
Orderless and Eventually Durable File Systems

By

Vijay Chidambaram

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2015

Date of final oral examination: August 20 2015

The dissertation is approved by the following members of the Final Oral
Committee:

Andrea Arpaci-Dusseau, Professor, Computer Sciences
Remzi Arpaci-Dusseau, Professor, Computer Sciences
Mark Hill, Professor, Computer Sciences
Michael Swift, Associate Professor, Computer Sciences
Parmesh Ramanathan, Professor, ECE

© Copyright by Vijay Chidambaram 2015
All Rights Reserved

i

Dedicated to my wonderful family without whom this would not have been
possible.

ii

Acknowledgments

This Ph.D would not have been possible without the support and encour-
agement of a number of people. In this section, I would like to express my
heart-felt gratitude to these individuals.

First, I would like to thank Remzi and Andrea for showing me how
research can be fun, and inspiring me to join academia. When I came to
UW Madison, I was pursuing a Masters degree. Working with Remzi and
Andrea was so interesting that I decided to stay for a PhD.

I have learned so much from Remzi and Andrea. I have learned how to
look at the high-level picture, and figure out if the project as a whole made
sense. I have learned to pay attention to the details, and to make sure
I really understand what the system is doing. I have fond memories of
Remzi and Andrea teaching me how to write the introduction to a paper,
and explaining how a paper should flow.

Research is a hard process, filled with failure and rejection. But Remzi
and Andrea somehow make it fun. They never take the research too seri-
ously, and they always encourage students talking about the next deadline
and the next project. They magnify success, and minimize failures. I could
not have asked for better advisers.

I would also like to thank Michael Swift for his valuable advise through-
out my PhD. His comments have been extremely useful in honing both
my work and how I presented it. In particular, his extensive comments
and feedback on different parts of my job application helped make it
significantly better.

iii

I would like to express my gratitude to the other members of my thesis
committee: Mark Hill and Parmesh Ramanathan. Their feedback about
my research has made it significantly stronger.

I am grateful to Bilge Multu for showing me how research in a different
field works, for his invaluable comments on writing papers and giving
talks. His feedback on my job talk was extremely useful. Watching him
setup a new research lab in Wisconsin was inspiring, and I learned many
things about managing a new lab from him.

I have been fortunate to do excellent internships throughout my PhD. I
am grateful to James Mickens for his sound career advice, his jokes, and his
insightful comments on my research. Our collaboration has been enjoyable
and fruitful. I would like to thank Mahesh Balakrishnan for the discussions
at Chaat House, the extended brainstorming sessions, and the feedback
during my job hunt. I am indebted to Amar Phanishayee, Anirudh Badam,
Marcos Aguilera, and Ted Wobber for the technical discussions during my
internships.

I was fortunate to work with a set of highly motivated and smart stu-
dents during my time at UW Madison: Thanumalayan (Thanu) Pillai,
Ramnatthan Alagappan, Lanyue Lu, Yiying Zhang, Zev Weiss, Tyler Har-
ter, Suli Yang, Jun He, Yupu Zhang, Thanh Do, Mohit Saxena, Asim Kadav,
and Deepak Ramamurthi. In particular, I would like to thank Thanu, who
I worked with on a number of papers. Interacting with him was a pleasure
due to his clear thinking and analytical reasoning. His amazing hacking
skills showed me how little time it takes to implement complex pieces of
software if you know what you are doing. I am grateful to Lanyue Lu for
all the late-night conversations while working on papers. I would also
like to thank our group alumni, Swaminathan Sundaraman and Sriram
Subramaniam. When I joined the group, they made me feel at home and
patiently answered all my questions. I am grateful to Vishal Sivasubrama-
niam for helping run experiments for the probabilistic crash consistency

iv

work.
I was able to attempt the PhD only because I had a strong support

group of friends. The PhD is a lonely journey; it was made considerable
less lonely by the company of Sankaralingam Paneerselvam, Ramakr-
ishnan Durairajan, Venkanathan Varadharajan, Sandeep Viswanathan,
Ragothaman Avanasi, Surya Narayanan, and Sibin K Philip. Uthra and
Srinath Sridharan are like family to me, and I will always remember the
friday nights spent at their home playing Poker. I was able to recharge
during summers thanks to the company of Sivaguru Chendamaraikannan,
Pradep Kumar, Madhumitha Ravichandran, Karthik Narayan, Gokul Raj,
Arjun Sharma, Sanjay Ravi, Aravindan Rajagopalan, Manoj Kumar Pangu-
luru, Ilaval Manickam, Anand Balaji, Anitha Thangaraj, and other friends
in Seattle and the Bay Area. My last years in the PhD were made memo-
rable due to game nights with Anusha Prasad, Meenakshi Syamkumar,
Vijay Kumar, Varun Joshi, Dinesh RT, and others. Without these friends to
encourage me in times of self-doubt, it is questionable whether I would
have finished the PhD.

Finally, I am immensely grateful to my family. Spending Thanksgiving
with Venkat anna’s family, Aruna, Nikhil, and Janani, allowed me to feel
at home in the US. While other families actively discourage their children
from doing a PhD, my family was unique in that they encouraged me to
study further when all I could think about was getting a fat paycheck and
buying expensive cars. My parents never complained that I wasn’t helping
support the family or helping buy real-estate like my peers. Instead, they
encouraged me all throughout the PhD to follow my passion. I dedicate
this dissertation to my family: appa, amma, and my brother Karthic.

v

Contents

Acknowledgments iii

Contents vii

List of Figures and Tables xiii

1 Introduction 1
1.1 Crash-Consistency Analysis 3

1.1.1 Probabilistic Crash Consistency 4
1.1.2 Persistence Properties 5

1.2 New Techniques for Crash Consistency 6
1.2.1 Backpointer-Based Crash Consistency 7
1.2.2 Optimistic Crash Consistency 8

1.3 Contributions 10
1.4 Overview 11

2 Background 13
2.1 Definitions 13
2.2 The Environment 14
2.3 The Path of a Write 15
2.4 Failure Model 17
2.5 File-System Data Structures 17
2.6 Crash Consistency 20

2.6.1 Application-Level Crash Consistency 20

vi

2.6.2 File-System Crash Consistency 21
2.7 Crash Consistency and Ordering 27
2.8 Pessimistic Journaling 29
2.9 Summary 32

3 Motivation 33
3.1 Flushing Performance Impact 33
3.2 Implications of High Flushing Cost 34
3.3 Probabilistic Crash Consistency 37

3.3.1 Quantifying Probabilistic Consistency 38
3.3.2 Factors affecting Pinc 39
3.3.3 Summary 44

3.4 Required Solutions 45
3.5 Summary 45

4 Studying Persistence Properties 47
4.1 Background 48

4.1.1 Application Update Protocols 49
4.1.2 Crash States 50
4.1.3 Protocol Goals 51

4.2 Motivation 51
4.3 Persistence Properties 54

4.3.1 Intuition 54
4.3.2 Definition 55

4.4 Block Order Breaker 57
4.4.1 Goals 58
4.4.2 Approach 58
4.4.3 Testing Persistence Properties with Bob 59
4.4.4 Limitations 62

4.5 Study of Persistence Properties 62
4.5.1 Persistence Properties Tested 64

vii

4.5.2 Results 65
4.5.3 Discussion 72

4.6 Conclusion 73

5 The No-Order File System 75
5.1 Goals and Assumptions 75
5.2 Design 78

5.2.1 Overview 78
5.2.2 Backpointer-based consistency 79
5.2.3 Non-persistent allocation structures 82

5.3 Implementation 83
5.3.1 Operating system environment 83
5.3.2 Backpointers 84
5.3.3 Non-persistent allocation structures 92

5.4 Evaluation 95
5.4.1 Reliability 95
5.4.2 Performance 99

5.5 Discussion 106
5.5.1 Limitations 106
5.5.2 Use Cases 109
5.5.3 Implementation Challenge: Widespread Assump-

tions About Block Size 110
5.6 Proof 111

5.6.1 Notation 111
5.6.2 Axioms 112
5.6.3 Data Consistency 113
5.6.4 Version Consistency 115

5.7 Conclusion 116

6 The Optimistic File System 117
6.1 Goals 118

viii

6.2 Optimistic Crash Consistency 118
6.2.1 Asynchronous Durability Notification 119
6.2.2 Optimistic Consistency Properties 121
6.2.3 Optimistic Techniques 123
6.2.4 Durability vs. Consistency 130

6.3 Implementation of OptFS 131
6.3.1 Asynchronous Durability Notifications 131
6.3.2 Handling Data Blocks 132
6.3.3 Optimistic Techniques 133

6.4 Evaluation 135
6.4.1 Reliability 135
6.4.2 Performance 136
6.4.3 Resource consumption 141
6.4.4 Journal size 142

6.5 Case Studies 143
6.5.1 Atomic Update within Gedit 143
6.5.2 Temporary Logging in SQLite 145

6.6 Conclusion 146

7 Discussion 147
7.1 Comparing NoFS and OptFS 147

7.1.1 Hardware Requirements 147
7.1.2 Usability 148
7.1.3 Performance 149
7.1.4 Summary 150

7.2 Optimistic Techniques in Other Contexts 150
7.2.1 Optimistic Techniques in Other Crash-Consistency

Mechanisms 150
7.2.2 Optimistic Techniques in Other Media 152
7.2.3 Optimistic Techniques on NVM 154
7.2.4 Optimistic Techniques in Distributed Systems 155

ix

7.3 Using Osync 162
7.4 Interactions with Industry 163
7.5 Summary 164

8 Related Work 167
8.1 Crash Recovery 167
8.2 Reliability Techniques 169

8.2.1 Using Embedded Information 169
8.2.2 Incremental FSCK in the Background 171
8.2.3 Ordered Updates 171
8.2.4 Delaying Durability 173

8.3 Testing File Systems 174
8.4 Interfaces for Consistency and Durability 175

9 Future Work 179
9.1 Software Async Durability Notifications 179
9.2 Automatic Osync Substitution 180
9.3 Tools for Testing File-System Crash Consistency 182
9.4 Verifying Crash Consistency for Complex Stacks 183
9.5 OptFS for SSDs 185
9.6 Summary 186

10 Lessons Learned and Conclusions 187
10.1 Summary 188

10.1.1 Crash-Consistency Analysis 188
10.1.2 Crash-Consistency Solutions 189

10.2 Lessons Learned 191
10.2.1 The Importance of Interface Design 191
10.2.2 The Importance of Asynchrony 192
10.2.3 The Need for Better Tools 193

10.3 Closing Words 195

x

Bibliography 197

A Appendix A 233
A.1 Source Code 233

xi

List of Figures and Tables

Figure 2.1 Ext2/3 Layout. The figure on top shows the layout of an ext2/3
file system. The disk address space is broken down into a series
of block groups (akin to FFS cylinder groups), each of which is
described by a group descriptor and has bitmaps to track allocations
and regions for inodes and data blocks. The figure at the bottom
shows the organization of an inode. An ext2/3 inode has twelve
direct pointers to data blocks. If the file is large, indirect pointers
are used. 19

Table 2.2 Different parts of a journaling transaction. The table
lists the different kinds of blocks that make up a journaling transac-
tion [20]. In the case of data journaling mode, M can also include
data blocks being checkpointed to their final location in the file system. 30

Figure 3.1 The Cost of Flushing. The figure shows the performance of
Filebench Varmail on different ext4 configurations. Performance
increases 5X when flushes are disabled. 34

xii

Figure 3.2 The Probability of Inconsistency (Pinc). An example of
a window of vulnerability is shown. Blocks 1 through 6 were meant
to be written in strict order to disk. However, block 5 (dark gray)
is written early. Once 5 is committed, a window of vulnerability
exists until blocks 3 and 4 (light gray) are committed; a crash
during this time will lead to observable reordering. The probability
of inconsistency is calculated by dividing the time spent in such a
window (i.e., ,W = t2 − t1) by the total runtime of the workload
(i.e., , tworkload). 38

Table 3.3 Disk Model Parameters. The table lists the parameters for
the Seagate Cheetah 15k.5 disk model used in our experiments. . 40

Figure 3.4 Workload Study of Pinc. The figure shows Pinc for six
workloads. The first two workloads are sequential and random
writes to a 1 GB file. Createfiles uses 64 threads to create 1M
files. Fileserver, Webserver, and Varmail are part of the Filebench
benchmark suite [171]. Fileserver performs a sequence of creates,
deletes, appends, reads, and writes. Webserver emulates a multi-
threaded web host server, performing sequences of open-read-close
on multiple files plus a log file append. Varmail emulates a multi-
threaded mail server, performing a sequence of create-append-sync,
read-append-sync, reads, and deletes in a single directory. MySQL
represents the OLTP benchmark from Sysbench [12]. Each bar is
broken down into the percent contribution of the different types of
misordering. Standard deviations are shown as well. 41

Figure 3.5 The Effect of Queue Size. The figure shows Pinc (left y-
axis) and total I/O completion time (right y-axis) as the queue size
of the simulated disk varies (x-axis). For this experiment, we use
the Varmail workload. 43

xiii

Figure 3.6 The Effect of Distance. The figure shows Pinc (left y-axis)
and total I/O completion time (right y-axis) as the distance (in
GB) between the data region and the journal of the simulated disk
is increased (x-axis). For this experiment, we use the Varmail
workload, with queue size set to 8. 44

Figure 4.1 Application Update Protocols. The figure shows pseudo-code

for three different update protocols for SQLite (Version 3.7.17). Protocol

(a) corresponds to using compilation option SQLITE_ENABLE_ATOMIC_WRITE.

Protocol (b) corresponds to using option PRAGMA database.synchronous

= OFF. Protocol (c) corresponds to using option PRAGMA database.synchronous

= FULL. The first protocol is vulnerable to either a process or system crash.

The second protocol is correct in the face of a process crash, but vulnerable

in the event of a system crash. The last protocol is correct in the face of

both process and system crashes. 49
Table 4.2 Possible Crash States for Example Protocol. The table

shows different crash states for the update protocol in Listing 4.1. The

second and third columns show the contents of the files log and newfile.

The last column represents what the directory entry existing_file is

pointing to. 53
Figure 4.3 Illustrating Atomicity and Ordering Properties. The

figure shows the initial, final, and some of the intermediate crash states

possible for the workload described in Section 4.3.2. X represents garbage

data in the files. Intermediate states #A and #B represent different kinds of

atomicity violations, while intermediate state #C represents an ordering

violation. 56

xiv

Figure 4.4 BOB Workloads. The figure shows some of the code used in BOB

Workloads. The first snippet shows that the directory is initialized with

a number of files. The sample workloads does a number of metadata

operations, both in synchronous (the True argument to CREAT) and

asynchronous fashion. BOB would then generate different crash states

and check if any of them contains re-ordered operations. For example, if

the rename of file 02 is present but the unlink of 01 is not. 61
Table 4.5 File-System Configurations. The table shows the file-system

configurations tested using the Block-Order Breaker. All file-system
versions correspond to the versions released with Linux 3.2. The
Git commit number of the latest patch applied to each file system is
also provided to identify the file-system version. All mount options
other than those explicitly mentioned are set to their default values. 63

Table 4.6 Persistence Properties. The table shows atomicity and ordering

persistence properties that we empirically determined for different con-

figurations of file systems. X→ Y indicates that X is persisted before Y.

[X,Y]→ Z indicates that Y follows X in program order, and both become

durable before Z. A × indicates that we have a reproducible test case

where the property fails in that file system. 66

Figure 5.1 Backpointers. The figure shows a conceptual view of the
backpointers present in NoFS. The file has a backpointer to the
directory that it belongs to. The data block has a backpointer to the
file it belong to. Files and directories have many backpointers while
data blocks have a single backpointer. 80

Table 5.2 NoFS backpointer operations. The table lists the opera-
tions on backpointers caused by common file system operations.
Note that all checks are done in memory. 84

xv

Figure 5.3 Implementation of backpointers. The figure shows the
different kinds of backpointers present in NoFS. foo is a child of the
root inode /. This link is represented by a backlink from foo to /.
Similarly, the data block is a part of foo, and hence has a backpointer
to foo. Directory blocks also contain backpointers, in the form of
dot entries to their owner’s inode. 86

Figure 5.4 Failure Scenario: Rename. The figure presents three failure
scenarios during the rename of a file. In each scenario, employing
backpointers allows us to detect inconsistencies such as both the
old and new parent directories claiming the renamed file. 89

Figure 5.5 Crash Scenario: File Create. The figure presents three fail-
ure scenarios during the creation of a file with 1 byte of data. In
each scenario, employing backpointers allows us to detect incon-
sistencies such as the new file pointing to a data block that hasn’t
been updated. 91

Table 5.6 Reliability testing. The table shows how NoFS and ext2 react
to various inconsistencies that occur due to updates not reaching
the disk. NoFS detects all inconsistencies and reports an error,
while ext2 lets most of the errors pass by undetected. 97

Figure 5.7 Micro-benchmark performance. This figure compares file-
system performance on various micro-benchmarks. The sequential
benchmarks involve reading and writing a 1 GB file. The random
benchmarks involve 10K random reads and writes in units of 4088
bytes (4096 bytes - 8 byte backpointer) across a 1 GB file, with
a fsync after 1000 writes. The creation and deletion benchmarks
involve 100K files spread over 100 directories, with a fsync after
every create or delete. 100

xvi

Figure 5.8 Macro-benchmark performance. The figure shows the
throughput achieved on various application workloads. The sort
benchmark is run on 500 MB of data. The varmail benchmark was
run with parameters 1000 files, 100K mean dir width, 16K mean
file size, 16 threads, 16K I/O size and 16K mean append size. The
file and webserver benchmarks were run with the parameters 1000
files, 20 dir width, 1 MB I/O size and 16K mean append size. The
mean file size was 128K for the fileserver benchmark and 16K for
the webserver benchmark. Fileserver benchmark used 50 threads
while webserver used 100 threads. 101

Figure 5.9 Interaction of Background Scan and File-System Ac-
tivity. Figure (a) depicts the reduction in write bandwidth when
sequential writes interleave with the background scan. Figure (b)
shows that the running of the scan increases slowly with the amount
of data in the file system. 103

Figure 5.10 Cost of the Background Scan. Figure (c) illustrates the
rate at which data blocks are scanned. Figure (d) demonstrates
the performance cost incurred when the stat system call is run on
unverified inodes. 104

Table 5.11 Notations on containers 112

xvii

Figure 6.1 Optimistic Journaling. The figure shows four transactions
in progress, involving writes to main memory, the on-disk journal,
and to in-place checkpoints on disk. A rectangle block indicates
that the file system has been notified that the write has been durably
completed. Cloud-shaped blocks indicate that the write has been
initiated, but the file system has not yet been notified of its com-
pletion and it may or may not be durable. Circles indicate dirty
blocks in main memory that cannot be written until a previous
write is durable; a dashed line indicates the write it is dependent
on. Finally, the solid arrow indicates that the meta-data may refer
to the data block. 122

Figure 6.2 Optimistic Journaling: Selective Data Journaling. The
figure shows that selective data journaling may be used when trans-
actions involve overwriting in-place data. Data blocks are now
placed in the journal and checkpointed after the transaction is com-
mitted. 129

Table 6.3 Reliability Evaluation. The table shows the total number of
simulated crashpoints, and the number of crashpoints resulting
in a consistent state after remounting the file system and running
recovery. 135

Figure 6.4 I/O Timeline. The figure illustrates how I/O are handled in
ext4 with flushes and OptFS. Legend: A – application; B – buffer
cache; C – disk cache; D – disk platter; W – write() system call;
F – fsync() system call; O – osync() system call. The workload
is the Filebech Varmail benchmark that emulates a multi-threaded
mail server, performing a sequence of create-append-sync, read-
append-sync, reads, and deletes in a single directory. In ext4, the
application is blocked while blocks are flushed to the disk platter; in
OptFS, the application is blocked only until I/O hits the disk cache. 137

xviii

Figure 6.5 Performance Comparison. Performance is shown normal-
ized to ext4 ordered mode with flushes. The absolute performance of
ordered mode with flushes is shown above each workload. Sequen-
tial writes are to 80 GB files. 200K random writes are performed
over a 10 GB file, with an fsync() every 1K writes. The overwrite
benchmark sequentially writes over a 32 GB file. Createfiles uses 64
threads to create 1M files. Fileserver emulates file-server activity,
using 50 threads to perform a sequence of creates, deletes, appends,
reads, and writes. Webserver emulates a multi-threaded web host
server, performing sequences of open-read-close on multiple files
plus a log file append, with 100 threads. Varmail emulates a multi-
threaded mail server, performing a sequence of create-append-sync,
read-append-sync, reads, and deletes in a single directory. Each
workload was run for 660 seconds. MySQL OLTP benchmark
performs 200K queries over a table with 1M rows. 139

Table 6.6 Dirty Block Background Writeout. The table shows how
tuning dirty block writeout by pdflush threads affects file-system
performance for the Filebench Createfiles workload. OptFS writes
out dirty blocks lazily, collecting them into big batches. ext4 dirty
data is written out eagerly (when 5 percent of memory is dirty)
by background threads. When the background threads are tuned
to behave more lazily, ext4 performance is similar to OptFS. Ext4
performs better when the background threads batch writes more
than OptFS. Legend: DBR – Dirty Background Ratio. DR – Dirty
Ratio. DEC – Dirty Expire Centiseconds (shown here in seconds). 141

xix

Figure 6.7 Performance with Small Journals. The figure shows the
variation in OptFS performance on the MySQL OLTP benchmark
as the journal size is varied. When OptFS runs out of journal
space, it issues flushes to safely checkpoint transactions. Note that
even in this stress scenario, OptFS performance is 5x better than
ext4 ordered mode with flushes. 142

Table 6.8 Resource Consumption. The table shows the average re-
source consumption by OptFS and ext4 ordered mode for a 660
second run of Filebench Varmail. OptFS incurs additional overhead
due to optimistic techniques such as data transactional checksum-
ming. 144

Table 6.9 Case Study: Gedit and SQLite. The table shows the num-
ber of simulated crashpoints that resulted in a consistent or incon-
sistent application state after remounting. It also shows the time
required for an application operation. 144

Table 7.1 Access Latency of Different Storage Media. The table
shows the read and write latency for small, random I/O on dif-
ferent storage media. These numbers are based on demonstrated
prototypes [243, 298]. 152

Table 7.2 ext4 and OptFS performance on SSDs. The table shows
the performance of ext4 and OptFS in different modes for the
Filebench Varmail workload running on top of an SSD. 153

1

1
Introduction

Data is being generated at unprecedented rate today [162, 169, 306]. Apart
from personal information [32, 74, 182], we trust digital storage services
with financial data [28, 95, 125], medical information [69, 110, 127], and
even government information [147, 189]. Widely used applications such
as cloud services [1, 6, 13, 14, 74, 143, 315], mobile applications [36, 233,
241], key-value stores [66–68, 80, 90, 154, 300], and traditional database
services [39, 43, 70, 104, 202, 227, 244, 263, 269, 271] all need to interact
with and manage storage. Thus, storage services form a crucial part of
everyday life for both individuals and businesses.

All storage services must solve a crucial problem: how to safely update
data in the presence of interruptions? An update could be interrupted
by a power loss or a system crash. Power-loss events have occurred at
critical infrastructure buildings like hospitals [192], at major events such
as the Super Bowl [53], and inside datacenters [148, 176, 183–186, 292, 307].
System crashes may result from bugs in the operating system [26, 129,
136, 152, 313] or in device drivers [131, 132, 178]. Carelessly updating data
could result in data loss [120, 146] or corruption [61, 262].

Given that most applications access data via a file system such as
Windows NTFS [191], Linux ext4 [167], or Apple HFS+ [18], the problem
of file-system crash consistency (i.e., preserving the integrity of file system
in the face of crashes) becomes important. File systems update their state
on storage carefully: the updates are sequenced so that the file system can
recover correctly after a crash in the middle of the sequence. Ordering

2

updates to the storage lies at the heart of most existing crash-consistency
techniques such as journaling [220] or copy-on-write [114, 234].

Ordering updates to disk was a simple task when disks were first
introduced [40, 107, 118, 267]. All writes were synchronous; the write
command would not return until the data was written on the non-volatile
surface (i.e., persisted). The order in which writes were submitted to the
disk was the same order in which writes became persistent.

Unfortunately, the introduction of write buffering [260] in modern disks
greatly complicates this apparently simple process. With write buffering
enabled, a write submitted to the disk is first stored in on-board volatile
RAM, and later written to the non-volatile surface. Thus, disk writes may
complete out of order, as a smart disk scheduler may reorder requests for
performance [124, 250, 308]; further, the notification received after a write
issue implies only that the disk has received the request, not that the data
has been written to the disk surface persistently.

Write ordering is achieved in modern drives via expensive cache flush
operations [264]; such flushes cause all buffered dirty data in the drive to
be persisted immediately. To ensure A is written before B, a client issues
the write to A, and then a cache flush; when the flush returns, the client
can safely assume thatA reached the disk; the write to B can then be safely
issued, knowing it will be persisted after A.

Unfortunately, cache flushing is expensive, sometimes prohibitively so.
Flushes make I/O scheduling less efficient, as the disk has fewer requests
to choose from. A flush also unnecessarily forces all previous writes to
disk, whereas the requirements of the client may be less stringent. In
addition, during a large cache flush, disk reads may exhibit extremely
long latencies as they wait for pending writes to complete [255]. Finally,
flushing conflates ordering and durability; if a client simply wishes to order
one write before another, forcing the first write to disk is an expensive
manner in which to achieve such an end. In short, the classic approach

3

of flushing is pessimistic; it assumes a crash will occur and goes to great
lengths to ensure that the disk is never in an inconsistent state via flush
commands. The poor performance that results from pessimism has led
some systems to disable flushing, apparently sacrificing correctness for
performance; for example, for a significant amount of time, the Linux ext3
default configuration did not flush caches [58, 59].

The high cost of ordering writes has resulted in most file systems be-
ing run in one of two configurations: high performance with no crash
consistency, or low performance with strong crash consistency. In this dis-
sertation, we seek to answer the question: is strong crash consistency possible
with high performance? In the first part of this dissertation, we analyze the
behavior of applications and file systems. In the second part, we build on
the insights gained from our analysis to develop new techniques that show
it is possible to build systems that provide both strong crash consistency
and high performance.

1.1 Crash-Consistency Analysis

Given the high cost of flushing, several systems disable flushing to increase
performance [58, 59]. Some practitioners have reported that after disabling
flushes, a crash does not always lead to file-system inconsistency [286]. It
is important to understand the factors that affect whether a crash leads
to file-system inconsistency. Our approach is to collect traces of the disk
blocks written by different workloads, and examine the results of a crash
at different points in the trace; this allows us to determine the probability
of a crash leading to inconsistency for the given workload. We present the
results of this analysis in this dissertation.

Apart from file-system crash consistency, users care about application-
level crash consistency; for example, the contents of a user’s browsing history
in Google Chrome should only include web pages that they have visited. It

4

is possible to have a consistent file system and an inconsistent application
after a crash. Similar to file systems, applications need to order their writes
to maintain crash consistency. Since ordering writes is expensive, appli-
cations avoid doing so, and instead depend on the file system to persist
writes in the “correct” order. However, the correct order is application-
specific, and different file systems persist writes in different ways, thus
compromising application crash consistency. To better understand this
problem, we define persistence properties – how file systems persist dirty
writes – and examine how they vary among different file systems.

1.1.1 Probabilistic Crash Consistency

When disk flushes are disabled, there is the risk of file-system inconsistency
after a crash; an inopportune crash could lead to corruption in user data
or file-system internal structures [226]. We refer to such an approach as
probabilistic crash consistency [46], in which a crash might lead to file system
inconsistency, depending on many factors, including workload, system
and disk parameters, and the exact timing of the crash or power loss.

Some practitioners observed that most crashes did not cause file-system
inconsistency for some workloads [286]. Such observations further em-
bolden other practitioners to disable flushes and risk corruption to gain
performance. In this dissertation, one of our first contributions is the care-
ful study of probabilistic crash consistency, wherein we show which exact
factors affect the odds that a crash will leave the file system inconsistent.

Our approach is to collect the block traces (i.e., the list of disk blocks
written) of various workloads, and try to determine the windows of vulnera-
bility: points in the workload’s lifetime when a crash would have resulted
in file-system inconsistency. For example, if data was added to the end of
a file, there is a window of vulnerability in the time between the write of
the file’s book-keeping structure (e.g., inode) that points to the new data
block, and the write of the new data block. The re-ordering depends on a

5

number of factors, such as the workload being used, the file-system layout
on disk, and the size of the disk queue. We run experiments varying these
factors and determining the resulting windows of vulnerabilities.

We find that for some workloads, such as large sequential writes or
static web servers, the chances of file-system inconsistency are quite low.
For other workloads, such as database update queries or email servers,
there is a significant chance of inconsistency upon crash. Thus, although
the probabilistic approach suffices for certain simple workloads, increasing
performance while maintaining file-system consistency requires additional
crash-consistency techniques.

1.1.2 Persistence Properties

Application-level crash consistency depends upon the order in which ap-
plication writes are persisted on disk. Ideally, applications would carefully
control the order of writes. Unfortunately, the only primitive available
to applications to order writes is the fsync() system call [73, 153]. The
fsync() call guarantees that when the call returns, all dirty data associ-
ated with the file (passed as an argument to fsync()) is persistent on the
storage device. To ensure that the data is persistent, fsync() flushes the
disk cache, thereby inheriting the performance penalties associated with
the disk-cache flush.

Due to the high performance cost of fsync(), many applications do
not invoke fsync() between two writes that need to be ordered, instead
relying on the file system to persist writes in the correct order. Since the
POSIX standard [278] does not define the order in which file systems
should persist dirty writes (in the absence of fsync()), each file system
persists dirty writes in a different fashion.

In this dissertation, we seek to define and understand the persistence
behavior of file systems. We define persistence properties that capture the
persistence behavior of the file system [216]. They break down into two

6

global categories: the atomicity of operations (e.g., does the file system
ensure that rename() is atomic in the event of a crash? [172]), and the
ordering of operations (e.g., does the file system ensure that file creations
are persisted in the same order they were issued?).

To analyze file-system persistence properties, we develop a simple tool,
known as the Block Order Breaker (Bob). Bob collects the disk blocks written
by the file system, and creates new crash states by persisting subsets of the
collected disk blocks onto the initial disk state. With this simple approach,
Bob can find which persistence properties do not hold for a given system.
We use Bob to study six Linux file systems (ext2, ext3, ext4, reiserfs, btrfs,
and xfs) in various configurations.

We find that persistence properties vary widely among the tested
file systems. For example, appends to file A are persisted before a later
rename of fileB in the ordered journaling mode of ext3, but not in the same
mode of ext4, unless a special option is enabled. Furthermore, persistence
properties vary between different configurations of the same file system.

Applications should not assume that the underlying file system pro-
vides specific persistence properties. Instead, the application should use
ordering primitives to ensure that the on-disk state is updated correctly.

1.2 New Techniques for Crash Consistency

We believe our analyses illustrate that current techniques that depend on
flushing disk caches do not satisfy the needs of file systems and applica-
tions. File systems require new techniques that offer high performance
while providing strong crash-consistency guarantees. Applications require
new primitives that allow them to maintain crash consistency efficiently.

In the second part of the dissertation, we present our solutions to these
problems. We present Backpointer-Based Consistency [47], a new crash-
consistency technique that does not require any disk flushes in the file-

7

system update protocol. We describe Optimistic Crash Consistency [46], a
new crash-consistency technique that decouples ordering and durability.
We introduce a new primitive, osync(), that allows applications to order
their writes without making the writes immediately persistent.

1.2.1 Backpointer-Based Crash Consistency

As mentioned before, most file systems use ordered updates to maintain
crash consistency. Thus, their update protocol (i.e., the sequence of writes
used to update on-disk state) has many ordering points. In the event of a
crash, ordering points allow the file system to reason about which writes
reached the disk and which did not, enabling the file system to take cor-
rective measures, such as replaying the writes, to recover. Unfortunately,
ordering points are not without their own set of problems. By their very
nature, ordering points introduce waiting into the file-system code, thus
potentially lowering performance. They constrain the scheduling of disk
writes, both at the operating system level and at the disk driver level. They
introduce complexity into the file-system code, which leads to bugs and
decreased reliability [220, 221, 311, 312]. The use of ordering points also
forces file systems to ignore the end-to-end argument [237], as the sup-
port of lower-level systems and disk firmware is required to implement
imperatives such as the disk cache flush. When such imperatives are not
properly implemented [247], file-system consistency is compromised [226].
In today’s cloud computing environment [19], the operating system runs
on top of a tall stack of virtual devices, and only one of them needs to
neglect to enforce write ordering [294] for file-system consistency to fail.

We can thus summarize the current state of the art in file-system crash
consistency as follows. At one extreme is a lazy, optimistic approach that
writes blocks to disks in any order (e.g., ext2 [38]); this technique does not
add overhead or induce extra delays at run-time, but requires an expensive
(and often prohibitive) disk scan after a crash. At the other extreme are

8

eager, pessimistic approaches that carefully order disk writes (e.g., ZFS or
ext3); these techniques pay a perpetual performance penalty in return for
consistency guarantees and quick recovery. We seek to obtain the best of
both worlds: the simplicity and performance benefits of the lazy approach
with the strong consistency and availability of eager file systems.

In this dissertation, we present the No-Order File System (NoFS) [47], a
simple, optimistic, lightweight file system which maintains consistency
without resorting to the use of ordering. NoFS employs a new approach
to providing consistency called backpointer-based consistency, which is built
upon references in each file-system object to the files or directories that
own it. We extend a logical framework for file systems [256] to prove that
the incorporation of backpointer-based consistency in an order-less file
system guarantees a certain level of consistency. We simplify the update
protocol through non-persistent allocation structures, reducing the number
of blocks that need to reach disk to successfully complete an operation.

Through reliability experiments, we demonstrate that NoFS is able to
detect and handle a wide range of inconsistencies. We compare the per-
formance of NoFS with ext2, an order-less file system with no consistency
guarantees, and ext3, a widely-used file system with strong consistency
guarantees. We show that NoFS has excellent performance overall, match-
ing or exceeding the performance of ext3 on various workloads.

1.2.2 Optimistic Crash Consistency

While backpointer-based consistency provides excellent performance, it
does not support atomic primitives such as the rename() system call [101].
As the name suggests, the rename() call is used to atomically change the
name of a given file. Since a large number of applications use rename() to
atomically update files, the usability of NoFS is limited. Thus, we sought to
develop new crash-consistency techniques and application-level primitives
that meet our twin goals of providing high performance and enabling

9

applications to build meaningful, efficient crash-consistency protocols.
We introduce optimistic crash consistency [46], a new approach to build-

ing a crash-consistent journaling file system. This optimistic approach
takes advantage of the fact that in many cases, ordering can be achieved
through other means and that crashes are rare events (similar to optimistic
concurrency control [113, 142]). However, realizing consistency in an opti-
mistic fashion is not without challenge; we thus develop a range of novel
techniques, including a new extension of the transactional checksum [222]
to detect data/metadata inconsistency, delayed reuse of blocks to avoid
incorrect dangling pointers, and a selective data journaling technique to
handle block overwrite correctly. The combination of these techniques
leads to both high performance and deterministic consistency; in the rare
event that a crash does occur, optimistic crash consistency either avoids
inconsistency by design or ensures that enough information is present on
the disk to detect and discard improper updates during recovery.

We demonstrate the power of optimistic crash consistency through the
design, implementation, and analysis of the optimistic file system (OptFS).
OptFS builds upon the principles of optimistic crash consistency to im-
plement optimistic journaling, which ensures that the file system is kept
consistent despite crashes. Optimistic journaling is realized as a set of mod-
ifications to the Linux ext4 file system, but also requires a slight change
in the disk interface to provide what we refer to as asynchronous durability
notification, i.e., , a notification when a write is persisted in addition to
when the write has simply been received by the disk. We describe the
implementation of OptFS and evaluate its performance. We show that for
a range of workloads, OptFS significantly outperforms classic Linux ext4
with pessimistic journaling. Despite ensuring crash consistency, OptFS
performs almost identically to Linux ext4 with probabilistic journaling.

Central to the performance benefits of OptFS is the separation of or-
dering and durability. By allowing applications to order writes without

10

incurring a disk flush, and request durability when needed, OptFS enables
application-level consistency at high performance. OptFS introduces two
new file-system primitives: osync(), which ensures ordering between
writes but only eventual durability, and dsync(), which ensures immediate
durability as well as ordering.

We show how these primitives provide a useful base on which to
build higher-level application consistency semantics. Specifically, we show
how a document editing application can use osync() to implement the
atomic update of a file (via a create and then atomic rename), and how
the SQLite database management system can use file-system provided
ordering to implement ordered transactions with eventual durability. We
show that these primitives are sufficient for realizing useful application-
level consistency at high performance.

Of course, the optimistic approach, while useful in many scenarios, is
not a panacea. If an application requires immediate, synchronous durability
(instead of eventual, asynchronous durability with consistent ordering),
an expensive cache flush is still required. In this case, applications can use
dsync() to request durability (as well as ordering). However, by decou-
pling the durability of writes from their ordering, OptFS provides a useful
middle ground, thus realizing high performance and meaningful crash
consistency for many applications.

1.3 Contributions

We describe the main contributions of this dissertation:

• We design a framework to investigate probabilistic crash consistency.
We enumerate the ordering relationships that need to hold among
different kinds of blocks in the journaling protocol to maintain crash
consistency. We present the reasons why file-system inconsistency
is rare upon crash for certain workloads.

11

• We define persistence properties, capturing the aspects of file-system
behavior that affect application-level consistency. We study the per-
sistence properties of sixteen file-system configurations and show
that they vary widely.

• We design a new crash-consistency protocol, Backpointer-Based
Crash Consistency, that provides strong guarantees without requir-
ing the disk cache be flushed.

• We design Optimistic Crash Consistency, a new crash-consistency
protocol that decouples ordering and durability, providing strong
guarantees and excellent performance.

• We introduce osync(), a new ordering primitive that allows appli-
cations to build correct, efficient update protocols.

• We introduce Asynchronous Durability Notifications, a new disk
interface that allows file systems and applications to discern the
durability status of writes in the disk cache.

• We contribute open-source implementations of the Optimistic File
System [277] and the No-Order File System [276], embodying the
principles of optimistic crash consistency and backpointer-based
consistency, respectively.

1.4 Overview

We briefly describe the contents of the different chapters in the dissertation.

• Background. In Chapter 2, we provide background on file-system
data structures, and how applications interact with the file system.
We define crash consistency for applications and file systems. We de-
scribe how crash consistency depends on ordering writes, and finally
describe the journaling technique for file-system crash consistency.

• Analysis. In Chapter 3, we show the high performance cost of flush-
ing disk caches. We analyze the effect of disabling cache flushes
on crash consistency for different workloads, and describe the far-
reaching effects of the expensive nature of flushes. In Chapter 4, we
examine how application-level crash consistency depends upon spe-
cific behaviors of file systems. We define these behavior as persistence
properties, and build a tool, the Block-Order Breaker [216], to analyze
file-system persistence properties.

• Solutions. The next two chapters describe our new techniques for
file-system crash consistency. In Chapter 5, we describe Backpointer-
Based Consistency [47], a new technique that allows file systems to
maintain crash consistency without ordering writes. In Chapter 6,
we describe Optimistic Crash Consistency [46], a new form of crash
consistency that decouples ordering from durability. In Chapter 7,
we discuss how these new techniques compare with each other, and
how they could be used in other contexts.

• Related Work. In Chapter 8, we describe prior work about crash
consistency. We discuss work related to our specific techniques, and
describe efforts similar to the Block-Order Breaker in analyzing crash
behavior.

• Future Work, Lessons Learned, and Conclusions. In Chapter 9, we
describe avenues in which our work could be extended. We describe
how we can remove limitations of our work and apply our techniques
in new contexts. In Chapter 10, we highlight the lessons learned and
summarize our work. We believe our contributions will be valuable
to a broad range of systems in the future.

12

13

2
Background

In this chapter, we provide background required for various aspects of
this dissertation. First, we define terms that are used throughout the dis-
sertation (§2.1). We then describe the environment in which applications
interact with storage (§2.2) and how an application write propagates down
the stack to the storage device (§2.3). We discuss the failure model (§2.4)
and then describe file-system structures that are relevant to this disserta-
tion (§2.5). We define crash consistency for applications and file systems
(§2.6), and explain how crash consistency depends upon ordering writes
to storage. We discuss how ordering is achieved at different levels in the
storage stack (§2.7). Finally, we describe standard journaling as used in
current file systems and explain why it is pessimistic (§2.8).

2.1 Definitions

Process Crash. A process crash is defined as the sudden termination of
the process. There is no opportunity for clean-up activities. While any
system calls in progress complete, all data in the process buffers are lost.
For example, a process may be killed using the kill -9 command.

System Crash. A system crash is defined as the sudden termination of
the entire operating system. A system crash may occur due to bugs (in
the kernel [49, 152, 156, 311, 312] or device drivers [132, 178]) or due to
a power loss. If the whole system loses power, data in operating-system

14

buffers and in volatile storage caches are lost. Otherwise, only data in the
operating system buffers are lost. In the rest of this dissertation, we use
“crash” to indicate a system crash with the whole system losing power.

Durability. Data is defined to be durable if it can be read back correctly
from a storage device after a power loss. For example, data stored in
volatile RAM is not durable, while data stored on magnetic media or solid
state drives is usually considered durable.

Atomicity. An update is atomic with respect to failure if after a crash, the
user obtains either the old version of the data in its entirety, or the new
version of the data in its entirety. In the rest of this dissertation, we refer
to such “failure-atomicity” as atomicity.

2.2 The Environment

Most applications persist their state on storage devices such as SATA
drives [137]. There are many software layers between the application
and the raw storage device. The raw storage and the software layers
are collectively termed the storage stack. We briefly describe the major
components of the environment that are of interest in this dissertation.

The File System. The file system presents the file abstraction to appli-
cations. Applications can read and write files without worrying exactly
where the data is stored. Files can be logically contiguous even when
physically stored at non-contiguous locations. Most applications use files
to store their data. Some applications, such as Oracle’s database products,
can directly run on raw storage for increased performance [121]. This
dissertation mainly deals with applications that use the file system.

The Page Cache. The Page Cache is a system-wide kernel-space cache for
data read from or written to storage devices. The data is read or written in
terms of pages or buffers (each of size 4096 bytes). Each page has metadata

15

associated with it (e.g., whether it is dirty). The page cache allows repeated
access to pages to be significantly faster.

The I/O Subsystem. When pages are written from the page cache to
the storage device, they go through the I/O subsystem [30]. The I/O
subsystem comprises of several layers such as the block layer, the I/O
scheduler, etc. These layers break up the pages into sector-sized requests
and pass them to the device. For the purposes of this dissertation, we need
to understand only two aspects of the I/O subsystem: that write requests
(even a single page) will be broken up into smaller requests as they pass
down the stack, and that requests will be re-ordered as they pass through
the stack.

The Storage Device. The I/O subsystem submits read and write requests
to the storage device. There are a number of storage devices available,
ranging from the cheap SATA disk drives [137] to SCSI drives [81, 140, 304],
SSDs [9] and RAID arrays [211]. PCM-based devices [144, 149], memre-
sistors [270], and other new technology will be available soon. In this
dissertation, we focus on the cheap, commodity drives (such as SATA)
meant for server and desktop usage.

Storage Device Cache. Most storage devices available today include a
small, on-board volatile RAM cache [226, 235, 260, 308]. These caches
range in size from 8–128 MB. The caches are used both for buffering writes
and caching reads; typically, the sizes of the read and write caches are not
revealed by the manufacturer. If the device loses power, all dirty data in
the cache is lost.

2.3 The Path of a Write

We now describe the path of a write from the application to storage. We
describe the path in the context of the Linux Operating system [20, 30],

16

but other operating systems such as Windows and Mac OSX behave in a
similar manner.

Most applications use library functions (e.g., fwrite from libc) to write
to files. Before writing to a file, the application must open the file and get a
handle to it (e.g., a file descriptor). Arguments to the open() call determine
how the write is performed: direct I/O, synchronous I/O, etc. In this
section, I describe one particular case that is common in applications:
asynchronous, buffered I/O.

After obtaining a handle to the file, the application calls a library func-
tion such as fwrite using the file handle as an argument. The library
function in turns invokes a system call such as write(). The application’s
data is transferred from user-space buffers to system-wide buffers in the
page cache. At this point, the write() system call completes.

Transferring the data from the buffer cache to the storage device hap-
pens at a later point of time. The background write-out is performed by
the pdflush threads, and is triggered by multiple factors such as memory
pressure, the amount of time the data has been dirty in memory, etc. The
background threads submit the data to the storage device. The background
threads do not submit the data in the order it was dirtied; the blocks are
sorted and submitted such that performance is maximized [250].

Most storage devices today (such as SATA or SCSI drives) are equipped
with small, on-board volatile caches. A write submitted to the device is
first stored in the cache, and at a later point written to the non-volatile
storage media. The storage device aims to write data to the non-volatile
media in the most efficient manner possible; for example, a SATA drive
tries to re-order writes so that disk seeks are minimized [308]. Thus, the
order in which writes are submitted to the drive is not necessarily the
order in which the writes are made durable.

17

2.4 Failure Model

In this dissertation, we are concerned mainly with fail-stop crashes that
result in all volatile data being lost. Thus, the system has to recover based
on data that was persisted on storage. Note that the data could be volatile
at several layers in the storage stack – in the buffer cache, in I/O scheduler
queues, in the storage device cache etc.

For the sake of simplicity, we assume that all data in volatile memory
is lost in the case of crash. The techniques presented in this dissertation
can be extended to handle cases where some subset of volatile data is lost,
and some subset is later persisted to storage.

We do not handle a wide range of errors such as Latent Sector Er-
rors [22] and silent data corruption [23]. We view such problems as or-
thogonal to crash consistency; existing solutions [221] can be adopted in
addition to the techniques proposed in this dissertation.

2.5 File-System Data Structures

In this section, we introduce file-system data structures that we refer
to throughout the dissertation. We define structures such as the inode
that are generic and used by many existing file systems; we also define
structures specific to the ext family of file systems, as most of the work in
this dissertation involves ext2 [38], ext3 [288, 289], and ext4 [167].

Inode. An inode is a data structure that contain metadata about a user file,
a directory, and or other special files (e.g., symbolic links). The metadata
includes file attributes (e.g., size, access control lists) as well as pointers to
data blocks on disk.

In ext2 and ext3 file systems, an inode has 12 direct pointers to its data
blocks. If its data needs more blocks, the inode will use its indirect pointer
that points to an indirect block which contains pointers to data blocks. If

18

the indirect block is not enough, the inode will use a double indirect block
which contains pointers to indirect blocks. At most, an inode can use a
triple indirect block which contains pointers to double indirect blocks.
In ext4, block pointers are replaced by extents representing a contiguous
region of disk blocks.

Directory. A directory is a list of references to files and other directories.
Most file systems are organized as a tree of directories, with empty di-
rectories or files forming the leaves of the tree. The root of file-system
hierarchy is referred to as the “root” directory. A “directory entry” is a
single reference to another file or directory.

In ext2 and ext3, directory entries are managed as linked lists of variable
length entries. Each directory entry contains the inode number, the entry
length, the file name and its length. In ext4, hash tables are used for storing
directory entries.

Data Block. A data block can contain user’s data or directory entries. If
an inode represents a user file, its data blocks contain user’s data. If an
inode represents a directory, its data blocks contain directory entries.

Superblock. The superblock contains important layout information such
as inodes count, blocks count, and how the block groups are laid out. With-
out the information in the superblock, the file system cannot be mounted
properly.

File-System Layout. Figure 2.1 (from Haryadi Gunawi’s disseration [103])
depicts the ext2/3 on-disk layout. In this organization (which is loosely
based on FFS [172]), the disk is split into a number of block groups; within
each block group are bitmaps, an inode table, and data blocks. Each
block group also contains a redundant copy of crucial file-system control
information such as the superblock and the group descriptors.

The ext2 and ext3 file systems maintain bitmaps that store the allocation
information of inodes and data blocks. There is a single bit representing

19

Block group 0 Block group N
Boot

Block

Super

Block Descriptors

Group

Bitmap

Data Inode

Bitmap

Inode

Table
Data blocks

1 block 1 block1 block n blocks n blocks n blocks

Indirect Ptr

Triple Indirect Ptr

Double Indirect Ptr

Direct [12]

blocks

Data

block

Indirect

block

Double indirect

Info (size, mode, ...)

Inode

Figure 2.1: Ext2/3 Layout. The figure on top shows the layout of an ext2/3 file
system. The disk address space is broken down into a series of block groups (akin to FFS
cylinder groups), each of which is described by a group descriptor and has bitmaps to
track allocations and regions for inodes and data blocks. The figure at the bottom shows
the organization of an inode. An ext2/3 inode has twelve direct pointers to data blocks. If
the file is large, indirect pointers are used.

each inode or data block present on disk. A group descriptor describes
a block group. It contains information such as the location of the inode
table, block bitmap, and inode bitmap for the corresponding group. In
addition, it also keeps track of allocation information such as the number
of free blocks, free inodes, and used directories in the group. The inode
table consists of an array of inodes (as defined above), and it can span
multiple blocks.

20

2.6 Crash Consistency

We first define crash consistency, and describe application-level and file-
system crash consistency, and their relation to each other. We discuss
existing solutions for application-level and file-system crash consistency.

Crash Consistency. A system is consistent if certain system-specific invari-
ants are maintained. A system is crash-consistent if the required invariants
are maintained after a crash. The crash may be either a system crash or a
process crash. Note that crash consistency applies to file systems and any
application that requires invariants to be maintained for correct operation.

2.6.1 Application-Level Crash Consistency

Modern applications employ a large number of data structures to achieve
good user experience. These data structures are persisted in a large num-
ber of files. We ran strace -e trace=file when starting up the Google
Chrome browser (64-bit version 43.0.2357) [94]. We observed that Chrome
accesses over 960 files under the home directory alone while starting up.

Applications must maintain invariants over their persistent data struc-
tures. For example, the contents of a user’s browsing history in Google
Chrome should only include web pages that they have visited. Another
invariant is that the history should contain all the web pages previously
visited. When all the invariants of an application hold, it is deemed consis-
tent.

Many applications are required to be consistent (after recovery) even
if the process or the entire system crashes or loses power. After a system
crash, the application must recover using only the on-disk state. Hence,
the on-disk state must be kept consistent at all times.

Applications achieve crash consistency by carefully designing applica-
tion update procotols that update the on-disk state one piece at a time [216].
The order in which on-disk state is updated is fixed; based on this, ap-

21

propriate recovery code is written. For example, assume triplet (A,B,C)
needs to be updated to (X, Y,Z), and that only one item in the triplet can
be updated at a time. If the order of updates is fixed as X, then Y, and
finally Z, the recovery code needs to handle intermediate states such as
(X,B,C) and (X, Y,C). Thus, the order in which on-disk application state is
updated is crucial; re-ordering them could lead to inconsistent application
state after recovery [216, 316].

Existing Solutions. Application-level crash consistency is implemented
in an ad-hoc manner, with several applications re-using the same tech-
niques (such as atomically updating the whole file using rename() or log-
ging) [216]. Applications could use existing databases such as SQLite [207]
to consistently store and update their state; however, this usually comes at
a heavy performance cost [126].

2.6.2 File-System Crash Consistency

We first describe invariants that file systems seek to maintain across crashes.
We then discuss different levels of file-system crash consistency. We discuss
how file-system crash consistency is related to application-level crash
consistency, and finally describe existing solutions for crash consistency
in file systems.

File-System Crash Invariants

A file system’s metadata structures (e.g., allocation structures) need to be
kept consistent in the event of a crash. Actions such as creating a new file
require several separate on-disk metadata structures (e.g., the file inode,
the directory, etc.) to be updated in an atomic fashion. Thus, a file system’s
crash invariants involve relationships between different on-disk metadata
structures. For example, there are three invariants mentioned in the Soft
Updates paper [86, 87, 251]:

22

1. A pointer always points to an initialized structure (e.g., an inode
must be initialized before a directory entry references it).

2. A resource must be used only after nullifying all previous pointers
to it (e.g., a pointer to a data block must be nullified before that disk
block may be reallocated for a new inode).

3. The last pointer to a resource must be reset only after a new pointer
has set to the same resource (e.g., when renaming a file, do not remove
the old name for an inode until after the new name has been written)

Crash-Consistency Levels

There are three different levels of crash consistency in file systems, de-
pending upon the invariants that are maintained [47, 256]. We describe
each in turn, starting with the weakest.

Metadata consistency: The metadata structures of the file system are
entirely consistent with each other. There are no dangling files and no
duplicate pointers. The counters and bitmaps of the file system, which
keep track of resource usage, match with the actual usage of resources on
the disk. Therefore a resource is in use if and only if the bitmaps say that
it is in use. Metadata consistency does not provide any guarantees about
data.

Data consistency: Data consistency is a stronger form of metadata con-
sistency. Along with the guarantee about metadata, there is the additional
guarantee that all data that is read by a file belongs to that file. In other
words, a read of file A may not return garbage data, or data belonging to
some file B. It is possible that the read may return an older version of the
data of file A.

Version consistency: Version consistency is a stronger form of data
consistency with the additional guarantee that the version of the metadata
matches the version of the referred data. For example, consider a file with

23

a single data block. The data block is overwritten, and a new block is
added, thereby changing the file version: the old version had one block,
and the new version has two blocks. Version consistency guarantees that
a read of the file does not return old data from the first block and new
data from the second block (since the read would return the old version
of the data block and the new version of the file metadata).

Relation with Application-Level Crash Consistency

Note that application-level crash consistency is quite different from file-
system crash consistency. File-system crash consistency is primarily con-
cerned with file-system metadata; as long as the various invariants about
file-system metadata structures are satisfied, the file system is consis-
tent. For example, even an empty file system is consistent. In contrast,
application-level consistency is concerned with application-level invari-
ants, and do not care about the file-system structures. It is possible to
have an application be consistent while running on top of an inconsistent
file system. For example, after a crash, ext2 is inconsistent until fsck is
run [175]. If the application does its own logging or journaling (and de-
pending on the inconsistencies introduced by the crash), it is quite possible
the application is consistent while the file system is not.

Existing Solutions

There have been a number of techniques developed over the years to
maintain file-system consistency after a crash. We briefly describe each of
these techniques.

Ordered Writes. The most basic technique to maintain crash consistency
is to order file-system updates such that the sequence does not violate
crash invariants at any point. Early file systems such as the Unix 4.2 BSD
File System [204], the Fast File System [172], the DOS file systems [77],

24

and VMS file system [170] sequenced metadata updates with synchronous
writes. Synchronous writes result in significant performance degrada-
tion [177, 203, 249], prompting file systems to not maintain some or all
crash invariants, choosing instead to fix the file system on reboot using
a utility such as fsck [175, 213, 232]. Instead of synchronously writing in
the desired order, another approach is to pass the required order down
to the disk scheduler, and allow the scheduler to make write durable in
the correct order [37, 87]; the drawback is that this greatly increases the
complexity of the driver, since detailed dependency information must be
passed down to the scheduler to increase performance.

Using a file-system checker has two main disadvantages. First, the
checker must be run on the entire disk, causing file-system activity to
be halted for a significant amount of time (especially for large RAID ar-
rays [211]). Although several optimizations were developed to reduce the
running time of the file-system check [111, 173, 213], it is still too expen-
sive for large volumes, prompting the file-system community to turn to
other solutions. Second, file-system checkers are often complex, contain-
ing thousands of lines of code; unsurprisingly, they often contain bugs
leading to corruption and data loss [102, 311, 312].

File systems that depend upon on the file-system check alone for con-
sistency cannot provide data consistency, since there is no way for the file
system to differentiate between valid data and garbage in a data block.
Therefore, file reads may return garbage after a crash. At the end of the
scan, the checker holds complete information about every object in the
file system: it knows all the files that are reachable through the direc-
tory hierarchy, and all the data blocks that are reachable through the files.
Hence, duplicate resource allocation and orphan resources can be handled,
ensuring metadata consistency.

Journaling. Journaling uses the idea of write-ahead logging [51, 106] to
solve the consistency problem: metadata (and sometimes data) is first

25

logged to a separate location on disk, and when all writes have safely
reached the disk, the information is written into its original place in the file
system. Over the years, this technique has been incorporated into a number
of file systems such as NTFS [191], JFS [27], XFS [272], ReiserFS [229], and
ext3 [288, 289].

Journaling file systems offer data or metadata consistency based on
whether data is journaled or not [220]. Both journaling modes use at
least one ordering point in their update protocols, where they wait for the
journal writes to be persisted on disk before writing the commit block.
Journaling file systems often perform worse than their order-less peers,
since information needs to be first written to the log and then later to the
correct location on disk. Recovery of the journal is needed after a crash,
but it is usually much faster than the file-system check.

Copy-on-Write. Copy-on-write file systems use the shadow paging tech-
nique [42, 44, 234, 269]. Shadow paging directs a write to a metadata or
data block to a new copy of the block, never overwriting the block in place.
Once the write is persisted on disk, the new information is added to the
file-system tree. The ordering point is in-between these two steps, where
the file system atomically changes between the old view of the metadata
to one which includes the new information. Copy-on-write has been used
in a number of file systems [114, 234], with the most recent being ZFS [29]
and btrfs [166].

Copy-on-write file systems provide metadata, data, and version consis-
tency due to the use of logging and transactions. Modern copy-on-write
file systems like ZFS achieve good performance, though at the cost of high
complexity. The large size of these file systems (tens of thousands of lines
of code [242]) is partly due to the copy-on-write technique, and partly due
to advanced features such as storage pools and snapshots.

Soft Updates. Soft updates involves tracking dependencies among in-
memory copies of metadata blocks, and carefully ordering the writes to

26

disk such that the disk always sees content that is consistent with the
other disk metadata. In order to do this, it may sometimes be necessary
to roll back updates to a block at the time of write, and roll-forward the
update later. Soft updates was implemented for FFS, and enabled FFS
to achieve performance close to that of a memory-based file system [87] .
However, it was extremely tricky to implement the ordering rules correctly,
leading to numerous bugs. Although the Featherstitch project [84] reduces
the complexity of soft updates, the idea has not spread beyond the BSD
distributions.

Soft updates provide metadata and data consistency at low cost. FFS
with soft updates cannot tell the difference between different versions
of data, and hence does not provide version consistency. Soft updates
also provide high availability since a blocking file-system check is not
required; instead, upon reboot after a crash, a snapshot of the file-system
state is taken, and the file-system check is run on the snapshot in the
background [173].

Battery-backed RAM. Another solution is to simply use a battery-backed
RAM cache [57]. The file system can then simply use the synchronous
writes approach, but achieve significantly higher performance. Battery-
backed RAM has been used in systems such as eNVy [309], Rio File
Cache [45], Lucent DNCP [33], Conquest [299] and RAMCloud [201]. The
disadvantages of this approach include the higher cost of the battery-
backed RAM and managing the data transfer between the RAM cache and
non-volatile storage.

Every technique we have described in this section is built upon carefully
ordering writes to a cache or to storage. Just as file-system crash consistency
is built upon ordering writes to storage, application-level crash consistency
is built upon ordering operations to files. In the next section, we describe
how file systems and applications order their requests.

27

2.7 Crash Consistency and Ordering

We now describe how applications and file systems order their updates.

Application-Level Ordering. Applications update their on-disk state via
file metadata operations (e.g., creating a file, linking a file, renaming a file,
etc.) and file data operations (e.g., writing to a file, truncating a file, etc.).
To maintain crash consistency, applications require that these operations
be performed on disk in a specific order. For example, many applications
atomically update multiple blocks of a file using the following sequence:

1. Create temporary file tmp

2. Write new contents into tmp

3. Rename tmp over original file

In this sequence, it is vital that step 2 occur before step 3. Other-
wise, a crash could lead to an empty original file; this has been observed
in practice [59]. Applications use the fsync() system call to order up-
dates [216, 217, 257, 275]. The fsync() system call ensures that when it
returns successfully, dirty data and metadata associated with the file has
been flushed to storage [278]. The above sequence then becomes:

1. Create temporary file tmp

2. Write new contents into tmp

3. Persist tmp using fsync()

4. Rename tmp over original file

File-System Level Ordering. File-system operations such as appending
to a file involve updating multiple data structures on disk. For example, a
file append involves changes to the file inode, the appended data block,

28

and an allocation structure for data blocks. Most file systems carefully
order updates to these data structures to maintain crash consistency. File
systems submit writes to the I/O subsystem, which in turn submits writes
to the storage device. Thus, the writes could be re-ordered by either the
I/O subsystem or the storage device itself.

The I/O subsystem, or more specifically, the I/O scheduler, may re-
order writes to achieve better performance [21]. To preserve ordering,
barriers are provided: no I/O before the barrier may complete after the
barrier, and vice versa. Barrier flags can be attached to I/O requests, and
barrier semantics are respected by I/O scheduler as they re-order requests.

Barriers are a construct of the I/O subsystem; storage devices do not
understand barriers, and hence they need to be translated into lower-level
commands by the I/O subsystem. On devices such as IDE, SATA, and
SCSI, a barrier command translates into a FLUSH command [137, 264]. As
the name indicates, the FLUSH command ensures that all dirty data in
the device cache is written to non-volatile storage. The FLUSH command
is coarse-grained: the caller cannot pick what must be made durable; the
whole cache is flushed, often at high performance cost [226]. Using finer-
grained interfaces such as Tagged Queuing [174, 266] has met with limited
success [60].

In 2010, the Linux kernel stopped using barriers to order requests (as
of version 2.6.36) [60]. Pushing down ordering information down into the
I/O subsystem via barriers was found to reduce performance significantly.
Since file systems were the layer that had the most context for ordering
decisions, it was decided to retain ordering information at that level. File
systems now issue writes in the correct order and wait for them to complete.
Ordering was achieved by tagging requests with the Forced Unit Access
(FUA) flag [266]. The FUA flag forces the request to by-pass the cache
entirely. When a write request tagged with FUA completes, it indicates
that the write has been made durable on stable storage. The FUA flag is

29

used in conjunction with the FLUSH flag to effectively order requests. For
example, to write A before B, but to also ensure that both A and B are
durable, a client might write A, then write Bwith both cache flushing and
FUA enabled; this ensures that when B reaches the drive, A (and other
dirty data) will be forced to disk; subsequently, B will be forced to disk
due to the FUA. On devices that do not support FUA, an extra FLUSH
request is used to achieve the same effect.

When applications issue a fsync() system call, it results in the file
system issuing a FLUSH request in turn. File systems submit all the dirty
data and metadata associated with the file to the storage device, and
then issue a FLUSH request to ensure that the file becomes persistent.
The application-level ordering primitive is connected to the file-system
ordering primitive in this manner.

Thus, ordering is an important primitive on which application-level
and file-system crash consistency depends. The correctness, usability, and
performance of ordering primitives significantly affects how easy it is to
build correct, crash-consistent applications and file systems.

2.8 Pessimistic Journaling

Given the ordering mechanisms described in Section 2.7, we now describe
how a journaling file system safely commits data to disk in order to main-
tain consistency in the event of a system crash. We base our discussion
on ordered-mode Linux ext3 and ext4 [287, 288], though much of what
we say is applicable to other journaling file systems such as SGI XFS [272],
Windows NTFS [258], and IBM JFS [27]. In ordered mode, file-system
metadata is journaled to maintain its consistency; data is not journaled, as
writing each data block twice reduces performance substantially.

When an application updates file-system state, either metadata, user
data, or (often) both need to be updated in a persistent manner. For

30

Symbol Blocktype Must be persisted before
D Data block –

JM
Metadata block –that has been journalled

JC Transaction commit block D, JM
M

Metadata block
D, JM, JCwritten to file-system

Table 2.2: Different parts of a journaling transaction. The table lists the
different kinds of blocks that make up a journaling transaction [20]. In the case of data
journaling mode, M can also include data blocks being checkpointed to their final location
in the file system.

example, when a user appends a block to a file, a new data block (D) must
be written to disk (at some point); in addition, various pieces of metadata
(M) must be updated as well, including the file’s inode and a bitmap
marking the block as allocated.

We refer to the atomic update of metadata to the journal as a transac-
tion. Before committing a transaction Tx to the journal, the file system
first writes any data blocks (D) associated with the transaction to their
final destinations; writing data before transaction commit ensures that
committed metadata does not point to garbage. After these data writes
complete, the file system uses the journal to log metadata updates; we
refer to these journal writes as JM. After these writes are persisted, the
file system issues a write to a commit block (JC); when the disk persists
JC, the transaction Tx is said to be committed. Finally, after the commit, the
file system is free to update the metadata blocks in place (M); if a crash
occurs during this checkpointing process, the file system can recover simply
by scanning the journal and replaying committed transactions. Details
can be found elsewhere [220, 288].

We thus have the following set of ordered writes that must take place:
D before JM before JC before M, or more simply: D → JM → JC → M.
Note that D, JM, andM can represent more than a single block (in larger
transactions), whereas JC is always a single sector (for the sake of write

31

atomicity). Table 2.2 summarizes the different blocks in journaling and
their ordering requirements. To achieve this ordering, the file system
issues a cache flush wherever order is required (i.e., , where there is a→
symbol).

Optimizations to this protocol have been suggested in the literature,
some of which have been realized in Linux ext4. For example, some have
noted that the ordering between data and journaled metadata (D→ JM) is
superfluous; removing that ordering can sometimes improve performance
(D|JM → JC →M) [220].

Others have suggested a “transactional checksum” [222] which can be
used to remove the ordering between the journal metadata and journal
commit (JM and JC). In the normal case, the file system cannot issue JM
and JC together, because the drive might reorder them; in that case, JC
might hit the disk first, at which point a system crash (or power loss)
would leave that transaction in a seemingly committed state but with
garbage contents. By computing a checksum over the entire transaction
and placing its value in JC, the writes to JM and JC can be issued together,
improving performance; with the checksum present, crash recovery can
avoid replay of improperly committed transactions. With this optimization,
the ordering is D→ JM|JC →M (where the bar over the journal updates
indicates their protection via checksum).

Interestingly, these two optimizations do not combine, i.e., ,D|JM|JC →
M is not correct; if the file system issuesD, JM, and JC together, it is possi-
ble that JM and JC reach the disk first. In this case, the metadata commits
before the data; if a crash occurs before the data is written, an inode (or
indirect block) in the committed transaction could end up pointing to
garbage data. Oddly, ext4 allows this situation with the “right” set of
mount options.1

We should note that one other important ordering exists among up-
1The options are journal_checksum and journal_async_commit.

32

dates, specifically the order between transactions; journaling file systems as-
sume transactions are committed to disk in order (i.e., , Txi → Txi+1) [288].
Not following this ordering could lead to odd results during crash recov-
ery. For example, a block B could have been freed in Txi, and then reused
in Txi+1; in this case, a crash after Txi+1 committed but before Txi did
would lead to a state where B is allocated to two files.

Finally, and most importantly, we draw attention to the pessimistic
nature of this approach. Whenever ordering is required, an expensive
cache flush is issued, thus forcing all pending writes to disk, when perhaps
only a subset of them needed to be flushed. In addition, the flushes are
issued even though the writes may have gone to disk in the correct order
anyhow, depending on scheduling, workload, and other details; flushes
induce extra work that may not be necessary. Finally, and perhaps most
harmful, is the fact that the burden of flushes is added despite the fact that
crashes are rare, thus exacting a heavy cost in anticipation of an extremely
occasional event.

2.9 Summary

In this chapter, we presented background material essential for this dis-
sertation. We described how a write propagates down the storage stack
from the application to the storage media. We introduced the relevant
file-system data structures. We defined crash consistency, and explained
how crash consistency is maintained in applications and file systems. We
described how crash consistency is dependent on ordering writes; we
discussed mechanisms available to applications and file systems to or-
der writes. Finally, we provided an overview of the standard journaling
protocol used in file systems such as ext3.

33

3
Motivation

We use the background material presented in Chapter 2 to motivate this
dissertation. We saw that ordering primitives are crucial to crash con-
sistency on both file systems and applications. On current systems, the
most common ordering primitive that is used is the FLUSH command.
Thus, the performance of both applications and file systems is tied to the
performance of the FLUSH command.

In this chapter, we first demonstrate the significant performance degra-
dation due to flushing disk caches (§3.1). We discuss the numerous and
complex implications of the high cost of flushing (§3.2). One effect of the
high performance cost is that some practitioners turn off flushing; we ana-
lyze the result of disabling flushes on different workloads (§3.3). Finally,
we describe what is required to solve this problem (§3.4).

3.1 Flushing Performance Impact

To better understand the performance impact of cache flushing during
pessimistic journaling, we performed a simple experiment. Specifically,
we ran the Varmail benchmark (from the Filebench suite [82]) atop Linux
ext4 [167] running on a SATA disk drive, both with and without cache
flushing; with cache flushing enabled, we also enabled transactional check-
sums [221] to see their performance impact. Varmail is a good choice
here as it simulates an email server and includes many small synchronous
updates to disk, thus stressing the journaling machinery described above.

34

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t (

IO
/s

)

Ext4
(Flush)

Ext4
(Flush+Checksum)

Ext4
(No Flush)

Figure 3.1: The Cost of Flushing. The figure shows the performance of Filebench
Varmail on different ext4 configurations. Performance increases 5X when flushes are
disabled.

The experimental setup for this benchmark and configuration is described
in more detail in Section 6.4.2.

From Figure 3.1, we observe the following. First, transactional check-
sums increase performance slightly, showing how removing a single order-
ing point (via a checksum) can help. Second, and most importantly, there
is a vast performance improvement when cache flushing is turned off, in
this case nearly a factor of five. Given this large performance difference, in
some installations, cache flushing is disabled, which leads to the following
question: what kind of crash consistency is provided when flushing is
disabled? Surprisingly, the answer is not “none”, as we now describe.

3.2 Implications of High Flushing Cost

The FLUSH command is the primary ordering primitive that is used by
applications and file systems today. The fsync() system call results in
one or more flushes, depending upon the file system being used. The high
performance cost of the flush has resulted in several implications.

Systems Turn Off Flushing. First, as we saw in Section 3.3, several systems

35

simply turn off flushes, choosing to risk corruption and data loss, rather
than have their systems run so slowly. For a number of years, the default
distribution of Linux ext3 had barriers turned off [58]. This was not an
accident; the Linux kernel maintainers choose this dangerous default
intentionally:

Last time this came up lots of workloads slowed down by 30 percent
so I dropped the patches in horror. I just don’t think we can quietly
go and slow everyone’s machines down by this much... There are no
happy solutions here, and I’m inclined to let this dog remain asleep
and continue to leave it up to distributors to decide what their default
should be.

As another example, the fsync() system call on Mac OS X does not
flush the disk cache [153]. The system call ensures that the data is pushed
to the storage device, but does not flush the device cache. Quoting from
the man page:

Note that while fsync() will flush all data from the host to the drive (i.e.
the “permanent storage device”), the drive itself may not physically
write the data to the platters for quite some time and it may be written
in an out-of-order sequence. Specifically, if the drive loses power or
the OS crashes, the application may find that only some or none of
their data was written. The disk drive may also re-order the data so
that later writes may be present, while earlier writes are not. This is
not a theoretical edge case. This scenario is easily reproduced with
real world workloads and drive power failures.

For developers that seek to ensure durability of the data, Apple pro-
vides the F_FULLFSYNC flag to be used with the fcntl system call.

Drives Lie About Flushing. Since the performance of applications de-
pends directly upon the performance of the FLUSH command, drives can

36

seem faster on application benchmarks by having the FLUSH command
return before the data was made durable. Users have reported seeing this
behavior [247, 262]. Recent work on power-fail testing of drives has also
confirmed this behavior [317].

Application Developers Avoid Using Fsync. If implemented correctly,
fsync() is extremely expensive; therefore, application developers avoid
using it. However, without fsync(), application updates could get re-
ordered on different file systems. File systems such as ext4 support the
most common update patterns (e.g., atomically updating a file using
rename()), erroneously leading developers to believe their application
is correct on all file systems [216, 275]. When the file-system behavior
changes, it leads to applications breaking. For example, when ext4 in-
troduced delayed allocation, it resulted in widespread data loss because
applications were not using fsync() [146, 280].

Virtualized Stacks Disable Flushing. With the advent of virtualization
and cloud computing [19], applications run inside virtual machines on
tall storage stacks. For example, the Windows I/O stack contains 18 layers
between the application and the storage [283]. For applications to be
crash consistent on virtualized I/O stacks, every layer in the stack has to
obey ordering primitives. Unfortunately, some layers do not honor flush
requests. For example, VirtualBox ignores flush requests for increased
performance [294].

In summary, the high cost of flushing has led to the situation where all
the major actors in the storage world – drive manufacturers, file-system
developers, and application developers – have stopped using flushes (and
ordering primitives built upon flushes) correctly. As a result, the crash
consistency of applications and file systems has been severely compro-
mised.

37

3.3 Probabilistic Crash Consistency

Given the potential performance gains, practitioners sometimes forgo the
safety provided by correct implementations that issue flushes and choose
to disable flushes [58]. In this fast mode, a risk of file-system inconsistency
is introduced; if a crash occurs at an untimely point in the update sequence,
and blocks have been reordered across ordering points, crash recovery as
run by the file system will result in an inconsistent file system.

In some cases, practitioners observed that skipping flush commands
sometimes did not lead to observable inconsistency, despite the presence
of (occasional) crashes. Such commentary led to a debate within the Linux
community as to underlying causes. Long-time kernel developer Theodore
Ts’o hypothesized why such consistency was often achieved despite the
lack of ordering enforcement by the file system [286]:

I suspect the real reason why we get away with it so much with ext3
is that the journal is usually contiguous on disk, hence, when you
write to the journal, it’s highly unlikely that commit block will be
written and the blocks before the commit block have not. ... The most
important reason, though, is that the blocks which are dirty don’t get
flushed out to disk right away!

What the Ts’o Hypothesis refers to specifically is two orderings: JM →
JC and JC →M (refer to Table 2.2 for terminology). In the first case, Ts’o
notes that the disk is likely to commit JC to disk after JM even without an
intervening flush (note that this is without the presence of transactional
checksums) due to layout and scheduling; disks are simply unlikely to
reorder two writes that are contiguous. In the second case, Ts’o notes that
JC → M often holds without a flush due to time; the checkpoint traffic
that commitsM to disk often occurs long after the transaction has been
committed, and thus ordering is preserved without a flush.

38

1 2 5 3 4 6

t
1

t
2

W = t
2 -

t
1

tworkload

P
inc

=
W

tworkload

Figure 3.2: The Probability of Inconsistency (Pinc). An example of a window
of vulnerability is shown. Blocks 1 through 6 were meant to be written in strict order to
disk. However, block 5 (dark gray) is written early. Once 5 is committed, a window of
vulnerability exists until blocks 3 and 4 (light gray) are committed; a crash during this
time will lead to observable reordering. The probability of inconsistency is calculated by
dividing the time spent in such a window (i.e., ,W = t2 − t1) by the total runtime of the
workload (i.e., , tworkload).

We refer to this arrangement as probabilistic consistency. In such a con-
figuration, typical operation may or may not result in much reordering,
and thus the disk is only sometimes in an inconsistent state. A crash may
not lead to inconsistency despite a lack of enforcement by the file system
via flush commands. Despite probabilistic crash consistency offering no
guarantees on consistency after a crash, many practitioners are drawn to
it due to large performance gains from turning off flushing.

3.3.1 Quantifying Probabilistic Consistency

Unfortunately, probabilistic consistency is not well understood. To shed
light on this issue, we ran simulations to quantify how often inconsistency
arises without flushing. To do so, we disabled flushing in Linux ext4 and
extracted block-level traces underneath ext4 across a range of workloads.
We analyzed the traces carefully to determine the chances of an inconsis-
tency occurring due to a crash. Our analysis was done via a simulator built
atop DiskSim [35], which enables us to model complex disk behaviors

39

(e.g., scheduling, caching).
The main output of our simulations is a determination of when a

window of vulnerability (W) arises, and for how long such windows last.
Such a window occurs due to reordering. For example, if A should be
written to disk before B, but B is written at time t1 and A written at t2,
the state of the system is vulnerable to inconsistency in the time period
between,W = t2 − t1. If the system crashes during this window, the file
system will be left in an inconsistent state; conversely, once the latter block
(A) is written, there is no longer any concern.

Given a workload and a disk model, it is thus possible to quantify
the probability of inconsistency (Pinc) by dividing the total time spent in
windows of vulnerability by the total run time of the workload (Pinc =

∪Wi/tworkload); Figure 3.2 shows an example. Note that when a workload
is run on a file system with cache-flushing enabled, Pinc is always zero.

3.3.2 Factors affecting Pinc
We explored Pinc in a systematic manner. Specifically, we determined
sensitivity to workload and disk parameters such as the queue size and
the placement of the journal relative to file-system structures. We used the
validated Seagate Cheetah 15k.5 disk model [35] provided with DiskSim
for our experiments. Table 3.3 provides the parameters of the disk model.

Workload

We first studied how the workload can impact Pinc. For this experiment,
we used 6 different workloads described in the caption of Figure 3.4. We
chose a mix of workloads with different characteristics: for example, there
are read dominated workloads, workloads with different mixes of sequen-
tial and random writes, workloads with and without fsync() calls, and
workloads using different number of threads.

40

Parameter Value
Total Capacity 146.8 GB
Scheduling Policy SPTF-OPT1

Spindle Speed 15K RPM
Average Latency 2 ms
Average Read Seek Time 3.5 ms
Average Write Seek Time 4.0 ms
Cache Size 16 MB
Number of discs 2
Number of heads 4
Number of buffer segments 32
Maximum number of write segments 11
Segment size (in blks) 1200
Queue length 8

Table 3.3: Disk Model Parameters. The table lists the parameters for the Seagate
Cheetah 15k.5 disk model used in our experiments.

From Figure 3.4, we make the following observations. Most impor-
tantly, Pinc is workload dependent. For example, if a workload is mostly
read oriented, there is little chance of inconsistency, as file-system state is
not updated frequently (e.g., Webserver). Second, for write-heavy work-
loads, the nature of the writes is important; workloads that write randomly
or force writes to disk via fsync() lead to a fairly high chance of a crash
leaving the file system inconsistent (e.g., random writes, MySQL, Varmail).
Third, there can be high variance in Pinc; small events that change the
order of persistence of writes can lead to large differences in chances of
inconsistency. Fourth, although concurrent writes from multiple threads
increases the probability of inconsistency, the increase is not significant;
although the File Server workload uses multiple threads to write different
files, the sequential nature of the writes results in low probability of incon-
sistency. Finally, even under extreme circumstances, Pinc never reaches
100% (the graph is cut off at 60%); there are many points in the lifetime of

41

Seq Rand Create Web File Varmail MySQL
0

10

20

30

40

50

60

P
 (

in
co

ns
is

te
nc

y)

Write Write Files Server Server

Early Checkpoint
Transaction Misorder
Mixed
Early Commit

Figure 3.4: Workload Study of Pinc. The figure shows Pinc for six workloads.
The first two workloads are sequential and random writes to a 1 GB file. Createfiles uses
64 threads to create 1M files. Fileserver, Webserver, and Varmail are part of the Filebench
benchmark suite [171]. Fileserver performs a sequence of creates, deletes, appends, reads,
and writes. Webserver emulates a multi-threaded web host server, performing sequences of
open-read-close on multiple files plus a log file append. Varmail emulates a multi-threaded
mail server, performing a sequence of create-append-sync, read-append-sync, reads, and
deletes in a single directory. MySQL represents the OLTP benchmark from Sysbench [12].
Each bar is broken down into the percent contribution of the different types of misordering.
Standard deviations are shown as well.

a workload when a crash will not lead to inconsistency.
Beyond the overall Pinc shown in the graph, we also break the proba-

bility further by the type of reordering that leads to a window of vulner-
ability. Specifically, assuming the following commit ordering (D|JM →
JC → M), we determine when a particular reordering (e.g., JC before
D) has resulted. The graph breaks down Pinc into fine-grained reorder-
ing categories, grouped into the following relevant cases: early commit
(e.g., JC → JM|D), early checkpoint (e.g.,M→ D|JM|JC), transaction misorder
(e.g., Txi → Txi−1), and mixed (e.g., where more than one category could

1Shortest Positioning Time First

42

be attributed).
Our experiments show that early commit before data, (JC → D), is

the largest contributor to Pinc, accounting for over 90% of inconsistency
across all workloads, and 100% in some cases (Fileserver, random writes).
This is not surprising, as in cases where transactions are being forced to
disk (e.g., due to calls to fsync()), data writes (D) are issued just before
transaction writes (JM and JC); slight re-orderings by the disk will result
in JC being persisted first. Also, for some workloads (MySQL, Varmail), all
categories might contribute; though rare, early checkpoints and transaction
misordering can arise. Thus, any approach to provide reliable consistency
mechanisms must consider all possible causes, not just one.

Queue Size

For the remaining studies, we focused on Varmail, as it exhibits the most
interesting and varied probability of inconsistency. First, we studied how
disk scheduler queue depth matters. Most storage drives can accept a fixed
number of requests at the same time (until their queue is full) [308]. Storage
drives re-order requests in the queue to increase performance. Thus, the
queue size represents the amount of re-ordering the disk performs even if
the cache is switched off; furthermore, large sequential requests (a disk
write request may contain upto 128 MB of sequential data on modern
SATA drives) will by-pass the write cache on many modern drives [226].
Figure 3.5 plots the results of our experiment. The left y-axis plots Pinc as
we vary the number of outstanding requests to the disk; the right y-axis
plots performance (overall time for all I/Os to complete).

From the figure, we observe the following three results. First, when
there is no reordering done by the disk (i.e., , queue size is 1), there is no
chance of inconsistency, as writes are committed in order; we would find
the same result if we used FIFO disk scheduling (instead of SPTF). Second,
even with small queues (e.g., 8), a great deal of inconsistency can arise;

43

1 2 4 8 16
0%

25%

50%

Queue Size

P
 (

in
co

ns
is

te
nc

y)

0

100

200

300

 T
ot

al
 I/

O
 T

im
e

(s
)

P (inconsistency)

Time

Figure 3.5: The Effect of Queue Size. The figure shows Pinc (left y-axis) and
total I/O completion time (right y-axis) as the queue size of the simulated disk varies
(x-axis). For this experiment, we use the Varmail workload.

one block committed too early to disk can result in very large windows of
vulnerability. Finally, we observe that a modest amount of reordering does
indeed make a noticeable performance difference; in-disk SPTF scheduling
improves performance by about 30% with a queue size of 8 or more.

Journal Layout

We studied how distance between the main file-system structures and the
journal affects Pinc. Figure 3.6 plots the results of varying the location of
Varmail’s data and metadata structures (which are usually located in one
disk area) from close to the journal (left) to far away.

From the figure, we observe distance makes a significant difference in
Pinc. Recall that one of the major causes of reordering is early commit (i.e., ,
JC written before D); by separating the location of data and the journal,
it becomes increasingly unlikely for such reordering to occur. Secondly,
we also observe that increased distance is not a panacea; inconsistency
(10%) still arises for Varmail. Finally, increased distance from the journal
can affect performance somewhat; there is a 14% decrease in performance
when moving Varmail’s data and metadata from right next to the journal
to 140 GB away.

We also studied a number of other factors that might affect Pinc, in-

44

0 20 40 60 80 100 120 140
0%

25%

50%

Distance Between Data and Journal (GB)

P
 (

in
co

ns
is

te
nc

y)

0

100

200

300

T
ot

al
 I/

O
 T

im
e

(s
)

P (inconsistency)

Time

Figure 3.6: The Effect of Distance. The figure shows Pinc (left y-axis) and total
I/O completion time (right y-axis) as the distance (in GB) between the data region and
the journal of the simulated disk is increased (x-axis). For this experiment, we use the
Varmail workload, with queue size set to 8.

cluding the disk size, the journal size, and the placement of the journal
as it relates to track boundaries on the disk (since the SPTF policy may
result in re-ordering among journal writes on different tracks to minimize
rotational delay) . In general, these parameters did not significantly affect
Pinc and thus are not included.

3.3.3 Summary

Classical journaling is overly pessimistic, forcing writes to persistent stor-
age often when only ordering is desired. As a result, users have sometimes
turned to probabilistic journaling, taking their chances with consistency in
order to gain more performance. We have carefully studied which factors
affect the consistency of the probabilistic approach, and shown that for
some workloads, it works fairly well; unfortunately, for other workloads
with a high number of random-write I/Os, or where the application itself
forces traffic to disk, the probability of inconsistency becomes high. As
devices become more sophisticated, and can handle a large number of out-
standing requests, the odds that a crash will cause inconsistency increases.
Thus, to advance beyond the probabilistic approach, a system must in-
clude machinery to either avoid situations that lead to inconsistency, or be

45

able to detect and recover when such occurrences arise.

3.4 Required Solutions

The high cost of flushing has resulted in file-system and application crash-
consistency being compromised. Flushing is an extremely inefficient or-
dering primitive because it provides ordering via durability of writes. To
order writeA before write B, the file system submitsA to the drive, flushes
the drive cache, and then submits B to the drive. If the application does
not need to make either A or B durable (for now), flushing is an inefficient
way to obtain the required ordering.

Crash consistency requires ordering updates. Making the updates
durable is not required for maintaining consistency (although it may be
required for usability). Thus, if a low-cost ordering primitive was available,
which decoupled ordered from durability, applications and file systems
could maintain crash consistency without suffering significant perfor-
mance degradation.

In this dissertation, we design new crash-consistency techniques and
ordering primitives to achieve this goal. Backpointer-Based Consistency
System [47] maintains crash consistency without using any ordering primi-
tives (Chapter 5). Optimistic Crash Consistency introduces new techniques
that decouple ordering and durability, and a new primitive, osync(), that
allows applications to order writes without making them immediately
durable (Chapter 6).

3.5 Summary

We motivated the techniques and interfaces developed in this dissertation.
We first presented the significant performance cost of flushing the disk
cache, and discussed its far-reaching implications. We then described

46

Probabilistic Crash Consistency, and presented our analysis of various
factors that affect whether a crash leads to file-system inconsistency. Finally,
we discussed how this dissertation presents solutions to the different
problems described in this chapter.

47

4
Studying Persistence

Properties

Many important applications, including databases such as SQLite [263]
and key-value stores such as LevelDB [93], are currently implemented on
top of file systems such as ext4 instead of directly on raw disks. Such data-
management applications must also be crash consistent, but achieving this
goal atop modern file systems is challenging for two fundamental reasons.

The first challenge is that the exact guarantees provided by file sys-
tems are unclear and underspecified. Applications communicate with
file systems through the POSIX system-call interface [278], and ideally, a
well-written application using this interface would be crash-consistent on
any file system that implements POSIX. Unfortunately, while the POSIX
standard specifies the effect of a system call in memory, specifications of
how disk state is mutated in the event of a crash are widely misunderstood
and debated [3]. As a result, each file system persists application data
slightly differently, leaving developers guessing.

To add to this complexity, most file systems provide a multitude of con-
figuration options that subtly affect their behavior; for example, Linux ext3
provides numerous journaling modes, each with different performance
and robustness properties [288]. While these configurations are useful,
they complicate reasoning about exact file-system behavior in the presence
of crashes.

The second challenge is that building a high-performance application-

48

level crash-consistency protocol is not straightforward. Maintaining appli-
cation consistency would be relatively simple (though not trivial) if all state
were mutated synchronously. However, such an approach is prohibitively
slow, and thus most applications implement complex update protocols to
remain crash-consistent while still achieving high performance. Similar
to early file system and database schemes, it is difficult to ensure that
applications recover correctly after a crash [257, 275]. The protocols must
handle a wide range of corner cases, which are executed rarely, relatively
untested, and (perhaps unsurprisingly) error-prone.

In this chapter, we seek to answer the following question: what are the
behaviors exhibited by modern file systems that are relevant to building
crash-consistent applications? In section 4.1, we describe how application-
level crash consistency is dependent on file-system behavior. We motivate
why persistence properties are required in section 4.2. We define per-
sistence properties in section 4.3. In section 4.4, we then describe the
Block Order Breaker (Bob), a tool we built to analyze file-system persistence
properties. Finally, we present the results of the study in section 4.5 and
conclude in section 4.6. This chapter is based on the paper, All File Sys-
tems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent
Applications, published in OSDI 14 [216].1

4.1 Background

We begin by describing how applications use update protocols to safely
update on-disk state. We then define crash states, and describe how crash
states complicate writing update protocols that are both correct and effi-
cient.

1Work done in collaboration with other students in Wisconsin Madison. This chapter
represents my contribution to the paper.

49

[Protocol (a)]

lock(application_lock);
write(user.db);
unlock(application_lock);

[Protocol (b)]

lock(application_lock);
write(journal);
write(user.db);
unlock(application_lock);

[Protocol (c)]

lock(application_lock);
write(journal);
fsync(journal);
write(user.db);
fsync(user.db);
unlock(application_lock);

Figure 4.1: Application Update Protocols. The figure shows pseudo-code for
three different update protocols for SQLite (Version 3.7.17). Protocol (a) corresponds to using
compilation option SQLITE_ENABLE_ATOMIC_WRITE. Protocol (b) corresponds to using option
PRAGMA database.synchronous = OFF. Protocol (c) corresponds to using option PRAGMA
database.synchronous = FULL. The first protocol is vulnerable to either a process or system
crash. The second protocol is correct in the face of a process crash, but vulnerable in the event of a
system crash. The last protocol is correct in the face of both process and system crashes.

4.1.1 Application Update Protocols

Each application persists its state using a sequence of system calls. We
term this sequence the update protocol. The update protocol determines
whether the application is consistent across crashes and thus is critical for
over-all application correctness.

Figure 4.1 shows three application update protocols. These protocols
represent simplified versions of update protocols used by SQLite in dif-
ferent configurations. The protocols use different mechanisms to update

50

state on storage, and differ in how vulnerable they are to crashes.
Protocol (a)updates the database file using a single write. This protocol

is vulnerable to either a process or system crash: if the write() call is
interrupted, the database could be partially updated (e.g., only the first
4096 bytes) leading to corruption.

Protocol (b) first writes to an application-level journal, and then to
the actual database. If a process crash interrupts the journal write, the
database in unaffected; if the process crashes in the middle of database
write, SQLite can use the journal to restore the database to a consistent
state. However, the protocol is not correct in the event of an inopportune
system crash. Upon completion of the write() call, the data is stored in
operating system buffers, and can be written to disk in any order. Consider
that the operating system chooses to write out the database data first, and
the system crashes in the middle of the write. Since the database is partially
updated, it is in an inconsistent state. Furthermore, since the journal data
was not written to disk, the journal cannot be used to restore the database
to a consistent state.

Protocol (c) solves this problem by using fsync() to ensure that the
journal is persisted before writing to the database file. A system crash can
only lead to one of two states. In the first case the journal was not com-
pletely persisted. In this case the update failed and the database remains
in the old, consistent state. In the second case the journal was completely
persisted, but the database may not have been completely updated. The
journal is read, and the database updated to the new consistent state. In
either case, the database remains consistent. Thus the protocol is not
vulnerable to either process or system crashes.

4.1.2 Crash States

We define the crash state as the on-disk state after a crash. It is comprised of
the directory hierarchy and the data of all the files in the hierarchy. After

51

a crash, an application uses the crash state to recover to a consistent state.
The consistency of an application update protocol depends upon the

developer correctly handling all possible crash states, which is challenging
for two reasons. First, there are a large numbers of possible crash states
for even simple protocols. Second, the crash states that are possible vary
from file system to file system.

Ideally, it should be possible to determine which crash states are possi-
ble by examining the system calls in the update protocol. Unfortunately,
the POSIX standard defines how each system call should modify in-memory
state; it does not specify what happens to the on-disk state in the event of
a crash. Each file system implements system calls differently, leading to
different behavior in the event of a crash.

4.1.3 Protocol Goals

Ideally, application update protocols should satisfy two goals: they must
be correct, i.e., maintain application consistency in the face of a process or
system crash at any point; and they must have good performance.

Naturally, there is a tension between these two requirements. For
example, protocol (a) has the best performance of the three protocols in
Figure 4.1; however, it is vulnerable to process and system crashes.

Crash-consistent update protocols are hard to write because program-
mers normally reason about in-memory application state. For an update
protocol to be correct in the face of process and system crashes, the devel-
oper needs to reason about all the different possible crash states.

4.2 Motivation

To motivate persistence properties, we analyze the update protocol used by
a simple application to update its state in a crash consistent manner. The
protocol, shown in Listing 4.1, consists of only 4 operations. Since there

52

Listing 4.1: Example Update Protocol. The listing shows part of the update protocol
of HSQLDB.

F i l e overwrite . Previously conta ins “old”
1 write(log, "new")

New f i l e c r e a t e
2 creat(newfile)

Append to the new f i l e
3 write(newfile, "data")

F i l e rename
4 rename("newfile", "existing_file")

is no fsync() in the protocol, the updates are stored in the buffer cache
when the protocol completes, and written to storage in the background.

Even this simple protocol can lead to many different on-disk states
after a crash. Some of these crash states are listed in Table 4.2. State #0
is the initial state. States #1, #2, and #3 occur as the protocol proceeds in
order. These states occur in all file systems.

States #4 and #5 can occur in the ordered and writeback mode of
journaling file systems like ext3 and ext4. In these states, the overwritten
data is not persisted before the crash, as these modes arbitrarily delay
persisting overwrites that do not cause metadata changes.

States #6 and #7 can occur in file systems with delayed allocation (e.g.,
ext4, xfs, btrfs), where the append is persisted after the rename. State #8
represents the rename not being atomic – this can happen only in ext2.
State #9, where stmp ends up with data from another file, can happen with
file systems such as ext3, ext4, and reiserfs that have a writeback mode.

Thus, we have shown that the crash states possible for an update proto-
col vary widely by file system. We have ascertained that certain properties

53

log newfile existing_file points to:
0 old φ old contents
1 new φ old contents
2 new data old contents
3 new data new contents
4 old data old contents
5 old data new contents
6 old φ empty file
7 new φ empty file
8 old φ Missing!
9 old your_password data from /etc/passwd

Table 4.2: Possible Crash States for Example Protocol. The table shows
different crash states for the update protocol in Listing 4.1. The second and third columns show
the contents of the files log and newfile. The last column represents what the directory entry
existing_file is pointing to.

of a system call’s implementation (and how system calls interact with one
another) determine the possible on-disk crash states.

Although application-level consistency depends upon how system
calls are persisted, there are no standards that talk about how file systems
should persist them. Indeed, before this work, there was no term to refer
to the particular aspects of a file system that affected application crash
recovery. We believe that defining and studying persistence properties is
the first step towards standardizing them across file systems.

There are several ways of changing a file-system implementation that
leads to weakening the same persistence properties. When thinking about
the details of the implementation, it may be hard to see that this change
weakens property X, which results in applications A,B and C breaking.
For example, XFS introduced delayed allocation in 2004, breaking many
applications [290]. XFS introduced code fixes in 2006 that supported appli-
cations who used truncate() for atomic updates [165]. Ext4 introduced

54

delayed allocation in 2008, resulting in significant data loss [146]. Later
in 2009, ext4 introduced changes similar to the ones XFS had introduced
three years earlier [282]. By abstracting away implementation details, we
hope that persistence properties allow developers of different file systems
to communicate about the effect of changes to persistence properties.

4.3 Persistence Properties

Each file system implements system calls in a different manner. The crash
consistency of applications is affected by some aspects of the implemen-
tation of each system call. Modelling the implementation as persistence
properties allows us to abstract away the aspects of the implementation
that do not affect application-level consistency, while capturing all the
relevant aspects.

In this section, we first present the intuition behind persistence prop-
erties. We then formally define persistence properties and provide a few
examples.

4.3.1 Intuition

Application-level consistency is affected by the on-disk state after a crash.
Hence, aspects of the implementation that affect the on-disk state should
be captured. For example, persistence properties should capture whether
the changes made via a system call are all atomic, or whether a file is
visible to applications after a crash. On the other hand, implementation
aspects that relate to how on-disk changes are made are irrelevant: it is
enough to know that a system call is atomic; it does not matter whether
the atomicity is provided through journaling, copy-on-write, or some
other mechanism. Two file-system implementations that have the same
persistence properties are equivalent through the lens of application-level
consistency, even if they differ in other aspects.

55

The on-disk state is modified by a stream of I/O resulting from system
calls: hence it is enough for persistence properties to capture what I/O
becomes persistent on disk.

4.3.2 Definition

A persistence property is an assertion about how I/O resulting from certain
system calls is persisted. It has three components:

1. The group of system calls it operates on. For example, all I/O result-
ing from operations such as rename() might be persisted in a certain
way in a file system.

2. The characteristic of I/O it refers to. The characteristic could either
be atomicity or ordering. For example, rename() operations are
persisted atomically in the given file system.

3. The arguments to the system call. For example, rename() might only
be atomic if both source and target files are in the same directory.

We first describe the groups of system calls that we used when defining
persistence properties. We then use an example to illustrate the atomicity
and ordering characteristics. Finally, we provide examples of persistence
properties.

System-Call Groups

For the sake of convenience, we broadly group system calls into three: file
operations, directory operations, and sync operations.

File operations are concerned with only a single file and do not affect di-
rectories. The write() and truncate() system calls fall into this category.
Writes to an mmap()-ed file are also considered as file operations.

Directory operations are only concerned with the directory hierarchy.
They do not cause file data to be written. The following system calls

56

File F1. Size: 0

File F2. Size: 0

Initial

 State

p p

q q

Size: 2

Size: 2

Final

 State

p

q

Size: 1

Size: 1

Intermediate

 State #B

X X

X X

Size: 2

Size: 2

Intermediate

 State #A

q q

Size: 0

Size: 2

Intermediate

 State #C

Figure 4.3: Illustrating Atomicity and Ordering Properties. The figure
shows the initial, final, and some of the intermediate crash states possible for the workload described
in Section 4.3.2. X represents garbage data in the files. Intermediate states #A and #B represent
different kinds of atomicity violations, while intermediate state #C represents an ordering violation.

are directory operations: link(), unlink(), creat(), mkdir(), rmdir(),
mknod(), symlink(), and rename().

Sync operations persist the contents of a file or a directory. fsync(),
fdatasync(), sync_file_range(), and msync() are treated as sync oper-
ations. Writes to file opened with O_SYNC are also treated as if they were
followed by sync_file_range() for the write.

Illustrating Atomicity and Ordering

We consider the following pseudo-code snippet:

write(f1, "pp");
write(f2, "qq");

In this example, the application first appends the string pp to file de-
scriptor f1 and then appends the string qq to file descriptor f2. Note that
we will sometimes refer to such a write() as an append() for simplicity.
Figure 4.3 shows a few possible crash states that can result.

Atomicity. If the append is not atomic, for example, it would be possible
for the size of the file to be updated without the new data reflected to disk;

57

in this case, the files could contain garbage, as shown in State A in the
diagram. We refer to this as size-atomicity. A lack of atomicity could also
be realized with only part of a write reaching disk, as shown in State B.
We refer to this as content-atomicity.

Ordering. If the file system persists the calls out of order, another
outcome is possible (State C). In this case, the second write reaches the disk
first, and as a result only the second file is updated. Various combinations
of these states are also possible.

Examples of Persistence Properties

Multi-block file writes are atomic. This atomicity persistence property indi-
cates whether file operations such as write() that operate on more than
a single block of data are atomic. This property has a general scope: a
similar property with smaller scope would be single sector over-writes are
atomic. Note that the second property has smaller scope for two reasons:
it operates on a smaller set of operations (overwrites vs. all file operations)
and only on single sector writes versus all writes larger than a block.

Directory operations are ordered. This ordering persistence property in-
dicates whether all directory operations are persisted in program order
in the file system. A similar property of narrow scope would be directory
operations on the same directory are ordered.

4.4 Block Order Breaker

To study persistence properties, we built a tool named the Block Order
Breaker (Bob). We first describe the goals of Bob (§4.4.1). We then explain
our approach to studying persistence properties (§4.4.2). We describe
how Bob tests file-system persistence properties. Finally, we discuss the
limitations of Bob.

58

4.4.1 Goals

Having defined persistence properties (§4.3), we sought to answer three
questions:

1. Which persistence properties are upheld by widely used file systems?

2. How do persistence properties vary among different file systems?

3. How do persistence properties vary among different configurations
of the same file system?

The first question allows developers of applications targeted at specific
file systems to know what properties are provided by each file system.
The second question allows developers of portable applications (meant
for multiple file systems) to infer whether their application will break
when it is moved from one file system to another. The third question
allows developers to know how sensitive their application is to the exact
configuration of the underlying file system.

4.4.2 Approach

Unfortunately, it is extremely hard to identify the properties that each file
system provides. One source of such knowledge could be the develop-
ers of the file system. Unfortunately, due to the complexity of modern
file systems, and multiple developers working on different parts of the
file system, it is hard to for developers to state with any confidence the
properties provided by their system [50].

Another source of knowledge about persistence properties could be
file-system documentation [135]. However, file-system documentation
is typically extremely high-level, and does not provide details such as
persistence properties provided. Moreover, the documentation may not
be in sync with the implementation.

59

Persistence properties provided by a file system could be inferred from
the source code itself. Although there have been a number of attempts
at extracting the high-level architecture of software systems in a semi-
automatic manner [31, 76], extracting lower-level details like persistence
properties still remains a hard problem.

In this dissertation, as a first step towards studying persistence proper-
ties, we tackle a slightly different question: which persistence properties
are not provided by a given file system? Unlike establishing the persis-
tence property supported by a file system, finding properties that fail is
significantly easier (as a single counter test-case is sufficient). Knowing
which persistence properties are not supported helps us compare various
file systems and different configurations of the same file system.

Identifying persistence properties that are not supported will only be
useful if the properties that are examined are chosen carefully. To this end,
we have used our knowledge of application-level crash consistency [275]
to investigate persistence properties that are commonly assumed to be
provided by many file systems [155].

4.4.3 Testing Persistence Properties with Bob

We first provide an overview of how Bob works, and describe how persis-
tence properties are tested in detail. For the sake of convenience, we refer
to the storage state as the “disk state”. Bob is not specific to disks in any
manner, and will work on any storage device.

Overview. Bob first runs a simple user-supplied workload designed to
stress the persistence property tested (e.g., a number of writes of a specific
size to test overwrite atomicity). Bob collects the block I/O generated by
the workload, and then re-orders the collected blocks, selectively writing
some of them to disk to generate a new legal disk state (disk barriers are
obeyed). In this manner, Bob generates a number of unique disk images

60

corresponding to possible on-disk states after a system crash. Bob then
runs file-system recovery on each resulting disk image, and checks whether
various persistence properties hold (e.g., if writes were atomic). If Bob
finds even a single disk image where the checker fails, then we know that
the property does not hold on the file system.

Test Workloads. Bob uses a different workload to test each persistence
property. Figure 4.4 shows a sample of the code used in Bob. First, the
disk state is initialized with a number of files containing well-known
data. The workload then does a number of metadata operations, mixing
synchronous and asynchronous operations. The block traffic generated
by the file system (due to the workload) is captured. A number of crash
states are generated, and specific invariants are checked (e.g., is a later
metadata operation persisted before an earlier operation?). If such a crash
state is found, Bob reports that the file system does not support the specific
persistence property being tested.

Generating Crash States. A crash state is generated by taking the initial
disk state, and applying a subset of writes from the collected block trace.
Given the block trace generated by the file system, Bob first looks for flush
requests (e.g., requests tagged with the REQ_FLUSH flag). It divides the trace
into different phases delineated by flush requests. Within a phase, it is legal
to re-order write requests: for example, if a phase contains writes A, B,
and C (in that order), it is legal to generate a crash state with writes A and
C. We call this “re-ordering” since B preceded C in program order, but C
was persisted first. Bob does not re-order writes across flush requests or
barriers.

Note that given a block trace, a large number of legal crash states can
be generated. With Bob, we do not aim to exhaustively test all possible
crash states. In preliminary experiments, we had observed that simple re-
orderings lead to significant changes in observed disk state [275]. Thus, we
generated crash states corresponding to the following simple re-orderings:

61

[Initialization]

def init_state():
print("Initiating directory")
disk_state = {}
for fname in ["01","02","03","04","05",\

"11","12","13","21","22","23"]:
disk_state = create_file(\

fname, 6, "a", disk_state, False)
Store the disk state on file.
pickle_file = open("init_pickle", ’wb+’)
pickle.dump(disk_state, pickle_file)

[Sample Workload]

UNLINK("01")
RENAME("02")
UNLINK("03")
RENAME("04")
UNLINK("05")

CREAT("0-end", True)

RENAME("21")
CREAT("2a", True)
RENAME("22")
CREAT("2b", True)
RENAME("23")

CREAT("1-end", True)

Figure 4.4: BOB Workloads. The figure shows some of the code used in BOB Workloads.
The first snippet shows that the directory is initialized with a number of files. The sample workloads
does a number of metadata operations, both in synchronous (the True argument to CREAT) and
asynchronous fashion. BOB would then generate different crash states and check if any of them
contains re-ordered operations. For example, if the rename of file 02 is present but the unlink of 01
is not.

1. Crash states with a prefix of the block trace applied. Note that the
trace consists of write requests, and each request may consist of
multiple blocks. We generated crash states with both a prefix of

62

write requests applied, and a prefix of blocks applied.

2. Crash states with a single legal write request applied.

3. Crash states with all but a single write request applied.

As our results show, even these simple crash states were sufficient to
show that several persistence properties are supported by widely-used
file systems.

Implementation. Bob uses Blktrace [34] to collect the block-level trace.
It uses SystemTap [78] to interpose on the blk_add_trace_rq_issue()
function call and collect block data. The utility dd is used to copy disk
states and create crash states. The workloads and the verification checks
are written in Python.

4.4.4 Limitations

Bob is meant to be a first step in the exploration of persistence properties.
We do not intend to use Bob to identify all the persistence properties that
fail on a given file system. Bob does not generate all the crash states given
a block trace – a given persistence property could fail on the tested file
system, but Bob may not identify this. Although Bob is sound (it does not
falsely report a property as being violated), it is not complete.

4.5 Study of Persistence Properties

We study the persistence properties of six Linux file systems: ext2, ext3,
ext4, btrfs, xfs, and reiserfs. A large number of applications have been writ-
ten targeting these file systems. Many of these file systems also provide
multiple configurations that make different trade-offs between perfor-
mance and consistency: for instance, the data journaling mode of ext3

63

File System Version Mount Options
ext2 d211858837 None
ext2 d211858837 sync
ext3 d211858837 data=writeback
ext3 d211858837 data=ordered
ext3 d211858837 data=journal
ext4 5a0dc7365c data=writeback
ext4 5a0dc7365c data=ordered
ext4 5a0dc7365c nodelalloc
ext4 5a0dc7365c data=journal
btrfs 827fa4c762 None
xfs be4f1ac828 wsync

reiserfs bfe8684869 nolog
reiserfs bfe8684869 data=writeback
reiserfs bfe8684869 data=ordered
reiserfs bfe8684869 data=journal

Table 4.5: File-System Configurations. The table shows the file-system config-
urations tested using the Block-Order Breaker. All file-system versions correspond to the
versions released with Linux 3.2. The Git commit number of the latest patch applied to
each file system is also provided to identify the file-system version. All mount options
other than those explicitly mentioned are set to their default values.

provides the highest level of consistency, but often results in poor perfor-
mance [220]. Between file systems and their various configurations, it is
challenging to know or reason about which persistence properties are pro-
vided. Therefore, we examine different configurations of the file systems
we study (a total of 16). Table 4.5 lists the file-system configurations that
we examined.

Note that different system calls (e.g., writev(), write()) lead to the
same file-system output. We group such calls together into a generic file-
system update we term an operation. We have found that grouping all
operations into three major categories is sufficient for our purposes here:
file overwrite, file append, and directory operations (including rename,

64

link, unlink, mkdir, etc.).

4.5.1 Persistence Properties Tested

Based on our experiments with investigating application-level crash con-
sistency [216, 275], we select persist properties to test.

Atomicity. A number of applications (e.g., PostgreSQL [279], LMDB [273],
and ZooKeeper [16]) depend upon small, atomic, in-place writes to main-
tain crash consistency [219]. Hence, we first examine whether file systems
provide this property (single sector overwrite and single block overwrite).
Applications such as LevelDB [93] append to logs as part of their opera-
tions: in certain configurations, they assume the append will be atomic.
Hence, we examine whether appends of various sizes are atomic on differ-
ent file systems (Single sector append, single block append, multi-block
appends). It is interesting to note that applications like HSQLDB [117],
Mercurial [168], and LevelDB work correctly if a prefix of the append is
persisted correctly. For example, if a crash leaves the appended portion
filled with garbage or zeroes, the Mercurial repository is corrupted; no
error is caused if the crash results in a prefix appended to the file [216].
Therefore, we test this persistence property as well (multi-block prefix
append). Many applications (e.g., GDBM [92], HSQLDB, LevelDB) depend
on operations such as rename() being atomic; consequently, we include
this property in our tests. Although applications do not directly use multi-
block overwrite operations, it is a primitive that will be very useful [187].
Hence, we test whether file systems provide multi-block overwrites.

Ordering. Many applications use rename() or appends (with the O_TRUNC
flag) to atomically update a files. For rename(), the sequence involving
writing to a temporary file, then renaming it over the old file. The O_TRUNC
flag involves a similar sequence. If the sequence is persisted out of order
(e.g., if the file is renamed without the new data being persisted), data

65

could be lost; this has happened with XFS and ext4 in the past [146, 165].
Therefore, we test whether appends and renames are persisted in order on
different file systems. Since file systems such as ext4, btrfs, and xfs have
different heuristics about re-ordering operations [165], we test variations
such as appends being followed by a rename() operation. For the sake
of completeness, we test whether overwrite operations are re-ordered as
well. POSIX does not guarantee that a new file is created until the parent
directory is explicitly flushed [278]; since applications depend on this
property [216], we included it in our tests.

4.5.2 Results

Table 4.6 lists the results of our study. The table shows, for each file system
(and specific configuration) whether a particular persistence property has
been found to not hold; such cases are marked with an ×. Note that the
absence of an × does not mean that the property is provided by the tested
file system; Bob simply may not have found a crash state where it fails.

We first describe how persistence properties are violated by file systems.
For each property we tested, we describe the violation case found by Bob.
We describe violations of atomicity and ordering persistence properties in
turn. We then broadly discuss the results of our study.

Atomicity

For testing atomicity of different operations, we first store the initial disk
state. We perform the operation, and capture the final disk state. We then
test that for each crash state that Bob produces, the file system recovers
to the initial state or the final state. For the multi-block prefix append
test, there are a number of intermediate states that are also acceptable.
Our initial disk state for these experiments consisted of ten empty files, a
couple of directories, and four 1 GB files.

66

Persistence Property File system

ex
t2

ex
t2

-s
yn

c
ex

t3
-w

ri
te

ba
ck

ex
t3

-o
rd

er
ed

ex
t3

-d
at

aj
ou

rn
al

ex
t4

-w
ri

te
ba

ck
ex

t4
-o

rd
er

ed
ex

t4
-n

od
el

al
lo

c
ex

t4
-d

at
aj

ou
rn

al
bt

rf
s

xf
s

xf
s-

w
sy

nc
re

is
er

fs
-n

ol
og

re
is

er
fs

-w
ri

te
ba

ck
re

is
er

fs
-o

rd
er

ed
re

is
er

fs
-d

at
aj

ou
rn

al

Atomicity
Single sector overwrite
Single sector append × × × ×
Single block overwrite × × ×× ××× × × × ××
Single block append × × × × ×
Multi-block append/writes × × ×× × ××× × ×× × × ×× ×
Multi-block prefix append × × × × ×
Directory op × × ×
Ordering
Overwrite→ Any op × ×× ××× × × ××
Append(file)→ rename(file) × × × × × ×
O_TRUNC Append→ close × × × × × ×
Append→ Append (same file)× × × × ×
Append→ Dir op × × ×× ×× × ×
Dir op→ Any op × × ×

Table 4.6: Persistence Properties. The table shows atomicity and ordering persistence
properties that we empirically determined for different configurations of file systems. X → Y
indicates that X is persisted before Y. [X,Y]→ Z indicates that Y follows X in program order,
and both become durable before Z. A × indicates that we have a reproducible test case where the
property fails in that file system.

Single sector overwrite. In this experiment, we overwrote a sector at an
aligned position (i.e., the 512 bytes do not cross disk sector boundaries)
picked at random in a 1 GB file. We observe that all tested file systems seem-
ingly provide atomic single-sector overwrites: in some cases (e.g., ordered
mode of ext3), this property arises because the underlying disk provides
atomic sector writes. Note that if such file systems are run on top of new
technologies (such as PCM) that provide only byte-level atomicity [56],

67

single-sector overwrites will not be atomic.

Singe sector append. In this experiment, we appended 512 bytes of data
to a file containing 40960 bytes (ten 4K blocks). On all the file systems we
tested, allocating a new sector involves allocating a new 4K data block.
Thus, there are at least two structures that must be updated on storage:
the new data block, and the file inode. In this experiment, even though an
entire block is being allocated, we only care about the first sector; the data
in the other sectors in the block do not affect this persistence property.

Since ext2 relies on fsck [175] for recovery after a crash, it does not
constrain the order of writes at run times. Hence, Bob finds a crash state
where the inode is updated, but the data block is not. Since ext2 only
provides metadata consistency (§2.6.2), recovery leaves the data block
attached to the inode (potentially causing security problems if the block
was previously part of a sensitive file such as /etc/passwd).

In the writeback modes of ext3, ext4, and reiserfs, metadata may be
persisted before data blocks. Thus, Bob finds a crash state where the inode
is persisted, while the data block is not.

Single block overwrite. In this experiment, we overwrote a block at an
aligned position (i.e., the 4096 bytes overwritten do not cross disk block
boundaries) picked at random in a 1 GB file. Most disks have an atomic
write unit of 512 bytes. Thus, writing a single 4K block requires writing
eight sectors. The system may crash in the middle of writing these eight
sectors; special machinery is required to guarantee the atomic write of
even a single block. In the data journaling mode of ext3, ext4, and reiserfs,
the overwritten data block is first written into the journal; thus, a crash
while writing into the journal does not affect the atomicity of the overwrite.
Similarly, btrfs writes a new copy of the data block and atomically switches
pointers to the new block, thus providing an atomic block overwrite. For
all other file-system configurations tested, Bob finds a crash state where
some of the sectors (but not all) in the block were updated, violating the

68

persistence property. Note that synchronously writing the sectors (as in
ext2’s sync mode) does not help.

Single block append. Similar to the single sector append experiment, we
appended 4096 bytes of data to a file containing 40960 bytes (10 4K blocks).
We tested only with the simple case of a new pointer being added to the
inode; we did not test with cases where indirect blocks were allocated for
the file. We believe that the relevant persistence behavior will be exposed
even for the simple append case. The major difference of this test with the
single-block overwrite is that partially writing a block is not a problem if
the inode does not point to the block yet. In other words, as long as the
inode write is ordered after the data block write, the fact that the block is
written one sector at a time does not matter.

In the ordered mode of ext3, ext4, and reiserfs, the nodelalloc mode
of ext4, and the sync mode of ext2, the data writes are ordered before
metadata writes. Thus, the property is not violated in these configurations.
In the nolog mode of reiserfs, journaling is turned off. In this configuration,
and in writeback journaling modes of ext3, ext4, and reiserfs, and in ext2’s
default configuration, this persistence property is violated. Bob finds a
crash state where some of the sectors (but not all) in the new data block
were updated, violating the persistence property.

Multi-block append or writes. In this experiment, we overwrote/ap-
pended 50 MB to a 1 GB file. We chose 50 MB since this is above the
maximum size of a transaction in the default configuration of ext4. None
of the file-system configurations tested provided multi-block atomic ap-
pends or writes. Interfaces to request such atomic operations are currently
not available to applications. In some cases, in the data journaling configu-
rations, the data and metadata would be part of the same transaction, and
thus the write/append would be atomic; however, this is not guaranteed,
and Bob finds cases where the property is violated.

69

Multi-block prefix append. Similar to the multi-block append experi-
ment, we appended 50 MB to a 1 GB file. We define a prefix append in the
following manner: a crash results in the file containing a consistent prefix
(e.g., the first 2 blocks) of the append data. A prefix append does not result
in the user reading garbage data at the tail of the appended data. File
systems can provide this property by first persisting a prefix of the append
data to storage, updating metadata to point to the newly persisted data,
and then continuing with the rest of the append operation. File systems
in most journaling modes (other than writeback) and copy-on-write file
systems support this property. Thus, it is only violated in orderless file
systems like ext2 (and reiserfs in nolog mode) and in the writeback modes
of ext3, ext4, and reiserfs.

Directory operations. Bob tested that directory operations creat, link,
unlink, and rename were atomic. rename is an interesting case because
it involves changes to both the source and destination directories. In
ext2 (default mode and in sync mode), Bob finds crash states where the
file is missing in both directories. A similar crash state is found when
journaling is turned off in reiserfs (nolog mode). In all other tested file-
system configurations, the directory operations were found to be atomic.

Ordering

We tested whether operations were re-ordered in the following manner.
We captured the initial state of the disk. After each operation was per-
formed, we emulated a new disk state where that operation was persisted
onto the previous disk state. Thus, after each operation, our list of ac-
ceptable disk states grew by one. We consider partial persistence of an
operation equivalent to non-persistence of that operation. For each crash
state created by Bob we check whether it is present in our list of acceptable
crash states; otherwise we signal that the persistence property is violated.
We used the same initial disk state as the atomicity tests.

70

Overwrite→ any operation. We tested whether overwrites are re-ordered
after other operations by first overwriting a block at an aligned position
picked at random in a 1 GB file, and then performing data operations
such as appends (to a different file) and directory operations (creat, link,
rename, and unlink). Data overwrites are special operations because they
don’t necessarily cause metadata changes (unless options such as atime,
mtime are enabled). Dirty data blocks are treated differently from meta-
data in most file-system configurations. The orderless configurations (ext2,
reiserfs nolog) will persist the second operation before the overwrite. Bob
finds crash states where both metadata and data operations are persisted
before the overwrite in these file systems. Since the writeback configura-
tion of journaling file systems does not order data writes before metadata
operations, Bob finds crash states where a later metadata operation was
persisted, but the over write was not. In the ordered mode (and the similar
nodelalloc), data is persisted before metadata; however, this is only true
for data blocks connected to the later metadata options. Overwritten data
blocks are not connected to any other metadata blocks, and hence they are
not persisted first. Thus, this persistence property is violated in writeback
and ordered modes of ext3, ext4, reiserfs, and xfs.

Append(file) → rename(file). In this experiment, we first appended a
4K block to the one of the empty files in our initial disk state, and then
renamed the file. Many applications use the technique of appending
to a temporary file, and then renaming it over the old file to atomically
update a file [146, 216]. On file systems with delayed allocation (such as
the ordered mode of ext4), the appended data may be persisted after the
rename, leading to an empty renamed file in the event of an inopportune
crash. Therefore, some file systems recognize when the application is using
this technique, and treat the rename similar to fsync(): both the append
and the rename are persisted before any other operation [59]. Among file
systems with delayed allocation, xfs is the only file system that does not

71

treat this case specially [165]. Thus, in the case of ext2, the writeback
configurations of ext3, ext4, and reiserfs, the nolog mode of reiserfs, and
xfs, Bob finds crash states where the rename is persisted, but the appended
data is not.

O_TRUNC Append→ close. In this experiment, we open one of the 1 GB
files in the initial disk state with the O_TRUNC flag, write ten 4K blocks to the
file, and then close the file. Appending to a file opened with the O_TRUNC
flag is another mechanism used by applications to atomically update a
file. Similar to the append-rename case, most file-systems recognize this
technique and handle it correctly by forcing the appended data to storage
before the file is closed. In contrast to the append-rename case, xfs handles
this correctly, but btrfs does not. The other violations are exactly the same
as the append-rename case. In the case of violations, Bob finds crash states
with empty files and later metadata operations persisted.

Append→ Append (same file). In this experiment, we append ten 4K
blocks (in separate operations) to one of the empty files in the initial disk
state. When two appends to the same file are not ordered explicitly by
fsync() calls, most file systems still order them internally. We believe
this is because the same file metadata is being affected in both operations.
Even on file systems with delayed allocations, appends were persisted in
the correct order. Thus, only order-less configurations (ext2 and nolog
reiserfs) and writeback configurations of ext3, ext4, and reiserfs violate
this property. In case of violation, Bob finds a crash state with the tail of
the append persisted, but some earlier part containing random data.

Append→ Directory Operation. In this experiment, we first append a
single 4K block to an empty file in the initial disk state, and follow it up
with a mix of directory operations such as link, mkdir, and synchronous
file creations. On file systems with delayed allocation, the append is
persisted after other metadata operations. For example, if the append is

72

followed by the synchronous creation of another file, Bob will find crash
states with the new file created, but the appended data not persisted.
This persistence property is violated on orderless configurations (ext2 and
nolog reiserfs), writeback configurations, and journaling configurations
where delayed allocation is active (e.g., ext4 ordered mode). In addition,
since btrfs persists metadata operations on the root directory before other
operations, a rename operation on the root is persisted before the append
in a crash state.

Directory operation→ any operation. In this experiment, we first per-
form directory operations to a set of files in our initial disk state. We then
perform overwrites and appends to a 1 GB file. Finally, we once again
perform directory operations to a different set of files (in different direc-
tories). Directory operations are usually handled with care by most file
systems, and persisted in order. Orderless file-system configurations (ext2
default mode and reiserfs nolog mode) re-order directory operations as
well. Among modern file systems, btrfs re-orders directory operations
to increase performance [50]. Bob found crash states where a rename()
involving the root directory were persisted before an earlier metadata
operation on a child of the root.

4.5.3 Discussion

From Table 4.6, we observe that persistence properties vary widely among
file systems, and even among different configurations of the same file
system. The order of persistence of system calls depends upon small
details like whether the calls are to the same file or whether the file was
renamed. From the viewpoint of an application developer, it is risky to
assume that any particular property will be supported by all file systems.

It might seem strange that persistence properties vary so much be-
tween different file-system configurations. The primary motivation for

73

file-system developers to design configurations with different persistence
properties is performance. Providing strong persistence properties is costly
in terms of performance. For example, a file system where all data and
metadata writes are totally ordered is severely constrained in exploiting
parallelism provided by the storage device, or allowing the device to come
up with optimal I/O schedules. Hence, developers weaken persistence
properties to increase performance.

There is a natural tension between providing strong persistence proper-
ties, and providing high performance. Strong persistence properties allow
application developers to reason easily about crash states and application-
level crash consistency. On the other hand, weakening persistence prop-
erties allow the file system to provide high performance to a range of
different applications.

This tension is further compounded by the lack of communication
between file-system developers and application developers. Both parties
believe that their stance is correct, and want the burden of changing the
software (either file systems or applications) to fall on the other group.
Historically, it has been the file-system developers who have changed
the file system to accommodate application developers [59]. There are
hundreds of thousands of applications, and tens of file systems; hence, it
makes sense that the file-system code change when there is a mismatch of
expectations. Furthermore, Linus Torvalds, who functions as the “benevo-
lent dictator” of the Linux Kernel development, strongly believes that file
systems should “just do the right thing” [59].

4.6 Conclusion

In this chapter, we show how application-level consistency is dangerously
dependent upon file system persistence properties, i.e., how file systems
persist system calls. We develop Bob, a tool to test persistence properties

74

among different file systems. We use Bob to study a total of sixteen config-
urations of six widely-used file systems, and show that such properties
vary widely.

Our results show that applications should not be written assuming the
underlying file system will have specific persistence properties. Unfortu-
nately, this is often the case; applications are developed and tested mainly
on a single file system. We have taken the first steps towards solving this
problem: we built Alice, a framework that pin-points application code that
would work incorrectly on different file systems [216]. Others are working
towards building tools that will allow applications to be crash-consistent
on any given file system [301].

75

5
The No-Order File System

In Chapter 3, we described how disk-cache flushes are used to order writes,
and the high performance cost of flushing the disk cache. In this chapter,
we attempt to answer the question: can a file-system maintain crash consis-
tency without ordering writes? We present a new crash-consistency protocol,
Backpointer-Based Consistency, that does not require any ordering among
writes to storage. Backpointer-Based Consistency embeds a backpointer
into each file-system object, and builds consistency by mutual agreement
between objects. We demonstrate the power of Backpointer-Based Con-
sistency by designing and implementing the No-Order File System. This
chapter is based on the paper, Consistency Without Ordering [47], published
in FAST 12.

In the rest of this chapter, we first describe the goals of NoFS and its
assumptions about the storage device (§5.1). We then present the high-
level design of NoFS (§5.2), and discuss its implementation (§5.3). We
present an evaluation of NoFS (§5.4), and describe its limitations, uses
cases, and implementation challenges (§5.5). Finally, we present a formal
proof that NoFS provides data consistency (§5.6), and conclude (§5.7).

5.1 Goals and Assumptions

We motivate why we designed the No-Order File System (NoFS). We then
describe the goals of NoFs, and our assumptions about the storage device.

76

The problem with ordering points. Current file systems use a number
of techniques to ensure that the file system is consistent in the face of a
crash. Almost all of these techniques require carefully ordering writes
to storage. We term as an ordering point every point in the file-system
update protocol where write Xmust be persisted before write Y.

In the event of a crash, ordering points allow the file system to reason
about which writes reached the disk and which did not, enabling the file
system to take corrective measures, such as replaying the writes, to recover.
Unfortunately, ordering points are not without their own set of problems:

1. By their very nature, ordering points introduce waiting into the file-
system code, thus potentially lowering performance. They constrain
the scheduling of disk writes, both at the operating system level and
at the disk driver level.

2. They introduce complexity into the file-system code, which leads to
bugs and lower reliability [220, 221, 311, 312].

3. The use of ordering points also forces file systems to ignore the end-
to-end argument [237], as the support of lower-level systems and
disk firmware is required to implement imperatives such as the disk
cache flush. When such imperatives are not properly implemented
[247], file-system consistency is compromised [226]. In today’s cloud
computing environment [19], the operating system runs on top of a
tall stack of virtual devices, and only one of them needs to neglect to
enforce write ordering [294] for file-system consistency to fail.

Although file systems that use the file-system check [175] for crash con-
sistency do not need to use ordering points, they lead to another problem:
unavailability. On today’s high-capacity disks, a crash results in the file-
system being un-available for hours or days while the file-system check is
running. Businesses cannot afford to lose access to data for such extended

77

periods of time. Furthermore, file-system checkers are often complex, and
often contain bugs leading to corruption and data loss [102, 311, 312].

Goals. Our goals for the No-Order File System follow naturally from the
problems outline above:

1. Remove all ordering points in the file-system protocol. Disk flushes
or barriers should not be issued to maintain file-system crash consis-
tency. Thus, the file system does not depend on lower-level storage
correctly implementing the disk-cache flush [226].

2. Provide strong crash-consistency guarantees, equivalent to ext3’s
ordered journaling mode. Specifically, we seek to provide data con-
sistency (§2.6.2).

3. Provide access to files immediately upon mounting. A long file-
system check should not make the file-system unavailable.

4. Create a crash-consistency protocol that is simple, understandable,
and hopefully easy to implement. Our hope was that this would
reduce bugs in the implementation.

Assumptions. The key assumption on which the consistency of NoFS
rests is that the storage device allows the file system to write an object
and its 8-byte backpointer together in an atomic fashion. Current SCSI
drives allow a 520-byte atomic write to enable checksums along with each
512-byte sector [274]; we envision that future drives with 4-KB blocks will
provide similar functionality.

We also assume that the file system has a fixed data layout that is well-
known. For example, when the file system is mounted, inodes should
be located at a well-known location. For copy-on-write file systems such
as WAFL [114] or btrfs [166], this assumption does not hold, and other
mechanisms to find the location of inodes and other metadata is required.

78

5.2 Design

We present the design of the No-Order file system (NoFS), a lightweight,
consistent file system with no ordering points in its update protocol. NoFS
provides access to files immediately upon mounting, with no need for a
file-system check or journal recovery.

In this section, we introduce backpointer-based consistency (BBC), the
technique used in NoFS for maintaining consistency. We use a logical
framework to prove that BBC provides data consistency in NoFS. We
discuss how BBC can be used to detect and recover from inconsistencies,
and elaborate on why allocation structures are not persisted to non-volatile
storage in NoFS.

5.2.1 Overview

The main challenge in NoFS is maintaining file-system crash consistency
without ordering points. Crash consistency is closely tied to logical identity
in file systems. Inconsistencies arise due to confusion about an object’s
identity; for example, after a crash, two files may each claim to own a data
block. If the block’s true owner is known, such inconsistencies could be
resolved. Associating each object with its logical identity is the crux of the
backpointer-based consistency technique.

Employing backpointer-based consistency allows NoFS to detect in-
consistencies on-the-fly, upon user access to corrupt files and directories.
The presence of a corrupt file does not affect access to other files in any
way. This property enables immediate access to files upon mounting,
avoiding the downtime of a file-system check or journal recovery. A read
is guaranteed to never return garbage data, though stale data (data that
belonged to the file at some point in the past) may be returned.

We intentionally avoided using complex rules and dependencies in
NoFS. We simplified the update protocols, not persisting allocation struc-

79

tures to disk. We maintain in-memory versions of allocation structures
and discover data and metadata allocation information in the background
while the file system is running.

5.2.2 Backpointer-based consistency

Backpointer-based consistency is built around the logical identity of file-
system objects. The logical identity of a data block is the file it belongs to,
along with its position inside the file. The logical identity of a file is the list
of directories that it is linked to. This information is embedded inside each
object in the form of a backpointer. Upon examining the backpointer of an
object, the parent file or directory can be determined instantly. Blocks have
only one owner, while files are allowed to have multiple parents. Figure
5.1 illustrates how backpointers link file-system objects in NoFS. As each
object in the file system is examined, a consistent view of the file-system
state can be incrementally built up.

Although conceptually simple, backpointers allow detection of a wide
range of inconsistencies. Consider a block that is deleted from a file, and
then assigned to another file and overwritten. If a crash happens at any
point during these operations, some subset of the data structures on disk
may not be updated, and both files may contain pointers to the block.
However, by examining the backpointer of the block, the true owner of
the block can be identified.

In designing NoFS, we assume that the write of a block along with
its backpointer is atomic (§5.1). This assumption is key to our design, as
we infer the owner of the data block by examining the backpointer. Back-
pointers are similar to checksums in that they verify that the block pointed
to by the inode actually belongs to the inode. However, a checksum does
not identify the owner of a data block; it can only confirm that the correct
block is being pointed to. Consistency and recovery require identification
of the owner.

80

Directory

Links

Backpointers

File

Data blocks

Backpointers

Data block

Backpointer

Figure 5.1: Backpointers. The figure shows a conceptual view of the backpointers
present in NoFS. The file has a backpointer to the directory that it belongs to. The data
block has a backpointer to the file it belong to. Files and directories have many backpointers
while data blocks have a single backpointer.

Intuition

We briefly provide some intuition about the correctness of using the
backpointer-based consistency technique to ensure data consistency. We
first consider what data consistency and version consistency mean (§2.6.2),
and the file-system structures required to ensure each level of consistency.

Data consistency provides the guarantee that all the data accessed by a
file belongs to that file; it may not be garbage data or belong to another file.
This guarantee is obtained when a backpointer is added to a data block.
Consider a file pointing to a data block. Upon reading the data block, the
backpointer is examined. If the backpointer matches the file, then the data
block must have belonged to the file, since the backpointer and the data
inside the block were written together. If the data block was reallocated to
another file and written, it would be reflected in the backpointer. Hence,
no ordering is required between writes to data and metadata since the
data block’s backpointer would disagree in the event of a crash. Note that
the data block could have belonged to the file at some point in the past; the
backpointer does not provide any information about when the data block
belonged to the file. Thus, the file might be pointing to an old version of
the data block, which is allowed under data consistency.

Version consistency is a stricter form of data consistency which requires
that in addition to belonging to the correct file, all accessed data must be the

81

correct version. Stale data is not allowed in this model. Backpointers are
not sufficient to enforce version consistency, as they contain no information
about the version of a data block. Hence more information needs to be
added to the file system. Specifically, every object and forward pointer in
the file system needs to include a time stamp. For example, each data block
has a timestamp indicating when it was last updated. This timestamp
is also stored in the inode containing the data block. When a block is
accessed, the timestamp in the inode and data block must match. Since
timestamps are a way to track versions, the versions in the inode and data
block can be verified to be the same, thereby providing version consistency.

We decided against including timestamps in NoFS backpointers be-
cause updating timestamps in backpointers and metadata reduces perfor-
mance and induces a considerable amount of storage overhead. Times-
tamps need to be stored with every object and its parent. Every update
to an object involves an update to the parent object, the parent’s parent,
and so on all the way up to the root. Furthermore, doing so works against
our goal of keeping the file system simple and lightweight; hence, NoFS
provides data consistency, but not version consistency.

Using Checksums. A natural question about the design is whether
checksums can be used instead of backpointers to achieve the required
properties. Backpointers are more powerful than checksums for the fol-
lowing reasons. A backpointer allows mutual verification; the data block
and the file both can verify they have the correct pointer. Two checksums
(at the data block and the file) would be needed to achieve the same effect
– in the case of backpointers, we take advantage of the fact that forward
pointers are already present in the system. Furthermore, while checksums
allow verification, they do not provide identification; a backpointer in a
data block allows us to identify who the parent file potentially is.

82

Detection and Recovery

In NoFS, detection of an inconsistency happens upon access to corrupt
files or data. When a data or metadata block is accessed, the backpointer is
checked to verify that the parent metadata block has the same information.
If a file is not accessed, its backpointer is not checked, which is why the
presence of corrupt files does not affect access to other files: checking is
performed on-demand.

This checking happens both at the file level and the data block level.
When a file is accessed, it is checked to see whether it has a backpointer to
its parent directory. This check allows identification of deleted files where
the directory did not get updated, and files which have not been properly
updated on disk.

NoFS is able to recover from inconsistencies by treating the backpointer
as the true source of information. When a directory and a file disagree
on whether the file belongs to the directory or not, the backpointer in the
file is examined. If the backpointer to the directory is not found, the file is
deleted from the directory. Issues involving blocks belonging to files are
similarly handled.

5.2.3 Non-persistent allocation structures

In an order-less file system, allocation structures like bitmaps cannot be
trusted after a crash, as it is not known which updates were applied to
the allocation structures on disk at the time of the crash. Any allocation
structure will need to be verified before it can be used. In the case of
global allocation structures, all of the data and metadata referenced by the
structure will need to be examined to verify the allocation structure.

Due to these complexities, we have simplified the update protocols
in NoFS, making the allocation structures non-persistent. The allocation
structures are kept entirely in-memory. NoFS starts out with empty alloca-

83

tion structures and allocation information is discovered in the background,
while the file system is online. NoFS can verify whether a block is in use
by checking the file that it has a backpointer to; if the file refers to the data
block, the data block is considered to be in use. Similarly, NoFS can verify
whether a file exists or not by checking the directories in its backpointers.
Thus NoFS can incrementally (and in the background) learn allocation
information about files and blocks. NoFS starts with zero free data blocks;
it learns of new free blocks as the scan proceeds in the background. Thus,
although NoFS allows reading of files immediately upon mounting, it
requires some time to find free data blocks before allowing writes. Opti-
mizations such as maintaining a list of free blocks (that need not necessarily
be correct) can be implemented at the cost of extra complexity; we have
not done so in our implementation.

5.3 Implementation

We now present the implementation of NoFS. We first describe the operat-
ing system environment, and then discuss the implementation of the two
main components of NoFS: backpointers and non-persistent allocation
structures. We describe the backpointer operations that NoFS performs
for each file-system operation.

5.3.1 Operating system environment

NoFS is implemented as a loadable kernel module inside Linux 2.6.27.55.
We developed NoFS based on ext2 file-system code. Since NoFS involves
changes to the file-system layout, we modified the e2fsprogs tools 1.41.14
[285] used for creating the file system.

Linux file systems cache user data in a unified page cache [62]. File
reads (except direct I/O) are always satisfied from the page cache. If the
page is not up-to-date at the time of read, the page is first filled with data

84

Action Backpointer operations
Create Write backlink into new inode

Read Translate offset
Verify block backpointer in data block

Write Translate offset
Verify block backpointer in data block

Append Translate offset
Write block backpointer into data block

Truncate No backpointer operations
Delete No backpointer operations

Link Write backlink into inode
Unlink Remove backlink from inode
mkdir Write directory entry backpointer into

directory block
rmdir No backpointer operations

Table 5.2: NoFS backpointer operations. The table lists the operations on
backpointers caused by common file system operations. Note that all checks are done in
memory.

from the disk and then returned to the user. File writes cause pages to
become dirty, and an I/O daemon called pdflush periodically flushes
dirty pages to disk. Due to this tight integration between the page cache
and the file system, NoFS involves modifications to the Linux page cache.

5.3.2 Backpointers

NoFS contains three types of backpointers. We describe each of them in
turn, pointing out the objects they conceptually link, and how they are
implemented in NoFS. Figure 5.3 illustrates how various objects are linked
by different backpointers. Every file-system operation that involves the
creation or access of a file, directory, or data block involves an operation
on backpointers. These operations are listed in Table 5.2.

85

Block backpointers

Block backpointers are {inode number, block offset} pairs, embedded inside
each data block in the file system. The first 8 bytes of every data block are
reserved for the backpointer. Note that we need to embed the backpointer
inside the data block since disks currently do not provide the ability to
store extra data along with each 4K block atomically. The first 4 bytes
denote the inode number of the file to which the data block belongs. The
second 4 bytes represent the logical block offset of the data block within
the file. Given this information, it is easy to check whether the file contains
a pointer to the data block at the specified offset. Indirect blocks contain
backpointers too, since they belong to a particular file. However, since the
indirect block data is not logically part of a file, they are marked with a
negative number for the offset.

Our implementation depends on the read and write system calls being
used; data is modified as it is passed from the page cache to the user buffer
and back during these calls. When these calls are by-passed (via mmap) or
the page cache itself is by-passed (via direct I/O mode), verifying each
access becomes challenging and expensive. We do not support mmap or
direct I/O mode in NoFS.

Insertion: The data from a write system call goes through the page
cache before being written to disk. We modified the page cache so that
when a page is requested for a disk write, the backpointer is written into
the page first and then returned for writing. The block offset translation
was modified to take the backpointer into account when translating a
logical offset into a block number.

Verification: Once a page is populated with data from the disk, the
page is checked for the correct backpointer. If the check fails, an I/O error
is returned, and the inode’s attributes (size and number of blocks) are
updated. Note that the page is not checked on every access, but only the
first time that it is read from disk. Assuming memory corruption does not

86

Inode 40!

!
 Data pointers!

 Backlinks!

Directory

block!

40!

41!

.!

foo!

/!

Inode 41!

!
 Data pointers!

 Backlinks!

/foo!

Data block!

Backpointer!

41! 0!

Inode Backlink!Directory!

 block backpointer!

Data block backpointer!

Data pointers!Directory!

 block pointer!

Directory link

to inode!

Figure 5.3: Implementation of backpointers. The figure shows the different
kinds of backpointers present in NoFS. foo is a child of the root inode /. This link is
represented by a backlink from foo to /. Similarly, the data block is a part of foo, and hence
has a backpointer to foo. Directory blocks also contain backpointers, in the form of dot
entries to their owner’s inode.

occur [314], this level of checking is sufficient.

Directory backpointers

The dot directory entry serves as the backpointer for directory blocks, as it
points to the inode which owns the block. However, the dot entry is only
present in the first directory block. We modified ext2 to embed the dot
entry in every directory block, thus allowing the owner of any directory
block to be identified using the dot entry.

Although the block backpointer could have been used in directory
blocks as well, we did not do so for two reasons. First, the structured
content of the directory block enables the use of the dot entry as the
backpointer, simplifying our implementation. Second, the offset part of
the block backpointer is unnecessary for directory blocks since directory
blocks are unordered and appending a directory block at the end suffices
for recovery.

Insertion: When a new directory entry is being added to the inode, it

87

is determined whether a new directory block will be needed. If so, the dot
entry in added in the new block, followed by the original directory entry.

Verification: Whenever the directory block is accessed, such as in
readdir, the dot entry is cross-checked with the inode. If the check fails,
an I/O error is returned and the directory inode’s attributes (size and
block count) are updated.

Backlinks

An inode’s backlinks contain the inode numbers of all its parent directories.
Every valid inode must have at least one parent. Hard linked inodes may
have multiple parents.

We modified the file-system layout to add space for backlinks inside
each inode. The inode size is increased from the default 128 bytes to 256
bytes, enabling the addition of 32 backlinks, each of size 4 bytes. The
mke2fs tool was modified to create a backlink between the lost+found
directory and the root directory when the file system is created.

Insertion: When a child inode is linked to a parent directory during
system calls such as create or link, a backlink to the parent is added in
the child inode.

Verification: At each step of the iterative inode lookup process, we
check that the child inode contains a backlink to the parent. A failed check
stops the lookup process, reduces the number of links for the inode, and
returns an I/O error.

Detection

Every data block is checked for a valid backpointer when it is read from
the disk into the page cache. We assume that neither memory nor on-disk
corruption happens; hence, it is safe to limit checking to when a data
block is first brought into main memory. It is this property that leads
to the high performance of NoFS; because disk I/O is several orders of

88

magnitude slower than in-memory operations, the backpointer check can
be performed on disk blocks with low overhead.

Inode backlink checking occurs during directory path resolution. The
child inode’s backlink to the parent inode is checked. Since both inodes
are typically in memory during directory path resolution, the backlink
check is a quick in-memory check, and does not degrade performance
significantly, since a disk read is not performed to obtain the parent or
child inode.

Note that the detection of inconsistency happens at the level of a single
resource, such as an inode or a data block. Verifying that a data block
belongs to an inode can be done without considering any other object in
the file system. The presence of corrupt files or blocks does not affect the
reads or writes to other non-corrupt files. As long as corrupt blocks are
not accessed, their presence can be safely ignored by the rest of the system.
This feature contributes to the high availability of NoFS: a file-system check
or recovery protocol is not needed upon mount. Files can be immediately
accessed, and any access of a corrupt file or block will return an error. This
feature also allows NoFS to handle concurrent writes and deletes. Even if
many writes and deletes were going on at the time of a crash, NoFS can
still detect inconsistencies by considering each inode and data block pair
in isolation.

Examples. We illustrate how backpointers help in detecting inconsisten-
cies with two examples. Figure 5.4 shows three failure scenarios during
the rename of a file. The file-system state before the rename, and the in-
memory changes that happen due to the rename are shown. In Scenario #1,
a crash happens before the file is unlinked in the old directory; as a result,
both new and old directories claim the file. Using the inode backlink, the
true owner of the file (the new directory) is determined. In Scenario #2,
the crash happens before both the old directory and the file inode are
updated; once again, both directories claim the file. But in this case the

89

Notation Used: Existing pointer

New pointer

Removed pointer X

Block updated
 on disk

O inode Old file/parent inode N inode New file/parent inode

O dir Old file/parent dir block N dir New file/parent dir block

C inode Child inode C data Child data block

File Rename
Before Update:

O inode O dir C inode N dir N inode

Changes in memory:

O inode O dir C inode N dir N inode

Crash scenario #1: Only C inode and N dir updated on disk

O inode O dir C inode N dir N inode

On-disk status:

O inode C inode N inode

Logical status: (Though O dir points to C inode on disk)

O inode O dir C inode N dir N inode

On-disk status:

O inode C inode N inode

Crash scenario #3: Only O dir is updated on disk

O inode O dir C inode N dir N inode

On-disk status:

O inode C inode N inode

Logical status: (After recovery using backpointer of C inode)

X

Crash scenario #2: Only N dir updated on disk

Logical status: (Though N dir points to C inode on disk)

X

X

X X

Figure 5.4: Failure Scenario: Rename. The figure presents three failure scenarios
during the rename of a file. In each scenario, employing backpointers allows us to detect
inconsistencies such as both the old and new parent directories claiming the renamed file.

90

true owner is determined to be the old directory using the inode backlink.
In Scenario #3, only the old directory is updated before the crash. As a
result, the renamed file is missing from both directories. Using the inode
backlink, the file can be restored to the old directory.

Figure 5.5 illustrates the detection of inconsistencies due to a crash
while creating a single byte file. The figure shows the file-system state
before and after the operation, and three crash scenarios. In Scenario #1,
the directory and file inode are updated on-disk before the crash; since the
data block has not been updated, the block backpointer is missing, and
this is detected when the data block is accessed. In Scenario #2, the inode
and the data block are updated on-disk before the crash; as a result, the
directory does not point to the inode. Since the inode backlink is present,
the file system can determine the directory the file is supposed to belong
to; the file-system policy can determine if the directory is updated to point
to the file in cases like this. In Scenario #3, the directory and the data
block are updated before the crash. Since the inode is not updated, an
error is returned when the file is accessed via the directory. The data block
remains unallocated.

Recovery

Having backlinks and backpointers allows recovery of lost files and blocks.
Files can be lost due to a number of reasons. A rename operation consists
of a unlink and a link operation. An inopportune crash could leave the
inode not linked to any directory. A crash during the create operation
could also lead to a lost file. Such a lost file can be recovered in NoFS,
due to the backlinks inside each inode. Each such inode is first checked
for access to all its data blocks. If all the data blocks are valid, it is a
valid subtree in the file system and can be inserted back into the directory
hierarchy (using the backlinks information) without compromising the
consistency of the file system. When adding a directory entry for the

91

Notation Used: Existing pointer

New pointer

Removed pointer X

Block updated
 on disk

O inode Old file/parent inode N inode New file/parent inode

O dir Old file/parent dir block N dir New file/parent dir block

C inode Child inode C data Child data block

Creating a 1 byte file

O inode O dir C inode C data

Changes in memory:

O inode O dir C inode C data

Before Update:

Crash scenario #1: Only C inode and O dir
 updated on disk

On-disk status:

O inode O dir C inode C data

Logical status: (Though C inode points to C data)

O inode C data C inode

Crash scenario #2: Only C inode and C data
 updated on disk On-disk status:

O inode O dir C inode C data

O inode C data C inode

Logical status: (Though C inode points to O inode)

Crash scenario #3: Only O dir and C data
 updated on disk

On-disk status:

O inode O dir C data

O inode C data C inode

Logical status: (Though O inode ,C data
 point to O inode)

C inode

Figure 5.5: Crash Scenario: File Create. The figure presents three failure
scenarios during the creation of a file with 1 byte of data. In each scenario, employing
backpointers allows us to detect inconsistencies such as the new file pointing to a data
block that hasn’t been updated.

92

recovered inode, it is correct to append the directory entry at the end of
the directory, since directory entries are an unordered collection; there is
no meaning attached to the exact offset inside a directory block where a
directory entry is added. Note that before a file can be inserted back into
a directory, the directory needs to be valid; if the directory has not already
been checked, then the path has to be checked all the way to the root. We
believe that in the common case, most of the directory hierarchy will be
present in memory.

In a similar fashion, it it possible to recover data blocks lost due to a
crash before the inode is updated. A data block, once it has been deter-
mined to belong to an inode, cannot be embedded at an arbitrary point
in the inode data. It is for this reason that the offset of a data block is em-
bedded in the data block, along with the inode number. The offset allows
a data block to be placed exactly where it belongs inside a file. Indirect
blocks of a file do not have the offset embedded, as they do not have a
logical offset within the file. Indirect blocks are not required to reconstruct
a file; only data blocks and their offsets are needed.

Using reconstruction of files from their blocks on disk, files can be
potentially “undeleted”, provided that the blocks have not been reused for
another file. We have not implemented undelete in NoFS. Block allocation
would need to be tweaked to not reuse blocks for a certain amount of time,
or until a certain free-space threshold is reached. Undelete might turn up
stale data because NoFS does not support version consistency; the data
block might have been part of an older version of the inode.

5.3.3 Non-persistent allocation structures

The allocation structures in ext2 are bitmaps and group descriptors. These
structures are not persisted to disk in NoFS. In-memory versions of these
data structures are built using the metadata scanner and data scanner. Statis-
tics usually maintained in the group descriptors, such as the number of

93

free blocks and inodes, are also maintained in their in-memory versions.
Upon file-system mount, in-memory inode and block bitmaps are

initialized to zero, signifying that every inode and data block is free. Since
every block and inode has a backpointer, it can be determined to be in
use by examining its backlink or backpointer, and cross-checking with
the inode mentioned in the backpointer. As every object is examined,
consistent file-system state is built up and eventually complete knowledge
of the system is achieved.

In the file system, a block or inode that is marked free could mean
two things: it is free, or it has not been examined yet. Since all blocks
and inodes are marked free at mount time, inodes need to be examined
to check that they are indeed free; hence blocks or inodes that have not
been examined yet cannot be allocated. In order to mark which inodes or
blocks have been examined, we added a new in-memory bitmap each for
inodes and data blocks called the validity bitmap. If a block or inode has
been examined and marked as free, it is safe to use it. Blocks not marked
as valid could actually be used blocks, and hence must not be used for
allocation. The examination of inodes and blocks are carried out by two
background threads called the metadata scanner and data scanner. The
two threads work closely together in order to efficiently find all the used
inodes and blocks on disk. File writes can occur while the two threads are
in operation (as long as free inodes and data blocks are available).

Metadata Scan

Each inode needs to be examined to find out if it is in use or not. The
backlinks in the inode are found, and the directory blocks of the referred
inodes are searched for a directory entry to this inode. Note that the
directory hierarchy is not used for for the scan. The disk order of inodes
is used instead, as this allows for fast sequential reads of the inode blocks.

Once an inode is determined to be in use, its data blocks have to verified.

94

This information is communicated to the data scanner by adding the data
blocks of the inode to a list of data blocks to be scanned. The inode
information is also attached to the list so that the data scanner can simply
compare the backpointer value to the attached value to determine whether
the block is used. However, if the inode has indirect blocks, the inode
data blocks are explored and verified immediately. An inode with indirect
blocks may contain thousands of data blocks, and it would be cumbersome
to add all those data blocks to the list and process them later; hence
inode data is verified immediately by the metadata scanner. Each inode is
marked valid after it has been scanned, allowing inode allocation to occur
concurrently with the metadata scan.

Data Scan

Observe that a data block is in use only if it is pointed to by a valid inode
which is in use; hence only data blocks that belong to a valid inode need
to be checked, thus reducing the set of blocks to be checked drastically.

The data block scanner works off a list of data blocks that the metadata
scanner provides. Each list item also includes information about the inode
that contained the data block. Therefore, the data scanner simply needs
to read the inode off the disk and compare the backpointer inode to the
inode information in the list item. The data block is marked valid after the
examination is complete.

Since the data scanner only looks at blocks referred to by inodes, there
may be plenty of unexamined blocks which are not referred and potentially
free. These blocks cannot be marked as valid and free until the end of the
data scan, when all valid inodes have been examined. While the scan is
running, the file system may indicate that there are no free blocks available,
even if there are many free blocks in the system. In order to fix this, we
implemented another scanner called the sequential block scanner which
reads data blocks in disk order and verifies them one by one. This thread

95

is only started if no free blocks are found for an application write, and
the data scanner is still running. In the future, we plan to start the data
block scanner when the number of data blocks available for allocation falls
below a minimum user-configurable threshold.

5.4 Evaluation

We now evaluate NoFS along two axes: reliability and performance. For
reliability testing, we artificially prevent writes to certain sectors from
reaching the disk, and then observe how NoFS handles the resulting
inconsistency. For performance testing, we evaluate the performance
of NoFS on a number of micro and macro-benchmarks. We compare
the performance of NoFS to ext2, an order-less file system with weak
consistency guarantees, and ext3 (in ordered mode), a journaling file
system with metadata consistency.

5.4.1 Reliability

Methodology. We test whether NoFS can handle inconsistencies caused
by a file-system crash. When a crash happens, any subset of updates
involved in a file-system operation could be lost. We emulate different
system-crash scenarios by artificially restricting blocks from reaching the
disk, and restarting the file-system module. The restarted module will see
the results of a partially completed update on disk.

We use a pseudo-device driver to prevent writes on target blocks and
inodes from reaching the disk drive. We interpose the pseudo-device
driver in-between the file system and the physical device driver, and all
writes to the disk drive go via the pseudo-device driver. The file system
and the device driver communicate through a list of sectors. In the file
system, we calculate the on-disk sectors of target blocks and inodes and

96

add them to the black list of sectors. All writes to these sectors are ignored
by the device driver. Thus, we are able to target inodes and blocks in a
fine grained manner.

Note that we do not test writes dropped over a long period of opera-
tion or multiple re-ordered file-system operations. Since our reliability
measures are not affected by either the time when writes occurred or other
concurrent writes at the time of the crash, we believe our tests reflect all
the relevant cases.

Example. Consider the mkdir operation. It involves adding a directory
entry to the parent directory, updating the new child inode, and creating
a new directory block for the child inode. We do not consider updates to
the access time of the parent inode. In the reliability test, we would drop
writes to different combinations of these blocks, access the files or data
blocks involved in the test, and observe the actions taken by the file system.
For instance, if the write to the new child inode is dropped, it creates a bad
directory entry in the parent directory, and orphans the directory block
of the new child inode. We observe whether the file system detects this
corrupt directory entry, and whether the orphan block is reclaimed.

Results. Table 5.6 shows the results of our reliability experiments. Each
row in the table corresponds to a different experiment, with one or more
blocks in the file-system update being dropped (i.e, is not updated on
disk). The table rows which have two system calls denote the second
system call happening after the first system call. These particular combina-
tions were selected because they share a common resource. For example,
truncate-write explores the case when a data block is deleted from a file
and reassigned to another file. If the write to the truncated file inode fails,
both files now point to the same data block, leading to an inconsistency.
Similarly unlink-link and delete-create may share the same inode.

The table lists the errors that result from the dropped blocks in each
experiment. The bad directory entry (BD) error indicates that a directory

97
ext2 NoFS

System call Blocks dropped Error D
et

ec
te

d?
A

ct
io

n?

D
et

ec
te

d?

A
ct

io
n?

mkdir Cinode PBD , COB × –
√

R , CEI

mkdir Cdir CBD
√

CED
√

CED

mkdir Pdir COI , COB × –
√

R
mkdir Cinode , Cdir PBD , CBD × –

√
CEI

mkdir Cinode , Pdir COB × –
√

R
mkdir Cdir , Pdir COI × –

√
R

link Cinode CHL × –
√

CEN

link Pdir COI × –
√

R
unlink Cinode CHL × –

√
CEO

unlink Odir PBD × –
√

CEI

rename Ndir OBD × –
√

CEI

rename Odir COI × –
√

R
write Cdata CGD × –

√
CEB

write Cind CGD × –
√

CEB

write Cinode , Cdata COB × –
√

R
write Cinode , Cind COB × –

√
R

write Cdata , Cind CGD × –
√

CEB

delete-create Odir OBD × –
√

CEO

truncate-write Oinode OTP × –
√

OEB

unlink-link Odir OBD × –
√

CEO

General Key
C Child inode File inode
P Parent dir Directory block
O Old file/parent data Data block
N New file/parent ind Indirect block

Key for Error Key for Action
BD Bad dir entry R Block/inode reclaimed on scan
OB Orphan block EI Error on inode access
OI Orphan inode ED Error on data access
HL Wrong hard link count EN Error on access via new path
GD Garbage data EO Error on access via old path
TP 2 inodes refer to 1 block EB Error on block access

Table 5.6: Reliability testing. The table shows how NoFS and ext2 react to
various inconsistencies that occur due to updates not reaching the disk. NoFS detects all
inconsistencies and reports an error, while ext2 lets most of the errors pass by undetected.

98

points to an file that has been deleted or is not initialized. The orphan (OB,
OI) block and inode errors indicate resources that are marked used in the
file system but are not actually in use (e.g., marking a data block as used
when the file it was allocated to is not modified to point to the data block).
The wrong hard link count (HL) indicates that the inode was not updated in
accordance with the directory entries pointing to the inode. The garbage
data (GD) error indicates that the file points to an uninitialized data block.
The TP error indicates that two inodes point to the same data block.

The table also lists the action taken by the file system in response to
the error. Action R indicates that file system reclaims the orphan block
or inode on the next scan. Actions EI, ED, and EB indicate that the file
system returns an error when the inode is accessed (e.g., via ls), when
the directory block is accessed (e.g., via ls), or when the data block is
accessed on a file read. Actions EN and EO indicate that the file system
returns an error when the file is accessed via the new or old directory
paths respectively.

Only one inconsistency, a corrupt directory block, is detected by ext2
(due to the internal structure of a directory block). Other inconsistencies,
such as reading garbage data, are not detected by ext2. All inconsistencies
are detected by NoFS, and an error is returned to the user. When blocks
and inodes are orphaned due to a crash, they are reclaimed by NoFS when
the file system is scanned for allocation information upon reboot. Some
of the inconsistencies could lead to potential security holes: for example,
linking a sensitive file for temporary access, and removing the link later.
If the directory block is not written to disk, the file could still be accessed,
providing a way to read sensitive information. NoFS detects these security
holes upon access and returns an error.

99

5.4.2 Performance

To evaluate the performance of NoFS, we run a series of micro-benchmark
and macro-benchmark workloads. We also observe the performance of
NoFS at mount time, when the scan threads are still active. We show that
NoFS has comparable performance to ext2 in most workloads, and that
the performance of NoFS is reasonable when the scan threads are running
in the background. We also measure the scan running time when the file
system is populated with data, the rate at which NoFS scans data blocks
to find free space, and the performance cost incurred when the stat system
call is run on unverified inodes.

The experiments were performed on a machine with a AMD 1 GHz
Opteron processor, 1 GB of memory, and a Seagate Barracuda 160 GB drive.
The operating system was Linux 2.6.27.55. The Seagate drive provides a
maximum of 75 MB/s read throughput and 70 MB/s write throughput.
The experiments were performed on a cold file-system cache, and were
stable and repeatable. The numbers reported are the average over 10 runs.

Micro-benchmarks

We run a number of micro-benchmarks, focusing on different operations
like sequential write and random read. Figure 5.7 illustrates the perfor-
mance of NoFS on these workloads. We observe that NoFS has minimal
overhead on the read and write workloads. For the sequential write work-
load, the performance of ext3 is worse than ext2 and NoFS due to the
journal writes that ext3 performs.

The creation and deletion workloads involve doing a large number
of creates/deletes of small files followed by fsync. This workload clearly
brings out the performance penalty due to ordering points. The through-
put of NoFS is twice that of ext3 on the file creation micro-benchmark, and
70% higher than ext3 on the file deletion benchmark.

100

ext2 NoFS ext3

M
B

/s

0

10

20

30

40

50

60

70

80

90

Sequential read bandwidth

 74.5 74.3 74.4

ext2 NoFS ext3

M
B

/s

0

10

20

30

40

50

60

70

80

90

Sequential write bandwidth

 69.6 70.7
 60.0

ext2 NoFS ext3

IO
P

S

0

20

40

60

80

100

120

140

160

Random read throughput

120.5 121.4 119.7

ext2 NoFS ext3

IO
P

S

0

10

20

30

40

50

60

70

80

90

Random write throughput

 70.9 71.5 69.0

ext2 NoFS ext3

O
p

/s

0

100

200

300

400

500

600

700

File creation throughput

 493.8 516.9

 223.7

ext2 NoFS ext3

O
p

/s

0

100

200

300

400

500

600

700

800

900

File deletion throughput

731.4 695.6

399.4

Figure 5.7: Micro-benchmark performance. This figure compares file-system
performance on various micro-benchmarks. The sequential benchmarks involve reading
and writing a 1 GB file. The random benchmarks involve 10K random reads and writes
in units of 4088 bytes (4096 bytes - 8 byte backpointer) across a 1 GB file, with a fsync
after 1000 writes. The creation and deletion benchmarks involve 100K files spread over
100 directories, with a fsync after every create or delete.

101

ext2 NoFS ext3

M
B

/s

0

1

2

3

4

5

6

7

Sort throughput

 5.9 5.9 5.8

ext2 NoFS ext3

IO
P

S

0

200

400

600

800

1000

1200

1400

1600

1800

Filebench varmail throughput

 1458 1443

 1215

ext2 NoFS ext3

IO
P

S

0

200

400

600

800

1000

1200

1400

1600

1800

Filebench fileserver throughput

 1349 1344 1265

ext2 NoFS ext3

IO
P

S

0

1000

2000

3000

4000

5000

Filebench webserver throughput

 4648 4649 4460

Figure 5.8: Macro-benchmark performance. The figure shows the throughput
achieved on various application workloads. The sort benchmark is run on 500 MB of data.
The varmail benchmark was run with parameters 1000 files, 100K mean dir width, 16K
mean file size, 16 threads, 16K I/O size and 16K mean append size. The file and webserver
benchmarks were run with the parameters 1000 files, 20 dir width, 1 MB I/O size and
16K mean append size. The mean file size was 128K for the fileserver benchmark and 16K
for the webserver benchmark. Fileserver benchmark used 50 threads while webserver used
100 threads.

Macro-benchmarks

We run the sort and Filebench [82] macro-benchmarks to assess the per-
formance of NoFS on application workloads. Figure 5.8 illustrates the
performance of the three file systems on this macro-benchmark. We se-
lected the sort benchmark because it is CPU intensive. It sorts a 500 MB

102

file generated by the gensort tool [198], using the command-line sort utility.
The performance of NoFS is similar to that of ext2 and ext3, demonstrating
that NoFS has minimal CPU overhead.

We run three Filebench workloads. The fileserver workload emulates
file-server activity, performing a sequence of creates, deletes, appends,
reads, and writes. The webserver workload emulates a multi-threaded
web host server, performing sequences of open-read-close on multiple files
plus a log file append, with 100 threads. The varmail workload emulates a
multi-threaded mail server, performing a sequence of create-append-sync,
read-append-sync, reads, and deletes in a single directory.

We believe these benchmarks are representative of the different kind
of I/O workloads performed on file systems. The performance of NoFS
matches ext2 and ext3 on all three workloads. NoFS outperforms ext3 by
18% on the varmail benchmark, demonstrating the performance degrada-
tion in ext3 due to ordering points.

Scan performance

We evaluate the performance of NoFS at mount time, when the scanner
is still scanning the disk for free resources. The scanner is configured to
run every 60 seconds, and each run lasts approximately 16 seconds. In
order to understand the performance impact due to scanning, we do two
experiments involving 10 sequential writes of 200 MB each. The writes
are spaced 30 seconds apart.

In the first experiment, we start the writes at mount time. The scan-
ning of the disk and the sequential write is interleaved at 0s, 60s, 120s,
and so on, leading to the write bandwidth dropping to half. When the
sequential writes are run at 30s, 90s, 150s, and so on, the writes achieve
peak bandwidth. In the second experiment, the writes were once again
spaced 30s apart, but were started at 20s, after the end of the first scan
run. In this experiment, the writes are never interleaved with the scan

103

Effect of background scan on write bandwidth over time

Time(s)

(a)

0 30 60 90 120 150 180 210 240 270 300

M
B

/s

0

10

20

30

40

50

60

70

80

Writes every 30s, start at 0s

Writes every 30s, start at 20s

Effect of file−system data on scan running time

Total data(MB)

 (b)

1 2 4 8 16 32 64 128 256 512 1024

R
u
n
n
in

g
 t
im

e
(s

)

0

20

40

60

80

100

120

140

160

Figure 5.9: Interaction of Background Scan and File-System Activity.
Figure (a) depicts the reduction in write bandwidth when sequential writes interleave
with the background scan. Figure (b) shows that the running of the scan increases slowly
with the amount of data in the file system.

104

Time taken to scan data blocks

Total data scanned(MB)

 (c)

1 10 100 1000

R
u
n
n
in

g
 t
im

e
(s

)

0.001

0.01

0.1

1

10

100

Performance cost of stat on unverified inodes

Time(s)

(d)

0 70 140 210 280 350 420

ls
 t
im

e
(s

)

0

10

20

30

40

50

S
c
a
n
 c

o
m

p
le

ti
o
n

250

128 MB

256 MB

512 MB

Figure 5.10: Cost of the Background Scan. Figure (c) illustrates the rate at
which data blocks are scanned. Figure (d) demonstrates the performance cost incurred
when the stat system call is run on unverified inodes.

105

reads, and hence suffer no performance degradation. Graph (a) in Figure
5.9 illustrates these results.

Once the scan finishes, writes will once again achieve peak bandwidth.
Running the scan runs without a break causes the scan to finish in around
90 seconds on an empty file system. Of course, one can configure this
trade-off as need be; the larger the interval between scans, the smaller
the performance impact during this phase, but the longer it takes to fully
discover the free blocks of the system.

Graph (b) in Figure 5.9 depicts the time taken to finish the scan (both
metadata and data) when the file system is increasingly populated with
data. In this experiment, the scan is run without a break upon file-system
mount. All the data in the file system are in units of 1 MB files. The
running time of the scan increases slowly when the amount of data in the
file system is increased, reaching about 140s for 1 GB of data. The trend
indicates that the running time for multi-terabyte systems will be tens of
hours. The long runtime is not a problem since the file-system is available
for reading and writing while the scan completes in the background; only
in the case of a almost-full file system will the user encounter a problem.
We also performed an experiment where we created a variable number
of empty files in the file systems and measured the time for the scan to
run. We found that the time taken to finish the scan remained the same
irrespective of the number of empty files in the system. Since every inode
in the system is read and verified, irrespective of whether it is actively
used in the file system or not, the scan time remains constant.

During a file write, if there are no free blocks, the sequential block
scanner is invoked in order to scan data blocks and find free space. The
write will block until free space is found. Graph (c) in Figure 5.10 illustrates
the performance of the sequential block scanner. The latency to scan 100
MB is around 3 seconds, and 1 GB of data is scanned in around 30 seconds.
The throughput is currently around 30 MB/s, so there is opportunity for

106

optimizing its performance.
As mentioned in Section 5.5.1, when stat is run on an unverified

inode, NoFS first verifies the inode by checking all its data blocks. We ran
an experiment to estimate the cost of such verification. We created four
identical directories, each filled with a number of 1 MB files. Every 140
seconds, ls -li was run on one directory, leading to a stat on each inode
in the directory. The background scan started at file-system mount and
finished at approximately 250 seconds. We varied the number of files from
128 to 512 and measured the time taken for ls -li in each experiment.
Graph (d) in Figure 5.10 illustrates the results. As expected, the time taken
for ls to complete increases with the total data in the directory. After the
scan completion at 250 seconds, all the inodes are verified, and hence ls
finishes almost instantly.

5.5 Discussion

Although NoFS provides strong consistency guarantees and good per-
formance on many workloads, its unique design affects file-system users
in several ways. We first discuss the limitations of the design. We then
describe appropriate use-cases for NoFS. Finally, we discuss challenges
faced in implementing NoFS.

5.5.1 Limitations

The design of NoFS involves a number of trade-offs. We describe the
limitations that arise from our design choices.

Recovery: NoFS was designed to be as lightweight as possible, avoid-
ing heavy machinery for logging or copy-on-write. As a result, file-system
recovery is limited. For example, consider a file that is truncated, and later
written with new data. After a crash in the middle of these updates (and
subsequent remount), the file may point to a block that it does not own.

107

This inconsistency is detected upon access to the data block. However, the
version of the file which pointed to its old data cannot be recovered easily.
By utilizing logging, a file system like ext3 provides the ability to preserve
data in the event of a crash.

Rename: Atomic rename is critical in the following update sequence: 1.
create temporary file; 2. write temporary file with the entire contents of the
old file, plus updates; 3. persist temporary file via fsync(); 4. atomically
rename temporary file over old file. At the end of this sequence, the file
should exist in either the old state or the new state with all the updates.
If rename() is not atomic, a crash could result in the file being lost [59].
Since rename() is not atomic in NoFS, many applications cannot be run
correctly on top of NoFS.

Note that NoFS could be modified to remove this problem. Two changes
would be required. The first is modifying the namespace from the cur-
rent hierarchical structure to a flat structure like the Google File Sys-
tem [238]. The second change is eliminating the centralized directory
structure, and storing directory information directly inside inodes (similar
to ReconFS [160]). In this new design, a rename only affects a single inode.
Similar to how allocation information needs to be built up in memory on
boot, directory information will also have to be scanned into memory in
the background. We have not implemented this design.

The ABA problem: Since NoFS provides data consistency, a file can
contain a data block that belonged to the file at some point in the past;
similarly, a directory may contain a file that was part of the directory at
some point in the past. NoFS is susceptible to the ABA problem [245, 284]:
if the existence of a file in directory is used by an application to denote
that some external event has not occurred, the application may behave
incorrectly. Such applications require version consistency to behave cor-
rectly; NoFS needs to be augmented with time-stamps to achieve version
consistency.

108

mmap() support: NoFS intercepts all read() calls, and hence is able to
verify that files are accessing the correct data off storage. NoFS does not
intercept all mmap() calls, and hence an application using mmap() (such as
older versions of LevelDB [93]) cannot be run correctly on top of NoFS.

Accessing unverified objects: For large disks, it is possible that an
object is accessed before the scan has verified it. Accessing such unverified
objects involves a performance cost. The performance cost is felt during
different system calls for inodes and data blocks.

Running the stat system call on an unverified inode may result in
invalid information, as the number of blocks recorded in the inode may
not match the actual number of blocks that belong to the inode on disk. In
order to handle this, NoFS checks the inode status upon a stat call, and
verifies the inode immediately if required, and then allows the system call
to proceed. Since verification involves checking every data block referred
to by the inode, the verification can take a lot of time. Running ls -l on
a large directory of unverified files involves a large performance penalty
arising from reading every file. For verified inodes, the stat will always
return valid data, as the inode’s attributes are updated whenever an error
is encountered on block access. Note that NoFS does not check directory
entries for correctness.

In the case of an unverified data block, no additional I/O is incurred
during reads and partial writes since both involve reading the block off
the disk anyway. However, in the case of a block overwrite, the block has
to be read first to verify that it belongs to the inode before overwriting
it. As a result, a write in ext2 is converted into a read-modify-write in
NoFS, effectively cutting throughput in half. It should be noted that this
happens only on the first overwrite of each unverified block. After the
first overwrite, the block has been verified, and hence the backpointer no
longer needs to be checked.

Thus it can be seen that accessing unverified objects involves a large per-

109

formance hit. However, these costs are only incurred during the window
between file-system mount and scan completion.

5.5.2 Use Cases

Given its current design, we feel an excellent use-case for NoFS would
be as the local file system of a distributed file system such as the Google
File System [238] or the Hadoop File System [254]. In such a distributed
file system, reliable detection of corruption is all that is required, since
redundant copies of data would be stored across the system. If the master
controller is notified that a particular block has been corrupted in the
local file system of a particular node, it can make additional copies of the
data in order to counter the corruption of the block. Furthermore, such
distributed file systems typically have large chunk sizes. As shown in
section 5.4, NoFS provides very good performance on large sequential
reads and writes, and is well suited for such workloads.

It should be noted that backpointer-based consistency could also be
used to help ensure integrity in a conventional file system against bugs or
data corruption. The simplicity and low overhead of backpointers makes
such an addition to an existing file system feasible.

By eliminating ordering, backpointer-based consistency allows the
file system to maintain consistency without depending upon lower-layer
primitives such as the disk cache flush. Previous research has shown that
SATA drives do not always obey the flush command [226, 247], which is
essential for file systems to implement ordering. IDE drives have also been
known to disobey flush commands [225, 262]. Using backpointer-based
consistency allows a file system to run on top of such misbehaving disks
and yet maintain consistency.

Potential users of NoFS should note two things. One, any application
which requires strict ordering among file creates and writes should not
use NoFS. Two, if there are corrupt files in the system, NoFS will only

110

detect them upon access and not upon file-system mount. Some users
may prefer to find out about corruption at mount time rather than when
the file system is running. Such a use case aligns better with a file system
such as ext3.

5.5.3 Implementation Challenge: Widespread
Assumptions About Block Size

NoFS requires that the backpointer and the data block are written together
atomically to storage. While implementing NoFS, we emulated this by
reducing the amount of data stored in each disk block from 4096 bytes to
4088 bytes (to have space for an 8-byte backpointer). Changing the amount
of data stored in a data block proved surprisingly tricky.

There were two main areas where changes were needed: the file-system
code, and the broader page-cache code. We describe each in turn.

File-System Code. The file-system has to translate a logical byte in a given
file to a byte inside a specific block on disk. The translation requires using
the disk block size. Changing the code to work with a 4088 byte block
involves extensive changes across the code; bit-operations at several places
had to changed into arithmetic operations to work with the 4088 block
size. Simply changing the header #define statements was not enough.

Page-Cache Code. With a 4088-byte block, a 4096 page includes data from
two disk blocks. Implementing this also proved tricky; the kernel code
assumes that the data from a disk block goes exclusively into a single
page. Reading data from two 4088 byte blocks into a 4096 page similarly
involved changing bit operations extensively into arithmetic operations.

The assumption of the block size being a power of two may not hold
true for all storage systems. Several devices allow data (such as checksums)
to be stored in out-of-band areas [223, 274]: if the block and the out-of-
band data could be read together in one operation, it would make the

111

design of storage systems simpler. Rewriting kernel code so that it does
not make implicit assumptions about the block/page size would improve
the reliability and flexibility of storage systems.

5.6 Proof

Sivathanu et al. provided a logical framework for modeling file systems,
and reasoning about the correctness of new features that are added [256].
We extend that framework to show that that adding backpointers to data
and inode blocks in a file system ensures data consistency. Morever, by
further adding timestamps, we can achieve version consistency.

5.6.1 Notation

The main entities are containers, pointers, and generations. A file system is
simply a collection of containers, which can be freed and reused. They
are linked to each other through pointers. The epoch of a container is
incremented and its timestamp is changed every time the contents of
a container change in memory. Thus, the epoch represents the version
of a container. The generation of a container is incremented after each
reallocation.

A state of the file system in memory or disk is represented by a be-
lief. Beliefs denoted as {}M and {}D are memory beliefs and disk beliefs
respectively. For example, { A 99K B}D indicates a belief that container A
physically points to container B on disk.

Operators. We use a special ordering operator called precedes (≺). Only
a belief can appear to the left of a ≺ operator. A ≺ B means that belief
A occurs before B. The⇒ operator indicates the belief to the left of the
operator implies the belief on the right.

112

Table 5.11: Notations on containers

Symbol Description
&A set of entities that point to container A
Ax the xth version of container A
Ay The yth generation of container A
g(Ax) the generation of the xth version of container A
{Ax}M the xth version of A in memory
{Ax}D the xth version of A on disk
A 99K B denotes that A has a physical pointer to B
A L99 B denotes that B has a backpointer to A
A→ B denotes that A logically points to B
t(A) the time that A was last updated
ts(B,A) the timestamp for A that is stored in B

5.6.2 Axioms

In this subsection, we present the axioms that govern the transition of
beliefs across memory and disk.

• If a version of a container exists on disk, it must first have existed in
memory, followed by a write to disk.

{Ax}M ≺ write(A)⇒ {Ax}D (5.1)

• B points to A logically in memory (or disk) only if B has a pointer to
A, and A has a backpointer to B in memory (or disk).

{B→ A}M ⇐⇒ {B 99K A}M ∧ {B L99 A}M (5.2)

{B→ A}D ⇐⇒ {B 99K A}D ∧ {B L99 A}D (5.3)

• If A does not belong to any container in memory (or disk), it’s back-
pointer does not point to any valid container in memory (or disk).

{&A = φ}M ⇒ ∀c¬{c L99 A}M (5.4)

{&A = φ}D ⇒ ∀c¬{c L99 A}D (5.5)

113

• Two versions of container B are different only if their timestamps are
different.

x 6= y ⇐⇒ t(Bx) 6= t(By) (5.6)

5.6.3 Data Consistency

Data consistency indicates that the data blocks of a file will not contain
garbage data after a crash. Since all blocks that logically belong to a file
contain a backpointer to the file, it is trivially true that they belong to the
file (now or at some point in the past) and that they do not contain garbage
data. We now prove that if the block belonged to the file at some point in
the past, it is the same version of the block that is now logically part of the
file.

Formally, if the xth version of B logically points to the zth version of A
on disk, and previously the same version of B pointed to the kth generation
ofA, then the in-memory generation and on-disk generation should match.
In other words, the version pointed to in memory is the version stored on
disk. (

{Bx → Ak}M ≺ {Bx → Az}D

)
⇒ (g(Az) = k)

We assume that g(Az) 6= k and prove that this leads to a contradiction.(
{Bx → Ak}M ≺ {Bx → Az}D

)
∧ (g(Az) 6= k)

Since the epoch of B (x) is the same on disk and memory, B has not
been changed until the disk write happened. Since B logically points to A,
A has a backpointer to B. g(Az) 6= k can only happen if block A was freed
and written to disk. After the free, it was re-allocated to B again.

This leads to two cases where the free could have happened - before
the write of B (in memory) or after the write of B (on disk).

Case 1: Block A was freed and written to disk before Block B was
written. However, since A has a backpointer to B on disk, the in-memory
version of A must have had a backpointer to B. This contradicts the initial
assumption that A was freed (and hence has no backpointers).

114

⇒
(
({Bx → Ak}M ∧ (&A = φ)∧write(A))

≺ {Bx → Az}D

)
∧ (g(Az) 6= k)

⇒
(
({Bx L99 Ak}M ∧ (&A = φ)∧write(a))

≺ {Bx → Az}D

)
∧ (g(Az) 6= k) (Using 5.2)

⇒
(
({Bx L99 Ak}M ∧ ¬{Bx L99 Ak}M)

≺ {Bx → Az}D

)
∧ (g(Az) 6= k)

(Since, {&A = φ}M ⇒ ∀c¬{c L99 A}M)

⇒
(
false ≺ {Bx → Az}D

)
∧ (g(Az) 6= k)

We have arrived at a contradiction (i.e a false belief), and hence this
case cannot occur.

Case 2: Block A was freed and written to disk after Block B was writ-
ten. If block A was freed and written to disk, it should not have a valid
backpointer. However, A has a backpointer to B. Thus we arrive at a
contradiction.

⇒
(
{Bx → Ak}M ≺ ({Bx → Az}D

∧(&A = φ)∧write(a))
)

∧ (g(Az) 6= k)

⇒
(
{Bx → Ak}M ≺ ({Bx L99 Az}D

∧(&A = φ)∧write(a)))∧ (g(Az) 6= k) (Using (2))

⇒
(
{Bx → Ak}M ≺ ({Bx L99 Az}D

∧¬{Bx L99 Az}D)
)
∧ (g(Az) 6= k)

(Since {&A = φ}D ⇒ ∀c¬{c L99 A}D)

⇒
(
{Bx → Ak}M ≺ false

)
∧ (g(Az) 6= k)

We have arrived at a contradiction, and hence this case cannot occur.
Thus we have shown that data consistency holds given that the file

system has the backpointer property.

115

5.6.4 Version Consistency

Version consistency is a stricter version of data consistency. In version
consistency, each file-system object and forward pointer has a timestamp
associated with it. Each data block has a timestamp indicating when it was
last updated. A corresponding timestamp is also stored in the inode, with
the pointer to the data block. When a block is accessed, the timestamp in
the inode and the data block must match. This helps us detect lost updates
to data blocks. This is reflected in the rule:

{Bx → Ay}D ⇒ {Bx → Ay}M ≺ {Bx → Ay}D

For the L.H.S to hold on disk, writes to both B and A need to have hap-
pened. This could have happened in two ways, considering the two possi-
ble orderings of the writes to A and B:

{Bx → Ay}D ⇒ ({Bx → Ab}M ≺ write(B))

∨ ({Ba → Ay}M ≺ write(A))

where a and b are arbitrary epochs of containers B and A.
Consider the first case:

{Bx → Ay}D ⇒ ({Bx → Ab}M ≺ write(B))

Now, for the memory and on-disk copies of A to match, we need to prove
that b = y:

{Bx → Ab}M ⇒ ts(Bx,A) = t(Ab)

{Bx → Ay}D ⇒ ts(Bx,A) = t(Ay)

⇒ t(Ab) = t(Ay)

⇒ b = y

Similarly, for Case 2, we can prove that a = x. Hence, when the file
system uses back pointers with timestamps, we have shown that version
consistency holds.

116

5.7 Conclusion

Every modern file system uses ordering points to ensure consistency. How-
ever, ordering points have many disadvantages including lower perfor-
mance, higher complexity in file-system code, and dependence on lower
layers of the storage stack to enforce ordering of writes.

In this chapter, we describe how to build an order-less file system,
NoFS, that provides consistency without sacrificing simplicity, availability
or performance. NoFS allows immediate data access upon mounting,
without file-system checks. We show that NoFS has excellent performance
on many workloads, outperforming ext3 on workloads that frequently
flush data to disk explicitly.

Although potentially useful for the desktop, we believe NoFS may
be of special significance in cloud computing platforms, where many
virtual machines are multiplexed onto a physical device. In such cases,
the underlying host operating system may try to batch writes together for
performance, potentially ignoring ordering requests from virtual machines.
NoFS allows virtual machines to maintain consistency without depending
on the numerous lower layers of software and hardware. Removing such
trust is key to building more robust and reliable storage systems.

The source code for NoFS can be obtained at: http://www.cs.wisc.
edu/adsl/Software/nofs. We hope that this will encourage adoption of
backpointer-based consistency.

http://www.cs.wisc.edu/adsl/Software/nofs
http://www.cs.wisc.edu/adsl/Software/nofs

117

6
The Optimistic File System

In this chapter, we present Optimistic Crash Consistency [46], a new crash
consistency protocol that improves performance for several workloads
significantly while providing strong crash-consistency guarantees. Cen-
tral to the performance benefits of OptFS is the separation of ordering
and durability. By allowing applications to order writes without incur-
ring a disk flush, and request durability when needed, OptFS enables
application-level consistency at high performance. OptFS introduces two
new file-system primitives: osync(), which ensures ordering between
writes but only eventual durability, and dsync(), which ensures immedi-
ate durability as well as ordering. Optimistic Crash Consistency tries to
obtain most of the benefits of Backpointer-Based Consistency (presented
in Chapter 5), while still supporting an API like rename() that is critical
for today’s applications. This chapter is based upon the paper, Optimistic
Crash Consistency [46], published in SOSP 13.

First, we present our goals for Optimistic Crash Consistency (§6.1). We
then describe the design of the Optimistic File System (OptFS), which builds
upon the principles of optimistic crash consistency (§6.2). We describe how
we implemented OptFS (§6.3), and evaluate its performance (§6.4). We
show that osync() provides a useful base on which to build higher-level
application consistency semantics (§6.5), and finally conclude (§6.6).

118

6.1 Goals

While the No-Order File System (NoFS) (§5) establishes that a file system
can maintain crash consistency without requiring any ordering barriers
or flushes, it loses out on certain features. For example, atomic primitives
such as rename() are not available on NoFS.

A number of applications use primitives such as rename() to atomically
update their files. Indeed, rename() is the only primitive available in many
systems to atomically update files. Thus, although NoFS provides strong
file-system crash consistency, it does not enable application-level crash
consistency.

We wanted to overcome this limitation in the Optimistic File System. At
the same time, we maintain the No-Order File System’s goal of eliminating
or reducing disk-cache flushes required for crash consistency. Thus, we
end up with two goals for Optimistic Crash Consistency:

1. Eliminate disk-cache flushes in the common case. If the user requests
durability (via fsync()), data should be forced to disk. In most other
cases, disk flushes should not be issued.

2. Provide primitives that can be used to build efficient application-
level crash consistency. From Chapter 3, we know that applications
require a means to cheaply order their writes. We seek to satisfy this
need in Optimistic Crash Consistency.

6.2 Optimistic Crash Consistency

Given that journaling with probabilistic consistency often gives consistent
results even in the presence of system crashes (§3.3), we note a new oppor-
tunity. The goal of optimistic crash consistency, as realized in an optimistic
journaling system, is to commit transactions to persistent storage in a man-
ner that maintains consistency to the same extent as pessimistic journaling,

119

but with nearly the same performance as with probabilistic consistency.
Optimistic journaling requires minimal changes to current disk interfaces
and the journaling layer; in particular, our approach does not require
changes to file-system structures outside of the journal (e.g., backpoint-
ers [47]).

To describe optimistic crash consistency and journaling, we begin by
describing the intuition behind optimistic techniques. Optimistic crash
consistency is based on two main ideas. First, checksums can remove
the need for ordering writes. Optimistic crash consistency eliminates the
need for ordering during transaction commit by generalizing metadata
transactional checksums [222] to include data blocks. During recovery,
transactions are discarded upon checksum mismatch.

Second, asynchronous durability notifications are used to delay check-
pointing a transaction until it has been committed durably. Fortunately,
this delay does not affect application performance, as applications block
until the transaction is committed, not until it is checkpointed. Additional
techniques are required for correctness in scenarios such as block reuse
and overwrite.

We first propose an additional notification that disk drives should
expose. We then explain how optimistic journaling provides different
properties to preserve the consistency semantics of ordered journaling.
We show that these properties can be achieved using a combination of
optimistic techniques. We also describe an additional optimistic technique
which enables optimistic journaling to provide consistency equivalent to
data journaling.

6.2.1 Asynchronous Durability Notification

The current interface to the disk for ensuring that write operations are
performed in a specified order is pessimistic: the upper-level file system
tells the lower-level disk when it must flush its cache (or certain blocks)

120

and the disk must then promptly do so. However, the actual ordering
and durability of writes to the platter does not matter, unless there is a
crash. Therefore, the current interface is overly constraining and limits
I/O performance.

Rather than requiring the disk to obey ordering and durability com-
mands from the layer above, we propose that the disk be freed to perform
reads and writes in the order that optimizes its scheduling and perfor-
mance. Thus, the performance of the disk is optimized for the common
case in which there is no crash.

Given that the file system must still be able to guarantee consistency and
durability in the event of a crash, we propose a minimal extension to the
disk interface. With an asynchronous durability notification the disk informs
the upper-level client that a specific write request has completed and is now
guaranteed to be durable. Thus there will be two notifications from the
disk: first when the disk has received the write and later when the write has
been persisted. Some interfaces, such as Forced Unit Access (FUA), provide
a single, synchronous durability notification: the drive receives the request
and indicates completion when the request has been persisted [137, 304].
Tagged Queuing allows a limited number of requests to be outstanding
at a given point of time [140, 304]. Unfortunately, many drives do not
implement tagged queuing and FUA reliably [174]. Furthermore, a request
tagged with FUA also implies urgency, prompting some implementations
to force the request to disk immediately. While a correct implementation
of tagged queuing and FUA may suffice for optimistic crash consistency,
we feel that an interface that decouples request acknowledgement from
persistence enables higher levels of I/O concurrency and thus provides a
better foundation on which to build OptFS.

121

6.2.2 Optimistic Consistency Properties

As described in Section 2.8, ordered journaling mode involves the follow-
ing writes for each transaction: data blocks, D, to in-place locations on
disk; metadata blocks to the journal, JM; a commit block to the journal, JC;
and finally, a checkpoint of the metadata to its in-place location,M. We
refer to writes belonging to a particular transaction i with the notation : i;
for example, the journaled metadata of transaction i is denoted JM : i.

Ordered journaling mode ensures several properties. First, metadata
written in transaction Tx : i+ 1 cannot be observed unless metadata from
transaction Tx : i is also observed. Second, it is not possible for metadata
to point to invalid data. These properties are maintained by the recovery
process and how writes are ordered. If a crash occurs after the transaction
is properly committed (i.e., , D, JM, and JC are all durably written), but
beforeM is written, then the recovery process can replay the transaction
so that M is written to its in-place location. If a crash occurs before the
transaction is completed, then ordered journaling ensures that no in-place
metadata related to this transaction was updated.

Optimistic journaling allows the disk to perform writes in any order it
chooses, but ensures that in the case of a crash, the necessary consistency
properties are upheld for ordered transactions. To give the reader some
intuition for why particular properties are sufficient for ordered journaling
semantics, we walk through the example in Figure 6.1. For simplicity, we
begin by assuming that data blocks are not reused across transactions (i.e., ,
they are not freed and re-allocated to different files or overwritten); we
will remove this assumption later (§6.2.3).

In Figure 6.1, four transactions are in progress: Tx : 0, Tx : 1, and Tx : 2,
and Tx : 3. At this point, the file system has received notification that
Tx : 0 is durable (i.e., , D : 0, JM : 0, and JC : 0) and so it is in the process of
checkpointing the metadataM : 0 to its in-place location on disk (note that
M : 0 may point to data D : 0). If there is a crash at this point, the recovery

122

On-Disk Journal

In-Place Checkpoint

In-Memory

JM:0
Jc:0

 Ck(D:0,M:0)
JM:1

Jc:1
 Ck(D:1,M:1)

JM:2
Jc:2

 Ck(D:2,M:2)

D:1 D:2M:0D:0

M:1 M:2

JM:3
Jc:3

 Ck(D:3,M:3)

M:3

D:3

Figure 6.1: Optimistic Journaling. The figure shows four transactions in progress,
involving writes to main memory, the on-disk journal, and to in-place checkpoints on
disk. A rectangle block indicates that the file system has been notified that the write has
been durably completed. Cloud-shaped blocks indicate that the write has been initiated,
but the file system has not yet been notified of its completion and it may or may not be
durable. Circles indicate dirty blocks in main memory that cannot be written until a
previous write is durable; a dashed line indicates the write it is dependent on. Finally, the
solid arrow indicates that the meta-data may refer to the data block.

mechanism will properly replay Tx : 0 and re-initiate the checkpoint of
M : 0. Since Tx : 0 is durable, the application that initiated these writes can
be notified that the writes have completed (e.g., if it called fsync()). Note
that the journal entries for Tx : 0 can finally be freed once the file system
has been notified that the in-place checkpoint write ofM : 0 is durable.

The file system has also started transactions Tx : 1 through Tx : 3; many
of the corresponding disk writes have been initiated, while others are
being held in memory based on unresolved dependencies. Specifically,
the writes for D : 1, JM : 1, and JC : 1 have been initiated; however, D : 1 is
not yet durable, and therefore the metadata (M : 1), which may refer to it,
cannot be checkpointed. If M : 1 were checkpointed at this point and a
crash occurred (withM : 1 being persisted and D : 1 not),M : 1 could be
left pointing to garbage values for D : 1. If a crash occurs now, before D : 1
is durable, checksums added to the commit block of Tx : 1 will indicate a
mismatch withD : 1; the recovery process will not replay Tx : 1, as desired.

123

Tx : 2 is allowed to proceed in parallel with Tx : 1; in this case, the file
system has not yet been notified that the journal commit block JC : 2 has
completed; again, since the transaction is not yet durable, metadataM : 2
cannot be checkpointed. If a crash occurs when JC : 2 is not yet durable,
then the recovery process will detect a mismatch between the data blocks
and the checksums and not replay Tx : 2. Note thatD : 2 may be durable at
this point with no negative consequences because no metadata is allowed
to refer to it yet, and thus it is not reachable.

Finally, Tx : 3 is also in progress. Even if the file system is notified that
D : 3, JM : 3, and JC : 3 are all durable, the checkpoint ofM : 3 cannot yet
be initiated because essential writes in Tx : 1 and Tx : 2 are not durable
(namely, D : 1 and JC : 2). Tx : 3 cannot be made durable until all previous
transactions are guaranteed to be durable; therefore, its metadata M : 3
cannot be checkpointed.

6.2.3 Optimistic Techniques

The behavior of optimistic journaling described above can be ensured
with a set of optimistic techniques: in-order journal recovery and release,
checksums, background writes after notification, reuse after notification,
and selective data journaling. We now describe each.

In-Order Journal Recovery

The most basic technique for preserving the correct ordering of writes after
a crash occurs during the journal recovery process itself. The recovery
process reads the journal to observe which transactions were made durable
and it simply discards or ignores any write operations that occurred out
of the desired ordering.

The correction that optimistic journaling applies is to ensure that if any
part of a transaction Tx : iwas not correctly or completely made durable,

124

then neither transaction Tx : i nor any following transaction Tx : jwhere
j > i is left durable. Thus, journal recovery must proceed in-order, sequen-
tially scanning the journal and performing checkpoints in-order, stopping
at the first transaction that is not complete upon disk. The in-order re-
covery process will use the checksums described below to determine if a
transaction is written correctly and completely.

In-Order Journal Release

Given that completed, durable journal transactions define the write op-
erations that are durable on disk, optimistic journaling must ensure that
journal transactions are not freed (or overwritten) until all corresponding
checkpoint writes (of metadata) are confirmed as durable.

Thus, optimistic journaling must wait until it has been notified by
the disk that the checkpoint writes corresponding to this transaction are
durable. At this point, optimistic journaling knows that the transaction
need not be replayed if the system crashes; therefore, the transaction can
be released. To preserve the property that Tx : i+ 1 is made durable only
if Tx : i is durable, transactions must be freed in order.

Checksums

Checksums are a well-known technique for detecting data corruption and
lost writes [210, 265]. A checksum can also be used to detect whether
or not a write related to a specific transaction has occurred. Specifically,
checksums can optimistically “enforce” two orderings: that the journal
commit block (JC) persists only after metadata to the journal (JM) and
after data blocks to their in-place location (D). This technique for ensuring
metadata is durably written to the journal in its entirety has been referred
to as transactional checksumming [222]; in this approach, a checksum is
calculated over JM and placed in JC. If a crash occurs during the commit
process, the recovery procedure can reliably detect the mismatch between

125

JM and the checksum in JC and not replay that transaction (or any trans-
actions following). To identify this particular instance of transactional
checksumming we refer to it as metadata transactional checksumming.

A similar, but more involved, version of data transactional checksumming
can be used to ensure that data blocks D are written in their entirety as
part of the transaction. Collecting these data blocks and calculating their
checksums as they are dirtied in main memory is more involved than
performing the checksums over JM, but the basic idea is the same. With
the data checksums and their on-disk block addresses stored in JC, the
journal recovery process can abort transactions upon mismatch. Thus,
data transactional checksums enable optimistic journaling to ensure that
metadata is not checkpointed if the corresponding data blocks were not
durably written.

Background Write after Notification

An important optimistic technique ensures that the checkpoint of the
metadata (M) occurs after the preceding writes to the data and the journal
(i.e., , D, JM, and JC). While pessimistic journaling guaranteed this be-
havior with a flush after JC, optimistic journaling explicitly postpones the
checkpoint write of metadataM until it has been notified that all previous
transactions have been durably completed. Note that it is not sufficient
for M to occur after only JC; D and JM must precede M as well since
optimistic journaling must ensure that the entire transaction is valid and
can be replayed if any of the in-place metadata M is written. Similarly,
M : i+ 1 must be postponed until all transactions Tx : i have been durably
committed to ensure thatM : i+1 is not durable ifM : i cannot be replayed.
We note thatM : i+ 1 does not need to wait forM : i to complete, but must
instead wait for the responsible transaction Tx : i to be durable.

Checkpointing is one of the few points in the optimistic journaling
protocol where the file system must wait to issue a particular write until

126

a specific set of writes have become durable. However, this particular
waiting is not likely to impact performance because checkpointing occurs
in the background. Subsequent writes by applications will be placed in
later transactions and these journal updates can be written independently
of any other outstanding writes; journal writes do not need to wait for
previous checkpoints or transactions. Therefore, even applications waiting
for journal writes (e.g., by calling fsync()) will not observe the checkpoint
latency. Checkpointing can occur in the foreground, and potentially block
applications, if the journal is full or if there is memory pressure. Both
these situations are uncommon given that today’s systems have plentiful
disk storage and memory.

For this reason, waiting for the asynchronous durability notification
before a background checkpoint is fundamentally more powerful than
the pessimistic approach of sending an ordering command to the disk
(i.e., , a cache flush). With a traditional ordering command, the disk is
not able to postpone checkpoint writes across multiple transactions. On
the other hand, the asynchronous durability notification command does
not artificially constrain the ordering of writes and gives more flexibility
to the disk so that it can best cache and schedule writes; the command
also provides the needed information to the file system so that it can
allow independent writes to proceed while appropriately holding back
dependent writes.

Reuse after Notification

The preceding techniques were sufficient for handling the cases where
blocks were not reused across transactions. The difficulty occurs with
ordered journaling because data writes are performed to their in-place
locations, potentially overwriting data on disk that is still referenced by
durable metadata from previous transactions. Therefore, additional opti-
mistic techniques are needed to ensure that durable metadata from earlier

127

transactions never points to incorrect data blocks changed in later transac-
tions. Block reuse can lead to a security issue: if user A deletes their file,
and then the deleted block becomes part of user B’s file, a crash should
not lead to user A being able to view user B’s data. Correct block reuse
is one of the update dependency rules required for Soft Updates [251], but
optimistic journaling enforces this rule with a different technique: reuse
after notification.

To understand the motivation for this technique, consider the steps
when a data block DA is freed from one fileMA and allocated to another
file,MB and rewritten with the contents DB. Depending on how writes
are re-ordered to disk, a durable version ofMA may point to the erroneous
content of DB.

This problem can be fixed with transactions as follows. First, the freeing
of DA and update to MA, denotedMA ′ , is written as part of a transaction
JMA ′ : i; the allocation of DB to MB is written in a later transaction as
DB : i+1 and JMB

: i+1. Pessimistic journaling ensures that JMA ′ : i occurs
before DB : i+ 1 with a traditional flush between every transaction. The
optimistic techniques introduced so far are not sufficient to provide this
guarantee because the writes toDB : i+1 in their in-place locations cannot
be recovered or rolled back if M ′

A is lost (even if there is a checksum
mismatch and transactions Tx : i or Tx : i+ 1 are found to be incomplete).

Optimistic journaling guarantees that JMA ′ : i occurs before DB : i+ 1
by ensuring that data block DA is not re-allocated to another file until the
file system has been notified by the disk that JMA ′ : i has been durably
written; at this point, the data block DA is “durably free.” When the file
MB must be allocated a new data block, the optimistic file system allocates
a “durably-free” data block that is known to not be referenced by any
other files; finding a durably-free data block is straight-forward given the
proposed asynchronous durability notification from disks.

Performing reuse only after notification is unlikely to cause the file

128

system to wait or to harm performance. Unless the file system is nearly
100% full, there should always exist a list of data blocks that are known
to be durably free; under normal operating conditions, the file system is
unlikely to need to wait to be informed by the disk that a particular data
block is available.

Selective Data Journaling

Our final optimistic technique selectively journals data blocks that have
been overwritten. This technique allows optimistic journaling to the strong
consistency semantics of data journaling instead of the weaker (but default)
ordered-journaling semantics.

A special case of an update dependency occurs when a data block
is overwritten in a file and the metadata for that file (e.g., size) must be
updated consistently. Optimistic journaling could handle this using reuse
after notification: a new durably-free data block is allocated to the file and
written to disk (DB : j), and then the new metadata is journaled (JMB

: j).
The drawback of this approach is that the file system takes on the behavior
of a copy-on-write file system and loses some of the locality benefits of
an update-in-place file system [215]; since optimistic journaling forces a
durably-free data block to be allocated, a file that was originally allocated
contiguously and provided high sequential read and write throughput
may lose its locality for certain random-update workloads.

If update-in-place is desired for performance, a different technique can
be used: selective data journaling. Data journaling places both metadata
and data in the journal and both are then updated in-place during check-
pointing. Data journaling is attractive because in-place data blocks are not
overwritten until the transaction is checkpointed; therefore, data blocks
can be reused if their metadata is also updated in the same transaction. The
disadvantage of data journaling is that every data block is written twice
(once in the journal, JD, and once in its checkpointed in-place location, D)

129

On-Disk Journal

In-Place Checkpoint

In-Memory

D:1

M:3

JM:2
Jc:2

 Ck(D:2,M:2)

D:2

JD:2

D:3

JM:1
Jc:1

 Ck(D:1,M:1)
JD:1

M:1 M:2

JM:3
Jc:3

 Ck(D:3,M:3)
JD:3

Figure 6.2: Optimistic Journaling: Selective Data Journaling. The figure
shows that selective data journaling may be used when transactions involve overwriting
in-place data. Data blocks are now placed in the journal and checkpointed after the
transaction is committed.

and therefore often has worse performance than ordered journaling [220].
Selective data journaling allows ordered journaling to be used for the

common case and data journaling only when data blocks are repeatedly
overwritten within the same file and the file needs to maintain its original
layout on disk. In selective data journaling, the checkpoint of both D and
M simply waits for durable notification of all the journal writes (JD, JM,
and JC).

Figure 6.2 shows an example of how selective data journaling can be
used to support overwrite, in particular the case where blocks are reused
from previous transactions without clearing the original references to those
blocks. In this example, data blocks for three files have been overwritten
in three separate transactions.

The first transaction illustrates how optimistic ordering ensures that
durable metadata does not point to garbage data. After the file system has
been notified of the durability of Tx : 1 (specifically, of JD : 1, JM : 1, and
JC : 1), it may checkpoint both D : 1 and M : 1 to their in-place locations.
Because the file system can write M : 1 without waiting for a durable
notification of D : 1, in the case of crash it is possible forM : 1 to refer to

130

garbage values in D : 1; however, the recovery process will identify this
situation due to the checksum mismatch and replay Tx : 1 with the correct
values for D : 1.

The second and third transactions illustrate how optimistic ordering
ensures that later writes are visible only if all earlier writes are visible as
well. Specifically,D : 2 andM : 2 have been checkpointed, but only because
both Tx : 2 and Tx : 1 are both durable; therefore, a client cannot see new
contents for the second file without seeing new contents for the first file.
Furthermore, neither D : 3 nor M : 3 (or any later transactions) can be
checkpointed yet because not all blocks of its transaction are known to be
durable. Thus, selective data journaling provides the desired consistency
semantics while allowing overwrites.

6.2.4 Durability vs. Consistency

Optimistic journaling uses an array of novel techniques to ensure that
writes to disk are properly ordered, or that enough information exists on
disk to recover from an untimely crash when writes are issued out of order;
the result is file-system consistency and proper ordering of writes, but
without guarantees of durability. However, some applications may wish to
force writes to stable storage for the sake of durability, not ordering. In this
case, something more than optimistic ordering is needed; the file system
must either wait for such writes to be persisted (via an asynchronous
durability notification) or issue flushes to force the issue. To separate
these cases, we believe two calls should be provided; an “ordering” sync,
osync(), guarantees ordering between writes, while a “durability” sync,
dsync(), ensures when it returns that pending writes have been persisted.

We now define and compare the guarantees given by osync() and
dsync(). Assume the user makes a series of writes W1,W2, ...,Wn. If no
osync() or dsync() calls are made, there is no guarantee as to file-system
state after a crash: any or all of the updates may be lost, and updates may

131

be applied out of order, i.e., ,W2 may be applied withoutW1.
Now consider when every write is followed by dsync(), i.e., ,W1,d1,W2,

d2, ...,Wn,dn. If a crash happens after di, the file system will recover to a
state withW1,W2, ...,Wi applied.

If every write was followed by osync(), i.e., ,W1,o1,W2,o2, ...,Wn,on,
and a crash happens after oi, the file system will recover to a state with
W1,W2, ...,Wi−k applied, where the last k writes had not been made
durable before the crash. We term this eventual durability. Thus osync()
provides prefix semantics [302], ensuring that users always see a consistent
version of the file system, though the data may be stale. Prior research
indicates that prefix semantics are useful in many domains [52].

6.3 Implementation of OptFS

We have implemented the Optimistic File System (OptFS) inside Linux 3.2,
based on the principles outlined before (§6.2), as a variant of the ext4 file
system, with additional changes to the JBD2 journaling layer and virtual
memory subsystem.

6.3.1 Asynchronous Durability Notifications

Since current disks do not implement the proposed asynchronous durabil-
ity notification interface, OptFS uses an approximation: durability timeouts.
Durability timeouts represent the maximum time interval that the disk
can delay committing a write request to the non-volatile platter. When a
write for block A is received at time T by the disk, the block must be made
durable by time T+ TD. The value of TD is specific to each disk, and must
be exported by the disk to higher levels in the storage stack.

Upon expiration of the time interval TD, OptFS considers the block to
be durable; this is equivalent to the disk notifying OptFS after TD seconds.
Note that to account for other delays in the I/O subsystem, TD is measured

132

from the time the write is acknowledged by the disk, and not from the
time the write is issued by the file system.

This approximation is limiting; TD might overestimate the durability in-
terval, leading to performance problems and memory pressure; TD might
underestimate the durability interval, comprising consistency. OptFS errs
towards safety and sets TD to be 30 seconds.

6.3.2 Handling Data Blocks

OptFS does not journal all data blocks: newly allocated data blocks are
only checksummed; their contents are not stored in the journal. This
complicates journal recovery as data-block contents may change after the
checksum was recorded. Due to selective data journaling, a data block
that is not journaled (as it is newly allocated) in one transaction might
be overwritten in the following transaction and therefore journaled. For
example, consider data block D with content A belonging to Tx1. The
checksumAwill be recorded in Tx1. D is overwritten by Tx2, with content
B. Although this sequence is valid, the checksum A in Tx1 will not match
the content B in D.

This necessitates individual block checksums, since checksum mis-
match of a single block is not a problem if the block belongs to a later
valid transaction. In contrast, since the frozen state of metadata blocks are
stored in the journal, checksumming over the entire set is sufficient for
metadata transactional checksums. We explain how OptFS handles this
during recovery shortly.

OptFS does not immediately write out checksummed data blocks; they
are collected in memory and written in large batches upon transaction
commit. This increases performance in some workloads.

133

6.3.3 Optimistic Techniques

We now describe the implementation of the optimistic journaling tech-
niques. We also describe how OptFS reverts to more traditional mecha-
nisms in some circumstances (e.g., when the journal runs out of space).
In-Order Journal Recovery: OptFS recovers transactions in the order they
were committed to the journal. A transaction can be replayed only if all
its data blocks belong to valid transactions, and the checksum computed
over metadata blocks matches that in the commit block.

OptFS performs recovery in two passes: the first pass linearly scans
the journal, compiling a list of data blocks with checksum mismatches
and the first journal transaction that contained each block. If a later valid
transaction matches the block checksum, the block is deleted from the
list. At the end of the scan, the earliest transaction in the list is noted. The
next pass performs journal recovery until the faulting transaction, thus
ensuring consistency.

OptFS journal recovery might take longer than ext4 recovery since
OptFS might need to read data blocks off non-contiguous disk locations
while ext4 only needs to read the contiguous journal to perform recovery.
In-Order Journal Release: When the virtual memory (VM) subsystem
informs OptFS that checkpoint blocks have been acknowledged at time
T , OptFS sets the transaction cleanup time as T+TD, after which it is freed
from the journal.

When the journal is running out of space, it may not be optimal to wait
for the durability timeout interval before freeing up journal blocks. Under
memory pressure, OptFS may need to free memory buffers of checkpoint
blocks that have been issued to the disk and are waiting for durability
timeouts. In such cases, OptFS issues a disk flush, ensuring the durability
of checkpoint blocks that have been acknowledged by the disk. This allows
OptFS to clean journal blocks belonging to some checkpointed transactions
and free associated memory buffers.

134

Checksums: OptFS checksums data blocks using the same CRC32 algo-
rithm used for metadata. A tag is created for each data block which stores
the block number and its checksum. Data tags are stored in the descriptor
blocks along with tags for metadata checksums.
Background Write after Notification: OptFS uses the VM subsystem to
perform background writes. Checkpoint metadata blocks are marked
as dirty and the expiry field of each block is set to be T+ TD (the disk
acknowledged the commit block at T). T will reflect the time that the entire
transaction has been acknowledged because the commit is not issued until
the disk acknowledges data and metadata writes. The blocks are then
handed off to the VM subsystem.

During periodic background writes, the VM subsystem checks if each
dirty block has expired: if so, the block is written out; otherwise the VM
subsystem rechecks the block on its next periodic write-out cycle.
Reuse after Notification: Upon transaction commit, OptFS adds deleted
data blocks to a global in-memory list of blocks that will be freed after the
durability time-out, TD. A background thread periodically frees blocks
with expired durability timeouts. Upon file-system unmount, all list blocks
are freed.

When the file system runs out of space, if the reuse list contains blocks,
a disk flush is issued; this ensures the durability of transactions which
freed the blocks in the list. These blocks are then set to be free. We expect
that these “safety” flushes will be used infrequently.
Selective Data Journaling: Upon a block write, the block allocation infor-
mation (which is reflected in New state of the buffer_head) is used to determine
whether the block was newly allocated. If the write is an overwrite, the
block is journaled as if it was metadata.

135

Crash points
Workload Delayed Blocks Total Consistent

Data 50 50
Append JM, JC 50 50

Multiple blocks 100 100
Data 50 50

Overwrite JM, JC 50 50
Multiple blocks 100 100

Table 6.3: Reliability Evaluation. The table shows the total number of simulated
crashpoints, and the number of crashpoints resulting in a consistent state after remounting
the file system and running recovery.

6.4 Evaluation

We now evaluate our prototype implementation of OptFS on two axes:
reliability and performance. Experiments were performed on an Intel Core
i3-2100 CPU with 16 GB of memory, a Hitachi DeskStar 7K1000.B 1 TB
drive, and running Linux 3.2. The experiments were repeatable; numbers
reported are the average over 10 runs.

6.4.1 Reliability

To verify OptFS’s consistency guarantees, we build and apply a crash-
robustness framework to it under two synthetic workloads. The first
appends blocks to the end of a file; the second overwrites blocks of an
existing file; both issue osync() calls frequently to induce more ordering
points and thus stress OptFS machinery.

Crash simulation is performed using the following steps:

1. Capture an image of the file-system in its initial state.

2. Run workload and trace all writes performed. The trace also includes
write data.

136

3. Re-order the writes in the trace (while obeying flush semantics).

4. Pick a random point P in the trace.

5. Drop all writes after point P from the trace.

6. Apply writes from trace to initial file-system image to obtain a crash
image

7. Mount file system from crash image and allow it to recover.

The resulting file-system state emulates file-system after a crash at a
random point of time; at the point of the crash, some writes would have
become durable (and therefore available after the crash), while other writes
would be in the volatile disk cache (and therefore lost due to the crash).

Table 6.3 shows the results of 400 different crash scenarios. OptFS
recovers correctly in each case to a file system with a consistent prefix of
updates (§6.2.4).

6.4.2 Performance

We first present a figure that depicts how write requests pass through
different layers in the storage stack for ext4 and OptFS. We then ana-
lyze the performance of OptFS and ext4 over several micro- and macro-
benchmarks.

Illustrating OptFS I/O Handling. Figure 6.4 shows how write requests
are processed in ext4 and OptFS, while running the Varmail workload. This
figure allows us to intuitively understand why using osync() on OptFS
is faster than using fsync() on ext4. ext4 issues a FLUSH to ensure that D
and JM are persisted before JC – persisting all those writes requires 51.3
milliseconds. ext4 also issues a FLUSH to ensure checkpointing happens
after JC is persisted; this results in an additional 8.5 milliseconds. Overall,
the application waits a total of 61.8 milliseconds before it can issue the

137

St
or

ag
e

St
ac

k

System calls

write()W osync()Ofsync()F

W W W F W W W F

Time (ms)

A

B

Stack layers

A Bapplication buffer cache C disk cache D disk platter

C

D

D JM JC

Block types

D JM JCdata journal metadata journal commit

D

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms 3 ms

51.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

St
or

ag
e

St
ac

k
System calls

write()W osync()Ofsync()F

W W W F W W W F

Time (ms)

A

B

Stack layers

A Bapplication buffer cache C disk cache D disk platter

C

D

D JM JC

Block types

D JM JCdata journal metadata journal commit

D

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms 3 ms

51.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

St
or

ag
e

St
ac

k

System calls

write()W osync()Ofsync()F

W W W F W W W F

Time (ms)

A

B

Stack layers

A Bapplication buffer cache C disk cache D disk platter

C

D

D JM JC

Block types

D JM JCdata journal metadata journal commit

D

D JMD JC

DJM D JC

WAITING WAITING

D JM JCD

D JMD JC

D JMD JC

ext4 with barriers OptFS

St
or

ag
e

St
ac

k

W W W O

Time (ms)

A

B

C

D

D JMD

D JMD

DJM DJC D JMD JCD JMD

WAIT

JC

JC

61.8 ms 3 ms

51.3 ms 8.5 ms

JC

0.1
 ms

2.9
 ms

W W W O

D JMD

D JMD

JC

JC

WAIT W W W O

D JMD

D JMD

JC

JC

WAIT

Figure 6.4: I/O Timeline. The figure illustrates how I/O are handled in ext4 with
flushes and OptFS. Legend: A – application; B – buffer cache; C – disk cache; D – disk
platter; W – write() system call; F – fsync() system call; O – osync() system call.
The workload is the Filebech Varmail benchmark that emulates a multi-threaded mail
server, performing a sequence of create-append-sync, read-append-sync, reads, and deletes
in a single directory. In ext4, the application is blocked while blocks are flushed to the disk
platter; in OptFS, the application is blocked only until I/O hits the disk cache.

138

next set of writes. In contrast, OptFS does not issue flushes when the
application calls osync(); this results in the wait time reduced from 61.8
ms to a mere 3 ms (the time for the writes to propagate down the storage
stack to the disk cache).

We analyze the performance of OptFS under a number of micro- and
macro-benchmarks. Figure 6.5 illustrates OptFS performance under these
workloads; details of the workloads are found in the caption.

Micro-benchmarks: OptFS sequential-write performance is similar to
ordered mode; however, sequential overwrites cause bandwidth to drop to
half of that of ordered mode as OptFS writes every block twice. Random
writes on OptFS are 3x faster than on ext4 ordered mode, as OptFS converts
random overwrites into sequential journal writes (due to selective data
journaling). If the journal size is set to 1 GB, and 2 GB of random writes
are issued, OptFS performs 15% worse than ordered mode due to journal
checkpointing overhead.

On the Createfiles benchmark, OptFS performs 2x better than ext4
ordered mode, as ext4 writes dirty blocks in the background for a number
of reasons (e.g., hitting the threshold for the amount of dirty in-memory
data), while OptFS consolidates the writes and issues them upon commit.
When we modified ext4 to stop the background writes, its performance
was similar to OptFS.

Macro-benchmarks: We run the Filebench Fileserver, Webserver, and
Varmail workloads [171]. OptFS performs similarly to ext4 ordered mode
without flushes for Fileserver and Webserver. Varmail’s frequent fsync()
calls cause a significant number of flushes, leading to OptFS performing 7x
better than ext4. ext4, even with flushes disabled, does not perform as well
as OptFS since OptFS delays writing dirty blocks, issuing them in large
batches periodically or on commit; in contrast, the background pdflush
threads issue writes in small batches so as to not affect foreground activity.

Finally, we run the MySQL OLTP benchmark from Sysbench [12] to

139

Sequential Sequential Random Create
0

1

2

3

4

Write Overwrite Write Files

Fileserver Webserver Varmail MySQL
0

4

8

12

16

20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Ext4 (Flush)
Ext4 (No Flush)
OptFS

106 MB/s 106 MB/s

301.68 Op/s

2839.68
Op/s

1176.28 9671.90

825.81

21.80 Tx/s

Op/s Op/s

Op/s

Figure 6.5: Performance Comparison. Performance is shown normalized to
ext4 ordered mode with flushes. The absolute performance of ordered mode with flushes is
shown above each workload. Sequential writes are to 80 GB files. 200K random writes are
performed over a 10 GB file, with an fsync() every 1K writes. The overwrite benchmark
sequentially writes over a 32 GB file. Createfiles uses 64 threads to create 1M files.
Fileserver emulates file-server activity, using 50 threads to perform a sequence of creates,
deletes, appends, reads, and writes. Webserver emulates a multi-threaded web host server,
performing sequences of open-read-close on multiple files plus a log file append, with
100 threads. Varmail emulates a multi-threaded mail server, performing a sequence of
create-append-sync, read-append-sync, reads, and deletes in a single directory. Each
workload was run for 660 seconds. MySQL OLTP benchmark performs 200K queries
over a table with 1M rows.

140

investigate the performance on database workloads. OptFS performs 10x
better than ordered mode with flushes, and 40% worse than ordered mode
without flushes (due to the many in-place overwrites of MySQL, which
result in selective data journaling).

Background Writes: On the Createfiles and Varmail benchmark, we
notice that even after disabling flushes, ext4 does not perform as well as
OptFS. This is due to a difference in how dirty data in the buffer cache
is written out to disk. The pdflush daemon threads are responsible for
writing out dirty data. Data writeout is affected by a number of system-
wide parameters in /proc/sys/vm. Reproducing the three most significant
parameters from the kernel documentation:

dirty_ratio. Contains, as a percentage of total available memory that con-
tains free pages and reclaimable pages, the number of pages at which a pro-
cess which is generating disk writes will itself start writing out dirty data.
The ratio could also be expressed as a number of bytes with dirty_bytes.
The default is 10 percent.

dirty_background_ratio. Contains, as a percentage of total available
memory that contains free pages and reclaimable pages, the number of
pages at which the background kernel flusher threads will start writing
out dirty data. The default is 5 percent.

dirty_expire_centisecs. This tunable is used to define when dirty data is
old enough to be eligible for writeout by the kernel flusher threads. It is
expressed in 100’ths of a second. Data which has been dirty in-memory
for longer than this interval will be written out next time a flusher thread
wakes up. The default is 30 seconds.

Table 6.6 shows how file-system performance is affected when these
parameters are tuned. The workload used is Filebench Createfiles. As
dirty_ratio and dirty_background_ratio are increased to make the
background threads lazier, ext4 performance gets closer to OptFS per-
formance. With values of 90 for both these parameters, ext4 performance

141

Setup Ratio:
DBR DR DEC (s) OptFS / ext4

5 10 5 2.02 (default)
50 50 90 1.55
70 70 270 1.29
80 80 540 1.15
90 90 270 0.92

Table 6.6: Dirty Block Background Writeout. The table shows how tuning
dirty block writeout by pdflush threads affects file-system performance for the Filebench
Createfiles workload. OptFS writes out dirty blocks lazily, collecting them into big batches.
ext4 dirty data is written out eagerly (when 5 percent of memory is dirty) by background
threads. When the background threads are tuned to behave more lazily, ext4 performance
is similar to OptFS. Ext4 performs better when the background threads batch writes more
than OptFS. Legend: DBR – Dirty Background Ratio. DR – Dirty Ratio. DEC – Dirty
Expire Centiseconds (shown here in seconds).

is similar to OptFS performance. Although dirty_expire_centisecs af-
fects background writeout behavior (blocks are not written out until they
have been dirty for as long as this parameter indicates), it is not the de-
termining factor for file-system performance. We have not explored the
relation between these parameters and their effect on file-system perfor-
mance deeply.

Summary: OptFS significantly outperforms ordered mode with flushes
on most workloads, providing the same level of consistency at consider-
ably lower cost. On many workloads, OptFS performs as well as ordered
mode without flushes, which offers no consistency guarantees. OptFS may
not be suited for workloads which consist mainly of sequential overwrites.

6.4.3 Resource consumption

Table 6.8 compares the resource consumption of OptFS and ext4 for a
660 second run of Varmail. OptFS consumes 10% more CPU than ext4

142

32 64 128 256 512
0

100

200

300

400

500

Journal Size (MB)

T
x
/s

ext4 with flushes

OptFS

ext4 without flushes

Figure 6.7: Performance with Small Journals. The figure shows the variation
in OptFS performance on the MySQL OLTP benchmark as the journal size is varied.
When OptFS runs out of journal space, it issues flushes to safely checkpoint transactions.
Note that even in this stress scenario, OptFS performance is 5x better than ext4 ordered
mode with flushes.

ordered mode without flushes. Some of this overhead in our prototype can
be attributed to CRC32 data checksumming and the background thread
which frees data blocks with expired durability timeouts, though further
investigation is required.

OptFS delays checkpointing and holds metadata in memory longer
than ext4, thereby increasing memory consumption. Moreover, OptFS
delays data writes until transaction commit time, increasing performance
for some workloads (e.g., Filebench Createfiles), but at the cost of additional
memory load.

6.4.4 Journal size

When OptFS runs out of journal space, it issues flushes in order to check-
point transactions and free journal blocks. To investigate the performance
of OptFS in such a situation, we reduce the journal size and run the MySQL
OLTP benchmark. The results are shown in Figure 6.7. Note that due to
selective data journaling, OptFS performance will be lower than that of

143

ext4 without flushes, even with large journals. We find that OptFS per-
forms well with reasonably sized journals of 512 MB and greater; only
with smaller journal sizes does performance degrade near the level of ext4
with flushes.

6.5 Case Studies

We now show how to use OptFS ordering guarantees to provide mean-
ingful application-level crash consistency. Specifically, we study atomic
updates in a text editor (gedit) and logging within a database (SQLite).

6.5.1 Atomic Update within Gedit

Many applications atomically update a file with the following sequence:
first, create a new version of the file under a temporary name; second, call
fsync() on the file to force it to disk; third, rename the file to the desired
file name, replacing the original atomically with the new contents (some
applications issue another fsync() to the parent directory, to persist the
name change). The gedit text editor, which we study here, performs this
sequence to update a file, ensuring that either the old or new contents are
in place in their entirety, but never a mix.

To study the effectiveness of OptFS for this usage, we modified gedit
to use osync() instead of fsync(), thus ensuring order is preserved. We
then take a block-level I/O trace when running under both ext4 (with
and without flushes) and OptFS, and simulate a large number of crash
points and I/O re-orderings in order to determine what happens during a
crash. Specifically, we create a disk image that corresponds to a particular
subset of writes taking place before a crash; we then mount the image, run
recovery, and test for correctness.

Table 6.9 shows our results. With OptFS, the saved filename always
points to either the old or new versions of the data in their entirety; atomic

144

File system CPU % Memory (MB)
ext4 ordered mode with flushes 3.39 486.75

ext4 ordered mode without flushes 14.86 516.03
OptFS 25.32 749.4

Table 6.8: Resource Consumption. The table shows the average resource con-
sumption by OptFS and ext4 ordered mode for a 660 second run of Filebench Varmail.
OptFS incurs additional overhead due to optimistic techniques such as data transactional
checksumming.

gedit SQLite
ext4 w/o ext4 w/ OptFS ext4 w/o ext4 w/ OptFS

flush flush flush flush
Total crashpoints 50 50 50 100 100 100

Inconsistent 7 0 0 73 0 0
Old state 26 21 36 8 50 76
New state 17 29 14 19 50 24

Time per op (ms) 1.12 39.4 0.84 23.38 152 15.3

Table 6.9: Case Study: Gedit and SQLite. The table shows the number of
simulated crashpoints that resulted in a consistent or inconsistent application state after
remounting. It also shows the time required for an application operation.

update is achieved. In a fair number of crashes, old contents are recovered,
as OptFS delays writing updates; this is the basic trade-off OptFS makes,
increasing performance but delaying durability. With ext4 (without flush),
a significant number of crashpoints resulted in inconsistencies, including
unmountable file systems and corrupt data. As expected, ext4 (with flush)
did better, resulting in new or old contents exactly as dictated by the
fsync() boundary.

The last row of Table 6.9 compares the performance of atomic updates
in OptFS and ext4. OptFS delivers performance similar to ext4 without
flushes, roughly 40x faster per operation than ext4 with flushes.

145

6.5.2 Temporary Logging in SQLite

We now investigate the use of osync() in a database management system,
SQLite. To implement ACID transactions, SQLite first creates a temporary
log file, writes some information to it, and calls fsync(). SQLite then
updates the database file in place, calls fsync() on the database file, and
finally deletes the log file. After a crash, if a log file is present, SQLite uses
the log file for recovery (if necessary); the database is guaranteed to be
recovered to either the pre- or post-transaction state.

Although SQLite transactions provide durability by default, its devel-
opers assert that many situations do not require it, and that “sync” can
be replaced with pure ordering points in such cases. The following is an
excerpt from the SQLite documentation [262]:

As long as all writes that occur before the sync are completed
before any write that happens after the sync, no database cor-
ruption will occur. [...] the database will at least continue to be
consistent, and that is what most people care about (emphasis ours).

We now conduct the same consistency and performance tests for SQLite.
With a small set of tables (≈30KB in size), we create a transaction to move
records from one half the tables to the other half. After a simulated disk
image that corresponds to a particular crash-point is mounted, if consistent,
SQLite should recover the database to either the pre-transaction (old) or
post-transaction (new) state. The results in Table 6.9 are similar to the gedit
case-study: OptFS always results in a consistent state, while ext4 (without
flushes) does not. OptFS performs 10x better than ext4 with flushes, while
providing the same level of consistency.

146

6.6 Conclusion

We presented Optimistic Crash Consistency, a new approach to maintain-
ing crash consistency in file systems. In contrast to standard pessimistic
consistency techniques (such as journaling), which always flush the disk
cache to order writes, optimistic crash consistency takes advantage of the
fact that crashes are rare, and that ordering can be achieved by several
light-weight mechanisms (such as checksums).

Optimistic Crash Consistency allows the file system to write to storage
in any order (with the exception of checkpoint writes). Since the storage
controller is no longer constrained by write orders, it can write to the
storage in the manner that maximizes performance. By speculatively per-
sisting writes, and making writes visible to the user only at well-defined
points, Optimistic Crash Consistency allows the file system to obtain ex-
cellent performance and strong crash-consistency guarantees.

We implemented the principles of Optimistic Crash Consistency in
the Optimistic File System (OptFS), a variant of the ext4 journaling file
system. We emulate random crashes and show that OptFS provides strong
consistency guarantees. We evaluate OptFS performance using a variety
of micro- and macro-benchmarks, and show that OptFS performance is
significant higher (an order of magnitude in some cases) than the default
mode of ext4.

We introduce two new file-system primitives, osync() and dsync(),
which decouple ordering from durability. We study two applications,
Gedit and SQLite, and show that both applications can employ the new
primitives to obtain high performance and meaningful semantics. We
believe that such decoupling holds the key to resolving the constant tension
between consistency and performance in file systems.

The source code for OptFS can be obtained at: http://www.cs.wisc.
edu/adsl/Software/optfs. We hope that this will encourage adoption of
the optimistic approach to consistency.

http://www.cs.wisc.edu/adsl/Software/optfs
http://www.cs.wisc.edu/adsl/Software/optfs

147

7
Discussion

We now discuss how the systems built as part of this dissertation compare
with each other, and how techniques presented in this dissertation can be
used in other contexts. First, we compare NoFS and OptFS among several
axes (§7.1). We then describe how optimistic techniques could be used
in other contexts (such as on new storage technologies) (§7.2). We then
discuss the challenges in using the osync() system call (§7.3). Finally, we
describe our interactions with industry about the new interfaces proposed
in this dissertation (§7.4).

7.1 Comparing NoFS and OptFS

NoFS and OptFS were designed to satisfy different goals: NoFS was de-
signed to separate crash consistency from I/O ordering, while OptFS was
designed to separate crash consistency from I/O durability. Thus, they
involve different design decisions. We now compare them along several
axes: hardware requirements, usability, and performance.

7.1.1 Hardware Requirements

NoFS and OptFS require different hardware support. NoFS requires that
the storage device provides the ability to write an 8-byte backpointer and a
4K block atomically. OptFS requires that the drive informs the file system
when submitted writes have become durable.

148

SCSI drives provide the Data Integrity Field, atomically writing 8 bytes
of extra data with each 512 byte sector [274]. Seagate offers drives that
store 4K block plus a few bytes of additional data integrity information in
an atomic fashion [246]. However, the extra 8 bytes are usually used by
the device driver to write checksums or similar redundant information;
current device drivers do not allow the developer to write arbitrary content
into the 8 bytes.

Although we have described the most general and ideal version of
asynchronous durability notifications in this work, there are several ways
in which durability notifications could be realized on storage systems.
Implementing durability notifications does not require that the hardware
be modified; for example, one could envision a service that keeps track
of the durability of in-flight writes, issues flushes periodically, and sends
durability notifications to the file system. We have not explored how best
to implement durability notifications in software.

In summary, we believe it will be possible to run both OptFS and NoFS
on today’s hard drives. NoFS will require writing new device drivers,
while OptFS will require writing new software layers.

7.1.2 Usability

An important feature missing in NoFS is the atomic rename() system call
that is used to atomically update files. Atomic rename is critical in the
following update sequence:

1. Create temporary file

2. Write temporary file with the entire contents of the old file, plus
updates

3. Persist temporary file via fsync()

4. Atomically rename temporary file over old file.

149

At the end of this sequence, the file should exist in either the old state or
the new state with all the updates. If rename() is not atomic, or operations
can be re-ordered, the entire file could be lost due to an inopportune crash
(something that has been observed in deployment [59]). Thus, hundreds
of applications will have to rewritten to achieve atomicity in a different
manner on NoFS.

OptFS supports rename() since journal transactions are applied atomi-
cally to the file system (all rename() changes end up in the same transac-
tion). By providing both osync() and dsync(), applications can choose at
different points to achieve ordering or durability. Applications will still
have to rewritten to take advantage of osync(), but current applications
will run correctly on top of OptFS.

7.1.3 Performance

A straight-forward comparison of the performance is NoFS and OptFS
is challenging as they provide different semantics. For example, a user
cannot order writes in NoFS. The best way to compare is consider a use case
where the application does not need to order any writes, and hence never
calls osync() (or dsync() for ordering purposes). Furthermore, consider
that OptFS uses extremely large transactions. Thus, all application writes
in OptFS will be part of one big journal transaction, with no additional
transactions for ordering.

In this example, the primary difference between NoFS and OptFS is
that all writes go to the journal in OptFS, whereas they are written in-place
in NoFS. This will cause performance differences if the checkpoint traffic
in OptFS interferes with the journal writes. For example, for the MySQL
OLTP benchmark, selective data journaling causes two writes every time a
file block is overwritten. Such double writes result in OptFS performance
being significantly lower than NoFS.

NoFS performance will always be equivalent or higher than that of

150

OptFS, since NoFS does not worry about write ordering or atomicity of
file-system operations.

7.1.4 Summary

NoFS and OptFS are meant for different use cases. NoFS demonstrates
that it is possible to achieve file-system crash consistency without order-
ing writes. However, it is intended for applications that do not require
rename()(§5.5.2). For these applications, NoFS delivers high performance.

OptFS demonstrates that decoupling ordering and durability signifi-
cantly improves performance. While OptFS is backward-compatible with
existing applications, it improves significantly for applications that use
the osync() primitive.

7.2 Optimistic Techniques in Other Contexts

In Section 6.2, optimistic techniques were described in a specific context:
the ext4 journaling file system. We now describe how these optimistic
techniques can be applied in other contexts.

7.2.1 Optimistic Techniques in Other Crash-Consistency
Mechanisms

Optimistic Crash Consistency has a core requirement: the file system
should be able to query the dirty/clean status of writes in the cache (e.g., via
asynchronous durability notifications). Given this primitive, it is then
possible to convert any crash-consistency mechanism that uses ordering
points into an optimistic protocol. We now briefly discuss different crash-
consistency mechanisms and the challenges in making them optimistic.

151

Journaling. The main difference between ext4 and other journaling file
systems such as XFS [272], ReiserFS [229], and JFS [27] is that only ext4
provides data journaling. Optimistic Journaling uses Selective Data Jour-
naling (§6.2.3) to provide guarantees equivalent to data journaling mode of
ext4. Hence, without modifications to add data journaling, the optimistic
versions of the other file systems will not be able to provide the strong
crash-consistency guarantees of ext4. The other differences between the
file systems (such as using extent-based allocation instead of block-based
allocation) do not significantly affect crash consistency.

Copy-on-Write. Copy-on-write file systems such as WAFL [114], ZFS [29]
and Btrfs [166] lend themselves nicely to optimistic techniques. Since all
data and metadata is versioned, writing to a new subtree replaces writing
to the journal, with the root pointer change replacing the transaction com-
mit. The checkpointing phase is done away with entirely. However, new
challenges arise due to garbage collection, and new optimistic techniques
specific to copy-on-write file systems will need to be developed.

Soft Updates. Soft Updates depends entirely on carefully ordering writes
for crash consistency. Ordering writes is usually done via disk cache
flushes. Given a primitive such as asynchronous durability notifications,
Soft Updates could be modified to maintain crash consistency without
issuing flushes, thus increasing performance significantly.

File-System Check. File systems such as ext2 [38], which depend upon
the file-system checker [175] to restore consistency after a crash, will not
benefit from employing optimistic principles. Such file systems do not
need to issue flushes to maintain crash consistency. However, from a user’s
point of view, introducing osync() in such file systems will make it easier
to build crash-consistent applications.

152

Technology Read Write
DRAM 60 ns 60 ns

NAND FLash 25 µs 20–500 µs
PCM 115 ns 120 µs
Disk 2–15 ms 2–15 ms

Table 7.1: Access Latency of Different Storage Media. The table shows the
read and write latency for small, random I/O on different storage media. These numbers
are based on demonstrated prototypes [243, 298].

7.2.2 Optimistic Techniques in Other Media

We now discuss whether optimistic techniques would be relevant or useful
on other storage media such as Flash [9] or non-volatile memory such
as phase-change memory [149], Spin-Transfer Torque RAM [116], and
memristors [270]. Table 7.1 lists the access latencies of some of these
technologies.

We discuss the performance of OptFS on Flash, and then discuss how
optimistic techniques could be applied in non-volatile memory storage
systems.

Optimistic Techniques on Flash

Most Flash SSDs available (as of July 2015) are equipped with DRAM write
caches. Several high-end SSDS available on the market today are equipped
with super-capacitors [55, 122, 259]. These super-capacitors ensure that all
the dirty data in the volatile cache is made persistent in the event of power
loss. However, recent work has shown that despite these super-capacitors,
power loss leads to corruption and data loss on many SSDs [150, 317].
Hence, flushing dirty data from the caches is still recommended to ensure
durability.

Therefore, it seems worthwhile to investigate the performance cost of
flushing on Flash SSDs. We ran experiments to compare the performance

153

System Op/s
ext4 (with flush) 13018.89

ext4 (without flush) 13835.74
OptFS 6794.84

OptFS (without selective journaling) 13321.56

Table 7.2: ext4 and OptFS performance on SSDs. The table shows the
performance of ext4 and OptFS in different modes for the Filebench Varmail workload
running on top of an SSD.

of ext4 and OptFS on the Filebench Varmail workload running on top of an
SSD. The SSD was Intel SSD 520 series (120 GB). The results are presented
in Table 7.2.

We make several observations based on the results. First, the perfor-
mance difference between enabling and disabling flushes on SSDs (6%) is
significantly lower than on disks. We suspect that this results from storage-
stack latencies: our experiments revealed that a write takes around one
millisecond to propagate down the Linux kernel stack. Given that the stack
propagation delay is 2X–50X the latency of a write, software latencies dom-
inate the hardware access latencies. On flash-optimized storage system
such as DFS [130], Onyx [10] Moneta [41], the results may be different.

Second, OptFS performance is about 50% that of ext4 for this workload.
When selective journaling is turned off in OptFS, OptFS performance is
similar to ext4. We have not analyzed why selective journaling leads to
different performance on disks and SSDs.

The current implementation of OptFS is not optimized for SSDs. Since
an SSD write only requires a few hundred microseconds [298], any addi-
tional CPU processing performed by OptFS significantly affects system
performance. For example, our preliminary test results show that the
CRC32 checksum computation is a significant part of the total run-time of
the Filebench Varmail workload. We could optimize this by using a com-

154

putationally lighter checksum. However, our results indicate that unless
the time taken to propagate a write down the storage stack is optimized,
such optimizations will have limited effect on performance.

7.2.3 Optimistic Techniques on NVM

Recent work on non-volatile memory place non-volatile memory directly
on the memory bus, side-by-side with DRAM [56, 159, 190]. The reasoning
behind this decision is that NVM has low access latencies (in the hundreds
of nanoseconds for PCM [298]. STT-RAM is expected to be even faster);
putting NVM behind an I/O bus would waste the performance benefits
of NVM while also forcing block-based access [56].

However, putting NVM on the memory bus leads to crash-consistency
challenges that are similar to ones discussed in this dissertation. A write
is first stored in volatile CPU caches, and later written back to non-volatile
memory (similar to how a write is stored first in the page cache and later
written to the disk). The order in which non-volatile memory is updated
is important for crash consistency.

Thus, storage systems are required to enforce ordering on the writes
to non-volatile memory. Similar to the situation for disks, flushing the
CPU caches is an extremely expensive way to order writes to non-volatile
memory. Different research groups have come up with different ways to
tackle this problem.

BPFS [56] introduces a new hardware primitive called the epoch barrier
to order writes to non-volatile memory. Using the epoch barrier allows
BPFS to decouple ordering and durability, similar to OptFS. However,
while OptFS required hardware changes only to the storage device, BPFS
requires changes to the processor core, the caches, and memory controller,
and the non-volatile memory chips.

Mnemosyne [298] builds on Intel’s fence and flush instructions [123]
to provide barriers and flushes without requiring additional hardware

155

modifications. Volos et al. show that it is possible to build higher-level
interfaces such as atomic regions and transactions on top of these low-level
primitives.

We believe that asynchronous durability notifications are more power-
ful than fence instructions, and that they will lead to better performance
in the common case. Given a complex graph of dependencies, figuring
out the order of writes in which the minimum number of barriers are
required is not trivial. In the case of asynchronous durability notifications,
each layer in the system that is concerned about ordering among writes
will take care to issue its own writes in the correct order, not worrying
about writes of other layers. In contrast, we believe that using barriers in a
multi-layer storage stack will lead to a proliferation of barriers. As of 2010,
the Linux kernel no longer supports barriers, instead using Forced Unit
Access commands [60].

Work done at CMU by Moraru et al. [190] and Lu et al. [159] is closely
related to OptFS. In both works, the hardware is modified so that the
dirty status of writes in the caches can be queried by software. Instead of
notifications when a write becomes durable, the tag associated with the
write is changed in each cache level. Similar to optimistic crash consistency,
Lu et al. speculatively write to new locations on non-volatile memory, and
make the new writes visible upon commit.

Thus, optimistic principles are relevant and applicable to non-volatile
memory. Introduction of new non-volatile technologies such as STT-RAM
and memristors will create new challenges for storage-system designers
who seek to employ optimistic principles.

7.2.4 Optimistic Techniques in Distributed Systems

The principles of optimistic crash consistency are not limited to single-
node systems. Distributed systems that employ disks with volatile caches

156

face crash-consistency problems similar to those of single-node systems;
optimistic techniques can be applied in such distributed systems.

In collaboration with Microsoft Research, we employed optimistic
techniques in a distributed storage system, Blizzard1. The Blizzard work
was published as a paper titled Blizzard: Fast, Cloud-scale Block Storage for
Cloud-oblivious Applications in NSDI 2014 [180]. We now briefly describe
the problem Blizzard was trying to solve, its relation to OptFS, and how it
differed from OptFS. We describe only the aspects of Blizzard that relate to
optimistic crash consistency – please refer to the paper [180] for complete
details.

Motivation

With the advent of cloud computing, enterprises are looking to move their
applications onto the cloud. Given that cloud service providers such as
Amazon have scale-out storage services, enterprises reasonably expect that
their application performance will improve drastically. POSIX applications
have two characteristics that make them a poor fit for scale-out storage:

1. POSIX applications issue small, random I/Os that are typically 32–
128 KB in size [151, 297]. Many scale-out file systems, such as the
Google File System [238], are built to optimize large, sequential I/Os.

2. POSIX applications order their writes using fsync() to ensure con-
sistency [216]. Such fsync() calls serialize writes and block the ap-
plication, preventing applications from exploiting I/O parallelism.

Due to these characteristics, simply running POSIX applications on
scale-out file systems does not provide the required performance for POSIX
applications. This poses a problem since there are hundreds of POSIX
applications that customers would like to run on the cloud, yet most

1Work done as an intern at Microsoft Research, Redmond

157

customers do not have the technical knowledge and skills to rewrite their
applications for cloud platforms.

Blizzard aims to solve this problem. Blizzard allows unmodified, cloud-
oblivious POSIX applications to run on fast, scalable cloud storage [195]
and obtain 2–10× performance. Blizzard is a high-performance block
store that is exposed to Windows applications as a virtual SATA drive.
However, Blizzard translates block reads and writes to parallel I/Os on
remote drives.

Using Optimistic Principles in Blizzard

Let us assume that the client application can generate enough I/O to satu-
rate the combined I/O bandwidth of the storage cluster. Ideally, Blizzard
would like to write to all remote disks in parallel. Unfortunately, many
applications use fsync() to serialize writes to ensure consistency [216].
Each fsync() causes a SATA FLUSH command at the drive. Some applica-
tions, such as databases, interact with the SATA drive directly, and issue
SATA FLUSH commands to serialize writes. Each FLUSH command acts as a
write barrier, preventing writes issued after the command from becoming
durable until all writes issued before the command have become durable.
This prevents Blizzard from making writes durable in parallel.

Storage Substrate. Blizzard uses Flat Datacenter Storage (FDS) as its low-
level storage substrate [195]. FDS is a datacenter-scale blob store that con-
nects all clients and disks using a network with full-bisection bandwidth,
i.e., no oversubscription [99]. FDS also provisions each storage server
with enough network bandwidth to match its aggregate disk bandwidth.
For example, a single physical disk has roughly 128 MB/s of maximum
sequential access speed. 128 MB/s is 1 Gbps, so if a storage server has ten
disks, FDS provisions that server with a 10 Gbps NIC; if the server has
20 disks, it receives two 10 Gbps NICs. The resulting storage substrate
provides a locality-oblivious storage layer; any client can access any remote

158

disk at maximum disk speeds. A Blizzard virtual disk is backed by a single
FDS blob.

Flushes as Ordering Barriers. Blizzard solves this problem by issuing
writes in a way that respects flush-order semantics. Each FLUSH request
starts a new flush epoch. When Blizzard’s virtual disk receives a FLUSH
request, it immediately acknowledges the flush to the client application,
even though Blizzard has not made writes from that flush epoch durable.
If the client or the virtual disk crashes, the disk will always recover to a
consistent state in which writes from different flush epochs will never be
intermingled – all writes up to some epoch N− 1 will be durable; some
writes from epoch N will be durable; and all writes from subsequent
epochs are lost. Note that this is similar to the semantics offered by OptFS,
with epochs defined by FLUSH commands instead of osync() or fsync()
commands. Similar to OptFS, Blizzard provides eventual durability.

Design Overview. Blizzard provides eventual durability by using tech-
niques similar to OptFS. When a write becomes durable at a remote drive, it
is not immediately visible to the application. The Blizzard client makes pre-
fixes of durable writes visible to the application. Similar to asynchronous
durability notifications, a process running at each remote drive sends a
message to the Blizzard client when a write has become durable. Thus,
Blizzard can issue writes in parallel and out-of-order, and based on notifi-
cations from remote drives, can make a prefix visible to the application.
This allows Blizzard to exploit I/O parallelism to significantly increase
performance.

To maximize the rate at which writes are issued, Blizzard defines a
scheme that allows writes to be acknowledged immediately and issued
immediately, regardless of their flush epoch. This means that writes may
become durable out-of-order. However, Blizzard enforces eventual dura-
bility using two mechanisms. First, Blizzard uses a log structure to avoid
updating blocks in place; thus, if a particular write fails to become durable,

159

Blizzard can recover a consistent version of the target virtual disk block.
Second, even though Blizzard issues each new write immediately, Blizzard
uses a deterministic permutation to determine which log entry (i.e., which
<tract,offset>) should receive the write. To recover to a consistent state
after a crash, the client can start from the last checkpointed epoch and
permutation position, and roll the permutation forward, examining log
entries and determining the last epoch which successfully retired.

Data Structures. Let there be V blocks in the virtual disk, where each
block is of equal size, a size that reflects the average I/O size for the client
(say, 64 KB or 128 KB). The V virtual blocks are backed by P physical
blocks (where P > V) in the underlying FDS blob. Blizzard treats the
physical blocks as a log structure. Blizzard maintains a blockMap that
tracks the backing physical block for each virtual block. Blizzard also
maintains an allocationBitMap that indicates which physical blocks are
currently in use. When the client issues a read to a virtual block, Blizzard
consults the blockMap to determine which physical block contains the
desired data. Handling writes is more complicated, as explained below.
Blizzard maintains a counter called currEpoch; this counter is incremented
for each flush request, and all writes are tagged with currEpoch. Blizzard
also maintains a counter called lastDurableEpoch which represents the
last epoch for which all writes are retired.

Virtual-to-Physical translation. When Blizzard initializes the virtual disk,
it creates a deterministic permutation of the physical blocks. This per-
mutation represents the order in which Blizzard will update the log. For
example, if the permutation begins 18, 3,. . . , then the first write, regard-
less of the virtual block target, would go to physical block 18, and the
second write, regardless of the virtual block target, would go to physical
block 3. Importantly, Blizzard can represent a permutation of length P in
O(1) space, not O(P) space. Using a linear congruential generator [138],
Blizzard only needs to store three integer parameters (a, c, and m), and

160

another integer representing the current position in the permutation. As
we will describe later, the serialized permutation will go into the check-
points that Blizzard creates.

Handling Reads and Writes. Handling reads is simple: when the client
wants data from a particular virtual block, Blizzard uses the blockMap to
find which physical block contains that data; Blizzard then fetches the
data.

Handling writes requires more bookkeeping. When a write arrives,
Blizzard issues the write to the next unallocated physical block in the
deterministic permutation. Blizzard then places the write in a queue.
Blizzard uses the write queue to satisfy reads to byte ranges with in-flight
(but possibly non-durable) writes.

Note that once the write is issued, Blizzard does not update blockMap
or allocationBitMap – those structures are reflected into checkpoints, so
they can only be updated in a way that respects eventual durability.

When the write becomes durable, Blizzard checks whether, according
to the permutation order, the write was the oldest un-retired write in
lastDurableEpoch+1. If so, Blizzard removes the relevant write queue
entry, and updates blockMap and allocationBitMap. Otherwise, Blizzard
waits for older writes to commit first. Once all writes in the associated
epoch are durable, Blizzard increments lastDurableEpoch.

Writing Expanded Blocks. When Blizzard issues a write to FDS, it actually
writes an expanded block. This expanded block contains the raw data
from the virtual block, as well as the virtual block id, the write’s epoch
number, and a CRC over the entire expanded block. As we explain below,
Blizzard will use this information during crash recovery.

If the client issues a write that is smaller than the size of a virtual
block, Blizzard must read the remaining parts of the virtual block before
calculating the CRC and then writing the new expanded block. This read-
before-write penalty is similar to the one suffered by RAID arrays that use

161

parity bits. This penalty is suffered for small writes, or for the bookends
of a large write that straddles multiple blocks. For optimal performance,
Blizzard’s virtual block size should match the expected I/O size of the
client. For example, POSIX applications like databases and email servers
often have a configurable “page size”; these applications try to issue reads
and writes that are integral multiples of the page size, so as to minimize
disk seeks. For these applications, Blizzard’s virtual block size should be
set to the application-level page size.

Checkpointing. Periodically, the client checkpoints the blockMap, the
allocationBitMap, the four permutation parameters, lastDurableEpoch,
and a CRC over the preceding quantities. For a 500 GB virtual disk, the
checkpoint size is roughly 16 MB. Blizzard does not update the checkpoint
in place; instead, it reserves enough space on the FDS blob for two check-
points, and alternates checkpoint writing between the two locations for
reliability [234].

Recovery. To recover from a crash, Blizzard inspects the two serialized
checkpoints and initializes itself using the latest correct checkpoint (as
indicated by lastDurableEpoch). Blizzard then scans physical blocks in
the order in which they appear in the virtual log, starting from the last
virtual block indicated in the checkpoint. Upon reading a current physical
block, one of three things can happen:

• If the allocationBitMap says that the current physical block is in
use, Blizzard inspects the next physical block.

• If the block belongs to a previous epoch, Blizzard terminates recovery.
If the CRCs of the block replicas don’t match, Blizzard terminates
recovery.

• If the block is legitimate, Blizzard updates the block’s allocation
status in allocationBitMap and translation in blockMap. Allocation

162

and translation status for the previous physical block backing this
virtual block are also updated. The value of lastDurableEpoch is
updated to match the block’s epoch. The last virtual block in the
checkpoint is also updated.

How Blizzard Differs From OptFS

Blizzard demonstrates how Optimistic Crash Consistency can be applied
in a distributed systems setting. While the Optimistic File System applies
Optimistic Principles at the file-system level, Blizzard applies it at the block-
device level, showing that the principles can be applied in a file-system
agnostic manner. While OptFS was developed for the Linux operating
system, Blizzard runs on Windows, showing that the ideas are not limited
to a specific operating system.

7.3 Using Osync

As implemented in OptFS, an osync() call will end the currently run-
ning transaction, and begin a new one. Since all writes go into a single
currently-running global transaction, this means that osync() is effectively
a global ordering barrier. Since osync() does not return until the entire
transaction is present in the disk cache, every osync() call has a delay
associated with it (≈ 1 millisecond). Therefore, osync() should not be
called indiscriminately.

Unfortunately, it is not trivial to figure out where osync() should be
called, especially if the developer did not write the code originally. Modern
applications have their update protocols (i.e., the sequence of writes they
use to update their on-disk state) spread across multiple files [216]. They
heavily make use of libraries and frameworks that have their own ordering
requirements. Some applications call fsync() excessively to order writes,

163

while others do not call fsync() even if required for crash consistency,
fearing its performance cost [216].

Given the code for a crash-consistent application (i.e., the application
enforces ordering where required using fsync()), the task then becomes
one of figuring out which of the fsync() calls are meant for ordering, and
replacing those fsync() calls with osync() calls.

In collaboration with other students at UW Madison, we have devel-
oped ALICE [216], a tool that can be used to figure out where osync()
calls should be inserted in an application. The developer provides ALICE
with an input workload, and a checker. The checker can be run on the
application state (after a crash) to verify whether certain invariants hold.
For example, if one inserts a row into a SQLite [263] database, regardless
of when a crash happens, the database should not contain a corrupt row.
ALICE then constructs different on-disk states that could occur after a
crash, and uses the checker to detect when an invariant is violated. AL-
ICE can determine if the violation was due to application writes being
re-ordered; if so, ALICE can determine where osync() should be inserted.

ALICE has certain limitations. It is not complete; it figures out where
osync() should be inserted in a given trace of the application. It does
not guarantee that an fsync() call can be safely replaced by osync() in
all runs of the application. The developer should use ALICE to obtain
hints about where osync() calls may be inserted, and use their expertise
to confirm that the replacement is sound.

7.4 Interactions with Industry

We now describe our experience talking with developers in industry about
the new interfaces proposed in this dissertation.

ADNs. We interacted with developers at Seagate and other storage com-
panies about supporting asynchronous durability notifications (ADNs).

164

Developers were concerned about the performance cost of ADNs as pre-
sented in this dissertation (§6.2.1). They suggested variations where the
notifications are batched together based on block address range (e.g., no-
tifications for blocks in range 1000–2000), or time (e.g., notifications for
blocks submitted in last 5 seconds). Samsung is interested in a variation
of ADNs for their mobile systems.

osync. We presented the ideas behind osync() at the Linux FAST Summit
2014 [291] that brought together Linux kernel developer and researchers
in file-system and storage community. Developers were interested in the
performance impact of the osync() call. They were concerned that using
osync() would imply that full data journaling mode would be used by the
file system; they were interested in how selective data journaling works.
The developers were resistant to the idea of introducing a new system
call; this is usually done only when a number of applications are strongly
requesting the new system call.

Kernel developers are extremely wary about accepting new code from
researchers. The developers are concerned that researchers will “patch-
and-vanish”, introduce new code into the Linux kernel, and then disappear
without providing proper support over the years. Due to this reason, ideas
moving from academia to the Linux kernel happens rarely: either because
the idea is simple to understand and implement [221], or because the
researcher is a long-time kernel developer with sufficient standing in the
community [63].

7.5 Summary

In this chapter, we discussed how NoFS and OptFS compare along several
axes. In terms of hardware requirements, both systems require specific
hardware support. The atomic write required by NoFS is available on
today’s drives. Durability notifications can be built in software, thus

165

enabling OptFS to be run on commodity drives. Although NoFS provides
strong crash-consistency, the lack of atomic rename() restricts usability; in
contrast, OptFS enables applications to build efficient update protocols.
Both OptFS and NoFS eliminates flushes in the common case; however,
since OptFS provides additional semantics (via osync()), its performance
is lower than that of NoFS.

We described how optimistic techniques can be used in other con-
texts. File-system crash-consistency techniques such as copy-on-write
can be adapted to operate in an optimistic manner. Removing ordering
constraints has been shown to increase performance in other media such
as non-volatile memory; such storage systems will benefit from using
optimistic techniques. We described how Blizzard, a distributed storage
system, has been modified to take advantage of optimistic techniques.

Finally, we discussed the challenges application developers face in
using osync() in application update protocols. We described our efforts
in encouraging industry to adopt asynchronous durability notifications
and the osync() primitive.

166

8
Related Work

In this chapter, we discuss research and systems that are related to this
dissertation. First, we describe efforts over the years to provide safe re-
covery from crashes (§8.1). Then, we describe work related to the specific
techniques used in our work (§8.2). We discuss efforts at testing file sys-
tems similar to work on BOB (§8.3). Finally, we discuss different interfaces
used to obtain consistency and durability (§8.4).

8.1 Crash Recovery

Designing systems to recover safely after crashes has been the focus of sys-
tems researchers for many years. We first describe how databases provided
crash consistency, and then explain how file systems and applications built
on top of these techniques to build crash consistency protocols.

Crash Recovery in Databases. The database community pioneered the
transaction abstraction [97, 98, 188] for atomic updates and introduced
two techniques to optimize how transactions are persisted: logging and
checkpointing [96, 105, 188], and group commit [71, 89, 188]. Mohan et al.
brought these techniques together in the ARIES algorithm [188] that has
been implemented in a number of industrial and research systems [39, 43,
64, 70, 109, 239, 244].

Crash Recovery in File Systems. File systems adapted techniques such as
logging to update data and metadata in a consistent fashion. Section 2.6.2

167

describes the different approaches taken by file systems. Logical disks [65,
100] sought to separate out file management from crash recovery; atomic
updates would be provided by a logical disk that works with different
file-system structures. In a similar vein, systems such as the Inversion
File System [200, 268] layer file systems on top of databases to exploit
their transactional capabilities; however, such systems are not widely
adopted due to their complexity and poor performance. TableFS [230, 231]
builds a file system on top of LevelDB [93]; TableFS takes advantage of
the sequential layout of LevelDB to increase performance. However, the
LevelDB files need to be stored on another file system, so while TableFS
increases performance, it relies upon both LevelDB and the underlying file
system to recover correctly from a crash; the complex interactions between
LevelDB and the file system make this a challenge [216].

Crash Recovery in Applications. Stasis [248] builds on write-ahead log-
ging [106] to provide transactional storage for applications. The crash
recovery mechanisms of Stasis are built around the same principles as
journaling file systems like OptFS. However, Stasis transactions provide
properties such as isolation which applications may not need (and may
not be willing to be pay for).

A number of modern applications use databases such as SQLite [263]
to atomically update their on-disk state. The heavy performance cost
associated with SQLite [126] has led to many applications creating ad-
hoc protocols for achieving crash consistency [216]. The ad-hoc nature
of these protocols lead to data loss and corruption on some file-system
configrations [216].

Recent work builds on transactional flash storage to allow applications
to update state in an atomic fashion [187]. By using transactions, Min et
al. hope to avoid the bugs that plague ad-hoc protocols. Their CFS file
system requires that the underlying storage provide multi-page atomic
writes. Providing such atomic writes in software (via techniques like

168

atomic recovery units [65]) will incur additional performance overhead
and complexity.

8.2 Reliability Techniques

We describe work related to the various techniques used in this dissertation:
using embedded information (§8.2.1), incremental fsck in the background
(§8.2.2), ordering updates to storage (§8.2.3), and trading durability for
performance (§8.2.4).

8.2.1 Using Embedded Information

The idea of using information inside or near the block to detect errors
has been used in several systems. The Cambridge File Server [72] used
certain bits in each cylinder (cylinder map) to store the allocation status
of blocks in that cylinder. The Cedar File System [106] used labels inside
pages to check their allocation status. Embedding logical identity of blocks
(inode number + offset) has been done in RAID to recover from lost and
misdirected writes [141]. Transactional flash [223] embeds commit records
inside every page to provide transactions and recovery. However, NoFS is
the first work that we know of that clearly defines the level of consistency
that such information provides and uses such information alone to provide
consistency.

The design of the Pilot file system [228] is similar to that of NoFS. Pilot
employs self identifying pages and uses a scavenger to reconstruct the
file system metadata upon crash. However, like the file-system check, the
scavenger needs to finish running before the file system can be accessed. In
NoFS, the file system is made available upon mount, and can be accessed
while the scan is running in the background.

Pangaea [236] uses backpointers for consistency in a distributed wide
area file system. However, its use of backpointers is limited to directory

169

entry backpointers that are used to resolve conflicting updates on directo-
ries. Similar to NoFS, Pangaea also uses the backpointer as the true source
of information, letting the backpointers of child inodes dictate whether
they belong to a directory or not.

Btrfs [166] supports back references that allow it to obtain the list of
the extents that refer to a particular extent. Although back references are
conceptually similar to NoFS backpointers, the main purpose of btrfs back
references is supporting efficient data migration, rather than providing
consistency. Other mechanisms such as checksums are used to ensure that
the data is not corrupt in btrfs. Another key difference is that btrfs does not
always store the back reference inside the allocated extent: sometimes the
back references are stored as separate items close to the extent allocation
records.

Backlog [163] also uses explicit back references in order to manage
migration of data in write anywhere file systems. The back references in
Backlog are stored in a separate database, and are designed for efficient
querying of usage information rather than consistency. Backlog’s back
references are not used for incremental file-system checking or resolving
ownership disputes.

The Selfie virtual disk format [310] embeds metadata into data blocks to
allow data blocks to be written without requiring an associated metadata
write, thus increasing performance significantly for data writes. Similar
to the non-persistent allocation structures of NoFS, Selfie’s lookup table in
maintained in memory, and reconstructed from the on-disk version after
a crash. While NoFS uses an out-of-band area for storing backpointers,
Selfie depends on the data being compressed to make room for metadata
inside a block. Thus, although Selfie does not depend upon hardware
characteristics, it is dependent on workload characteristics.

The ideas behind ReconFS [161] are similar to those of NoFS. ReconFS
makes the directory structure volatile, and recovers it from the on-disk

170

structure by embedding extra information into the on-disk structures to
make them recoverable. While NoFS maintains both forward and back-
ward pointers, ReconFS maintains only backward pointers (inverted in-
dices). NoFS is concerned with the crash consistency of the whole file
system, while ReconFS focuses on the consistency of the name-space alone.
ReconFS and Selfie are good testaments to our design choices of not per-
sisting certain metadata structures and allowing I/O to be re-ordered.

8.2.2 Incremental FSCK in the Background

NoFS performs the checks done by fsck incrementally in the background.
There have been previous work that modified fsck in a similar manner.
McKusick’s background fsck [173] could repair simple inconsistencies
such as lost resources by running fsck on snapshots of a running system.
Chunkfs [112] is similar to NoFS, providing incremental, online file-system
checking. Chunkfs differs from NoFS in that the minimal unit of checking
is a chunk whereas it is a single file or block in NoFS. Chunkfs does not
offer online repair of the file system, while it is possible in NoFS, due to
backpointers and non-persistent allocation structures.

8.2.3 Ordered Updates

Soft Updates [87] shows how to carefully order disk updates so as to never
leave an on-disk structure in an inconsistent form. In contrast with OptFS,
FreeBSD Soft Updates issues flushes to implement fsync() and ordering
(although the original work modified the SCSI driver to avoid issuing
flushes).

Given the presence of asynchronous durability notifications, Soft Up-
dates could be modified to take advantage of such signals. We believe
doing so would be more challenging than modifying journaling file sys-
tems; while journaling works at the abstraction level of metadata and

171

data, Soft Updates works directly with file-system structures, significantly
increasing its complexity.

OptFS is similar to that of Frost et al.’s work on Featherstitch [84],
which provides a generalized framework to order file-system updates, in
either a soft-updating or journal-based approach. OptFS instead focuses
on delayed ordering for journal commits; some of our techniques could
increase the journal performance observed in their work.

Lu et al.’s work on loose-ordering consistency [159, 190] has a similar
flavor to OptFS. They increase the performance of writes to persistent
memory by allowing speculative writes and only making the writes visible
at transaction commit. The dirty status of writes in the cache are identified
using extra tag bits in the cache.

Apart from file systems, write order is important in a different (but
related) context. A number of storage systems today use SSD or RAM
devices as caches to increase performance [115, 240]. For such storage
systems, the policy controlling how data is transferred from the cache to
the backing device is crucial for performance and reliability. The setup in
these systems is similar to the buffer cache and the disk storage device.

Koller et al. propose writeback policies (ordered write-back and jour-
naled writeback) to ensure consistency at the storage level (either point-
in-time or epoch-based) [139]. Qin et al. take advantage of the fact that
applications do not have consistency expectations in between two bar-
rier events (e.g., fsync()) to further increase performance [224]. OptFS
writeback is similar to the journaled writeback policy of Koller et al., with
fsync() calls or time-duration triggers defining epochs.

Write ordering is also important in non-volatile memory systems. Re-
cent work by Pelley et al. [214] explores how memory consistency models
relates to persistent writes in non-volatile memory, and how the write
orders may be relaxed while maintaining consistency.

172

8.2.4 Delaying Durability

The work of Nightingale et al. on “rethinking the sync” [196] has a similar
flavor to OptFS. In that work, the authors cleverly note that disk writes
only need to become durable when some external entity can observe said
durability; thus, by delaying persistence until such externalization occurs,
huge gains in performance can be realized. OptFS is complimentary, in
that it reduces the number of such durability events, instead enforcing a
weaker (and higher performance) ordering among writes, but avoiding
the complexity of implementing dependency tracking within the OS. In
cases where durability is required (i.e., , applications use dsync() and
not osync()), optimistic journaling does not provide much gain; thus,
Nightingale et al.’s work still can be of benefit therein.

The work of Keeton et al. on disaster recovery argues that durabil-
ity can be traded for increased performance for many applications [134].
Snapmirror [212], Seneca [128], and the Smoke and Mirrors File System
(SMFS) [303] are asynchronous (or semi-synchronous) mirroring systems
that trade off durability for performance, similar to OptFS. All three sys-
tems use a modified form of log-structured file systems [234] and employ
techniques similar to journaling. Using the terminology of Seneca [128],
OptFS provides asynchronous out-of-order atomic updates. The major
difference between OptFS and these systems is that OptFS can gain per-
formance without any data loss. If we define data loss as committed data
that becomes unavailable, the performance gain of OptFS comes from
using osync() – where users have no expectations about the durability of
data. In contrast, Snapmirror, Seneca, and SMFS can lose committed data
if there is a disaster.

173

8.3 Testing File Systems

There have been several efforts to test the reliability of storage systems.
We discuss the work most closely related to BOB (§4).

Zheng et al. developed a framework for testing whether commercial
databases violate ACID properties under power failure scenarios [316].
They trace the writes resulting from one of four hand-crafted workloads,
and replay different sequences of those writes to detect ACID violations.
Their framework differs from BOB in two significant ways. First, they do
root-cause analysis on ACID violations to help engineers diagnose the
bug. Since BOB was not developed for the purpose of diagnosing bugs, it
does not contain tools for root-cause analysis. Second, their framework
is limited to SCSI devices (as they modify the iSCSI driver); BOB, on the
other hand, works above the device-driver level, and therefore works on
any storage device.

The EXPLODE framework [311] systematically checks storage systems
for errors. It drives the system into rare corner cases and tests system
behavior. EXPLODE is a powerful framework that can be used to test
applications, file systems, and software at any level of the storage stack for
errors. However, for the simple task for testing persistence properties of file
systems, we feel it is needlessly complex. For example, EXPLODE requires
developers to carefully annotate complex file systems using choose() calls.
BOB, on the other hand, does not require any annotation or specialized
knowledge of the file system being tested.

There has been interest in the Linux kernel community towards more
effective power-failure testing. Josef Basik, a software engineer at Facebook,
has been developing a tool based on the device mapper to easily reproduce
power failures [24, 25]. Similar to BOB, the tool logs writes and then creates
new disk images based on the traces. However, the focus of the tool is on
whether file systems properly make acknowledged writes durable, and
not on testing persistence properties.

174

Zheng et al. have tested the reliability of SSDs and disk drives under
power failure [317]. Unlike the other work discussed here, they developed
hardware to cut power to the devices being tested and examined device
behavior. Hardware testing is essential for testing storage devices, since
the firmware is closed-source, and we cannot emulate the effects of power
loss, as we do for software layers in the storage stack. Thus, Zheng et al.’s
work is complementary to tools such as BOB.

We note that none of the tools discussed in this section examine or test
the persistence properties of file systems. File-system persistence behavior
was largely unexplored before our work, and BOB represents the first step
in defining and examining persistence properties.

8.4 Interfaces for Consistency and Durability

We now describe interfaces used in various systems to achieve consistency
and durability.

Transactions. Several file systems have provided a transactional inter-
face, allowing developers to update application state with ACID guaran-
tees [199, 218, 252, 261]. However, either due to the performance cost (14%
in TxOS [218]), or high complexity [199], transactional file systems have
not been adopted widely.

Several storage devices provide support for the transactional inter-
face [48, 54, 85, 133, 157, 158, 206, 209, 223]. Applications or file systems
can build on top of these devices to allow the user to atomically update
application state [187].

Atomic Update. Several recent systems offer an interface for users to
obtain atomicity (without isolation) [164, 208, 293]. Park et al. offer an
atomic version of msync() [208], while Verma et al. provides failure-atomic
writev(), msync(), and syncv() [293]. The MariaDB database builds on

175

top of the atomic write offered by FusionIO SSDs [164].
At the application level, atomic update is usually carried using the

rename() system call [101]. There are subtle problems with using rename(),
depending upon the file-system configuration [59, 216]. Specialized inter-
faces such as exchangedata() [17] and replacefile() [181] are also used
to achieve atomic updates.

Barriers and Flushes. The osync() and dsync() primitives are similar to
the fence and flush memory primitives in the Intel architecture [123]. The
key difference is that a dsync() issues a flush at the end of osync(), and
thus is a superset of osync(); on the other hand, flushes do not guarantee
the ordering provided by barriers. Mnemosyne [298], a lightweight system
for exposing storage-class memory to user-mode programs, builds upon
the Intel primitives to offer the persistent-memory version of flush and
fence primitives to users (among other interfaces such as transactions).
Since Mnemosyne is only concerned with data in processor caches and
storage-class memory, Intel’s primitives are sufficient, and no additional
hardware support is required. In contrast, since current disks do not offer
the fence primitive, hardware modifications like asynchronous durability
notifications are required for OptFS.

BPFS [56] is another file system built on top of phase-change memory.
BPFS introduces two new hardware primitives: 8-byte atomic writes and
epoch barriers. Similar to osync(), epoch barriers order writes without
affecting durability. Note that while BPFS uses epoch barriers internally,
it does not present an interface such as osync() to the user. While OptFS
requires modifications to the storage device, BPFS requires modifications
to the processor core, the cache, the memory controller, and the phase-
change memory chips.

Featherstitch [84] provides similar primitives for ordering and dura-
bility: pg_depend() is similar to osync(), while pg_sync() is similar to
dsync(). The main difference lies in the amount of work required from

176

application developers: Featherstitch requires developers to explicitly
encapsulate sets of file-system operations into units called patchgroups
and define dependencies between them. Since osync() builds upon the
familiar semantics of fsync(), we believe it will be easier for application
developers to use.

We believe that barriers and flushes are the most fundamental of these
interfaces; other interfaces can be implemented using barriers and flushes.
Mnemosyne [298] builds transactions and atomic updates using barriers
and flushes; it also exposes the low-level primitives to users so that they can
build their own consistency mechanisms. We advocate a similar approach
for applications using file systems to store state.

177

9
Future Work

In this chapter, we outline directions in which our work could be extended
in the future. These fall into three main categories: removing a limitation
of our work such as requiring special hardware support (§9.1), enabling
developers and users to more easily benefit from our work (§9.2, §9.3), and
applying the principles learnt in our work in different contexts (§9.4, §9.5).

9.1 Software Async Durability Notifications

We developed the notion of Asynchronous Durability Notifications (ADNs)
for Optimistic Crash Consistency [46]. The drawback of ADNs is that they
are not supported on any current hardware. Hardware manufacturers
are reluctant to introduce new hardware features that will not directly
increase performance. Once a manufacturer is convinced, developing and
manufacturing hardware that support ADNs will take a number of years.

Software ADNs can be developed to address this challenge. We pro-
pose a new system that acts as an intermediary between file systems and
traditional storage devices. The system communicates with traditional
storage devices and issues flushes and FUA requests as required. The
file system submits writes to the new system and gets software ADNs
indicating when different writes have become durable.

Without hardware support, the system cannot query the storage device
for the durability status of I/O. Instead, the system forces writes to be
durable using either flushes or flags such as FUA. The system keeps track

178

of writes that have been submitted to the device; a flush would make all
of the submitted writes durable. The system would then send software
ADNs to the file system (or a database) indicating that certain writes have
become durable.

The system could be configured to issue flushes based on different
policies. For example, flushes could be issued periodically, depending on
the window of vulnerability that client applications are comfortable with.
A flush could also be issued once a certain amount of data has queued up
in the system’s buffers; this policy would be determined by the maximum
amount of data (rather than time) that the client applications would be
comfortable losing.

Tracking the durability status of all in-flight writes at a fine granularity
without excessive space overheads or CPU consumption will be a challenge.
Allowing some writes to be un-ordered and un-tracked (e.g., writes to
debug files) may help address this challenge. The semantics between
ordered writes and un-ordered writes will have to be carefully defined.

Hardware ADNs allow the storage device to make I/O durable in the
order that maximizes performance (e.g., by minimizing seeks [308]). The
absence of flushes essentially allow a bigger “working set” of I/O requests
that the device can pick from, when choosing the next request to service.
Flushes reduce the size of the working set by forcing I/O to be serviced
at various points. Thus, by using flushes, storage performance would be
reduced from the maximum attainable. We expect that this performance
reduction would be compensated by enabling optimistic crash consistency
to be employed on traditional storage devices.

9.2 Automatic Osync Substitution

In Section 7.3, we discussed how it is not trivial to figure out where osync()
calls should be inserted in an application. Although ALICE provides

179

hints as to where osync() should be called [216], it cannot do automatic
substitution of osync() for fsync() calls. Given the large number of
applications that use fsync() for only ordering their writes [216], there
is a large opportunity for transparently increasing the performance of
applications by doing automatic, sound replacements of a number of
fsync() calls with osync() calls.

We can identify fsync() calls used for ordering using this intuition:
if there is a fsync() call before the application process communicates
externally (via I/O to an external device, messages to another process,
etc.), that fsync() call was meant for durability; otherwise, the fsync()
call was used for ordering. This intuition is a process-specific form of
external synchrony [196].

The idea behind the rule is simple: processes usually make state
durably before telling an external party that they have performed an
action. For example, a bank needs to make your transaction durable before
informing you that it has your money. Application-update protocols that
we examined in the ALICE project supports this intuition [216].

It is easy to see that fsync() calls that occur in the middle of an applica-
tion’s update protocols (with the end defined as external communication)
can be safely replaced by osync() calls, as a later fsync() call will ensure
durability before anyone external can observe it.

The question is whether this rule is too conservative. If we define
external parties to include the kernel (as two processes may communicate
via the kernel), then all fsync() calls may be flagged as calls for durability.
We need to experiment with several applications to find a definition of
external parties that is not too restrictive.

Combined with software ADNs (§9.1), transparently replacing fsync()
calls with osync() calls has the potential to increase the performance of
thousands of applications running on commodity hardware. External
synchrony [196] is hard to apply since it involves modifications to the

180

kernel, and requires tracking all dependencies inside the operating sys-
tem. By contrast, software ADNs and osync() replacement can be done
without changing the kernel, or even involving the original developers of
applications.

9.3 Tools for Testing File-System Crash
Consistency

As part of this dissertation, we developed tools to test whether file-systems
could reliably recover after crashes. As part of the NoFS project, we de-
veloped a pseudo-device driver that drops specified writes. The pseudo-
device driver allows us to do targeted testing. As part of the OptFS project,
we developed a tool that allows us to emulate random crashes.

There are no tools publicly available at this time to robustly test the
crash consistency of file systems. Currently, slow power-cycle testing
is used to test crash reliabilty [208, 317]. Zheng et al. have developed
tools to test the crash reliability of databases [316], but the workloads and
testing methodology is specific to the ACID properties of databases. While
KVM XFS provides some crash-consistency tests [281], it is heavyweight,
requiring a virtual machine to be booted up using KVM. Our tools can test
crash-consistency completely in user-space without requiring a virtual-
machine setup.

Our tools were built specifically for NoFS and OptFS, and hence require
some development to work correctly with all file systems. We believe
modifying our tools in such a manner and making them open-source
would be of significant benefit to the file-system community.

181

9.4 Verifying Crash Consistency for Complex
Stacks

Modern storage stacks are comprised of a large number of layers. For
example, the Windows I/O stack has 18 layers between the application
and the storage [283]. As we show in this dissertation, crash consistency
depends upon each layer correctly handling flags like FUA and passing
down flush requests down to the storage device. Unfortunately, there are
many instances where a layer does not pass along flush requests to the
lower layer [153, 294]. In such cases, the application (and perhaps the file
system) loses consistency if there is a power loss or a crash.

With the advent of software-defined storage, we believe applications
will soon be able to request and automatically obtain customized storage
stacks [79, 119, 193]. Amazon EC2 already does this at a coarse level by
allowing users to specify the storage they require for each virtual ma-
chine [1]. The day is not far off when storage stacks will be constructed on
the fly, mixing and matching different layers like block re-mappers, logical
volume managers, and file systems [295, 296].

How does one test if an application is crash-consistent on a given
storage stack? Developers test their applications comprehensively on one
storage stack, and deploy their applications on storage stacks that offer
the same API. Several vendors provide API compatibility to facilitate such
testing and deployment [4, 5].

Unfortunately, while a common API guarantees that applications will
execute on different stacks, it does not guarantee that they will do so
correctly. Most API specifications simply describe what operations are
offered by the storage stack. The specifications do not describe the se-
mantics offered by the system: for example, whether two operations are
persisted in order or whether an operation is persisted atomically. Yet,
recent work has shown that application correctness hinges on storage-stack

182

semantics [216, 316]. For example, LevelDB [93] required the rename of a
file to be persisted before the unlink of another file. If the storage stack
does not order these operations, it results in data corruption [2, 216].

Testing whether an application will be crash-consistent on a storage
stack is challenging for two reasons. First, the guarantees that an appli-
cation requires from storage are not well-specified; if the developer has
only been testing on one platform, they may not even realize that their
application depends on certain features of the platform. Our work on
application crash vulnerabilities suggests that the required guarantees are
complex, and cannot be expressed in simple binary checks or numeric
limits [216]. Second, modern storage stacks are composed of many lay-
ers [283]. Each layer builds upon the guarantees given by lower layers to
provide guarantees to higher layers. To identify the guarantees given by a
dynamically composed stack, we have to examine the guarantees given by
each layer in the stack.

We tackle each challenge by borrowing techniques from the program-
ming languages community. First, we propose to specify complex storage
guarantees in a formal language (such as Isar [305]). We suggest that the
same language could be used to specify the high-level design of each layer
of the storage stack. Second, proof assistants (such as Isabelle [197]) can
be used to prove that the stack provides the guarantees required by the
application. Just as a statement could be proved given a collections of ax-
ioms and theorems, we propose that guarantees required by applications
could be proved given the guarantees offered by each storage-stack layer.

In collaboration with colleagues at UW Madison, we used Isar to specify
the design of a simple two-layer storage stack, and used Isabelle to prove
that the put operation in a simple key-value store is failure atomic [11].

We believe such verification will be essential for software-defined stor-
age in clouds and datacenters. When storage stacks are constructed on the
fly, the corresponding high-level specifications for different layers can be

183

retrieved, and the guarantees of the resulting stack can then be compared
with application requirements. Such checking can be used to construct
the optimal storage stack (in terms of resource utilization or other metrics)
that will satisfy the given application requirements.

9.5 OptFS for SSDs

Given the prevalence of SSDs, it is interesting to examine the behavior of
OptFS when running on SSDs instead of disk drives. Our preliminary tests
show that OptFS does not increase performance significantly (compared
to ext4 with flushes) when run on top of flash SSDs (§7.2.2).

We found that employing selective data journaling cuts performance
by half for the Filebench Varmail workload. Initially, we believed that the
performance degradation was due to the double writes of data journaling.
However, if that is the case, Varmail on hard drives should also experienced
similar performance degradation; instead, OptFS (with selective data
journaling enabled) increases Varmail performance significantly on hard
drives. More investigation is required to understand the cause of the
performance degradation.

We observed that checksum calculation time was a significant percent-
age of the total run time for the Varmail workload. We plan to investigate
whether using lightweight checksums increases performance significantly
for a range of workloads.

Finally, we need to re-architect the storage stack so that the time taken
for a write to propagate down the stack is minimal. Currently, the prop-
agation delays is around one millisecond; given that the write delay for
an SSDs is in the order of hundreds of microseconds, stack propagation
delay dominates the write latency of small writes.

184

9.6 Summary

In this chapter, we described how our dissertation work can be extended
in the future. First, we describe how asynchronous durability notifications
can be implemented as a software layer between the file system and the
storage device. We then discuss how application code can be analyzed
to automatically insert osync() calls, by using a variation of external syn-
chrony. We explain the need for tools to inject targeted and random crash
failures in file systems. We describe how storage stacks have become so
complex that automated methods are required to check that an applica-
tion is crash-consistent on a given storage stack. Finally, we discuss the
challenges in running OptFS on top of Flash SSDs.

185

10
Lessons Learned and

Conclusions

Everyday, increasing amounts of data vital to our well-being are being
stored digitally [95, 127, 162, 169, 306]. Safely updating this data is a chal-
lenge due to interruptions by power loss or crashes [53, 131, 176, 178, 192,
292, 313]. While a number of solutions exist, ranging from the file-system
check [175] to journaling [106], they result in significant performance
degradation. Many practitioners turn off consistency solutions, risking
data loss and corruption rather lose so much performance. In this disserta-
tion, we presented solutions that offer both strong consistency guarantees
and excellent performance.

We started by analyzing how crashes lead to file-system inconsistency.
We also analyzed how file systems persisted dirty writes to storage in the
absence of fsync() calls in the application; file systems doing this in the
right order is crucial for application-level crash consistency. Our analysis
leads to two conclusions. First, there is a need for new crash-consistency
techniques that provide strong guarantees without significantly degrading
performance. Second, applications require new primitives they can use to
explicitly order their on-disk updates.

In the second part of our dissertation, we presented our solutions to
these problems. We introduced Backpointer-Based Consistency, a new
crash-consistency techniques that does not required writes to storage to
be ordered. We presented Optimistic Crash Consistency, a new crash-

186

consistency protocol that eliminates disk-cache flushes in the common case.
Both these techniques increase performance significantly while providing
strong crash-consistency guarantees. Finally, we introduced the osync()
primitive, which allows applications to order writes without making them
durable.

In this chapter, we first summarize our analysis and solutions (§10.1).
We then describe a set of lessons we have learned in the course of this
dissertation work (§10.2). Finally, we conclude (§10.3).

10.1 Summary

This dissertation is comprised of two parts. In the first part, we analyzed
the behavior of file systems when flushes are disabled, and when applica-
tions don’t explicitly call fsync(). In the second part, we built upon the
insights from the first part to develop new crash-consistency mechanisms,
and new interfaces to help applications maintain crash consistency. We
summarize each part in turn.

10.1.1 Crash-Consistency Analysis

The first part of this dissertation is about analyzing how crashes lead to
file-system inconsistency, and how file systems affect application-level
crash consistency. First, we studied the factors that affect whether a crash
leads to file-system inconsistency. Some practitioners had observed that
crashes don’t lead to file-system inconsistency for certain workloads [286].
We termed this Probabilistic Crash Consistency [46], and built a framework
to investigate the probability of file-system inconsistency for various work-
loads under different conditions. We found that for some workloads, such
as large sequential writes or static web servers, a crash would rarely leave
the file-system inconsistent. For other workloads, such as email servers or
database update queries, there is a significant risk of inconsistency upon

187

crash. Thus, for practitioners who seek to obtain high performance and
strong crash consistency, simply turning off flushes is not enough.

Second, we studied file-system behavior that affects application-level
crash consistency. For applications to be consistent after a crash, their
updates to on-disk state need to be persisted in a specific order. Due to the
high cost of fsync() calls, applications do not enforce this order; instead,
they depend upon the file system persisting writes in the correct order.
We defined the aspects of file-system behavior that affect application-level
consistency as persistence properties [216]. We built a tool, the Block-
Order Breaker (Bob), and studied how persistence properties varied across
sixteen configurations of six widely-used file systems. We found that
persistence properties varied widely among different file systems, and even
among different configurations of the same file system. Thus, applications
cannot depend upon the file-system persistence behavior to persist writes
in the right order, and must instead do so via an explicit interface.

10.1.2 Crash-Consistency Solutions

In the second part of this dissertation, we presented solutions to the prob-
lems we discovered in the first part. First, we presented Backpointer-Based
Consistency [47], a new crash-consistency solution that does not require
disk writes to be ordered. Backpointer-Based Consistency embeds a back-
pointer into each object in the file system, and builds consistency based
upon mutual agreement between objects. We implemented Backpointer-
Based Consistency in the No-Order File System (NoFS), a variant of the
ext2 file system. We showed that NoFS provides performance equivalent
to that of ext2, and that it provides strong crash-consistency guarantees
(similar to ext3). While NoFS provides excellent performance, it does not
support atomic primitives such as rename(). A large number of applica-
tions use such primitives to safely update their on-disk state. Hence, the
usability of NoFS was limited.

188

To address this limitation of NoFS, we designed Optimistic Crash
Consistency, a new crash-consistency protocol [46]. Optimistic Crash Con-
sistency takes advantage of the fact that ordering file-system updates
could be accomplished by means significantly cheaper than disk-cache
flushes. For example, atomicity and ordering are duals of each other: thus,
making a group of updates atomic removes the need for ordering among
them. We implemented the principles of Optimistic Crash Consistency
in the Optimistic File System (OptFS). OptFS introduces two new inter-
faces: asynchronous durability notifications at the storage level, and the
osync() primitive at the application level. OptFS decouples the ordering
of writes from durability. Applications can use osync() to order their
writes (without making them durable), thus building correct, efficient ap-
plication update protocols. We show that two applications, Gedit [91] and
SQLite [263], can utilize osync() effectively to maintain application-level
consistency at high performance.

Working on this dissertation allowed us to understand the relative im-
portance of different file-system design goals. While crash consistency is a
basic requirement for a file system, it is not sufficient for many applications.
Thus, while NoFS provides a consistent file system, many applications will
need to be modified to run correctly on top of NoFS. Atomically updating
on-disk state is an important concern for many applications. Such atomic
updates require either a transaction-like atomicity primitive (that can in-
clude multiple files) or a combination of a single-file atomicity primitive
(such as rename()) and a primitive to order file-system operations. With
OptFS, we fulfill such application requirements in addition to providing
file-system crash consistency.

189

10.2 Lessons Learned

In this section, we present a list of general lessons we learned while work-
ing on this dissertation.

10.2.1 The Importance of Interface Design

In this dissertation, we studied existing crash-consistency problems in file
systems and applications. Most of these problems can be directly traced
to bad interfaces provided by storage devices and file systems.

Storage Interface. Storage devices at the lower end of the market (such
as SATA and IDE drives) expose the flush command for managing the
disk cache. There are two problems with the flush interface: coarseness,
and lack of visibility. First, the flush interface is too coarse: there is no
option to selectively flush a few blocks to non-volatile storage. If the cache
is filled with dirty data, out of which the file system only wants to make a
few blocks durable, the current interface forces a lot of inefficient waiting.
Second, file systems do not have visibility into the durability status of
blocks in the disk cache. Combined with the coarseness of the flush
interface, this leads to a lot of un-necessary waiting for the file system.

File-System Interface. File systems implement the POSIX interface [278]
that includes the fsync() system call for making dirty writes durable. The
fsync() call results in a flush command at the storage level, and therefore
inherits the performance problems associated with the flush interface. As
mentioned in Section 6.2.4, the fsync() interface couples together ordering
and durability; applications desiring only ordering between writes are
forced to pay the cost of durability.

These interface flaws have led to widespread problems: disk drives
that lie about flushing [153, 226], system administrators who deliberately
put their systems at risk for performance [59], systems that do not honor

190

flush requests [294], and finally, application developers who do not use
fsync() fearing the performance cost [280].

The importance of open interfaces. We believe that the closed nature of
storage-device interfaces have resulted in significant additional complexity
and loss of performance. Much of file-system research can be traced
back to working around the pitfalls of badly-designed interfaces. We
believe that making the device interface open will greatly aid the storage
community. Several groups are working towards this with open-channel
SSDs [205, 253, 300].

10.2.2 The Importance of Asynchrony

The benefits of asynchrony have long been known in the software world [8,
179]. For example, when asynchronous Javascript was introduced, it en-
abled the creation of exciting, responsive web applications such as Google
Suggest and Google Maps [88].

Yet, the role of asynchrony in storage systems has been limited. Until
the 1990s, storage systems were essentially synchronous, performing one
operation at time [172, 250]. With the introduction of tag queuing in
SCSI disks [15, 81, 304], disks could accept sixteen simultaneous requests.
Unfortunately, many devices do not implement tag queuing correctly [174].

In this dissertation, we have shown that asynchronous, orderless I/O
has significant advantages. First, not constraining the order of I/O allows
large performance gains, especially on today’s multi-tenant systems [283].
Recent work on non-volatile memory has shown that removing ordering
constraints on I/O can increase performance by 30× [214].

Second, using interfaces such as asynchronous durability notifications
allows each layer to introduce optimizations such as delaying, batching,
or re-ordering I/O, without affecting the correctness of the file system or
the application. Increasing the independence of each layer in the storage

191

stack leads to a more robust storage system.

10.2.3 The Need for Better Tools

During the course of this dissertation work, we realized that there is a
need for better frameworks for analyzing, testing, and verifying file-system
crash consistency. Despite decades of research on file systems, there are
few open-source tools available for inspecting file-system consistency.

Tools for Analyzing Crash Consistency. While working on Probabilistic
Crash Consistency, we had to build a framework to analyze the different or-
dering relationships that need to hold for a journaling file system to remain
consistent in the event of a crash. Analyzing these relationships eventually
led us to discover Selective Data Journaling [46], the precise circumstances
in which not journaling data blocks provides the same crash-consistency
guarantees as when data blocks are journaled. Specifically, if the data
block is not already part of a file, journaling it does not provide any addi-
tional crash guarantees. Selective Data Journaling improves performance
significantly for workloads where large files are updated atomically via
mechanisms such as rename()(e.g., in text editors such as Gedit [91]).

In multiple interactions, researchers and developers in the file-system
community have reported that the Selective Data Journaling idea was
obvious once explained. However, this insight has eluded file-system
researchers and practitioners for many years (although it is known in the
software transactional memory community [7, 75, 108]). We believe this is
due to two reasons: the inherent complexity of protocols like journaling,
and the complexity associated with implementations such as ext4 [194].
Without using a framework to analyze the guarantees provided by these
systems and the requirements for those guarantees, even simple insights
are hard to obtain. Just as practitioners in distributed systems formally
specify the design of their systems and verify optimizations [145, 194], we

192

believe a similar effort is required in the realm of file systems.

Tools for Testing Crash Consistency. While building the No-Order File
System and the Optimistic File System, we needed to test the reliability of
the file system. We found that there were no open-source tools available to
inject either targeted failures or random failures. As a consequence, we had
to develop our own tools for this purpose. We have received requests from
other universities to share these tools. Although the current versions of
these tools are specific to NoFS and OptFS, we believe generalized versions
of these tools would be greatly aid file-system development and research.
We strongly advocate for better tools that aid file-system research to made
open-source (e.g., the Filebench suite [171]).

Tools for Verifying Crash Consistency. Modern storage stacks are com-
plex and consist of many layers [283]. Crash consistency of the application
on top of the stack depends on every layer between the application and
storage handling requests such as flushes and FUA correctly. Configura-
tion options at each layer (e.g., journaling mode of file system) affects the
crash consistency of the application.

We believe that storage stacks have grown so complex that it is not
feasible for humans to observe the composition of a storage stack and
reason about whether a given application will obtain crash consistency
on top of that stack. Furthermore, with customized on-demand software-
defined storage [79, 193, 295, 296], a human verifying a composed storage
stack is not practical.

We believe that the design of each layer (the aspects that relate to crash
consistency) must be formally defined, and that we should develop tools
to automatically verify the crash guarantees that a storage stack claims to
provide. We have undertaken initial efforts in this direction [11].

193

10.3 Closing Words

With the world becoming increasingly digitized, the safety of data is
paramount. The threat of power loss and crashes still remains; thus, it is
important to design systems that can safely recover in the face of inter-
ruptions. Given that most applications access storage via a file system,
file-system crash consistency is an important problem.

However, existing solutions degrade performance to such a large extent
that many practitioners believe that systems cannot achieve both strong
crash consistency and high performance at the same time. In this disserta-
tion, we show that this dichotomy is false; we present solutions that offer
both high performance and strong crash-consistency guarantees.

Most of the crash-consistency problems described in this dissertation
arise from poorly-designed interfaces. In this dissertation, we design new
interfaces for both file systems and storage, and show that these interfaces
allow richer functionality and better performance.

The storage landscape is set to change drastically, with the coming of
new storage technologies such as 3D XPoint Storage [83], and the advent
of software-defined storage [79, 193, 295]. We urge the designers of these
systems to craft the storage-system interfaces carefully, keeping in mind
that interfaces are extremely resistant to change. As we show in this
dissertation, with well-designed interfaces, these new technologies could
offer both correctness and performance.

194

Bibliography

[1] Amazon Instance Storage. http://docs.aws.amazon.com/
AWSEC-2/latest/UserGuide/InstanceStorage.html.

[2] LevelDB - Issue 189: Possible bug: fsync() required after calling
rename(). https://code.google.com/p/leveldb/issues/detail?
id=189.

[3] Necessary step(s) to synchronize filename operations on disk. http:
//austingroupbugs.net/view.php?id=672.

[4] OpenStack EC2 Compatibility API. http://docs.openstack.org/
admin-guide-cloud/content/instance-mgmt-ec2compat.html.

[5] Swift API Feature Comparison. https://wiki.openstack.org/
wiki/Swift/APIFeatureComparison.

[6] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker
Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Under-
standing and Improving Multi-CDN Movie Delivery. In The 31st
Annual IEEE International Conference on Computer Communications
(IEEE INFOCOM 2012), pages 1620–1628. IEEE, 2012.

[7] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Mur-
phy, Bratin Saha, and Tatiana Shpeisman. Compiler and Runtime
Support for Efficient Software Transactional Memory. In Proceed-
ings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 26–37, New York, 2006. ACM.

http://docs.aws.amazon.com/AWSEC-2/latest/UserGuide/InstanceStorage.html
http://docs.aws.amazon.com/AWSEC-2/latest/UserGuide/InstanceStorage.html
https://code.google.com/p/leveldb/issues/detail?id=189
https://code.google.com/p/leveldb/issues/detail?id=189
http://austingroupbugs.net/view.php?id=672
http://austingroupbugs.net/view.php?id=672
http://docs.openstack.org/admin-guide-cloud/content/instance-mgmt-ec2compat.html
http://docs.openstack.org/admin-guide-cloud/content/instance-mgmt-ec2compat.html
https://wiki.openstack.org/wiki/Swift/APIFeatureComparison
https://wiki.openstack.org/wiki/Swift/APIFeatureComparison

195

[8] Atul Adya, Jon Howell, Marvin Theimer, Bill Bolosky, and John
Douceur. Cooperative Task Management without Manual Stack
Management. In Proceedings of the USENIX Annual Technical Confer-
ence (USENIX ’02), Monterey, California, June 2002.

[9] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,
Mark Manasse, and Rina Panigrahy. Design Tradeoffs for SSD Per-
formance. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’08), Boston, Massachusetts, June 2008.

[10] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta,
and Steven Swanson. Onyx: a Protoype Phase Change Memory
Storage Array. In Proceedings of the 3rd USENIX conference on Hot
topics in storage and file systems. USENIX Association, 2011.

[11] Ramnatthan Alagappan, Vijay Chidambaram, Thanu-
malayan Sankaranarayana Pillai, Aws Albarghouthi, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Beyond Storage
APIs: Provable Semantics for Storage Stacks. In 15th Workshop
on Hot Topics in Operating Systems (HotOS XV), Kartause Ittingen,
Switzerland, May 2015. USENIX Association.

[12] Alexey Kopytov. SysBench: a system performance benchmark.
http://sysbench.sourceforge.net/index.html, 2004.

[13] Amazon. Amazon Elastic Block Store (EBS). http://aws.amazon.
com/ebs/, 2012.

[14] Amazon. Amazon Simple Storage Service (Amazon S3). http:
//aws.amazon.com/s3/, 2012.

[15] Dave Anderson, Jim Dykes, and Erik Riedel. More Than an Interface:
SCSI vs. ATA. In Proceedings of the 2nd USENIX Symposium on File
and Storage Technologies (FAST ’03), San Francisco, California, April
2003.

[16] Apache. Apache Zookeeper. http://zookeeper.apache.org/.

[17] Apple. exchangedata (2) Mac OS X Developer Tools Manual Page.
https://developer.apple.com/library/mac/documentation/
Darwin/Reference/ManPages/man2/exchangedata.2.html.

http://sysbench.sourceforge.net/index.html
http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://zookeeper.apache.org/
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/exchangedata.2.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/exchangedata.2.html

196

[18] Apple. Technical Note TN1150. http://dubeiko.com/
development/FileSystems/HFSPLUS/tn1150.html, March 2004.

[19] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, et al. A View of Cloud Computing, 2010.

[20] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operat-
ing Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.80 edition,
May 2014.

[21] Jens Axboe. Linux IO block – present and future. In Ottawa Linux
Symposium, pages 51–61, 2004.

[22] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupa-
thy, and Jiri Schindler. An Analysis of Latent Sector Errors in Disk
Drives. In Proceedings of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’07),
San Diego, California, June 2007.

[23] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. An
Analysis of Data Corruption in the Storage Stack. In Proceedings of
the 6th USENIX Conference on File and Storage Technologies (FAST ’08),
San Jose, California, February 2008.

[24] Josef Basik. dm: add dm-power-fail target. https://lwn.net/
Articles/623834/.

[25] Josef Basik. Power-Failure Testing: Making Filesystems More Robust
Even When Power Goes Out at the Worst Possible Time. In The 2015
Linux Storage, Filesystem, and Memory Management Summit, 2015.

[26] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Daw-
son Engler. A Few Billion Lines of Code Later: Using Static Analysis
to Find Bugs in the Real World. Communications of the ACM, February
2010.

[27] Steve Best. JFS Overview. http://jfs.sourceforge.net/project/
pub/jfs.pdf, 2000.

http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
http://dubeiko.com/development/FileSystems/HFSPLUS/tn1150.html
https://lwn.net/Articles/623834/
https://lwn.net/Articles/623834/
http://jfs.sourceforge.net/project/pub/jfs.pdf
http://jfs.sourceforge.net/project/pub/jfs.pdf

197

[28] Michael Blennerhassett and Robert G. Bowman. A Change In Mar-
ket Microstructure: The Switch To Electronic Screen Trading on
The New Zealand Stock Exchange. Journal of International Financial
Markets, Institutions and Money, 8(3):261–276, 1998.

[29] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Sys-
tems. http://opensolaris.org/os/community/zfs/docs/zfs_
last.pdf, 2007.

[30] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel.
O’Reilly, 2006.

[31] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux As A
Case Study: Its Extracted Software Architecture. In Proceedings of the
21st International Conference on Software Engineering, pages 555–563.
ACM, 1999.

[32] Box. Box | Secure Content & Online File Sharing for Businesses.
https://www.box.com/, 2015.

[33] Thomas C. Bressoud, Tom Clark, and Ti Kan. The Design and Use of
Persistent Memory on the DNCP Hardware Fault-Tolerant Platform.
In International Conference on Dependable Systems and Networks (DSN),
pages 487–492. IEEE, 2001.

[34] Alan D. Brunelle and Jens Axboe. Blktrace User Guide, 2007.

[35] John S. Bucy, Jiri Schindler, Steven W. Schlosser, and Gregory R.
Ganger. The DiskSim Simulation Environment Version 4.0 Refer-
ence Manual. Technical Report CMU-PDL-08-101, Carnegie Mellon
University, May 2008.

[36] Ed Burnette. Hello, Android: Introducing Google’s Mobile Development
Platform. Pragmatic Bookshelf, 2009.

[37] Pei Cao, Swee Boon Lin, Shivakumar Venkataraman, and John
Wilkes. The TickerTAIP Parallel RAID Architecture. ACM Transac-
tions on Computer Systems (TOCS), 12(3):236–269, 1994.

http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf
http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf
https://www.box.com/

198

[38] Remy Card, Theodore Ts’o, and Stephen Tweedie. Design and Im-
plementation of the Second Extended Filesystem. In First Dutch
International Symposium on Linux, Amsterdam, Netherlands, Decem-
ber 1994.

[39] Michael J. Carey, David J DeWitt, Joel E. Richardson, and Eugene J.
Shekita. Object and File Management in the EXODUS Extensible
Database System. In Proceedings of the 12th International Conference on
Very Large Data Bases, pages 91–100. Morgan Kaufmann Publishers
Inc., 1986.

[40] J. D. Carothers, R. K. Brunner, J. L. Dawson, M. O. Halfhill, and R. E.
Kubec. A New High Density Recording System: the Ibm 1311 Disk
Storage Drive with Interchangeable Disk Packs. In Proceedings of the
November 12-14, 1963, Fall Joint Computer Conference, pages 327–340.
ACM, 1963.

[41] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Ra-
jesh K. Gupta, and Steven Swanson. Moneta: A High-Performance
Storage Array Architecture for Next-Generation, Non-volatile Mem-
ories. In Proceedings of the 43nd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO’10), Atlanta, Georgia, December
2010.

[42] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen,
James N. Gray, Frank W. King, Bruce G. Lindsay, Raymond Lorie,
James W. Mehl, Thomas G. Price, Franco Putzolu, et al. A History
and Evaluation of System R. Communications of the ACM, 24(10):632–
646, 1981.

[43] Philip Y. Chang and William W Myre. OS 2 EE Database Manager
Overview And Technical Highlights. IBM Systems Journal, 27(2):105,
1988.

[44] Chia Chao, Robert English, David Jacobson, Alexander Stepanov,
and John Wilkes. Mime: A High Performance Parallel Storage De-
vice with Strong Recovery Guarantees. Technical Report HPL-CSP-
92-9rev1, HP Laboratories, November 1992.

199

[45] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher
Aycock, Gurushankar Rajamani, and David Lowell. The Rio File
Cache: Surviving Operating System Crashes. In Proceedings of the
7th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII), Cambridge, Mas-
sachusetts, October 1996.

[46] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic
Crash Consistency. In Proceedings of the 24th ACM Symposium on Op-
erating Systems Principles (SOSP ’13), Nemacolin Woodlands Resort,
Farmington, Pennsylvania, October 2013.

[47] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Consistency Without Ordering. In
Proceedings of the 10th USENIX Symposium on File and Storage Tech-
nologies (FAST ’12), pages 101–116, San Jose, California, February
2012.

[48] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. JFTL: A Flash
Translation Layer Based on a Journal Remapping for Flash Memory.
ACM Transactions on Storage (TOS), 4(4):14, 2009.

[49] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Daw-
son Engler. An Empirical Study of Operating System Errors. In
Proceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 73–88, Banff, Canada, October 2001.

[50] Chris Mason. Btrfs Mailing List. Re: Ordering Of Directory Oper-
ations Maintained Across System Crashes In Btrfs? http://www.
spinics.net/lists/linux-btrfs/msg32215.html, 2014.

[51] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar, Bruce W. Lev-
erett, W. Anthony Mason, and Robert N. Sidebotham. The Episode
File System. In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’92), pages 43–60, San Francisco, California, January
1992.

http://www.spinics.net/lists/linux-btrfs/msg32215.html
http://www.spinics.net/lists/linux-btrfs/msg32215.html

200

[52] James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey III,
Craig A. N. Soules, and Alistair Veitch. LazyBase: Trading Freshness
for Performance in a Scalable Database. In Proceedings of the EuroSys
Conference (EuroSys ’12), pages 169–182, Bern, Switzerland, April
2012.

[53] CNN. Manufacturer Blames Super Bowl Outage on Incorrect Setting.
http://www.cnn.com/2013/02/08/us/superdome-power-outage/,
2013.

[54] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven
Swanson. From ARIES to MARS: Transaction Support for Next-
Generation, Solid-State Drives. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 197–212.
ACM, 2013.

[55] ComputerWorld. Viking Combines DRAM Mod-
ule with Flash for Auto Backup. http://www.
computerworld.com/article/2499047/data-center/
viking-combines-dram-module-with-flash-for-auto-backup.
html.

[56] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better I/O
Through Byte-addressable, Persistent Memory. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP ’09), Big
Sky, Montana, October 2009.

[57] George Copeland, Tom W. Keller, Ravi Krishnamurthy, and Marc G.
Smith. The Case for Safe RAM. In Proceedings of the 15th Interna-
tional Conference on Very Large Data Bases (VLDB 15), pages 327–335,
Amsterdam, The Netherlands, August 1989.

[58] Jonathan Corbet. Barriers and Journaling Filesystems. http://lwn.
net/Articles/283161, May 2008.

[59] Jonathan Corbet. That massive filesystem thread. http://lwn.net/
Articles/326471/, March 2009.

[60] Jonathan Corbet. The end of block barriers. https://lwn.net/
Articles/400541/, August 2010.

http://www.cnn.com/2013/02/08/us/superdome-power-outage/
http://www.computerworld.com/article/2499047/data-center/viking-combines-dram-module-with-flash-for-auto-backup.html
http://www.computerworld.com/article/2499047/data-center/viking-combines-dram-module-with-flash-for-auto-backup.html
http://www.computerworld.com/article/2499047/data-center/viking-combines-dram-module-with-flash-for-auto-backup.html
http://www.computerworld.com/article/2499047/data-center/viking-combines-dram-module-with-flash-for-auto-backup.html
http://lwn.net/Articles/283161
http://lwn.net/Articles/283161
http://lwn.net/Articles/326471/
http://lwn.net/Articles/326471/
https://lwn.net/Articles/400541/
https://lwn.net/Articles/400541/

201

[61] Craig Balding. A Question of Integrity: To MD5 or Not
to MD5. http://cloudsecurity.org/blog/2008/06/25/
a-question-of-integrity-to-md5-or-not-to-md5.html, June
2008.

[62] Charles D. Cranor and Gurudatta M. Parulkar. The UVM Virtual
Memory System. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’99), Monterey, California, June 1999.

[63] Christoffer Dall and Jason Nieh. KVM/ARM: the Design and Imple-
mentation of the Linux ARM Hypervisor. ACM SIGARCH Computer
Architecture News, 42(1):333–348, 2014.

[64] Chris J. Date and Colin J. White. A Guide to DB2. Addison Wesley
Publishing Company, 1989.

[65] Wiebren de Jonge, Frans M. Kaashoek, and Wilson C. Hsieh. The
Logical Disk: A New Approach to Improving File Systems. In
Proceedings of the 14th ACM Symposium on Operating Systems Principles
(SOSP ’93), pages 15–28, Asheville, North Carolina, December 1993.

[66] Biplob Debnath, Sudipta Sengupta, and Jin Li. FlashStore: High
Throughput Persistent Key-Value Store. Proceedings of the VLDB
Endowment, 3(1-2):1414–1425, 2010.

[67] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyStash: RAM
Space Skimpy Key-Value Store on Flash-Based Storage. In Proceed-
ings of the 2011 ACM SIGMOD International Conference on Management
of data, pages 25–36. ACM, 2011.

[68] Guiseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swami Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP ’07), Stevenson,
Washington, October 2007.

http://cloudsecurity.org/blog/2008/06/25/a-question-of-integrity-to-md5-or-not-to-md5.html
http://cloudsecurity.org/blog/2008/06/25/a-question-of-integrity-to-md5-or-not-to-md5.html

202

[69] Catherine M. DesRoches, Eric G. Campbell, Sowmya R. Rao, Karen
Donelan, Timothy G. Ferris, Ashish Jha, Rainu Kaushal, Douglas E.
Levy, Sara Rosenbaum, Alexandra E. Shields, et al. Electronic Health
Records in Ambulatory Care – A National Survey of Physicians. New
England Journal of Medicine, 359(1):50–60, 2008.

[70] David J. DeWitt, Shahram Ghandeharizadeh, Donovan Schneider,
Allan Bricker, Hui-I Hsiao, Rick Rasmussen, et al. The Gamma
Database Machine Project. Knowledge and Data Engineering, IEEE
Transactions on, 2(1):44–62, 1990.

[71] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro,
Michael R. Stonebraker, and David Wood. Implementation Tech-
niques for Main Memory Database Systems. In Proceedings of the
1984 ACM SIGMOD Conference on the Management of Data (SIGMOD
’84), pages 1–8, Boston, Massachusetts, June 1984.

[72] Jeremy Dion. The Cambridge File Server. SIGOPS Operating Systems
Review, 14:26–35, October 1980.

[73] Linux Documentation. fsync(2) - Linux Man Page. http://linux.
die.net/man/2/fsync.

[74] Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto,
Ramin Sadre, and Aiko Pras. Inside Dropbox: Understanding Per-
sonal Cloud Storage Services. In Proceedings of the 2012 ACM confer-
ence on Internet measurement conference, pages 481–494. ACM, 2012.

[75] Aleksandar Dragojevic, Yang Ni, and Ali-Reza Adl-Tabatabai. Op-
timizing Transactions for Captured Memory. In Proceedings of the
Twenty-first Annual Symposium on Parallelism in Algorithms and Archi-
tectures, pages 214–222, New York, 2009.

[76] Stéphane Ducasse and Damien Pollet. Software Architecture Re-
construction: A Process-Oriented Taxonomy. IEEE Transactions on
Software Engineering, 35(4):573–591, 2009.

[77] Ray Duncan. Advanced MS-DOS Programming. Microsoft Press
Redmond, WA, 1988.

http://linux.die.net/man/2/fsync
http://linux.die.net/man/2/fsync

203

[78] Frank C. Eigler, Vara Prasad, Will Cohen, Hien Nguyen, Martin
Hunt, Jim Keniston, and Brad Chen. Architecture of Systemtap:
A Linux Trace/Probe Tool. http://sourceware.org/systemtap/
archpaper.pdf, July 2005.

[79] EMC. Rethink Storage: Transform the Data Center with EMC ViPR
Software-Defined Storage. http://pages.cs.wisc.edu/~vijayc/
thesis-refs/emc-sds.pdf.

[80] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex: A
Distributed, Searchable Key-Value Store. ACM SIGCOMM Computer
Communication Review, 42(4):25–36, 2012.

[81] Gary Field, Peter M. Ridge, John Lohmeyer, Gerhard Islinger, and
Stephen Grall. The Book of SCSI: I/O for the New Millennium. No
Starch Press, 2000.

[82] Stony Brook University File System Storage Lab (FSL). Filebench
Benchmark. http://sourceforge.net/apps/mediawiki/
filebench/index.php?title=Filebench, 2011.

[83] Forbes. Intel And Micron Announce Breakthrough Faster-Than-
Flash 3D XPoint Storage Technology. http://onforb.es/1Mt49VW,
July 2015.

[84] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los
Reyes, Shant Hovsepian, Andrew Matsuoka, and Lei Zhang. Gen-
eralized File System Dependencies. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP ’07), pages 307–320,
Stevenson, Washington, October 2007.

[85] E. Gal and S. Toledo. A Transactional Flash File System for Micro-
controllers. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’05), Anaheim, California, April 2005.

[86] Gregory R. Ganger, Marshall Kirk McKusick, Craig A.N. Soules,
and Yale N. Patt. Soft Updates: A Solution to the Metadata Update
Problem in File Systems. ACM Transactions on Computer Systems
(TOCS), 18(2), May 2000.

http://sourceware.org/systemtap/archpaper.pdf
http://sourceware.org/systemtap/archpaper.pdf
http://pages.cs.wisc.edu/~vijayc/thesis-refs/emc-sds.pdf
http://pages.cs.wisc.edu/~vijayc/thesis-refs/emc-sds.pdf
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench
http://onforb.es/1Mt49VW

204

[87] Gregory R. Ganger and Yale N. Patt. Metadata Update Performance
in File Systems. In Proceedings of the 1st Symposium on Operating
Systems Design and Implementation (OSDI ’94), pages 49–60, Monterey,
California, November 1994.

[88] Jesse James Garrett et al. Ajax: A New Approach To Web Applica-
tions. 2005.

[89] Dieter Gawlick and David Kinkade. Varieties of Concurrency Con-
trol in IMS/VS Fast Path. IEEE Database Engineering Bulletin, 8(2):3–
10, 1985.

[90] Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno, Arvind Kr-
ishnamurthy, and Henry M. Levy. Comet: An Active Distributed
Key-Value Store. In Proceedings of the 9th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’10), pages 323–336, Vancouver,
Canada, December 2010.

[91] GNOME. Apps/Gedit - GNOME Wiki! https://wiki.gnome.org/
Apps/Gedit.

[92] GNU. GNU Database Manager (GDBM). http://www.gnu.org.ua/
software/gdbm/gdbm.html, 1979.

[93] Google. LevelDB. https://code.google.com/p/leveldb/, 2011.

[94] Google. Google Chrome Browser. http://google.com/chrome/,
2013.

[95] Catherine Gowthorpe and Oriol Amat. External Reporting of Ac-
counting and Financial Information via the Internet in Spain. Euro-
pean Accounting Review, 8(2):365–371, 1999.

[96] James N. Gray. Notes on Data Base Operating Systems. Springer, 1978.

[97] Jim Gray. The Transaction Concept: Virtues and Limitations (Invited
Paper). In Proceedings of the 7th International Conference on Very Large
Data Bases (VLDB 7), Cannes, France, September 1981.

[98] Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond
Lorie, Tom Price, Franco Putzolu, and Irving Traiger. The Recov-
ery Manager of the System R Database Manager. ACM Computing
Surveys, 13(2):223–242, 1981.

https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
http://www.gnu.org.ua/software/gdbm/gdbm.html
http://www.gnu.org.ua/software/gdbm/gdbm.html
https://code.google.com/p/leveldb/
http://google.com/chrome/

205

[99] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen
Patel, and Sudipta Sengupta. VL2: A Scalable And Flexible Data
Center Network. In ACM SIGCOMM Computer Communication Re-
view, volume 39, pages 51–62. ACM, 2009.

[100] Robert Grimm, Wilson C. Hsieh, Frans M. Kaashoek, and Wiebren
De Jonge. Atomic Recovery Units: Failure Atomicity for Logical
Disks. In Proceedings of the 16th International Conference on Distributed
Computing Systems, pages 26–36. IEEE, 1996.

[101] The Open Group. Rename: The Open Group Base Specifications
Issue 6. http://pubs.opengroup.org/onlinepubs/009695399/
functions/rename.html, 2004.

[102] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. SQCK: A Declarative
File System Checker. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI ’08), San Diego, California,
December 2008.

[103] Haryadi Sudirman Gunawi. Towards Reliable Storage Systems. The
University of Wisconsin-Madison, 2009.

[104] Donald J. Haderle and Robert D. Jackson. IBM Database 2 Overview.
IBM Systems Journal, 23(2):112–125, 1984.

[105] Theo Haerder and Andreas Reuter. Principles of Transaction-
Oriented Database Recovery. ACM Computing Surveys (CSUR),
15(4):287–317, 1983.

[106] Robert Hagmann. Reimplementing the Cedar File System Using
Logging and Group Commit. In Proceedings of the 11th ACM Sym-
posium on Operating Systems Principles (SOSP ’87), Austin, Texas,
November 1987.

[107] John M. Harker, Dwight W. Brede, Robert E. Pattison, George R. San-
tana, and Lewis G. Taft. A Quarter Century Of Disk File Innovation.
IBM Journal of Research and Development, 25(5):677–690, 1981.

http://pubs.opengroup.org/onlinepubs/009695399/functions/rename.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/rename.html

206

[108] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Op-
timizing Memory Transactions. In Proceedings of the 27th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’06, pages 14–25, New York, NY, USA, 2006. ACM.

[109] Rober Haskin, Yoni Malachi, and Gregory Chan. Recovery manage-
ment in quicksilver. ACM Transactions on Computer Systems (TOCS),
6(1):82–108, 1988.

[110] Kristiina Häyrinen, Kaija Saranto, and Pirkko Nykänen. Definition,
Structure, Content, Use and Impacts Of Electronic Health Records:
A Review of the Research Literature. International Journal of Medical
Informatics, 77(5):291–304, 2008.

[111] Val Henson, Zach Brown, Theodore Ts’o, and Arjan van de Ven. Re-
ducing Fsck Time For Ext2 File Systems. In Ottawa Linux Symposium
(OLS ’06), Ottawa, Canada, July 2006.

[112] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown.
Chunkfs: Using Divide-And-Conquer to Improve File System Re-
liability and Repair. In IEEE 2nd Workshop on Hot Topics in System
Dependability (HotDep ’06), Seattle, Washington, November 2006.

[113] Maurice Herlihy. Apologizing Versus Asking Permission: Opti-
mistic Concurrency Control for Abstract Data Types. ACM Transac-
tions on Database Systems (TODS), 15(1):96–124, 1990.

[114] Dave Hitz, James Lau, and Michael Malcolm. File System Design for
an NFS File Server Appliance. In Proceedings of the USENIX Winter
Technical Conference (USENIX Winter ’94), San Francisco, California,
January 1994.

[115] David A. Holland, Elaine Lee Angelino, Gideon Wald, and Margo I.
Seltzer. Flash Caching on the Storage Client. In USENIX ATC’13 Pro-
ceedings of the 2013 USENIX conference on Annual Technical Conference.
USENIX Association, 2013.

[116] Yiming Huai. Spin-Transfer Torque MRAM (STT-MRAM): Chal-
lenges and Prospects. AAPPS Bulletin, 18(6):33–40, 2008.

[117] HyperSQL. HSQLDB. http://www.hsqldb.org/.

http://www.hsqldb.org/

207

[118] IBM. IBM 350 Disk Storage Unit. http://www-03.ibm.com/ibm/
history/exhibits/storage/storage_350.html, September 1956.

[119] InfoStor. Emerging Trends in Software Defined Storage. http:
//www.infostor.com/storage-management/virtualization/
emerging-trends-in-software-defined-storage-1.html.

[120] InfoWorld. Microsoft Loses Sidekick Users’ Personal Data.
http://www.infoworld.com/article/2629952/smartphones/
microsoft-loses-sidekick-users--personal-data.html, Octo-
ber 2009.

[121] Geoff Ingram. High-Performance Oracle: Proven Methods for Achieving
Optimum Performance and Availability. John Wiley & Sons, 2002.

[122] Intel. More Power-Loss Data Protection with In-
tel SSD 320 Series. http://web.archive.org/web/
20140207071838/http://www.intel.com/content/dam/
www/public/us/en/documents/technology-briefs/
ssd-320-series-power-loss-data-protection-brief.pdf.

[123] Intel. Intel 64 and IA-32 Architectures Software Developers Man-
ual Volume 1: Basic Architecture. http://download.intel.com/
design/processor/manuals/253665.pdf, March 2010.

[124] D. M. Jacobson and J. Wilkes. Disk Scheduling Algorithms Based
on Rotational Position. Technical Report HPL-CSP-91-7, Hewlett
Packard Laboratories, 1991.

[125] Pankaj K. Jain. Financial Market Design and the Equity Premium:
Electronic Versus Floor Trading. The Journal of Finance, 60(6):2955–
2985, 2005.

[126] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and You-
jip Won. I/O Stack Optimization for Smartphones. In Proceedings of
the USENIX Annual Technical Conference, pages 309–320, 2013.

[127] Ashish K. Jha, Catherine M. DesRoches, Eric G. Campbell, Karen
Donelan, Sowmya R. Rao, Timothy G. Ferris, Alexandra Shields,
Sara Rosenbaum, and David Blumenthal. Use of Electronic
Health Records in US Hospitals. New England Journal of Medicine,
360(16):1628–1638, 2009.

http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html
http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html
http://www.infostor.com/storage-management/virtualization/emerging-trends-in-software-defined-storage-1.html
http://www.infostor.com/storage-management/virtualization/emerging-trends-in-software-defined-storage-1.html
http://www.infostor.com/storage-management/virtualization/emerging-trends-in-software-defined-storage-1.html
http://www.infoworld.com/article/2629952/smartphones/microsoft-loses-sidekick-users--personal-data.html
http://www.infoworld.com/article/2629952/smartphones/microsoft-loses-sidekick-users--personal-data.html
http://web.archive.org/web/20140207071838/http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-320-series-power-loss-data-protection-brief.pdf
http://web.archive.org/web/20140207071838/http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-320-series-power-loss-data-protection-brief.pdf
http://web.archive.org/web/20140207071838/http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-320-series-power-loss-data-protection-brief.pdf
http://web.archive.org/web/20140207071838/http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-320-series-power-loss-data-protection-brief.pdf
http://download.intel.com/design/processor/manuals/253665.pdf
http://download.intel.com/design/processor/manuals/253665.pdf

208

[128] Minwen Ji, Alistair C Veitch, John Wilkes, et al. Seneca: Remote
Mirroring Done Write. In Proceedings of the USENIX Annual Technical
Conference, pages 253–268, 2003.

[129] Rob Johnson and David Wagner. Finding User/Kernel Pointer Bugs
With Type Inference. In Proceedings of the 13th USENIX Security
Symposium (Sec ’04), San Diego, California, August 2004.

[130] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. DFS:
a File System for Virtualized Flash Storage. ACM Transactions on
Storage (TOS), 6(3):14, 2010.

[131] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tol-
erating Hardware Device Failures in Software. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP ’09), Big
Sky, Montana, October 2009.

[132] Asim Kadav and Michael M. Swift. Understanding Modern Device
Drivers. ACM SIGARCH Computer Architecture News, 40(1):87–98,
2012.

[133] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and
Changwoo Min. X-FTL: Transactional FTL for SQLite Databases.
In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 97–108. ACM, 2013.

[134] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and
John Wilkes. Designing for Disasters. In Proceedings of the 3rd
USENIX Symposium on File and Storage Technologies (FAST ’04), San
Francisco, California, April 2004.

[135] Kernel.Org. Index of /doc/Documentation/filesystems. https:
//www.kernel.org/doc/Documentation/filesystems/.

[136] Charles Killian, James Anderson, Ranjit Jhala, and Amin Vahdat.
Life, Death, and the Critical Transition: Finding Liveness Bugs in Sys-
tems Code. In Proceedings of the 4th Symposium on Networked Systems
Design and Implementation (NSDI ’07), Cambridge, Massachusetts,
April 2007.

https://www.kernel.org/doc/Documentation/filesystems/
https://www.kernel.org/doc/Documentation/filesystems/

209

[137] KnowledgeTek. Serial ATA Specification Rev. 3.0 Gold.
http://www.knowledgetek.com/datastorage/courses/SATA_
3.0-8.14.09(CD).pdf, 2009.

[138] Donald E. Knuth. The Art of Computer Programming (Volume 2),
1981.

[139] Ricardo Koller, Leonardo Marmol, Raju Rangaswami, Swaminathan
Sundararaman, Nisha Talagala, and Ming Zhao. Write Policies for
Host-Side Flash Caches. In Proceedings of the 11th USENIX Symposium
on File and Storage Technologies (FAST ’13), pages 45–58, San Jose,
California, February 2013.

[140] Charles M. Kozierok. Overview and History of the SCSI Interface.
http://www.pcguide.com/ref/hdd/if/scsi/over-c.html, 2001.

[141] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R. Goodson,
Kiran Srinivasan, Randy Thelen, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Parity Lost and Parity Regained. In Pro-
ceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST ’08), San Jose, California, February 2008.

[142] Hsiang-Tsung Kung and John T Robinson. On Optimistic Methods
for Concurrency Control. ACM Transactions on Database Systems
(TODS), 6(2):213–226, 1981.

[143] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon.
What is Twitter, a Social Network or a News Media? In Proceedings
of the 19th International Conference on World Wide Web, pages 591–600.
ACM, 2010.

[144] Stefan Lai. Current Status of the Phase Change Memory and Its
Future. In International Electron Devices Meeting (IEDM’03) Technical
Digest. IEEE, 2003.

[145] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[146] Ubuntu Bugs LaunchPad. Bug #317781: Ext4 Data Loss.
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/
317781?comments=all.

http://www.knowledgetek.com/datastorage/courses/SATA_3.0-8.14.09(CD).pdf
http://www.knowledgetek.com/datastorage/courses/SATA_3.0-8.14.09(CD).pdf
http://www.pcguide.com/ref/hdd/if/scsi/over-c.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all

210

[147] Karen Layne and Jungwoo Lee. Developing Fully Functional E-
Government: a Four Stage Model. Government Information Quarterly,
18(2):122–136, 2001.

[148] A. Leach. Level 3’s UPS Burnout Sends Websites Down
In Flames. http://www.theregister.co.uk/2012/07/10/
datacentrepowercut/, 2012.

[149] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Ar-
chitecting Phase Change Memory as a Scalable DRAM Alternative.
ACM SIGARCH Computer Architecture News, 37(3):2–13, 2009.

[150] Luke Kenneth Casson Leighton. Analysis of SSD Reliability During
Power-Outages. http://lkcl.net/reports/ssd_analysis.html.

[151] Andrew W. Leung, Shankar Pasupathy, Garth R. Goodson, and
Ethan L. Miller. Measurement and Analysis of Large-Scale Network
File System Workloads. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’08), pages 213–226, Boston, Massachusetts, June
2008.

[152] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-
Miner: A Tool for Finding Copy-paste and Related Bugs in Operating
System Code. In Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’04), San Francisco, California,
December 2004.

[153] Mac Developer Library. fsync(2) Mac OS X Developer Tools
Manual Page. https://developer.apple.com/library/mac/
documentation/Darwin/Reference/ManPages/man2/fsync.2.
html.

[154] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky.
SILT: A Memory-Efficient, High-Performance Key-Value Store. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 1–13. ACM, 2011.

[155] Linus Torvalds. Git Mailing List. Re: what’s the current
wisdom on git over NFS/CIFS? http://marc.info/?l=git&m=
124839484917965&w=2, 2009.

http://www.theregister.co.uk/2012/07/10/data centrepower cut/
http://www.theregister.co.uk/2012/07/10/data centrepower cut/
http://lkcl.net/reports/ssd_analysis.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
http://marc.info/?l=git&m=124839484917965&w=2
http://marc.info/?l=git&m=124839484917965&w=2

211

[156] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Shan Lu. A Study of Linux File System Evolution. In Proceedings
of the 11th USENIX Symposium on File and Storage Technologies (FAST
’13), San Jose, California, February 2013.

[157] Youyou Lu, Jiwu Shu, Jia Guo, Shuai Li, and Onur Mutlu. LightTx:
A Lightweight Transactional Design in Flash-Based SSDs to Sup-
port Flexible Transactions. In Proceedings of the 31st International
Conference on Computer Design (ICCD), pages 115–122. IEEE, 2013.

[158] Youyou Lu, Jiwu Shu, and Long Sun. Blurred Persistence in Transac-
tional Persistent Memory. In Proceedings of the 31st IEEE Conference
on Massive Data Storage (MSST ’15), Santa Clara, California, May
2015.

[159] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. Loose-Ordering
Consistency for Persistent Memory. In Proceedings of the 32nd IEEE
International Conference on Computer Design (ICCD), pages 216–223.
IEEE, 2014.

[160] Youyou Lu, Jiwu Shu, and Wei Wang. Reconfs: a Reconstructable
File System on Flash Storage. In Proceedings of the 12th USENIX
Symposium on File and Storage Technologies (FAST ’14), pages 75–88,
Santa Clara, California, February 2014.

[161] Youyou Lu, Jiwu Shu, and Wei Wang. ReconFS: a Reconstructable
File System on Flash Storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST 14), pages 75–88,
Santa Clara, CA, 2014. USENIX.

[162] Peter Lyman and Hal Varian. How Much Information? 2004.

[163] Peter Macko, Margo Seltzer, and Keith A. Smith. Tracking Back
References in a Write-Anywhere File System. In Proceedings of the
8th USENIX Symposium on File and Storage Technologies (FAST ’10),
San Jose, California, February 2010.

[164] MariaDB. Fusion-io NVMFS Atomic Write
Support. https://mariadb.com/kb/en/mariadb/
fusion-io-nvmfs-atomic-write-support/, April 2013.

https://mariadb.com/kb/en/mariadb/fusion-io-nvmfs-atomic-write-support/
https://mariadb.com/kb/en/mariadb/fusion-io-nvmfs-atomic-write-support/

212

[165] Martin F. Krafft. XFS and Zeroed Files. http://madduck.net/blog/
2006.08.11:xfs-zeroes/, August 2006.

[166] Chris Mason. The Btrfs Filesystem. oss.oracle.com/projects/
btrfs/dist/documentation/btrfs-ukuug.pdf, September 2007.

[167] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilge, Alex Tomas, and Laurent Vivier. The New Ext4 filesystem:
Current Status and Future Plans. In Ottawa Linux Symposium (OLS
’07), Ottawa, Canada, July 2007.

[168] Matt Mackall. Mercurial. http://mercurial.selenic.com/, 2005.

[169] Marissa Mayer. The Physics of Data. http://www.parc.com/event/
936/innovation-at-google.html, August 2009.

[170] Kirby McCoy. VMS file system internals. Digital Press, 1990.

[171] Richard McDougall and Jim Mauro. Filebench. http:
//sourceforge.net/apps/mediawiki/filebench/index.php?
title=Filebench, 2005.

[172] Marshall K. McKusick, William N. Joy, Sam J. Leffler, and Robert S.
Fabry. A Fast File System for UNIX. ACM Transactions on Computer
Systems, 2(3):181–197, August 1984.

[173] Marshall Kirk McKusick. Running ’fsck’ in the Background. In
Proceedings of BSDCon 2002 (BSDCon ’02), San Fransisco, California,
February 2002.

[174] Marshall Kirk McKusick. Disks from the Perspective of a File System.
Communications of the ACM, 55(11):53–55, 2012.

[175] Marshall Kirk McKusick, Willian N. Joy, Samuel J. Leffler, and
Robert S. Fabry. Fsck - The UNIX File System Check Program. Unix
System Manager’s Manual - 4.3 BSD Virtual VAX-11 Version, April
1986.

[176] R. McMillan. Amazon Blames Generators For Blackout That
Crushed Netflix. http://www.wired.com/wiredenterprise/2012/
07/amazonexplains/, 2012.

http://madduck.net/blog/2006.08.11:xfs-zeroes/
http://madduck.net/blog/2006.08.11:xfs-zeroes/
oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
http://mercurial.selenic.com/
http://www.parc.com/event/936/innovation-at-google.html
http://www.parc.com/event/936/innovation-at-google.html
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench
http://www.wired.com/wiredenterprise/2012/07/amazon explains/
http://www.wired.com/wiredenterprise/2012/07/amazon explains/

213

[177] L. W. McVoy and S. R. Kleiman. Extent-like Performance from a
UNIX File System. In Proceedings of the USENIX Winter Technical
Conference (USENIX Winter ’91), pages 33–43, Dallas, Texas, January
1991.

[178] Michael M. Swift and Brian N. Bershad and Henry M. Levy. Improv-
ing the Reliability of Commodity Operating Systems. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP
’03), Bolton Landing, New York, October 2003.

[179] Brenda M. Michelson. Event-Driven Architecture Overview. Patricia
Seybold Group, 2, 2006.

[180] James Mickens, Edmund B. Nightingale, Jeremy Elson, Darren
Gehring, Bin Fan, Asim Kadav, Vijay Chidambaram, Osama Khan,
and Krishna Nareddy. Blizzard: Fast, Cloud-Scale Block Storage for
Cloud-Oblivious Applications. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), pages 257–273,
Seattle, WA, April 2014. USENIX Association.

[181] Microsoft. ReplaceFile function (Windows). https:
//msdn.microsoft.com/en-us/library/windows/desktop/
aa365512%28v=vs.85%29.aspx.

[182] Microsoft. Microsoft OneDrive. https://onedrive.live.com/
about/en-us/, 2015.

[183] R. Miller. Human Error Cited In Hosting.Com Out-Age.
http://www.datacenterknowledge.com/archives/2012/07/
28/human-error-cited-hosting-com-outage/, 2012.

[184] R. Miller. Power Outage Hits London Data Center.
http://www.datacenterknowledge.com/archives/2012/07/
10/power-outage-hits-london-data-center/, 2012.

[185] R. Miller. Data Center Outage Cited In
Visa Downtime Across Canada. http://www.
datacenterknowledge.com/archives/2013/01/28/
data-center-outage-cited-in-visa-downtime-across-canada/,
2013.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365512%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365512%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365512%28v=vs.85%29.aspx
https://onedrive.live.com/about/en-us/
https://onedrive.live.com/about/en-us/
http://www.datacenterknowledge.com/archives/2012/07/28/human-error-cited-hosting-com-outage/
http://www.datacenterknowledge.com/archives/2012/07/28/human-error-cited-hosting-com-outage/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/

214

[186] R. Miller. Power Outage Knocks Dreamhost Customers Of-
fline. http://www.datacenterknowledge.com/archives/2013/03/
20/power-outage-knocks-dreamhost-customers-offline/, 2013.

[187] Changwoo Min, Woon-Hak Kang, T. Kim, and S. W. Lee.
Lightweight Application-Level Crash Consistency on Transactional
Flash Storage. In Proceedings of the USENIX Annual Technical Confer-
ence (USENIX ATC 15). USENIX Association, 2015.

[188] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, 17(1):94–162, March
1992.

[189] M. Jae Moon. The Evolution of E-Government Among Municipali-
ties: Rhetoric or Reality? Public Administration Review, 62(4):424–433,
2002.

[190] Iulian Moraru, David G. Andersen, Michael Kaminsky, Nathan
Binkert, Niraj Tolia, Reinhard Munz, and Parthasarathy Ran-
ganathan. Persistent, protected and cached: Building blocks for
main memory data stores. Technical Report CMU-PDL-11-114,
Carnegie Mellon University Parallel Data Lab, 2011.

[191] Rajeev Nagar. Windows NT File System Internals: A Developer’s Guide.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1997.

[192] NBC. Power Outage Affects Thousands, Including Colum-
bus Hospital. http://columbus.gotnewswire.com/news/
power-outage-affects-thousands-including-columbus-hospital,
2014.

[193] NetApp. NetApp Software-Defined Storage. http://www.netapp.
com/us/technology/software-defined-storage/.

[194] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How Amazon Web Services Uses
Formal Methods. Communications of the ACM, 58(4):66–73, 2015.

http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
http://columbus.gotnewswire.com/news/power-outage-affects- thousands-including- columbus-hospital
http://columbus.gotnewswire.com/news/power-outage-affects- thousands-including- columbus-hospital
http://www.netapp.com/us/technology/software-defined-storage/
http://www.netapp.com/us/technology/software-defined-storage/

215

[195] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hof-
mann, Jon Howell, and Yutaka Suzue. Flat Datacenter Storage. In
Proceedings of the 10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 1–15, Hollywood, CA, 2012.
USENIX.

[196] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M Chen, and
Jason Flinn. Rethink the Sync. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06), pages 1–16,
Seattle, Washington, November 2006.

[197] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: a Proof Assistant for Higher-Order Logic. Springer Science
& Business Media, 2002.

[198] Chris Nyberg. Gensort Data Generator. http://www.ordinal.com/
gensort.html, 2009.

[199] Jason Olson. Enhance Your Apps With File System Transac-
tions. http://msdn.microsoft.com/en-us/magazine/cc163388.
aspx, July 2007.

[200] Michael A. Olson. The Design and Implementation of the Inversion
File System. In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’93), San Diego, California, January 1993.

[201] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ouster-
hout, and Mendel Rosenblum. Fast Crash Recovery in RAMcloud.
In Proceedings of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, pages 29–41. ACM, 2011.

[202] Oracle. Oracle Berkeley DB C Version. http://www.oracle.com/
technetwork/database/database-technologies/berkeleydb/
overview/index.html, 1994.

[203] John K. Ousterhout. Why Aren’t Operating Systems Getting Faster
as Fast as Hardware? In Proceedings of the 1990 USENIX Summer
Technical Conference, Anaheim, CA, June 1990.

http://www.ordinal.com/gensort.html
http://www.ordinal.com/gensort.html
http://msdn.microsoft.com/en-us/magazine/cc163388.aspx
http://msdn.microsoft.com/en-us/magazine/cc163388.aspx
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

216

[204] John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze,
Mike Kupfer, and James G. Thompson. A Trace-Driven Analysis
of the UNIX 4.2 BSD File System. In Proceedings of the 10th ACM
Symposium on Operating System Principles (SOSP ’85), pages 15–24,
Orcas Island, Washington, December 1985.

[205] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang,
and Yuanzheng Wang. SDF: Software-Defined Flash for Web-Scale
Internet Storage Systems. In ACM SIGPLAN Notices, volume 49,
pages 471–484. ACM, 2014.

[206] Xiangyong Ouyang, David Nellans, Robert Wipfel, David Flynn, and
Dhabaleswar K. Panda. Beyond Block I/O: Rethinking Traditional
Storage Primitives. In Proceedings of the 17th International Symposium
on High Performance Computer Architecture (HPCA-11), San Antonio,
Texas, February 2011.

[207] Mike Owens and Grant Allen. SQLite. Springer, 2010.

[208] Stan Park, Terence Kelly, and Kai Shen. Failure-Atomic Msync ():
a Simple and Efficient Mechanism for Preserving the Integrity of
Durable Data. In Proceedings of the 8th ACM European Conference on
Computer Systems, pages 225–238. ACM, 2013.

[209] Sunhwa Park, Ji Hyun Yu, and Seong Yong Ohm. Atomic Write FTL
for Robust Flash File System. In Proceedings of the Ninth International
Symposium on Consumer Electronics (ISCE 2005), pages 155–160. IEEE,
2005.

[210] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, and Erez Zadok.
I3FS: An In-kernel Integrity Checker and Intrusion detection File
System. In Proceedings of the 18th Annual Large Installation System
Administration Conference (LISA ’04), pages 69–79, Atlanta, Georgia,
November 2004.

[211] David Patterson, Garth Gibson, and Randy Katz. A Case for Redun-
dant Arrays of Inexpensive Disks (RAID). In Proceedings of the 1988
ACM SIGMOD Conference on the Management of Data (SIGMOD ’88),
pages 109–116, Chicago, Illinois, June 1988.

217

[212] Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve
Kleiman, and Shane Owara. Snapmirror®: File System Based Asyn-
chronous Mirroring for Disaster Recovery. In Proceedings of the 1st
USENIX Conference on File and Storage Technologies. USENIX Associa-
tion, 2002.

[213] J. Kent Peacock, Ashvin Kamaraju, and Sanjay Agrawal. Fast Con-
sistency Checking for the Solaris File System. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’98), pages 77–89, New
Orleans, Louisiana, June 1998.

[214] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory
Persistency. In Proceedings of the 41st Annual International Symposium
on Computer Architecuture, pages 265–276. IEEE Press, 2014.

[215] Zachary N. J. Peterson. Data Placement for Copy-on-write Using
Virtual Contiguity. Master’s thesis, U.C. Santa Cruz, 2002.

[216] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applica-
tions. In Proceedings of the 11th Symposium on Operating Systems De-
sign and Implementation (OSDI ’14), Broomfield, Colorado, October
2014.

[217] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Crash consistency. Queue,
13(7):20:20–20:28, July 2015.

[218] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach,
Alexander Benn, and Emmett Witchel. Operating Systems Transac-
tions. In Proceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, California, December
2008.

[219] Postgres. PostgreSQL: Documentation: 9.1: WAL Internals. http:
//www.postgresql.org/docs/9.1/static/wal-internals.html.

http://www.postgresql.org/docs/9.1/static/wal-internals.html
http://www.postgresql.org/docs/9.1/static/wal-internals.html

218

[220] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Analysis and Evolution of Journaling File Systems.
In Proceedings of the USENIX Annual Technical Conference (USENIX
’05), pages 105–120, Anaheim, California, April 2005.

[221] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. IRON File Systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05), pages 206–220,
Brighton, United Kingdom, October 2005.

[222] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. IRON File Systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05), pages 206–220,
Brighton, United Kingdom, October 2005.

[223] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou.
Transactional Flash. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI ’08), San Diego, California,
December 2008.

[224] Dai Qin, Angela Demke Brown, and Ashvin Goel. Reliable Write-
back for Client-Side Flash Caches. In Proceedings of the 2014 USENIX
conference on USENIX Annual Technical Conference, pages 451–462.
USENIX Association, 2014.

[225] R1Soft. Disk Safe Best Practices. http://wiki.r1soft.com/
display/CDP3/Disk+Safe+Best+Practices, December 2011.

[226] Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Co-
erced Cache Eviction and Discreet-Mode Journaling: Dealing with
Misbehaving Disks. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’11), Hong Kong, China, June
2011.

[227] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems (Third Edition). McGraw-Hill, 2004.

http://wiki.r1soft.com/display/CDP3/Disk+Safe+Best+Practices
http://wiki.r1soft.com/display/CDP3/Disk+Safe+Best+Practices

219

[228] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer,
William C. Lynch, Paul R. McJones, Hal G. Murray, and Stephen
C.Purcell. Pilot: An Operating System for a Personal Computer.
Communications of the ACM, 23(2):81–92, February 1980.

[229] Hans Reiser. ReiserFS. www.namesys.com, 2004.

[230] Kai Ren and Garth Gibson. TABLEFS: Enhancing Metadata Effi-
ciency in the Local File System. In Proceedings of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13), pages 145–156, San
Jose, CA, 2013. USENIX.

[231] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. IndexFS:
Scaling File System Metadata Performance With Stateless Caching
and Bulk Insertion. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC14), pages 237–248.
IEEE, 2014.

[232] Dennis M. Ritchie and Ken Thompson. The unix Time-Sharing
System. In Proceedings of the 4th ACM Symposium on Operating Systems
Principles (SOSP ’73), Yorktown Heights, New York, October 1973.

[233] Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike.
Android Application Development: Programming With the Google SDK.
O’Reilly Media, Inc., 2009.

[234] Mendel Rosenblum and John Ousterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

[235] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive
Modeling. IEEE Computer, 27(3):17–28, March 1994.

[236] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik
Mahalingam. Taming Aggressive Replication in the Pangaea Wide-
Area File System. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI ’02), Boston, Massachusetts,
December 2002.

[237] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-To-End
Arguments in System Design. ACM Transactions on Computer Systems,
2(4):277–288, November 1984.

www.namesys.com

220

[238] Sanjay Ghemawat and Howard Gobioff and Shun-Tak Leung. The
Google File System. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), pages 29–43, Bolton Landing,
New York, October 2003.

[239] Mahadev Satyanarayanan, Henry H. Mashburn, Puneet Kumar,
David C. Steere, and James J. Kistler. Lightweight Recoverable
Virtual Memory. ACM Transactions on Computer Systems (TOCS),
12(1):33–57, 1994.

[240] Mohit Saxena, Michael M. Swift, and Yiying Zhang. Flashtier: a
Lightweight, Consistent and Durable Storage Cache. In Proceedings
of the 7th ACM european conference on Computer Systems, pages 267–280.
ACM, 2012.

[241] Bill N. Schilit, Marvin M. Theimer, and Brent B. Welch. Customizing
Mobile Applications. In USENIX Symposium on Mobile and Location-
independent Computing, pages 129–138, Cambridge, Massachusetts,
1993.

[242] Eric Schrock. UFS/SVM vs. ZFS: Code Complexity. http://blogs.
sun.com/eschrock/, November 2005.

[243] Greg Schulz. Part II: How Many IOPS Can a HDD, HHDD
or SSD Do With VMware? http://storageioblog.com/
part-ii-iops-hdd-hhdd-ssd/, 2013.

[244] P. Schwarz, Walter Chang, Johann Christoph Freytag, G. Lohman,
John McPherson, C. Mohan, and Hamid Pirahesh. Extensibility
in the Starburst Database System. In Proceedings on the 1986 Inter-
national Workshop on Object-Oriented Database Systems, pages 85–92.
IEEE Computer Society Press, 1986.

[245] Michael L Scott. Shared-Memory Synchronization. Synthesis Lec-
tures on Computer Architecture, 8(2):1–221, 2013.

[246] Seagate. Transition to Advanced Format 4K Sector
Hard Drives. http://www.seagate.com/tech-insights/
advanced-format-4k-sector-hard-drives-master-ti/, 2010.

http://blogs.sun.com/eschrock/
http://blogs.sun.com/eschrock/
http://storageioblog.com/part-ii-iops-hdd-hhdd-ssd/
http://storageioblog.com/part-ii-iops-hdd-hhdd-ssd/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/

221

[247] Seagate Forums. ST3250823AS (7200.8) ignores FLUSH CACHE in
AHCI mode. http://bit.ly/xcSAUV, September 2011.

[248] Russell Sears and Eric Brewer. Stasis: Flexible Transactional Stor-
age. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), pages 29–44, Seattle, Washington,
November 2006.

[249] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl
Staelin. An Implementation of a Log-Structured File System for
UNIX. In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’93), pages 307–326, San Diego, California, January
1993.

[250] Margo Seltzer, Peter Chen, and John Ousterhout. Disk Scheduling
Revisited. In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’90), pages 313–324, Washington, D.C, January 1990.

[251] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A.
Smith, Craig A. N. Soules, and Christopher A. Stein. Journaling
Versus Soft Updates: Asynchronous Meta-data Protection in File
Systems. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’00), pages 71–84, San Diego, California, June 2000.

[252] Margo I. Seltzer and Michael Stonebraker. Transaction Support in
Read Optimized and Write Optimized File Systems. In Proceedings
of the 16th International Conference on Very Large Data Bases (VLDB 16),
pages 174–185, Brisbane, Australia, August 1990.

[253] Woong Shin, Myeongcheol Kim, Kyudong Kim, and Heon Y. Yeom.
Providing QoS Through Host Controlled Flash SSD Garbage Collec-
tion and Multiple SSDs. In International Conference on Big Data and
Smart Computing (BigComp), pages 111–117. IEEE, 2015.

[254] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Proceedings of the
26th IEEE Symposium on Mass Storage Systems and Technologies (MSST
’10), Incline Village, Nevada, May 2010.

http://bit.ly/xcSAUV

222

[255] Dick Sites. How Fast Is My Disk? Systems Seminar at the University
of Wisconsin-Madison, January 2013. http://www.cs.wisc.edu/
event/how-fast-my-disk.

[256] Muthian Sivathanu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Somesh Jha. A Logic of File Systems. In Proceedings of
the 4th USENIX Symposium on File and Storage Technologies (FAST ’05),
pages 1–15, San Francisco, California, December 2005.

[257] Stewart Smith. Eat My Data: How Everybody Gets File I/O Wrong.
In OSCON, Portland, Oregon, July 2008.

[258] David A. Solomon. Inside Windows NT. Microsoft Programming
Series. Microsoft Press, 2nd edition, May 1998.

[259] OCZ Storage Solutions. Vertex 2 Pro. http://ocz.com/consumer/
vertex-2-pro-sata-2-ssd.

[260] Jon A. Solworth and Cyril U. Orji. Write-Only Disk Caches. In
Proceedings of the 1990 ACM SIGMOD Conference on the Management
of Data (SIGMOD ’90), pages 123–132, Atlantic City, New Jersey, June
1990.

[261] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok,
and Charles P. Wright. Enabling Transactional File Access via
Lightweight Kernel Extensions. In Proceedings of the 7th USENIX
Symposium on File and Storage Technologies (FAST ’09), pages 29–42,
San Francisco, California, February 2009.

[262] SQLite. How To Corrupt Your Database Files. http://www.sqlite.
org/howtocorrupt.html.

[263] SQLite. SQLite Transactional Sql Database Engine. http://www.
sqlite.org/.

[264] Marting Steigerwald. Imposing Order. Linux Magazine, May 2007.

[265] Christopher A. Stein, John H. Howard, and Margo I. Seltzer. Unify-
ing File System Protection. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’01), pages 79–90, Boston, Massachusetts,
June 2001.

http://www.cs.wisc.edu/event/how-fast-my-disk
http://www.cs.wisc.edu/event/how-fast-my-disk
http://ocz.com/consumer/vertex-2-pro-sata-2-ssd
http://ocz.com/consumer/vertex-2-pro-sata-2-ssd
http://www.sqlite.org/howtocorrupt.html
http://www.sqlite.org/howtocorrupt.html
http://www.sqlite.org/
http://www.sqlite.org/

223

[266] Curtis E. Stevens. SATA IO NCQ. 2006.

[267] Louis D. Stevens. The Evolution of Magnetic Storage. IBM Journal of
Research and Development, 25(5):663–676, 1981.

[268] Michael Stonebraker. Operating System Support for Database Man-
agement. Communications of the ACM, 24(7):412–418, July 1981.

[269] Michael Stonebraker and Lawrence A. Rowe. The Design of POST-
GRES. In IEEE Transactions on Knowledge and Data Engineering, pages
340–355, 1986.

[270] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stan-
ley Williams. The Missing Memristor Found. Nature, 453:80–83,
2008.

[271] Sun Microsystems. MySQL White Papers, 2008.

[272] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike
Nishimoto, and Geoff Peck. Scalability in the XFS File System. In
Proceedings of the USENIX Annual Technical Conference (USENIX ’96),
San Diego, California, January 1996.

[273] Symas. Lightning Memory-Mapped Database (LMDB). http://
symas.com/mdb/, 2011.

[274] Technical Committee T10. T10 Data Integrity Field standard. http:
//www.t10.org/, 2009.

[275] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Joo-
young Hwang, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau. Towards Efficient, Portable Application-Level Consistency.
In Proceedings of the 9th Workshop on Hot Topics in Dependable Systems
(HotDep ’13), Farmington, PA, November 2013.

[276] The ADvanced Systems Laboratory (ADSL). The No-Order File
System. http://research.cs.wisc.edu/adsl/Software/nofs/.

[277] The ADvanced Systems Laboratory (ADSL). The Optimistic File
System. http://research.cs.wisc.edu/adsl/Software/optfs/.

http://symas.com/mdb/
http://symas.com/mdb/
http://www.t10.org/
http://www.t10.org/
http://research.cs.wisc.edu/adsl/Software/nofs/
http://research.cs.wisc.edu/adsl/Software/optfs/

224

[278] The Open Group. POSIX.1-2008 IEEE Std 1003.1. http://pubs.
opengroup.org/onlinepubs/9699919799/, 2013.

[279] The PostgreSQL Global Development Group. PostgreSQL. http:
//www.postgresql.org/.

[280] Theodore Ts’o. Don’t fear the fsync! http://thunk.org/tytso/
blog/2009/03/15/dont-fear-the-fsync/.

[281] Theodore Ts’o. An Automated XFStests Infrastructure Using KVM.
http://lwn.net/Articles/592783, March 2014.

[282] Theodore Ts’o (tytso). Comment #45 : Bug #317781 : Bugs :
linux package : Ubuntu. https://bugs.launchpad.net/ubuntu/
+source/linux/+bug/317781/comments/45, March 2009.

[283] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, Richard Black, and Timothy Zhu.
IOFlow: a Software-Defined Storage Architecture. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 182–196. ACM, 2013.

[284] R Kent Treiber. Systems Programming: Coping with Parallelism. In-
ternational Business Machines Incorporated, Thomas J. Watson Re-
search Center, 1986.

[285] Theodore Ts’o. http://e2fsprogs.sourceforge.net, June 2001.

[286] Theodore Tso. Re: [PATCH 0/4] (RESEND) ext3[34] barrier changes.
Linux Kernel Mailing List. http://article.gmane.org/gmane.
comp.file-systems.ext4/6662, May 2008.

[287] Theodore Ts’o and Stephen Tweedie. Future Directions for the
Ext2/3 Filesystem. In Proceedings of the USENIX Annual Technical
Conference (FREENIX Track), Monterey, California, June 2002.

[288] Stephen C. Tweedie. Journaling the Linux ext2fs File System. In The
Fourth Annual Linux Expo, Durham, North Carolina, May 1998.

[289] Stephen C. Tweedie. EXT3, Journaling File System. olstrans.
sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html,
July 2000.

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.postgresql.org/
http://www.postgresql.org/
http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/
http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/
http://lwn.net/Articles/592783
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781/comments/45
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781/comments/45
http://e2fsprogs.sourceforge.net
http://article.gmane.org/gmane.comp.file-systems.ext4/6662
http://article.gmane.org/gmane.comp.file-systems.ext4/6662
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html

225

[290] Ubuntu LaunchPad. XFS Leaves Garbage in File if App Does Write-
New-Then-Rename Without f(fata)sync. https://bugs.launchpad.
net/ubuntu/+source/linux-source-2.6.15/+bug/37435.

[291] Usenix. Usenix Research in Linux File and Storage Tech-
nologies Summit. https://www.usenix.org/conference/
linuxfastsummit14, Feb 2014.

[292] J. Verge. Internap Data Center Outage Takes
Down Livestream And Stackexchange. http://
www.datacenterknowledge.com/archives/2014/05/16/
internap-data-center-outage-takes-livestream-stackexchange/,
2014.

[293] Rajat Verma, Anton Ajay Mendez, Stan Park, Sandya Mannarswamy,
Terence Kelly, and Charles B. Morrey. Failure-Atomic Updates of
Application Data in a Linux File System. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies, pages 203–211.
USENIX Association, 2015.

[294] VirtualBox Manual. Responding to Guest IDE/SATA Flush Re-
quests. http://www.virtualbox.org/manual/ch12.html.

[295] VMWare. Software-Defined Storage (SDS) and Storage Virtualiza-
tion. http://www.vmware.com/software-defined-datacenter/
storage.

[296] VMWare. The VMware Perspective on Software-Defined
Storage. http://www.vmware.com/files/pdf/solutions/
VMware-Perspective-on-software-defined-storage-white-paper.
pdf.

[297] Werner Vogels. File system usage in Windows NT 4.0. In Proceedings
of the 17th ACM Symposium on Operating Systems Principles (SOSP
’99), pages 93–109, Kiawah Island Resort, South Carolina, December
1999.

https://bugs.launchpad.net/ubuntu/+source/linux-source-2.6.15/+bug/37435
https://bugs.launchpad.net/ubuntu/+source/linux-source-2.6.15/+bug/37435
https://www.usenix.org/conference/linuxfastsummit14
https://www.usenix.org/conference/linuxfastsummit14
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.virtualbox.org/manual/ch12.html
http://www.vmware.com/software-defined-datacenter/storage
http://www.vmware.com/software-defined-datacenter/storage
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf

226

[298] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 91–104, New York, NY,
USA, 2011. ACM.

[299] An-I A. Wang, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuen-
ning. Conquest: Better Performance Through a Disk/Persistent-
RAM Hybrid File System. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’02), Monterey, California, June 2002.

[300] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin,
Chen Zhang, and Jason Cong. An Efficient Design and Implemen-
tation of LSM-Tree Based Key-Value Store on Open-Channel SSD.
In Proceedings of the Ninth European Conference on Computer Systems.
ACM, 2014.

[301] Xi Wang. Building Crash-Safe Applications with Crakit. Personal
Communication, 2015.

[302] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jee-
vitha Kirubanandam, Lorenzo Alvisi, and Mike Dahlin. Robustness
in the Salus Scalable Block Store. In Proceedings of the 10th Symposium
on Networked Systems Design and Implementation (NSDI ’13), pages
357–370, Lombard, Illinois, April 2013.

[303] Hakim Weatherspoon, Lakshmi Ganesh, Tudor Marian, Mahesh Bal-
akrishnan, and Ken Birman. Smoke and Mirrors: Reflecting Files at
a Geographically Remote Location Without Loss of Performance. In
Proceedings of the 7th USENIX Symposium on File and Storage Technolo-
gies (FAST ’09), pages 211–224, San Francisco, California, February
2009.

[304] Ralph O. Weber. SCSI Architecture Model - 3 (SAM-3). http://www.
t10.org/ftp/t10/drafts/sam3/sam3r14.pdf, September 2004.

[305] Markus Wenzel. Isar–a Generic Interpretative Approach to Readable
Formal Proof Documents. In Theorem Proving in Higher Order Logics,
pages 167–183. Springer, 1999.

http://www.t10.org/ftp/t10/drafts/sam3/sam3r14.pdf
http://www.t10.org/ftp/t10/drafts/sam3/sam3r14.pdf

227

[306] Richard Winter. Why Are Data Warehouses Growing So Fast? http:
//www.b-eye-network.com/view/7188, 2008.

[307] R. S. V Wolffradt. Fire In Your Data Center: No Power,
No Access, Now What? http://www.govtech.com/state/
Fire-in-your-Data-Center-No-Power-No-Access-Now-What.
html, 2014.

[308] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling Al-
gorithms for Modern Disk Drives. In Proceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’94), pages 241–251, Nashville, Tennessee,
May 1994.

[309] Michael Wu and Willy Zwaenepoel. eNVy: a Non-Volatile, Main
Memory Storage System. In ACM SigPlan Notices, volume 29, pages
86–97. ACM, 1994.

[310] Xingbo Wu, Zili Shao, and Song Jiang. Selfie: Co-Locating Metadata
and Data to Enable Fast Virtual Block Devices. In Proceedings of the
8th ACM International Systems and Storage Conference, page 2. ACM,
2015.

[311] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A
Lightweight, General System for Finding Serious Storage System Er-
rors. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washington, November 2006.

[312] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musu-
vathi. Using Model Checking to Find Serious File System Errors.
In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation (OSDI ’04), San Francisco, California, December 2004.

[313] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and
Lakshmi Bairavasundaram. How Do Fixes Become Bugs? – A Com-
prehensive Characteristic Study on Incorrect Fixes in Commercial
and Open Source Operating Systems. In Proceedings of the 8th Joint
Meeting of the European Software Engineering Conference and the Acm
Sigsoft Symposium on the Foundations of Software Engineering (FSE11),
2011.

http://www.b-eye-network.com/view/7188
http://www.b-eye-network.com/view/7188
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html

228

[314] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau. End-to-end Data Integrity for File Sys-
tems: A ZFS Case Study. In Proceedings of the 8th USENIX Symposium
on File and Storage Technologies (FAST ’10), San Jose, California, Febru-
ary 2010.

[315] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau. ViewBox: Integrating Local File Systems with
Cloud Storage Services. In Proceedings of the 12th Conference on File
and Storage Technologies (FAST ’14), Santa Clara, California, February
2014.

[316] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillib-
ridge, Elizabeth S. Yang, Bill W. Zhao, and Shashank Singh. Tortur-
ing Databases for Fun and Profit. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’14), Broomfield,
CO, October 2014.

[317] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge. Under-
standing the Robustness of SSDs Under Power Fault. In Proceedings
of the 11th USENIX Symposium on File and Storage Technologies (FAST
’13), pages 271–284, San Jose, California, February 2013.

229

A
Appendix A

A.1 Source Code

We strongly believe that releasing research prototypes helps in reproduc-
ing results, building on prior research, and increasing impact. To this end,
we have made both the major systems developed as part of this dissertation
work publicly available.

The source code for NoFS can be obtained at: http://www.cs.wisc.
edu/adsl/Software/nofs. The source code for OptFS can be obtained
at: http://www.cs.wisc.edu/adsl/Software/optfs. To further aid re-
searchers interested in OptFS, we have also released virtual-machine im-
ages with the file system (and modified kernel) installed: users only need
a hypervisor such as VirtualBox installed to try out OptFS.

http://www.cs.wisc.edu/adsl/Software/nofs
http://www.cs.wisc.edu/adsl/Software/nofs
http://www.cs.wisc.edu/adsl/Software/optfs

	Acknowledgments
	Contents
	List of Figures and Tables
	Introduction
	Crash-Consistency Analysis
	Probabilistic Crash Consistency
	Persistence Properties

	New Techniques for Crash Consistency
	Backpointer-Based Crash Consistency
	Optimistic Crash Consistency

	Contributions
	Overview

	Background
	Definitions
	The Environment
	The Path of a Write
	Failure Model
	File-System Data Structures
	Crash Consistency
	Application-Level Crash Consistency
	File-System Crash Consistency

	Crash Consistency and Ordering
	Pessimistic Journaling
	Summary

	Motivation
	Flushing Performance Impact
	Implications of High Flushing Cost
	Probabilistic Crash Consistency
	Quantifying Probabilistic Consistency
	Factors affecting Pinc
	Summary

	Required Solutions
	Summary

	Studying Persistence Properties
	Background
	Application Update Protocols
	Crash States
	Protocol Goals

	Motivation
	Persistence Properties
	Intuition
	Definition

	Block Order Breaker
	Goals
	Approach
	Testing Persistence Properties with Bob
	Limitations

	Study of Persistence Properties
	Persistence Properties Tested
	Results
	Discussion

	Conclusion

	The No-Order File System
	Goals and Assumptions
	Design
	Overview
	Backpointer-based consistency
	Non-persistent allocation structures

	Implementation
	Operating system environment
	Backpointers
	Non-persistent allocation structures

	Evaluation
	Reliability
	Performance

	Discussion
	Limitations
	Use Cases
	Implementation Challenge: Widespread Assumptions About Block Size

	Proof
	Notation
	Axioms
	Data Consistency
	Version Consistency

	Conclusion

	The Optimistic File System
	Goals
	Optimistic Crash Consistency
	Asynchronous Durability Notification
	Optimistic Consistency Properties
	Optimistic Techniques
	Durability vs. Consistency

	Implementation of OptFS
	Asynchronous Durability Notifications
	Handling Data Blocks
	Optimistic Techniques

	Evaluation
	Reliability
	Performance
	Resource consumption
	Journal size

	Case Studies
	Atomic Update within Gedit
	Temporary Logging in SQLite

	Conclusion

	Discussion
	Comparing NoFS and OptFS
	Hardware Requirements
	Usability
	Performance
	Summary

	Optimistic Techniques in Other Contexts
	Optimistic Techniques in Other Crash-Consistency Mechanisms
	Optimistic Techniques in Other Media
	Optimistic Techniques on NVM
	Optimistic Techniques in Distributed Systems

	Using Osync
	Interactions with Industry
	Summary

	Related Work
	Crash Recovery
	Reliability Techniques
	Using Embedded Information
	Incremental FSCK in the Background
	Ordered Updates
	Delaying Durability

	Testing File Systems
	Interfaces for Consistency and Durability

	Future Work
	Software Async Durability Notifications
	Automatic Osync Substitution
	Tools for Testing File-System Crash Consistency
	Verifying Crash Consistency for Complex Stacks
	OptFS for SSDs
	Summary

	Lessons Learned and Conclusions
	Summary
	Crash-Consistency Analysis
	Crash-Consistency Solutions

	Lessons Learned
	The Importance of Interface Design
	The Importance of Asynchrony
	The Need for Better Tools

	Closing Words

	Bibliography
	Appendix A
	Source Code

