between genders as indicated by “n.s.” as determined 

by Chi-squared tests.  B. Abundance of GBS in stool samples with identifiable GBS as 

determined by qPCR. Each colored point represents GBS abundance in an individual 

sample, diamonds represent the mean copies of GBS for each gender and the box plots 

represent median, interquartile ranges of GBS abundance, and standard deviation for 

each gender. The median copy number of GBS per starting amount of DNA was 104 

and the average was 66,856. The median copy number for self-identified females was 

98, with a mean of 97,621, a standard deviation of 768,659 and an interquartile range 

(IQR) of 605. For males, the median copy number was 126, mean 24,951, standard 

deviation of 178,687, and an IQR of 898. No significant difference was found in GBS 

abundance among male and female carriers as indicated by “n.s.” as determined by 

Welch’s two sample t-test with unequal variances. 

 

 

Differences in gut microbiome composition of WARRIOR study participants 

based on GBS carrier status  

Of the 754 samples, 693 (92%) had available 16S rRNA marker gene sequencing 

performed in a previous study 156. In this subset of samples, no significant correlations 

were found between GBS presence or abundance and alpha diversity metrics (Inverse 

Simpson, observed ASV, or Shannon) using linear regression analysis (Table 2).  

 

To evaluate differences in bacterial communities we used a PCoA with different 

distance matrices (Bray-Curtis, Weighted and Unweighted UniFrac) grouped by GBS 
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carriage and copy number (Table 2). Using a PERMANOVA test, we found that the 

bacterial communities were significantly different according to the presence/absence of 

GBS in PCoAs with the Bray-Curtis and Unweighted UniFrac distance matrices. 

Moreover, we found that bacterial communities were significantly different for the 

abundance of GBS with the log transform for the PCoAs with the Bray-Curtis 

dissimilarity matrix (Table 2).  

  

Additionally, we determined differences in the average beta diversity distance by group 

based on GBS carrier status. We found statistically significant differences in the 

average Bray-Curtis, Weighted and Unweighted UniFrac distances across the three 

comparisons: intragroup distance between all samples with GBS compared to 

intragroup distance for samples without GBS (p<0.001 in all three indices), intergroup 

distance differences for samples with and without GBS compared to intragroup 

distances between samples without GBS (p<0.001 across all three indices), and finally 

intergroup distance differences for samples with and without GBS compared to 

intragroup distances between samples with GBS (p≤0.001 across all three indices) 

(Figure 2). 

 

We compared differential abundances of microbiome members at different taxonomic 

levels as a function of GBS carrier status. We found no differences at the phylum or 

ASV level, however at the genus level, we found that the relative abundance of two 

genera, Ruminococcus (p=0.0003 uncorrected, p=0.055 corrected) and Monoglobus 

(p=0.00057 uncorrected, p=0.057 corrected) trended towards being significantly 
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differentially abundant when GBS is present, specifically both genera trended toward 

being more abundant when GBS is present. 

 

To gain additional insights into microbes that differentiate GBS carriers from non-

carriers, we ran random forest classifiers to identify community signatures predictive of 

GBS carrier status. This analysis could reliably predict GBS negative individuals, but not 

GBS positive individuals (error rates = 0.0035 and 0.992, respectively; Supplemental 

Table 1). Several taxa were identified through the random forest classification as good 

predictors of GBS status, including Anaerostripes , Ruminococcus ,Collinsella, Dorea, 

Agathobacter, Blautia,  Faecalibacterium, Bacteriodes, and  Anaerostripes. 

(Supplemental Table 1). 
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Figure 2. Beta diversity 

distance differences between 

GBS groups. Beta diversity 

distances for inter and intra 

group comparisons are plotted 

for three beta diversity indices. 

Plotted are the intragroup 

distances for samples without 

GBS (- -) intragroup distances 

for samples with GBS (+ +), and 

the intergroup distances for 

samples with and without GBS 

(+ -). The average distance for 

each of the three groups were 

compared to test for differences 

in beta diversity. The three beta 

diversity indices used were: A. 

Bray-Curtis, B. Weighted 

UniFrac, and C. UniFrac. The 

diamonds indicate the mean for 

each category. *** indicates a p-

value ≤ 0.001.  
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Table 2. Correlations between alpha and beta diversity metrics and GBS carriage 
or abundance. 
Diversity Metric Presence or Absence  

p-value 
Abundance 
p-value 

Alpha Diversity   
Inverse Simpson 0.449 0.999 
Observed ASV 0.949 0.220 
Shannon 0.785 0.636 

Beta Diversity   
Bray-Curtis 0.046* 0.176 

Log transform   0.013* 
Weighted UniFrac 0.205 0.810 

Log transform  0.290 
Unweighted UniFrac 0.049* 0.183 

Log transform  0.064 
*indicates p-value<0.05 
 
 
Differences in characteristics of WARRIOR study participants based on GBS 

presence and abundance  

We completed univariate and multivariate analyses on study participant metadata to 

understand which host characteristics were associated GBS carriage and which host 

characteristics were correlated with GBS abundance in carriers. For our analysis, we 

selected relevant variables that fit into three categories: demographics, health, and diet. 

For participants who identified as female, we also analyzed data on reproductive health 

which were not collected for participants who identified as male. The median and 

interquartile range for all variables considered in our multivariate statistical analysis are 

listed in Supplemental Table 2.  

 

From our univariate analysis for carrier status (GBS present or absent in the stool), we 

found 59/557 (10.6%) variables were significantly associated with GBS carrier status (p-

value < 0.05), but no variables were significantly associated after p-value corrections 
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with FDR (Supplemental Table 3). Similarly, for our three multivariate models, we 

found no significant associations after p-value correction (Figure 3, Supplemental 

Table 4).  

 

For the univariate analysis of the abundance of GBS from participants with detectable 

GBS in their stool, we found 11/547 (2.0%) variables were significantly associated with 

GBS abundance (p-value < 0.05) prior to FDR correction. After FDR correction, we 

found 2/547 (0.4%) variables associated with GBS abundance: an increased 

abundance of GBS was associated with an increased time since last dental checkup 

(p<0.001) and last dental cleaning (p<0.001) (Supplemental Table 5). For the 

multivariate analysis, we found that in model 1, which included all the variables that 

were significant from the univariate analysis prior to p-value correction, higher GBS 

abundance was significantly associated with an increased frequency of iron 

consumption (p=0.007) after p-value correction. No other variables were significantly 

associated with GBS abundance in any of the other multivariate analyses (Figure 4, 

Supplemental Table 6). 

 

Subgroup Analysis of Associations of GBS for Self-Identified Females  

Since GBS has historically been studied in pregnant people, we performed a univariate 

sub-group analysis of all self-identified females to investigate if there was a difference in 

the sub-population that were not present in the general population. Similar to the 

general population, in self-identified females, we tested for variables that differentiate 

GBS carrier status and for GBS abundance in the subset of female study participants 
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with detectable GBS. For carrier status, we found 6/556 (1.1%) variables associated 

with GBS presence or absence prior to p-value correction and we did not find any 

significant associations after p-value correction with FDR (Supplemental Table 7). We 

found 10/497 (2.0%) variables associated with GBS abundance prior to p-value 

correction and 2/497 (0.40%) significantly associated after p-value correction 

(Supplemental Table 8). For abundance, similar to the analysis with all participants, an 

increased abundance of GBS was associated with a decreased frequency since last 

dental checkup (p<0.001) and last dental cleaning (p<0.001), after p-value correction 

(Supplemental Table 8). Unlike in the general population, we did not observe a 

correlation with GBS abundance and frequency of iron consumption.  
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Figure 3. Odds ratios for multivariate 

models comparing presence or 

absence of GBS and participant 

characteristics. The diamonds indicate 

the odds ratios for each variable with error 

bars for the 95% confidence interval. A. 

Model 1 compared significant predictors 

from the univariate analysis prior to FDR 

correction with GBS presence or absence. 

B. Model 2 compared predictors 

commonly associated with GBS from 

previous studies and GBS presence or 

absence. C. Model 3 combined predictors 

from Models 1 and 2 with GBS carrier 

status. **indicates p-value ≤ 0.001 after 

FDR correction  
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Figure 4. Odds ratios for multivariate 

models comparing GBS prevalence and 

participant characteristics. The 

diamonds indicate the odds ratios for each 

variable with error bars for the 95% 

confidence interval. A. Model 1 compared 

significant predictors from the univariate 

analysis prior to FDR correction with GBS 

prevalence. B. Model 2 compared 

predictors commonly associated with GBS 

from previous studies and GBS 

prevalence. C. Model 3 combined 

predictors from Models 1 and 2 with GBS 

prevalence. **indicates p-value <0.01 after 

FDR correction  
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Discussion 

In this study, we used a biobank of 754 stool samples and associated data collected 

from adults in Wisconsin to better understand the host and microbiome-based factors 

that influence gastrointestinal GBS carriage.  

 

We found that GBS is present in the stool from a representative cross-sectional 

sampling of adults in Wisconsin at rates like what is seen in pregnant individuals via 

rectovaginal swabs. We found that the abundance of GBS varied by orders of 

magnitude between individuals with GBS and there was no difference in the carrier 

frequency or abundance based on gender. These data indicate that GBS is common in 

the distal GI tracts of the general population, providing further evidence that the distal GI 

tract is an important reservoir for GBS in the human body 144,155.  

 

We carried out 16S rRNA marker gene analysis of the samples in the context of GBS 

colonization and found that regardless of index used (Bray-Curtis, Weighted UniFrac, 

Unweighted UniFrac), beta-diversity was significantly different based on GBS carrier 

status. We did not find robust correlations between alpha-diversity or individual 

microbes that predicted GBS carriage or GBS abundance in individuals with GBS. It is 

possible that multiple microbiome configurations or functionally redundant microbiome 

members influence GBS carriage or that transient GBS carriage, as has been observed 

for pregnant people, obscures this assessment 175.  
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In addition, to identify host-centric variables that influence GBS carriage, we leveraged 

the extensive participant metadata collected as part of the WARRIOR study. While we 

did not find many statistically significant variables that correlated with GBS carrier 

frequency or abundance after p-value correction, prior to p-value correction, there were 

59/557 (10.6%) variables for GBS carrier status and 11/547 (2.0%) for GBS abundance 

that were statistically significant (p<0.05). The two most robust associations we found 

after p-value corrections were between lack of dental care and higher iron consumption 

and increased GBS abundance. Streptococci are known inhabitants of the upper GI 

tract, including the oral cavity 155,176. Our finding that a lack of dental care is associated 

with higher GBS burdens in the stool implies that poor dentition leads to an increase in 

Streptococci in the oral cavity, which can subsequently be observed more distal in the 

GI tract 177. Iron is an essential nutrient for almost all living organisms, including 

bacteria, which have evolved strategies to scavenge environmental iron. These 

strategies enable bacteria to compete with other microbes within microbiomes and have 

been demonstrated to be important to overcome human immune defenses 178. In 

particular, GBS encodes siderophores which aid in environmental iron acquisition 179 

and elevated oral iron consumption may favor siderophore-dependent iron acquisition 

by GBS and increased GBS fitness in the distal GI tract. Alternatively, it is possible that 

iron indirectly impacts GBS fitness by influencing the abundance of microbes that 

compete or cooperate with it in the distal GI. Supportively, oral iron consumption has 

been previously shown to increase the amount of iron available to the gut microbiome 

and influence its composition 180,181. 
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Of note, we did not find associations between variables historically associated with GBS 

carriage in pregnant people in our study population. Specifically, neither GBS carriage 

nor GBS abundance in carriers was impacted by race, smoking status, age, or diabetes 

status (Figure 5). This challenges our current understanding of the risk factors for GBS 

carriage and highlights two possibilities for future study. First, it is possible that risk 

factors for GBS carriage in pregnancy are different than the risk factors in the general 

population. Second, it is possible that iron consumption and dental hygiene are risk 

factors for GBS carriage in pregnant people, but studies have not been done to address 

these connections. Therefore, further study of both pregnant and non-pregnant adults, 

informed by this work, will fill these important gaps in understanding relating to the life 

cycle of GBS. This understanding is a useful starting point developing new 

interventions, beyond antibiotics, to de-colonize GBS carriers and to prevent GBS 

infections in at-risk populations. These considerations are relevant given the rising 

incidence of antibiotic resistance in GBS and our emerging understanding of the 

collateral damage antibiotics have on human microbiomes 182–187.  
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Figure 5. Overview of 

associations found with 

GBS in stool from study 

participants. No 

associations were found 

with historically known risk 

factors for GBS in 

pregnant individuals 

including gender, race, 

Type 2 diabetes, age, or 

smoking status. A higher 

burden of GBS in the stool 

was associated with 

decreased dental hygiene 

and an increase in frequency of dietary iron supplements. We found a change in beta-

diversity of the gut microbiome was different depending on GBS carrier status. Two 

genera, Ruminococcus (p=0.0003 uncorrected, p=0.055 corrected) and Monoglobus 

(p=0.00057 uncorrected, p=0.057 corrected) trended towards being more abundant 

when GBS is present. Created with BioRender.com under agreement #DL25UX5VMX.  

 

Limitations of our study include lack of longitudinal samples and using retrospective 

data. Since we used a biobank, we were limited to the survey questions that were asked 

with the initial studies and not able to add our own. Our statistical analyses demonstrate 
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correlations and we are unable to provide causation within this study. Our final p-values 

were penalized for the high number of metadata variables we investigated. Strengths of 

our work include the large number of participant samples (754) from a large age range 

and backgrounds. Another strength is the extensive amount of survey data we were 

able to compare to GBS carrier status and abundance. 

 

Our work provides a starting point to begin to understand risk factors for GBS carriage 

in the general population and in pregnant people using basic, translational, and clinical 

research approaches. Future work could expand on our findings including associations 

we found significant prior to p-value corrections. In addition, future work could use 

metabolomics-based approaches to identify microbiome-produced metabolites that 

correlate with GBS carriage. In addition, longitudinal sampling of study participants 

would provide important clues into the microbial and metabolic factors that influence 

transient carriage. Other future directions for this work include the use of experimental 

models to gain mechanistic insights into the associations we observe and impacts on 

GBS pathogenesis. This future work could include mouse models to determine the 

extent to which GBS colonizes distal GI and how dietary iron supplementation influence 

the abundance of GBS and other interacting microbiome members. Additional work 

could explore the extent to which transient distal GI colonization is influenced by oral 

GBS colonization, considering previous observations of high prevalence of oral GBS 

colonization 155.  
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ABSTRACT: 

Introduction: Multiple sclerosis (MS) is a chronic, autoimmune inflammatory disease of 

the central nervous system that targets the myelin sheath of neurons, producing 

symptoms such as numbness, dizziness, vertigo, vision changes, and motor weakness. 

MS is the most common non-traumatic cause of neurological disability in young people 

affecting approximately over 2 million people in the world. The most common phenotype 

of MS is relapsing remitting MS (RRMS), which is characterized by exacerbations and 

periods of recovery. The etiology of MS is considered multifactorial with genetic and 

environmental factors influencing MS development. The gut microbiome is thought to 

play a role in MS. It is unclear if it is a trigger, a driver of disease pathogenesis, or a 

symptom of the disease. Studies have shown differences in the composition and 

diversity of people with and without RRMS. We aim to understand the association 

between the role of the gut microbiome, specifically the bacterial and viral members of 
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the community, in RRMS compared to healthy controls by characterizing the 

composition and functional capacity of the microbiome. bacterial and viral  

 

Methods: We used stool samples from 75 individuals with RRMS, 44 on a disease 

modifying therapy, 31 not on a disease modifying therapy, and 26 controls from a cohort 

of participants at Marshfield Clinic in Wisconsin collected between 2018-2021. We 

performed metagenomic sequencing of DNA extracted from stool. We trimmed 

adapters, quality filtered, assembled, and binned the metagenomes. We taxonomically 

identified assembled bacterial genomes and built a phylogenetic tree using the 

genomes. We identified functional capacity of the bacterial genomes using METABOLIC 

and compared differences in metabolic pathways based on participant type. We 

identified putative phages in each metagenome using ViWrap and compared viral taxa 

based on participant type.  

 

Results: We found the bacterial composition in participants with RRMS and controls 

were similar and largely contained phyla common to the gut environment: Bacteroidota 

and Firmicutes. We characterized the phage composition of the stool samples and 

found the majority of the phages in all groups were from the most abundant class of gut 

phages: Caudoviricetes.  We found evidence of 1-3 unique phages for each of the two 

MS groups, but no phages were unique to the controls. We found the Semi-

phosphorylative Entner-Doudoroff pathway, gluconate à glycerate-3-phosphate, was 

less likely to be present in in the metagenomic assembled genomes of participants with 

MS on disease modifying therapy than those who are not on disease modifying therapy. 
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We also found that tryptophan biosynthesis, chorismate à tryptophan, was more likely 

to be present in bacterial genomes of individuals with RRMS not on disease modifying 

therapy compared to controls.  

 

Discussion: The few differences we found in bacterial metabolic capabilities in this 

study provide promising future directions while the phage composition and functional 

potential remains largely unexamined and an opportunity for future work. Continued 

work on the gut microbiome and pairing it with clinical metadata is essential to begin to 

uncover the role of the gut microbiome in MS.   
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Introduction 

Multiple Sclerosis (MS) is a chronic, immune mediated inflammatory disease of the 

central nervous system which is characterized by demyelination of neurons that results 

in plaques. Besides traumas, MS is the most common cause of neurological disorders 

in young people with a mean age of onset between 28-31 years old and it affects more 

women than men 188–191. MS is a heterogeneous disorder and can manifest in different 

phenotypes, one of which is relapsing remitting MS (RRMS) that manifests as 

exacerbations with neurological symptoms for a defined period followed by recovery. 

Between flares, patients with RRMS, do not experience signs and symptoms of MS 

192,193. Autoimmune factors and genetic susceptibility are both thought to play a role in 

the pathogenesis of MS 193,194. Environmental factors, including viral infections such as 

EBV, geographic location, and sunlight and vitamin D levels, have been shown to play a 

role in increased risk for MS 192,195–197.  

 

Recently, studies have demonstrated that the gut microbiome composition differs 

between patients with MS and healthy controls leading to the hypothesis that the 

microbiome may play a role in the pathogenesis of MS 198,199. This is further supported 

by the fact that most immune cells in the body reside in the gut and MS has known 

immune system dysregulation. Antibiotic treated and germ free mouse are not 

susceptible to the animal model of MS,  spontaneous experimental autoimmune 

encephalomyelitis, providing evidence for the importance of the gut microbiome in the 

development of multiple sclerosis 200–202. Mouse models of MS have further show that 

treatment with a probiotic halted the autoimmune progression of MS 198,199,203. Most gut 
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microbiome research has focused on bacteria, but bacteriophages or phages have 

garnered recent attention for their abundance in the gut 204. Changes in phage 

functional landscapes have recently been associated with another autoimmune disease, 

rheumatoid arthritis, and we propose a similar analysis for patients with MS 205. 

 

While there have been several bacterial composition studies of the gut microbiome of 

individuals with MS in tandem with immunological studies, in this study, we will use 

metagenomic sequencing of stool samples from individuals with RRMS and controls 

from Marshfield Clinic in Wisconsin to not only characterize the bacteria and phage 

composition differences between the groups, but also to begin to examine the potential 

metabolic differences in the bacterial communities.  

 

Methods 

Study design and stool samples 

This study obtained approval from institutional research board (IRB) of Marshfield Clinic 

Health System (MCHS) (IRB protocol SHU10417) and approval by University of 

Wisconsin-Madison IRB (IRB protocol 2021-0793). All the included subjects signed a 

written informed consent.  

 

As previously described, 237 patients with MS and 50 controls were recruited at MCHS 

from 2018-2021 who had been diagnosed with MS in the last two years with exclusion 

criteria of taking antibiotics, laxatives, or undergoing a colonoscopy in the previous three 

months 206. A subset of the 237 patients enrolled in the overall project, including 75 
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patients with MS, of those 75, 44 patients with RRMS on a disease modifying therapy 

and 31 patients with RRMS not on a disease modifying therapy, and 26 controls were 

used for this study.  

 

A fecal sample collection kit was sent to each participant and fecal samples were 

returned with a frozen cold pack. Stool samples were divided in lab and frozen at -80°C 

until further processing.  

 

DNA extraction from stool samples and sequencing 

Microbial DNA was extracted from stool sample aliquots using a Qiagen DNeasy 

PowerLyzer PowerSoil Kit and following the kit’s protocol.  

 

Library preparation and sequencing of the extracted microbial DNA was performed at 

UW-Madison Biotechnology Center on an Illumina NovaSeq6000, which produces 2 x 

150 base pair reads and samples were sequenced at a depth of 25 million reads per 

sample.   

 

Metagenomic sequencing analysis 

Raw metagenomic reads were trimmed of adapters and quality filtered to remove low 

quality reads and human DNA using metaWRAP v1.2.2 207. The resulting reads were 

assembled using SPAdes v3.12.0 (parameters: --meta, --k 21,33,55,77,99,127) 208. We 

removed scaffolds less than 1500 base pairs and ran VIBRANT v1.2.1 to identify 

phages 209. We removed phages identified by VIBRANT as lytic and circular from the 
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scaffolds and used metaWRAP (parameters: --metabat2 --maxbin2 --metabat1 --

concoct) to bin the remaining scaffolds. We performed bin refinement on all the bin 

outputs from metaWRAP except those from Concoct using DAS Tool v1.1.3 for our final 

set of metagenomic assembled genomes (MAGs) 210. 

 

Taxonomic Classification of MAGs  

We performed taxonomic classification of the MAGs via two methods: 1. GTDB-Tk 

classification and 2. via a concatenated ribosomal protein tree. We assigned taxonomy 

using GTDB-Tk v2.3.2 and reference database release 214 with the classify_wf function 

211–220. GTDB-Tk also provided checkM results describing percent completeness and 

contamination for each MAG.  

 

We created concatenated ribosomal protein trees using a Hidden Markov Model (HMM) 

database of single copy ribosomal proteins including: rpL2, rpL3, rpL4, rpL5, rpL6, 

rpL14, rpL15, rpL16, rpL18, rpL22, rpL24, rpS3, rpS8, rpS10, rpS17, and rpS19 221. We 

identified ribosomal proteins in our MAG dataset using the database and hmmsearch 

(version 3.3.2) with noise cutoffs (--cut_nc) 108. Using the Prodigal output from checkM, 

we extracted the identified protein sequences for each ribosomal protein from the ORFs 

and imported the sequences into Geneious Prime (version 2022.2.2). The extracted 

protein sequences for each ribosomal protein were aligned with a reference sequence 

set within Geneious using MAFFT (version 7.490, algorithm: auto, scoring matrix: 

BLOSUM62, gap open penalty: 1.53, offset value: 0.123). A 95% gap masking threshold 

was applied to each ribosomal protein alignment and the resulting alignments were 
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concatenated. The concatenated alignment was manually trimmed and exported in 

FASTA format. The resulting concatenated alignment was used as the input to make a 

phylogenetic tree using IQTree (version 2.2.0.3, parameters: -nt AUTO -m MFP -bb 

1000 -redo -mset WAG,LG,JTT,Dayhoff -mrate E,I,G,I+G -mfreq FU -wbtl) 222. The 

resulting tree was imported into iToL for visualization and manual curation 119.  

 

Metabolic potential characterization of MAGs 

We performed metabolic reconstruction of each MAG using the METABOLIC-C function 

of METABOLIC (version 4.0) 223. Using the METABOLIC_results excel file output, we 

summarized the proportion of each participants MAGs that had each KEGG module 

step present. Using those proportions, we then used DESeq2 

(DESeqDataSetFromMatrix function) to determine if there were differences by 

participant type (RRMS on disease modifying therapy, RRMS not on disease modifying 

therapy, and control) in the proportion of genomes with or without each of the KEGG 

steps 224.  

 

Viral characterization of samples 

To begin to understand the viral community from the metagenomes, we used ViWrap, a 

viromics program that combines several programs, allowing the ability to identify viruses 

from metagenomes, annotate genes, genome bin, assign taxonomy, cluster at the 

species and genus level, predict the viral host, and analyze the viral genome quality. 

We analyzed all metagenomes through the full ViWrap v1.2.1  pipeline using the run 

function. To have the most updated viral taxonomy assignments, we took the vRhyme 
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output from ViWrap (all_vRhyme_fasta.Nlinked_viral_gn.fasta) for each metagenome 

and used as input for geNomad v1.7.0 (function annotate) with database 1.5.0, which is 

based on the International Committee on the Taxonomy of Viruses’ Virus Metadata 

Resource 19 225. Using the geNomad output, we summarized any unique viral taxa 

found only in one participant type (RRMS on disease modifying therapy, RRMS not on 

disease modifying therapy, and control) and we summarized the total number of unique 

viral taxa by participant disease type.   

 

Results 

Participant Demographics 

A subset of the 237 patients enrolled in the overall project, including 75 patients with 

MS, of those 75, 44 patients with RRMS on a disease modifying therapy and 31 patients 

with RRMS not on a disease modifying therapy, and 26 controls were used for this 

study. A summary of the characteristics of the participants are in Table 1. The majority 

of all participants were female and all participants were white.  

 

Table 1. Demographics of participants in this study. Disease modifying therapies 

include fingolimod, natalizumab, ocrelizumab, teriflunomide, glatrimer acetate, demthyl 

fumarate, interferon beta-1a, rituximab, or a combination of the listed therapies.  

Characteristic 

RRMS on Disease 
Modifying Therapy 

(n=44) 

RRMS not on 
Disease 

Modifying 
Therapy (n=31) Control (n=26) 

Median Age (at 
diagnosis for MS and 
at enrollment for 
controls in years) 44 58 44 
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Ethnicity White White White 
Gender    

Male n(%) 14 (32%) 7 (23%) 8 (31%) 
Female n (%) 30 (68%) 24 (77%) 18 (69%) 

Median BMI 27.4 29.7 27.3 
Disease Modifying 
Therapy (n) 44 0 0 
 

Summary of Metagenomic Assembled Genomes and Viral Identification 

We reconstructed 3577 MAGs across all participants. Of those 3035 (85%) were 

considered high or medium quality genomes, >50% complete and <10% contaminated 

105,226. For each participant, we assembled over 30 MAGs (Table 2).  We identified 

51034 total lytic phages and 10645 lysogenic phages across all the samples with 400-

600 lytic phages per sample and ~100 lysogenic phages per sample (Table 2).  

 

Table 2. Summary of metagenomic processing including creation of metagenomic 

assembled genomes (bins) and viral identification. Reported numbers are per 

sample in each category.   

 
 

RRMS on  
disease 

modifying 
therapy (n=44) 

RRMS not 
on disease 
modifying 

therapy 
(n=31) 

Control 

Metagenomic assembling and binning    
Median scaffolds >1500 base pairs 26881.5 25427 25020.5 

Median total base pairs in assembly 
(base pairs) 

177082627 170676241 173500063 

Median metagenomic bins (Metabat1, 
Metabat2, Maxbin)  

69 65 70 

Median refined metagenomic bins 37 33 35 
Viral Identification    

Median putative phages  651.5 591 581.5 
Median lytic phages  534 482 476.5 
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Median lysogenic phages  111 101 106 
 
Bacterial MAGs Taxonomic Classification 

From taxonomic classification by GTDB-tk and a concatenated ribosomal protein 

phylogeny, most MAGs were in the phyla Firmicutes or Bacteroidota (Figure 1).  

 
 
Figure 1. Concatenated ribosomal protein tree to taxonomically classify MAGs. 
Gray clades only contain reference sequences, darker gray clades contain reference 
sequences and sequences from participants in this study. Bracketed numbers indicate 
the sequence origin for each collapsed clade [number of sequences from our study, 
number of sequences of references]. Pie charts indicate the disease state associated 
with the sequences from participants in this study in each collapsed clade with white 
being controls, blue indicating participants with RRMS that are on disease modifying 
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therapy, and green indicating participants with RRMS that are not on disease modifying 
therapy.  
 
 
Bacterial functional differences 

 

From the METABOLIC output, we compared all combinations of participants (RRMS on 

disease modifying therapy vs RRMS not on disease modifying therapy; RRMS on 

disease modifying therapy vs controls; RRMS not on disease modifying therapy vs 

controls; all RRMS vs controls) to determine if there was a difference in the proportion 

of MAGs with various functional genes from KEGG modules (Tables 3-6). In total, we 

compared 470 KEGG modules.  

 

After p-value correct, only two pathways were still significant (p-value < 0.05). In the 

comparison between the two groups of participant with MS, we found that the Semi-

phosphorylative Entner-Doudoroff pathway, which takes gluconate and transforms it to 

glycerate-3-phosphate, was less likely to be present in in the assembled genomes of 

participants with MS on disease modifying therapy than those who are not on disease 

modifying therapy (corrected p-value 0.006, Table 3). We also found that tryptophan 

biosynthesis, chorismate à tryptophan, was more likely to be present in bacterial 

genomes of individuals with RRMS not on disease modifying therapy compared to 

controls (corrected p-value 0.02. Table 5). We did not find any pathways differentially 

abundant when we compared individuals with RRMS on a disease modifying therapy 

and controls  (Table 4) and we did not find differences when we compared all 

participants with RRMS vs controls (Table 6).  
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Table 3. Summary of comparison of proportion of genomes with metabolic 
pathways present for RRMS on disease modifying therapy versus RRMS not on 
disease modifying therapy. Only uncorrected p-values <0.05 are included and the 
green shaded row indicates a corrected p-value <0.05. 

KEGG Module Step Log2 Fold 
Change 

p-value Corrected p-
value 

Semi-phosphorylative 
Entner-Doudoroff pathway, 
gluconate à  glycerate-3P 

-0.375022 3.78E-05 0.00579 

D-Glucuronate degradation, 
D-glucuronate à pyruvate + 
D-glyceraldehyde 3P 

-0.336438 0.00088 0.067345 

Lysine biosynthesis, DAP 
aminotransferase pathway, 
aspartateàlysine 

-0.148129 0.001532 0.078124 

Galactose degradation, 
Leloir pathway, galactose à 
alpha-D-glucose-1P 

-0.237705 0.013946 0.485437 

Cobalamin biosynthesis, 
anaerobic, uroporphyrinogen 
III àsirohydrochlorin à 
cobyrinate a,c-diamide 

-0.154071 0.016215 0.485437 

Lysine biosynthesis, DAP 
dehydrogenase pathway, 
aspartate àlysine 

-0.127705 0.019037 0.485437 

Pyridoxal-P biosynthesis, 
R5P + glyceraldehyde-3P + 
glutamine à pyridoxal-P 

0.204511 0.028379 0.530768 

Methionine biosynthesis, 
aspartate à homoserine à 
methionine 

-0.252162 0.032752 0.530768 

Glycolysis (Embden-
Meyerhof pathway), glucose 
à pyruvate 

0.051019 0.034142 0.530768 

PRPP biosynthesis, ribose 
5P à PRPP 

0.06684 0.038987 0.530768 

NAD biosynthesis, aspartate 
à quinolinate à NAD 

0.106972 0.039379 0.530768 

Thiamine salvage pathway, 
HMP/HET àTMP 

0.105753 0.044805 0.530768 

Histidine biosynthesis, PRPP 
à histidine 

-0.112134 0.045098 0.530768 
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Table 4. Summary of comparison of proportion of genomes with metabolic 
pathways present for RRMS on disease modifying therapy versus controls. Only 
uncorrected p-values <0.05 are included. 
 

KEGG Module Step Log2 Fold 
Change 

p-value Corrected p-
value 

Cobalamin biosynthesis, 
cobyrinate a,c-diamide à 
cobalamin 

0.15553 0.003882 0.50788 

Menaquinone biosynthesis, 
chorismate (+ polyprenyl-PP) 
à menaquinol 

-5.577289 0.007056 0.50788 

D-Galacturonate degradation 
(bacteria), D-galacturonate 
à pyruvate + D-
glyceraldehyde 3P 

0.351223 0.012396 0.50788 

Glutathione biosynthesis, 
glutamate à glutathione 

-5.093872 0.018534 0.50788 

Glycolysis (Embden-
Meyerhof pathway), glucose 
à pyruvate 

-0.055686 0.020958 0.50788 

Semi-phosphorylative 
Entner-Doudoroff pathway, 
gluconate à glycerate-3P 

0.202529 0.023956 0.50788 

UDP-N-acetyl-D-
glucosamine biosynthesis, 
prokaryotes, glucose à 
UDP-GlcNAc 

-0.096975 0.02963 0.50788 

C10-C20 isoprenoid 
biosynthesis, bacteria 

-0.500571 0.0301 0.50788 

Cobalamin biosynthesis, 
anaerobic, uroporphyrinogen 
III à sirohydrochlorin à 
cobyrinate a,c-diamide 

0.146101 0.033994 0.50788 

Reductive pentose 
phosphate cycle, ribulose-5P 
à glyceraldehyde-3P 

-5.05023 0.038598 0.50788 
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D-Glucuronate degradation, 
D-glucuronate à pyruvate + 
D-glyceraldehyde 3P 

0.214934 0.04592 0.50788 

Glycogen biosynthesis, 
glucose-1P à 
glycogen/starch 

-0.097519 0.046911 0.50788 

Lysine biosynthesis, DAP 
aminotransferase pathway, 
aspartate à lysine 

0.107613 0.049444 0.50788 

Coenzyme A biosynthesis, 
pantothenate à CoA 

0.073995 0.05262 0.50788 

Cytochrome bd ubiquinol 
oxidase 

-4.836799 0.052904 0.50788 

 
 
Table 5. Summary of comparison of proportion of genomes with metabolic 
pathways present for RRMS not on disease modifying therapy versus controls. 
Only uncorrected p-values <0.05 are included and the green shaded row indicates a 
corrected p-value <0.05. 
 

KEGG Module Step Log2 Fold 
Change 

p-value Corrected p-
value 

Tryptophan biosynthesis, 
chorismate à tryptophan 

0.254307 0.000152 0.02309 

Glutathione biosynthesis, 
glutamate à glutathione 

-5.442974 0.003801 0.139759 

Pyridoxal-P biosynthesis, 
R5P + glyceraldehyde-3P + 
glutamine à pyridoxal-P 

0.295632 0.003923 0.139759 

Heme biosynthesis, animals 
and fungi, glycine à heme 

-5.609408 0.004263 0.139759 

Menaquinone biosynthesis, 
chorismate (+ polyprenyl-PP) 
à menaquinol 

-5.581209 0.004597 0.139759 

Tyrosine biosynthesis, 
chorismate à HPP à 
tyrosine 

-5.348714 0.008012 0.202975 

Fatty acid biosynthesis, 
elongation 

0.078729 0.013701 0.297502 
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Cytochrome bd ubiquinol 
oxidase 

-5.170862 0.018407 0.314712 

Glyoxylate cycle -5.164564 0.018634 0.314712 
Pyridoxal-P biosynthesis, 
erythrose-4P à pyridoxal-P 

-4.99932 0.03681 0.385214 

Reductive pentose 
phosphate cycle (Calvin 
cycle) 

-4.99932 0.03681 0.385214 

Succinate dehydrogenase, 
prokaryotes 

-4.99932 0.03681 0.385214 

Galactose degradation, 
Leloir pathway, galactose à 
alpha-D-glucose-1P 

-0.241369 0.0378 0.385214 

ETEC pathogenicity 
signature, colonization 
factors 

-4.943141 0.040549 0.385214 

Fumarate reductase, 
prokaryotes 

-4.943141 0.040549 0.385214 

Ubiquinone biosynthesis, 
prokaryotes, chorismate (+ 
polyprenyl-PP) à ubiquinol 

-4.943141 0.040549 0.385214 

Heme biosynthesis, plants 
and bacteria, glutamate à 
heme 

-1.354657 0.049245 0.387558 

Guanine ribonucleotide 
biosynthesis, IMP à 
GDP,GTP 

-0.067777 0.05128 0.387558 

 
Table 6. Summary of comparison of proportion of genomes with metabolic 
pathways present for all RRMS participants versus controls. Only uncorrected p-
values <0.05 are included. 
 

KEGG Module Step Log2 Fold 
Change 

p-value Corrected p-
value 

Menaquinone biosynthesis, 
chorismate (+ polyprenyl-PP) 
à  menaquinol 

5.583177 0.000809 0.095986 

Glutathione biosynthesis, 
glutamate  à  glutathione 

5.250936 0.001247 0.095986 
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Heme biosynthesis, animals 
and fungi, glycine  à  heme 

5.146387 0.006537 0.226782 

Phenylalanine biosynthesis, 
chorismate  à  
phenylpyruvate  à 
phenylalanine 

5.086653 0.007363 0.226782 

Tyrosine biosynthesis, 
chorismate  à  HPP  à  
tyrosine 

5.086653 0.007363 0.226782 

Cytochrome bd ubiquinol 
oxidase 

4.988273 0.008893 0.228253 

Tryptophan biosynthesis, 
chorismate  à  tryptophan 

-0.171476 0.011599 0.255181 

Cobalamin biosynthesis, 
cobyrinate a,c-diamide  à  
cobalamin 

-0.119973 0.014206 0.273469 

Pyridoxal-P biosynthesis, 
erythrose-4P  à  pyridoxal-P 

4.953137 0.017041 0.291584 

Reductive pentose 
phosphate cycle (Calvin 
cycle) 

4.813106 0.021474 0.330698 

Ubiquinone biosynthesis, 
prokaryotes, chorismate (+ 
polyprenyl-PP) à ubiquinol 

4.84658 0.026506 0.351579 

C10-C20 isoprenoid 
biosynthesis, bacteria 

0.469443 0.033008 0.351579 

Pyrimidine degradation, 
uracil à 3-
hydroxypropanoate 

4.69859 0.033167 0.351579 

Undecaprenylphosphate 
alpha-L-Ara4N biosynthesis, 
UDP-GlcA à undecaprenyl 
phosphate alpha-L-Ara4N 

4.69859 0.033167 0.351579 

Glyoxylate cycle 4.6765 0.034246 0.351579 
Glycogen biosynthesis, 
glucose-1P à 
glycogen/starch 

0.090821 0.036528 0.351579 

Formaldehyde assimilation, 
ribulose monophosphate 
pathway 

0.96168 0.051814 0.443181 

 



 

93 

Viral Taxonomy 

The majority of viruses that were able to be taxonomically classified in all groups were 

in the class Caudoviricetes (Tables 7-9). The phylogenetic level that the viruses 

identified from the metagenomes can be classified at depends on the sequence length. 

We found 1-3 classified viruses that were unique to each RRMS participant type, but no 

viruses unique to the control group (Table 10).  

 
Table 7. Viral taxonomic classifications for participants with RRMS on a disease 
modifying therapy.  
Viral Taxonomic Assignment Number viruses 

identified with this 
taxonomy 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes 

15251 

Viruses;Monodnaviria;Sangervirae;Phixviricota;Malgra
ndaviricetes;Petitvirales;Microviridae 

259 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Crassvirales 

161 

Viruses;Monodnaviria;Loebvirae;Hofneiviricota;Faservi
ricetes;Tubulavirales;Inoviridae 

30 

Viruses;Monodnaviria;Shotokuvirae;Cressdnaviricota;
Arfiviricetes;Cirlivirales;Circoviridae 

27 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Peduoviridae 

9 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Herelleviridae 

6 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Straboviridae 

6 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Vilmaviridae 

6 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Autographiviridae 

5 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Demerecviridae 

3 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Ackermannviridae 

2 

Viruses 1 
Viruses;Bicaudaviridae 1 
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Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Casjensviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Kyanoviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Mesyanzhinovviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Schitoviridae 

1 

Viruses;Monodnaviria;Shotokuvirae;Cressdnaviricota;
Arfiviricetes;Cremevirales;Smacoviridae 

1 

Viruses;Riboviria;Orthornavirae;Duplornaviricota;Vidav
erviricetes;Mindivirales;Cystoviridae 

1 

Viruses;Varidnaviria;Bamfordvirae;Nucleocytoviricota;
Megaviricetes;Algavirales;Phycodnaviridae 

1 

Viruses;Varidnaviria;Bamfordvirae;Nucleocytoviricota;
Megaviricetes;Imitervirales;Mimiviridae 

1 

Viruses;Varidnaviria;Bamfordvirae;Preplasmiviricota;T
ectiliviricetes;Kalamavirales;Tectiviridae 

1 

 
 
Table 8. Viral taxonomic classifications for participants with RRMS not on a 
disease modifying therapy.  
Viral Taxonomic Assignment Number viruses 

identified with this 
taxonomy 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes 

10085 

Viruses;Monodnaviria;Sangervirae;Phixviricota;Malgra
ndaviricetes;Petitvirales;Microviridae 

141 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Crassvirales 

118 

Viruses;Monodnaviria;Shotokuvirae;Cressdnaviricota;
Arfiviricetes;Cirlivirales;Circoviridae 

27 

Viruses;Monodnaviria;Loebvirae;Hofneiviricota;Faservi
ricetes;Tubulavirales;Inoviridae 

21 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Straboviridae 

10 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Herelleviridae 

8 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Peduoviridae 

6 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Autographiviridae 

4 
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Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Kyanoviridae 

3 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Drexlerviridae 

2 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Schitoviridae 

2 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Ackermannviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Casjensviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Chaseviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Demerecviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Mesyanzhinovviridae 

1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Zierdtviridae 

1 

Viruses;Monodnaviria;Shotokuvirae;Cressdnaviricota;
Arfiviricetes;Cremevirales;Smacoviridae 

1 

Viruses;Varidnaviria;Bamfordvirae;Nucleocytoviricota;
Megaviricetes;Imitervirales;Mimiviridae 

1 

 
Table 9. Viral taxonomic classifications for control participants without RRMS.  
Viral Taxonomic Assignment Number viruses 

identified with this 
taxonomy 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes 8337 
Viruses;Monodnaviria;Sangervirae;Phixviricota;Malgra
ndaviricetes;Petitvirales;Microviridae 99 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Crassvirales 78 
Viruses;Monodnaviria;Loebvirae;Hofneiviricota;Faservi
ricetes;Tubulavirales;Inoviridae 14 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Herelleviridae 7 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Straboviridae 7 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Peduoviridae 6 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Demerecviridae 5 
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Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Ackermannviridae 4 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Casjensviridae 3 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Autographiviridae 2 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Schitoviridae 2 
Viruses;Bicaudaviridae 1 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Mesyanzhinovviridae 1 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Ca
udoviricetes;Vilmaviridae 1 

 
Table 10. Phages unique to each of the three participant types.  

Viral Taxonomic Classification by Disease State 

Number of viruses 
identified with this 
taxonomy 

Unique to RRMS on disease modifying therapy  
Viruses 1 

Viruses;Riboviria;Orthornavirae;Duplornaviricota;Vidaverviri
cetes;Mindivirales;Cystoviridae 1 

Viruses;Varidnaviria;Bamfordvirae;Nucleocytoviricota;Megav
iricetes;Algavirales;Phycodnaviridae 1 

Viruses;Varidnaviria;Bamfordvirae;Preplasmiviricota;Tectilivi
ricetes;Kalamavirales;Tectiviridae 1 

Unique to RRMS not on disease modifying therapy  
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir

icetes;Drexlerviridae 2 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir

icetes;Chaseviridae 1 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir

icetes;Zierdtviridae 1 
Unique to only RRMS (on and not on disease modifying 
therapy)  
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir

icetes;Kyanoviridae 3 
Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir

icetes;Drexlerviridae 2 
Viruses 1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir
icetes;Kyanoviridae 1 

Viruses;Monodnaviria;Shotokuvirae;Cressdnaviricota;Arfiviri
cetes;Cremevirales;Smacoviridae 1 

Viruses;Riboviria;Orthornavirae;Duplornaviricota;Vidaverviri
cetes;Mindivirales;Cystoviridae 1 
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Viruses;Varidnaviria;Bamfordvirae;Nucleocytoviricota;Megav
iricetes;Algavirales;Phycodnaviridae 1 

Viruses;Varidnaviria;Bamfordvirae;Nucleocytoviricota;Megav
iricetes;Imitervirales;Mimiviridae 1 

Viruses;Varidnaviria;Bamfordvirae;Preplasmiviricota;Tectilivi
ricetes;Kalamavirales;Tectiviridae 1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir
icetes;Chaseviridae 1 

Viruses;Duplodnaviria;Heunggongvirae;Uroviricota;Caudovir
icetes;Zierdtviridae 1 

Viruses;Monodnaviria;Shotokuvirae;Cressdnaviricota;Arfiviri
cetes;Cremevirales;Smacoviridae 1 

Viruses;Varidnaviria;Bamfordvirae;Nucleocytoviricota;Megav
iricetes;Imitervirales;Mimiviridae 1 

Unique to Control  
None  

 

Discussion 

We used metagenomic sequencing of stool samples from 75 individuals with RRMS and 

26 controls to characterize the human gut microbiome. We found the bacterial 

composition in participants with RRMS and controls were similar and largely contained 

phyla common to the gut environment: Bacteroidota and Firmicutes. We characterized 

the phage composition of the stool samples and found the majority of the phages in all 

groups were from the class Caudoviricetes, which are the most abundant class of 

phages found in the gut 204,227–232. While we did find evidence of phages unique to the 

three different participant types (Table 10), we only identified 1-3 phages per unique 

subtype, which is not robust evidence to base conclusions on. Of note, we did not find 

any phages unique to the control participants. Future work to determine meaningful 

differences in the bacterial and phage compositions of the participants will need to 

include determine abundances of the different taxa.  
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In addition to taxonomic differences, we explored the potential functional differences of 

the bacterial taxa and found the Semi-phosphorylative Entner-Doudoroff pathway, which 

takes gluconate and transforms it to glycerate-3-phosphate, was less likely to be 

present in in the genomes of participants with MS on disease modifying therapy than 

those who are not on disease modifying therapy. There is little in the literature about the 

role of the bacterial Entner-Doudoroff pathway in multiple sclerosis and future work 

could explore which bacterial taxa have the pathway whether the pathway could have a 

role in worsening RRMS symptoms or outcomes. 

 

We also found that tryptophan biosynthesis, chorismate à tryptophan, was more likely 

to be present in bacterial genomes of individuals with RRMS not on disease modifying 

therapy compared to controls. From previous work on gut microbiome metabolites in 

patients with MS, we know that bacteria that produce short chain fatty acids (SCFA) 

have a lower abundance in MS and levels of certain SCFAs such as butyrate are lower 

in the stool of patients with MS 233–236. Bile acids have also found to be lower in patients 

with MS 237. Tryptophan can be produced both by human cells and by bacteria. 

Previous work has shown that blood levels of tryptophan metabolism products by 

human metabolism are reduced in patients with MS 238–240. Studies have shown mixed 

results about the impact of microbial tryptophan metabolism on MS with some studies 

showing a protective effect and others showing microbial tryptophan metabolism 

enhances MS severity 203,241,242. Given these contradictory results from previous 

studies, it is clear that more work is needed to understand the role of bacterial 

tryptophan metabolism in MS and future work with our data could include incorporating 
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metabolomics of the stool samples with our genomic data to measure tryptophan and 

tryptophan derivative levels to compare across participant types.  

 

Limitations of this study include only having one timepoint from each participant and 

having limited clinical data including not knowing if participants with RRMS are currently 

having an exacerbation or were in remission at the time of stool collection. For 

metabolic reconstruction, we only know if genes and pathways are present from DNA 

sequencing and not activity levels. While the number of controls is fewer than the 

number of participant samples with RRMS, one strength of the study is the inclusion of 

control subjects. Other strengths include the inclusion of participants with RRMS both 

on disease modifying therapy and those not on disease modifying therapy, not only 

bacterial composition analysis, but also bacterial metabolic reconstruction.  

 

Future work could explore transcriptomics of stool samples from these participants to 

understand expression levels of the different bacterial pathways and their impacts on 

disease progression. Additional future work could incorporate clinical data to determine 

if there are differences in the microbial composition or functionality based on any clinical 

factors.  

 

Considering the known role of the immune system in MS, future work should 

incorporate immunological studies alongside microbiological evaluations of participants. 

Recent seminal work on MS has shown that not only do almost all patients with MS 

have an increased presence of antibodies to the double stranded DNA Epstein-Barr 
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Virus (EBV) in their serum, but studies of US military personnel found risk of MS 

increase 32 fold after individuals were infected with EBV 197,243. Subsequent work 

showed that due to molecular mimicry, EBV strongly binds a glial molecule found in the 

central nervous system and when the immune system attempts to clear the virus, it also 

inadvertently attacks the nervous system 244. Future work with the data from this study 

could identify EBV sequences from the metagenomes while also examining if any 

phages present in the gut microbiome exhibit molecular mimicry or if there are changes 

in the phage functional landscape between participants with RRMS and controls.  

 

In this study, we have begun to use extensive sequencing data of 75 participants with 

RRMS and 26 controls to understand the role bacteria and phages play in RRMS. The 

few differences we found in bacterial metabolic capabilities provide promising future 

directions while the phage composition and functional potential remains largely 

unexamined. Pairing what we have currently discovered and future work with clinical 

data will provide insights into the role of the gut microbiome in RRMS.  
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Chapter 5: Conclusion 

In this thesis, I investigated the role of the human gut microbiome in three conditions: 

colorectal cancer (chapter 2), Group B Streptococcus colonization (chapter 3), and 

multiple sclerosis (chapter 4).  

 

In chapter 2, using ~17,000 bacterial genomes from publicly available stool 

metagenomes, we studied the diversity of sulfur metabolic genes in an international 

cohort of 667 participants across different health statuses: healthy, adenoma, and 

carcinoma. We sought to develop a better understanding of the sulfidogenic capacity of 

the human gut microbiome. We found that genes for microbial sulfur metabolism are 

more diverse than previously known and are widely distributed across our participant 

cohort. Bacterial sulfur genes are significantly associated with CRC and our work 

indicates that genes for organic sulfur metabolism may be the most important 

contributor of H2S in the human gut. This work provides a foundation for future work 

more closely characterizing bacterial sulfidogenic enzymes that may be active in the gut 

and how the expression of these genes changes with health status of CRC and human 

disease.   

 

In chapter 3, we used a biobank of 754 stool samples and associated data collected 

from adults in Wisconsin to better understand the host and microbiome-based factors 

that influence gastrointestinal Group B Streptococcus (GBS) carriage. We found the 

prevalence of GBS in the human gut (18%) of adults in Wisconsin is similar to the rates 

found by rectovaginal swabs in pregnant individuals. We found the abundance of GBS 
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in the gut varied widely.  We found that an increased GBS abundance was associated 

with an increased time since last dental checkup and cleaning as well as an increased 

frequency of exogenous iron consumption. This work provides a starting point to begin 

to understand risk factors for GBS carriage in the general population and in pregnant 

people since the risk factors are likely overlapping and by studying GBS in the general 

population, we can gain better insight into the physiology of GBS in the human body.  

 

In chapter 4, we used metagenomic sequencing of 75 participants with relapsing 

remitting multiple sclerosis (RRMS) and 26 control participants from one community in 

Marshfield to examine the role of the gut microbiome, particularly bacteria and phages, 

in RRMS. We found the bacterial composition in participants with RRMS and controls 

were similar, containing common gut environment phyla: Bacteroidota and Firmicutes. 

The majority of the phages in all participants were also from the most abundant class of 

gut phages: Caudoviricetes.  The few differences we found in bacterial metabolic 

capabilities provide promising future directions while the phage composition and 

functional potential remains largely unexamined. Future work could include pairing more 

of the clinical data available on participants with the metagenomic data to understand if 

there are associations between gut microbiome composition or functionality and 

participant characteristics.   

 

A strength of all my projects is that we were able to leverage metadata on participants 

for all the projects. A limitation of my work, and many gut microbiome studies, is only 

having one time point per participant. While cross sectional work is important, having a 
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time series would be more powerful for all my projects. For the CRC work, we could 

have seen how the microbiome may have changed as participants with adenoma had 

polyps removed or how the microbiomes would respond when participants with CRC 

received treatment. For the GBS work, a longitudinal series would allow us to determine 

if GBS is a permanent member of the gut microbiome or just transient. Finally for the 

RRMS work, having a time series would allow us to understand how the gut microbiome 

changes during MS exacerbations versus recovery and if there are changes when 

participants change medications.  

 

The three projects that comprise my thesis embody the Wisconsin Idea. I took the skills 

that I learned from my work on CRC and applied them to people across the state of 

Wisconsin. This research reaches outside of the bounds of this campus and benefits the 

people within the state.  
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Appendix A – Characterization of bacterial composition of surgical site infections 
after gynecological surgery 
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Objective: Surgical site infections (SSIs) occur within 30 days of an operation, 

superficially at the incision site, deeply at the incision site, or in organ and deep spaces 

accessed during the operation1. SSIs are the most common complication of gynecological 

surgeries and can result in significant morbidity2,3. Specifically, hysterectomies have an 

SSI complication rate of 1-2%4, with most pathogens arising from the endogenous 
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microbes of the skin, vagina, and gastrointestinal tract. Here, we characterize the 

bacterial composition of gynecological SSIs to help inform prophylactic antibiotic choices. 

 

Study Design We retrospectively reviewed all microbiological cultures from patients with 

SSIs, as part of a quality improvement departmental initiative using an institutional 

infection control database that includes all gynecological surgeries for benign and 

malignant indications at an academic tertiary care center during 2010-2020.  

 

Results: Among 10,495 gynecologic surgeries performed during the ten-year span, 192 

(1.8%) SSIs were diagnosed. 142/192 (74%) occurred in cases that involved 

hysterectomies, (8 vaginal, 134 abdominal) and 157/192 (82%) of SSIs occurred among 

patients with suspected preoperative gynecologic malignancies. Of all the gynecological 

surgeries, 4,818 (46%) involved hysterectomies with 141 (2.9%) complicated by SSIs. 

For all gynecological cases, the median surgery duration was 2.15 hours [IQR: 2.43 

hours], while for cases involving hysterectomies it was 3.15 hours [IQR: 1.7 hours]. For 

cases with SSIs, the median surgery duration was 4.1 hours [IQR: 2.27] with a median 

time to infection of 13 days [IQR: 8 days].  

 

Pre-operative antibiotics were administered to 186 (97%) patients who developed SSIs, 

including cefoxitin (44%), cefazolin (19%), cefazolin and metronidazole (10%), and non-

beta-lactam regimens (22%).  Pre-operative antibiotics were administered to 78% of 

patients who did not developed SSIs, including cefoxitin (48%), cefazolin (23%), 

cefazolin and metronidazole (12%), and non-beta-lactam regimens (14%).  All patients 
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who developed an SSI received preoperative surgical site skin preparation with either 

chlorohexidine (76%) or iodine-based preparations (24%) in the operating room.  

 

Table 1 shows the classification of microbiological results by SSI location type. Strict 

anaerobic species were isolated from a total of 52 SSIs (27.0%), primarily from 

organ/space SSIs (67%). These included Anaerococcus, Arcanobacterium pyogenes, 

Bacteroides fragilis and other Bacteroides sp., Clostridium sp., Eggerthella lenta, 

Fusobacterium sp., Peptostreptococcus sp., Peptoniphilus sp., Prevotella sp., 

Porphyromonas sp., Propionebacterium avidum, Ruminococcus gnavus, and Veillonella 

sp.   

 

Table 1. SSI characteristics by type of infection and type of bacteria.  
 Organ/space 

(intra-abdominal) 
SSI 
N = 84  
n (%) 

Deep incisional 
SSI 
N = 18  
n (%) 

Superficial SSI 
N = 90 
n (%) 

Skin bacteriaa  5 (6.0) 4 (22.2) 26 (28.9) 
Skin and intestinal 
or vaginal bacteria 

13 (15.4) 3 (16.7) 12 (13.3) 

Intestinal or vaginal 
bacteriab  
 

51 (60.7) 10 (55.5) 28 (31.1) 

Other* and 
intestinal or vaginal 
bacteriab 

4 (4.8) 0 (0) 1 (1.1) 

Other* 2 (2.4) 0 (0) 3 (3.3) 
Not cultured 9 (10.7) 1 (5.6) 20 (22.3) 

aSkin bacteria: Corynebacterium sp., Propionibacterium sp., Staphylococcus aureus, 
Staphylococcus coagulase negative sp., gram-positive rods 
bIntestinal or vaginal bacteria: Actinomyces, Anaerococcus sp., Atopobium vaginae, 
Bacteroides fragilis, other Bacteroides sp., Candida albicans, Candida dubiliniensis, 
Citrobacter sp, Clostridium sp., Eggerthella lenta, Enterobacter sp., Enterococcus 
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faecalis, Enterococcus faecium, Escherichia coli, Fusobacterium sp., Gardnerella 
vaginalis, Gemella morbillorum, Klebsiella sp., Lactobacillus, Morganella morganii, 
Peptostreptococcus sp., Peptoniphilus sp.,  Pseudomonas aeruginosa, Prevotella sp., 
Porphyromonas sp., Ruminococcus gnavus, Salmonella sp., Streptococcus agalactiae, 
Streptococcus anginosus, Streptococcus viridans group, Veilllonella sp., anaerobic 
gram-positive cocci, anaerobic gram-positive rods  
*Other: Acinetobacter sp., Arcanobacterium pyogenes, Methicillin-Resistant 
Staphylococcus aureus, Pasteurella multocida. 
 

Conclusions: Superficial and deep incisional SSIs are predominantly associated with 

bacteria typically found in the intestine and vagina, although skin bacteria are also 

commonly present. Organ/space SSIs are predominantly associated with intestinal 

bacteria, with anaerobes being recovered in more than three-quarters of these infections. 

Previous work has shown that cefazolin and metronidazole are superior at preventing 

SSIs in patients undergoing hysterectomies, particularly anaerobic SSIs, than with only a 

cephalosporin5. Given the prevalence of anaerobic organisms that we found in all types 

of SSIs, further research should compare the effectiveness of preoperative antimicrobial 

prophylactic agents in preventing anaerobic related SSIs after gynecological surgery. 
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Abstract 

Introduction 

Uterine clostridial myonecrosis is a rare infection associated with a high mortality 

rate. This report presents two cases of maternal mortality resulting from peripartum 

clostridial myonecrosis of the uterus.   

Case Presentation 

Case one is a 30-year-old nullipara who presented in labor at term with an intra-

amniotic infection and fetal demise. She rapidly developed septic shock and cesarean 

hysterectomy was performed for a suspected necrotizing uterine infection later identified 

to be Clostridium septicum. Case two is an adolescent who presented in septic shock 

following first trimester medication abortion and died during emergent exploratory 

laparotomy; cultures grew Clostridium sordellii. Both patients expired within 18 hours of 

hospital admission. 

Discussion 

Given the rapidly progressive course of clostridial infections, maintaining a high 

index of suspicion is imperative for ensuring timely diagnosis and effective treatment. 

Prompt recognition of clinical features associated with clostridial myonecrosis– 

abdominal pain, tachycardia, leukocytosis and hyponatremia– is essential in preventing 

mortality. The utilization of point-of-care ultrasound may expedite the diagnosis of 

uterine myonecrosis. When uterine myonecrosis is suspected, immediate initiation of 

penicillin-based antibiotics, alongside clindamycin, and aggressive surgical intervention 



 

136 

including hysterectomy, are essential for ensuring survival. Although the decision to 

perform a hysterectomy can be challenging, especially in cases involving child-bearing 

aged patients, it is a vital step to avert a fatal outcome.  

 

Conclusion 

By presenting these cases, we aim to raise awareness of this uncommon, but highly 

lethal infection to expedite diagnosis and treatment to improve patient outcomes. 

 

Introduction 

Severe sepsis from intra-amniotic infection (IAI) is a rare but devastating 

complication of both childbirth and abortion.1–4 Intra-amniotic infection is typically 

polymicrobial and isolation of a single causative bacterial species is uncommon.5  The 

exception is IAI due to toxin-producing bacteria like Clostridium and Group A 

Streptococcus (GAS) which, even in isolation, can cause lethal necrotizing infections. 

Nearly all maternal infectious deaths today in developed countries are caused by these 

organisms.6–8 Though uncommon, clostridial myonecrosis (gas gangrene) of the uterus 

can result from prolonged rupture of membranes, retained products of conception, and 

post-abortive sequelae.9–11 We describe two cases of maternal death due to peripartum 

clostridial myonecrosis of the uterus.  

 

Cases 

Case 1-Clostridium septicum 
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A 30-year-old G2P0010 without any prenatal care at approximately 42-weeks 

gestation presented with ruptured membranes and an intrauterine fetal demise in 

breech presentation. Vital signs were remarkable for fever of 38.2 C, pulse of 127 beats 

per minute (bpm) and hypertension with a blood pressure of 167/81. Laboratory 

evaluation including a complete blood count (CBC), comprehensive metabolic panel 

(CMP), and urine protein to creatinine ratio (P:C) showed leukocytosis of 19.6 103/ µL 

and hyponatremia of 126 mmol/L and urine P:C was 0.57 while creatinine, AST, ALT, 

lactate and platelet counts were normal. She had no known history of hypertension and 

was treated for pre-eclampsia with severe features with a 4-gram bolus and then 2-

gram per hour infusion of magnesium sulfate and one dose of 20 mg of intravenous 

Labetalol. Her blood pressures responded initially to 134/77 and she never required 

another dose of Labetalol. She received an epidural for pain control but initially declined 

labor augmentation, antibiotic treatment for presumed IAI or imaging. Two hours after 

admission she accepted and received ampicillin and gentamicin; her fever defervesced, 

and her tachycardia resolved. Vitals signs were recorded every 15 minutes and she 

remained normotensive with adequate urine output of 80 mL/hour over the next four 

hours. Labor progressed without augmentation and contractions were detected every 

three minutes on tocometry. Seven hours after admission, she reported increasing 

abdominal pain despite the epidural. Her condition acutely deteriorated, with vital signs 

15 minutes before decompensation showing a blood pressure of 101/65, pulse of 88 

bpm, oxygen saturation 96%.  Then, 15 minutes later, her blood pressure and oxygen 

saturation dropped to 68/37 and 91% while her pulse remained 85 bpm.  On physical 

examination, she was found to be newly lethargic and her fundal height, measured at 37 
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cm on admission, was palpated at the level of her diaphragm. Due to abdominal pain 

and the rapid increase in her fundal height, a bedside transabdominal ultrasound was 

attempted to assess the uterus and abdomen for signs of abruption and blood 

accumulation, but the presence of diffuse high-amplitude echoes and myometrial 

shadowing made visualization challenging. Chest X-ray and bedside echocardiogram 

were without acute findings.  Laboratory evaluation was now significant for a white 

blood cell (WBC) count of 24.6 103/ µL, hemoglobin 11.9 g/dL, creatinine of 1.34 mg/dL, 

sodium 128 mmol/L and magnesium of 7.4 mg/dL. Her antibiotics were broadened to 

piperacillin/tazobactam and vancomycin and she initially responded to IV blood 

pressure support. She was now completely dilated and plus two station, and began 

pushing for an attempted breech vaginal delivery. Her condition worsened during 15 

minutes of pushing with minimal descent of the fetal breech, so a vertical midline 

cesarean delivery under general anesthesia was performed. Upon entry into the 

abdomen, the uterus was markedly enlarged and edematous with diffuse mottling. A 

classical hysterotomy, that notably did not bleed, caused the eruption of large volume 

foul smelling gas. A demised fetus, which weighed 6800 grams due to remarkable 

edema and gaseous distension, was delivered. Hysterectomy was completed to obtain 

source control of the infection. Disseminated intravascular coagulation was diagnosed 

intraoperatively with an INR of 4.0 and an undetectable fibrinogen level. She was 

transferred to the intensive care unit postoperatively and two hours later experienced a 

cardiac arrest, was unable to be resuscitated and was pronounced dead. Uterine and 

placental cultures grew Escherichia coli and Clostridium septicum, two sets of 

peripheral blood cultures collected on admission had no growth. Pathology exam of the 
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uterus demonstrated extensive decidual and myometrial necrosis (Figure 1). Placental 

pathology revealed acute necrotizing chorioamnionitis with Gram variable rods in the 

intermembranous space (Figure 2). Her family declined autopsy of the patient and 

fetus.  

Case 2-Clostridium sordellii 

 The second case is an adolescent primigravida who presented to the emergency 

department with worsening lower abdominal pain eight days after initiating medication 

abortion with mifepristone and misoprostol at 8-weeks of gestation. She had normal vital 

signs and laboratory evaluation, except a WBC count of 23.9 103/uL. Ultrasound 

showed vascular, echogenic material in the endometrial cavity presumed to be retained 

products of conception, so she underwent an uncomplicated manual vacuum aspiration 

in the emergency department and was discharged home.  

 She returned to the emergency department the next day with worsening 

abdominal pain and altered mental status. She was hypotensive (blood pressure of 

30/15 mmHg) and tachycardic (heart rate 110 bpm) but afebrile and oxygenating 

normally. Her abdominal exam was notable for distention, guarding and rebound 

tenderness to palpation. A bedside ultrasound demonstrated large volume abdominal 

free fluid. The patient was taken to the operating room for exploratory laparotomy due to 

concern for intra-abdominal hemorrhage.  

 Exploration of the abdominal cavity revealed large volume ascites, edematous 

bowel and normal appearing appendix and adnexa. The uterus was small, firm and 

normal in appearance. Her laboratory analysis resulted intraoperatively and were 

notable for hemoglobin of 19.8 g/dL, WBC of 135.1 103/µL, sodium of 129 mmol/L, 
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creatinine of 2.25 mg/dL and a lactate of 8.5 mmol/L. Blood cultures and an endometrial 

biopsy for culture were sent when the elevated WBC count resulted and vancomycin, 

piperacillin-tazobactam and clindamycin were started. The patient’s clinical status 

deteriorated further and a hysterectomy was performed for source control. During the 

hysterectomy, the patient experienced cardiac arrest that did not respond to 

resuscitation, and she expired on the operating table. The blood cultures never grew an 

organism but the endometrial culture revealed Clostridium sordellii and final uterine 

pathology demonstrated extensive necrosis of the endometrial lining extending to 

myometrium with acute inflammation and hemorrhagic necrosis of the bilateral adnexa.  

Autopsy findings were consistent with death due to toxic shock.   

 

Discussion 

Clostridia are anaerobic, spore-forming, gram-positive rods that are a commensal 

in the vaginal secretions of 5-20% of asymptomatic people and are a rare cause of 

obstetric and gynecologic infections.2,9–16 In this report, we present two cases of uterine 

clostridial myonecrosis (gas gangrene), a rare and deadly manifestation of clostridial 

infection with mortality rates between 50-100% (9,10). In cases of clostridial 

myonecrosis, C. perfringens is most commonly isolated (found in 80% of cases), 

followed by C. novyi and C. septicum. Other rarer clostridial species causing 

myonecrosis include C. histolyticum, C. sordellii and C. fallax.13,15,17 Most fatal cases of 

postpartum infection have involved one of these Clostridial species or other toxin 

producing bacteria, such as Group A Strep.4 

Pathogenesis 
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Clostridial uterine myonecrosis occurs when clostridial organisms within the 

normal intestinal or vaginal flora spread into new spaces through a breach in anatomical 

defense barriers.10 Severity of infection results from bacterial production of toxins.13 

C. septicum 

The bacterium encountered in the first case is C. septicum, an organism 

commonly identified in gas gangrene, but a rare cause of obstetric and gynecologic 

infection. We identified seven other cases in the literature – three with gynecologic 

malignancy and four peripartum patients.12,18–23 C. septicum is an aerotolerant organism 

300 times more virulent than C. perfringens.15,21 The virulence of C. septicum stems 

from its four toxins, the most lethal of which is the alpha toxin, which produces 

lecithinase, a phospholipase that causes ischemic tissue necrosis and hemolysis.  The 

creation of devitalized tissue by toxin-generated ischemia produces an anaerobic 

environment that results in rapid disease spread. Antibiotics cannot penetrate this 

devitalized tissue, making rapid source control via surgical debridement imperative. 

C. sordellii 

C. sordellii is an uncommon and transient isolate of vaginal and rectal flora, 

found in 3.4% of asymptomatic reproductive-aged women in the United States.24 

Uterine myonecrosis from C. sordellii constitutes a rapidly progressing and nearly 

always fatal infection. Though rare, it is a known complication of medication abortion, 

and has also been seen in peripartum infections and after gynecologic surgery.25–29  

Similar to C. septicum, virulence results from the production of seven known toxins, of 

which the hemorrhagic and lethal toxins are considered primarily responsible for 

pathogenic infection.  
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Diagnosis 

While clinical manifestations of C. sordellii and C. septicum share some features, 

each presents differently (Table 1). Both infections are associated with tachycardia and 

pain out of proportion to examination findings. Patients with C. septicum typically have 

fever, sometimes hemorrhagic bullae or soft tissue crepitations and – once shock 

develops -- hypotension, multiple organ failure and disseminated intravascular 

coagulation.21  Patients with C. sordellii infection are typically afebrile, but have 

refractory hypotension, tachycardia and a profound capillary leak syndrome causing 

large volume ascites.25,27 

Laboratory findings are similar in both infections and early on are remarkable for 

hyponatremia and marked leukocytosis. Hyponatremia is caused by both sepsis 

physiology and the extensive third spacing of fluids seen in necrotizing soft tissue 

infections. Serum sodium levels less than 135 mEq/L and WBC count of greater 15.4 

103/ µL are useful thresholds to distinguish necrotizing soft tissue infections from non-

necrotizing infections.24,25,30 Leukocytosis, while present in both clostridial infections, is 

markedly elevated (50-200 103/µL) in cases of C. sordellii.25,27,31 Later laboratory 

findings for both infections include elevated lactate and creatine kinase levels as well as 

signs of multisystem organ failure such as elevated creatinine and liver function tests. 

C. septicum often causes coagulopathy–including thrombocytopenia, fibrinogenemia, 

anemia and elevated INR – where hemoconcentration is seen with C. sordellii. Blood 

and all tissue specimens suspected to be infected should be sent for Gram stain and 

culture. Gram stain will show gram-positive or gram-variable rods and often a paucity of 

neutrophils, thought due to toxin mediated destruction of these cells.15 Culture is less 
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useful in the initial diagnostic phase as clostridial species can take several days to 

speciate. 

Imaging, typically CT scan, may demonstrate myometrial gas, which can 

expedite confirmation of a diagnosis. In our first case, we saw diffuse echogenic foci 

with “dirty posterior shadowing” on bedside ultrasound of the uterus. In retrospect, this 

finding was likely due to the presence of extensive gas in the myometrium; similar 

ultrasonographic descriptions of intramuscular gas exist in the literature in cases of 

emphysematous cholecystitis.30 Our review of the literature revealed no other reports of 

utilizing point-of-care ultrasound to evaluate for the presence of myometrial gas. We 

propose this as another diagnostic tool to aid in more rapid diagnosis of uterine 

myonecrosis. 

Treatment 

The principles of treatment for clostridial myonecrosis are the same regardless of 

causative species: broad-spectrum antibiotics; early, aggressive surgical debridement of 

infected tissues; and expeditious cardiovascular and blood product support. Clostridial 

species are nearly universally susceptible to penicillin-based antibiotics. Clindamycin is 

recommended due to its inhibition of bacterial protein synthesis and mitigating effects of 

circulating clostridial toxins, however an improved clinical benefit has not been 

documented.32,33 While antibiotic therapy is necessary, the rapidly expanding volume of 

devitalized tissue in clostridial necrotizing infections means antibiotic penetrance is 

minimal. Early surgical exploration and aggressive resection of all necrotic tissue is 

required to gain source control and allow for increased antibiotic efficacy.  
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Conclusion 

Though rare, uterine clostridial myonecrosis can have tragic consequences, as 

demonstrated by these two cases. Early recognition of the clinical features associated 

with clostridium infections -- pain out of proportion to exam, tachycardia, leukocytosis, 

hyponatremia and myometrial gas on imaging – may allow for prompt diagnosis and life-

saving treatment. Most clostridium infections occur in patients of child-bearing age, 

rendering the decision to perform hysterectomy difficult. However, swift surgical action 

for effective infection source control is imperative for patient survival. Clinicians must 

utilize a high index of suspicion to promptly diagnose and treat these rare but 

devastating infections. 
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Figure 1. Gross uterine pathology. Gross uterine specimen for Case 1 demonstrating 
diffuse decidual and myometrial necrosis with complete cervical necrosis.  
 

 
Figure 2. Placental pathology. Chorioamnionitis associated with Case 1 with gram 
variable rods present within intermembranous space (black arrows). Polymorphonuclear 
granulocytes present diffusely within chorion (white arrows).  
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Table 1. Unique (white) and shared (gray) features of Clostridium septicum and 
Clostridium sordellii. This table highlights the key similarities and differences in the 
pathogenesis, clinical presentation and management for the two Clostridial species.  
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Abstract 

Background: We investigated patient experience with abortion for fetal anomaly, about 

which little is known. 

Methods: This qualitative, longitudinal pilot study surveyed seven patients after 

abortion for fetal anomaly at one Wisconsin hospital, from 2012-2014. 

Results:  Patients: 1) felt having a choice to have an abortion and choose the modality 

is imperative, and they remained certain in their decision-making over time; 2) described 

initially strong, then lacking, social support; 3) processed grief; and 4) identified 

resource constraints.   

Discussion: Patients emphasized the importance of having the choice to choose 

abortion and the abortion modality, remaining confident in their decision-making over 
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time. This qualitative pilot study provides areas for future intervention to improve care 

for people undergoing abortion for fetal anomaly. 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Nearly 1% of pregnant people have an abortion for fetal anomaly.1,2 Yet little literature 

examines patient experiences with abortion for fetal anomalies or how patients’ needs 

change over time.2–4 We studied experiences with second-trimester abortion for fetal 

anomalies in Wisconsin, where patients increasingly encounter barriers accessing 

abortion.5 In this qualitative pilot study, we examined patients’ longitudinal 1) decision-

making certainty, 2) emotional experiences, 3) perceived support, and 4) resource 

needs, after abortion for fetal anomaly.  

 

Materials and Methods 
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From July 2012 until February 2014, we recruited patients at Froedtert Hospital, an 

academic and community-partnered hospital in Milwaukee, Wisconsin. At the time, 

barriers to abortion access in Wisconsin included a mandated 24-hour waiting period 

and consent certificate. Froedtert Hospital only provided abortion services given 

maternal health risk or life-threatening fetal anomalies. Patients qualified for the study if 

they were over 18 years old, English-speaking, and 14-24 weeks gestation with a 

pregnancy complicated by a lethal fetal anomaly.  

 

We emailed consented participants two REDCap surveys, the first survey four to five 

days after their abortion and the second three months later (Appendices A and B). 

Surveys contained multiple-choice, short answer, and free text questions. We analyzed 

qualitative data using an inductive-deductive approach, establishing codes then 

themes.6  Four researchers synchronously coded data in NVivo12 (QSR International, 

Australia), reaching consensus on themes. 

 

Results 

Of 36 eligible patients, 12 (33%) underwent dilation and evacuation (D&E) and 24 (67%) 

labor-induction. Ten (28%) enrolled; three dropped out without completing either survey, 

and seven patients completed both surveys (paired survey response rate = 70%; follow-

up survey response rate = 100%). Four surveyed chose D&E and three labor-induction. 

 

We identified four themes in both immediate and follow-up surveys: patients 1) felt 

certain in their decision-making; 2) emphasized need for emotional support; 3) shared 
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processing of grief; and 4) noted resource constraints. Below, we discuss these themes 

using representative patient quotations. 

 

Certainty in Decision-making   

Certainty about having an abortion 

All patients considered the capacity to choose abortion in the setting of fetal anomaly 

essential, even patients who disapproved of abortion in other circumstances. Patients 

imagined feeling upset or helpless if they had needed to continue the pregnancy. One 

patient described, “I would have felt trapped in my own body [without the abortion]. It 

was hard enough for me to have to carry my baby as long as I did” (Table 1:1). One 

patient summarized how choice was essential: “No one should be able to tell you that 

you don’t have an option” (Table 1:2); another patient said it would be difficult to “carry 

my child full term knowing it would not survive” (Table 1:3). Most patients shared that, 

though difficult, they felt certain their decision to terminate the pregnancy was right for 

them and their families (Table 1:4).  On follow-up, participants continued to describe 

certainty in their decision to have an abortion (Table 2:1-3). One patient stated, “I would 

not have changed my decision. I feel like it was the best thing to do for our family”(Table 

2:4). 

 

Certainty about chosen abortion method 

Participants universally felt that having a choice between abortion modalities, D&E or 

labor-induction, was critical for them and their families (Table 2:5-8). One patient 

reported:  
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“[T]he entire event would have been much worse if D&E was not available. If I 

would have had to have gone through L&D, that would have been much, much 

worse. It would have taken me much longer to heal, both emotionally and 

physically.” (Table 2:9) 

Nearly all patients reported feeling that they had chosen the correct abortion method on 

three-month follow-up and wanted to reassure others faced with similar choices to trust 

they would choose correctly. 

“Keep you [sic] head up ... trust yourself that you are doing the right thing. 

Regardless of what anyone says, you made the right decision if you are putting 

the needs of your family and that little baby first.” (Table 2:10) 

Only one patient wished they had chosen a different method, labor-induction instead of 

D&E:  

“I think I wish I would have labored to have him so I could have held him. I really 

wish I could have cuddled him. At the time I made the decision because I didn't 

want to be with other women delivering healthy babies.” (Table 2:11) 

Emotional support 

Healthcare staff 

All patients reported strong support from non-physician healthcare staff, but varying 

experiences with physician provided support (Table 1:5-6). One patient described: 

“The staff was great. From the nurse who checked us in at the day surgery 

center to the anesthesia team. Everyone was very compassionate and made 

sure my husband and I both had everything we needed.” (Table 1:7) 
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However, one patient felt that while the diagnosis of fetal anomaly was given 

professionally, they wished for more emotional connection with their physician (Table 

1:8).  

 

Family and Friends  

Immediately after their abortion, patients expressed feeling well supported emotionally 

by family, friends, and colleagues (Table 1:9-11). Over time, some people felt that 

others wished they would move on faster than they were able and couldn’t fully 

understand their experience (Table 2:12). One patient explained: 

“I think just having people, especially our parents, understand that what we went 

through was hard and that we are not completely over it and when we are ready 

we will try again. It is not something to just jump back into....there are a lot of 

emotions still involved.” (Table 2:13) 

On follow-up, people reflected on the limits of support (Table 2:14). One patient 

explained: 

"I don’t think anyone can really understand what you are going through unless 

they went through the exact same thing.  There are days when my husband does 

not even totally understand and he will admit that. I think people try to understand 

and try to empathize, but they do not really understand.” (Table 2:15) 

 

Seeking shared experiences 
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Relatedly, patients reported seeking people with shared experiences, through structured 

programs or family connections. When people shared experiences, participants on 

follow-up reported feeling more supported (Table 2:16-17).  

 

Processing of grief 

Participants uniformly demonstrated attachment to their pregnancy both immediately 

and upon follow-up. Directly after the procedure, participants reported significant grief: “I 

was so sad. I hadn't realized how much wanted him until the diagnosis” (Table 1:12). All 

patients reported calling the “entity that was lost” by name or “baby.” Alongside 

sadness, sometimes participants expressed anger or numbness (Table 1:13-14).  

 

As time passed, people experienced grief differently than directly after their abortions 

(Table 2:18-20). “I still hurt and cry when I think about it, as my baby would be due to be 

born this month. I have good days but sometimes have days I cry through when I think 

of him” (Table 2:21).  Over time people felt increasingly “at peace” with their abortion 

decisions, process, and outcome (Table 2:22). One participant echoed many shared 

sentiments on follow-up: 

“It was hard at first when my pregnancy suddenly ended and there was no baby 

to show for it. However, everyone has been really supportive and I am very 

happy and at peace now with the whole situation.” (Table 2:23) 

 

Resource constraints 
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In our final theme, some respondents struggled with logistics surrounding their abortion.  

People were concerned about finances, including procedure expenses, potential lack of 

insurance coverage, time off work for recovery, and burial expenses (Table 1:15-16). 

People also mentioned travel distance for desired modality or accessing support 

services as obstacles (Table 1:17). One patient explained: “I'd like to attend a support 

group at Froedtert, but it's about 45 min. away. Wish it was closer,” (Table 2:24). 

  

Table 1. Themes regarding experiences with a pregnancy complicated by fetal anomaly 
and representative quotations from initial surveys related to themes and sub-themes. 
 
 
Sub-theme 

 
 
 

Quote 
# 
 

Themes  
Representative quotations Patient, 

Modality, 
Immediate or 

Follow-up 
survey 

 Certainty in Decision-Making 
Importance of the 
ability to choose 
abortion and 
certainty around 
this choice   

1 I would have felt trapped in my own 
body [without the abortion]. It was 
hard enough for me to have to carry 
my baby as long as I did after finding 
out. I think that emotionally I would 
have been a basket case. I don't quite 
know how I would have been able to 
handle it. My husband would have 
been the same. I don't think that he 
would have been able to look at me. I 
had a hard time looking at myself. 

1236, D&E, I 

2 I would be upset [if I had not had the 
option to have an abortion].  It is an 
option for people to make when 
getting the upsetting news that your 
child will not survive.  No one should 
be able to tell you that you don’t have 
an option. 

1231, D&E, I 

3 It would have been even harder to 
have to carry my child full term 
knowing it would not survive. Not 

1233, IOL, I 
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having the option for labor induction 
would have been very upsetting. 

4 It is a decision we made together and 
the best decision for us as a couple.  

1237, D&E, I 

 Emotional Support 
Physician and 
healthcare staff 
support  

5 [Doctors] gave us the space that we 
needed, but were still available for 
questions. They did not rush us to any 
decisions. 

1237, D&E, I 

6 The doctors presented the information 
very well and were all very 
empathetic. We could not have asked 
for better people to give us the news. 

1231, D&E, I 

7 The staff was great. From the nurse 
who checked us in at the day surgery 
center to the anesthesia team. 
Everyone was very compassionate 
and made sure my husband and I both 
had everything we needed. 

1237, D&E, I 

8 The diagnosis was presented in a 
medical and somewhat 'sterile' way, 
not very emotional. 

1234, IOL, I 

Family and friend 
support 

9 It was a very difficult decision but my 
family as well as the staff we 
interacted with made the situation go 
smoothly. Everyone really helped my 
husband and I to let our feelings be 
hear [sic] and really honor the memory 
of our daughter. 

1233,  IOL, I 

10 With the support of my husband as 
well as our families and friends it was 
as easy as it could be. They were 
there to bring food and do things 
around the house. Getting back to 
work was just exhausting, but my staff 
helped a great deal with easing me 
back in. 

1231, D&E, I 

11 We received great support from family 
and friends. They provided their own 
experiences as well as people to talk 
to when we needed to vent or cry. 

1233, IOL, I 

 Processing of Grief 
 12 I was so sad. I hadn't realized how 

much wanted him until the diagnosis. 
1238, D&E, I 

13 [I felt n]umbness at times.  Anger and 
disgust at the baby. 

1234, IOL, I 
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14 Of course I felt sadness, but I was 
surprised at how angry I was. Why 
was this happening to us? 

1231, D&E, I 

 Resource Constraints 
 15 All I could think about was the time to 

recover and the expense with labor. 
My insurance covered almost all of the 
surgery. 

1237, D&E, I 

16 If finance was not an issue, I would 
have given my precious a service and 
burial. 

1239, IOL, I 

17 We chose labor induction. It seemed 
to be the safer option at that point in 
the pregnancy. I was also told there 
might not be a place closer than 
Chicago that offers D&E at the stage 
of my pregnancy, and I liked the idea 
of being 
closer to my home. 

1234, IOL, I 

*(D&E) indicates a quote from a patient who terminated their pregnancy by dilation and 
evacuation  
*(IOL) indicates a quote from a patient who terminated their pregnancy via induction of 
labor. 
*(I) Immediate follow-up survey response  
*(F) Follow-up survey response  
 

 

 

Table 2. Themes regarding experiences with a pregnancy complicated by fetal anomaly 
and representative quotations from follow up surveys related to themes and sub-
themes. 
 
Sub-theme 

 
 
 

Quote 
# 
 

Themes  
Representative quotations Patient, 

Modality, 
Immediate or 

Follow-up 
survey 

 Certainty in Decision-Making 
Importance of the 
ability to choose 
abortion and 

1 It was hard at first when my pregnancy 
suddenly ended and there was no baby 
to show for it. However, everyone has 
been really supportive and I am very 

1233, IOL, F 
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certainty around 
this choice   

happy and at peace now with the whole 
situation. 

2 I still feel that I made the correct decision 
[to have an abortion]. 

1239, IOL, F 

3 I would still be pregnant if he had not 
been born on his own.  I do enjoy being 
pregnant but it would be so difficult being 
pregnant knowing the baby would die 
when he was born.  I felt I needed to end 
the pregnancy to start my grieving 
process sooner and not prolong 

1238, D&E, F 

4 I would not have changed my decision. I 
feel like it was the best thing to do for our 
family. 

1231, D&E, F 
 

Importance of 
choice in abortion 
modality and 
certainty about 
chosen abortion 
method, D&E or 
IOL 
 

5 A surgical procedure I think would have 
been a little more stressful. 

IOL, 1233, F 
 

6 I would not like it [D&E] because I want to 
see my baby regardless of the deformity. 
 

1239, IOL, F 

7 Labor induction was the right decision for 
us. D&E makes me uncomfortable. 
 

1234, IOL, F 

8 I feel good about my decision to have a 
D&E. It was the best decision for me and 
my husband. 

1236, D&E, F 
 

9 I think the entire event would have been 
much worse if D&E was not available. If I 
would have had to have gone through 
L&D, that would have been much, much 
worse. It would have taken me much 
longer to heal, both emotionally and 
physically. 

1237, D&E, F 

10 Keep you [sic] head up and trust yourself. 
If your choices are the best for that little 
baby, then trust yourself that you are 
doing the right thing. Regardless of what 
anyone says, you made the right decision 
if you are putting the needs of your family 
and that little baby first. 

1237, D&E, F 

11 I think I wish I would have labored to 
have him so I could have held him. I 
really wish I could have cuddled him.  At 
the time I made the decision because I 
didn't want to be with other women 
delivering healthy babies. 

1237, D&E, F 

 Emotional Support 
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Family and friend 
support 

12 The number of people that ignore or 
forget what you've gone thru.  I think it's 
easier for them to not mention it, since 
they don't want to bring it up/make me 
feel sad, etc.  By them not saying 
anything, it makes me think they don't 
care. 

1234, IOL, F 

13 I think just having people, especially our 
parents, understand that what we went 
through was hard and that we are not 
completely over it and when we are ready 
we will try again.  It is not something to 
just jump back into....there are a lot of 
emotions still involved. 

1231, D&E, F 

14 I don’t think anyone can truly understand 
besides me. My husband and parents are 
dealing with the loss of their first 
grandchild, and my husband with his first 
child.  I was the one carrying her, and no 
one else can completely understand that. 
But, I also don’t expect them too [sic]. 

1237, D&E, F 

15 I don’t think anyone can really 
understand what you are going through 
unless they went through the exact same 
thing.  There are days when my husband 
does not even totally understand and he 
will admit that. I think people try to 
understand and try to empathize, but they 
do not really understand. 

1231, D&E, F 

Seeking shared 
experiences 

16 Everyone in the support group has gone 
through a similar experience so they 
understand. 

1238, D&E, F 

17 My mother lost a child during pregnancy 
so she was able to share her feelings 
about that with me. 

1233, IOL, F 

 Processing of Grief 
 18 I cried a lot at first and didn't have any 

interest in life.  As time has gone by I had 
to go back to work and take care of my 
children.  Life has gone on and I have 
good days and bad days. 

1238, D&E, F 

19 Mentally, at times I find myself thinking 
about the baby and the what ifs.  
Physically, I am back to my normal 
routines. 

1239, IOL, F 
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20 I have my good days and my bad days. I 
just take what I can handle and if I need 
to step away from an [sic] situation I do 
and come back when my emotions calm 
down. now I have some bad days and 
then [sic] come unexpectedly. I cry more 
that I’m not pregnant again then I do 
about what I had to go threw [sic].  

1234, IOL, F 

21 I still hurt and cry when I think about it, as 
my baby would be due to be born this 
month.  I have good days but sometimes 
have days I cry through when I think of 
him. 

1238, D&E, F 

22 I truly believe that I made the right 
decisions for my family and my little girl. I 
am at peace with my decisions. 

1237, D&E, F 

23 It was hard at first when my pregnancy 
suddenly ended and there was no baby 
to show for it. However, everyone has 
been really supportive and I am very 
happy and at peace now with the whole 
situation. 

1233, IOL, F 

 Resource Constraints 
 24 I'd like to attend a support group at 

Froedtert, but it's about 45 min. away. 
Wish it was closer. 

1234, IOL, F 

 
*(D&E) indicates a quote from a patient who terminated their pregnancy by dilation and 
evacuation  
*(IOL) indicates a quote from a patient who terminated their pregnancy via induction of 
labor. 
*(I) Immediate follow-up survey response *(F) Follow-up survey response  
*(F) Follow-up survey response  
 

Discussion 

Our longitudinal findings (Figure 1) reinforce previous work documenting how peoples’ 

needs evolve over time after abortion for fetal anomaly.2,7,8 Patients require immediate 

and ongoing emotional, logistical, and financial support.9,10 Our findings suggest 

patients could benefit from accessible support groups connecting individuals with 

shared experiences. In our study, few respondents reported regret and most remained 
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certain in their decision-making around whether and how to terminate their pregnancies, 

a novel finding. These findings could be shared with patients during pre-procedure 

counseling, advising they are likely to later feel they’ve decided correctly. 

 

Figure 1. Shifting perspectives of people immediately and longitudinally post-
abortion for second trimester for fetal anomaly. The majority of people reported 
feeling consistently certain in their decision to have an abortion and their choice of 
modality. Immediately after their abortion, patients reported feeling well supported, but 
later wanted more support. Immediately, people described significant grief. They 
reported continuing, but waning grief on follow-up.  Though the types of resources 
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people needed changed over time, patients consistently detailed how lack of resources 
limited their decision making.  
 

 

Since the Supreme Court decision in June 2022 overturned Roe vs Wade and federal 

protection for abortion, abortion in the case of fetal anomaly has been banned in 

Wisconsin. Patients in our study described the stress and harm they would have 

experienced without the choice to have an abortion or select the modality (D&E versus 

labor-induction). Findings from these few patients can be used to design further 

research on effects of Wisconsin’s abortion ban on patients diagnosed with fetal 

anomaly.  

 

Despite our small sample size, our response rate, thematic consistency, and response 

breadth strengthen analysis. Research involving stigmatized behavior and rare 

conditions draws meaningful conclusions from small samples. This study is unique, as 

abortion is increasingly inaccessible in post-Roe Wisconsin.5 This qualitative pilot study 

provides groundwork for future research with people who have second-trimester 

abortion for fetal anomaly. 
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Abstract 

Background 

In the United States, Obstetrics and Gynecology residency interviews are instrumental 

in assessing the compatibility between medical student applicants and residency 

programs during the match process. Applicant perceptions of Obstetrics and 

Gynecology residency culture are a key component in determining how they rank 

residency programs. In 2020, residency interviews transitioned to a virtual format, and 

little is known about how applicants evaluated program culture during this first round of 

universal virtual interviews.  

 

Medical students in the United States commonly use Reddit, a popular social media 

platform, to discuss residency programs and share interview experiences. We explored 

Obstetrics and Gynecology applicants’ considerations regarding residency program 

culture during the first universal virtual interview season in 2020-2021 by analyzing 

posts on a Google spreadsheet accessed through Reddit.  

Methods 

In 2022, we imported 731 posts from the “2020-21 OB GYN Residency Applicant 

Spreadsheet” Google spreadsheet posted to the 2020-2021 Residency Interview 

Spreadsheet megathread on the r/medicalschool subreddit to NVivo 12(QSR 

mailto:laura.jacques@wisc.edu
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International, Burlington, MA), a qualitative analysis software program. Three 

investigators used qualitative inductive techniques to code and identify themes. 

Results 

Applicants used visual, verbal and behavioral cues during virtual Obstetrics and 

Gynecology residency interviews to understand three components of the workplace 

culture: prioritization of diversity, equity and inclusion, social environment, and resident 

workload. 

Conclusions 

Obstetrics and Gynecology residency programs convey information about their culture 

during virtual interviews through the behavior, appearances and responses of residents 

and interviewers to applicant questions. To ensure they accurately represent their 

culture to applicants, programs should consider educating residents and faculty around 

the implications of interview-day conduct. 

Keywords: Residency Interviews, Obstetrics and Gynecology, Virtual Interviews, 

Program Culture, Applicant Perceptions, Residency Program Fit 

 

Introduction 

When medical students in the United States (US) apply for Obstetrics and 

Gynecology (ObGyn) residencies, they take into account various factors, including 

location and institutional reputation. However, consistently ranking as a top priority for 

both applicants and programs is the interview day experience and “goodness of fit”.1-5 

While there is no universally agreed-upon definition for “goodness of fit”, it is generally 

understood to refer to the alignment between a program’s culture and an applicant’s 
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priorities.6  To ensure clarity in our discussions, we will consistently use the term 'fit' to 

signify the alignment or compatibility between ObGyn residency programs and 

applicants throughout this manuscript.  

Residency interviews serve as a critical means to assess the fit between 

applicants and programs, influencing how students ultimately rank programs during the 

Match® process.2,3 The onset of the COVID-19 pandemic in the US forced the 2020-

2021 interview season to transition online to combat the spread of SARS-CoV2. 

Ultimately, even after the threat from COVID-19 diminished, the Association of 

American Medical Colleges (AAMC) and the National Resident Matching Program 

(NRMP) recommended the adoption of virtual interviewing for all residency programs to 

address socioeconomic disparities, reduce environmental impact, and enhance 

applicant satisfaction.7,8  Though virtual interviewing conveys many advantages, both 

applicants and program directors have found it difficult to assess “fit”, especially when 

compared to traditional in-person interviewing.1,5,9 

If programs want to accurately convey their culture to applicants, they must 

understand which aspects of culture applicants value and how they gather this 

information virtually. There is little data on how applicants evaluate program culture and 

fit during virtual interviews. To address this gap, we explored US ObGyn applicants’ 

considerations regarding residency program culture and applicant fit during virtual 

interviews by analyzing a Google spreadsheet posted to Reddit, a popular social media 

platform. 

Materials and Methods 

Data source 
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Reddit, a popular social media platform in the United States, counts nearly 40% 

of people 18-29 years of age as users, and functions as an interactive online bulletin 

board.10,11 Users post content and engage through narrative comments within topic-

specific communities called “subreddits” which contain discussion boards known as 

threads. Reddit is increasingly used as a qualitative data source due to its ability to 

capture real-time, often unfiltered impressions and discussions of events.12-17  

Every year the subreddit /r/medicalschool creates a publicly available 

“megathread”, a consolidated thread used for major events or popular topics within a 

subreddit, where medical students discuss residency programs. Specialty-specific 

spreadsheets are posted within the megathread. On May 27, 2022, we accessed the 

“2020-21 OB GYN Residency Applicant Spreadsheet” Google spreadsheet posted to 

the 2020-2021 “Residency Interview Spreadsheet” megathread on the r/medicalschool 

subreddit. We chose this time frame because it represented the first interview season 

where there was widespread use of virtual interviewing. We analyzed every comment 

from the three tabs most pertinent to our research question - “Name & Shame”, 

“Student Reviews,” and “PM_Pearls”. The 'Name and Shame' tab features student 

reviews detailing their interview experiences with specific residency programs. In this 

context, 'Name' refers to students disclosing the program they interviewed with, while 

'Shame' pertains to any issues, comments, or activities by the programs or their 

representatives that caused applicants distress or frustration. "Student reviews" is a tab 

where students evaluate their home institution and respond to questions about the 

experience at their program from other students. “PM_Pearls” is a section where 
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applicants and program managers can engage in discussions and address applicant 

questions and concerns.  

  A single researcher removed duplicate posts and identifying information like 

usernames and location. We imported 731 unique anonymous posts to NVivo 12(QSR 

International, Burlington, MA), a qualitative analysis software.  

Analysis 

We analyzed 731 poster comments using thematic qualitative analysis, as 

described by Kim and colleagues.18 Three investigators, C.H., E.S.C. and S.H., used an 

inductive approach to generate codes based on the data and create a codebook. The 

final codebook contained 11 codes and 38 subcodes. The first 25 posts were 

collectively coded by C.H., E.S.C., and S.H. to reach a consensus, after which the 

investigators individually coded all remaining posts. All five authors independently 

reviewed the coding reports, met together as a group to discuss and generate the final 

three themes presented below. This study is considered program evaluation and was 

exempted from review by the UW-Madison Institutional Review Board. 

Results 

We identified three themes that relate to what applicants value in a residency 

program's culture: 1. Prioritization of diversity, equity, and inclusion (DEI), 2. Social 

environment and resident (mis)treatment, and 3. Resident workload. Our analysis also 

revealed three coherent subthemes for each main theme regarding how applicants were 

trying to determine these three aspects of residency culture during virtual interviews; 

they used a. visual, b. verbal and c. behavioral clues to understand program culture 

(Fig. 1).  
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Figure 1. How Residency Applicants Determine Program Fit Obstetrics and 

Gynecology residency applicants use visual, verbal, and behavioral cues to determine 

residency program culture and their fit within that culture during virtual interviews.    

  
  
  
  
   

1. Prioritization of Diversity, Equity and Inclusion 

Applicants were keenly interested in how programs were addressing issues 

around diversity, equity and inclusion (DEI) during the 2020-2021 application cycle19,20. 

This time period in the US was marked by significant cultural events like the tragic death 

of George Floyd and COVID-19 driven health disparities that thrust matters of social 

justice and racial inequality into the spotlight.20,21 Posters commented on the varying 

sources, visual, verbal and behavioral, they used to try to determine how residency 

programs were handling issues of race, equity and inclusion. This theme was so 

prevalent in our data, that we dedicated a separate manuscript to exploring this theme 
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and the impact of DEI on the residency match process19. We also deemed it essential to 

include a more concise exploration of the DEI theme in this paper, as it emerged as a 

key factor in applicants' assessments of program culture and played a significant role in 

shaping their perspectives during the residency selection process.  

a. Visual cues: Applicants considered the visual diversity among interviewers, 

current residents 

and applicants as an indicator of inclusivity. For instance, one post mentioned, “Was 

disappointed by lack of diversity in applicant pool during my IV [interview] day”. Several 

other posters agreed with one replying, “yup especially given they have ZERO black 

residents right now”. One applicant expressed disappointment with the lack of perceived 

diversity at an event specifically designed for under-represented in medicine applicants, 

“Had us attend a 6-hour diversity 2nd look with ZERO black or Latinx (from appearances 

and names) applicants present. Idk [I don’t know] what they're doing but that was my 

sign.”  

a. Verbal cues: Verbal cues about the inclusivity of program culture included how 

interviewers 

asked and responded to diversity, equity and inclusion (DEI) focused questions, 

microaggressions, and culturally insensitive or racist comments made by members of 

the department. One student of color described being asked an inappropriate question 

by an associate program director, “I was asked what I do to be anti-racist by the APD 

[Associate Program Director]. I'm Black so that was super off putting and it was a very 

poor question to ask a Black woman.” Others empathized with that student’s experience 

and reaffirmed their assertion that it was a racially motivated question, “YIKES. I was 
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also not asked this (and I'm white!)”. Applicants also posted about experiencing 

microaggressions during interviews such as “Question on diversity efforts was met with 

how they look for “competent” applicants, WTF” and “Of course got the “Your English 

(sic) so good” thrown in by half my interviewers. Just a ton of microaggressions I have 

neither the energy or interest in repeating”.  Several posters described racist comments 

made by interviewers such as a program chair who referred to undocumented people as 

“illegal immigrants” or residents characterizing the community where they live as “the 

hood”, which they found “absolutely appalling” and “blatantly racist.” 

b. Behavioral cues: Applicants also evaluated program culture based on the 

behavior of programs 

around DEI-related issues, such as what faculty posted on their private social media 

accounts and whether institutions have faced discrimination-related litigation. Posts 

range from critical, “Associate Dean of GME ([Institution name]) has been sued THREE 

TIMES for discrimination, yet still retains his position… definitely sensing a systemic 

problem here.” to noting positive actions like hiring more female faculty and increasingly 

diversifying their resident classes.  

2. Social Environment and Resident (Mis)treatment 

Applicants actively discussed their perceptions of the social dynamics within 

residency programs, emphasizing their interest in residents' interactions and how they 

were treated by faculty and the institution. Visual, verbal and behavioral cues played a 

crucial role in applicants’ assessments of the social environment within the residency 

community and between faculty and residents.  
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a. Visual cues: Applicants noted that the presence or absence of residents from 

interview days 

visually signaled to them whether the program valued its residents. One poster 

registered “No residents present during IV [interview] day” as a “Shame” and another 

poster agreed replying, “I think it is a huge red flag to not have residents present at an 

interview day and understand why op [original post] would state this.”  

b. Verbal cues: Verbal cues included the interviewing style, degree of interviewer 

interest in 

applicants and types of questions asked by interviewers to determine the social 

environment. Interrogative or behavioral interviewing were viewed the most negatively 

as they seemed too intense or didn’t facilitate programs and applicants to get to know 

each other. An exemplar post regarding an applicant’s perspective on a more 

interrogatory interview: The interviews were like oral exams where we were asked 

obgyn questions- if you have a 15 min interview you should use that time to get to know 

us personally, not test us on info that we clearly were tested on in the usmle exams.” 

Behavioral interviewing was also widely seen as a negative experience as exemplified 

by the following highly-engaged post (+4 – indicating four additional posters agreed with 

the preceding comment) and additional comments (<) expressed agreement: 

“Wanted to love this program. Seems like a great place and the residents were 

really nice, but my interview consisted of purely behavioral questions asking me 

to describe times where I messed up. Spent the whole day talking about every 

bad experience I've ever had and at the end of the day I just felt like shit. Can’t 

rank them high cuz (sic) I just had such a terrible interview experience +4 < 
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Agree, I felt like they did not get to know me at all. They also didn’t respond after 

I did, so I told them a horror story and then they just stared at me and asked the 

next question... over and over.”  

The types of questions interviewers asked applicants also influenced their perception of 

program culture with many posters “shaming” programs for asking “illegal questions” 

about marital status, relationships and what other programs applicants were applying to. 

As one poster states, “Illegal questions all over. PD asked me "so now that we are 

talking, tell me the real reason why you applied to this program" weird way to ask that 

question.” 

c. Behavioral cues: Applicants gauged a program’s attitude toward its residents and 

what the social 

environment was like by observing behavioral cues, including how residents were 

prioritized for COVID-19 vaccines, interviewer conduct and the behavior of residents 

during pre-interview social events. The interview cycle included in our analysis was the 

first during the COVID-19 pandemic, and prioritization (or lack thereof) of residents for 

the initial COVID-19 vaccinations was seen as an indicator of how the program valued 

residents. A representative post states, “Sacrificing their residents to COVID by not 

prioritizing them for vaccination. Institutions treats their residents poorly, clearly. Top 

program so clearly think they can get away with this crap. Don’t rank friends.”  A popular 

post with applicants discussed the positive and negative ways residency programs were 

handling COVID-19 vaccine distribution in the early stages of the pandemic and what 

this meant about the way the program and the hospital system valued residents:  
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“Saw on Twitter that the PD supported all the obgyn residents protesting... they 

arranged for L&D coverage from attendings/APPs so that residents could protest 

and it wouldn't affect patient care >> yeah, but where were the admin in 

advocating for the residents prior to that? why were they not in the relevant 

rooms, or if they were, why were their voices not prioritized? >> yep exactly, love 

that the program leadership is supportive but it’s going to be a long 4 years if 

your INSTITUTION leadership treats residents like cattle. << Agreed. I know 

people want to simp 1 because it's[Institution name] but this is a huge red flag as 

to the way institutions treat residents and I'm glad that at least covid is 

highlighting this at multiple places.” 

Disrespectful interviewer conduct was also commonly discussed by applicants. 

Students found interviewers arriving late or leaving early, not reading application 

materials, having webcams turned off or multi-tasking during the interview with the 

sense that faculty do not value trainees.  A representative post reads:  

“The residents were really kind and I enjoyed my interview experience other than 

that but the faculty seemed SO uninterested in interviewing me. I interviewed 

with the interim PD, APD and 2 other faculty members. Some of the faculty had 

their cameras turned off and the APD answered a phone call when I was mid-

sentence and left and never came back.” 

Another poster describes a negative interaction with a program director,  

 
 
 
1	“Simp”	is	a	derogatory	slang	term	to	describe	someone	was	overly	self-sacrificing.	
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“PD was chomping away on baby carrots during my interview, unmuted. And she 

decided to try to fix her internet connection issues during my interview (about 

halfway through the day) instead of during the break time. Overall got the sense 

she was uninterested.” 

One post more explicitly states how the interviewer’s behavior was viewed as a 

surrogate for what  it would be like to work with them, “One of my interviewers clearly 

didn't read my application. I would not want to work with that faculty member.”  

Applicants commonly used pre-interview social events to observe the social 

culture of a program focusing on residents’ enthusiasm and friendliness. Notably, 

impressions of socials were often mixed, even from applicants who attended the same 

events. A representative post states, “The residents seemed really hostile towards each 

other, especially the upper years. Did anyone else experience this?” and another 

replied, “not at all! I had the opposite impression. I loved the interactions between the 

residents, thought they got along incredibly well. It's one of the biggest things that stood 

out to me about the program”.   

3.  Resident Workload 

Applicants wanted to find programs that offered high-quality training while also providing 

sufficient support for maintaining a work-life balance. They assessed the workload of 

residents at each program, seeking to strike a balance between rigorous training and 

personal well-being. Visual, verbal, and behavioral cues observed during virtual 

interviews and related social events were leveraged by applicants to gauge these 

aspects of residency program culture. 



 

182 

a. Visual cues: Applicants assumed residents were overworked if they appeared 

tired or continually 

mentioned how hard they worked, as seen in this post, “Kept repeating how busy of a 

program they are. Residents seemed tired at meet and greet. Overall sense that they 

are overworked here.”  Another post describes the appearance of the interns at a pre-

interview social event and then a medical student from that institution confirms the 

impression the residents are overworked “Interns looked a little rough at the meet and 

greet lol, they all seemed so exhausted :/ << As somebody that goes to [Med School 

Name], they definitely work a lot. Its 12+ hours in all services except outpatient.” 

b. Verbal cues: Verbal cues included questions from interviewers about how 

applicants intended to 

balance the responsibilities of family and pet-ownership while being a resident, implying 

a lack of program support for residents’ personal lives. A representative post states, “I 

also had some very uncomfortable questions like "well what are you going to do with 

your dog all day while you're at work?" And "does your husband understand how much 

you're going to be working?" (in a condescending, unfriendly tone).” 

c. Behavioral cues: Criticism of interview interruptions by pets or children were seen 

as evidence 

that the program may not understand the needs of its members as described in this 

post, “During the social the residents multiple times made a very big deal about how 

unprofessional it was to have a dog or a partner around while you are interviewing. Like 

multiple times they were like "we take note if this happens and it looks bad." Like yall 
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chill it's a damn pandemic and some of us live in studio apartments and can’t pay for pet 

care etc. Just rude.” 

Discussion 

We found that in 2020-2021, US applicants to ObGyn residency programs 

prioritized diversity and a supportive social environment within a residency program and 

were wary of signs of resident mistreatment and burnout when considering program 

culture and their fit within that culture. Consistent with our findings, the 2022 NRMP 

applicant survey revealed that applicants rated "goodness of fit" and the "interview day 

experience" as top priorities when ranking programs. The survey also noted that the 

majority of applicants found that the virtual environment presented challenges to 

determining their “fit” within a program and to ascertaining programs’ commitment to 

DEI.  Applicants seemed to adapt to the virtual environment over time however and 

reported increased comfort assessing residency culture and fit in 2022 versus 2021.1 

Our data provides additional context to the NRMP data. The qualitative nature of our 

study allows for a more detailed description of the specific components of residency 

program culture that applicants value, as well as how applicants are adapting to the 

virtual environment and accessing this information online.  

Similar to applicants, the corresponding 2022 program director NRMP survey 

found that the majority of US program directors felt that the virtual platform 

disadvantaged them in showcasing their programs and finding aligned applicants.5 Our 

data challenges this assumption and suggests that programs are conveying their 

program culture virtually, but perhaps in ways program directors have not considered. 

Programs can leverage our findings to inform improvements to interview processes so 



 

184 

that both programs and applicants are able to effectively assess compatibility. Our 

results indicate programs should be mindful of DEI tenets when selecting interviewers 

and interviewees. Additionally, programs should ensure resident involvement in the 

interview process and make sure their residents appear, and are, well-rested prior to 

interview days and social events. Programs could consider faculty development around 

respectful interview behavior and reflect on how interview styles, such as behavioral or 

interrogative interviewing, convey their residency culture. Over time, as both applicants 

and programs become more adept at projecting themselves virtually, we anticipate 

applicants and program directors will gain greater confidence in assessing compatibility 

through virtual means.    

 Perceived fit continues to be a priority for both applicants and programs, but it is 

important to remember that there is no evidence that a good fit results in better 

outcomes and that a focus on fit may have negative consequences. When fit is defined 

as similarity, it can be a vehicle for unconscious bias perpetuating inequities and limiting 

diversity within programs.6 Further research should evaluate whether achieving program 

and applicant alignment results in positive outcomes like improved resident workplace 

satisfaction or lower rates of resident burnout or generates negative outcomes such as 

reduced racial, ethnic and socioeconomic diversity within residency programs.   

The strengths of our research are the qualitative nature, which allows for a more 

in-depth exploration of applicant considerations around program culture. Additionally, 

the anonymous nature of the posts gives a different, and perhaps less filtered, 

perspective of the applicant experience than traditional interview or survey data. As 

people are typically posting in real time, shortly after their interview experiences, recall 
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bias is mitigated. There are however limitations to our work. There is selection bias, as 

the data collected from Reddit represents the perspectives of applicants who chose to 

post their experiences on social media, which may not be representative of all 

applicants. Additionally, there is no way to verify the veracity of posts or an accurate 

number of posters.  

Conclusions 

Our work offers valuable insights into the considerations of US ObGyn applicants when 

evaluating program culture and fit during virtual interviews. We found that applicants 

were interested in the overall social environment of the program and how programs and 

departments prioritized DEI and resident well-being. Residency programs can benefit 

from understanding how their selection of interviewers, interview styles, and resident 

and faculty conduct contribute to conveying these aspects of program culture to 

applicants. While our research specifically focuses on applicants to ObGyn residencies, 

the findings likely hold relevance for applicants across specialties.  
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Abstract: 

Background: Following the U.S. Supreme Court Dobbs decision, access to abortion 

education is increasingly regionally dependent. Participation in values clarification 

workshops on abortion can improve abortion knowledge and reduce stigma. 

Traditionally, values clarification workshops occur in person, yet medical education 

increasingly utilizes online learning. We sought to understand how a virtual platform 

impacted medical students and Obstetrics and Gynecology (ObGyn) residents’ 

experience with a values clarification workshop on abortion. 

 

Methods: We conducted values clarification workshops over Zoom with medical 

students and ObGyn residents at four midwestern teaching hospitals from January 

2021-December 2021 during the COVID-19 pandemic. We held semi-structured 

interviews with participants and facilitators to learn about how the virtual format 
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impacted their experience with the workshop. Four researchers analyzed transcripts 

using an inductive approach to generate codes then themes. 

 

Results: We interviewed 24 medical students, 13 ObGyn residents, and five workshop 

facilitators. Participants and facilitators found the virtual platform to have both unique 

advantages and disadvantages. Four central themes were identified: 1) Screen as a 

barrier: participants noted obstacles to conversation and intimacy. 2) Emotional safety: 

participants felt comfortable discussing sensitive topics. 3) Ease of access: participants 

could access virtual workshops regardless of location. 4) Technology-specific features: 

Zoom features streamlined aspects of the workshop and allowed for anonymous 

contributions to discussion. 

 

Conclusions: Our findings suggest that a virtual platform can be a convenient and 

effective way to deliver values clarification workshops on abortion, and this technology 

could be leveraged to expand access to this training in areas without trained facilitators. 

 

 

Key words:  abortion, medical education, virtual, online, values clarification  
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Introduction 

Teaching on abortion is limited in medical education and after the U.S. Supreme Court 

decision in Dobbs v. Jackson Women’s Health Organization overturned the federal right 

to abortion in June 2022, increasingly regionally dependent 1–4. At the time of writing, 15 

states have total abortion bans with very limited exceptions, severely restricting training 

for at least 230 ObGyn residents and an even greater number of medical students 5,6. 

Medical schools and residency programs are now working to fill in the gaps in abortion 

training for medical trainees 7.  

 

One intervention shown to increase knowledge and support around abortion among 

participants are Values Clarification and Attitude Transformation (VCAT) Workshops. 

VCAT workshops have been conducted in a variety of settings around the world 

reaching broad audiences including clinicians, international development workers, and 

policy makers 8,9. In these workshops, participants engage in discussion on abortion-

related scenarios, guided by a trained facilitator, and explore their personal and 

professional beliefs about abortion in an open-minded space 10. VCAT workshops have 

traditionally been conducted in-person; however due to COVID-19 in-person learning 

restrictions and to meet the need for expanded access to abortion education, we 

adapted a VCAT workshop to a virtual format.  Virtual education has been an 

increasingly utilized and effective method of curriculum delivery 11,12. The aim of this 

study was to understand participants’ and facilitators’ experiences participating in the 

workshop virtually, assessing both strengths and limitations of the virtual format. 
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Materials and Methods 

Study population 

Five facilitators led a total of 29 workshops with medical trainees (medical students and 

ObGyn residents), of which 26 workshops were with medical students and four with 

ObGyn residents.  We conducted the “Four Corners” portion of a values clarification 

workshop on abortion at four midwestern teaching hospitals over Zoom 10. All medical 

students on their core ObGyn clinical clerkship at three medical schools and all ObGyn 

residents not on post-call or vacation at four residency programs participated in the 

workshops virtually from December to January 2021. 

 

Surveys 

Prior to the workshop, participants received an email inviting them to complete a 

voluntary 23-item Qualtrics survey assessing their attitudes (17 statements) and 

behavioral intentions (six statements) surrounding abortion and demographic 

information (Appendix 1). This survey was adapted from a previously published survey 

evaluating the impact of in-person VCAT workshops with international healthcare 

workers 8. Participants received a ten-dollar Amazon gift card for completing the survey. 

Using the 17 attitudes statements on the survey, we created a summative abortion 

attitude score ranging from 0 (most negative) to 100 (most positive) for each responder 

8. 

 

Workshop 
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Prior to the start of each workshop, participants were required to fill out an online 

Google form containing 12 statements about abortion and select whether they strongly 

agreed, agreed, strongly disagreed or disagreed with each statement (Appendix 2). 

Their responses were de-identified, and each participant was emailed a set of 

responses from one of their colleagues and was asked to participate with those 

responses during the workshop.  

 

The workshops were facilitated on Zoom by ObGyn faculty at each institution who 

received a standardized facilitation guide. The facilitator read each of the 12 Google 

form statements aloud and then opened Zoom polls for each statement, asking 

participants to reply with their colleague’s de-identified responses. In the traditional Four 

Corners exercise, each corner of a room is labeled with the four possible responses 

(Strongly Agree, Agree, Strongly Disagree, Disagree) and participants move to the 

corner of the room that corresponds with their colleague’s response. Participants are 

asked to reflect on the visual representation of the variety of beliefs held by their 

colleagues. Two to three of the statements are used as small group discussions, and 

people in each corner discuss why someone might hold the belief that is presented on 

their paper. They then share their thoughts with the large group in a facilitated 

discussion. In the virtual adaptation moving to the four corners of the room is simulated 

by responding to a zoom poll and the visual representation of the group’s values is 

achieved by displaying poll responses to participants. Zoom breakout rooms are used 

for small group discussions. In both the in-person and virtual workshops, participants 
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work from the beliefs presented on the anonymous form of responses that they receive 

and not their own beliefs. This encourages empathy building through cognitive flexibility. 

 

Interviews 

After the workshop, a subset of trainees were invited to participate in a semi-structured 

interview about their experience. To minimize the effect of volunteer bias, the baseline 

survey abortion attitude scores for participants were sorted from most negative to most 

positive and grouped into quartiles. We sought to interview 3 medical students from the 

lowest and highest attitude quartiles from each school. Of medical students, 72 with 

attitude scores randomly selected from the highest and lowest quartiles were invited 

until we reached our target (Figure 1). We also sought to interview 3 non-responders to 

the initial survey from each institution. Resident participants were also invited to be 

interviewed about their experience with a goal of 36 interviews. We emailed 4 rounds of 

invitations, or fewer if we reached the goal number of interviewees prior to that. All 

residents were eventually invited. All facilitators were invited to be interviewed as well. 

Interview participants received a one-hundred dollar Amazon gift card.  
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Figure 1. Interview participant recruitment 

 

 

All interviews were conducted virtually on Zoom by one trained interviewer affiliated with 

the project, but not involved in student or resident evaluation, using a standardized 

interview guide (Appendix 3), which was created with input from four authors (TMV, 

ESC, JA, LJ). Interview questions focused on the experience of participating in the Four 

Corners activity, students’ impressions of their colleagues’ abortion beliefs, implications 

for future practice, as well as likes, dislikes and surprises about the workshop. 
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Interviews were recorded with participants’ consent and transcribed using Zoom 

autotranscription followed by final transcription by two authors (TMV, AF).  

 

Data analysis 

We used an inductive qualitative approach to identify common themes in the data 13. 

Four qualitatively-trained researchers (TMV, ESC, AF, ZBS) analyzed interview 

transcripts. We coded five initial transcripts synchronously to establish consensus and 

generate a codebook using NVivo software. We then coded remaining transcripts in 

pairs to ensure consensus throughout. The pair TMV and ESC coded 17 transcripts; AF 

and ZBS coded 18 transcripts as a pair. One transcript was coded by TMV alone and 

one was omitted from the coding process because the interviewee did not participate in 

the workshop. Individual team members (TMV, ESC, AF, ZBS, MW, LJ) identified 

themes from the codes and then met to establish consensus themes. 

 

Results 

In total, 182 medical students and 70 ObGyn residents were invited to participate, of 

whom 24 medical students and 13 residents were ultimately interviewed (Figure 1). All 

five workshop facilitators were interviewed. Four central themes about the virtual 

experience were identified during data analysis: the screen as a barrier, emotional 

safety, ease of access, and technology-specific features. These themes are described 

further with supplemental exemplary quotes in Table 1. 

Table 1. Supplemental Quotes 
 Supplemental Quotes 
Screen as a 
barrier 

R1. It does kind of make it a little bit difficult to have like a free 
flowing conversation because there are a lot of times where 
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Participants noted 
obstacles to 
conversation and 
intimacy. 

people will all try to kind of speak up at once, and then there's a 
little bit of a delay for some people, and then you realize you're 
accidentally talking or something when you didn’t even mean to, 
and then you both stop, and no one talks for like 30 seconds. 
R2. Different approaches to something that is polarizing like 
abortion can be seen through body language and like unspoken 
language and things like that which you kind of lose in a virtual 
sense. Like right now, because I'm trying to be poised I'm like 
playing with my sock, which is something that like I might do 
when I'm like nervous or thinking too much and you might not 
necessarily get that because I'm off screen. 
M1. I guess you can add that to the list of like bonuses for Zoom 
is that you really get to like watch all of these people and also 
watch people react, a little bit differently, because you have the 
checkerboard of like you know 40 faces or whatever it might be. 
And I thought that was a unique feature because I could also 
kind of prepare myself in case it was going to get more charged. 
R3. You can't really have side conversations, it's really just you 
know one person is talking and everyone else is listening, and I 
think it might have been interesting if it were in person to kind of 
have had the opportunity to talk with another co resident kind of 
one-on-one about different ideas. 
M2. I think it's a lot easier to judge people when you're not with 
them in the flesh...like when people are in person, it often 
humanizes other people's responses more. [The computer 
screen is] like this shield and protection, and I think when we 
take that barrier down, it makes a lot easier for people to 
humanize each other and to be more real with those responses. 

Emotional safety 
Participants felt 
comfortable 
discussing sensitive 
topics. 

R4. Trying to put a little distance between you and ideas, to see 
what other people think about them, I think a virtual platform is 
actually really good for that...For some reason I felt like using 
zoom for that activity kind of diffused some of like the tension 
that could be there in my mind at least. 
F1. I think the virtual platform, maybe added a safety element, 
because you kind of feel like you're in your own safe space 
where you're not necessarily in the same space with other 
people that may have different opinions than you. 
M3. Especially with a sensitive topic, I think that there is a lot of 
power to having a safe space and to being in that safe space. ... 
like you could always, you know, like turn your video off and 
take a breather, take a break, grab a sip of water or something. 
So it's kind of nice to be able to have that opt out for a few 
minutes and then jump in if you did need it. 
M4. There's some degree of protection that you feel when 
you're just sitting in front of your computer screen rather than in 
front of a group of people...You wonder if your viewpoints will be 
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incorrectly perceived by the group. So it feels a little bit safer to 
be behind your computer, especially in conversation setting that 
many of us aren't as used to. 

Ease of Access 
The virtual format 
increased 
participants’ and 
facilitators’ access 
to the workshop. 

M5. If it was voluntary, and I had a choice between doing it over 
Zoom and having to go to a lecture hall, I may opt to do the one 
over Zoom and not actually walk to the one that's going to 
physically take some time. I think it brings down some of those 
access barriers for people. 
F2. We had actually planned to drive to each other's institutions 
so facilitate each other's workshops, which now seems so 
quaint, like the concept of driving two hours to give one lecture, 
seems insane, but at the time we were like that's normal, it's not 
that far, and now the beauty of Zoom which weirdly I didn't 
immediately recognize, is that we can facilitate each other's 
sessions from home, like it's super easy. 

Technology-
specific features 
Zoom features 
streamlined 
aspects of the 
workshop and 
allowed for 
anonymous 
contributions to 
discussion. 

M6. We've all gotten so used to zoom especially you know as 
medical students, it’s something we do a lot. So that's kind of 
nice to like just able to like instantly break out and talk and like 
come back and, like the way people can share their screens 
and stuff you know to like look at the survey things and talk at 
the same time that can be useful. 
F3. I do think, specifically for Four Corners, I think this works 
way better. Because in person, when you have people having 
to physically move around the room, it wastes a lot of time. Or 
even some of the other values clarification is where people 
stand on a spectrum. All of those where people are physically 
having to move, even though it's more engaging, I find that it 
takes a lot longer. So I think in general, we are able to get 
through a lot more in a single hour virtually, than we are in 
person. 

Legend: M indicates a medical student quote, R indicates a resident, and F indicates 
a facilitator. Each number indicates a different interviewee. 

 

 

The screen as a barrier 

One disadvantage of the virtual format was that the computer screen created a barrier 

between participants, which was noted by a majority of the trainees (13 out of 24 

medical students and 8 out of 13 residents) and all facilitators. Some participants noted 

that others kept their cameras off the entire session or stayed muted during the 
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discussion, which they felt hindered conversation. Some felt that the flow of 

conversation was impeded over Zoom. They recounted instances when participants 

would accidentally interrupt one another due to delays in internet connection or because 

it was difficult to detect cues that another participant was about to speak (Table 1: R1), 

which might have been easier to distinguish in person. 

 

In addition to maintaining the flow of conversation, participants felt that nonverbal cues 

were important for other reasons. Many trainees wished they could have seen other 

participants’ body language, such as signs of discomfort after the facilitator read a 

question aloud or during another participant’s response (Table 1: R2). On the other 

hand, one medical student did report feeling that some cues such as facial expressions 

were easier to detect over Zoom due to the “checkerboard” of faces visible on the 

screen, making it possible to observe several individuals’ reactions at once (Table 1: 

M1). 

 

One facilitator who also had experience facilitating in-person VCAT workshops 

described challenges due to the lack of nonverbal cues. They recounted difficulty 

“read[ing] the room,” or gauging participants’ level of understanding and engagement, 

through the virtual format. They explained: 

“I had become pretty in depth with having a sense of the vibe of my room when I 

was doing this in person and making sure who I was losing because I could see 

their face really clearly. So if I could tell that one table just was not engaging, when 

we broke into small groups, I'd make sure that I went to that table and tried to 
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engage them a little bit more... whereas here I can't, I can't see them, and I can't try 

to bring them back in, so I think that's probably my biggest [issue with the virtual 

format].” 

 

In addition to Zoom’s impact on group conversation, some participants also noticed the 

lack of individual side conversations over Zoom. They described wishing that they could 

process a thought with a peer sitting near them, rather than sharing all thoughts with the 

group (Table 1: R3). One medical student recalled texting a friend after the workshop to 

debrief, but expressed that they would have preferred to be able to discuss their 

thoughts in person “like us standing in the hallway after.”  

 

Participants also felt that the workshop’s virtual format lacked intimacy. They felt their 

colleagues were more distant, less vulnerable, and hidden behind their screens. One 

resident reflected, “[These are] impactful and important discussions to have, and I feel 

like if you just have it with a black screen it's not as meaningful.” A few participants 

feared that this lack of intimacy may have prevented participants from humanizing one 

another’s responses to challenging and controversial questions (Table 1: M2). As one 

medical student explained: 

“I think that there's some sense of anonymity in it being virtual even though you can 

see other people's faces, you're still behind a screen, and so I think that it can be 

harder to see other people as people rather than just their opinions.” 

While participants acknowledged the benefits of increased anonymity during a sensitive 

conversation, some trainees felt that they should be challenged to have uncomfortable 
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conversations. Two students felt that the workshop may have been more valuable for 

medical trainees’ professional development if it had required in-person conversation, in 

order to better prepare them for future discussions or conflicts with healthcare 

colleagues and patients, “propelling them into getting used to that scenario.” 

 

Emotional safety 

Although many felt that the virtual platform created barriers, approximately half of the 

participants (11 out of 24 medical students, 4 out of 13 residents, and 4 out of 5 

facilitators) also expressed that the virtual platform created a sense of emotional safety 

(Table 1: R4, F1). Compared to an in-person classroom, trainees found that the 

anonymity provided by Zoom helped them feel more comfortable sharing their thoughts, 

at times referring to the virtual format as a “safe space” where they felt “protect[ed]” 

(Table 1: M3, M4).  One medical student explained, 

“It's a little bit less personal, and I think maybe for some individuals with such a 

charged topic or such a, such a sensitive topic, maybe [virtual VCAT workshops] 

would be a little bit better. You just feel like it's a little bit less putting yourself out 

there, less, less chance to feel embarrassed.” 

Another medical student felt that “starting these conversations can be a little bit less 

intimidating over Zoom.” 

 

People also utilized the functionality of an online platform to increase their feelings of 

security. Some described how they hid uncontrolled facial expressions by turning off 

their camera or simply walked away from the computer when they needed an emotional 
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break (Table 1: M3).  One medical student appreciated being able to use the camera 

functionality to monitor and adjust their facial expressions: 

“You could have like a safe space, like you could turn your camera off if you want or 

just like not even be in view of it and be able to read these things and kind of 

formulate your thoughts, or you don't have to see the reactions of your classmates 

as you're reading stuff too. I think I feel like it kind of gave some safety to it.” 

Virtual classrooms also allow people to participate from a location of their choosing, 

often at home. Multiple facilitators felt that the comfort of participants’ home 

environments allowed them to talk more openly than they might in a different setting. As 

one medical student stated, “People are just kind of inherently more comfortable when 

they're in their own homes.” 

 

Ease of Access   

The virtual format increased access to the workshop for participants and facilitators. 

Approximately one-quarter of those interviewed (5 out of 24 medical students, 2 out of 

13 residents, and 4 out of 5 facilitators) mentioned that the virtual workshop was easy to 

access. Medical students liked being able to join the workshop from home or wherever 

was convenient (Table 1: M5). A medical student who was working nights during the 

workshop explained “it would have been even harder” to participate if the workshop had 

been held in person. Trainees also described the ability to participate during rural or 

away rotations at a significant distance from their main campuses, when they otherwise 

might have been unable to participate. One resident explained: 
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“From a logistics perspective, like residents at different sites can participate. 

Sometimes, with the didactics it's hard to get everyone together, and so having 

people be able to kind of tune in from wherever they were I thought was helpful.” 

 

Facilitators also appreciated easier access to the virtual workshop. Facilitators 

discussed the benefits of being able to leverage the virtual platform to lead sessions at 

remote locations, either because their learners were at outlying sites or because they 

were asked to facilitate sessions at different institutions (Table 1: F2). Thinking of 

students rotating in remote locations, a facilitator reflected:  

“They don't go to a lot of the teaching...because it was held in person, and they 

are hours away from here; and now, we can have them all attend to the same 

workshop, at the same time.” 

 One facilitator felt the virtual option helped them secure an outside facilitator for their 

residents, which they thought might help their residents feel more comfortable: 

“Residents report to me, and I always felt like there was a power differential in 

terms of them expressing their opinions or ideas or beliefs, even if you attempt to 

be super supportive... And so I thought that that was a really interesting and 

innovative thing, that we could facilitate sessions for residents and medical 

students at remote locations. And then it just makes it so much easier.” 

Some facilitators proposed that this method of remote facilitation could allow the 

workshop to be expanded to other institutions where a family planning clinician may not 

be locally available or comfortable leading the workshop. 
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Technology-specific features 

Several participants, approximately one-fifth, described that the virtual workshop was 

efficient due to technological features (2 out of 24 medical students, 4 out of 13 

residents, and 3 out of 5 facilitators). Participants and facilitators enjoyed quickly 

transitioning in and out of breakout groups and the ability to complete surveys ahead of 

time to maximize discussion time during the workshop (Table 1: M6). One resident 

described: 

“I liked that we were able to, one, sort of streamline breaking up into groups. I liked 

that, you know, all of the pre-work was completed online before, there wasn't like a 

lot of clutter and I feel like it was something that was relatively compact in terms of 

its timing, but we accomplished a lot.” 

However, some people also described delays with the virtual format, such as slower 

internet speeds, which negatively affected the workshop’s efficiency. 

 

Zoom-specific features also affected the virtual experience. Many participants liked the 

polling feature, as it allowed facilitators to easily present survey responses. Some 

appreciated the polls’ objectivity, displaying their colleagues’ anonymous survey 

responses, which many like this medical student saw as a true representation of their 

cohort’s beliefs:  

“A good amount of people believe certain things that you wouldn't have expected, 

so I liked being able to see those numbers and put it into perspective.” 

A few participants also commented on the Zoom chat feature. One resident liked that 

participants could send a message to the facilitator if they didn’t want to share a thought 
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or question aloud, “if someone didn't feel comfortable in that environment.” However, 

one facilitator described an experience during which they became the mediator between 

two anonymous participants expressing their thoughts in the chat: 

“It became sort of a back and forth of anonymous discussion that I was then 

reading to the group so, whereas in person, hopefully, those two people would have 

had the discussion with each other. Instead here, it became, you know, the 

anonymity allowed people to say things that they might not have been as 

comfortable saying in person.” 

 

Breakout rooms were another commonly utilized feature during the workshop. Some 

participants felt that the transitions in and out of breakout rooms were smooth and more 

efficient than if the transition to small groups had occurred in person. Those with 

previous in-person workshop experience also felt that the virtual platform saved time by 

decreasing the amount of time participants spent physically moving around the room 

(Table 1: F3). Some also felt that the virtual breakout rooms created more privacy and 

less “chaos” compared to multiple small group discussions occurring at once, “in a big 

room with a lot of noise it's actually not a very fruitful conversation.”  

 

However, others felt that the transitions between online breakout rooms inhibited 

discussion among participants. A few participants expressed that more facilitators would 

be needed to effectively mediate conversations taking place in multiple breakout rooms. 

One medical student described being in a breakout room without a facilitator as 

“awkward.” Facilitators echoed these sentiments. One facilitator felt that their sudden 
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appearance in a virtual breakout room altered the course of conversation, and worried 

that if they closed the breakout rooms, they might unknowingly bring a robust discussion 

in a different room to an end prematurely; they summarized, “the virtual way of doing it 

really cuts off discussion.” 

 

Discussion 

Values clarification workshops on abortion have proven to be an effective tool for 

educating international healthcare workers about abortion and reducing abortion stigma 

8,9. They have also been shown to be an effective tool for ObGyn residents training at 

religiously-affiliated hospitals in the United States. ObGyn residents in this setting who 

participated in VCAT workshops showed increased acceptance of abortion care post-

workshop 9. Previous research has only evaluated the impact of in-person workshops, 

but there has not yet been an evaluation of a virtual adaptation of these workshops.  

 

Many studies have evaluated the efficacy of online modalities for medical education and 

demonstrated similar efficacy to in-person learning, including students’ ability to retain 

knowledge and develop communication skills 11,12,14,15. A separate qualitative analysis of 

this study’s data supported this hypothesis for VCAT in particular: participation in the 

virtual VCAT workshop helped trainees understand their own and others’ views on 

abortion and practice professional communication, similar to outcomes for in-person 

VCAT workshops 16. Our study adds to the existing literature by describing how the 

virtual format affected participants’ experiences engaging in VCAT workshops. 
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Our findings suggest that using an online platform to deliver values clarification 

workshops on abortion provides both unique advantages and disadvantages to in-

person instruction. The original workshop takes steps to create a safe environment for 

participants by having them participate using an anonymous colleague’s survey 

responses, rather than their own. Themes from the interviews we conducted with 

medical trainees highlight how the virtual platform additionally allowed for more 

comfortable discussion around a stigmatized topic. Participants attributed their feelings 

of emotional safety during these discussions to the distance between participants 

created by the virtual format. Additionally, the online format lowered barriers, primarily 

travel time and effort, to accessing the workshop for both trainees and facilitators. 

 

One commonly cited drawback to online education is a lack of social connection among 

learners and educators. In medical education, learners have reported feeling less 

connected and described challenges to communicating virtually in online courses 17,18. 

This finding is supported by data in our study. A majority of participants and facilitators 

in the virtual VCAT workshop described the virtual platform as a barrier to connecting 

with others, citing a lack of intimacy and difficulty detecting non-verbal communication 

cues. Educators should weigh how the virtual format may both contribute to emotional 

safety and simultaneously reduce intimacy among learners when determining whether a 

virtual format best fits the specific needs of their learners and learning environment. 

 

Despite some limitations of online education, virtual VCAT workshops may be a timely 

intervention after the Supreme Court Dobbs decision. Recent data shows that 56 
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ObGyn residency programs, approximately one-fifth of all programs, are in states with 

the most restrictive abortion bans 6. We cannot know how medical trainees’ attitudes 

and behavioral intentions towards abortion will be affected over time in the aftermath of 

Dobbs. In this context, virtual values clarification workshops may become increasingly 

useful for combatting abortion stigma, as remote facilitators of the online workshop can 

reach medical trainees in more restrictive states where trained facilitators may be 

unavailable or less comfortable leading workshops. The findings of our study may assist 

medical educators by helping them weigh the advantages and disadvantages of a 

virtual VCAT workshop in their particular legal and cultural context, providing evidence 

to inform whether this format may benefit their trainees.  

 

Our study design is a strength of this research. This was a multi-institution study, and 

we recruited participants with a range of baseline attitudes towards abortion prior to the 

workshop as well as non-responders. Additionally, conducting semi-structured 

interviews allowed us to elicit participants’ nuanced descriptions of their experiences 

with the workshop, and produced a rich dataset. Despite efforts to recruit interviewees 

with a range of opinions about abortion, selection bias remains a limitation of our study. 

Additionally, we anticipate limitations to generalizability of our data, given that our cohort 

consisted of Midwestern medical trainees and faculty. As the workshop is expanded to 

other regions, future research should assess trainees’ experiences in other geographic 

areas.  
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Using a virtual platform to deliver values clarification workshops on abortion is feasible 

and provides specific advantages of anonymity, safety, and accessibility, although at the 

potential cost of reduced vulnerability among participants. 
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Abstract 

Background: In June 2022, the U.S. Supreme Court announced its decision in Dobbs 

V. Jackson Women’s Health Organization to overturn Roe v Wade. As a result, half of 

U.S. states now face proposed or in-effect abortion bans, which affect the ability of 

obstetrics and gynecology (ObGyn) residency programs to provide abortion training.  

Objective: To establish ObGyn residents’ pre-Dobbs attitudes toward abortion, desire 

to learn about abortion, and intentions about providing abortion care in their future 

practice. 

Methods: From January through December 2021, we surveyed 70 ObGyn residents at 

four programs in Wisconsin and Minnesota to assess their attitudes toward abortion, 

desire to learn about abortion, and intentions about providing abortion care in their 

future practice.  

Results: A total of 55 out of 70 (79%) ObGyn residents completed the survey. Most 

reported highly favorable attitudes toward abortion, nearly all found the issue of abortion 

to be important, and the majority planned to incorporate abortion care into their future 

mailto:ascutler@wisc.edu
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work. There were no differences in median attitude scores or behavioral intentions 

among institutions. 

Conclusions: Prior to the reversal of Roe v Wade, ObGyn residents in Minnesota and 

Wisconsin viewed abortion as important health care and intended to provide this care 

after graduation. 

  

Introduction 

The reversal of Roe V. Wade by the United States Supreme Court on June 24, 2022 

has resulted in proposed or in-effect abortion bans spanning half the country.1 Despite 

that nearly a quarter of women will have an abortion in their lifetimes and that abortion 

training is a required component of Obstetrics and Gynecology (ObGyn) resident 

education by the Accreditation Council of Graduate Medical Education, nearly half of all 

ObGyn residency programs now struggle to provide clinical training in this common 

health care service.2–6 The media has also raised concerns that wide geographic 

variations in abortion legality will adversely shape where physicians choose to train and 

ultimately practice, which could further exacerbate existing ObGyn shortages.7–9  To 

better understand how the fall of Roe may affect U.S. ObGyn residents’ career 

decisions, it is crucial to understand what their baseline attitudes were towards abortion 

prior to the fall of Roe, what their desire was to learn about abortion, and the importance 

they placed on being able to provide abortion care in their future work. Current literature 

on these topics is sparse.10 Prior to the fall of Roe, we assessed attitudes and career 

intentions toward abortion among ObGyn residents in Minnesota and Wisconsin where 
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19.5% and 15.3% of counties, respectively, already qualify as maternity care deserts 

and access to abortion, post-Dobbs, significantly differs. 11,12 

 

Methods 

We included all ObGyn residents who were scheduled to participate in a workshop at 

the University of Minnesota Twin Cities (UMN), University of Wisconsin—Madison 

(UW), Medical College of Wisconsin (MCW) and Aurora-Sinai Milwaukee (Aurora) 

between January and December 2021. A required component of their residency 

didactics curriculum, the workshop, adapted from the Values Clarification and Attitudes 

Transformation (VCAT) workshop published by Turner et al, was designed to help 

participants explore their attitudes toward abortion.13,14 All residents were required to 

attend this workshop unless they had an approved absence (e.g. post-call, vacation). 

We emailed all residents a link to a confidential, voluntary survey using a web-based 

platform (Qualtrics). The first screen of the survey informed potential participants that 

completion of the survey would be considered consent to participate in our research 

study. Survey participants received a ten-dollar Amazon gift-card link.  

 

We gathered demographic information and used a previously published questionnaire 

(adapted from workshop materials published Turner et al; see Supplemental Materials) 

to assess attitudes toward abortion care and behavioral intentions for future 

practice.13,14 To assess attitudes, we asked the degree to which participants agreed with 

17 statements about abortion using a five-point Likert scale. To assess behavioral 

intentions, we posed six yes/no questions regarding intent to learn about, advocate for, 
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refer patients to, and provide abortion care. To compare attitudes among participants 

overall rather than item-by-item, we followed Turner et al.’s analytic methodology and 

created summative attitude scores which ranged from zero (most negative toward 

abortion) to 100 (most positive toward abortion). Summative attitude scores were 

calculated by summing the five-point responses, dividing by five times the total number 

of items (17) and multiplying by 100. Summative behavioral intention scores were 

calculated similarly, dividing the sum of positive responses by the total number of items 

(6), and multiplying by 100. 14 

 

To compare attitude scores by demographic characteristics, we used the Wilcoxon rank 

sum test and the Kruskal-Wallis equality of distributions rank test, as appropriate. Given 

the observed distribution of answers to the behavioral intention questions (80% of 

respondents answered “Yes” to all six items), we dichotomized responses into “all yes” 

vs “any no” and used Fisher’s exact test to test for significant differences by 

demographic characteristics. P-values <0.05 were considered statistically significant. 

The study was reviewed and considered exempt by the University of Wisconsin-

Madison Minimal Risk IRB and reviewed and approved by the University of Minnesota 

IRB. 

 

Results 

A total of 55 out of 70 (79%) ObGyn residents completed the survey, 17 of 21 (81%) 

from UMN, 14 of 20 (70%) from UW, 14 of 16 (88%) from MCW, and 10 of 13 (77%) 

from Aurora. Of residents who completed the survey, a majority (n=46, 84%) identified 
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as women, were born in the Midwest (n=28, 51%), and  did not identify with a particular 

religion (n=36, 65%) (Table 1).   

Table 1. Median attitude and behavioral intention scores of survey participants, by 

selected demographic characteristics. 

 

Resident 
characteristics N (%) 

Attitude 
Score, Median 
(Interquartile 

Range) 
P 

value 

 Behavioral 
Intention 

Score, n (%) 
saying 

"Yes" to all 
6 items P value 

Total 55 (100) 95 (87-98)   44 (80)  
Institution     0.436   0.298 

University of 
Minnesota - Twin 
Cities 17 (31) 95 (93-99)   16 (94)   

Medical College 
of Wisconsin 14 (25) 92 (85-96)   10 (71)   

Aurora-Sinai 
Milwaukee 10 (18) 96 (91-99)   8 (80)   

University of 
Wisconsin - Madison 14 (25) 96 (87-98)   10 (71)   
Gender     0.413   0.179 

Man 9 (16) 95 (95-99)   9 (100)   
Woman 46 (84) 95 (87-98)   35 (76)   

Birthplace     0.819   0.545 
Outside the 

United States 5 (9) 91 (88-92)   4 (80)   
United States, not 

Midwest 22 (40) 95 (89-99)   16 (73)   
United States, 

Midwest 28 (51) 96 (86-98)   24 (86)   
Religiosity     0.046     

Do not identify 
with a religion 36 (65) 95 (90-99)   30 (83)   

Identify with 
religion; 
incorporate into 
daily life none/little 6 (11) 96 (92-99)   6 (100)   
Identify with 
religion; 13 (24) 87 (84-96)   8 (62)   
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incorporate into 
daily life 
some/quite a 
bit/great deal 

Post-Graduate Year     0.773   0.831 
1 17 (31) 95 (87-98)   14 (82)   
2 14 (25) 96 (85-99)   10 (71)   
3 12 (22) 96 (93-99)   10 (83)   
4 12 (22) 95 (89-97)   10 (83)   

Interested in 
pursuing a 
fellowship     0.533   0.712 

No 39 (71) 95 (88-99)   32 (82)   
Yes 16 (29) 95 (86-97)   12 (75)   

 
Wilcoxon rank sum or Kruskal-Wallis rank tests for attitude scores; Fisher’s exact test 

for behavioral intentions; P-values <0.05 considered statistically significant 

 

 

The median attitude score for ObGyn residents was 95 (Interquartile Range: 87-98). 

Differences in the distributions of attitude and behavioral intention scores among 

institutions were not statistically significant (Table 1). Behavioral intention scores did not 

significantly differ across participant characteristics. Attitude scores significantly differed 

only by religiosity: residents who did not identify with a religion held more positive 

overall attitudes than residents for whom religion impacted their daily lives (Table 1).  

Nearly all 55 residents (n=49, 89%) disagreed with the statement “the issue of abortion 

has little importance to me”. Almost all residents agreed that “All people should have 

access to safe, comprehensive abortion care in the first (n=55, 100%) and second 

(n=54, 98%) trimester. Nearly all residents (n=52, 95%) wanted to learn more about the 

need for safe, comprehensive abortion care, 54 (98%) planned to refer people seeking 
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abortion to safe services, and 46 (84%) planned to provide abortion care in their future 

careers (Figure 1).  

 

 

A 

 

 

0% 20% 40% 60% 80% 100%

1. The issue of abortion is of little importance to me.

3. I feel comfortable working to increase access to family
planning and contraceptive services.

17. Access to second trimester abortion should be restricted to
certain circumstances.

16. All people should have access to safe, comprehensive
abortion care in the second trimester.

15. Access to first trimester abortion should be restricted to
certain circumstances.

14. All people should have access to safe, comprehensive
abortion care in the first trimester.

13. I feel empathy for people who have experienced abortion.

12. I can respectfully explain values concerning abortion that
conflict with mine.

11. I can clearly explain my personal values concerning abortion.

10. I feel very conflicted about abortion.

9. I am clear about my personal values concerning abortion.

6. I feel comfortable talking with my closest family members
about my involvement with abortion care.

8. I would feel comfortable performing or assisting an abortion
procedure.

7. I would feel comfortable observing an abortion procedure.

4. I support the provision of abortion services as permitted by
law.

5. I feel comfortable working to increase access to abortion
services as permitted by law.

2. I support the provision of family planning and contraceptive
services.

Percentage of Participants

S
ta
te
m
en
t

Attitudes
Strongly disagree Slightly disagree Neither Slightly agree Strongly agree
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B

 

 

Figure 1. Summary of attitudes and behavioral intentions on abortion for all 

participants. Percentage of participants for each response option for A. attitudes and 

B. behavioral intentions on abortion.  

 

Discussion 

Our research demonstrates that prior to the fall of Roe, ObGyn residents in our sample 

from Wisconsin and Minnesota held highly favorable attitudes toward abortion, believed 

abortion should be available to patients, desired education and training in abortion care, 

and planned to directly provide or refer patients for abortion care in their future practice. 

Notably, our study was conducted in two states that faced different abortion access 

0% 20% 40% 60% 80% 100%

1. Learn more about the need for safe,
comprehensive abortion care.

2. Raise awareness about the need for
safe, comprehensive abortion care.

3. Advocate making safe, comprehensive
abortion care widely available.

4. Educate people about safe abortion
services.

5. Refer people seeking abortion to safe
services.

6. Provide or assist with safe,
comprehensive abortion procedures.

Percentage of Participants

S
ta
te
m
en
t

Behavioral Intentions
No Yes
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restrictions even prior to the Dobbs decision. Unlike Wisconsin, where restrictions to 

abortion proliferated prior to the fall of Roe, Minnesota had fewer barriers to access in 

place.15,16  Despite these differences in legal landscapes, we found no significant 

difference in attitudes toward abortion or plans to incorporate abortion into their future 

work between state populations.  

 

Following Dobbs, the two states’ legal landscapes have diverged even farther from each 

other: Minnesota has codified abortion rights into its state constitution and Wisconsin 

has reverted to an 1849 state law that criminalizes the provision of abortion in nearly all 

circumstances.17,18 Although our data do not offer insight into the extent to which post-

Dobbs restrictions are shaping resident recruitment and decision-making, this study is 

strengthened by a high survey response rate and provides critical baseline data to 

understand how the Dobbs decision will affect ObGyn residents and future career plans 

going forward. Understanding the forces that shape the future ObGyn workforce is key, 

particularly in light of concerns pre-dating Dobbs about impending ObGyn shortages in 

certain areas of the country.19 As other researchers have noted, physician attitudes not 

only have the capacity to guide important stakeholders such as media, policymakers 

and voters, but they also can carry weight in their institutions, whose responsibilities 

include recruiting and retaining a robust and willing labor force.10 

 

It is worth noting that even when abortion was a constitutional federally protected right, 

only 60% of ObGyn residents reported "routine” access to abortion training; satisfaction 

with abortion training was positively and independently correlated with the routine 



 

224 

availability of this training.20 As graduate medical education transitions to a post-Roe 

world, residency programs should evaluate their current recruitment and educational 

strategies to maximally ensure that all ObGyn residents who are legally able to receive 

adequate abortion training do so. This may necessitate establishing out-of-state training 

partnerships for programs in restricted states. Education leaders should also work within 

academic training sites to reduce or extinguish wherever possible all other institutional-

level barriers to the provision of abortion care in the inpatient and outpatient settings. 

Finally, new initiatives may include implementing and studying interventions designed to 

improve attitudes and behavioral intentions toward abortion care – such as mandated 

values clarification workshops – so that demand for training among residents remains 

high.21 

 

Conclusion 

Prior to the fall of Roe, most ObGyn residents in two Midwestern states with significantly 

different abortion access held highly favorable attitudes toward abortion and planned to 

provide abortion care in their future practice. How and to what extent recent seismic 

changes in the legal landscape will shape the future, post-Roe ObGyn workforce 

remains unknown. While some graduating residents who value abortion training and 

provision may avoid practicing in states where abortion is restricted, others may be 

drawn to practice where the need for advocacy is high. Future research should directly 

evaluate how post-Roe state-level abortion restrictions, such as those in Wisconsin, 

impact both recruitment into ObGyn residency programs, career decision-making 
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among graduating residents, as well as the availability, accessibility and quality of 

pregnancy-related health care for patients.  
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Abstract 
Using an innovative, covert, in-room observer method to evaluate infection 

control practices for patients with Clostridioides difficile infection, we found 

no difference between physician and nursing hand hygiene compliance and 

contact precaution usage. There was also no diurnal variation in hand 

hygiene practices, but decreased contact precaution usage at night. 

Conversely, hospital-wide data from overt observations collected over the 

same time period showed significantly higher hand hygiene compliance 

among nurses than physicians. 

 

Keywords 
Clostridioides difficile infection; Hand hygiene compliance; Diurnal effects; Covert 

observations 

 

Introduction 

Clostridioides difficile is a major cause of hospital-acquired infection in the United 

States.1 Its prevention requires compliance with hand hygiene, particularly soap and 

water, and contact precautions. Despite numerous prior studies of hand hygiene and 

contact precautions, few focus on patients with C difficile infection (CDI). Furthermore, 

most rely on overt observations or self-reported data, as opposed to covert 

observations.2 Overt reporters consistently overestimate covertly measured hand 

hygiene rates by 20%−60%, making it difficult to accurately track compliance and 

intervention effectiveness.3-5 



 

230 

Given C difficile’s unique infection control considerations and the urgency of reducing 

infection, novel approaches to measuring compliance are needed. Electronic monitoring 

systems recently became available to automate tracking. However, their use is limited 

by high upfront cost and unclear accuracy.6,7 Covert observation remains the gold-

standard method, yet is typically also costly and labor intensive.6 Therefore, we 

conducted an innovative, in-room observation study using volunteers and light-duty staff 

to assess hand hygiene and contact precaution practices of hospital employees and 

visitors interacting with CDI patients. 

 

Methods 

The study was conducted from December 2015 to June 2018, at a 565-bed tertiary-care 

hospital in Madison, Wisconsin. We employed an in-room methodology to evaluate 

hand hygiene and contact precaution compliance using volunteer and light-duty staff as 

covert observers. Observers spent at least 15 minutes inside each CDI patient room, 

collecting data on entering hospital employees and visitors. Hand hygiene compliance 

at entry was defined as using alcohol handrub or soap and water. Rubbing hands 

together on room approach was allowed, as people were presumed to have applied 

handrub immediately prior. At study inception, our facility had sustained hyperendemic 

rates of CDI. Therefore, compliance at exit was defined as soap and water use at an 

inside or outside room sink. Contact precaution compliance was defined as wearing 

gown and gloves at room entry. Data were categorized into day (7 AM to 3 PM) and 

night (3 PM to 7 AM) shifts. 
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All observers completed one-on-one training with a single infection preventionist prior to 

data collection. They wore identification badges and red polo volunteer shirts, neither of 

which were visible through the opaque isolation gowns donned on room entry. In an 

effort to maintain covert observations, we trained and used 195 different observers, to 

date. Each typically conducted observations once weekly over the course of a college 

semester. 

Observations were recorded on OpenText Teleform (OpenText Corp, Waterloo, ON) 

scannable forms and scanned into a Microsoft Access (Microsoft Corp, Redmond, WA) 

database. If questioned by staff, covert observers used a standard script to discuss the 

project (Fig 1). 
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Fig 1. Script provided to observers to address issues related to patient involvement and 

staff concerns. 

 

For comparison, monthly historical hand hygiene compliance data were also obtained 

from the hospital’s infection control database for this time period. These data are 

routinely collected by trained overt observers on all patients, not just those with CDI. 

Hand hygiene at entry and exit were reported as a composite measure. Compliance 
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was defined as described earlier, with exit practices liberalized to also include alcohol 

handrub. 

Analyses were performed in R software (R Foundation for Statistical Computing, 

Vienna, Austria), using the χ2 test or the t test. This was a quality-improvement study, 

deemed exempt from review by the University of Wisconsin Health Sciences 

institutional review board. 

 

Results 

A total of 2,889 covert observations were collected from CDI rooms. Among these, 

visitors had the lowest rates of compliance for all 3 measures: hand hygiene at entry, 

hand hygiene at exit, and contact precautions (Table 1). Overall hand hygiene 

compliance among health care workers was 71.6% and 73.7% at entry and exit, 

respectively. Hand hygiene compliance was comparable between nurses and 

physicians at entry (70.9% vs 75.0%; P = .37) and exit (75.7% vs 71.4%; P = .17). 

Contact precautions compliance was also the same at 80.4% for nurses and 83.7% for 

physicians (P = .21). Overall health care worker compliance with contact precautions 

was 80.6%. 

Table 1. Hand hygiene and contact precautions practices, evaluated by population 
type and time of observation. 
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S/W, soap and water. 
*Compliant versus non-compliant across all 5 population types. 
†Includes pharmacy, physical therapy, occupational therapy, respiratory therapy, 
phlebotomy, radiology technicians, and other health care workers. 
‡Includes environmental cleaning, transport, food services, and other non-health care 
workers. 
 

 

There was no difference in hand hygiene compliance for CDI patients at entry or exit 

between day and night shifts. However, there was a decrease in contact precaution use 

at night that remained significant among employee-only data, when visitors were 

excluded (83.3% vs 74.6%; P = .001). 

 

A total of 101,833 hand hygiene observations were obtained by infection control. 

Compliance from these hospital-wide, overt observations was significantly higher for 
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nurses than physicians (97.2% vs 90.5%; P < .001). Similar rates were reported for 

other health care providers (97.1%) and non-health care provider employees (93.0%). 

Discussion 

There was no difference in hand hygiene or contact precaution compliance between 

covertly observed physicians and nurses working with CDI patients. However, hospital-

wide overt observation data over the same time period showed significantly higher 

nursing compliance. Although hospital-wide and CDI-specific rates are not directly 

comparable, hand hygiene compliance at exit is typically higher for patients under 

contact precautions than the general hospital population.8,9 Therefore, our CDI-specific 

hand hygiene rates likely overestimate hospital-wide compliance and underestimate 

differences between overt and covertly observed measurements at our institution. 

The conflicting nature of our in-room and overt observation findings are directly in line 

with recent systematic reviews of hand hygiene practices, which illustrate a lack of 

clarity regarding the effect of provider type on compliance.2 Studies reporting higher 

nursing compliance typically used overt observations or self-report methodology. 

However, overt observers overestimate compliance twice as much when evaluating 

nurses as physicians.3,4 Therefore, it is not surprising that our institution’s nursing and 

physician hand hygiene rates were more similar among covert than overt observations. 

In addition to using distinct CDI-specific and hospital-wide populations for in-room and 

overt observations, we were also limited by the inability of in-room observers to record 

outside-room hand hygiene that was not visible from inside. Observers could not doff 

gown and gloves and exit the patient’s room between observations, which resulted in a 

disproportionate amount of missing data regarding hand hygiene at entry. Considering 
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that all subjects had access to the same outside-room sink and alcohol dispensers, 

differential rates of visibility are not expected to have biased this assessment of hand 

hygiene compliance. 

 

Finally, to our knowledge, this is the first study to evaluate diurnal effects of contact 

precaution usage. Notably, the decrease in compliance overnight cannot be fully 

explained by low adherence among visitors, as the association remained significant 

when visitors were excluded. It is possible that fewer providers working overnight results 

in increased clinical burdens and perceived lack of time, both of which contribute to low 

compliance with contact precautions.10 

 

Conclusions 

Covert observations do not simply replicate the findings of routine, overt observations, 

but provide a more realistic estimate of compliance with infection control practices. The 

added burden of covert observation is warranted for CDI patients, given the importance 

of accurate hand hygiene measurements for this population.1 The cost of conducting 

covert observations can be minimized by relying on hospital volunteers and light-duty 

staff trained in infection control monitoring. 
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ABSTRACT 

Background: Advances in microbiome science are being driven in large part due to our 

ability to study and infer microbial ecology from genomes reconstructed from mixed 
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microbial communities using metagenomics and single-cell genomics. Such omics-

based techniques allow us to read genomic blueprints of microorganisms, decipher their 

functional capacities and activities, and reconstruct their roles in biogeochemical 

processes. Currently available tools for analyses of genomic data can annotate and 

depict metabolic functions to some extent, however, no standardized approaches are 

currently available for the comprehensive characterization of metabolic predictions, 

metabolite exchanges, microbial interactions, and microbial contributions to 

biogeochemical cycling.  

 

Results: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In 

miCrobes), a scalable software to advance microbial ecology and biogeochemistry 

studies using genomes at the resolution of individual organisms and/or microbial 

communities. The genome-scale workflow includes annotation of microbial genomes, 

motif validation of biochemically validated conserved protein residues, metabolic 

pathway analyses, and calculation of contributions to individual biogeochemical 

transformations and cycles. The community-scale workflow supplements genome-scale 

analyses with determination of genome abundance in the microbiome, potential 

microbial metabolic handoffs and metabolite exchange, reconstruction of functional 

networks, and determination of microbial contributions to biogeochemical cycles. 

METABOLIC can take input genomes from isolates, metagenome-assembled genomes, 

or single-cell genomes. Results are presented in the form of tables for metabolism and 

a variety of visualizations including biogeochemical cycling potential, representation of 

sequential metabolic transformations, community-scale microbial functional networks 
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using a newly defined metric ‘MW-score’ (metabolic weight score), and metabolic 

Sankey diagrams. METABOLIC takes ~3 hours with 40 CPU threads to process ~100 

genomes and corresponding metagenomic reads within which the most compute-

demanding part of hmmsearch takes ~45 mins, while it takes ~5 hours to complete 

hmmsearch for ~3600 genomes. Tests of accuracy, robustness, and consistency 

suggest METABOLIC provides better performance compared to other software and 

online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its 

capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial 

subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut. 

 

Conclusion: METABOLIC enables the consistent and reproducible study of microbial 

community ecology and biogeochemistry using a foundation of genome-informed 

microbial metabolism, and will advance the integration of uncultivated organisms into 

metabolic and biogeochemical models. METABOLIC is written in Perl and R and is 

freely available at https://github.com/AnantharamanLab/METABOLIC under GPLv3. 

 

Keywords: functional traits, metagenome-assembled genomes, microbiome, 

biogeochemistry, metabolic potential, microbial functional networks.  

 

 

INTRODUCTION 

Metagenomics and single-cell genomics have transformed the field of microbial ecology 

by revealing a rich diversity of microorganisms from diverse settings, including terrestrial 
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1-3 and marine environments 4, 5 and the human body 6. These approaches can provide 

an unbiased and insightful view into microorganisms mediating and contributing to 

biogeochemical activities at a number of scales ranging from individual organisms to 

communities [7-9]. Recent studies have also enabled the recovery of hundreds to 

thousands of genomes from a single sample or environment 8, 10, 11. However, analyses 

of ever-increasing datasets remain a challenge. For example, there is a lack of scalable 

and reproducible bioinformatic approaches for characterizing metabolism and 

biogeochemistry, as well as standardizing their analyses and representation for large 

datasets. 

 

Microbially-mediated biogeochemical processes serve as important driving forces for 

the transformation and cycling of elements, energy, and matter among the lithosphere, 

atmosphere, hydrosphere, and biosphere 12. Microbial communities in natural 

environmental settings exist in the form of complex and highly connected networks that 

share and compete for metabolites 13-15. The interdependent and cross-linked metabolic 

and biogeochemical interactions within a community can provide a relatively high level 

of plasticity and flexibility 16. For instance, multiple metabolic steps within a specific 

pathway are often separately distributed in a number of microorganisms and they are 

interdependent on utilizing the substrates from the previous step 2, 17, 18. This scenario, 

referred to as ‘metabolic handoffs’, is based on sequential metabolic transformations, 

and provides the benefit of high resilience of metabolic activities which make both the 

community and function stable in the face of perturbations 17, 18. It is therefore highly 
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valuable to obtain the information of microbial metabolic function from the perspective of 

individual genomes as well as the entire microbial community.  

 

Currently, there are many quantitative software and platforms for reconstructing species 

and community-level metabolic networks 19-25. They are largely based on building 

microbial metabolic models containing reactions for substrate utilization and product 

generation 15, 19. Based on individual microbial models, metabolic phenotypes for the 

whole community can be further predicted 15. These approaches allow providing 

mechanistic bases for predicting and thus operating community metabolisms based on 

the given environmental conditions and predicted microbial phenotypes 26. Thus they 

are more focused on illustrating the operating principles of community metabolisms and 

the underlying metabolic networks of connected reactions to achieve better outcomes 

for metabolite production 21, 22, industrial applications 19, drug discovery 19, etc.  

 

Yet, seldom have approaches been developed to study the functional role of 

microorganisms in the context of biogeochemistry and community-level functional 

networks 27, 28. Such tools are based on the principles of facilitating the understanding of 

microbially-mediated biogeochemical activities. The tools ask for identifying and 

providing metabolic predictions on the functional details, transformations of nutrients 

and energy, and functional connections for microorganisms within the community 29. 

The resulting genome-informed microbial metabolisms are important for understanding 

the microbial roles within a whole community in mediating the biogeochemical 

processes. Currently, such quantitative approaches to interpret functional details, 
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reconstruct metabolic relationships, and visualize microbial functional networks are still 

limited 27, 28. 

  

Prediction of microbial metabolism relies on the annotation of protein function for 

microorganisms using a number of established databases, e.g., KEGG 30, MetaCyc 31, 

Pfam 32, TIGRfam 33, SEED/RAST 34, and eggNOG 35. However, these results are often 

highly detailed, and therefore can be overwhelming to users. Obtaining a functional 

profile and identifying metabolic pathways in a microbial genome can involve manual 

inspection of thousands of genes 36. Organizing, interpreting, and visualizing such 

datasets remains a challenge and is often untenable especially with datasets larger than 

one microbial genome. There is a critical need for approaches and tools to identify and 

validate the presence of metabolic pathways, biogeochemical function, and connections 

in microbial communities in a user-friendly manner. Such tools addressing this gap 

would also allow standardization of methods and easier integration of genome-informed 

metabolism into biogeochemical models, which currently rely primarily on 

physicochemical data and treat microorganisms as black boxes 37. A recent statistical 

study indicates that incorporating microbial community structure in biogeochemical 

modeling could significantly increase model accuracy of processes that are mediated by 

narrow phylogenetic guilds via functional gene data, and processes that are mediated 

by facultative microorganisms via community diversity metrics 38. This highlights the 

importance of integrating microbial community and genomic information into the 

prediction and modeling of biogeochemical processes. 
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Here we present the software METABOLIC (METabolic And BiogeOchemistry anaLyses 

In miCrobes), a toolkit to profile metabolic and biogeochemical traits, and functional 

networks in microbial communities based on microbial genomes. METABOLIC 

integrates annotation of proteins using KEGG 30, TIGRfam 33, Pfam 32, custom hidden 

Markov model (HMM) databases 2, dbCAN2 39, and MEROPS 40, incorporates a protein 

motif validation step to accurately identify proteins based on prior biochemical 

validation, and determines presence or absence of metabolic pathways based on 

KEGG modules. METABOLIC also produces user-friendly outputs in the form of tables 

and figures including a summary of microbial functional profiles, biogeochemically-

relevant pathways, functional networks at the scale of individual genomes and 

community levels, and microbial contribution to the biogeochemical processes. 

 

METHODS 

HMM databases used by METABOLIC 

To generate a broad range of metabolic gene HMM profiles, we integrated three sets of 

HMM-based databases, which are KOfam 41 (July 2019 release, containing HMM 

profiles for KEGG/KO with predefined score thresholds), TIGRfam 33 (Release 15.0), 

Pfam 32 (Release 32.0), and custom metabolic HMM profiles 2. In order to achieve a 

better HMM search result excluding non-specific hits, we have tested and manually 

curated cutoffs for those HMM databases listed above into the resulting HMMs: KOfam 

database - KOfam suggested values; TIGRfam/Pfam/Custom databases - manually 

curated by adjusting noise cutoffs (NC) or trusted cutoffs (TC) to avoid potential false 

positive hits. For the KOfam suggested cutoffs, we considered both the score type (full 
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length or domain) and the score value to assign whether an individual protein hit is 

significant or not. HMM databases were used as the reference for hmmsearch 42 to find 

protein hits of input genomes. Prodigal 43 was used to annotate genomic sequences 

(the method used to find ORFs by Prodigal can be set by METABOLIC as “meta” or 

“single”), or a user can provide self-annotated proteins (with extensions of “.faa”) to 

facilitate incorporation into existing pipelines. Methods on the manual curation of these 

HMM databases are described in the next section. 

 

Curation of cutoff scores for metabolic HMMs 

Two curation methods for adjusting NC or TC of TIGRfam/Pfam/Custom databases 

were used for a specific HMM profile. First, we parsed and downloaded representative 

protein sequences according to either the corresponding KEGG identifier or UniProt 

identifier 44. We then randomly subsampled a small portion of the sequences (10% of 

the whole collection if this was more than 10 sequences, or at least 10 sequences) as 

the query to search against the representative protein collections 42. Subsequently, we 

obtained a collection of hmmsearch scores by pairwise sequence comparisons. We 

plotted scores against hmmsearch hits and selected the mean value of the sharpest 

decreasing interval as the adjusted cutoff (approximately the F1 score). Second, we 

downloaded a collection of proteins that belong to a specific HMM profile and pre-

checked the quality and phylogeny of these proteins by reconstructing and manually 

inspecting phylogenetic trees. We applied pre-checked protein sequences as the query 

search against a set of training metagenomes (data not shown). We then obtained a 

collection of hmmsearch scores of resulting hits from the training metagenomes. By 
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using a similar method as described above, the cutoff was selected as the mean value 

of the sharpest decreasing interval. 

 

The following example demonstrates how the method above was used to curate the 

cutoffs for hydrogenase enzymes. We then expanded this method to all genes using a 

similar method. We downloaded the individual protein collections for each hydrogenase 

functional group from the HydDB 45, which included [FeFe] Group A-C series, [Fe] 

Group, and [NiFe] Group 1-4 series. The individual hydrogenase functional groups were 

further categorized based on the catalyzing directions, which included H2-evolution, H2-

uptake, H2-sensing, electron-bifurcation, and bidirection. To define the NC cutoff (‘--

cut_nc’ in hmmsearch) for individual hydrogenase groups, we used the protein 

sequences from each hydrogenase group as the query to hmmsearch against the 

overall hydrogenase collections. By plotting the resulting hmmsearch hit scores against 

individual hmmsearch hits, we selected the mean value of the sharpest decreasing 

interval as the cutoff value. 

 

Motif validation 

To automatically validate protein hits and avoid false positives, we introduced a motif 

validation step by comparing protein motifs against a manually curated set of highly 

conserved residues in important proteins. This manually curated set of highly conserved 

residues is derived from either reported works or protein alignments from this study. We 

chose 20 proteins associated with important metabolisms (with a focus on important 

biogeochemical cycling steps) that are prone to be misannotated into proteins within the 
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same protein family. Details of these proteins are provided in Additional file 8: Dataset 

S1. For example, DsrC (sulfite reductase subunit C) and TusE (tRNA 2-thiouridine 

synthesizing protein E) are similar proteins that are commonly misannotated. Both of 

them are assigned to the family KO:K11179 in the KEGG database. To avoid assigning 

TusE as a sulfite reductase, we identified a specific motif for DsrC but not TusE 

(GPXKXXCXXXGXPXPXXCX”, where “X” stands for any amino acid) 46. We used these 

specific motifs to filter out proteins that have high sequence similarity but functionally 

divergent homologs. 

 

Annotation of carbohydrate-active enzymes and peptidases 

For carbohydrate-active enzymes (CAZymes), dbCAN2 39 was used to annotate 

proteins with default settings. The hmmscan parser and HMM database (2019-09-05 

release) were downloaded from the dbCAN2 online repository 

(http://bcb.unl.edu/dbCAN2/download/) 39. The non-redundant library of protein 

sequences which contains all the peptidase/inhibitor units from the peptidase (inhibitor) 

database MEROPS 40 (known as the ‘MEROPS pepunit’ database) was used as the 

reference database to search against putative peptidases and inhibitors using 

DIAMOND. The settings used for the DIAMOND BLASTP search were “-k 1 -e 1e-10 --

query-cover 80 --id 50” 47. We used the ‘MEROPS pepunit’ database due to the fact that 

it only includes the functional unit of peptidases/inhibitors 40 which can effectively avoid 

potential non-specific hits.  

 

Implementation of METABOLIC-G and METABOLIC-C 
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To target specific applications in processing omics datasets, we have implemented two 

versions of METABOLIC: METABOLIC-G (genome version) and METABOLIC-C 

(community version). METABOLIC-G intakes only genome files and provides analyses 

for individual genome sequences (including three kinds of genomes, e.g., single-cell 

genomes, isolate genomes, and metagenome-assembled genomes). The analyzing 

procedures of METABOLIC-G for all these three kinds of genomes are the same.  

 

METABOLIC-C includes an option for users to include metagenomic reads for mapping 

to metagenome-assembled genomes (MAGs). Using Bowtie 2 (version ≥ v2.3.4.1) 48, 

metagenomic BAM files were generated by mapping all input metagenomic reads to 

gene collections from input genomes. Subsequently, SAMtools (version ≥ v0.1.19) 49, 

BAMtools (version ≥ v2.4.0) 50, and CoverM (https://github.com/wwood/CoverM) were 

used to convert BAM files to sorted BAM files and to calculate the gene coverage. To 

calculate the relative abundance of a specific biogeochemical cycling step, all the 

coverage of genes that are responsible for this step were summed up and normalized 

by overall gene coverage. Reads from single-cell and isolate genomes can also be 

mapped in an identical manner to metagenomes. The gene coverage result generated 

by metagenomic read mapping was further used in downstream processing steps to 

conduct community-scale interaction and network analyses. 

 

Classifying microbial genomes into taxonomic groups 

To study community-scale interactions and networks of each microbial group within the 

whole community, we classified microbial genomes into individual taxonomic groups. 
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GTDB-Tk v0.1.3 51 was used to assign taxonomy of input genomes with default settings. 

GTDB-Tk can provide automated and objective taxonomic classification based on the 

rank-normalized Genome Taxonomy Database (GTDB) taxonomy within which the 

taxonomy ranks were established by a sophisticated criterion counting the relative 

evolutionary divergence (RED) and average nucleotide identity (ANI) 51, 52. 

Subsequently, genomes were clustered into microbial groups at the phylum level, 

except for Proteobacteria which were replaced by its subordinate classes due to its wide 

coverage. Taxonomic assignment information for each genome was used in the 

downstream community analyses. 

 

Analyses and visualization of metabolic outputs, biogeochemical cycles, MW-

scores, functional networks, and metabolic Sankey diagrams 

To visualize the outputted metabolic results, the R script 

“draw_biogeochemical_cycles.R” was used to draw the corresponding metabolic 

pathways for individual genomes. We integrated HMM profiles that are related to 

biogeochemical activities and assigned HMM profiles to 31 distinct biogeochemical 

cycling steps (See details in “METABOLIC_template_and_database” folder on the 

GitHub page). The script can generate figures showing biogeochemical cycles for 

individual genomes and the summarized biogeochemical cycle for the whole 

community. By using the results of metabolic profiling generated from hmmsearch and 

gene coverage from the mapping of metagenomic reads, we can depict metabolic 

capacities of both individual genomes and all genomes within a community as a whole. 

The community-level diagrams, including sequential transformation diagrams, functional 
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network diagrams, and metabolic Sankey diagrams, were generated using both 

metabolic profiling and gene coverage results. The diagrams are made by the scripts 

“draw_sequential_reaction_diagram.R”, “draw_metabolic_Sankey_diagram.R”, and 

“draw_functional_network_diagram.R”, respectively (For details, refer to GitHub wiki 

pages).  

 

MW-score (metabolic weight score) is a metric reflecting the functional capacity and 

abundance of a microbial community in co-sharing functional networks. It was 

calculated at the community-scale level based on results of metabolic profiling and gene 

coverage from metagenomic read mapping as described above. We divided 

metabolic/biogeochemical cycling steps (31 in total) into a finer level – function (51 

functions in total) – for better resolution on reflecting functional networks. By using 

similar methods for determining metabolic interactions (as described above), we 

selected functions that are shared among genomes. MW-score for each function was 

calculated by summing up all the coverage values of each function (calculated by 

summing up all coverage values of genomes that contain this function) and 

subsequently normalizing it by the overall function coverage. For each function, the 

contribution percentage of each microbial phylum (the default taxonomic level setting) 

was also calculated accordingly. One can also change the taxonomic level setting to the 

resolution of “class”, “order”, “family”, or “genus” to calculate the corresponding 

contribution percentage of each microbial group. Two equations are provided as follows 

to calculate each function’s MW-score (1) and the percentage of contribution of each 

microbial group to the MW-score (2): 
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In equation (1), MW refers to MW-score. fi refers to the studied function (f) which ranks 

in the (i) position amongst all functions. g1 and gn indicate the first and the last genome 

amongst all genomes. f1 and fn indicate the first and the last function amongst all 

functions. Cg means the coverage of a genome and Sf means the presence (denoted 

as 1) or absence (denoted as 0) state of a function within that genome. In equation (2), 

Cprec refers to the contribution percentage of a microbial group to the MW-score. pj 

means the studied group (p) which ranks in the (j) position amongst all groups. gk and 

gl indicate the genomes which rank in the (k) position and the (l) position amongst all 

genomes; the additional note g_k…g_l  ∈p_j indicates all the genomes between these 

two belong to the studied group pj.  

 

Example of METABOLIC analysis 

An example of community-scale analyses including element biogeochemical cycling and 

sequential reaction analyses, functional network and metabolic Sankey visualization, 

and MW-score calculation were conducted using a metagenomic dataset of microbial 

community inhabiting deep-sea hydrothermal vent environment of Guaymas Basin in 

the Pacific Ocean 53. It contains 98 MAGs and 1 set of metagenomic reads (genomes 

were available at NCBI BioProject PRJNA522654 and metagenomic reads were 

deposited to NCBI SRA with accession as SRR3577362).   
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A metagenomic-based study of the microbial community from an aquifer adjacent to 

Colorado River, located near Rifle, has provided an accurate reconstruction of the 

metabolism and ecological roles of the microbial majority 2. From underground water 

and sediments of the terrestrial subsurface at Rifle, 2545 reconstructed MAGs were 

obtained (genomes are under NCBI BioProject PRJNA288027). They were used as the 

in silico dataset to test METABOLIC’s performance. First, all the microbial genomes 

were dereplicated by dRep v2.0.5 54 to pick the representative genomes for downstream 

analysis using the setting of ‘-comp 85’. Then, METABOLIC-G was applied to profile the 

functional traits of these representative genomes using default settings. Finally, the 

metabolic profile chart was depicted by assigning functional traits to GTDB taxonomy-

clustered genome groups.  

 

Test on software performance for different environments 

To benchmark and test the performance of METABOLIC in different environments, eight 

datasets of metagenomes and metagenomic reads from marine, terrestrial, and human 

environments were used. These included marine subsurface sediments 55 (Deep 

biosphere beneath Hydrate Ridge offshore Oregon), freshwater lake 56 (Lake 

Tanganyika, eastern Africa), colorectal cancer (CRC) patient gut 57, healthy human gut 

57, deep-sea hydrothermal vent 53 (Guaymas Basin, Gulf of California), terrestrial 

subsurface sediments and water 2 (Rifle, CO, USA), meadow soils 58 (Angelo Coastal 

Range Reserve, CA, USA), and advanced water treatment facility 59 (Groundwater 

Replenishment System, Orange County, CA, USA). Default settings were used for 

running METABOLIC-C. 
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Comparison of community-scale metabolism 

To compare the metabolic profile of two environments at the community scale, MW-

score was used as the benchmarker. Two sets of environment pairs were compared, 

including the pair of marine subsurface sediments 55 and terrestrial subsurface 

sediments 2 and the pair of freshwater lake 56 and deep-sea hydrothermal vent 53. To 

demonstrate differences between these environments in specific biogeochemical 

processes, we focused on the biogeochemical cycling of sulfur. The sulfur 

biogeochemical cycling diagrams were depicted with the annotation of the number and 

the coverage of genomes that contain each biogeochemical cycling step. 

 

Metabolism in human microbiomes 

To inspect the metabolism of microorganisms in the human microbiome (associated 

with skin, oral mucosa, conjunctiva, gastrointestinal tracts, etc.), a subset of KOfam 

HMMs (139 HMM profiles) were used as markers to depict the human microbiome 

metabolism (parsed by HuMiChip targeted functional gene families 60). They included 10 

function categories as follows: amino acid metabolism, carbohydrate metabolism, 

energy metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism 

of cofactors and vitamins, metabolism of other amino acids, metabolism of terpenoids 

and polyketides, nucleotide metabolism, and translation. The CRC and healthy human 

gut (healthy control) sample datasets were used as the input (Accession IDs: BioProject 

PRJEB7774 Sample 31874 and Sample 532796). Heatmap of presence/absence of 

these functions were depicted by R package “pheatmap” 61 with 189 horizontal entries 
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(there are duplications of HMM profiles among function categories; for detailed human 

microbiome metabolism markers, refer to Additional file 9: Dataset S2). 

 

Representation of microbial cell metabolism 

To provide a schematic representation of the metabolism of microbial cells, two 

microbial genomes were used as examples, Hadesarchaea archaeon 1244-C3-H4-B1 

and Nitrospirae bacteria M_DeepCast_50m_m2_151. METABOLIC-G results of these 

two genomes, including functional traits and KEGG modules, were used to draw the cell 

metabolism diagrams. 

 

Metatranscriptome analysis by METABOLIC 

METABOLIC-C can take metatranscriptomic reads as input into transcript coverage 

calculation and integrate the result into downstream community analyses. METABOLIC-

C uses a similar method to that of gene coverage calculation, including mapping 

transcriptomic reads to the gene collection from input genomes, converting BAM files to 

sorted BAM files, and calculating the transcript coverage. The raw transcript coverage 

was further normalized by the gene length and metatranscriptomic read number in 

Reads Per Kilobase of transcript, per Million mapped reads (RPKM). Hydrothermal vent 

and background seawater transcriptomic reads from Guaymas Basin (NCBI SRA 

accessions: SRR452448 and SRR453184) were used to test the outcome of 

metatranscriptome analysis. 

 

RESULTS 
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Given the ever-increasing number of microbial genomes from microbiome studies, we 

developed METABOLIC to enable the metabolic pathway analysis and the visualization 

of biogeochemical cycles and community-scale functional networks. METABOLIC has 

an improved methodology to get fast, accurate, and robust annotation results, and it 

integrates a variety of visualization functions for better interpreting the community-level 

functional interactions and microbial contributions. While METABOLIC relies on 

microbial genomes and metagenomic reads for underpinning its analyses for 

community-level functional interactions, it can easily integrate transcriptomic datasets to 

provide an activity-based measure of community networks. The scalable capacity, wide 

utility, and compatibility for analyzing datasets from various environments make it a 

well-tailored tool for metabolic profiling of large sets of genomes. In the following 

sections, the microbial community consisting of 98 MAGs from a deep-sea hydrothermal 

vent was used as the input dataset if not mentioned otherwise. 

 

Workflow to determine the presence of metabolic pathways 

METABOLIC is written in Perl and R and is expected to run on Unix, Linux, or macOS. 

The prerequisites are described on METABOLIC’s GitHub wiki pages 

(https://github.com/AnantharamanLab/METABOLIC/wiki). The input folder requires 

microbial genome sequences in FASTA format and an optional set of 

genomic/metagenomic reads which were used to reconstruct those genomes (Figure 1). 

The annotated proteins from input genomic sequences are queried against HMM 

databases (KEGG KOfam, Pfam, TIGRfam, and custom HMMs) using hmmsearch 

implemented within HMMER 42 which applies methods to detect remote homologs as 
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sensitively and efficiently as possible. After the hmmsearch step, METABOLIC 

subsequently validates the primary outputs by a motif-checking step for a subset of 

protein families; only those protein hits which successfully pass this step are regarded 

as positive hits. 

 

Figure 1. An outline of the workflow of METABOLIC. Detailed instructions are 
available at https://github.com/AnantharamanLab/METABOLIC/wiki. METABOLIC-G 
workflow is specifically shown in the blue box and METABOLC-C workflow is shown in 
the green square. 
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METABOLIC relies on matches to the above databases to infer the presence of specific 

metabolic pathways in microbial genomes. Individual KEGG annotations are inferred in 

the context of KEGG modules for a better interpretation of metabolic pathways. A 

KEGG module is comprised of multiple steps with each step representing a distinct 

metabolic function. We parsed the KEGG module database 62 to link the existing 

relationship of KO identifiers to KEGG module identifiers to project our KEGG 

annotation result into the interactive network which was constructed by individual 

building blocks – modules – for better representation of metabolic blueprints of input 

genomes. In most cases, we used KOfam HMM profiles for KEGG module 

assignments. For a specific set of important metabolic marker proteins and commonly 

misannotated proteins, we also applied the TIGRfam/Pfam/custom HMM profiles and 

motif-validation steps. The software has customizable settings for increasing or 

decreasing the priority of specific databases, primarily meant to increase annotation 

confidence by preferentially using custom HMM databases over KEGG KOfam when 

both targeting the same set of proteins. 

  

Since individual genomes from metagenomes and single-cell genomes can often have 

incomplete metabolic pathways due to their low completeness compared to isolate 

genomes, we provide an option to determine the completeness of a metabolic pathway 

(or a module here). A user-defined cutoff is used to set the threshold of completeness 

for a given module to be assigned as present (the default cutoff is the presence of 75% 

of metabolic steps/genes within a given module), which is then used to produce a 

KEGG module presence/absence table. All modules exceeding the cutoff value are 
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determined to be present. Meanwhile, the presence/absence information for each 

module step is also summarized in an overall output table to facilitate further detailed 

investigations. 

 

Outputs consist of six different results that are reported in an Excel spreadsheet 

(Additional file 1: Figure S1). These contain details of protein hits (Additional file 1: 

Figure S1A) which include both presence/absence and protein names, 

presence/absence of functional traits (Additional file 1: Figure S1B), presence/absence 

of KEGG modules (Additional file 1: Figure S1C), presence/absence of KEGG module 

steps (Additional file 1: Figure S1D), carbohydrate-active enzyme (CAZyme) hits 

(Additional file 1: Figure S1E) and peptidase/inhibitor hits (Additional file 1: Figure S1F). 

For each HMM profile, the protein hits from all input genomes can be used to construct 

phylogenetic trees or further be combined with reference protein collections for detailed 

evolutionary analyses.  

 

Quantitative visualization of biogeochemical cycles and sequential reactions 

After METABOLIC generates protein and pathway annotation results, the software 

further identifies and highlights specific pathways of importance in microbiomes 

associated with energy metabolism and biogeochemistry. To visualize pathways of 

biogeochemical importance, it generates schematic profiles for nitrogen, carbon, sulfur, 

and other elemental cycles for each genome. The set of genomes used as input is 

considered the “community”, and each genome within is considered an “organism”. A 

summary schematic diagram at the community level integrates results from all individual 
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genomes within a given dataset (Figure 2) and includes computed abundances for each 

step in a biogeochemical cycle if the genomic/metagenomic read datasets are provided. 

The genome number labeled in the figure indicates the number/quantity of genomes 

that contain the specific gene components of a biogeochemical cycling step (Figure 2) 2. 

In other words, it represents the number of organisms within a given community inferred 

to be able to perform a given metabolic or biogeochemical transformation. The 

abundance percentage indicates the relative abundance of microbial genomes that 

contain the specific gene components of a biogeochemical cycling step among all 

microbial genomes in a given community (Figure 2) 2. 

 

Figure 2. Summary scheme of biogeochemical cycling processes at the 
community scale. Each arrow represents a single transformation/step within a cycle. 
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Labels above each arrow are (from top to bottom): step number and reaction, number of 
genomes that can conduct these reactions, metagenomic coverage of genomes 
(represented as a percentage within the community) that can conduct these reactions. 
The numbers in brackets next to the nitrogen or sulfur-containing compounds are 
chemical states of the nitrogen or sulfur atoms in these compounds. 
 

 

Microorganisms in nature often do not encode pathways for the complete transformation 

of compounds. For example, microorganisms possess partial pathways for 

denitrification that can release intermediate compounds like nitrite, nitric oxide, and 

nitrous oxide in lieu of nitrogen gas which is produced by complete denitrification 63. A 

greater energy yield could be achieved if one microorganism conducts all steps 

associated with a pathway (such as denitrification) 2 since it could fully use all available 

energy from the reaction. However, in reality, few organisms in microbial communities 

carry out multiple steps in complex pathways; organisms commonly rely on other 

members of microbial communities to conduct sequential reactions in pathways 2, 64, 65. 

Thus, to study this metabolic scenario in microbial communities, METABOLIC 

summarizes and enables visualization of the genome number and coverage (relative 

abundance) of microorganisms that are putatively involved in the sequential 

transformation of both important inorganic and organic compounds (Figure 3). This 

provides a quantitative calculation of microbial interactions and connections using 

shared metabolites associated with inorganic and organic transformations. Additionally, 

it shows the intuitive pattern of quantity and abundance of microorganisms that are able 

to conduct partial or all steps for a given pathway, which potentially reflects the degree 

of resilience of a microbial community.  
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Figure 3. Schematic figure of sequential metabolic transformations. (A) the 
sequential transformation of inorganic compounds; (B) the sequential transformation of 
organic compounds. X-axes describe individual sequential transformations indicated by 
letters. The two panels describe the number of genomes and genome coverage 
(represented as a percentage within the community) of organisms that are involved in 
certain sequential metabolic transformations. The deep-sea hydrothermal vent dataset 
was used for these analyses.   
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Calculation and visualization of functional networks, metabolic weight scores 

(MW-scores), and microbial contribution to metabolic reactions 

Given the microbial pathway abundance information generated by METABOLIC, we 

identified co-existing metabolisms in microbial genomes as a measure of connections 

between different metabolic functions and biogeochemical steps. In the context of 

biogeochemistry, this approach allows the evaluation of relatedness among 

biogeochemical steps and the connection contribution by microorganisms. This is 

enabled at the resolution of individual microbial groups based on the phylogenetic 

classification (Figure 4) assigned by GTDB-Tk 51. As an example, we have 

demonstrated this approach on a microbial community inhabiting deep-sea 

hydrothermal vents. We divided the microbial community of deep-sea hydrothermal 

vents into 18 phylum-level groups (except for Proteobacteria which were divided into 

their subordinate classes). The functional network diagrams were depicted at the 

resolution of both individual phyla and the entire community level (Additional file 10: 

Dataset S3). Figure 4 demonstrates metabolic connections that were represented with 

individual metabolic/biogeochemical cycling steps depicted as nodes, and the 

connections between two given nodes depicted as edges. The size of a given node is 

proportional to the degree (number of connections to each node). The thickness of a 

given edge was depicted based on the average of gene coverage values of two 

biogeochemical cycling steps (the connected nodes). More edges connecting two nodes 

represent more connections between these two steps. The color of the edge 

corresponds to the taxonomic group. At the whole community level, more abundant 

microbial groups were more represented in the diagram (Figure 4). Overall, 
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METABOLIC provides a comprehensive approach to construct and visualize functional 

networks associated with important pathways of energy metabolism and 

biogeochemical cycles in microbial communities and ecosystems. 

 

 

Figure 4. Functional network showing connections between different functions in 
the microbial community. Nodes represent individual steps in biogeochemical cycles; 
edges connecting two given nodes represent the functional connections between 
nodes, which are enabled by organisms that can conduct both biogeochemical 
processes/steps. The size of the node was depicted according to the degree (number of 
connections to each node). The thickness of the edge was depicted according to the 
average gene coverage values of the two connected biogeochemical cycling steps – for 
example, thiosulfate oxidation and organic carbon oxidation. The color of the edges was 
assigned based on the taxonomy of the represented genome. The deep-sea 
hydrothermal vent dataset was used for these analyses.   
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To address the lack of quantitative and reproducible measures to represent potential 

metabolic interactions in microbial communities, we developed a new metric that we 

termed MW-score (metabolic weight scores) (Equations 1 and 2). MW-scores 

quantitatively measure “function weights” within a microbial community as reflected by 

the metabolic profile and gene coverage. As metabolic potential for the whole 

community was profiled into individual functions that either mediated specific pathways 

or transformed certain substrates into products, a function weight that reflects the 

abundance fraction for each function can be used to represent the overall metabolic 

potential of the community. MW-scores resolved the functional capacity and abundance 

in the co-sharing functional networks as studied and visualized in the above section. 

More frequently shared functions and their higher abundances lead to higher MW-

scores, which quantitatively reflects the function weights in functional networks (Figure 

5). MW-score reflects the same functional networking pattern as the above description 

on the edges (networking lines) connecting the nodes (metabolic steps) that – more 

edges connecting two nodes indicates two steps are more co-shared, thicker edges 

indicate higher gene abundance for the metabolic steps. The MW-scores can 

integratively represent these two networking patterns and serve as metrics to measure 

these function weights. At the same time, we also calculated each microbial group’s 

(phylum in this case) contribution to the MW-score of a specific function within the 

community (Figure 5). A higher microbial group contribution percentage value indicates 

that one function is more represented by the microbial group (for both gene presence 

and abundance) in the functional networks. MW-scores provide a quantitative measure 
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of comparing function weights and microbial group contributions within functional 

networks. 

 

 
Figure 5. Description, calculation, and result table of MW-scores. (A) The 
calculation method for the MW-score within a community based on a given 
metagenomic dataset. Each circle stands for a genome within the community, and the 
adjacent bar stands for its genome coverage within the community. The coverage 
values of encoded genes for all functions were summed up as the denominator, and the 
coverage value of encoded genes for each function was used as the numerator, and the 
MW-score was calculated accordingly for each function. (B) The resulting table of MW-
score for the deep-sea hydrothermal vent metagenomic dataset. MW-score for each 
function was given in a separated column, and the rest of the table indicates the 
contribution percentage to each MW-score of the genomes grouped in each phylum. 
The MW-score of “N-S-07:Nitrous oxide reduction” was not exactly 0 but rounded to 0 
due to the original number being less than 0.05. Additionally, contribution percentages 
were also rounded to only retain one digit after the decimal points; consequently, the 
sum contribution percentages for some functions slightly deviate from 100%.   
 

To understand the contributions of microbial groups associated with specific metabolic 

and biogeochemical transformations, we developed an approach to visualize the 

connections among specific taxonomic groups, metabolic reactions, and entire 

biogeochemical cycles such as carbon, nitrogen, and sulfur cycles. Our approach 

involves the use of Sankey diagrams (also called ‘Alluvial’ plots) to represent the 

fractions of metabolic functions that are contributed by various microbial groups in a 

given community (Figure 6). It allows visualization of metabolic reactions as the link 
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between microbial contributors clustered as taxonomic groups and biogeochemical 

cycles at a community level (Figure 6 and Additional file 10: Dataset S3). The function 

fraction was calculated by accumulating the genome coverage values of genomes from 

a specific microbial group that possesses a given functional trait. The width of curved 

lines from a specific microbial group to a given functional trait indicates their 

corresponding proportional contribution to a specific metabolism (Figure 6). 

Alternatively, the genomic/metagenomic datasets which are used in constructing the 

above two diagrams: functional network diagram (Figure 4) and metabolic Sankey 

diagram (Figure 6), can be replaced by transcriptomic/metatranscriptomic datasets, and 

correspondingly, the gene coverage values will be replaced by gene expression values, 

and therefore, diagrams will represent the transcriptional activity patterns of functional 

network and microbial contribution to metabolic reactions (Additional file 2, 3, 4, and 5: 

Figure S2, S3, S4, and S5).  
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Figure 6. Metabolic Sankey diagram representing the contributions of microbial 
genomes to individual metabolic and biogeochemical processes and entire 
elemental cycles. Microbial genomes are represented at the phylum-level resolution. 
The three columns from left to right represent taxonomic groups scaled by the number 
of genomes, the contribution to each metabolic function by microbial groups calculated 
based on genome coverage, and the contribution to each functional 
category/biogeochemical cycle. The colors were assigned based on the taxonomy of 
the microbial groups. The deep-sea hydrothermal vent dataset was used for these 
analyses.   
 

To demonstrate this part of the workflow in reality, the microbial community consisting of 

98 MAGs from a deep-sea hydrothermal vent was used as a test dataset. After running 

the bioinformatic analyses described above, resulting tables and diagrams were 

compiled and visualized accordingly (Figure 4, 5, 6 and Additional file 10: Dataset S3). 

Results for functional networks and MW-scores of the deep-sea hydrothermal vent 
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environment indicate that the microbial community depends on mixotrophy and sulfur 

oxidation for energy conservation and involves arsenate reduction potentially 

responsible for detoxification/arsenate resistance 66. MW-scores indicate that amino 

acid utilization, complex carbon degradation, acetate oxidation, and fermentation are 

the major heterotrophic metabolisms for this environment; CO2-fixation and sulfur 

oxidation also occupy a considerable functional fraction, which indicates heterotrophy 

and autotrophy both contribute to energy conservation (Figure 5). As represented by 

both MW-scores and metabolic Sankey diagram, Gammaproteobacteria are the most 

numerically abundant group in the community and they occupy significant functional 

fractions amongst both heterotrophic and autotrophic metabolisms (MW-score 

contribution ranging from 59-100%) (Figure 5, 6), which is consistent with previous 

findings in the Guaymas Basin hydrothermal environment 53, 67. Meanwhile, MW-scores 

also explicitly reflect the involvement of other minor electron donors in energy 

conservation which are mainly contributed by Gammaproteobacteria, such as hydrogen 

and methane (Figure 5). This is also consistent with previous findings 53, 67 and indicates 

the accuracy and sensitivity of MW-scores to reflect metabolic potentials. 

 

METABOLIC performance demonstration 

To test METABOLIC’s performance on speed, we applied the software (METABOLIC-C 

mode) to analyze the metagenomic dataset which includes 98 MAGs from a deep-sea 

hydrothermal vent, and two sets of metagenomic reads (that are subsets of original 

reads with 10 million reads for each pair comprising ~10% of the total reads). The total 

running time was ~3 hours using 40 CPU threads in a Linux version 4.15.0-48-generic 
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server (Ubuntu v5.4.0). The most compute-demanding step is hmmsearch, which took 

~45 mins. When tested on another dataset comprising ~3600 microbial genomes (data 

not shown), METABOLIC could complete hmmsearch in ~5 hours by using 40 CPU 

threads, indicating its scalable capability on analyzing thousands of genomes.  

 

In order to test the accuracy of the results predicted by METABOLIC, we picked 15 

bacterial and archaeal genomes from Chloroflexi, Thaumarchaeota, and Crenarchaeota 

which are reported to have 3 hydroxypropionate cycle (3HP) and/or 3-

hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB) for carbon fixation. METABOLIC 

predicted results in line with annotations from the KEGG genome database which can 

be visualized in KEGG Mapper (Table 1). Our predictions are also in accord with 

biochemical evidence of the existence of corresponding carbon fixation pathways in 

each microbial group: 1) 3 out of 5 Chloroflexi genomes are predicted by both 

METABOLIC and KEGG to possess the 3HP pathway and none of all these Chloroflexi 

genomes are predicted to possess the 3HP/4HB pathway. This is consistent with 

current reports based on biochemical and molecular experiments that only organisms 

from the phylum Chloroflexi are known to possess the 3HP pathway [68] (Table 1). 2) 

All 5 Thaumarchaeota genomes and 2 out of 5 Crenarchaeota genomes are predicted 

by both METABOLIC and KEGG to possess the 3HP/4HB pathway and none of these 

Thaumarchaeota and Crenarchaeota genomes are predicted to possess the 3HP 

pathway. This is consistent with current reports that only the 3HP/4HB pathway could 

be detected in Crenarchaeota and Thaumarchaeota69, 70 (Table 1). We have also 

applied METABOLIC on a large well-studied dataset comprising 2545 metagenome-



 

271 

assembled genomes from terrestrial subsurface sediments and groundwater 2. The 

annotation results of METABOLIC are consistent with previously described reports 

(Additional file 6, 10: Figure S6, Dataset S3). These results suggest that METABOLIC 

can provide accurate annotations and perform well as a functional predictor for 

microbial genomes and communities. 

 

Table 1. The carbon fixation metabolic traits of 15 tested bacterial and archaeal 
genomes predicted by both METABOLIC and KEGG genome database. 
 

   

METABOLIC 
result 

KEGG 
genome 
pathway 

Carbon 
fixation 

Carbon 
fixation 

Accession 
ID 

Organism KEGG 
Organism 

Code 

Group 3HP 
cycle 

3HP/
4HB 
cycle 

3HP 
cycle 

3HP/4
HB 

cycle 
GCA_00001
1905.1 

Dehalococcoides 
mccartyi 195 det 

Chlorofl
exi Absent Abse

nt 
Abse

nt 
Absen

t 

GCA_00001
7805.1 

Roseiflexus 
castenholzii DSM 
13941 rca 

Chlorofl
exi 

Presen
t 

Abse
nt 

Pres
ent 

Absen
t 

GCA_00001
8865.1 

Chloroflexus 
aurantiacus J-10-fl cau 

Chlorofl
exi 

Presen
t 

Abse
nt 

Pres
ent 

Absen
t 

GCA_00002
1685.1 

Thermomicrobium 
roseum DSM 5159 tro 

Chlorofl
exi Absent Abse

nt 
Abse

nt 
Absen

t 

GCA_00002
1945.1 

Chloroflexus 
aggregans DSM 
9485 cag 

Chlorofl
exi 

Presen
t 

Abse
nt 

Pres
ent 

Absen
t 

GCA_00029
9395.1 

Nitrosopumilus 
sediminis AR2 nir 

Thaum
archae

ota 
Absent Pres

ent 
Abse

nt 
Prese

nt 

GCA_00069
8785.1 

Nitrososphaera 
viennensis EN76 nvn 

Thaum
archae

ota 
Absent Pres

ent 
Abse

nt 
Prese

nt 

GCA_00087
5775.1 

Nitrosopumilus 
piranensis D3C nid 

Thaum
archae

ota 
Absent Pres

ent 
Abse

nt 
Prese

nt 
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GCA_00081
2185.1 

Nitrosopelagicus 
brevis CN25 nbv 

Thaum
archae

ota 
Absent Pres

ent 
Abse

nt 
Prese

nt 

GCA_90069
6045.1 

Nitrosocosmicus 
franklandus 
NFRAN1 nfn 

Thaum
archae

ota 
Absent Pres

ent 
Abse

nt 
Prese

nt 

GCA_00001
5145.1 

Hyperthermus 
butylicus DSM 
5456 hbu 

Crenar
chaeot

a 
Absent Abse

nt 
Abse

nt 
Absen

t 

GCA_00001
7945.1 

Caldisphaera 
lagunensis DSM 
15908 clg 

Crenar
chaeot

a 
Absent Pres

ent 
Abse

nt 
Prese

nt 

GCA_00014
8385.1 

Vulcanisaeta 
distributa DSM 
14429 vdi 

Crenar
chaeot

a 
Absent Abse

nt 
Abse

nt 
Absen

t 

GCA_00019
3375.1 Thermoproteus 

uzoniensis 768-20 tuz 

Crenar
chaeot

a 
Absent Pres

ent 
Abse

nt 
Prese

nt 

GCA_00343
1325.1 Acidilobus sp. 7A acia 

Crenar
chaeot

a 
Absent Abse

nt 
Abse

nt 
Absen

t 

 
 
 
 

Currently, several software packages and online servers are available for genome 

annotation and metabolic profiling. Comparing to other software/online servers including 

GhostKOALA 71, BlastKOALA 71, KAAS 72, RAST/SEED 34, and eggNOG-mapper 73, 

METABOLIC is unique in its ability to integrate multi-omic information towards 

elucidating and visualizing community-level functional connections and the contribution 

of microorganisms to biogeochemical cycles (Figure 7A). Additionally, in order to 

compare the prediction performance of METABOLIC to others, we conducted parallel in 

silico experiments (Figure 7B). We used two representative bacterial genomes as the 

test datasets. We randomly picked 100 protein sequences from individual genomes and 

submitted them to annotation by these six software/online servers. Predicted protein 
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annotations by individual software and online servers were compared to their original 

annotations that were provided by the NCBI database (Additional file 11, 12: Dataset 

S4, S5). According to statistical methods of evaluating binary classification 74, the 

following parameters were used to make the comparison: 1) recall (also referred to as 

the sensitivity) as the true positive rate, 2) precision (also referred to as the positive 

predictive value) which indicates the reproducibility and repeatability of a measurement 

system, 3) accuracy which indicates the closeness of measurements to their true 

values, and 4) F1 value which is the harmonic mean of precision and recall, and reflects 

both these two parameters. Among the tested software/online servers, the performance 

parameters of METABOLIC consistently placed it as the top 3 and top 2 software for 

recall and F1 and the top 1 and top 2 software for precision and accuracy. These results 

demonstrate that METABOLIC (Figure 7B) provides robust performance and consistent 

metabolic prediction that facilitate accurate and reliable applicability for downstream 

data visualization and community-level analyses.  
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Figure 7. Comparison of METABOLIC with other software packages and online 
servers. (A) Comparison of the workflows and services, (B) Comparison of 
performance of protein prediction for two representative genomes, Pseudomonas 
aeruginosa PAO1, and Escherichia coli O157H7 str. sakai. 
 

To demonstrate the application and performance of METABOLIC in different samples, 

we tested eight distinct environments (marine subsurface, terrestrial subsurface, deep-

sea hydrothermal vent, freshwater lake, gut microbiome from patients with colorectal 

cancer, gut microbiome from healthy control, meadow soil, wastewater treatment 

facility). Overall, we found METABOLIC to perform well across all the environments to 

profile microbial genomes with functional traits and biogeochemical cycles (Additional 

file 10: Dataset S3). Among these tested environments, we also performed community-

scale metabolic comparisons based on the MW-score (Figure 8). MW-score fraction at 

the community scale reflects the overall metabolic profile distribution pattern. 
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Specifically, we compared samples from terrestrial and marine subsurface and samples 

from hydrothermal vent and freshwater lake. We observed that terrestrial subsurface 

contains more abundant metabolic functions related to nitrogen cycling compared to the 

marine subsurface (Figure 8A), consistent with the previous characterization of these 

two environments 2, 75. Deep-sea hydrothermal vent samples had a considerably high 

concentration of methane and hydrogen 53 as compared to Lake Tanganyika 

(freshwater lake). Consistent with this phenomenon, the deep-sea hydrothermal vent 

microbial community has more abundant metabolic functions associated with 

methanotrophy and hydrogen oxidation (Figure 8B). In order to focus on a specific 

biogeochemical cycle, we applied METABOLIC to compare sulfur-related metabolisms 

at the community scale for these two environment pairs (Additional file 7: Figure S7). 

Terrestrial subsurface contains genomes covering more sulfur cycling steps compared 

to marine subsurface (7 steps vs 3 steps) (Additional file 7: Figure S7A). Freshwater 

lake contains genomes involving almost all the sulfur cycling steps except for sulfur 

reduction, while deep-sea hydrothermal vent contains less sulfur cycling steps (8 steps 

vs 6 steps) (Additional file 7: Figure S7B). Nevertheless, deep-sea hydrothermal vent 

has a higher fraction of genomes (59/98) and a higher relative abundance (73%) of 

these genomes involving sulfur oxidation compared to the freshwater lake (Additional 

file 7: Figure S7B). This indicates that the deep-sea hydrothermal vent microbial 

community has a more biased sulfur metabolism towards sulfur oxidation, which is 

consistent with previous metabolic characterization on the dependency of elemental 

sulfur in this environment 53, 76-78. Collectively, by characterizing community-scale 
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metabolism, METABOLIC can facilitate the comparison of overall functional profiles as 

well as for a particular elemental cycle.  

 

Figure 8. Community metabolism comparison based on MW-scores. (A) 
Comparison between terrestrial subsurface (left red bars) and marine subsurface (right 
blue bars); (B) Comparison between deep-sea hydrothermal vent (left red bars) and 
freshwater lake (right blue bars). MW-scores were calculated as gene coverage 
fractions for individual metabolic functions. Functions with MW-scores in both 
environments as zero were removed from each panel, e.g., N-S-02:Ammonia oxidation, 
N-S-09:Anammox, S-S-02:Sulfur reduction, and S-S-06:Sulfite reduction in Panel (A), 
and C-S-07:Methanogenesis, N-S-01:N2 fixation, N-S-09:Anammox, S-S-02:Sulfur 
reduction, and S-S-06:Sulfite reduction in Panel (B). Details for MW-score and each 
microbial group contribution refer to Supplementary Dataset S3. 
 

METABOLIC enables accurate reconstruction of cell metabolism 
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To demonstrate applications of reconstructing and depicting cell metabolism based on 

METABOLIC results, two microbial genomes were used as an example (Figure 9). As 

illustrated in Figure 9A, Hadesarchaea archaeon 1244-C3-H4-B1 has no TCA cycling 

gene components, which is consistent with previous findings in archaea within this class 

79. Gluconeogenesis/glycolysis pathways are also lacking in the genome; since 

gluconeogenesis is the central carbon metabolism responsible for generating sugar 

monomers which will be further biosynthesized to polysaccharides as important cell 

structural components 80, the lack of this pathway could be due to genome 

incompleteness. As an enigmatic archaeal class newly discovered in the recent decade, 

Hadesarchaea have distinctive metabolisms that separate them from conventional 

euryarchaeotal groups. They almost lost all TCA cycle gene components for the 

production of acetyl-CoA; while they could metabolize amino acids in a heterotrophic 

lifestyle 79. It is posited that the Hadesarchaea genome has been subjected to a 

streamlining process possibly due to nutrient limitations in their surrounding 

environments 79. Due to their metabolic novelty and limited available genomes at the 

current time, there are still uncertainties on unknown/hypothetical genes and pathways 

and unclassified metabolic potential across the whole class. The previous metabolic 

characterization on four Hadesarchaea genomes indicates Hadesarchaea members 

could anaerobically oxidize CO, and H2 was produced as the side product 79. In the 

Hadesarchaea archaeon 1244-C3-H4-B1 genome, METABOLIC results indicate the 

loss of all anaerobic carbon-monoxide dehydrogenase gene components, which 

suggests the distinctive metabolism of this Hadesarchaea archaeon from others and 

highlights the accuracy of METABOLIC in reflecting functional details.  
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Figure 9. Cell metabolism diagrams of two microbial genomes. (A) cell metabolism 
diagram of Hadesarchaea archaeon 1244-C3-H4-B1 (B) cell metabolism diagram of 
Nitrospirae bacteria M_DeepCast_50m_m2_151. The absent functional 
pathways/complexes were labeled with dash lines. 
 

We also reconstructed the metabolism for Nitrospirae bacteria 

M_DeepCast_50m_m2_151, a member of the Nitrospirae phylum reconstructed from 

Lake Tanganyika 56 (Figure 9B). It contains the full pathway for the TCA cycle and 

gluconeogenesis/glycolysis. Furthermore, it also has the full set of oxidative 

phosphorylation complexes for energy conservation and functional genes for nitrite 

oxidation to nitrate. Other nitrogen cycling metabolisms identified in this genome include 

ammonium oxidation, urea utilization, and nitrite reduction to nitric oxide. The reverse 

TCA cycle pathway was identified for carbon fixation. The metabolic profiling result is in 

accord with the fact that Nitrospirae is a well-known nitrifying bacterial class capable of 

nitrite oxidation and living an autotrophic lifestyle 80. Additionally, their more abundant 

distribution in nature compared to other nitrite-oxidizing bacteria such as Nitrobacter 

indicates their significant contribution to nitrogen cycling in the environment 80. This 

highlights the ability of METABOLIC in reflecting functional details of more common and 

prevalent microorganisms compared to the Hadesarchaea archaeon. Notably as 



 

279 

discovered from METABOLIC analyses, this bacterial genome also contains a wide 

range of transporter enzymes on the cell membrane, including mineral and organic ion 

transporters, sugar and lipid transporters, phosphate and amino acid transporters, heme 

and urea transporters, lipopolysaccharide and lipoprotein releasing system, bacterial 

secretion system, etc., which indicates its metabolic versatility and potential interactive 

activities with other organisms and the ambient environment. Collectively, METABOLIC 

result of functional profiling provides an intuitively-represented summary of a single 

microbial genome which enables depicting cell metabolism for better visualizing the 

functional capacity. 

 

METABOLIC accurately represents metabolism in the human microbiome 

In addition to resolving microbial metabolism and biogeochemistry in environmental 

microbiomes, METABOLIC also accurately identifies metabolic traits associated with 

human microbiomes. The implications of microbial metabolism on human health largely 

remain a black box, much like microbial contributions to biogeochemical cycling. We 

demonstrate the utility of METABOLIC in human microbiomes using publicly available 

data from stool samples collected from patients with colorectal cancer and healthy 

individuals. From this study, we selected stool metagenomes from one colorectal cancer 

(CRC) and an age and sex-matched healthy control to conduct the comparison. The 

heatmap indicates the human microbiome functional profiles of both samples based on 

the marker gene presence/absence patterns (Figure 10). As an example of 

METABOLIC’s application, we demonstrate that there were 28 markers with variations > 

10% in terms of the marker-containing genome fractions between these two samples 
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(Figure 10, Additional file 13: Dataset S6). These 28 markers involved all the ten 

metabolic categories except for lipid metabolism and translation, suggesting the broad 

functional differences between these two samples. In addition to analyzing human 

microbiome specific functional markers, METABOLIC can be used to visualize 

elemental nutrient cycling and analyze metabolic interactions in human microbiomes. 

Overall it enables systematic characterization of the composition, structure, function, 

and interaction of microbial metabolisms in the human microbiome and facilitates omics-

based studies of microbial community on human health 60. 
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Figure 10. Presence/Absence map of human microbiome metabolisms of a 
colorectal cancer (CRC) patient and a healthy control gut sample. The heatmap 
has summarized 189 horizontal entries (189 lines) based on 139 key functional gene 
families that covered 10 function categories. Purple cells indicate presence and gray 
cells indicate absence. Detailed KEGG KO identifier IDs and protein information for 
each function category were described in Supplementary Dataset S2. 
 

DISCUSSION 

The rapid increase in the availability of sequenced microbial genomes, metagenome-

assembled genomes, and single-cell genomes has significantly benefited ecogenomic 

research on unraveling microbial functional roles and their metabolic contribution to 

biogeochemical cycles. Tools that enable to conduct accurate and reproducible 

functional profiling on genomic blueprints at the scale of both individual microorganisms 

and the whole microbial community offered significant applications and advances. They 

are fundamental to facilitate understanding of community-level functions, activities, 

interactions, and functional contributions in the era of multi-omics. An ideal tool for 

microbial biogeochemical profiling needs consideration on better organizing, 

interpreting, and visualizing the functional profile information; this is especially important 

for dealing with thousands of genomes reconstructed from metagenomes and studying 

the community-scale interactive metabolisms. Meanwhile, fast, accurate, robust 

performance and wide usage of the tool will allow for providing reliability and efficiency. 

 

Here we developed METABOLIC for profiling metabolisms, biogeochemical pathways, 

and community-scale functional networks. Instead of solely depending on widely 

adopted protein annotation databases, in METABOLIC two additional steps were added 

in order to accurately predict protein functions and reconstruct metabolic pathways. 
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First, for TIGRfam/Pfam/Custom HMM profile databases, default NC/TC thresholds are 

often set too low to avoid noisy signals especially for annotating proteins from large sets 

of metagenomes wherein similar protein families often co-exist. This frequently leads to 

misannotations. To avoid this, we collected hmmsearch scores of previous annotation 

results and plotted these scores as a function of all annotations, and manually curated 

NC/TC by specifically picking the sharpest decreasing interval as the adjusted cutoff. 

Second, the motif validation step involves comparing potential hits to a set of manually 

curated highly conserved amino acid residues. This helps to distinguish two protein 

families with high sequence identity but different functions which are often difficult to 

separate by HMM profile-based annotations. These two steps help to filter out non-

specific and cross-talking hits of important functional proteins for downstream 

bioinformatic analyses. After obtaining predicted metabolic pathways, many other 

software/online servers mostly provide raw annotation results with overwhelming yet 

unorganized details on characterizing protein functions. For microbial ecologists it is 

fundamental to provide organized and intuitive results to facilitate understanding on the 

whole landscape of biogeochemical cycling capacities. In METABOLIC, such a function 

was developed to enable visualizing the presence/absence state of each step of 

biogeochemical cycles for individual genomes and the whole microbial community. 

Combined with gene abundance information calculated by metagenomic read mapping, 

we can identify the relative abundance for each step of biogeochemical cycles. 

Furthermore, METABOLIC can also visualize sequential reaction patterns for important 

organic and inorganic compound transformations. This visualization function of 

METABOLIC is practical for representing the “metabolic handoff” scenario of within-
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community interactions [2]. METABOLIC can be implemented in human microbiome 

with the same performance. Recently, METABOLIC was applied to stool metagenomic 

samples from 667 individuals who either were healthy or had adenomas or carcinomas 

of the colon, to profile organic/inorganic sulfate reduction and sulfide production 81. This 

has considerably enlarged the utility of METABOLIC in community-scale investigation 

on human microbiomes for purposes of systematic microbiota-disease studies. 

 
Previously, the community networks reflected by microbial genomes mostly focused on 

modeling reactions that are linked by metabolizing substrates and generating products 

15, 19, 26. On the contrary, METABOLIC was developed for a different purpose to study 

microbially-mediated biogeochemical processes. In METABOLIC the community-scale 

functional network provides an intuitive perspective on the metabolic connectivity 

among biogeochemical/metabolic steps and microbial contributions to these functions. 

MW-score, a metric that was built based on the same notion and methodology, offers 

quantitative measurement for these connected functions. Combined together they 

represent which functions are more centralized (connected with others) and important 

(weighted with higher relative abundance) in the co-sharing functional networks and 

which groups of microbial players contribute to these functions. Additionally, metabolic 

Sankey diagrams can be drawn to further visualize the microbial group contributions to 

different functions and biogeochemical cycles. As gene coverages generated by 

metagenomic read mapping can be replaced by transcript coverages generated by 

transcriptomic reads mapping, we broaden the usage in reflecting active function 

connections and weights. In practical applications, functional networks and MW-scores 

can be made in a standardized, reproducible, and normalized manner, so parallel 
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comparisons between communities (or samples) are applicable. The visualized network 

and Sankey diagram can also offer intuitive representations of functional connections 

and microbial contribution at both individual function and community-scale levels by 

using customized color schemes. There are other read-based metagenomic profiling 

tools, e.g., MetaPhlAn 28 and MEGAN 82, that can study the taxonomical and functional 

composition of microbiome at the community-scale level. Compared to read-based 

approaches which largely depend on the comprehensiveness of reference databases to 

capture microbial organisms, METABOLIC depends on the annotation of MAGs that is 

free from the limitation of reference databases on novel and rare organism 

characterization. METABOLIC specifically provides additional functionalities on 

annotation validation, result organization, and visualization which are meaningful to give 

reliable and easily accessible functional profiling results for microbial ecologists and 

biogeochemists to have a comprehensive understanding on the whole landscape of 

biogeochemical cycling capacities. 

 
CONCLUSIONS 
Metabolic functional profile of microbial genomes at the scale of individual organisms 

and communities is essential to have a comprehensive understanding of ecosystem 

processes, and as a conduit for enabling functional trait-based modeling of 

biogeochemistry. We have developed METABOLIC as a metabolic functional profiler 

that goes above and beyond current frameworks of genome/protein annotation 

platforms in providing protein annotations and metabolic pathway analyses that are 

used for inferring the contribution of microorganisms, metabolism, interactions, activity, 

and biogeochemistry at the community-scale. METABOLIC facilitates standardization 
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and integration of genome-informed metabolism into metabolic and biogeochemical 

models. We anticipate that METABOLIC will enable easier interpretation of microbial 

metabolism and biogeochemistry from metagenomes and genomes and enable 

microbiome research in diverse fields.  
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Appendix I – Formation of secondary allo-bile acids by novel enzymes from gut 
Firmicutes 
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Abstract 

The gut microbiome of vertebrates is capable of numerous biotransformations of bile 

acids, which are responsible for intestinal lipid digestion and function as key nutrient-

signaling molecules. The human liver produces bile acids from cholesterol 

predominantly in the A/B-cis orientation in which the sterol rings are “kinked”, as well as 

small quantities of A/B-trans oriented “flat” stereoisomers known as “primary allo-bile 

acids”. While the complex multi-step bile acid 7α-dehydroxylation pathway has been 

well-studied for conversion of “kinked” primary bile acids such as cholic acid (CA) and 

chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), 

respectively, the enzymatic basis for the formation of “flat” stereoisomers allo-

deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has 

remained unsolved for three decades. Here, we present a novel mechanism by which 

Firmicutes generate the ”flat” bile acids allo-DCA and allo-LCA. The BaiA1 was shown 

to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to 

allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate 

that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-

associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly 

generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ 
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among Firmicutes in human metagenomes, demonstrating an increased abundance of 

the two genes in colorectal cancer (CRC) patients relative to healthy individuals. 

 

KEYWORDS: Secondary allo-bile acids, bile acid dehydroxylation, bile acid 5α-

reductases, Firmicutes, colorectal cancer 

 

 

Introduction 

Bile acid synthesis in the liver represents a major route for removal of cholesterol from 

the body and bile acids function as an emulsifying agent for the digestion of lipid-soluble 

dietary components in the aqueous lumen of the small bowel.1 In humans, the liver 

synthesizes two abundant primary bile acids, cholic acid (CA; 3ɑ-,7ɑ-,12ɑ-trihydroxy-5β-

cholan-24-oic acid) and chenodeoxycholic acid (CDCA; 3ɑ-,7ɑ-dihydroxy-5β-cholan-24-

oic acid) from cholesterol. Before active secretion from the liver, bile acids are 

conjugated to either taurine or glycine at the C-24 carboxyl group.1 When bile acids 

reach the terminal ileum, they are actively transported across the epithelium into portal 

blood and returned to the liver in a process known as enterohepatic circulation (EHC). 

Daily, several hundred milligrams of bile acids escape EHC and enter the large 

intestine. Colonic bacteria are capable of carrying out numerous biotransformations of 

primary bile acids to diverse secondary bile acids in the large intestine. The composition 

of intestinal and fecal bile acids in germ-free animals reflects the biliary composition.2–5 

Meanwhile, in conventional animals with a normal gut microbiota, fecal bile acid 

composition is diversified from only a few primary bile acids synthesized by the host to 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0002
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an estimated ~400 secondary bile acid products.6,7 Bacterial modifications to bile acids 

provide a form of interdomain communication given that beyond mere lipid-digesting 

detergents, bile acids are important nutrient-signaling molecules.8 Indeed, microbial 

metabolism of bile acids is widely recognized to contribute to numerous human 

disorders including, but not limited to, cancers of the liver9,10 and colon,11 obesity, type 2 

diabetes, nonalcoholic fatty liver disease (NAFLD),12,13 cholesterol gallstone 

disease,14,15 Alzheimer’s disease,16,17 and cardiovascular disease.18 

A myriad of microbial bile acid biotransformations occur in the large intestine and 

include two key transformations. First, the conjugated bile acids are hydrolyzed to 

unconjugated bile acids and glycine or taurine by bile salt hydrolase (BSH).19 Second, 

the unconjugated primary bile acids CA and CDCA are converted to deoxycholic acid 

(DCA; 3ɑ-,12ɑ-dihydroxy-5β-cholan-24-oic acid) and lithocholic acid (LCA; 3ɑ-hydroxy-

5β-cholan-24-oic acid)20 via 7ɑ-dehydroxylation, respectively. BSH (EC 3.5.1.24) 

enzymes are widely distributed among predominant microbial phyla within the domains 

Bacteria and Archaea inhabiting the human GI tract and catalyze the substrate-limiting 

deconjugation of bile acid amides.19 The resulting major secondary bile acids routinely 

measured in human fecal samples are unconjugated derivatives of DCA and LCA.20 A 

bile acid inducible (bai) regulon encoding enzymes involved in the conversion of CA to 

DCA (Figure 1), and CDCA and ursodeoxycholic acid (UDCA; 3ɑ-,7β-dihydroxy-5β-

cholan-24-oic acid) to LCA has been elucidated over the past three decades in strains 

of Lachnoclostridium scindens (formerly Clostridium scindens), Peptacetobacter 

hiranonis (formerly Clostridium hiranonis), and Lachnoclostridum hylemonae (formerly 

Clostridium hylemonae).20 Discovery and characterization of bai genes have allowed 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0006
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0007
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0008
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0010
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0011
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0013
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0016
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0018
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0020


 

299 

recent studies to extend the species distribution of 7-dehydroxylating bacteria into new 

families within the Firmicutes through bioinformatics-based searches of metagenomic 

sequence databases.21,22 Similarly, comparison of the distribution of bai genes between 

fecal metagenomes obtained from healthy and disease cohorts has also enabled the 

association of the abundance of bai genes with risk for adenomatous polyps23 or 

colorectal cancer.24 This agrees with bile acid metabolomic studies that demonstrate 

increased fecal and serum DCA and LCA derivatives in subjects at high risk for CRC.25–

30 Conversely, lower abundance of bai genes is associated with bile acid dysbiosis 

characterized by increased fecal conjugated primary bile acids in inflammatory bowel 

diseases.31,32  

 

There are additional bai genes yet to be accounted for in strains of L. scindens that 

result in the formation of stereoisomers of DCA and LCA known as “secondary allo-bile 

acids”. In 1991, Hylemon et al.33 reported that allo-deoxycholic acid (allo-DCA; 3ɑ-,12ɑ-

dihydroxy-5ɑ-cholen-24-oic acid) formation is a CA-inducible side-product of bile acid 7-

dehydroxylation by L. scindens. During the conversion of cholesterol to the primary bile 

acids CA and CDCA, the liver enzyme Δ4-3-ketosteroid-5β-reductase (3-oxo-Δ4-steroid-

5β-reductase; AKR1D1) saturates the Δ4-bond generating steroid A/B rings in the cis-

orientation which appear “kinked” (Figure 1). When CA is transported into bacteria 

expressing bai genes, the first oxidative steps of bile 7-dehydroxylation, catalyzed by 

BaiA and BaiCD, “resetting” A/B ring stereochemistry through formation of the 3-keto-Δ4 

structure.20 This is followed by the rate-limiting 7ɑ-dehydration (BaiE).34 The BaiCD was 

shown to then re-establish stereochemistry by catalyzing the conversion of 3-oxo-Δ4-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0021
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0022
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0023
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0024
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0025
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0025
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0032
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0034
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DCA (12ɑ-hydroxy-3-oxo-5β-chol-4-en-24-oic acid) to 3-oxo-DCA (12ɑ-hydroxy-3-oxo-

5β-cholan-24-oic acid), which is further reduced by BaiA1 and BaiA2 to DCA.35 The 

current model of bile acid 7ɑ-dehydroxylation suggests that another enzyme, currently 

unknown, acts on 3-oxo-Δ4-DCA to form the alternative stereoisomer, 3-oxo-allo-DCA 

(12ɑ-hydroxy-3-oxo-5ɑ-cholan-24-oic acid), which is reduced by another unknown 

reductase to allo-DCA. Secondary allo-bile acids have a “flat” shape owing to 

hydrogenation that results in an A/B-trans orientation (Figure 1). While few studies have 

reported measurement of allo-DCA and allo-LCA (3-oxo-5ɑ-cholan-24-oic acid), two 

studies have shown these bile acids are enriched in the feces of patients with CRC.36,37 

Derivatives of allo-LCA are also reported to be enriched in Japanese centenarians,38 

although there is a paucity of measurement of secondary allo-bile acids across 

populations and disease states. Thus, determining the gene(s) encoding reductases in 

L. scindens and other gut microbes responsible for the formation of allo-DCA and allo-

LCA is of biomedical importance. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0036
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0037
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0038
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Figure 1. A proposed pathway for the 7α-dehydroxylation of cholic acid (CA) and 

chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and allo-deoxycholic 

acid (allo-DCA), and lithocholic acid (LCA) and allo-lithocholic acid (allo-LCA). 

BaiB, Bile acid CoA ligase; BaiA, 3α-hydroxysteroid dehydrogenase; BaiCD, 3-dehydro-

ΔCitation4-7α-oxidoreductase; BaiE, 7α-dehydratase; BaiF, CoA transferase; BaiH, 3-

dehydro-ΔCitation4-7β-oxidoreductase. The enzymes involved in the sequential reduction 

of 3-oxo-Δ4-DCA and allo-DCA are currently unknown. 

 

https://www.tandfonline.com/doi/figure/10.1080/19490976.2022.2132903?scroll=top&needAccess=true
https://www.tandfonline.com/doi/figure/10.1080/19490976.2022.2132903?scroll=top&needAccess=true
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We recently reported genome-wide transcriptome profiling of L. scindens ATCC 35704 

in the presence of CA and DCA and identified a potential candidate bile acid-inducible 

3-oxo-Δ4-5ɑ-reductase.39 Here, we confirm that this candidate bile acid-inducible gene 

encodes a novel bile acid 3-oxo-Δ4-5ɑ-reductase responsible for secondary allo-bile 

acids formation. We have named this gene in L. scindens ATCC 35704 the baiP gene. 

We previously reported identification of the baiJ gene as part of a polycistronic operon 

in L. scindens VPI 12708 and L. hylemonae DSM 15053, whose function remained 

unknown.40 Our current study reports that the baiJ gene also encodes a bile acid 3-oxo-

Δ4-5ɑ-reductase. The baiP and baiJ genes are distributed solely among the Firmicutes. 

Identification of these bai genes may provide the ability to predict and potentiate the 

formation of alternative forms of secondary bile acids whose ring structures are “flat” 

rather than the “kinked” form produced by the host. Indeed, we developed Hidden 

Markov Models (HMMs) of bai proteins and determined the distribution of baiP and baiJ 

in human metagenomes, demonstrating increased abundance in colorectal cancer 

(CRC) patients relative to healthy individuals. 

 

Results 

The HDCHBGLK_03451 gene from L. scindens ATCC 35704 encodes a bile acid 

5ɑ-reductase, yielding secondary allo-bile acids 

Prior work established that allo-DCA is a CA-induced side-product of CA metabolism in 

cell-extracts of L. scindens VPI 1270833 (Figure 1). We previously identified L. scindens 

ATCC 35704 gene HDCHBGLK_03451 as CA-inducible and suggested this is a likely 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0039
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0001/
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candidate for bile acid 5ɑ-reductase39 (Figure 2a). The gene HDCHBGLK_03451 

encodes a 563 amino acid protein comprising FMN (flavin mononucleotide) and FAD 

(flavin adenine dinucleotide)-binding domains (Figure 2b). The HDCHBGLK_03451 

gene from L. scindens ATCC 35704 was codon-optimized for E. coli and overexpressed 

in E. coli (Figure 2c) for resting cell assays with bile acid intermediates (Figure 2d). The 

stereochemistry of the A/B ring junction is lost during the steps leading up to and 

following 7ɑ-dehydration of CA (BaiE),41 resulting in formation of a 7ɑ-deoxy-3-oxo-Δ4-

intermediates of DCA or LCA, respectively, which are reduced by the BaiH yielding 3-

oxo-Δ4-intermediates.35 The 3-oxo-Δ-4intermediate is then predicted to yield either 3-

oxo-DCA (BaiCD) or 3-oxo-allo-DCA (BaiP). The same enzymatic steps are involved in 

the conversion of CDCA to 3-oxo-Δ4-LCA followed by conversion to 3-oxo-LCA (3-oxo-

5β-cholan-24-oic acid) or 3-oxo-alloLCA (3-oxo-5ɑ-cholan-24-oic acid) by BaiCD or 

BaiP, respectively (Figure 1).  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0039
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0041
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0001/
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Figure 2. The baiP gene from L. scindens ATCC 35704 encodes a bile acid 5α-

reductase. (a) Formation of bile acid stereoisomers after reduction of 3-oxo-Δ4-LCA 

and 3-oxo-Δ4-DCA by 5α-reductase. (b) Gene organization of baiP with genomic context 

and domain structure of BaiP. (c) Cloning strategy for heterologous expression of N-

terminal his-tagged recombinant BaiP in E. coli BL21(DE3). SDS-PAGE confirms 

expression of 60.5 kDa recombinant BaiP. (d) Representative LC/MS chromatograms 

after resting cell assay with E. coli BL21(DE3) pETduet_Control or pETduet_BaiP 

incubated in anaerobic PBS containing 50 μM 3-oxo-Δ4-LCA (Top panels 1 & 2) or 
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50 μM 3-oxo-Δ4-DCA (Bottom panels 3 & 4). Standards are shown in Panel 5 (bottom). 

(e) Time course of 3-oxo-allo-LCA production by the E. coli BL21(DE3) pETduet_BaiP 

strain. Data points indicate the mean concentration of 3-oxo-allo-LCA ± SD (three 

biological replicates). 

 

We therefore chemically synthesized 3-oxo-Δ4-DCA and 3-oxo-Δ4-LCA and incubated 

these substrates (50 μM) with E. coli expressing HDCHBGLK_03451 under anaerobic 

conditions in PBS. When 3-oxo-Δ4-LCA was present as the substrate, 3-oxo-allo-LCA 

(RT = 2.30 min; m/z = 373.3) was synthesized, but not 3-oxo-LCA (RT = 2.50 min; 

m/z = 373.3) (Figure 2d). The 6 h reaction yielded 7.00 ± 0.46 μM 3-oxo-allo-LCA 

(Figure 2e). Similarly, incubation of resting cells with 3-oxo-Δ4-DCA yielded a product 

(RT = 1.08 min; m/z = 389.26) consistent with 3-oxo-allo-DCA (RT = 1.08 min; 

m/z = 389.26), but not 3-oxo-DCA (RT = 1.20 min; m/z = 389.26) (Figure 2d). These 

data confirm that HDCHBGLK_03451 encodes a novel bile acid 5ɑ-reductase, and we 

propose the name baiP for this gene (See Supplementary material, Figure S1). 

We previously reported a cortisol-inducible operon (desABCD) in L. scindens ATCC 

35704 encoding steroid-17,20-desmolase (DesAB) and NADH-dependent steroid 20α-

hydroxysteroid dehydrogenase (DesC).42 DesC reversibly forms cortisol and 20α-

dihydrocortisol,42 and DesAB catalyzes the side-chain cleavage of cortisol yielding 11β-

hydroxyandrostenedione (11β-OHAD).43 Because substrates and products in the 

desmolase pathway have 3-oxo-Δ4-structures analogous to 3-oxo-Δ4-DCA and 3-oxo-

Δ4-LCA, we next performed resting cell assays with E. coli strain expressing the BaiP 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0042
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0042
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0043
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enzyme. LC/MS analysis of reaction products indicates that cortisol and 11β-OHAD 

were not substrates for BaiP (Figure S2). 

 

Phylogenetic analysis of BaiP followed by functional assay reveals the baiJ gene 

also encodes bile acid 5ɑ-reductase 

Having provided experimental evidence that baiP encodes an enzyme with bile acid 5ɑ-

reductase activity, we wanted to determine the phylogeny of the BaiP from L. scindens 

ATCC 35704. A subtree of the >1,400 sequences representing close relatives of the 

BaiP from L. scindens ATCC 35704 was generated (Figure 3a). The proteins most 

closely related to BaiP from L. scindens ATCC 35704 in the “BaiP Cluster” were from 

Lachnoclostridium strains MSK.5.24, GGCC_0168, and Lachnospiraceae bacterium 

5_1_57FAA. Additional FAD-dependent oxidoreductase BaiP candidates from a 

penguin isolate, Proteocatella sphenisci DSM 23131 (76% sequence identity), and P. 

hiranonis15,44 (72% sequence identity) were also identified at high bootstrap values (90–

100%). Previous work established bai genes in P. hiranonis,45 although the present data 

provide first indication that P. hiranonis has the potential to form secondary allo-bile 

acids (Figure 3a, 3b). P. sphenisci has also been reported to encode the bai 

polycistronic operon,21,22 and our demonstration that P. sphenisci harbors baiP indicate 

that secondary allo-bile acids may constitute part of the bile acid metabolome of 

penguin guano (Figure 3b).  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0044
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0045
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0021
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0022
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
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Figure 3. Large scale phylogenetic analysis of BaiP from L. scindens ATCC 35704 

reveals baiJ gene from C. scindens VPI 12708 encodes a bile acid 5α-reductase. 

(a) Maximum-likelihood tree of >2,300 protein sequences from NCBI’s non-redundant 

database that were similar to BaiP from L. scindens. The subtree containing BaiP from 

L. scindens formed two clusters containing BaiP sequences (Purple) from other 

Firmicutes known to convert CA to DCA. The second cluster contains BaiJ proteins, 

representing several strains known to convert CA to DCA. (b) Arrangement of genes in 

the bile acid inducible (bai) operon in various species of bile acid 7α-dehydroxylating gut 

bacteria. The gene encoding enzymes carrying out bile acid metabolism in gut bacteria 

capable of producing secondary allo-bile acids. Biochemical pathway leading to 

secondary allo-bile acid formation is shown in Figure 1. (c) Cloning strategy for baiJ 

gene from L. scindens VPI 12708 and SDS-PAGE after purification of recombinant His-

tagged BaiJ. (d) Representative LC/MS chromatographs after resting cell assay with E. 



 

310 

coli BL21(DE3) pETduet_Control or pETduet_BaiJ incubated in anaerobic PBS 

containing 50 μM 3-oxo-Δ4-LCA (Top panels 1 & 2) compared to pETduet_BaiP (Panel 

3). Panels 4 & 5 display chromatograms of reaction products formed after incubation of 

E. coli BL21(DE3) pETduet_Control or pETduet_BaiJ incubated in anaerobic PBS 

containing 50 μM 3-oxo-Δ4-DCA compared to pETduet_BaiP (Panel 6). Standards are 

shown in Panel 7 (bottom). (e) Time course of 3-oxo-allo-LCA production by the E. coli 

BL21(DE3) pETduet_BaiJ strain. Data points indicate the mean concentration of 3-oxo-

allo-LCA ± SD (two biological replicates) 

 

A second closest FAD-dependent oxidoreductase cluster (~45% ID) to BaiP from L. 

scindens ATCC 35704 was composed of the previously named BaiJ proteins from L. 

scindens VPI 12708, L. hylemonae DSM 15053, and P. hiranonis DSM13275, as well 

as Dorea sp. D27, and an unclassified Clostridium sp. (“BaiJ Cluster”). Prior work 

established a novel bai operon in which the baiJ gene is adjacent to the baiK gene on a 

polycistronic operon in L. scindens VPI 12708 and L. hylemonae DSM 15053.40 

Evidence was also presented that L. scindens VPI 12708 and L. hylemonae DSM 

15053 formed allo-DCA.46 It was then reported that the BaiK is a paralog of BaiF in L. 

scindens VPI 12708, and both proteins catalyze bile acid coenzyme A transferase from 

the end-product secondary bile acids, DCA~SCoA and allo-DCA~SCoA, to primary bile 

acids including CA, CDCA, allo-CA, and UDCA.40 The baiJ gene has been shown 

previously to be enriched in the gut microbiome in mouse models of liver cancer and 

CRC,9,24 diseases reported to be enriched in secondary allo-bile acids in the biliary pool 

in the few studies that have measured them.47 Taken together, the close phylogenetic 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0046
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0024
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0047
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clustering of BaiJ with BaiP indicates that the baiJ gene may also encode a bile acid 5ɑ-

reductase isoform (Figure 3a, 3b).21,44,45 

 

To test this hypothesis, we cloned and overexpressed the baiJ gene from L. scindens 

VPI 12708 (accession number: ACF20978) in E. coli BL21(DE3) (Figure 3c), and 

measured conversion of 3-oxo-Δ4-LCA and 3-oxo-Δ4-DCA in resting cell assays (Figure 

3d). When 3-oxo-Δ4-LCA (RT = 1.60; m/z = 371.25) was the substrate, a product eluting 

at the same position as 3-oxo-allo-LCA (RT = 2.29; m/z = 373.27), but not as 3-oxo-LCA 

(RT = 2.45; m/z = 373.26), was observed. An anaerobic resting cell assay (6 h) resulted 

in the formation of 4.4 ± 0.54 μM 3-oxo-allo-LCA (Figure 3e). Similarly, when 3-oxo-Δ4-

DCA (RT = 0.90; m/z = 387.25) was the substrate, a product that eluted at the same 

position as 3-oxo-allo-DCA (RT = 1.08; m/z = 389.26), and different from 3-oxo-DCA 

(RT = 1.20; m/z = 389.27), was observed (Figure 3d). These results establish a function 

for the baiJ gene product and indicate that strains of L. scindens and other bile acid 7ɑ-

dehydroxylating bacteria encode distinct bile acid 5ɑ-reductase isoforms. 

 

BaiP and BaiA1 catalyze consecutive final reductive steps in the formation of allo-

DCA and allo-LCA 

Having established that BaiP converts 3-oxo-Δ4-LCA to 3-oxo-allo-LCA, we next sought 

to identify an enzyme from L. scindens ATCC 35704 catalyzing the final reductive step 

from 3-oxo-allo-LCA to allo-LCA. There is compelling evidence that BaiA1 and BaiA2 

enzymes catalyze the first oxidative and last reductive steps in the pathway.35,48,49 This 

comes from substrate-specificity and kinetic analyses of BaiA1 and BaiA2 showing that 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0021
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0044
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0045
https://www.ncbi.nlm.nih.gov/protein/ACF20978
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0003/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0048
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0049
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3-oxo-DCA and 3-oxo-LCA are substrates48 and by the observation that BaiA is 

sufficient for the final reductive step yielding DCA.35 Prior work established that the baiA 

genes encode bile acid 3ɑ-hydroxysteroid dehydrogenase (3ɑ-HSDH) that catalyze the 

first oxidation step, formation of 3-oxo-7ɑ-hydroxy-5β-bile acids, and the final reductive 

step generating 7-deoxy-3ɑ-hydroxy-5β-bile acids.49 However, the ability of BaiA 

enzymes to recognize allo-bile acids has not been established (Figure 4a). The baiA1 

gene from L. scindens ATCC 35704 was codon-optimized for E. coli and overexpressed 

in E. coli alone or in combination with baiP (Figure 4b). Whole cell E. coli assays with 

overexpressed BaiA1 converted 3-oxo-allo-LCA (RT = 2.30 min; m/z = 373.2) to a 

product consistent with allo-LCA (RT = 2.74 min; m/z = 375.3), but not LCA 

(RT = 2.68 min; m/z = 375.3). E. coli expressing both BaiP and BaiA1 converted 3-oxo-

Δ4-LCA (RT = 1.65 min; m/z = 371.3) to allo-LCA (RT = 2.74 min; m/z = 375.3) and 3-

oxo-Δ4-DCA (RT = 0.75 min; m/z = 387.3) to allo-DCA (RT = 1.51 min; m/z = 391.3) 

confirming the role of BaiP and BaiA1 in the cooperative catalysis of the two final steps 

in formation of secondary allo-bile acids (Figure 4c).  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0048
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0049
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0004/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0004/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0004/
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Figure 4. Recombinant BaiA1 from L. scindens ATCC 35704 catalyzes the final 

reductive step in the formation of allo-DCA and allo-LCA. (a) Formation of bile acid 

stereoisomers after reduction of 3-oxo-allo-LCA and 3-oxo-allo-DCA by 3α-HSDH and 

gene organization of baiA1 in L. scindens ATCC 35704. (b) Cloning strategy of baiA1 

and baiA1 + baiP in pETduet. SDS-PAGE of His-tagged purified recombinant BaiA1 and 

BaiA1 + BaiP expressed in E. coli BL21(DE3). (c) Representative LC/MS 

chromatograms after resting cell assay with E. coli BL21(DE3) pETduet_Control or 

pETduet_BaiA1 incubated in anaerobic PBS containing 50 μM 3-oxo-allo-LCA (Top 
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panels 1 & 2), E. coli BL21(DE3) pETduet_BaiP-BaiA1 incubated with 50 μM 3-oxo-Δ4-

LCA (Panel 3) and E. coli BL21(DE3) pETduet_BaiP-BaiA1 incubated with 50 μM 3-

oxo-Δ4-DCA (Panel 4). Standards are shown in Panel 5 (bottom). The overall two-step 

reaction is shown on the panels. 

 

A previous bioinformatics study hypothesized based on gene context and annotation 

that CLOSCI_00522, a gene directly downstream from baiN (CLOSCI_00523), encodes 

a predicted NAD(FAD)-utilizing dehydrogenase involved in the final reductive step31, 

(Figure S1). This gene was named “baiO”.31 An organism may encode several proteins 

from different lineages that have similar catalytic activity. Indeed, the BaiN50 is predicted 

to catalyze similar sequential reactions to BaiH and BaiCD.35 We therefore tested the 

hypothesis that the previously annotated baiO encodes either a bile acid 3-oxo-Δ4-

reductase and/or bile acid 3ɑ-HSDH. We cloned the baiO in pETduet and verified the 

expression after His-tag purification and SDS-PAGE (Figure S1a, S1b). Analysis of bile 

acid products after 24 h incubation of E. coli expressing BaiO enzyme in a resting cell 

assay with either 3-oxo-LCA, 3-oxo-DCA (Figure S1c, S1d), 3-oxo-Δ4-LCA, or 3-oxo-

Δ4-DCA (Figure S1e, S1f), did not yield a detectable product by LC/MS. While this does 

not disprove that CLOSCI_00522 is involved in bile acid metabolism, we were not able 

to confirm its function. 

 

The distribution of baiP and baiJ genes in public human metagenome datasets 

Having shown that BaiP clusters with the previously identified BaiJ from L. hylemonae 

DSM 15053, the next objective was to determine the presence of bai genes involved in 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0050
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
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bile acid 7-dehydroxylation among bacterial genomes from human stool samples. We 

utilized reference sequences of BaiP and BaiJ as well as BaiE and BaiCD (Figure 5a) to 

generate HMMs in order to search public human metagenomic databases. We expected 

that the occurrence of BaiE and BaiCD which are co-transcribed on the multi-gene bai 

operon will coincide with the relative abundances of BaiP and BaiJ. As expected, genes 

for BaiE and BaiCD as well as BaiP and BaiJ were observed to have similar relative 

frequency (1% and 0.9% of total metagenome assembled genomes (MAGs), 

respectively). All genes were largely represented by unclassified Firmicutes and 

Lachnospiraceae. (Figure 5a). Representative genera were analyzed to identify 

candidates which possess multiple genes of the Bai operon which revealed that 

unclassified Firmicutes, unclassified Lachnospiraceae, and Flavonifractor harbored all 

four genes analyzed. This pathway analysis also revealed the novel finding that 

Flavonifractor and Pseudoflavonifractor harbor genes for bile acid 7-dehydroxylation. 

Intriguingly, while bai genes represented approximately 1% of total MAGs, genes were 

detected in approximately one third of subjects (BaiCD 35%, BaiE 35%, BaiJ 30%, and 

BaiP 28%). An analysis of differences in gene presence among healthy subjects and 

those with adenoma and carcinoma revealed that the genes had the greatest 

abundance in patients with carcinoma, and that the genes baiCD, baiE, and baiJ were 

significantly associated with carcinoma (Figure 5b, Table S4, S5)  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0005/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0005/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0005/
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Figure 5. Hidden-Markov Model search reveals enrichment of bai genes in 

colorectal carcinoma. (a) Distribution of microbial genomes with putative 5α-reductase 

genes (baiP and baiJ) present across the five metagenomic studies. (b) Dot plots of 

selected genes related to allo-bile acids production across three disease states: 

carcinoma, adenoma, and healthy. The size of each dot indicates the proportion of 

participants with at least one copy of the gene in their bacterial metagenomic 

assembled genomes (MAGs) and the color of each dot indicates the mean number of 

MAGs with that gene in the subset of participants that have at least one copy of the 

gene. 

 

 

Discussion 

The results of the current study add to a growing literature demonstrating that the 

colonic microbes are capable of “resetting” stereochemistry of sterols undergoing 

enterohepatic circulation through expression of 5ɑ-reductase and 5β-reductase 

enzymes. So far, two mechanisms have been identified: (1) A direct mechanism 

whereby bacteria encoding the multi-step bile acid 7ɑ-dehydroxylation pathway convert 

primary bile acids to either secondary bile acids via BaiCD/BaiN or as shown herein 

secondary allo-bile acids via BaiP/BaiJ activities; and (2) an indirect mechanism in 

which certain species of Bacteroidetes convert 5β-secondary bile acids DCA and LCA 

to 3-oxo-Δ4-intermediates, followed by reduction to secondary allo-bile acids.38 The 

current work is thus a significant advance toward determining the enzymatic basis for 

the formation of secondary allo-bile acids by the gut microbiome (Figure 6).  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0038
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0006/
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Figure 6. Direct and indirect formation of secondary allo-bile acids, and their 

potential consequences. Taurocholic acid is deconjugated, mainly in the large 

intestine, by diverse gut microbial taxa. Free cholic acid is imported into a few species 

of Firmicutes that harbor the bai regulon. Direct Pathway: After several oxidative steps, 

and rate-limiting 7α-dehydration, 3-oxo-Δ4-DCA becomes a substrate for BaiCD forming 
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DCA or BaiP/BaiJ forming alloDCA. Indirect Pathway: DCA is imported into 

Bacteroidetes strains that express 3α-HSDH and 5β-reductase (5BR) which converts 

DCA to 3-oxo-Δ4-DCA. Expression of 5α-reductase (5AR) and 3β-HSDH sequentially 

reduce 3-oxo-Δ4-DCA to iso-allo-DCA. Alternatively, allo-DCA generated by Firmicutes 

can be isomerized to iso-allo-DCA by species expressing 3α-HSDH and 3β-HSDH such 

as Eggerthella lenta. While taurocholic acid is a germination factor for C. difficile, 

secondary bile acids such as DCA and secondary allo-bile acids are inhibitory toward C. 

difficile vegetative cells in the GI tract. Secondary bile acids, including DCA and allo-

DCA, are associated with increased risk of colorectal cancer (CRC). 

 

Bile acid intermediates in the 7ɑ-dehydroxylation pathway have been determined 

previously. Björkhem et al.51 utilized [3β-3H] [24–14C] and [5β-3H] [24–14C] labeled cholic 

acid in whole cells and cell extracts of L. scindens VPI 12708, observing loss of both 3β- 

and 5β-hydrogens during conversion of CA to DCA.33 Administration of [3β–3H] [24–

C14C] CA and [5β–3H] [24–C14C] CA to volunteers followed by analysis of tritium loss 

after extraction from duodenal aspirates confirmed that 3–oxo–Δ4–bile acid 

intermediates were formed during conversion of CA to DCA.33 Subsequent work 

incubating [24–14C] CA with cell extracts of L. scindens VPI 12708 revealed a multi-

enzyme pathway necessary to convert CA to DCA (and CDCA to LCA).52 Hylemon and 

Bjӧrkhem (1991) isolated nine [24–14C] CA intermediates after incubation with cell-free 

extracts of CA-induced whole cells of L. scindens VPI 12708 providing the biochemical 

framework to search for enzymes involved in bile acid 7ɑ-dehydroxylation.33 

Subsequent work determined that bile acid 7ɑ-dehydroxylation proceeds by two 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0051
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0052
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0033
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oxidation steps yielding a 7ɑ-hydroxy-3-oxo-Δ4-intermediate, the substrate for the rate-

limiting enzyme, bile acid 7ɑ-dehydratase (BaiE).34,41,53 Removal of the C7-hydroxyl 

yields a 7-deoxy-3-oxo-Δ4-intermediate which is then reduced by flavoproteins BaiN50 or 

BaiH35 to a 7-deoxy-3-oxo-Δ4-intermediate. The BaiCD and BaiA isoforms then convert 

7-deoxy-3-oxo-Δ4-intermediates to DCA or LCA.35,53 One of the bile acid-inducible [24–

14C] CA metabolites identified was [24–14C] allo-DCA, indicating that L. scindens 

possesses an enzyme with bile acid 5ɑ-reductase distinct from BaiCD (bile acid 5β-

reductase).33 The current results establish conclusively that the baiP and baiJ genes 

encode bile acid 5ɑ-reductases in different strains of L. scindens and related Firmicutes 

that catalyze the formation of allo-DCA and allo-LCA. 

 

Previous work also demonstrated that BaiA1 and BaiA2 catalyze both the initial 

oxidation and final reduction in the formation of DCA and LCA.35,48 However, a recent 

report named a gene (CLOSCI_00522) adjacent to baiN, the “baiO” that encodes a 

predicted 61 kDa flavin-dependent dehydrogenase proposed to catalyze the final 

reductive step in the pathway.31 We tested both BaiA1 and BaiO for reduction of allo-

DCA and allo-LCA. While the function of CLOSCI_00522 in bile acid metabolism 

remains unclear, our results have extended the functional role of the BaiA1. We 

determined for the first time that this enzyme converts 3-oxo-allo-DCA and 3-oxo-allo-

LCA to allo-DCA and allo-LCA, respectively. 

 

The functional role of the previously reported baiJKL operon in L. scindens VPI 12708 

and L. hylemonae DSM 15053 has also been extended by the current study.40 Ridlon 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0034
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0041
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0050
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0033
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0035
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0048
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0040
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and Hylemon (2012) reported that BaiK and BaiF catalyze bile acid~CoA transferase 

from secondary bile acids, including allodeoxycholyl~SCoA, to primary bile acids.40 The 

baiJ gene was annotated as “flavin-dependent fumarate reductase” and “3-ketosteroid-

Δ1-dehydrogenase”, and is co-expressed with baiKL under the control of the conserved 

bai promoter.40 We previously observed bile acid induction of baiJKL genes by RT-

PCR40 and RNA-Seq54 in L. hylemonae DSM 15053. Also, the baiJ gene was reported 

to be enriched in the gut microbiome in mouse models of liver cancer and CRC.9,24 

Fecal secondary allo-bile acids have also been reported to be enriched in GI cancers.47 

Phylogenetic analysis of BaiP from L. scindens ATCC 35704 revealed two clusters 

harboring Firmicutes encoding the bai pathway, many of which, such as P. hiranonis, L. 

hylemonae, and strains of L. scindens, are known to convert CA and CDCA to DCA and 

LCA, respectively. These clusters are also represented by taxa such as Dorea sp. D27, 

P. sphenisci, and Oscillospiraceae MAGs whose genome sequences contain bai 

operons.21,22 Clusters with more distant homologs of BaiP are also worth examining in 

future studies for novel bile acid 3-oxo-Δ4-reductases. Mining human metagenomic 

datasets for “core” Bai proteins (BaiCD, BaiE) as well as BaiP and BaiJ sequences 

confirmed that these enzymes are only encoded in Firmicutes. Roughly a third of 

healthy, adenoma, and carcinoma subjects had detectable BaiE enzymes representing 

~1% of MAGs. A combination of low abundance bile acid 7-dehydroxylating Firmicutes 

and stringency of the HMM search likely explains the low representation of subjects with 

detectable Bai enzymes. Intriguingly, and in line with previous reports,24 Bai enzymes 

are enriched in CRC subjects relative to healthy subjects. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0040
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0054
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0024
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0047
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0021
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0022
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0024
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There is a paucity of studies on secondary allo-bile acids, and the literature which exists 

is conflicting as to whether to regard these hydrophobic “flat” bile acids as beneficial, 

disease promoting, or contextually important.36–38,47 Recent work measured the 

secondary allo-bile acid iso-allo-LCA in fecal samples at an average concentration of 

~20 μM, and that low micromolar levels, such as those achieved in our resting cell 

assays, inhibit the growth of gram-positive pathogens including Clostridioides difficile38 

(Figure 6). There is a recent growing interest in the immune mechanisms of action of 

secondary bile acid derivatives and isomers in the colon. Secondary bile acid 

derivatives, including 3-oxo-DCA, 3-oxo-LCA, iso-DCA (3β, 12ɑ-dihydroxy-5β-cholan-

24-oic acid), iso-LCA (3β-hydroxy-5β-cholan-24-oic acid), and certain secondary allo-

bile acids (e.g. iso-allo-LCA: 3β-hydroxy-5ɑ-cholan-24-oic acid), regulate the balance of 

regulatory T cells (Treg) and pro-inflammatory TH17 cells by promoting expansion of 

Tregs.55–57 The current work is thus an important contribution in a rapidly evolving area 

of the role of diverse bile acid metabolites generated by the gut microbiome on 

mechanisms underlying host health and disease. 

 

 

Materials and methods 

Bacterial strains and chemicals 

E. coli Top10 [F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG] competent cells from Invitrogen 

(Carlsbad, CA, USA) were used for manipulation of plasmids, and E. coli BL21(DE3) 

[F−, ompT, hsdSB(rB− mB−), gal, dcm, rne131 (DE3)] was also purchased from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0036
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0047
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0038
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/figure/f0006/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0055
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Invitrogen and used for protein expression. 3-oxo-Δ4-LCA, 3-oxo-allo-LCA, 3-oxo-LCA, 

allo-LCA, LCA, and 3-oxo-DCA were purchased from Steraloids (Newport, RI, USA). 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was purchased from Gold Biotechnology 

(St. Louis, MO, USA). All other reagents were of the highest possible purity and 

purchased from Fisher Scientific (Pittsburgh, PA, USA). 

 

Bile acid synthesis 

Authentic 3-oxo-Δ4-DCA and allo-DCA were synthesized as previously described58 and 

confirmed by nuclear magnetic resonance (NMR) spectroscopy (Fig. S3, S4). 

 

Cloning of bai operon genes from L. scindens strains 

The strains/plasmids, primers, and synthetic DNA sequences used in this study are 

listed in Table S1, S2, and S3, respectively. First, baiP gene encoding FAD-dependent 

oxidoreductase and baiA1 gene encoding 3α-HSDH from L. scindens ATCC 35704, 

baiJ gene encoding FAD-dependent oxidoreductase from L. scindens VPI 12708, and 

baiO encoding a predicted 61 kDa flavin-dependent dehydrogenase were codon-

optimized for E. coli and synthesized using gBlocks service from Integrated DNA 

Technologies (IDT, IA, USA). To construct a BaiP, BaiJ, BaiO or BaiA1 expression 

plasmid (pBaiP, pBaiJ, pBaiO or pBaiA1), a DNA fragment (vector fraction) was 

amplified from the pETduet plasmid using a primer pair of V1-F and V1-R, V1-F and V1-

R, V1-F and V1-R, or V2-F and V2-R, respectively. Another DNA fragment (insert 

fraction) was amplified from the synthetic oligomers of BaiP, BaiJ, BaiO or BaiA1 using 

a primer pair of BaiP-F and BaiP-R, BaiJ-F and BaiJ-R, BaiO-F and BaiO-R or BaiA1-F 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0058
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and BaiA1-R, respectively. The two pairs of PCR products were ligated together by in 

vitro homologous recombination using a Gibson assembly cloning kit (NEB, Boston, 

MA, USA), respectively. For construction of a BaiP and BaiA1 co-expression plasmid 

(pBaiP-A1), a DNA fragment (vector fraction) was amplified from the pBaiP plasmid 

using a pair of the primers V2-F and V2-R, and another DNA fragment (insert fraction) 

was amplified from the synthetic oligomer of BaiA1 using a pair of the primers BaiA1-F 

and BaiA1-R. The two PCR products were ligated together by the Gibson assembly 

cloning kit (NEB) 

Recombinant plasmids (Table S1) were transformed into chemically competent E. coli 

Top10 cells via heat-shock method, respectively, plated, and grown for overnight at 

37°C on lysogeny broth (LB) agar plates supplemented with appropriate antibiotics 

(Ampicillin: 100 μg/ml). A single colony from each transformation was inoculated into LB 

medium (5 ml) containing the corresponding antibiotic. The cells were subsequently 

centrifuged (3,220 × g, 10 min, 4°C) and plasmids were extracted from the cell pallets 

using QIAprep Spin Miniprep kit (Qiagen, CA, USA). The sequences of the inserts were 

confirmed by Sanger sequencing (ACGT Inc, Wheeling, IL, USA). 

 

Heterologous expression and purification of Bai enzymes in E. coli 

For protein expression, the extracted recombinant plasmids were transformed into E. 

coli BL21(DE3) cells by use of electroporation method, respectively, and cultured 

overnight at 37°C on LB agar plates supplementary with appropriate antibiotics. 

Selected colonies were inoculated into 10 mL of LB medium containing the 

corresponding antibiotic and grown at 37°C for 6 h with vigorous aeration. The pre-
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cultures were added to fresh LB medium (1 L), supplemented with appropriate 

antibiotics, and aerated at 37°C until reaching an OD600 (optical density of a sample 

measured at a wavelength of 600 nm) of 0.3. IPTG was added to each culture at a final 

concentration of 0.1 mM to induce and the temperature was decreased to 16°C. 

Following 16 h of culturing, cells were pelleted by centrifugation (4000 × g, 30 min, 4°C) 

and resuspended in 30 ml of binding buffer (20 mM Tris-HCl, 300 mM NaCl, 10 mM 2-

mercaptoethanol, pH 7.9). The cell suspension was subjected to an ultra sonicator 

(Fisher Scientific) and the cell debris was separated by centrifugation (20,000 × g, 

40 min, 4°C). 

The recombinant protein in the soluble fraction was then purified using TALON Metal 

Affinity Resin (Clontech Laboratories, CA, USA) per manufacturer’s protocol. The 

recombinant protein was eluted using an elution buffer composed of 20 mM Tris-HCl, 

300 mM NaCl, 10 mM 2-mercaptoethanol, and 250 mM imidazole at pH 7.9. The 

resulting purified protein was analyzed using sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). 

 

Whole cell bile acid conversion assay 

E. coli BL21(DE3) strains harboring the constructed plasmids were cultured aerobically 

at 25°C on LB medium (10 mL) supplementary with appropriate antibiotics and 

expressed the corresponding proteins by IPTG induction at 25°C. Following 16 h of 

culturing, the strains were pelleted by centrifugation (3,220 × g, 10 min) and washed 

twice with anaerobic PBS solution. The washed E. coli strains were inoculated along 

with 50 μM bile acid substrates (3-oxo-Δ4-LCA, 3-oxo-Δ4-DCA, or 3-oxo-allo-LCA) into 



 

326 

10 mL of PBS and incubated anaerobically at room temperature for 12 h. The whole cell 

reaction cultures were centrifuged at 3,220 × g for 10 min to remove bacterial cells and 

adjusted the pH of the supernatant to pH 3.0 by adding 25 μL of 2 N HCl. Bile acid 

metabolites were extracted by vortexing with two volumes of ethyl acetate for 1 to 2 min. 

The organic layer was recovered and evaporated under nitrogen gas. The products 

were dissolved in 200 μL methanol and analyzed by liquid chromatography-mass 

spectrometry (LC-MS). 

 

Liquid chromatography-mass spectrometry 

LC-MS analysis for all samples was performed using a Waters Acquity UPLC system 

coupled to a Waters SYNAPT G2-Si ESI mass spectrometer (Milford, MA, USA). For 

the bile acids as substrates and products of whole cell bioconversion assay by the E. 

coli strains expressing BaiP, BaiJ, or BaiP-A1 enzymes (3-oxo-Δ4-LCA, 3-oxo-Δ4-DCA, 

3-oxo-LCA, 3-oxo-allo-LCA, 3-oxo-DCA, LCA, allo-LCA, DCA, and allo-DCA) analysis, 

LC was performed with a Waters Acquity UPLC HSS T3 C18 column (1.8 μm particle 

size, 2.1 mm × 100 mm) at a column temperature of 40°C. Samples were injected at 

0.2 μL. Mobile phase A was a mixture of acetonitrile and methanol (50/50, v/v), and B 

was 10 mM ammonium acetate. The mobile phase composition was 75% of mobile 

phase A and 25% of mobile phase B and ran an isocratic mode. The flow rate of the 

mobile phase was 0.5 mL/min. MS was carried out in negative ion mode with a 

desolvation temperature of 400°C and desolvation gas flow of 800 L/hr. The capillary 

voltage was 2,000 V. Source temperature was 120°C, and the cone voltage was 30 V. 

Chromatographs and mass spectrometry data were analyzed using Waters MassLynx 
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software. Analytes were identified according to their mass and retention time. For 

quantification of 3-oxo-allo-LCA produced by the E. coli BL21(DE3) expressing 

BaiP/BaiJ strains, a standard curve was obtained, and then 3-oxo-allo-LCA was 

quantified based on the standard curve (Figure S5). The limit of detection (LOD) for 3-

oxo-Δ4-LCA, 3-oxo-allo-LCA, and allo-LCA was 0.1 μmol/L. 

For the cortisol and 11β-OHAD as substrates and products of whole cell bioconversion 

assay by the E. coli strain expressing BaiP enzyme analysis, LC was performed with a 

Waters Acquity UPLC BEH C18 column (1.7 μm particle size, 2.1 mm × 50 mm) at a 

column temperature of 40°C. Samples were injected at 0.2 μL. Mobile phase A was a 

mixture of 95% water, 5% acetonitrile, and 0.1% formic acid, and B was a mixture of 

95% acetonitrile, 5% water, and 0.1% formic acid. The mobile phase gradient was as 

follows: 0 min 100% mobile phase A, 0.5 min 100% A, 6.0 min 30% A, 7.0 min 0% A, 

8.1 min 100% A, and 10.0 min 100% A. The flow rate of the mobile phase was 0.5 

mL/min. MS was carried out in positive ion mode with a desolvation temperature of 

450°C and desolvation gas flow of 800 L/hr. The capillary voltage was 3,000 V. Source 

temperature was 120°C, and the cone voltage was 30 V. 

 

NMR spectroscopy 

To determine the molecular structure of the chemically synthesized 3-oxo-Δ4-DCA and 

allo-DCA at the atomic level, NMR spectroscopy was performed.1H-NMR spectra were 

recorded on a JNM-ECA-500 spectrometer (JEOL Co., Tokyo, Japan) at 500 MHz, with 

pyridine-D5 as the solvent. Chemical shifts are given as the δ-value with 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0001
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tetramethylsilane (TMS) as an internal standard. The abbreviation used here: s, singlet; 

d, doublet; bs, broad singlet. 

 

Phylogenetic analysis 

Sequences for phylogenetic analyses were retrieved from NCBI’s NR protein database 

using the sequence of HDCHBGLK_03451 as the query and limiting the number of 

resulting database matches to five thousand and allowing a maximum alignment E-

value of 1E-10 for BLASTP v. 2.12.0 +.59 The retrieved alignments showed high 

sequence conservation, therefore the worst E-value seen in the alignments was about 

3E-37. 

Given the high sequence similarities observed in the search step, sequences were 

clustered with USEARCH v. 11.0.66760 to remove redundancy from the dataset. The 

cluster_fast command was used with an identity threshold of at least 95% to cluster 

sequences. Each cluster was represented in the phylogenetic analysis by one 

representative, the centroid sequence. The only exception was the sequences in the 

same cluster as the query sequence used above, in which case all sequences from the 

cluster were used in the analysis, instead of just the centroid. Clustering resulted in 

1,603 sequences included in the downstream analyses. 

Centroids 25% shorter or longer than the average sequence length calculated for the 

whole dataset (596 amino acids) were removed from the dataset, thus keeping in the 

analysis only sequences with at least 446 and at most 744 amino acids in length. The 

1,460 protein sequences remaining in the dataset were aligned by MUSCLE v. 

3.8.155161 and the best-fitting sequence substitution model was identified using 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0059
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0060
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0061
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ModelTest-NG v. 0.1.7.62 Phylogenetic tree inference was performed using the 

maximum likelihood criterion as implemented by RAxML v. 8.2.12,63 using the WAG 

sequence substitution model with empirical residue frequencies, gamma-distributed 

substitution rates, and bootstrap pseudoreplicates (whose number, 250, was 

determined automatically by the program at run-time). The resulting phylogenetic tree 

was edited with TreeGraph2 v. 2.15.0–88764 and Dendroscope v. 3.7.665 and further 

cosmetic adjustments were performed with the Inkscape vector editor 

(https://inkscape.org/ last accessed on January, 20th, 2022). 

 

Bai gene identification in MAG database 

A database of publicly available MAGs from five cohorts varying in CRC status was 

previously annotated for open reading frames and used for this study.66,67 Custom 

Hidden Markov Model (HMM) profiles were created for each of the 4 genes of interest 

(baiCD, baiE, baiP, and baiJ) by creating an alignment of reference protein sequences 

in this study and blastp results with 60% identity to those reference sequences and then 

passing the alignments to hmmbuild to create an HMM profile. Initial HMM cutoffs were 

generated by querying protein sequences from the Human Microbiome Project.66 To 

further refine HMM profile cutoffs, blast databases were made of each alignment and a 

concatenated file of predicted open reading frames from the 16,936 MAGs described 

earlier were queried against the alignment databases. The MAG database was 

searched using the HMM profiles with finalized cutoffs and hmmsearch within HMMER 

3.1b2. All custom HMM profiles used for these searches can be found at: 

https://github.com/escowley/BileAcid_LeeJ. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0062
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0063
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0064
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0065
https://inkscape.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0066
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0067
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645264/#cit0066
https://github.com/escowley/BileAcid_LeeJ


 

330 

 

Summary calculations and statistical analysis for association of Bai genes with 

disease state from MAG database 

Summary calculations of number of gene hits in the MAG database, number of 

participants with the gene of interest, and disease information were performed in R and 

can be found in Table S4. Methods for determining associations between Bai genes 

and disease state were previously described.66 Briefly, chi squared tests were 

performed on a dataset of binarized participants that were designated as “presence” if 

any of their MAGs contained a copy of the gene of interest or “absence” if none of their 

recovered MAGs contained a copy of the gene of interest. P-values less than 0.05 are 

designated as significant (Table S5). 
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Abstract   
Sulfur plays a pivotal role in interactions among the atmosphere, lithosphere, pedosphere, 

hydrosphere, and biosphere, and the functioning of living organisms. Within Earth’s crust, 

mantle, and atmosphere, sulfur undergoes diverse geochemical transformations due to 

natural and anthropogenic factors. In the biosphere, sulfur is indispensable, participating 

in the formation of amino acids, proteins, coenzymes, and vitamins. Microorganisms in 

the biosphere play a key role in the cycling of sulfur compounds through oxidation, 

reduction, and/or disproportionation reactions for generation of energy and 

bioassimilation of sulfur compounds. Microbial sulfur metabolism is abundant in both 

aerobic and anaerobic environments and interconnected with the biogeochemical cycles 

of important elements such as carbon, nitrogen, and iron. Through metabolism, 
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competition, or cooperation, microorganisms metabolizing sulfur can drive the 

consumption of organic carbon, loss of fixed nitrogen, and production of greenhouse 

gases. Given the increasing significance sulfur metabolism in environmental alteration 

and the intricate involvement of microorganisms in sulfur dynamics, a timely reevaluation 

of the sulfur cycle is imperative. This discusses advances in our understanding of 

microbial sulfur metabolism, provides holistic context for the sulfur cycle in the face of 

rapidly changing ecosystems on Earth, and examines the significance of microbially-

mediated sulfur transformation reactions in different environments, ecosystems, and 

microbiomes. 

 

 

 

 

 

 

 

 

 

 

Introduction  
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Sulfur is the fifth most abundant element on Earth. Sulfur is ubiquitous in diverse 

environments, including marine, terrestrial, soil, freshwater, and the human body. 

Historically, geological activities constituted the primary sources of sulfur2, but in recent 

centuries, anthropogenic activities have exerted a substantial influence on the sulfur 

cycle4. Instances such as acid rain caused by the release of sulfates into aquatic 

ecosystems6 and combustion of fossil fuels leading to the release of sulfur dioxide into 

the atmosphere1 highlight the impact of human activities on sulfur dynamics. The sulfur 

cycle encompasses effects on climate change and environmental conservation, and 

involves economic benefits for human beings, including sulfur utilization7 and agricultural 

activities4. Comprehending biotic and abiotictransformations of sulfur compounds is 

crucial for understanding their implications in the overall sulfur cycle, as well as their 

interactions with other macro- and microorganisms and elemental cycles. 

Sulfur can exist in organic and inorganic forms, and in various oxidation states, ranging 

from highly reduced hydrogen sulfide to highly oxidized sulfate. Inorganic forms of sulfur 

comprise various sulfides, elemental sulfur, thiosulfate, tetrathionate, sulfite, and sulfate. 

Hydrogen sulfide is prevalent in anoxic environments, functioning as a reduced 

compound for microbial energy metabolism. Elemental sulfur commonly occurs in 

volcanic and hydrothermal settings, and is most commonly sourced from incomplete 

abiotic or biotic oxidation of hydrogen sulfide. In contrast, sulfate dominates oxic settings 

like soils and oceans, supporting plant and microbial growth through assimilatory 

transformations to organic sulfur, and microbial metabolism through dissimilatory 

transformations to hydrogen sulfide. Organic forms of sulfur encompass sulfur-containing 

amino acids such as cysteine and methionine, and other important biotic compounds 
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including amino acid derivatives such as taurine, thioethers such as dimethyl sulfide 

(DMS), dimethylsulfoniopropionate (DMSP) which serves as a common biological 

osmolyte, and sulfonates such as methanesulfonate.  

The conversions between oxidation states and the various forms of sulfur are often 

mediated by microorganisms. These microbes make vital contributions to energy flow in 

the environment and make essential sulfur compounds (including organosulfur 

compounds) available to higher organisms, such as animals and plants8. For example, 

sulfate-reducing bacteria are proficient in in anoxic environments converting sulfate to 

hydrogen sulfide9, whereas sulfur-oxidizing bacteria catalyze the reverse reaction in both 

anoxic and oxic environments, transforming hydrogen sulfide into sulfate through 

oxidation10. Archaea, frequently inhabiting extreme environments, participate in diverse 

metabolic pathways contributing to sulfur cycling including sulfate reduction, sulfur 

oxidation, and sulfur reduction altering the oxidation state of sulfur compounds based on 

nutrient availability11,12. Viruses can infect these microorganisms, controlling their 

populations and providing auxiliary metabolic functions by manipulating their microbial 

hosts, and thereby influencing the transformations of sulfur compounds13,14. These 

microbial and viral interactions and processes play an important role in the accessibility 

of crucial sulfur compounds for organisms spanning various trophic levels. 

While elemental cycles of other important elements such as  carbon and nitrogen cycles 

have received extensive attention, the sulfur cycle  remains relatively less understood15. 

The sulfur cycle plays an important role in ongoing climate change and shapes 

interactions between the atmosphere, lithosphere, pedosphere, hydrosphere, and 

biosphere. Given the specific importance of the microbial sulfur cycle which plays a 
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central role in these processes on Earth, we aim to enhance our understanding of 

microbial sulfur metabolism, and examine the microbial diversity and functional roles 

within sulfur-associated microbiomes and ecosystems.  

  

Global sulfur cycling 
The global cycling of sulfur encompasses the dynamic movement of sulfur in various 

forms across diverse ecosystems and environments on Earth (Fig. 1). Sulfur has its 

largest reservoirs in the Earth’s lithosphere, amounting to 12±6×109 Teragrams (Tg) 

(mostly as minerals in the crust) and in Earth’s hydrosphere to the order of 1.3±0.1×109 

Tg (mostly as sulfate in the oceans)15. In concert with its abundance, sulfur 

transformations are among key biological processes, as it is incorporated into living 

organisms, contributing to the formation of amino acids, vitamins, cofactors, hormones, 

and other compounds essential for maintaining biological functions16. Sulfur is important 

for agricultural activities and serves as a key fertilizer for plant growth17. Additionally, the 

cycling of sulfur plays a crucial role in maintaining the balance of ecosystems and 

supporting various essential biological processes.  

Sulfur can exist in organic and inorganic forms, each with its unique sources and 

processes16. Inorganic sulfur compounds originate from three major processes – biotic 

processes, abiotic processes, and human activities. Biotic processes in particular play 

crucial roles in the formation of inorganic sulfur. In the oceans, algae and phytoplankton 

produce a secondary metabolite called dimethylsulfoniopropionate (DMSP), which serves 

as a significant source of dimethyl sulfide (DMS), the most abundant biotic sulfur 

compound emitted into the atmosphere which is finally oxidized into inorganic sulfur 
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compounds (i.e., SO2 and SO42-)16. Additionally, microbial decomposers in soils and 

during waste processing contribute to the inorganic sulfur supply18,19, and sulfide minerals 

can undergo microbial leaching to generate solubilized metals and sulfur compounds20. 

Abiotic processes also contribute significantly to the sulfur cycle. Volcanic activity 

releases sulfur dioxide and hydrogen sulfide into the atmosphere1,3. Geothermally active 

fields are natural sources of atmospheric hydrogen sulfide3. Additionally, oxidative 

weathering of sulfide minerals buried in sediments can regenerate sulfate and release it 

into the terrestrial hydrosphere21. Human activities are another significant factor in the 

sulfur budget. The combustion of fossil fuels containing sulfur results in the generation of 

sulfur dioxide1. In industry, high-temperature reactions between sulfur or sulfur-containing 

compounds and organic materials, such as during petrochemical processing, tanning, 

and coke production, produce a significant amount of hydrogen sulfide22.  

Sulfur circulates readily and widely among terrestrial, atmospheric, and oceanic 

environments. Sulfate is transferred to terrestrial soils, freshwater bodies, and oceans 

through wet/dry atmospheric deposition5. Over time, inorganic sulfur is transported to the 

ocean via runoff, which serves as the main reservoir of inorganic sulfur in the form of 

sulfate15. In soils, sulfate can be absorbed by plants and assimilated into organic sulfur. 

Within the terrestrial hydrosphere, sulfur mobility varies depending on its forms23. 

Dissolved sulfate in the aqueous phase moves rapidly, while organic sulfur bound in 

organisms and sulfate bound to particles are less mobile. Microbially-mediated processes 

in sediments enable the interchangeability of organic sulfur and inorganic sulfur through 

mineralization and immobilization24. Sulfide generated primarily through microbially-

mediated sulfate reduction can be deposited in sediments as sulfide minerals25. The 
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deposition of organic sulfur and sulfide minerals are two major sulfur sinks in terrestrial 

environments. 

The dynamic interplay of abiotic and biotic processes collectively contributes to the 

complexity of the sulfur cycle (Fig. 1). Throughout the subsequent sections, we focus on 

examining the biochemical basis of sulfur transformations, microbial diversity of sulfur-

associated microbiomes, and unraveling the ecological roles of microorganisms in various 

environments driving the sulfur cycle. 
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Biochemical basis of microbially-mediated sulfur cycling 
The microbially-mediated sulfur cycle encompasses oxidation, reduction, and 

disproportionation reactions (Fig. 2). Within the framework of sulfur cycling, oxidation 

refers to the elevation of the oxidation state of sulfur-containing substrates (such as in 

transformation of sulfide (oxidation state of -2) to sulfate (oxidation state of +6)), whereas 

reduction refers to a reduction in their oxidation state. Disproportionation is characterized 

Fig 1. Overview of the global sulfur cycle. This figure illustrates the processes and interactions 
spanning sulfur transformations in terrestrial, atmospheric, and aquatic environments. Sulfur sources 
encompass biotic contributions such as decomposition of organisms, uptake by plants, waste 
processing, and microbial sulfur metabolism (such as sulfide oxidation , sulfate reduction, and 
generation of DMS in the oceans). Abiotic sources comprise volcanic activity, emissions from 
geothermally active fields, and weathering of sulfide minerals resulting from geological uplift. 
Anthropogenic sources involve fossil fuel combustion and various industrial processes. The 
biotic/abiotic state for each sulfur flux and transformation are labeled accordingly. Sulfur sinks include 
marine environments hosting the largest pool of SO42-, terrestrial environments like soil and freshwater 
housing the SO42- pool and the deposition of organic sulfur and sulfide to terrestrial sediments, and 
integration into the biosphere through assimilation into proteins and essential biological components. 
The annual budgets for global sulfur sources and sinks deposited in the atmosphere are labeled 
accordingly. Numbers for different sulfur species indicate teragrams of sulfur per year. The original 
dataset source years or decades are labeled in brackets. The SO2 emission budgets from three major 
sources were based on Dahiya et al (2020)1, the total H2S emission budget was based on Watts 
(2000)3, and the total sulfur budget for atmospheric deposition was based on Rubin et al (2022)5.  
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by substrates undergoing simultaneous oxidation and reduction reactions, resulting in 

products with one of higher oxidation state and the other one of lower oxidation state. 

Sulfur cycling microorganisms commonly rely on other members of microbiomes to 

conduct sequential multi-step sulfur transformations26,27. The interconnected sulfur 

metabolism pathways mediated by different members of microbiomes facilitate a 

synergistic transformation of sulfur compounds for substrate and energy utilization. In this 

section, we will delve into the enzymatic and chemical nature of sulfur-associated 

metabolic reactions and describe the common taxa conducting them (Caspi, R. et al.28 

and references therein for the subsections).  
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Table 1. Reactions, Genes, and Gibbs free energy of all reactions associated with 
sulfur metabolism. The full names of genes are listed in Table S1. The term “N/A” 
indicates that the corresponding ΔrG’° value is not available in the literature at present. 

Reaction 
no. 

Sulfur 
metabolism Reaction ΔrG’° 

(kcal/mol) Genes 

Reactions 
1 and 3 

Sulfide oxidation 
(S2- →S0) 

n hydrogen sulfide + 
n electron-transfer 
quinone → (sulfide)n 

16.89 sqr, sdo, sorA, 
sorB 

Fig. 2 | Summary figure of sulfur oxidation (purple), reduction (green), and disproportionation 
(red) reactions. Genes responsible for each reaction are shown in rectangular boxes. The most 
important oxidation states of sulfur are illustrated on the left. Spanning from the lowest to the highest 
oxidation states, major oxidation processes encompass sulfide (S2-) oxidation (reactions 1, 2, and 3), 
elemental sulfur (S0) oxidation (reactions 4, 5, and 6), thiosulfate (S2O32-) oxidation (reactions 7, 8, and 
9), and sulfite (SO32-) oxidation (reactions 10, 11, and 12). Conversely, major reduction processes 
include dissimilatory sulfate (SO42-) and sulfite (SO32-) reduction (reaction 13), and elemental sulfur (S0) 
reduction (reactions 14, 15, and 16). Additionally, intermediate oxidation states entail the 
disproportionation processes, encompassing elemental sulfur disproportionation (reactions 17 and 18) 
and thiosulfate disproportionation (reactions 17, 19, 20, 21, 22, and 23). Other sulfur compounds 
represent important intermediates such as polysulfide (S2-)n which participates in the oxidation of 
hydrogen sulfide to elemental sulfur, tetrathionate (S4O62-) which is the product of two thiosulfate 
oxidation pathways, adenosine phosphosulfate (APS) which is an intermediate in sulfate reduction and 
sulfur oxidation, and S-sulfinatoglutathione and S-sulfanylglutathione which participate in the oxidation 
of elemental sulfur. Sulfite is a critical intermediate in sulfur metabolism which participates in oxidation, 
reduction, and disproportionation pathways. Dashed boxes represent intermediates, and solid boxes 
represent the main forms of sulfur compounds. Reaction numbers and corresponding details are 
described in Table S1. 
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+ n electron-transfer 
quinol (main 
reaction) 

Reaction 
2 

Sulfide oxidation 
(S2- →S0) 

hydrogen sulfide + 2 
oxidized c-type 
cytochrome → 
sulfur(0) + 2 reduced 
c-type cytochrome + 
2 H+ 

-6.13 fccAB 

Reaction 
4 

Elemental Sulfur 
oxidation (S0 → 
SO32-) 

sulfur(0) + 
glutathione → S-
sulfanylglutathione 

-2.34 spontaneous 

S-sulfanylglutathione 
+ dioxygen + H2O → 
sulfite + glutathione 
+ 2 H+ 

-100.75 sdo 

Reaction 
5 

Elemental Sulfur 
oxidation (S0 → 
SO32-) 

sulfur(0) + 
glutathione → S-
sulfanylglutathione 

-2.34 spontaneous 

S-sulfanylglutathione 
+ 4 Fe3+ + 3 H2O → 
sulfite + 4 Fe2+ + 
glutathione + 6 H+ 

-87.58 sulfur:ferric ion 
oxidoreductase 

Reaction 
6 

Elemental Sulfur 
oxidation (S0 → 
SO32-) 

intracellular S0n (in 
sulfur globules) + a 
thiol → intracellular 
S0n-1 + a perthiol 

N/A spontaneous 

a perthiol + a [DsrE 
protein]-L-cysteine 
→a [DsrE protein] 
persulfide + a thiol 
(overall reaction for 
sulfur transfers) 

N/A rhd, tusA, 
dsrEFH, 

a [DsrE protein] 
persulfide + a [DsrC 
protein]-dithiol + an 
oxidized electron 
carrier → a [DsrE 
protein]-L-cysteine + 
a [DsrC]-trisulfide + a 
reduced two electron 

N/A dsrC, dsrMKJOP 
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carrier (overall 
reaction for [DsrC]-
trisulfide recycling) 

[DsrC]-trisulfide + 
NAD+ + 3 H2O ↔ 
sulfite + [DsrC 
protein]-dithiol + 
NADH + 3 H+ 

N/A dsrABL 

Reaction 
7 

Thiosulfate 
oxidation (S2O32- 
→ SO42-) 

2 oxidized c-type 
cytochrome[periplasm] + 
2 thiosulfate[periplasm] 
↔ 
tetrathionate[periplasm] 
+ 2 reduced c-type 
cytochrome[periplasm] + 
2 H+[periplasm] 

-21.08 tsdA 

Reaction 
8 

Thiosulfate 
oxidation (S2O32- 
→ SO42-) 

2 thiosulfate + a 
quinone → 
tetrathionate + quinol 

1.93 doxAD 

Reaction 
9 

Thiosulfate 
oxidation (S2O32- 
→ SO42-) 

thiosulfate + 5 H2O 
→ 2 sulfate + 8e- + 
11 H+ (overall 
reaction) 

N/A soxXABYZ(CD)2 

Reaction 
10 

Sulfite oxidation  
(SO32- → SO42-) 

sulfite + 2 oxidized c-
type cytochrome + 
H2O → sulfate + 2 
reduced c-type 
cytochrome + 2 H+ 

-16.72 sorAB 

Reaction 
11 

Sulfite oxidation  
(SO32- → SO42-) 

sulfite + AMP + 
oxidized AprM 
electron-transfer 
protein + 2 H+ ↔ 
adenosine 5’-
phosphosulfate + 
reduced AprM 
electron-transfer 
protein 

N/A aprAB 

adenosine 5’-
phosphosulfate + 
phosphate → sulfate 
+ ADP + H+ 

-8.71 apt, sat 
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Reaction 
12 

Sulfite oxidation  
(SO32- → SO42-) 

sulfite + 
menaquinone + H2O 
→ sulfate + 
menaquinol 

-21.51 soeABC 

Reaction 
13 

Dissimilatory 
sulfate reduction 
(SO42-→ S2-) 

sulfate + ATP + 
H+ ↔ adenosine 5’-
phosphosulfate + 
diphosphate 

-20.45 sat 

adenosine 5’-
phosphosulfate + 
reduced QmoABC 
electron-transfer 
protein complex ↔ 
sulfite + AMP + 
oxidized QmoABC 
electron-transfer 
protein complex + 2 
H+ 

N/A aprAB 

sulfite + [DsrC 
protein]-dithiol + 
NADH + 3 H+ ↔ 
[DsrC]-trisulfide + 
NAD+ + 3 H2O 

N/A dsrAB (reductive) 

[DsrC]-trisulfide + 2 
electron-transfer 
quinol → hydrogen 
sulfide + [DsrC 
protein]-dithiol + 2 
electron-transfer 
quinone 

-9.54 dsrK 

Reaction 
14 

Sulfur reduction 
(S0 → S2-) 

sulfur(0) + H2 → 
hydrogen sulfide -19.64 sreABC 

Reaction 
15 

Sulfur reduction 
(S0 → S2-) 

n sulfur(0) + 
hydrosulfide → 
(sulfide)n+1 + H+ 

N/A spontaneous 

(sulfide)n + H2 → 
hydrogen sulfide + 
(sulfide)n-1 

N/A hydBC, psrABC, 
or shyCB 

Reaction 
16 

Sulfur reduction 
(S0 → S2-) 

sulfur(0) + NAD(P)H 
+ H+ → hydrogen 
sulfide + NAD(P)+ 

-1.78 
NAD(P)H sulfur 
oxidoreductase 
(NSR) 
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Reaction 
17 

Disproportionation 
of sulfur into 
sulfite and 
hydrogen sulfide 
(anaerobic and 
aerobic) 

3 sulfur(0) + 3 H2O 
→ sulfite + 2 
hydrogen sulfide + 2 
H+ 

-16.65 not characterized 

Reaction 
18 

Disproportionation 
of sulfur into 
sulfite and 
hydrogen sulfide 
(anaerobic and 
aerobic) 

4 sulfur(0) + 4 H2O + 
dioxygen → 2 
hydrogen sulfide + 2 
sulfite + 4 H+ 

-119.74 
sor (sulfur 
oxygenase 
reductase) 

Reaction 
19 

Disproportionation 
of thiosulfate into 
sulfate and 
elemental sulfur 
(Sox pathway) 

thiosulfate + 
intracellular S0(n) + 
H2O → sulfate + 
intracellular S0(n+1) + 
2e- + 3 H+ (overall 
reaction) 

N/A soxXABYL 

Reaction 
20 

Disproportionation 
of thiosulfate into 
sulfite and 
hydrogen sulfide 
(thiol) 

thiosulfate + 2 thiol 
→ sulfite + hydrogen 
sulfide + disulfide + 
H+ 

6.82 RDL2 

Reaction 
21 

Disproportionation 
of thiosulfate into 
sulfite and 
hydrogen sulfide 
(cytochrome) 
 

thiosulfate + 2 
reduced type I 
cytochrome c3 + H+ 

→ sulfite + hydrogen 
sulfide + 2 oxidized 
type I cytochrome c3 

-0.67 
thiosulfate 
reductase 
(cytochrome) 

Reaction 
22 

Disproportionation 
of thiosulfate into 
sulfite and 
hydrogen sulfide 
(quinone) 

thiosulfate + 
menaquinol → sulfite 
+ hydrogen sulfide + 
menaquinone + H+ 

-5.45 phsABC 
 

Reaction 
23 

Disproportionation 
of thiosulfate into 
sulfite and 
thiocyanate 
(rhodanese) 
 

thiosulfate + 
hydrogen cyanide → 
sulfite + thiocyanate 
+ 2 H+ 

-30.83 pspE or rhdA 
 

 

Oxidation reactions 
Sulfide oxidation (S2-→ S0) 
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Sulfide oxidation to elemental sulfur can be conducted using two different metabolic 

pathways10. First, sulfide:quinone oxidoreductase (Sqr) transforms hydrogen sulfide to 

(sulfide)n using electron-transfer quinones, with the (sulfide)n then being spontaneously 

converted to sulfur, and stored in sulfur globules intracellularly in some bacteria, such as 

the model purple sulfur bacterium Allochromatium vinosum. Second, flavocytochrome c 

sulfide dehydrogenase (Fcc) can oxidize hydrogen sulfide using c-type cytochromes. 

Microbial sulfide oxidation is common in both oxic and anoxic environments and can be 

coupled to diverse electron acceptors including oxygen, nitrate, iron, and manganese. 

For example, sulfide oxidation is an important reaction driving anoxygenic photosynthesis 

by organisms from diverse lineages of bacteria including Chlorobiota, Firmicutes, 

Acidobacteriota, Chloroflexota, Proteobacteria, and Gemmatimonadota.  

Elemental sulfur oxidation (S0 → SO32-) 
Elemental sulfur is typically oxidized different by autotrophic and heterotrophic organisms. 

In heterotrophs, the initial step of aerobic sulfur oxidation involves the spontaneous 

combination of glutathione with sulfur to form S-sulfanylglutathione. Subsequently, S-

sulfanylglutathione dioxygenase (Sdo) oxidizes S-sulfanylglutathione to S-

sulfinatoglutathione, and then transformed into sulfite29. Alternatively, sulfur oxidizing 

autotrophs, such as organisms from Gammaproteobacteria (like Thioglobus/SUP05) use 

the reverse-type dissimilatory sulfite reductase (rDsr, oxidative type) to oxidize sulfur to 

sulfite30. In this pathway, elemental sulfur stored within sulfur globules can undergo 

spontaneous reduction to persulfide before entering the cytoplasm. It is then transferred 

to DsrC by DsrEFH complex. DsrMKJOP complex facilitates the oxidation of the 

combined molecule, producing a [DsrC]-trisulfide. Finally, DsrABL catalyzes its oxidation 
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to sulfite31. This reaction direction is the opposite of canonical dissimilatory sulfite 

reduction. 

Thiosulfate oxidation (S2O32- → SO42-) 
Thiosulfate is an inorganic sulfur anion (S2O32-) that can be both oxidized and reduced, 

and tends to form bonds with metals. Three types of thiosulfate oxidation reactions exist, 

namely, type I, II, and III. Type I and Type II generate tetrathionate, whereas Type III uses 

the sox pathway and generate sulfate. The typical Sox multi-enzyme complex used in 

Type III thiosulfate oxidation comprises subunits of SoxXABYZ(CD)232. SoxXA is 

heterodimeric c-type cytochrome, SoxYZ is a sulfur carrier, Sox(CD)2 is sulfur 

dehydrogenase, and SoxB acts as the sulfate thiol esterase, releasing sulfate from the 

cysteine S-thiosulfonate32. The sox pathway is encoded by organisms in various bacteria 

genera, such as Aquifex, Paracoccus, and Rhodovulum within the bacterial phyla 

Aquificota and Proteobacteria. 

Sulfite oxidation (SO32- → SO42-) 
Sulfite precedes the final oxidized form of sulfur species, sulfate. For prokaryotes, there 

are three major pathways of oxidizing sulfite and generating sulfate33,34. First, Sor, the 

sulfite dehydrogenase (cytochrome), can directly oxidize sulfite, and the electrons 

generated during catalysis can be passed to the oxidized form of cytochrome c for making 

protons. Second, adenosine 5’-phosphosulfate (APS) is the intermediate within the 

oxidation pathway; it can either be oxidized by adenylylsulfate:phosphate 

adenylyltransferase (Apr) or sulfate adenylyltransferase (Sat) to sulfate. Third, Soe, the 

sulfite dehydrogenase (quinone), can directly oxidize sulfite with menaquinone to 

generate sulfate and menaquinol. The microbial taxa ranges for these three major 

pathways are listed in Table S1. 
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Reduction reactions 
Assimilatory sulfate reduction 
Sulfur reduction processes involve the reduction of oxidized forms of sulfur. Important 

reactions such as sulfate reduction, can be assimilatory or dissimilatory. Assimilatory 

sulfate reduction involves the reduction of sulfate to primarily produce organosulfur 

compounds for biosynthesis such as in amino acids, proteins, and other cellular 

components. The four assimilatory sulfate reduction pathways and corresponding 

microbial taxa ranges are summarized in Table S1. In contrast, dissimilatory sulfate 

reduction involves the reduction of sulfate (as an electron acceptor) to either generate 

energy and/or link to other metabolic processes (such as carbon fixation or heterotrophy). 

Overall, sulfate reduction to either sulfite or hydrogen sulfide, is a multi-step process.  

Dissimilatory sulfate and sulfite reduction (SO42- or SO32-→ S2-) 
Microorganisms that have the capacity for complete reduction of sulfate to sulfide, are 

referred to as SRM (sulfate-reducing microorganisms)9. In this process, sulfate is first 

reduced to APS by the activity of Sat, which uses ATP and releases diphosphate9. Then, 

APS reductase (Apr) converts APS to sulfite9. Finally, sulfite is converted to H2S by 

dissimilatory sulfite reductases (Dsr)9. During dissimilatory sulfate reduction, sulfate is 

used as the terminal electron acceptor (instead of what would normally be oxygen), and 

organisms must expel the sulfide from the cell because H2S can be toxic. A small 

proportion of microorganisms lack the ability to reduce sulfate to sulfite, but can reduce 

sulfite to sulfide and are termed sulfite-reducing microorganisms. Diverse 

microorganisms in thermophilic, mesophilic, and psychrophilic environments encode 

these metabolic pathways including archaea from four phyla including Halobacterota, 
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Thermoproteota, Thermoplasmatota, and Hydrothermarchaeota, and bacteria from 

twenty seven distinct phyla (Table S1). 

Sulfur reduction (S → S2-) 
Although many sulfate- or sulfite-reducing microorganisms can carry out sulfur reduction 

(sulfur reduction is a “step” in both oxidative and reductive pathways), few organisms are 

true sulfur reducers (those that can not use sulfate or sulfite but require elemental sulfur 

as a starting point). Elemental sulfur can be directly reduced to hydrogen sulfide by a 

sulfur reductase (Sre)35 or NAD(P)H sulfur oxidoreductase (Nsr)36, or elemental sulfur can 

be first transformed to polysulfide spontaneously and then reduced to hydrogen sulfide37. 

Hydrogen serves as the terminal electron donor for both pathways. The Sre enzyme is 

widely distributed across numerous bacterial and archaeal species (Table S1). 

Conversely, Nrs is only distributed in a few archaeal thermophiles, exemplified by 

Pyrococcus. Similarly, several microbial species employ specific enzymes encoding for 

the polysulfide pathway. Examples include sulfur reductase (HydBC) in Pyrococcus 

furiosus, polysulfide reductase (PsrABC) in Wolinella succinogenes, and sulfide 

dehydrogenase (ShyCB) in Pyrococcus furiosus. 

 

Disproportionation 
Disproportionation of sulfur into sulfite and hydrogen sulfide (anaerobic and 
aerobic) 
In this process, sulfur serves as both the electron donor and acceptor, with oxygen acting 

as an additional electron acceptor. No additional electron donors, acceptors, or cofactors 

are involved in the reaction. The reaction yields sulfite and hydrogen sulfide as products, 

while thiosulfate can also be formed through a non-enzymatic reaction between sulfite 

and sulfur. The enzyme responsible for this reaction is the soluble cytoplasmic sulfur 
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oxygenase reductase (Sor)38, frequently found in thermophilic organisms from the 

archaeal phyla Thermoplasmatota and Thermoproteota, and the bacterial phylum 

Aquificota. 

Disproportionation of thiosulfate into sulfate and elemental sulfur (Sox pathway) 
The Sox pathway facilitates the oxidation of thiosulfate to sulfate when all the components 

SoxXABYZ(CD)2 are present. However, in the absence of SoxCD, thiosulfate undergoes 

disproportionation into sulfate and elemental sulfur. When SoxCD is present, both the 

sulfone-sulfur (sulfur atom attached to oxygen) and sulfane-sulfur (sulfur atom without 

oxygen attached) within a thiosulfate molecule are oxidized to form sulfate; conversely, 

in the absence of SoxCD, the sulfane moiety is transferred to generate sulfur globules, 

which are then either deposited in the periplasmic space (e.g., in Beggiatoa, 

Chromatiaceae) or extracellularly (e.g., in Chlorobiaceae, Ectothiorhodospiraceae) 39,40. 

Disproportionation of thiosulfate into sulfite and hydrogen sulfide (thiol) 
Within this pathway, a thiol-dependent thiosulfate-thiol sulfurtransferase (RDL2) 

facilitates the transfer of sulfane sulfur to a thiol compound, resulting in the formation of 

sulfite and a persulfide41. When an excess of thiol is present, the persulfide can 

spontaneously release free hydrogen sulfide as the final product41. This pathway is 

frequently found in several bacterial genera including acidophilic organisms such as 

Acidithiobacillus and Thiobacillus, non-acidophilic organisms such as Acinetobacter, and 

fungi such as Saccharomyces. 

Disproportionation of thiosulfate into sulfite and hydrogen sulfide (cytochrome) 
In this pathway, the conversion of thiosulfate to sulfite and sulfide is facilitated by 

thiosulfate reductase and hydrogenase, consuming hydrogen in the process. An essential 

component in this process is the presence of cytochrome c3, which serves as an electron 
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shuttle between hydrogenase and thiosulfate reductase42. This pathway is frequently 

found in several bacterial genera from the phylum Proteobacteria including Desulfocapsa, 

Desulfotomaculum, and Desulfovibrio. 

Disproportionation of thiosulfate into sulfite and hydrogen sulfide (quinone) 
This pathway is facilitated by the membrane-bound quinone-dependent thiosulfate 

reductase (Phs), which functions as a molybdopterin-containing oxidoreductase43. It is an 

energy-dependent process that can be powered by NADH and/or other fermentation 

products44. This pathway is frequently found in several Enterobacteriaceae genera that 

are common commensal and pathogenic members of the human and animal gut 

microbiomes including Salmonella, Proteus, Citrobacter, Budvicia, and Edwardsiella. 

Disproportionation of thiosulfate into sulfite and thiocyanate 
(rhodanese/thiosulfate sulfurtransferase) 
Thiosulfate and cyanide can be disproportionated by rhodanese (thiosulfate 

sulfurtransferase) into sulfite and thiocyanate45. The enzyme rhodanese has been 

discovered in both prokaryotes and eukaryotes, and is widely distributed in biology 

ranging from heterotrophic bacteria such E. Coli, autotrophic sulfur oxidizing 

Proteobacteria, to Mammalia. It has been suggested that rhodanese is involved in the 

detoxification of cyanide in both mammals46 and bacteria47. 

 

Organic Sulfur transformations 
A comprehensive understanding of organic sulfur transformation has been discussed in 

previous works48, while for the purposes of this review, we emphasize specific reactions 

closely related to inorganic forms14. Notably, assimilatory sulfate reduction plays a crucial 

role in incorporating sulfide into cysteine or homocysteine for biosynthesis, contributing 
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to the formation of essential cellular components. Subsequently, homocysteine/cysteine 

can be converted into methionine, serving as the primary source of sulfur-containing 

proteinogenic amino acids in cellular organisms. Organic sulfur compounds such as 

taurine, alkylsulfonate/isethionate, and methanesulfonate can undergo catalysis, leading 

to the production of sulfite. Likewise, other organic sulfur compounds, including 3-

mercaptopyruvate and cystathionine, can be catalyzed to generate sulfide through 

homocysteine/cysteine. The inorganic sulfur compounds produced from these processes, 

such as sulfide can enter both assimilatory and dissimilatory sulfur metabolism, 

completing the sulfur transformation loop. Sulfide, as an important product of organic 

sulfur transformations, plays significant roles in both human and environmental systems. 

For instance, sulfide is genotoxic and has proinflammatory effects on the gut epithelium49, 

and contributes to “cryptic sulfur cycling”50 through organosulfur degradation in oxic 

conditions51. Organic sulfur transformation can interact with inorganic sulfur metabolisms 

and we describe instances of these in the following section on illustrating sulfur cycling 

across different ecosystems. 

Microbial diversity of sulfur-cycling organisms 
Dissimilatory sulfur-metabolizing lineages are widely distributed across the tree 
of life 
Microbes across the entire spectrum of life are involved in sulfur cycling: archaea, 

bacteria, eukaryotes, and viruses. Here, we identify the most abundant and important 

microorganisms and metabolisms in sulfur-cycling microbiomes. We focus on six key 

functions associated with oxidation, reduction, and disproportionation metabolisms: 

sulfide oxidation, elemental sulfur oxidation, thiosulfate oxidation, sulfur reduction, sulfite 

reduction, and thiosulfate disproportionation (Fig. 3). We searched GTDB species 

representatives (release 202) to specifically summarize the distribution of these functions 
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across all prokaryotic phyla/classes. The distribution of functions was guided by the 

following rules for presence of proteins in microbial genomes, fccB and sqr for sulfide 

oxidation, dsr (oxidative), sdo, and sor for sulfur oxidation, SoxXYZA with soxCD for 

thiosulfate oxidation, sreABC and sor for sulfur reduction, dsr (reductive) and asrABC for 

sulfite reduction, and phsA and SoxXYZA without soxCD for thiosulfate 

disproportionation. Across 127 bacterial phyla and 47 archaeal classes, 102 and 26 were 

identified to contain at least one of the six key functions, respectively, suggesting that 

sulfur-metabolizing lineages are common (Fig. 3). It should be noted that these two trees 

only show a subset of dissimilatory sulfur metabolizing functions that are common and 

widely distributed (Table S1). Sulfate reduction (to sulfite) and sulfite oxidation reactions 

are not shown as they are not exclusive to dissimilatory metabolism and are widely 

distributed across all domains of life. 
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Fig. 3 | Sulfur metabolism across the tree of life. Bacterial (a) and archaeal (b) tree of life based on 
GTDB species representatives with annotations for key functions associated with dissimilatory sulfur 
metabolism. The bacterial tree was classified to the phylum level, except for the Proteobacteria which 
were classified to the class level. The archaeal tree was classified to the class level. Filled circles indicate 
the presence of a specific function (i.e., if any species representative within the class/phylum possessed 
the function). Similarly, a filled square represents identification of a class/phylum in the environmental 
category (i.e., if any species representative from that class/phylum exists within that category). Bootstrap 
(UFBoot) support values (≥80%) are labeled as black dots. One representative genome was randomly 
picked from each class/phylum to build the phylogenetic tree.  
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Viruses cannot conduct metabolic reactions independently but are obligate intracellular 

parasites relying on hosts for energy and metabolic precursors to propagate. Viral-

encoded auxiliary metabolic genes (AMGs) can provide viruses with fitness advantages 

for propagation by maintaining, driving, or short-circuiting important step(s) of the 

metabolic pathway(s) of host cells52,53. AMGs have been found to significantly contribute 

to the biogeochemical cycling of essential elements such as carbon54-58, nitrogen59,60, and 

sulfur61,62 in diverse environments, including oceans, freshwater lakes, and terrestrial 

soils, ultimately shaping the biogeochemical landscape of their ecosystems. Viruses can 

affect sulfur metabolism in their hosts by encoding genes involved in both dissimilatory 

and assimilatory sulfur metabolism13,14 (Box 1).  

Environmental distribution of sulfur-metabolizing lineages 
To study the distribution of sulfur-metabolizing prokaryotes, we classified them into 12 

environmental categories encompassing natural environments, engineered 

environments, and human systems. Various bacterial lineages, including 

Actinobacteriota, Bacteroidota, Firmicutes, Alphaproteobacteria, and 

Gammaproteobacteria, exhibited a widespread distribution across all environmental 

categories (Fig. 3a). In general, archaea were not as widely distributed as bacteria. 

Among archaeal classes, Thermoplasmata demonstrated the broadest distribution, 

extending to 8 out of the 12 environmental categories (Fig. 3b). With rapidly increasing 

numbers of genomes in public databases from diverse environments, future studies will 

enable an increasingly representative portrait of the taxonomic diversity of sulfur 

metabolism, and their distribution in nature. 

Sulfur cycling across ecosystems 
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Abiotic and biotic reactions associated with the sulfur cycle take place in diverse 

environments encompassing the atmosphere, soils, aquatic systems, and the human 

body. Importantly, these environments serve as habitats for various microorganisms 

involved in sulfur cycling. Specifically, six representative ecosystems were chosen based 

on the significance or considerable global impact of microbial sulfur transformations 

occurring within them. Marine oxygen minimum zones (OMZs) are crucial for the rapid 

cycling of sulfur compounds and the maintenance of low sulfide concentrations, resulting 

in “cryptic sulfur cycling”. Marine hydrothermal vents are vital locations for sulfur-

metabolizing chemosynthetic communities that dominate primary production through H2S 

and S0 oxidation. Freshwater lakes exhibit diverse sulfur metabolisms based on 

stratification and oxygen levels. The atmosphere plays a crucial role in the global sulfur 

cycle, with marine bacteria contributing approximately 10% to the annual global DMS 

production. Soils and the human gut are key ecosystems that have a significant influence 

on the balance of inorganic and organic sulfur budgets, thereby impacting sustainable 

soil ecosystem and plant growth as well as human health, respectively. The subsequent 

sections elaborate on the influence of environmental factors and chemicals on the 

composition of microbial communities and their interactions, ultimately shaping the overall 

sulfur cycling process. 

Marine oxygen minimum zones 
Marine oxygen minimum zones (OMZs) are geochemical regimes in the world’s oceans 

located at intermediate depths (~100-1000 m) that are characterized by depleted oxygen 

levels (below 20 μmol/kg)63. Within OMZs, microorganisms rapidly cycle sulfur 

compounds by reducing sulfate to sulfide and oxidizing sulfide to sulfate, but sulfide 

concentrations remain at sub-micromolar levels. Consequently, it is difficult to observe 
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the sulfur transformations using traditional biogeochemical measurements64. The close 

proximity of sulfate reduction and sulfide oxidation, for example, in marine particle 

aggregates, facilitates a simultaneous coupled activity that maintains low sulfide 

concentrations, leading to what is known as “cryptic sulfur cycling”50. In some cases, 

anoxic waters can accumulate sulfide, which are then termed euxinic. 

Sulfur metabolism in OMZs is closely linked to carbon and nitrogen cycling by autotrophic 

and heterotrophic microorganisms. The remineralization of organic matter by 

heterotrophs is mediated by electron acceptors, starting with oxygen in the upper OMZ, 

transitioning to nitrate/nitrite, followed by sulfate/sulfite in the core OMZ50,65 (Fig. 4). 

Meanwhile, groups of chemosynthetic microorganisms dominated by the 

gammaproteobacterial “SUP05” clade play a crucial role in the rapid removal of hydrogen 

sulfide by coupling sulfide oxidation to dissimilatory reduction of nitrate/nitrite50,64 (Fig. 4). 
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Hydrothermal vents and hot springs 
Hydrothermal vents are globally distributed along mid-ocean ridges on the ocean floor66. 

Sulfur metabolizing chemosynthetic communities are common in three distinct vent 

habitats: hydrothermal vent chimneys dominated by thermophilic and mesophilic 

communities, hydrothermal vent plumes dominated by psychrophilic communities, and 

Fig. 4 | Microbial interactions of the sulfur cycle in marine, freshwater, atmosphere, soil, and 
human gut systems. a, The close interplay between sulfate reduction and sulfide oxidation processes 
in marine OMZs leads to the rapid turnover of sulfide, which maintains it at low concentrations, leading to 
“cryptic sulfur cycling”. b, Sulfur oxidation-dominated energy landscape determines the structure and 
function of microbiomes in hydrothermal vent and related hot spring ecosystems. c, In freshwater lakes, 
light, temperature, and oxygen availability influence the distribution and biogeochemical processes of 
microorganisms. A “cryptic sulfur cycle” is driven by the reduction of sulfate or organosulfur compounds 
to form hydrogen sulfide that rapidly recycled. d, In the atmosphere, microbially-driven DMS promotes 
aerosol formation that creates clouds for microbial activities and transports sulfur compounds across the 
globe. e, In soils, microbially-driven reactions contribute to the oxidation/reduction and 
immobilization/mineralization processes of inorganic and organic sulfur compounds. f, In human gut, both 
microbially-mediated inorganic and organic sulfur metabolisms, and auxiliary metabolism mediated by 
viruses contribute to the production of H2S, which conveys either protective or pro-inflammatory effects 
at different concentrations. 
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symbionts associated with vent-associated animals (such as tubeworms, clams, mussels, 

and snails)66. Hydrothermal vent chimneys are characterized by steep geochemical 

gradients created by the mixing of hydrothermally-derived fluids rich in reduced 

substrates and cold oxidized seawater66. This mixing of fluids forms plumes that rise 

hundreds of meters above the seafloor and spread over thousands of kilometers67. H2S 

and S0 are the dominant energy sources for primary production in most hydrothermal 

microbiomes across the globe68,69. Sulfur metabolism in hydrothermal vent chimneys is 

dominated by members of Gammaproteobacteria and Campylobacteria69, but the 

distribution of these two bacterial lineages is governed by sulfide/sulfur concentrations 

with Campylobacteria favored at higher and Gammaproteobacteria at lower 

concentrations70. Similarly, a core hydrothermal vent plume microbiome was recently 

identified identified to contain at least 14 microbial genera dominated by sulfur-

metabolizing microorganisms. These include microorganisms from diverse lineages 

including Actinobacteriota, Campilobacterota, Chloroflexi, Planctomycetota, 

Alphaproteobacteria, Gammaproteobacteria, and SAR32468. Similarily, terrestrial 

hydrothermal ecosystems, commonly referred to as hot springs, encompass 

environments rich in sulfate, sulfide, and methane, with distinct micro-niches 

characterized by varying oxygen levels71. Organisms in hot springs can conduct a variety 

of sulfur metabolisms, including aerobic sulfide oxidation72, anaerobic sulfate/sulfite 

reduction73, anoxygenic photosynthetic-dependent sulfur oxidation73, and coupled 

anaerobic methane and dissimilatory sulfur metabolisms71. Microbial sulfur metabolism in 

terrestrial hot springs plays a pivotal role in global sulfur cycling and holds significant 

implications for understanding the evolution of ancient sulfur and carbon metabolisms71,74. 
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Freshwater lakes 
Freshwater lakes are primarily characterized by differences in location (temperate vs. 

tropical) and stratification (holomictic vs. meromictic), which are then associated with 

differences in sulfur metabolism and biogeochemistry. In holomictic lakes, such as Lake 

Mendota (located in Wisconsin, USA)75, differences in surface and bottom temperatures 

promote stratification in certain seasons; when seasons change, turnover and mixing of 

lake water occurs. Contrastingly, in meromictic lakes, such as Lake Tanganyika76, layers 

do not intermix, the bottom layer does not turn over for years, decades, or even hundreds 

of years, and is generally hypoxic. The gradients of oxygen, temperature, and light 

availability generally control the distribution and biogeochemical processes of 

microorganisms77. Green and purple sulfur bacteria which can survive in well-lit but 

oxygen-deficient areas, oxidize sulfide or elemental sulfur, use light energy for autotrophic 

metabolisms, and tend to congregate in the oxycline and photic zone78. In the lower layers 

and sediments, where oxygen is limited, sulfate reduction is abundant and drives the 

transformations of organic matter76,79. 

Based on data collected from 308 lakes spanning diverse landscapes and trophic states, 

including urbanized, agricultural, and intermediate conditions, microbially-mediated sulfur 

metabolisms exhibit certain commonalities80. In the majority of surface waters, 

Gammaproteobacteria were a prominent group and associated with the oxidation and 

disproportionation of thiosulfate. Dissimilatory sulfate/sulfite reduction, reliant on lower 

oxygen levels, was less prevalent in surface waters, which aligned with their higher 

oxygenation levels80. All lakes generally contained lower sulfate levels than oceans (1-50 

mg/L vs. ~2,700 mg/L)81,82. Similar to OMZs, a “cryptic sulfur cycle” also occurs in 

freshwater, but differs in the source of sulfide which can be from sulfate reduction or from 
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organosulfur degradation in oxic conditions51. Commonly, sulfide oxidation in lakes may 

be driven by the reduction of Fe(III)83, phototrophy84, or denitrification85 (Box 2).  

Atmosphere 
Microbial cell densities in the atmosphere are significantly lower compared to Earth’s 

surface biomes, typically measured in cells per cubic meter instead of grams or milliliters. 

Bacterial densities in near-surface air are generally estimated to be between 104 and 105 

cells per cubic meter86, with the highest concentration in clouds ranging from 103 to 106 

cells per milliliter87,88. The major source of sulfur transferred from ocean to atmosphere is 

through DMS. Marine phytoplankton and algae produce DMSP, which is enzymatically 

broken down by bacteria into DMS89. Subsequently, DMS is oxidized in the atmosphere, 

leading to the formation of various sulfur-containing compounds90. These compounds 

serve as aerosols, acting as cloud condensation nuclei and influencing global climate by 

promoting cloud formation90. Annually, approximately 10% of global DMS production 

(around 300 Tg/year) is contributed by bacteria entering the atmosphere91. Microbially-

driven sulfur transformations can happen in the atmosphere because microbes reside on 

many primary aerosols, such as dust92, DMS90, and sea spray93. These bioaerosols 

contribute to the formation of cloud droplets, which contain water and provide shade 

against direct UV radiation, serving as “hotspots” for microbial activity92. In fact, recent 

metagenomic studies have revealed that bioaerosol microbes mediate sulfur 

transformations including the formation of sulfate94. Additionally, carbonyl sulfide (COS)95 

and carbon disulfide (CS2)96 are important sulfur gases that contribute to the sulfate 

aerosol layer in the atmosphere, with both natural and industrial origins3. Furthermore, 

microbes can consume COS as a trace gas in the atmosphere at ambient 
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concentrations97. Through atmospheric deposition, aerosols containing microbially-driven 

sulfur compounds also play a significant role in the global transportation of sulfur. 

Soil 
Terrestrial soils are characterized by both organic and inorganic forms of sulfur. Inorganic 

sulfur is subjected to the influence of precipitation, adsorption, oxidation, and reduction24; 

the latter two are mainly mediated by microorganisms. In contrast, organic sulfur is 

subjected to immobilization and mineralization24. About 5% of sulfur in soils is in the form 

of inorganic sulfur98. Microbial oxidation of reduced sulfur species, i.e., S2-, S0, and S2O32-, 

can be performed by both autotrophic and heterotrophic microorganisms. For example, 

Thiobacillus sp. uses elementary sulfur, thiosulfate, or polythionates as energy sources 

and fixes CO299. Pseudomonas aeruginosa PAO1 can consume various sulfur species 

(H2S, S2-, and HS-) when growing on organic carbon under aerobic conditions100. 

Organic sulfur represents 95% of soil sulfur and comprises two primary forms: ester 

sulfates (C–O–S) and carbon-bonded S (C–S)101. Particularly, ester sulfates comprise 

30-70% of the organic sulfur pool102. The biochemical mineralization of ester sulfates 

involves microbially-mediated enzymatic hydrolysis by sulfatases24. The release of SO42- 

by sulfatase is controlled by the sulfur supply to soil microorganisms in the environment. 

Meanwhile, the biological mineralization of carbon-bonded S is mediated by 

microorganisms for use as a carbon source and for energy demands, with SO42- being 

released as a by-product24. In soil, the sulfatase-dependent mineralization process is 

much faster and thus more important for short-term sulfur cycling103. While 

microorganisms control the metabolism and composition of soil organic sulfur 

compounds, these processes control sulfur supply for plant growth since plants depend 
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on sulfate released by organic sulfur mineralization103. Overall, soil microbiomes 

contribute significantly to the balance of inorganic/organic sulfur budgets that are critical 

for healthy and sustainable soil ecosystems. 

Human gut 
The focus of sulfur compounds in human health has largely been on H2S. In the human 

body, H2S can have both protective and anti-inflammatory effects, as well as pro-

inflammatory effects, mediating various disease processes104,105. Studies on sulfur 

microbiomes in the human gut have explored dissimilatory sulfate reduction106, 

organosulfur metabolism107, and assimilatory sulfur metabolism104, all of which are 

primarily mediated by bacteria. However, recent evidence suggests that viruses can also 

influence organic sulfur metabolism in the human gut14. 

Understanding the role of H2S in the human gut is crucial for comprehending the potential 

impact of bacteria-produced H2S on disease development and considering strategies to 

mitigate its effects (Fig. 4). At low concentrations (μM level), H2S can promote 

vasorelaxation and prevent cell death108. However, in the gut, it is commonly found at 

higher concentrations (mM level), leading to cellular stress and genotoxicity109,110. 

Bacteria that produce H2S have been associated with increased risks of colorectal cancer 

(CRC) due to the inflammation they cause in the gut epithelium49. Furthermore, bacterial-

produced H2S has been implicated in inflammatory bowel disease (IBD)49,111. Research 

on bacterial-produced H2S and its correlation with human gut pathogenesis has 

predominantly focused on sulfate reduction mediated by dissimilatory sulfite reductases; 

nevertheless, recent studies have shed light on organic sulfur metabolism, indicating its 

potential connection to CRC112. The diversity of bacterial sulfur cycling in the human gut 
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is more taxonomically diverse and prevalent than previously recognized, with organic 

sulfur metabolisms, such as cysteine/methionine reduction and taurine reduction, playing 

a more significant role and contributing to a greater extent to H2S production107. 

The microbial sulfur cycle and climate change 
The sulfur cycle on Earth plays key roles in both impacting, and being impacted by climate 

change on Earth. For example, the microbal sulfur cycle plays key roles in the loss of 

nitrogen from ecosystems, the anaerobic oxidation of carbon globally (by SRMs), 

influences climate patterns thorugh production of climate active compounds such as 

dimethyl sulfide, and drives the expansion of globally distributed OMZs.  

 

The Earth’s climate system is highly responsive to the release of dimethyl sulfide (DMS) 

from the oceans113. The influx of microbially produced DMS into the atmosphere leads to 

alterations in aerosol formation and cloud nucleation, subsequently affecting solar 

radiation reaching the ocean surface. The cooling effect resulting from DMS-induced 

reduction in radiation is of a comparable magnitude to the warming effect attributed to 

anthropogenic CO2 emissions114. In the future, climate variations such as increased 

global mean temperatures and elevated CO2 will exert reciprocal feedback on oceanic 

DMS production. Currently, only a minor portion (~10%) of phytoplanktonic DMSP 

undergoes conversion via microbially-mediated processes, resulting in the release of 

DMS into the atmosphere115. Various other processes, including microbial assimilation 

(e.g., demethylation pathways) and photolysis, contribute to the overall DMSP sink 

budget115. It is posited that even a slight alteration in the microbially-mediated DMSP 

cycling budget can lead to substantial changes in DMS production and, subsequently, its 

emission into the atmosphere. Ocean warming influences growth rates and modifies the 
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functional trait composition of marine phytoplankton. Simultaneously, temperature 

regulates the metabolic rates of marine heterotrophs. Consequently, the delicate balance 

between the autotrophic activity of sulfate assimilation and DMSP production, and the 

heterotrophic activity of DMS production profoundly influences the oceanic DMS budget 

and sulfur cycling interactions between the ocean and atmosphere115.  

 

As global temperatures increase, the microbial sulfur cycle is predicted to play important 

roles in aquatic systems worldwide. Higher temperatures will cause OMZs in the world’s 

oceans to rapidly expand in volume, and freshwater lakes to become more stratified and 

anoxic. The sulfur cycle within marine OMZs and freshwater lakes has multifaceted 

effects on the global climate, influencing primary production, nitrogen loss, and 

greenhouse gas emissions116. Higher temperatures will lead to increased anoxia, thereby 

leading to enchanced benthic phosphorus release during sulfidic events attributed to the 

activities of sulfate-reducing and sulfide-oxidizing bacteria116. Subsequencly, 

phosphorus, as a limiting nutrient in aquatic systems, can be released to the surface layer 

and thereby stimulate primary production116. Increased anoxia will also lead to enhanced 

denitrification activity associated with sulfide/sulfur oxidation, increased production of the 

green house gas N2O (from incomplete denitrification), and thereby contribute to 

substantially increased nitrogen loss in oceans and lakes116.  

 

Both natural and anthropogenic factors can influence the global sulfur cycle. Natural 

factors including ocean surface temperature, surface winds, currents, and mixing of the 

water column play a pivotal role in influencing DMS seawater concentrations and, 
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consequently, the sea-to-air sulfur flux115. In contrast, anthropogenic factors include the 

utilization of fossil fuels that significantly elevates atmospheric sulfur deposition and 

results in the generation of acid rain which poses substantial environmental and health 

hazards, and agricultural additions  of sulfur-containing fertilizers and pesticides that have 

negative impacts on soil and water quality, and human health4.  

In North America, a shift in the negative impacts of the sulfur cycle has been documented 

since the 1970s4 with a switch from atmospheric emissions to agricultural additions of 

sulfur. Given ongoing climate change, intensified crop production, and shifts of sulfur 

additions, it is imperative to reevaluate the environmental consequences of the microbial 

sulfur cycle. 

Conclusions 
Microbial sulfur metabolism plays a fundamental role in energy conversion and facilitates 

the dynamic movement of sulfur in various forms across diverse ecosystems and 

environments on Earth. Microbial sulfur metabolism has been a bedrock of energy 

metabolism on Earth since the evolution of life117. While we have come a long way into 

uncovering the role of microorganisms in the sulfur cycle, much remains to be learned 

about these processes. Sulfur transformations can be difficult to track because of the 

rapid turnover of interconnected redox reactions in nature, thus leading to cryptic sulfur 

cycling. Despite the challenges in studying this, diverse approaches such as omics 

techniques, stable isotope labeling, ecophysiology, modeling, and microscopy are being 

employed to overcome these difficulties. These approaches enable the investigation of 

sulfur flux, reaction rates, and microbial energetics in situ and in model systems.  

Sulfur cycling occurs in varied environmental settings. Under different conditions, the 

reaction types and rates are significantly influenced by the distribution of available 
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electron donors and acceptors and environmental factors. Sulfur exists in multiple valence 

states in its inorganic forms, but many of these states, including polythionates (S2O32- and 

S4O62-)118,119, have seldom been studied due to technical difficulties in detecting them. 

Exploring new pathways mediating the transformations of inorganic sulfur compounds 

can provide new insights for global sulfur cycling. Additionally, further investigations on 

the coupling of sulfur transformations with other elemental cycles can identify novel 

biogeochemical pathways and illuminate their overlooked activities. Studying these 

patterns can help us understand, predict, and manipulate the direction and fate of sulfur 

reactions in different environmental contexts, including natural environments and man-

made biological systems. 

We are increasingly recognizing that microbial sulfur metabolism plays a critical role in 

natural and man-made environments, however, future research should examine its 

implications in biomedicine. Investigating the role of microbial sulfur metabolism in the gut 

microbiome dysbiosis and the progression and development of associated diseases, such 

as IBD, Crohn’s disease, and CRC, can help elucidate the underlying mechanisms of 

pathogenesis and develop new approaches for treatment and prevention. To conclude, it 

is imperative that future research continues to explore the multifaceted roles of microbial 

sulfur metabolism across diverse scientific disciplines, ranging from biogeochemistry to 

medicine. These insights will have profound implications for environmental sustainability 

and biogeochemistry, improve our understanding of human health, and develop the 

necessary knowledge and tools to foster a healthier planet.  
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Box 1. Viruses and sulfur metabolism 
Viruses encode a variety of sulfur AMGs facilitating the dissimilatory sulfur metabolism 

for enhancement of viral fitness. Currently, AMGs involving sulfur oxidation and 

thiosulfate oxidation/disproportionation have been discovered in numerous environments, 

ranging from oceans, freshwater, human host-associated, and engineered ecosystems13 

(Table 1). The process of virus-augmented elemental sulfur oxidation and thiosulfate 

oxidation generates additional electrons through exergonic reactions, which can be 

utilized by the electron transport chain for ATP production. This process provides fitness 

advantages to viruses by promoting virion propagation. 

Viral AMGs also encode five categories of genes involving the transformation of 

organosulfur and assimilatory sulfur metabolism14. They augment the degradation of 

organosulfur compounds to sulfite or sulfide, manipulate different organosulfur compound 

forms, and accelerate sulfur fixation. Organosulfur AMGs viruses infect all three domains 

of life and widely influence the environmental sulfur cycle and human health by interacting 

with hosts and releasing sulfide and microbial lysate into environments or human 

systems, such as gastrointestinal tracts14. Sulfide produced by virus auxiliary 

metabolisms indirectly or directly conveys important influences on viral fitness, host 

physiology, surrounding microbiomes and environments (ref. 4514 and references 

therein). For example, viruses can stimulate the growth of their host organisms and aid in 

maintaining a balanced redox state, scavenging free radicals, and promoting the 

biosynthesis of proteins and amino acids. Assimilated sulfur also contributes to 

constructing viral structural proteins for virion production. Additionally, thiol modification 

of nucleic acids can contribute to stress responses and regulate gene expression for both 

viruses and hosts; thiol components of enzymes are essential for viral functions such as 
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dsDNA recombination, integration, and dsDNA repair. Finally, the disequilibrium caused 

by elevated virus-driven sulfide production in conjunction with pathogenic bacteria can 

accelerate the inflammation in the gastrointestinal tract and further develop into severe 

diseases, such as colorectal cancer.  

 

The details of dissimilatory and assimilatory sulfur AMGs. The full gene name for each 

gene abbreviation is listed in Table S2. 

AMG genes Environments Function 
dsrA and dsrC 
(sulfur oxidation) 

Hydrothermal vents (dsrA and 
dsrC)62, Oxygen minimum 
zones61 (dsrC), Epipelagic 
ocean (dsrC)120; Marine 
(dsrA)13; marine/saline, human 
host-associated, and 
engineered13 (dsrC) 

Enzyme complex DsrAB can 
oxidize elemental sulfur carried 
by sulfur carrier protein DsrC to 
sulfite. This is the rate-limiting 
step for microbial hosts and 
yields the most electrons. 
Viruses augment these 
metabolisms13, and potential 
microbial hosts are the SUP05 
group of 
Gammaproteobacteria. 

soxYZ (thiosulfate 
oxidation 
/disproportionation) 

Hydrothermal vents (soxYZ)62, 
Epipelagic ocean (soxYZ)120 

Sulfur carrier SoxYZ mediates 
thiosulfate 
oxidation/disproportionation 
continuously. Viral SoxYZ 
probably alleviates the worn-
out state of host SoxYZ. 
Potential hosts include different 
lineages of Proteobacteria. 

soxC and soxD 
(thiosulfate 
oxidation) 

Oil seeps (soxC and soxD), 
Freshwater sediment (soxD)13 

SoxCD oxidizes the disulfanyl 
group to sulfosulfanyl group 
during thiosulfate oxidation. 
This reaction yields six 
electrons. Viruses augment 
these activities13. 

cysC, cysN, cysD, 
cysH, cysNC, cysJ 
(assimilatory 
sulfate reduction) 

Marine (cysJ, cysC, cysD, 
cysH), Freshwater (cysC, cysD, 
cysH), Engineered (cysC, 
cysN, cysD, cysH), Soil 

They mediate the incorporation 
of sulfide into cysteine for 
biosynthesis. Viral AMGs likely 
short-circuit the assimilatory 
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(cysNC, cysD, cysH), 
Hydrothermal vents (cysC, 
cysH), Saline and alkaline 
(cysC, cysH), Wetlands (cysH), 
Thermal springs (cysH), 
Mammals: gut (cysD, cysH), 
other host-associated (cysH), 
Plants: rhizoplane (cysH), 
Human: oral (cysD, cysH), 
Human: gut (cysD, cysH)14 

sulfur pathway, thus impacting 
cysteine metabolism and 
potentially drive sulfide 
production14. 

cysK, cysM, malY, 
dcyD, metC, metY 
(direct sulfide 
production) 

Marine (cysK, cysM, metC), 
Freshwater (cysK, metC), 
Engineered (cysK, cysM), 
Hydrothermal vents (cysK), 
other host-associated (cysK, 
dcyD, metY), Human: oral 
(dcyD), Human: gut (cysK, 
cysM, malY, metY)14 

They directly produce sulfide 
through degradation of 
organosulfur compounds, i.e., 
cysteine and homocysteine. 
The produced sulfide can 
provide fitness advantages to 
viruses. 

tauD, ssuD, msmA 
(direct sulfite 
production) 

Marine (tauD, ssuD, msmA), 
Freshwater (tauD, ssuD), 
Engineered (tauD), Saline and 
alkaline (tauD)14 

They directly produce sulfite 
through organosulfur 
compounds, i.e., taurine, 
alkylsulfonate/isethionate, and 
methanesulfonate. Sulfite can 
further be fed into dissimilatory 
and assimilatory sulfate 
reduction.  

metB, metH, metE, 
metK, mtnN, dcm, 
ahcY, luxS, msrC, 
megL, aspB 
(indirect sulfide 
production) 

Marine (metK, mtnN, dcm, 
ahcY, megL, aspB), 
Freshwater (metB, metK, 
mtnN, dcm, ahcY, aspB), 
Engineered (metH, metE, 
metK, dcm, ahcY, megL, aspB), 
Soil (metH, metE, dcm, aspB), 
Hydrothermal vents (metH, 
metK, mtnN, dcm), Saline and 
alkaline (metK, dcm), Deep 
subsurface (dcm), Wetlands 
(metK, mtnN, dcm), Thermal 
springs (dcm), Mammals: gut 
(metK, mtnN, dcm, luxS), other 
host-associated (metK, dcm), 
Plants: rhizoplane (metH, 
metE, dcm, ahcY), Human: oral 
(metH, metE, metK, mtnN, 
dcm, luxS, aspB), Human: gut 
(metE, metK, mtnN, dcm, luxS, 

They indirectly produce sulfide 
by converting organosulfur 
compounds, such as 
methionine and cystathionine, 
to cysteine or homocysteine. 
The produced sulfide can 
provide fitness advantages to 
viruses. 
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Box 2. Microbially-mediated interaction of sulfur with other biogeochemical 
cycles, such as nitrogen, iron, manganese, and phosphorus. 
Sulfur is a biogeochemical cycle tightly linked with nitrogen121 and iron122. In marine 

OMZs, the cryptic sulfur cycle involves denitrification-dependent sulfide oxidation for rapid 

sulfide removal50. This coupling of sulfide oxidation and nitrate reduction to nitrite, N2, or 

N2O has also been observed at the sulfide/nitrate interface of other redox-stratified marine 

systems123,124. It has been reported that sulfide/sulfur-oxidizing microbes (Thioglobus 

perditus) and elemental sulfur can be transported from sulfidic continental shelf waters to 

offshore OMZs. Thioglobus perditus can perform complete denitrification coupled with 

sulfur and sulfide oxidation125. Additionally, ammonium liberated from organic matter 

remineralization by sulfate reduction contributes to a large fraction of ammonium load for 

anerobic ammonium oxidation (anammox) in marine OMZs50. While not observed to be 

abundant in the environment, in industrial proceses, sulfate reduction can be coupled with 

ammonium oxidation under anaerobic conditions, termed “sulfammox” as an alternative 

for nitrite-dependent anammox126. Two bacterial species, Bacillus Benzoevorans127 and 

Brocadia Anammoxoglobus sulfate128, can perform the sulfammox process. The 

aspB), Human: vagina (metK, 
dcm)14 

cysE, nrnA, speE, 
metA, mtnK, mtnA, 
mtnD, lysC, thrA, 
asd, hom, mdh, 
cysQ (indirect 
sulfur metabolism) 

Marine (nrnA, speE, lysC, thrA, 
mdh, cysQ), Freshwater (speE, 
mtnD, cysQ), Engineered 
(cysE, lysC, mdh), Soil (cysE), 
Hydrothermal vents (speE), 
Deep subsurface (metA), 
Mammals: gut (lysC), other 
host-associated (cysE, nrnA, 
mtnK, mtnA, lysC, asd), Plants: 
rhizoplane (metA), Human: oral 
(nrnA, asd, mdh), Human: gut 
(metA, asd, hom, mdh), 
Human: vagina (nrnA, lysC, 
hom)14 

Their Influence extends to the 
synthesis of organosulfur 
compounds, which are major 
precursors for sulfide 
production. 
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combination of anammox, sulfammox, and autotrophic denitrification processes can 

achieve high efficiency in treating high contents of NH4+ and SO42- in wastewater. All of 

these suggest a tight interplay of sulfur and nitrogen cycles126.  

Recent reports indicate that Shewanella oneidensis can reduce sulfur to sulfide under 

alkaline conditions129. The resulting hydrogen sulfide can abiotically reduce goethite (α-

FeO(OH)), thus overcoming their energetic challenges when performing enzymatic Fe 

(III) reduction in alkaline environments. This discovery indicates some dissimilatory metal-

reducing bacteria like Shewanella oneidensis possess multiple enzymatic machineries to 

reduce Fe (III) and sulfur in various environmental conditions. There are further examples 

of microorganisms that function as both sulfur and iron metabolizers. Many purple sulfur 

bacteria (Gammaproteobacteria) and green sulfur bacteria (Chlorobiota) are phototrophic 

ferrotrophs130 that oxidize both Fe2+ and sulfide. The sulfur reducer Desulfuromonas 

acetoxidans could also conduct dissimilatory Fe(III) reduction when coupled with organic 

compounds131. From a microbial ecology perspective, sulfur and iron cycling can occur 

simultaneously83 and the presence of iron-sulfur microbial communities has been 

documented in various environments, including fjords132, water columns83, sediments133, 

coal mines134, wetlands135, and coastal sediments122. The coupling of iron and sulfur 

cycles is globally widespread and plays a crucial role in biogeochemical processes. 

Sulfurimonas marisnigri, a bacterial isolate from the Black Sea, exhibits autotrophic 

growth and can reduce MnO2 to Mn2+ through the full oxidation of hydrogen sulfide and 

thiosulfate to sulfate136. The genus Sulfurimonas is widely distributed in redox-transitional 

environments, including hydrothermal vents, marine sediments and water columns, and 

terrestrial habitats137. Consistent with the metabolic traits of Sulfurimonas marisnigri136, 
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the addition of MnO2, but not FeOOH, has been found to enhance sulfate production 

during incubation experiments involving marine sediments138. This highlights the 

potentially extensive biogeochemical consequences of MnO2-mediated sulfide oxidation 

in global oceans. Three groups of bacteria, including Methylococcales, 

Pseudomonadales, and Marinimicrobia, have been found to contain the potential for 

sulfur and manganese oxidation in their genomes, facilitating energy conservation using 

hydrothermally-derived reduced substrates68.  

Low-oxygen conditions can favor the release of phosphorus from the sediments to the 

water column, thus, enhancing the primary production and driving further anoxia116. High 

rates of surface exported organic matter can greatly fuel sulfate reduction in continental 

shelf sediments coupled to organic matter mineralization in anoxic conditions, thus 

releasing phosphorus to the water column139. Furthermore, some giant sulfur-oxidizing 

bacteria (such as Thioploca and Thiomargarita) can store polyphosphate reserves140. In 

low sulfide conditions, these organisms uptake phosphate from the environment and store 

them as polyphosphate; when sulfide concentrate increases, they oxidize polyphosphate 

and release dissolved phosphate140. The accumulation of phosphate can, in turn, 

enhance primary production and sustain sulfidic conditions in marine oxygen minimum 

zones. The feedback between sulfur and phosphorus cycles is crucial for unraveling 

ecosystem dynamics and comprehending nutrient transformations. 

Multiple lines of evidence support the identification of chemolithoautotrophic 

microorganisms that drive the conversion of methane, nitrogen, and iron, as predicted by 

thermodynamics141. Notable examples include the discovery of anaerobic ammonium 

oxidation (anammox) bacteria142 and nitrate/nitrite-dependent anaerobic methane 
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oxidation (n-DAMO) bacteria143. This highlights the notion that the thermodynamically 

feasible process can be attributed to particular microorganisms or simple combinations 

thereof, which are so-called “impossible” microorganisms due to highly strict and specific 

requirements for growth. Sulfur species demonstrate a lower redox potential than 

nitrogen, oxygen, iron, and manganese, thereby exhibiting a greater thermodynamic 

tendency for oxidation driven by electron acceptors such as NO3-, MnO2/MnO(OH), and 

Fe3+/FeO(OH), suggesting that microorganisms can harness these exergonic reactions 

under anaerobic conditions.  

Here, we provide a limited collection of predicted reactions to show the possibility of 

anaerobic metabolisms mediated by “impossible” microorganisms. Denitrification-

dependent sulfide oxidation and Mn (IV) reduction-dependent sulfide/thiosulfate oxidation 

have been discovered in bacteria belonging to the SUP05/Thioglobaceae clade of 

Gammaproteobacteria50,64 and Sulfurimonas marisnigri136, respectively. However, the 

microorganisms responsible for Fe (III) and Mn (IV/III)-dependent sulfur oxidation and 

disproportionation have yet-to-be identified. To potentially uncover these elusive 

microorganisms, investigation of iron and manganese hydroxide-rich seabed or 

freshwater sediments is crucial, as they provide a promising avenue for discovering these 

previously unidentified microorganisms. 
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Science 344, 757-760, doi:10.1126/science.1252229 (2014). 

 

Significance: This paper describes the discovery of auxiliary metabolic genes involving 

sulfur oxidation and chemolithotrophy in viruses. 

 

Ref 66: Dick, G. J. The microbiomes of deep-sea hydrothermal vents: distributed globally, 

shaped locally. Nat. Rev. Microbiol. 17, 271-283, doi:10.1038/s41579-019-0160-2 (2019). 

 

Significance: This review provides a comprehensive summary of the microbiomes and 

their associated biogeochemical activities in deep-sea hydrothermal vents. 

 

ref 68: Zhou, Z. et al. Sulfur cycling connects microbiomes and biogeochemistry in deep-

sea hydrothermal plumes. ISME J., doi:10.1038/s41396-023-01421-0 (2023). 

 

Significance: This paper describes the ecological and evolutionary basis of microbiome 

adaptations to the sulfur cycling-dominated geochemistry of hydrothermal vents. 
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Ref 91: Lovelock, J. E., Maggs, R. J. & Rasmussen, R. A. Atmospheric Dimethyl Sulphide 

and the Natural Sulphur Cycle. Nature 237, 452-453, doi:10.1038/237452a0 (1972). 

 

Significance: This paper describes the role of atmospheric dimethyl sulfide in mediating 

the transfer of sulfur from the sea to land. 

 

Ref 107: Wolf, P. G. et al. Diversity and distribution of sulfur metabolic genes in the human 

gut microbiome and their association with colorectal cancer. Microbiome 10, 64, 

doi:10.1186/s40168-022-01242-x (2022). 

 

Significance: This paper uncovers extensive diversity of sulfur metabolic genes in the 

human gut and highlights the substantial contribution of organic sulfur metabolism to H2S 

production and its association with disease. 

 

Ref 117: Mateos, K. et al. The evolution and spread of sulfur cycling enzymes reflect the 

redox state of the early Earth. Science Advances 9, eade4847, 

doi:10.1126/sciadv.ade4847 (2023). 

 

Significance: This paper reveals evolutionary paths of early sulfur metablizing enzymes 

and their association with the redox state of the early Earth. 
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Glossary 
Sulfide minerals 

A class of minerals containing sulfide or disulfide as the major anion. The metal cation 

usually comes from Fe2+, Cu2+, Pb2+, Zn2+, Ag+, and Hg2+. Sulfide minerals deposited in 
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sediments, such as pyrite (FeS2), can be leached by microorganisms or oxidatively 

weathered to sulfate and enter the terrestrial hydrosphere for sulfur cycling. 

Atmospheric deposition 

A transport process for gases and particles from the atmosphere deposited onto the 

surface of terrestrial and aquatic systems. Elements, nutrients, and pollutants are 

transported in the process, for example, nitrogen, sulfur, and heavy metals. This involves 

contains wet and dry depositions. The former indicates deposition by means of rain, sleet, 

snow, or fog; the latter indicates deposition without precipitation processes. 

Mineralization 

The conversion of chemical compounds in organic matter to inorganic forms. The soluble 

chemicals are then available to plants. 

Immobilization 

The opposite process of mineralization that converts inorganic compounds to organic 

compounds by plants or microorganisms. The compounds are inaccessible to plants. 

Disproportionation 

A redox reaction where the substrate is in the intermediate oxidation state, and the 

products are two compounds with one of a higher oxidation state and the other of a lower 

oxidation state. 

Cryptic sulfur cycling 

A tight link between sulfate reduction and sulfide oxidation enables rapid sulfide turnover, 

ensuring sulfide concentration remains below detectable levels. Traditional 
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biogeochemical measurements are unable to directly detect the sulfur transformation 

process. Instead, omics-based profiling of activities or stable isotope labeling of reactions 

are relied upon to investigate these process. 

Auxiliary metabolic genes 

Host-derived metabolic genes encoded by viruses to influence and manipulate their 

hosts. They either augment, redirect, or short-circuit host metabolisms by encoding 

corresponding enzymes.  

Chemosynthetic 

Chemosynthetic processes involve the biological conversion of inorganic carbon into 

organic matter for cellular biosynthesis using energy sources other than sunlight. 

Holomictic lake 

Lakes typically experience an annual occurrence where the temperature and density of 

the surface and bottom layers are the same, facilitating the mixing of water from distinct 

layers. 

Meromictic lake 

Meromictic lake is the opposite of holomictic lake in that its layers never intermix. 

Dissimilatory sulfate/sulfite reduction 

A form of anaerobic respiration where sulfate/sulfite is used as the electron acceptor by 

microorganisms to produce hydrogen sulfide.  

Assimilatory sulfate/sulfite reduction  
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A process where sulfate/sulfite is reduced to cysteine for biosynthesis in living organisms. 

Sulfate/sulfite is assimilated to organic sulfur compounds eventually though hydrogen 

sulfide can be an intermediate during the process. 

 
 
 

 
 


