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Abstract

The Richtmyer-Meshkov instability (RMI) of a twice-shocked gas interface is studied in the

Wisconsin Shock Tube Lab’s 9 m tall, vertical, downward-firing shock tube.

Three sets of experiments were conducted, all investigating the same initial condition: a

shear layer with broadband diffuse perturbations at an interface between a helium-acetone mix-

ture and argon. The first set of experiments (SS) build off work by previous graduate students

in the lab who explored the evolution of the singly-shocked RMI. These first experiments are

single-shot simultaneous measurements of velocity and concentration at 4 distinct times after

reshock. The second set of experiments (HS) are novel high-speed measurements purely of

concentration, implementing the use of a pulse-burst laser system that allowed planar laser in-

duced fluorescence (PLIF) measurements at 20 kHz. The conditions upon reshock, as opposed

to singly-shocked, allowed an extended period over which the evolving interface is in the field

of view of the high-speed camera, meaning around 90 frames could be captured with each run

as opposed to a single measurement for each run as was previously the case. The third set of

experiments (HSS) are high-speed simultaneous measurements of velocity and concentration.

These combine the experience of performing the single shot experiments with the abilities that

the pulse-burst laser system affords, which allows for the use of both 532 nm and 266 nm

wavelengths to engage in both PLIF and particle image velocimetry (PIV) measurements at 20

kHz.

In all three studies, the shear layer is accelerated by a shock of nominal strength M=1.8 and

then accelerated again once the shock has reflected off the bottom wall of the tube.

Previous experiments have mostly focused on analyzing the evolution of integral measures
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of the RM instability as these are the most pertinent to immediate applications of inertial con-

finement fusion (ICF), supernovae explosion evolution, and scramjet fuel injection. These

measures are also the most readily explored with past experimental techniques and the associ-

ated limits of time and space resolutions.

Advances in laser and imaging technologies now allow for close-to-full-field time-resolved

imaging of velocity and density fields which enable the exploration of the mechanisms behind

the growth of these integral measures. Instead of answering "how do these evolve?", one can

now begin the long task of answering "why do they evolve as they do?".

Here the combined data of all three experiments will be used to explore those integral mea-

sures: the mixing thickness and mixedness; then to explore the transport of energy from scale

to scale, focusing on individual terms in the transport equations for the scalar concentration and

the streamwise kinetic energy. This scale to scale transport will be explored in three distinct

domains: in Fourier space, in scale space via structure functions and using filter-based methods

as encouraged by the prominent use of large eddy simulations (LES) to study the RMI.
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Chapter 1

Introduction

The Rayleigh-Taylor instability (RTI) [34] is an acceleration-driven instability at an interface

between a heavy and a light fluid. Growth of the RTI occurs when the direction of the acceler-

ation is such that the heavy gas is accelerated in the direction of the light gas. The Richtmyer-

Meshkov instability (RMI) [39] is a limiting case of the RTI when the fluid layers are impul-

sively accelerated in a direction normal to the interfaces between the layers. In the RTI case,

stable configurations are possible. In the RMI however, stable conditions do not occur, thus

upon impulsive acceleration, perturbations away from a planar interface will always begin to

grow.

The RMI is seen as a primary cause of inefficiency in attempts to produce energy via inertial

confinement fusion (ICF) [20]. The capsule and fuel form a material interface, and the process

of compression with intense x-rays causes the propagation of a shock across this boundary.

This interaction leads to the mixing of the fuel and capsule material and reduction of yield.

The instability has also been proposed as an important mechanism to increase efficiency of

mixing of fuel and oxidant in hypersonic aero-engines [21]. A deeper understanding of shock-

driven mixing is therefore the main objective of investigations of the RMI. The experimental

study of the RMI often involves the use of a shock wave in a shock tube. This is the setting

originally used by Meshkov [24] to experimentally confirm Richtmyer′s theory [38]. Previous

studies of the RMI have used various initial conditions that can be summarised as the follow-

ing: 1) nitro-cellulose membranes [51] that provide a repeatable interface geometry and allow
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for gravitationally unstable configurations to be investigated; 2) membrane-free interfaces in-

cluding vertical gas curtains [31]; 3) gravitationally stable horizontal interfaces perturbed using

oscillations of the entire shock tube [16], pistons [58], loudspeakers [19]; 4) transverse gas in-

jection [56]; and 5) precisely orientable shock tubes that can be rotated to a desired angle from

vertical [22].

Previous studies have used a variety of different diagnostics for quantifying the RMI devel-

opment, including schlieren [51], particle image velocimetry (PIV) [33], correlation image ve-

locimetry (CIV) [36], and planar laser-induced fluorescence (PLIF) [5]. Recent investigations

have combined multiple techniques with high-speed imaging [25, 3, 28]. A comprehensive

review of the state of the art is presented by Zhou [60, 61].

Numerical experiments have explored some of the terms in the transport of kinetic energy

in wavenumber space such as in Cook and Zhou [6] for the RTI case and in Thornber and

Zhou [46] for the RMI case, while a similar study of the combined scalar and kinetic fields

has not been performed to date. The integrated kinetic energy spectrum and density fluctuation

spectrum in the RMI were studied by Schilling et al. [43] and Tritschler et al. [49] using data

from numerical simulations.

The scalar energy spectrum is explored in a number of experimental studies. Weber et al.

[57] and Reese et al. [36] looked at the evolution of the scalar spectrum for the current initial

condition (IC) after a single shock and found a small but growing wavenumber range with a

−
5
3

Kolmogorov scaling. Without access to time-resolved data, a connection to IC structure

could not be made.

Structure functions of the density field of a gas curtain after shock are studied by Tomkins

et al. [48] who found exponents greater than expected by Kolmogorov-Obukhov-Corrsin (KOC)

scaling.
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Data from the high-speed experiments discussed here have been used to analyze the evolu-

tion of moments of the light gas mole fraction field by Noble et al. [28] and the evolution of

the scalar power spectrum and structure functions by Noble et al. [29] and have been used as

an experimental example of an iterative fluorescence correction scheme to extract estimates of

the light gas mole fraction by Herzog et al. [13].

This work begins in chapter 2 with an exploration of the equations of motion that describe

the evolution of the mixing layer, delving into transforming them into forms relevant to the

extraction of insights into different mechanisms. Chapter 3 describes the experimental setup

used for the three sets of experiments and the process of arriving at the setups that were used.

Results derived from the data collected and the analysis described are presented in chapter 4.

The purpose of this work is to push the envelope of knowledge of the RM instability. It

is making an effort to continue to push the description of these flows beyond the traditional

“thickness growth rate” metric that was dictated (for many years) by the limits of diagnostic

techniques. The aim is to first explain why a widely used dimensionless measure of time

evolution is reasonable for interface mixing problems in general, and RM and RT problems

specifically and provide a sound basis for its use. Once the coordinate system is created,

methods that have evolved to analyze canonical turbulence problems are transformed into this

coordinate system so they can be brought to bear on the inhomogeneous anisotropic flow that

results due to the RMI. Mature experimental techniques are combined with new technology

in a novel way to acquire previously unattainable, time-resolved measurements of mixing due

to the RMI . These measurements allow for the evaluation of metrics commonly used in the

study of homogeneous isotropic turbulence (like structure functions, power spectra of the scalar
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and velocity fields, individual terms in the power spectra time-evolution equations) and the

comparison to their HIT counterparts, as well as comparison to computational studies that have

been able to access these metrics for quite a while now. The ultimate objective is to identify

new scalings that apply to these shock-driven flows to aid in the development of models and to

provide benchmarking data for the validation of hydrocodes.
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Chapter 2

Background

2.1 Governing Equations and Normalisation

As a shock wave interacts with a gas interface, it deposits vorticity fluctuations and therefore

velocity fluctuations onto the interface. Starting from the full 3D Navier-Stokes equations

with a convective equation for scalar transport, a set of normalised equations for the time

evolution of moments of the fluctuations is presented. After the shock has passed, the resulting

flow is treated as incompressible as the resulting convective Mach number is small, and so

compressibility effects can be shown to be higher order corrections to the transport equations

[8]. The equations for mass, momentum and light gas mole fraction are:

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

∂(ρu)
∂t

+ ∇ · ρuu = −∇p + ∇ · (µ∇u) (2)

∂(ρξ)
∂t

+ ∇ · ρuξ = ρD∇2ξ (3)

where ρ is the mass density, u is the velocity, p is the pressure, µ the viscosity, D is the mass

diffusivity and ξ is the mole fraction of the light gas. x, y, z are the spanwise, normal and
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streamwise directions, respectively.

In preparation for the analysis of the concentration and velocity fields that are measured in

the experiments, we specialise to 2D and introduce the following non-dimensionalisations:

x = x+W, t = τ
ḣ0

h0
, z = z+h + z0, p = p+ p0, ρ = ρ+ρ0, u = V0 + u+ḣ (4)

where W is a representative spanwise lengthscale (here the width of the shock tube), h =

4
∫ ∞

−∞

ξ(1 − ξ)dz is the mixing width, h0 is the minimum mixing width after reshock, ḣ is the

growth rate, ḣ0 is the growth rate immediately after reshock, p0 is the post-reshock pressure, ρ0

is the light gas post-reshock bulk density, z0 is the mole-fraction weighted centroid of the mix-

ing layer, V0 is the bulk interface velocity and u+ = [u+, v+,w+]T is the normalised fluctuating

velocity. Then equations (1) - (3) rewrite as:

1
Ch

∂ρ+

∂τ
− z+∂ρ

+

∂z+
+
∂ρ+u+

∂x+

h
W

+
∂ρ+w+

∂z+
= 0 (5)

1
Ch

∂w+

∂τ
− z+∂w+

∂z+
+
∂u+w+

∂x+

h
W

+
∂w+2

∂z+
= −

1
γM2

h

1
ρ+

∂p+

∂z+
+

1
Reh

1
ρ+

[
∂µ+

∂x
∂w+

∂x
(

h
W

)2 +
∂µ+

∂z
∂w+

∂z

]
+

1
Reh

1
ρ+

[
∂2w+

∂x+2

( h
W

)2

+
∂2w+

∂z+2

]
−

V̇0h
ḣ2
− w+ ḧh

ḣ2

(6)

1
Ch

∂ξ

∂τ
− z+ ∂ξ

∂z+
+
∂u+ξ

∂x+

h
W

+
∂w+ξ

∂z+
=

1
RehS c

[
∂2ξ

∂x+2

( h
W

)2

+
∂2ξ

∂z+2

]
(7)

where Ch =
ḣ
ḣ0

h0

h
is the dimensionless growth parameter, Mh =

ḣ
c

is the interface Mach

number with c being the speed of sound in the light gas, Reh =
hḣ
ν

is the interface Reynolds
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number and S c =
ν

D
is the interface Schmidt number.

This normalisation transforms the NS equations into the frame of reference moving with

the center of the interface and also scales the equations by the instantaneous mixing width and

the instantaneous growth rate of the interface.

By performing a change of variables using the time varying growth rate parameter,

1
Ch

∂ξ

∂τ
= h+ ∂τ

∂h+

∂ξ

∂τ
= h+ ∂ξ

∂h+
=

∂ξ

∂ ln h+
(8)

ln h+ becomes a measure of time in this system [27], where h+ =
h
h0

is the normalised

mixing width. This allows Eqns. (6-7) to be rewritten as:

∂w+

∂ ln h+
− z+∂w+

∂z+
+
∂u+w+

∂x+

h
W

+
∂w+2

∂z+
= −

1
γM2

h

1
ρ+

∂p+

∂z+
+

1
Reh

1
ρ+

[
∂µ+

∂x
∂w+

∂x
(

h
W

)2 +
∂µ+

∂z
∂w+

∂z

]
+
µ+

Reh

1
ρ+

[
∂2w+

∂x+2

( h
W

)2

+
∂2w+

∂z+2

]
−

V̇0h
ḣ2
− w+ ḧh

ḣ2

(9)

∂ξ

∂ ln h+
− z+ ∂ξ

∂z+
+
∂u+ξ

∂x+

h
W

+
∂w+ξ

∂z+
=

1
RehS c

[
∂2ξ

∂x+2

( h
W

)2

+
∂2ξ

∂z+2

]
(10)

2.2 Spanwise Averaged Moments

The normalised governing equations can be averaged across the width of the shock tube in the

spanwise, or x-direction. This leads to a series of ascending order moment equations for w+,

u+ and ξ. The first-order equations for ξ and p+ and the second-order equations for ξ′2, w+2,
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and u+2 are shown here (Eqs.(12)-(16)). We define the spanwise average of any quantity f as

f =
1
W

∫ W

0
f dx (11)

such that ξ = ξ + ξ′.

∂ξ

∂ ln h+
− z+ ∂ξ

∂z+
+
∂w+ξ′

∂z+
=

1
RehS c

∂2ξ

∂z+2 (12)

∂p+

∂z+
= −γM2

h ρ
+
∂w+2

∂z+
− ρ+ Gz0 (13)

∂ξ′2

∂ ln h+
− z+∂ξ

′2

∂z+
+ w+ξ′

∂ξ

∂z+
+
∂w+ξ′2

∂z+
=

1
RehS c

∂2ξ′2

∂z+2 −Cχ (14)

∂w+2

∂ ln h+
− z+∂w+2

∂z+
+

2
3
∂w+3

∂z+
= −

1
γM2

h

w+

ρ+

∂p+

∂z+
+

1
Reh

1

ρ+

∂2w+2

∂z+2 −
Cε,w

ρ+
−w+2Gh − 2

w+ρ′

ρ+
Gz0 (15)

∂u+2

∂ ln h+
− z+∂u+2

∂z+
+

2
3
∂u+2w+

∂z+
=

1
Reh

1

ρ+

∂2u+2

∂z+2 −
Cε,u

ρ+
(16)

where Gz0 =
V̇0h
ḣ2

is the bulk interface forcing, Gh =
ḧh
ḣ2

is the "fictitious" growth rate

forcing, Cχ =
2

RehS c
ξ′2

λ+2
ξ

is the normalised scalar dissipation, Cε,u =
2

Reh

u+2

λ+2
u

is the nor-

malised spanwise dissipation and Cε,w =
2

Reh

w+2

λ+2
w

is the normalised streamwise dissipation.

λξ, λu and λw are the Taylor scales for the scalar, u and w fields respectively.

In the post-reshock linear growth regime, these extra forcing terms, Gz0 and Gh, which are
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due to the choice of coordinate system, go to zero.

2.2.1 Higher Order Normalised Moments

Equations (12 - 16) describe the evolution of the first and second order moments of the scalar

and velocity fields, however they include derivatives of higher-order mixed moments. The

skewness S ξ and kurtosis Kξ of the light-gas mole fraction spanwise distributions are defined

as

S ξ = M03 =
m03

m3/2
02

(17)

Kξ = M04 =
m04

m2
02

(18)

mi j =
1
W

∫ W

0
w∗iξ′ j dx (19)

The skewness describes the asymmetry about the mean of a distribution. The kurtosis

characterizes how prominent outliers or tails of the distribution are.

Schopflocher and Sullivan [44] explored a two parameter PDF-based model to describe

the appearance of a relationship between the skewness and kurtosis of the scalar field in grid-

generated turbulent plume data. They derived expressions for the skewness, S ξ, and kurtosis,

Kξ in terms of the mean concentration, ξ.

S ξ =
ξ(a3 − 3a2ξ + 2ξ

2
)

(ξ(a2 − ξ))
3
2

(20)
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Kξ =
ξ(a4 − 4a3ξ + 6a2ξ

2
− 3ξ

3
)

(ξ(a2 − ξ))2
(21)

where ai are fitting parameters. This leads to a parabolic relationship of the form

Kξ = AS 2
ξ + B (22)

with the coefficients in general being time dependent. These concepts can be extended to higher

orders leading to a normalised mixed moment tensor

Mi j =
mi j√
w2

i
ξ2

j
. (23)

2.3 Integral Measures

2.3.1 Interface thickness

Reshock Growth Rate Estimate

Here, an extension of previous work by Weber [55] will be considered to allow an estimate

of the post-reshock growth rate ḣ0+ using the pre-reshock growth rate ḣ0− and the reshock IC

concentration field. This is to provide an alternative to models that require fitting parameters

that vary based on the type of IC. Starting with the inviscid momentum equation

∂ρw
∂t

= −
∂p
∂z
, (24)
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and the vorticity transport equation with only the baroclinic term

∂ω

∂t
= −

1
ρ2

∂p
∂z
∂ρ

∂x
(25)

leads to

∂ω

∂t
=

1
ρ2

∂ρw
∂t

∂ρ

∂x
. (26)

Second order terms here constitute about a 5% difference in the resulting estimate. Inte-

grating over the interaction time leads to

ω =
∆V0

ρ

∂ρ

∂x
(27)

where ∆V0 is the change in interface translational velocity due to the interaction of the shock

wave with the interface. Equation 27 expands into

∂w′

∂x
−
∂u′

∂z
= −

∆V0

ρ

∂ρ

∂x
. (28)

Combining with the compressibility condition then an equation for the Laplacian of w′ can

be constructed:

~∇2w′

∆V0
=
∂2 ln (ρ/ρ0)

′

∂x2 . (29)

Then assuming spanwise fluctuations are of a high enough frequency and that the interface

is diffuse such that spanwise gradients dominate this can be approximated as:

w′

∆V0
= −(ln ρ/ρ0)′ (30)
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which leads to an estimate of the initial growth rate immediately after wave interaction of

ḣ0+

∆V0
= 8

∫ ∞

−∞

(ln ρ/ρ0)′ξ′
∂ξ

∂z
dz −

ḣ0−

∆V0
. (31)

All the quantities in Eq.(31) were be measured experimentally and this model is compared

to experimental data in Chapter 4.

2.4 Spectral Analysis

2.4.1 Power Spectra

The power spectrum of a given quantity describes how the energy of that quantity is distributed

in wavenumber space, i.e. how much energy is contained in structures of a given scale. Here,

the transport equations for the scalar energy and kinetic energy spectra are derived and each

term described and its underlying physical mechanism elucidated. The distribution of energy in

scale space is of interest in and of itself, however understanding the physical mechanisms that

develop this distribution is also of interest, especially how these mechanisms may be affected

by changes in IC structure and parameters such as Mach number and Atwood number. Fol-

lowing Thornber and Zhou[46] by introducing 3i =
√
ρ+u+

i and taking the Fourier transform(
f̂ (k+

x , z
+, ln h+) = Fx+[ f (x+, z+, ln h+)]

)
of Eqs.(9 and 10), and multiplying by the complex

conjugate of the Fourier transform of each variable, an evolution equation for the scalar and
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velocity power spectra (Eξ = ξ̂ξ̂∗ and Ew = 3̂+3 3̂
+
3

∗

) can be found

∂Eξ

∂ ln h+
− z+

∂Eξ

∂z+
+ P + Txξ + Tzξ = Dxξ +Dzξ − χξ (32a)

∂Ew

∂ ln h+
− z+∂Ew

∂z+
+ Txw + Tzw = −Hw + Gx + Gz +Dxw +Dzw (32b)

with each term defined in Table 1. The transport terms can be represented as gradients of

flux such that the inhomogeneous flux πz is defined implicitly as

∂πz

∂z+
= Tz (33)

and the homogeneous flux πx may be defined implicitly as

∂πx

∂k+
x

= Tx (34)

Following Schilling et al. [42], to find a representative scalar power spectrum and kinetic

energy spectrum, the spatially varying spectra are integrated in the inhomogeneous streamwise

direction as described by

Λξ(k+
x , h

+) =

∫ ∞

−∞

Eξ dz+ (35)

Λw(k+
x , h

+) =

∫ ∞

−∞

Ew dz+ (36)

where the limits are ±∞ rather than the bubble and spike heights that were used by Schilling

et al.

The terms defined in Table 1, for both Eξ and Ew can be described as follows:
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Eξ Ew

Production P ,+w]ג ξ] ∂ξ
∂z+ N/A

Transport Tx
h
Wג

[
∂u+ξ
∂x+ , ξ

]
1
2

h
Wג

[
1√
ρ+

∂3133
∂x+ , 33

]
Transport Tz ג

[
∂w+ξ
∂z+ , ξ

]
1
ג2

[
1√
ρ+

∂3333
∂z+ , 33

]
PressureHw N/A 1

γM2
h
ג
[

1√
ρ+

∂p+

∂z+ , 33

]
Momentum Diffusivity
Gradient Gx

N/A
( h

W
)2 1

Reh
ג
[

1√
ρ+

∂µ+

∂x+
∂w+

∂x+ , 33

]
Momentum Diffusivity
Gradient Gz

N/A 1
Reh

ג
[

1√
ρ+

∂µ+

∂z+
∂w+

∂z+ , 33

]
DiffusionDx

−2k+2

RehS c
( h

W
)2Eξ

( h
W
)2 1

Reh
ג
[

1√
ρ+
µ∂

2w+

∂x+2 , 33

]
DiffusionDz

1
RehS c

[
∂2Eξ
∂z+2

]
1

Reh
ג
[

1√
ρ+
µ∂

2w+

∂z+2 , 33

]
Dissipation χ 1

RehS c

[
∂̂ξ
∂z+

∂̂ξ∗

∂z+

]
N/A

Table 1: Terms in scalar and kinetic energy spectra transport, where [F,G]ג = F̂∗Ĝ + F̂Ĝ∗
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1. ProductionP - Fluctuations of the scalar field feed off the mean scalar gradient producing

fluctuating "scalar energy".

2. Fictitious transport - This term is the second term in Eqs.(32a and 32b) and is an artifact

of the choice of coordinate system. This term accounts for the transport of fluctuations

due to the growth of the thickness of the mixing layer.

3. Homogeneous transportTx - This is transport of fluctuating energy in wavenumber space,

it transports energy from large scale structures to smaller scales and vice-versa.

4. Homogeneous transportTx - This is transport of fluctuating energy in wavenumber space,

it transports energy from large scale structures to smaller scales and vice-versa.

5. Inhomogeneous transport Tz - Transport of energy in the vertical direction due to non-

linear interaction of fluctuations.

6. Pressure transport Hw - Pressure is not measured in this work, so this term cannot be

calculated. This term represents the effect of pressure fluctuations on the kinetic power

spectrum and is one of the components that drives a return to isotropy of incompressible

flows [4].

7. Diffusivity gradient Gx + Gz - A dissipation-like term, though not positive definite, the

interplay between gradients of diffusivity and the velocity field allow destruction of ki-

netic energy or addition of energy through interaction with the scalar field depending on

the orientation of the gradients of the two fields.

8. Homogeneous diffusionDx - Transport in wavenumber space due to molecular diffusion.

9. Inhomogeneous diffusion Dz - Diffusion of energy due to molecular processes in the

streamwise direction due to gradients in the inhomogeneous direction.
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10. Dissipation χ - Diffusive destruction of energy due to interaction of gradients of fluctua-

tions.

The spectral slopes are defined as

ζξ =
∂lnEξ

∂lnk
|k=kλξ

(37a)

ζw =
∂lnEw

∂lnk
|k=kλw

(37b)

where the derivatives are evaluated within the inertial range at the Taylor microscale wavenum-

ber.

2.4.2 Energy Partition: concentration only

To analyse the total change in energy over a given time, each term in the transport equation

is integrated over dimensionless time (ln h+) to the latest time available in all HS experiments,

h+ = 8, resulting in Eqs. (38)-(40). These allow an analysis of the different contributions to the

total change in the energy spectra.

Tξ(z+, k+
x ) =

∫ ln 8

0
z+
∂Eξ

∂z+
d ln h+ (38)

Πξ(z+, k+
x ) =

∫ ln 8

0

(
Txξ + Tzξ + P

)
d ln h+ (39)

Dξ(z+, k+
x ) =

∫ ln 8

0
Dxξ + Dzξ d ln h+ (40)
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Xξ(z+, k+
x ) =

∫ ln 8

0
χξ d ln h+ (41)

This leads to a form of the scalar power spectrum transport equation that has been integrated

over dimensionless time. Each of these terms can be considered separately to identify its

contribution to the total change in energy:

∆Eξ = Eξ |h+=8 − Eξ |h+=0 = Tξ −
1
2
∂Πξ

∂k+
x

+ Dξ − Xξ (42)

2.4.3 Energy Partition: velocity and concentration

For HSS experiments, if both velocity and mole fraction can be measured, then more terms in

the transport equations may be directly analyzed. Then, to analyse the total change in energy

over a given time, each term in the equations for velocity and scalar transport is integrated over

dimensionless time (ln h+) to the latest time available in all experiments, h+ = 5, resulting in

Eqs. (43)-(49). These allow an analysis of the different contributions to the total change in the

energy spectra.

Pξ(z+, k+
x ) =

∫ ln 5

0
−P d ln h+ (43)

Txξ(z+, k+
x ) =

∫ ln 5

0
Tx,ξ d ln h+

Txw(z+, k+
x ) =

∫ ln 5

0
Tx,w d ln h+

(44)

Πzξ(z+, k+
x ) =

∫ z+

−∞

∫ ln 5

0
Tz,ξ d ln h+ dz+

Tzw(z+, k+
x ) =

∫ ln 5

0
Tz,w d ln h+

(45)
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Gw(z+, k+
x ) =

∫ ln 5

0

(
Gx + Gz

)
d ln h+ (46)

Dxξ(z+, k+
x ) =

∫ ln 5

0
Dk,ξ d ln h+

Dxw(z+, k+
x ) =

∫ ln 5

0
Dk,w d ln h+

(47)

Dzξ(z+, k+
x ) =

∫ ln 5

0
Dz,ξ d ln h+

Dzw(z+, k+
x ) =

∫ ln 5

0
Dz,w d ln h+

(48)

Xξ(z+, k+
x ) =

∫ ln 5

0
χξ d ln h+ (49)

This leads to a form of the scalar and kinetic power spectra transport equations that have been

integrated over dimensionless time. Each of these terms can be considered separately to iden-

tify its contribution to the total change in energy:

∆Eξ = Pξ − Txξ −
∂Πzξ

∂z+
+ Dxξ + Dzξ − Xξ (50a)

∆Ew = −Txw − Tzw − Hw + Gw + Dxw + Dzw (50b)
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2.4.4 Structure Functions and Exponents

A different, but related, measure of the distribution of energy in scale space is the analysis of

the structure function. Defining the pth-order structure function as

S ξ,p(z+, r+, h+) = δξp = (ξ2 − ξ1)p = (ξ(x+ + r+
x ) − ξ(x+))p = (ξ(X+ + r+

x /2) − ξ(X+ − r+
x /2))p,

(51)

and using Eq. (10), a Karman-Howarth-Monin type transport equation can be derived fol-

lowing the example of Hill [14] and Gauding et al. [10]. Here r+
x =

rx

W
is the two-point

separation in the spanwise direction; the subscripts 1 and 2 refer to point one and point two

where point one is at the x+ location while point 2 is offset by the separation r+ and X+ is the

average location between point one and point two. The result is

∂S ξ,p

∂ ln h+
− z+

∂S ξ,p

∂z+
+ TS ,p + PS ,p = DS ,p − χS ,p + χXp (52)

with the terms defined in Table 2 and Eq.(53)

χS ,p =
1

RehS c

[
p(p − 1)δξp−2

(
∂ δξ

∂z+

)2

+ p(p − 1)δξp−2
(
∂ δξ

∂r+

)2

+ δξp−2
(
∂ δξ

∂X+

)2( h
W

)2]
(53)

where the Yaglom equation derived in [10] is extended to allow inhomogeneity in the

streamwise direction. A Yaglom equation is the scalar equivalent of a Karman-Howarth-Monin

equation for the transport of the pth-order structure function.

Following the same idea as with the power spectra, the structure function is integrated in
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the streamwise direction such that

Zξ,p =

∫ ∞

−∞

S ξ,p dz+ (54)

S ξ,p

Production P p δξp−1 δw+
∂ξ

∂z+

Transport T
∂

∂r+

[
p[(u+ξ′)2 + (u+ξ′)1] δξp−1] +

∂

∂z+

[
pδ(w+ξ′) δξp−1]

DiffusionD
1

RehS c

[∂2S ξ,p

∂r+2

( h
W

)2

+
∂2S ξ,p

∂z+2

]
Dissipation χ Eq.(53)

Dissipation χX
−1

RehS c
pδξp−1

(
∂ (ξ2 + ξ1)
∂r+∂X+

)
Table 2: Terms in structure function transport

The power law behaviour of the integrated structure function is described by

ζξ,p =
∂ ln Zξ,p
∂ ln r+

x
|r+

x =λ+ (55)

which takes a constant value at intermediate separations over a large range of p. Obukhov-

Corrisin scaling of the light gas mole-fraction field implies that ζξ,p =
p
3

. Kraichnan proposed

to use a model for the diffusion of scalars which led to a scaling of ζξ,p ∝
√

p for large p.
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2.5 Filter based analysis

2.5.1 Mechanisms of scale-to-scale transport

An alternative approach to exploring scale-to-scale interactions employs a filter-based analysis.

Here, the treatment provided by Johnson [15] to the velocity field is extended to the scalar field.

A filter, Gl, is convolved with the scalar field.

ξ
l
= Gl ∗ ξ (56)

Here a Gaussian filter is used, defined as:

G = N ∗ exp
(
−(x+2 + z+2)/(2l+)2

)
(57)

whereN = (2πl+2)−3/2 is the normalization parameter. Applying Eq. (56) to Eq. (10) leads

to an evolution equation for the filter scale scalar energy (El
ξ =

1
2
ξ

l
ξ

l
)

∂El
ξ

∂ ln h+
− z+

∂El
ξ

∂z+
+
∂T l

ξ,i

∂x+
i

= −Πl − El (58)

with Πl = −σl
jξ

l
, j and σl

j = u jξ
l
− u j

lξ
l
. The scale space transport flux T l

ξ,i and scale space

diffusion term El describe resolved interactions at the filter scale. To analyse the subscale

contributions, and following [15], if Gl is a Gaussian filter then σl
j can be written as the solution

of a forced diffusion equation,

∂2σl
j

∂l2 =
1
2
∇2σl

j + A
l
jkξ

l
,k (59)

with A jk =
∂u j

∂xk
being the velocity gradient tensor.
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Using the decomposition of the velocity gradient tensor A jk = S jk + Ω jk, where S jk is the

strain rate tensor and Ω jk is the rotation tensor, the following contributions to the scale-to-scale

transport term can be identified:

Πl
ls = −l2S

l
ikξ

l
,iξ

l
,k (60a)

Πl
nls = −ξ

l
,i

∫ l2

0
S
√
θ

ik ξ

√
θ

,k

√
φ

− S
√
θ

ik

√
φ

ξ

√
θ

,k

√
φ

dθ (60b)

Πl
nlΩ = −ξ

l
,i

∫ l2

0
Ω

√
θ

ik ξ

√
θ

,k

√
φ

−Ω

√
θ

ik

√
φ

ξ

√
θ

,k

√
φ

dθ (60c)

such that Πl = Πl
ls +Πl

nls +Πl
nlΩ with Πl

ls being the scale-local strain contribution, Πl
nls being

the non-local strain contribution which is the contribution of strain from scales below the filter

scale, and Πl
nlΩ being the contribution to transfer due to subfilter vorticity. In Eq. (60a) ξ

l
,k is

the derivative of the filtered scalar field in the xk direction, φ = 1−θ, and θ is a dummy variable

for the filter length scale.

2.6 Length Scales

Length scales in the context of power spectra are considered: both the integral scale L and the

Taylor microscale λ of a given spectrum are defined via functions of the spectrum such that
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L =

∫
E
k

dk∫
E dk

(61a)

λ2 =

∫
E dk∫

k2E dk
(61b)

Then the bandwidth of both the scalar spectra and the density-weighted kinetic spectra can

be defined to provide a coarse measure of how energy is distributed between scales:

ReτS cτ =
(L
λ

)2

ξ
=

( ∫ Eξ

k
dk

)2( ∫
Eξk2dk

)
( ∫

Eξdk
)3

(62a)

Reτ =
(L
λ

)2

w
=

( ∫ Ew

k
dk

)2( ∫
Ewk2dk

)
( ∫

Ewdk
)3

(62b)

Here Reτ is an effective ”turbulence” Reynolds number and S cτ is an effective "turbulence"

Schmidt number.

S cτ =

(
L
λ

)2

ξ

(
λ

L

)2

w

. (63)

The definitions of Reτ and ReτS cτ here come from homogeneous isotropic turbulence (HIT)

and describe the bandwidth of the respective spectra. This is a measure of the breadth of

wavenumber space accessed. S cτ here becomes a measure of the difference in bandwidth

between the scalar spectrum and the kinetic spectrum. In HIT, where a statistical equilibrium
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is reached, the material Schmidt number would determine the behaviour of the scalar spectrum

compared with the kinetic energy spectrum. In the present case, the system cannot be said to be

at statistical equilibrium, thus the material Schmidt number does not necessarily prescribe how

the scalar spectrum behaves. Therefore the instantaneous effective turbulent Schmidt number

S cτ is used here in place of the material Schmidt number.

2.7 Previous Results

Wong et al. [59] performed an analysis of second order moments and their budget equations

after shock and reshock from a simulation of a Ms = 1.45 shock in air and SF6 with an Atwood

number of At = 0.68. Their focus was on the application of LES simulations on development

and validation of RANS models.

Ristorcelli and Clark [40] derived self-similar transport equations of the form of Eqs.(5-7)

but did not perform the change of variables to show that ln h+ becomes a measure of time in

self-similar coordinates. In their work, they laid out the time evolution of centerline values

for a number of spanwise averaged fields, such as the variance, skewness and kurtosis and

Taylor scales as well as deriving predictions of self-similar evolutions of length scales. The

prediction of inverse bandwidth, here defined as
λ

L
, was shown to scale as h+− 3

4 . Skewness

and kurtosis of both the scalar field and the streamwise velocity field were shown to collapse

to a function of the scaled streamwise coordinate. This collapse of higher order moments in

mixing flows was investigated by Schopflocher and Sullivan [44] who proposed a probability

density function (PDF)-based model to account for this behaviour and the observed quadratic

relationship between the skewness and kurtosis of the scalar field.

Schilling et al. [42] performed simulations of reshock of a two-dimensional single mode

interface and investigated the resulting power spectrum evolution. Regions of −
5
3

scaling at
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small wavenumbers and −3 scaling at larger wavenumbers were identified in the kinetic energy

spectrum, with only a small region of −
5
3

scaling identified for the density spectrum at smaller

wavenumbers and no scaling highlighted for larger wavenumbers.

Reese et al. [36] and Weber et al. [57] performed measurements of the RMI post-shock and

observed similar small regions of −
5
3

scaling for the scalar power spectrum.

Vorbieff et al. [52, 53] explored the evolution of the second order structure functions for a

shock-gas cylinder interaction and a shock-gas curtain interaction respectively. The late time

velocity structure function for the cylinder case shows a
2
3

slope indicative of Kolmogorov

scaling pointing toward the existence of an inertial subrange. For the second order scalar

structure function for the gas curtain case, the time evolution of the second order exponent is

shown to trend toward KOC scaling but level out at a value above the KOC scaling of
2
3

.

Ranjan’s group at the Georgia Institute of Technology have performed high spatial resolu-

tion, low time resolution, simultaneous PIV and PLIF measurements of the RMI after reshock

[25, 26] as well as high speed simultaneous PIV and PLIF measurements [3]. Single-shot

experiments were analysed with a range of integral measures such as mixing width, mixed-

ness and mixed mass, with the commonly found behaviours of linear growth of thickness after

reshock and of the tending to a constant of the mixedness. Also presented were the evolu-

tion of some spectral quantities such as the kinetic energy spectrum which showed regions

of Kolmogorov scaling, whereas no such region in the density power spectrum was evident.

The second order structure function for streamwise velocity was also presented and shown to

have a
2
3

scaling while the second order density structure function did not have a KOC scaling

region. The high-speed study was able to show qualitative agreement between the extracted

velocity data and the evolution of the scalar field with vortical structures aligning well with

bulk structure evolution and was one of the first such studies to show the viability of such
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measurements.
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Chapter 3

Experiment

3.1 The Shock Tube

Experiments are conducted in a 9.2 m long vertical, downward-firing shock tube with a square

internal cross-section (25.4 cm sides) described by Anderson et al. [1]. To prepare for a run,

the driver section is filled with nitrogen to ∼80% of the rupture pressure of a 16 gauge steel

diaphragm. This diaphragm sits on a set of steel blades in the shape of a cross that cause the

rupture to occur along the edges of the blades. When the rupture occurs, the diaphragm is split

into four petals that are bent down against the sides of the diaphragm section at high velocity. In

preparation for a run, the driven section is pumped down to a vacuum pressure of 6.9 kPa, then

a stagnation plane is formed by flowing a helium-acetone mixture downward from just below

the diaphragm (point A in Fig. 1) and flowing argon upward from just above the end wall of

the shock tube (point B in Fig. 1). While the stagnation plane is being formed, the vacuum

system is closed to allow the tube to approach the desired pressure as quickly as possible to

minimise contamination by air leaking into the system.

Once the stagnation plane is formed and the pressure in the tube is at about 7 kPa above

atmospheric pressure, the vacuum system is turned on and a shear layer is created by flowing

gas through the assembly shown in Fig. 2. A planar jet of argon is injected slightly above the

stagnation plane, and a planar jet of the helium-acetone mixture is injected slightly below the

stagnation plane. The resulting gravitationally unstable shear flow develops Kelvin-Helmholtz
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Figure 1: Diagram of the Wisconsin shock tube and an enlarged view of the test section.
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Figure 2: Schematic of the slots used to create the initial condition, taken from Ref [54].
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structures that provide the diffuse multimode perturbations that constitute our initial condition.

The pressure inside the tube is now at a steady state with excess gas being extracted at the

interface by the vacuum system. This steady state is allowed to persist for 15 minutes to allow

any air initially mixed in with the desired gases to be removed from the system.

3.1.1 Changing The Shock Tube Configuration

Previous experiments conducted in the Wisconsin shock tube by Weber [57] and Reese [36]

were performed using configuration (a) in Fig. 3. This configuration was not viable for reshock

studies since the interface did not enter into any of the viewing windows after reshock.

Two subsequent configurations were explored using a 1D gas dynamics code developed by

Oakley [30]. Configuration (b) removed the bottom section of the tube such that a window

was now available at the bottom of the shock tube. As can be seen from Fig. 3(b) this does

not solve the issue as the interface now only enters a viewing window after reshock after it has

interacted with multiple waves.

Configuration (c) in Fig. 3 was finally chosen where the main test section is now im-

mediately above the end wall. This configuration provides an extended period after reshock

when the interface is within the bottom window and remains stationary. This is useful to allow

high-speed imaging in a single window.

3.1.2 Mach Number and Composition Estimation

Along the length of the tube are 12 piezoelectric pressure transducers (PTs) connected to a

National Instruments data acquisition system. This set of PTs records the pressure wave pattern

for a given experiment. One of the PTs is positioned (point C in Fig. 1) directly above the level

of the initial condition. The signal generated by the passage of the incident shock past this PT
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is used as the trigger for all subsequent experimental operations.

The recorded PT data is used to generate a z − t diagram, such as in Fig. 4, that tracks

the position of the incident shock, the transmitted shock and the reflected shock. This z − t

diagram allows the extraction of the speed of each wave. 1D gas dynamics (GD) can then be

used, with these wave speeds as an input, to estimate the composition of the light gas (allowing

for the presence of air and the run-to-run variation of acetone concentration), shock strength

and relevant bulk gas temperatures, pressures and densities.

Using the predicted composition and initial shock strengths, these predictions can be fur-

ther tested with a 1D shock tube simulation that generates a pressure, temperature and mole

fraction field which can then be compared to the interface location determined from PLIF mea-

surements.

The plot in Fig. 4 shows a composite of three z−t diagrams. The teal line depicts the 1D GD

estimate of interface location from PT data, the red line shows the interface location predicted

by 1D GD finite volume simulation while the pink line is the measured interface location from

HS PLIF. The discrepancy between the red and pink lines at later times is likely due to the

mixing width growth of the interface being large in this particular experiment such that some

of the interface is out of the field of view meaning that the estimate of the interface centroid

may not be accurate. The black contour lines highlight wave interactions with the thick black

lines showing shock trajectories. The results of the 1D simulation are overlaid on-top of the

locations measured with the PTs showing agreement between measured and predicted shock

and interface locations. This offers encouragement that the 1D GD predictions of composition

are accurate.
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Figure 4: Example combined z − t diagram. Blue solid line - interface location from 1D GD,
red solid line - interface location from 1D finite-volume simulation, pink solid line - interface
location from PLIF measurements, dashed lines - observation windows.
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3.1.3 Choosing Gas Composition For High Mach Number Experiments

To attempt a change in Mach number with the current shock tube configuration required an

exploration of the controllable parameter space, which was the acetone mole fraction and the

argon mole fraction in the helium mixture. This determined the feasibility of the interface

residing in the field of view for a reasonable duration, and residing close to the center of the

window so a minimal amount of the interface would be cut off as the interface thickness grew.

A design of experiment (DOE) study was performed using an in-house 1D gas dynamics finite

volume code. This produced a measure of the residence time of the interface in the window

of interest and a measure of the mean location of the interface within the window. Optimal

interface evolution was provided by a 97% helium and 3% acetone mixture by mole fraction.

3.2 PIV

For SS experiments, single image pairs were acquired for each experiment. For these, parti-

cle image velocimetry (PIV) is performed using TSI Inc’s Insight 4G program following the

procedure described by Reese et al. [37].

For HSS experiments, 90-150 actionable frames of particle images are collected per exper-

iment. To enable the batch processing of videos within MATLAB, the PIVLab plugin [45] was

used.

As described by Scharnowski and Kähler[41] the optimal range of particle radii for PIV

is between 1 px and 1.5 px. The lower bound avoids the effects of peak locking and the up-

per bound reduces the effect of random uncertainties on identifying a correlation peak. Figure

5 shows a representative distribution of particle sizes for SS (left) and HSS (right) experi-

ments showing the mean of the distribution for both campaigns lies in the recommended range.



35

Figure 5: Particle radius distribution from SS and HSS experiments

These distributions were calculated using a distance transform watershed method on a subset

of background-subtracted particle images from each campaign.

3.3 PLIF

3.3.1 Acetone Modelling

Moving to reshock conditions, which have higher temperatures and pressures, affects the pho-

tophysical and chemical properties of acetone. Estimates of the expected effect on signal to

noise ratio (SNR) and on acetone decomposition needed to be made.

To estimate the amount of acetone decomposition, the MATLAB interface to the Can-

tera software package [12] was used along with the, detailed n-heptane mechanism developed

at Lawrence Livermore National Laboratory (LLNL) [23] that contains acetone as one of its

species. A steady approximation was made using a constant pressure reactor module as a model

for the expected environment, and the initial properties of the reactor were set to the conditions
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Figure 6: Acetone decomposition after 5 ms. a) and c) 5% acetone mole fraction and argon
mix; b) and d) 5% Acetone mole fraction, argon and 5% air mix.

derived from 1D GD for a given Mach number and acetone concentration.

The results of these calculations for a range of initial shock strengths, M, can be seen in

Fig. (6). The pre-shock acetone mole-fraction is taken to be 5%. The plot shows that for the

Mach number (Ms = 1.8) used in the current experiments, even after reshock, only negligible

amounts of decomposition are expected.

With confidence that the observed signal will be acetone fluorescence, now an attempt

is made to estimate the expected signal to noise ratio (SNR). Figure 7 shows plots of SNR

generated using the excitation model of Thurber et al. [47], assuming an acetone mole fraction
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Figure 7: Predicted signal to noise ratio (SNR) for 3% acetone concentration, 30 mJ/pulse laser
energy and using the Phantom V1210 camera. SNR is plotted as a function of Mach number M
and laser wavelength λ for a) shock and b) reshock conditions. The white cross in a) denotes
the conditions of the PLIF jet test experiments (Sec. 3.8.1), the white plus in b) denotes the
experiment parameters for the HS and HSS experiments.
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ξacetone = 0.03 and a laser energy of 30 mJ/pulse. The left plot in Fig. 7 is a contour plot of

SNR in post-shock conditions for a given shock strength M and laser excitation wavelength λ.

The right plot is a similar contour plot of SNR but for post-reshock conditions. The SNR plot

on the right of Fig. 7 provides some confidence that reshock experiments at M = 1.8 using a

wavelength of λ = 266nm with an acetone concentration of 3% will provide actionable PLIF

data.

3.3.2 Iterative PLIF correction

Figure 8 shows a block diagram representation of the algorithm developed by Herzog [13] that

is used to iteratively correct the raw signal PLIF images and extract mole fraction fields.

The inputs to the algorithm are the acquired PLIF signal and the pressure and temperature

derived from 1D GD. Assuming constant photo-physical properties, then purely from the PLIF

image, an initial estimate of the number density of acetone can be calculated:

Ninit

N0
=

S
S 0

[
1 + N0σ0

∫ r

r0

S
S 0

dr′
]−1

(64)

where N is the particle number, σ is the absorption cross-section, r is the distance along a

ray and S is the signal. The product N0σ0 can be estimated directly from the PLIF image as

long as a region of uniform acetone concentration can be identified, then, using Beers law, an

exponential can be fitted to the signal decay in this region. This estimate of number density

can then be used to estimate the temperature field:

T =

∑m
i=1 YicpiTi∑m

i=1 Yicpi
(65)

with Yi being the mass fraction of species i, and cpi being the mass-specific heat capacity
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Figure 8: Diagrammatic representation of iterative PLIF correction algorithm.
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of species i. This temperature field can then be used with a model by Thurber [47] to calculate

fluorescence quantum yield Φ and with a curve fit by Koch [17] to calculate absorption cross

section σ. The updated photo-physical parameters now allow the use of the full number density

calculation:

N
N0

=
Φ0S
ΦS 0

σ0

σ

[
1 + N0σ0

∫ r

r0

Φ0S
ΦS 0

dr′
]−1

(66)

This procedure of calculating an updated temperature field to calculate Φ and σ to then

calculate an updated N/N0 is repeated until the change between iterations is below a given

threshold. Typically 10 iterations provide good convergence. The acetone mole fraction ratio,

and then the light gas mole fraction ξ, can then be found by:

ξ =
ξacetone

ξ0
=

N
N0

T
T0

(67)

3.4 Image registration

Image registration to align coordinate systems of PLIF and PIV results is required to allow

the analysis of terms that involve both density and velocity components. The process used is

described by Reese et al. [37].

Figure 9 shows the initial step of manually choosing control points (CPs) (3 are shown for

example, but 12 are used in practice) in the target image captured by both cameras in the HSS

campaign. The procedure for SS data is the same. The CPs in the Phantom image is chosen

as the moving points while the Photron CPs are the fixed points. These manually selected CPs

are then tweaked with a correlation step that attempts to match structures in each image. These

CPs are then used to estimate the required geometric transformation matrix that can be applied
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Figure 9: Left: Phantom camera target image. Right: Photron camera target. Coloured circles
are example control points.

to translate, scale and rotate the moving frame into the fixed CPs’ coordinate system.

3.5 Material transport calculations

For each experiment we are able to calculate bulk temperatures and pressures from 1D gas

dynamics calculations using the pressure transducers located along the length of the shock

tube.

To achieve an accurate estimate of the terms in Eq.(32a) the material transport properties

ν (momentum diffusivity) and D (mass diffusivity) need to be calculated, not just as single

values, but as fields. Here the methods and parameters given in Appendix A of [49] are used

to calculate the required terms in Eq.(32a).

Figure 10 shows the resulting values of these fields taken at the ξ = 0.5 level as a function
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Figure 10: Material transport calculations. the ’+’ symbols indicate the experiment conditions.
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of Mach number and Atwood number. These are shown to demonstrate the variation in the

parameter space and to highlight the representative values seen in these experiments. Figure

10e) shows an estimate of the initial re-shock Reynolds number Reh =
h0ḣ0

ν
. This is estimated

using the calculated Atwood number and viscosity and the Mikaelian re-shock growth rate es-

timate
ḣ0

∆V0
= CmA with Cm = 0.23. The representative values, shown here, and specifically the

value at the conditions explored in the present work (denoted by the bold cross), are above the

Reynolds number proposed by Dimotakis [7] as the limit above which transition to turbulence

can be expected.

3.6 Initial Condition

The IC utilized here was developed and analyzed by Weber [54]. Once the gas composition

was set by design of the experiment to allow imaging at high speed for an extended time, the

IC had two parameters to vary to control the IC seen by the initial shock wave.

These two parameters are the relative flow rates of the two gas streams. These can be

manipulated into two dimensionless parameters, the Froude number Fr =
um
√

gL
describing the

competition between the shear of the total jet of fluid and gravity, and the injection anisotropy

β =
u2 − u1

u2 + u1
encapsulating the difference between the two individual flow rates. Here u1 is the

flow velocity of the bottom helium/acetone mixture and u2 is the velocity of the top argon jet.

um then is the average of the two velocities.

A subset of this two parameter space was explored and the results are plotted in Fig. 11.

Low Froude number and zero anisotropy lead to a diffuse interface but very long wavelength

perturbations, a moderate increase in Fr and then a non-zero β however leads to interesting

multimode diffuse perturbations. Increasing Fr too much with a negative β then lead to a more

diffuse and long wavelength perturbations. A sweet-spot was chosen with a moderate Fr of 0.6
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Figure 12: Measured normalized kinetic energy K =
√
ρw

2

and a negative β of −0.5.

One of the parameters of interest once the IC conditions are set is its potential effects on

the development of the RM instability. Figure 12 plots the specific fluctuating kinetic energy,

normalized by the bulk interface velocity jump due to the shock. For the parameters chosen,

the peak energy is about 2% of the potential deposited kinetic energy.

3.7 Single Shot Experiments

A set of single-shot experiments were conducted in the WiSTL shock tube using PLIF and

PIV to measure the 2D concentration and velocity fields in a vertical cross section of the flow,
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Figure 13: Parameters of single-shot experiments with space-time locations overlaid on a con-
tour plot of log10( P

P0
). PS3 here refers to data collected by Reese et al [36]. The third time

recorded by Reese acts as an initial condition to the present work after reshock.
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respectively. An excimer laser produced a 308 nm beam that was used to excite acetone to

fluoresce, while a dual head Nd:YAG system was used to generate 2 pulses of 532 nm separated

by 20 µs. The beams were turned into diverging laser sheets, with a diverging angle of 30◦ and

a waist of 0.7 mm. The PLIF image was timed such that the excimer laser was fired half way

between the two Nd:YAG laser pulses. This provided three images per experiment run that

consolidated into two measurements, one of concentration and one of two-component velocity.

Twenty experiments were performed for each of the four post-reshock times shown in Fig. 13.

3.8 High-Speed PLIF Experiments

Ms A+ A++ Reh0

HS1 1.88 0.320 0.323 2.6x104

HS2 1.89 0.320 0.326 2.5x105

HS3 1.93 0.268 0.266 3.0x105

HS4 1.94 0.253 0.247 4.7x104

HS5 1.96 0.230 0.221 1.8x104

HS6 1.90 0.306 0.312 7.8x104

HS7 1.99 0.191 0.170 2.5x104

HS8 1.95 0.244 0.236 1.9x104

Table 3: Parameters of high-speed experiments.

A series of eight high-speed experiments were performed using a pulse-burst laser system

that delivered a pulse train of 10 ms duration at a repetition rate of 20 kHz. The system

amplifies the output of an Nd:YVO4 oscillator laser in two Nd:YAG amplification stages. The

fourth harmonic at 266 nm is used in the experiments with an average total energy of 30 mJ

per pulse. The resulting fluorescence signal was captured with a Phantom V1210 high-speed

camera at 20,000 frames per second for a duration of 10 ms. An example of the resulting

concentration fields can be seen in Fig. 14. The parameters of each of the 8 experiments are
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shown in Table 3.

3.8.1 The possibility of high-speed PLIF

With Professor Rothamer having engineered a high-speed laser system, it became a possibility

to study the RMI in a time-resolved fashion. The system was designed to emit 266 and 532 nm

wavelengths which, as Fig. 7 shows, is away from the peak SNR for the reshock conditions, but

still delivers a useable SNR. To validate the SNR estimate, a set of experiments were conducted

to prove the feasibility of performing high-speed PLIF at STP conditions. These consisted of

PLIF imaging of a circular jet of a nitrogen-acetone mixture with 3% acetone.

Figure 15 shows the results of these experiments. The plot is of SNR taken in the exit

region of the jet. The initial low SNR in the first 5 frames can be seen as an initial low energy

per pulse. At frame 5 we see a strong signal but the beam profile is not uniform and as such

the region measured has low signal. By frame 25 the beam profile becomes more uniform and

reaches a peak energy and slowly decays. The average energy per pulse here was 24 mJ/pulse

and the average SNR here matches well the value of the SNR at the point marked by a cross in

Fig. 7. This result gave confidence that high-speed PLIF could be performed and it provided

confidence that the model used to predict SNR provides accurate results.

3.8.2 Acetone seeding system

The run-to-run variation in Mach number and Atwood number in HS experiments was due to

a hard to control acetone seeding system that relied on the pressure of the helium line feeding

into the acetone bath to set the concentration of acetone. This pressure was liable to fluctuations

if other valves and rotameters were not controlled precisely. A carefully controlled system was

developed by Alex Ames (another graduate student) and deployed.
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Figure 15: Signal-to-noise ratio as a function of frame number for a validation run using a
nitrogen jet with 6% acetone. Images on the right show representative raw counts from the
phantom V1211.
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Figure 16: Updated acetone vaporizing seeding system

The new acetone injection system makes use of an Alicat mass flow controller and an Alicat

liquid flow controller. These controllers allow a consistent and accurate setting of the flow rates

of helium and acetone. The acetone is flowed through a vaporiser assembly, shown in Fig. 16,

that is kept at a constant temperature. The acetone is then flowed into the helium line through

a simple T-connection and allowed to mix.

Liquid acetone is pushed from a reservoir which is pressurized with helium, it passes

through the Alicat liquid flow controller where the mass flow rate can be set. The liquid ace-

tone comes into the vaporizer assembly from the left in Fig. 16. The liquid is deposited onto

the interior surface of a sealed cylinder. This cylinder is wrapped with an electric heater and

insulated and is kept above the boiling temperature of acetone such that the liquid acetone va-

porizes as it flows onto the cylinder surface. The acetone vapor then exits the assembly to the

right where it mixes with a stream of helium.

3.9 Simultaneous High-Speed PLIF and PIV Experiments

A set of 20 experiments were conducted in this campaign. The setup is similar to that described

in Chapter 3.8. The same pulse-burst laser system was utilized, although in this campaign,

instead of being blocked, excess 532 nm wavelength light from the frequency doubling process
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is allowed to co-propagate so both 266 nm and 532 nm laser light is emitted. A set of four

dual-coated turning prisms were used to direct the resulting beam path from the laser exit to

the bottom window of the shock tube.

Figure 17: Camera setup for HSS experiments depicting the reshock window and the layout of
the PIV (Photron) camera and the PLIF (Phantom) camera.

A Phantom V1210 was again used to capture the resulting fluorescence signal while a

Photron Fastcam SA-Z high-speed camera was used to capture Mie-scattered light for PIV.

Figure 17 shows the physical layout of the two-camera rig in relation to the viewing win-

dow. Figure 18 shows the resulting FOVs for these two cameras where, similar to Petter et al.
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[32], the PIV camera has sacrificed full-field imaging to capture well-resolved particle images.

Figure 18: Field of view for the PLIF and PIV raw images for the HSS experiment campaign.

To summarize and compare the diagnostic details of all three experiment campaigns, Table

4 lays out important parameters for the SS, HS and HSS experiments.



54

SS
H

S
H

SS

Sp
at

ia
lr

es
ol

ut
io

n
∆

x
[m

m
]

0.
22

0.
24

5
0.

43
Te

m
po

ra
lr

es
ol

ut
io

n
∆

t[
m

s]
N

/A
0.

05
0.

05
PL

IF
FO

V
[c

m
]

15
x

14
14

x
8

25
x

13
PI

V
FO

V
[c

m
]

15
x

14
N

/A
5.

5
x

5.
5

PL
IF

la
se

rw
av

el
en

gt
h

[n
m

]/
en

er
gy

[m
J/

pu
ls

e]
30

8/
36

0
26

6/
30

26
6/

30
PI

V
la

se
rw

av
el

en
gt

h
[n

m
]/

en
er

gy
[m

J/
pu

ls
e]

53
2/

28
0

N
/A

53
2/

80
PL

IF
se

ns
or

si
ze

[p
x]

10
24

x
10

24
76

7
x

57
5

76
7

x
57

5
PI

V
se

ns
or

si
ze

[p
x]

66
00

x
44

00
N

/A
10

24
x

10
24

Ta
bl

e
4:

D
et

ai
ls

of
di

ag
no

st
ic

s
fo

rS
S,

H
S

an
d

H
SS

ex
pe

ri
m

en
tc

am
pa

ig
ns

.



55

Chapter 4

Experimental Results

The results from SS, HS and HSS experiments are presented here to complement one another

and reconstruct the evolution of the reshocked mixing layer. SS experiments provide high SNR

and concurrent measurements of concentration and velocity. HS data has a lower SNR and

only provides measurements of the concentration field but allows the time evolution of a given

experiment to be captured. HSS experiments still suffer from lower SNR, however they record

the time evolution of both the concentration field and the velocity field to enable the exploration

of transport and production terms in evolution equations. Figure 19 shows the normalised initial

interface growth rate over the total parameter space explored over all experiments conducted

in the three campaigns. Each point represents an individual experiment run. Figure 20 shows

a set of representative fields from single shot experiments for each distinct time defined in the

Table in Fig. 13. Figure 21 shows a set of ICs for three of the eight high-speed experiments

that will be focused on, with HS 4 and 8 having qualitatively similar structure and HS6 visibly

containing more scales. Figure 22 shows an example of the concentration, streamwise and

spanwise velocity fields from HSS data.
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Figure 19: Experiment parameter space, coloured by initial normalised interface growth rate.
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Figure 20: Example fields from single-shot experiments.
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Figure 21: Initial conditions of a subset of 3 high-speed experiments.

4.0.1 Growth Rate

Figure 23 a) and b) show the result of applying both the Mikaelian model

ḣ0+

∆V0
= CMA++ (68)

and Eq. (31) to HS data and HSS data respectively, where ∆V0 is the jump in interface bulk

translational velocity, A++ is the post-re-shock Atwood number, and CM is an empirically fitted

value. CM has been shown to have a range from 0.28 to 0.9 by Ukai et al. [50]. Here CM = 0.28

and CM = 0.9 are used with CM = 0.28 corresponding to the original value ascertained from

RTI experiments and CM = 0.9 being the value found by Ukai et al. to fit well for sharp 3D ICs

in RMI simulations. Here the ICs are diffuse, so a CM of 0.9 providing the best fit for current

data disagrees with previous results. Eq.(31) does not require any fitting constants.
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Figure 22: Example of corrected and registered concentration and velocity fields from HSS
experiments.

4.1 Spanwise Averaged Moments

Following the definitions given in secs. (2.1-2.2.1) the first, second and higher order moments

of each field are calculated and then ensemble-averaged for the SS, HS and HSS experiments.

The spanwise averaged light-gas mole fraction profile, ξ, from SS, HS and HSS data, shown in

Fig. 24, all show strong collapse using the scaled streamwise coordinate, z∗. This provides con-

fidence that this normalisation might be a useful tool. There is much less agreement between

the single-shot and the high-speed results for the spanwise variance of the mole fraction field,

ξ′2. This points toward IC variation being an important factor. For the high-speed data, only
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Figure 23: Comparison of Mikaelian reshock model with proposed vorticity deposition model
(Eq. (31)), from a) HS experiments and b) HSS experiments.

eight experiments are available to average over, which is not enough to produce statistically

meaningful results. However the trends seen in the single-shot data can still be corroborated.

The mixing layer progresses toward a more mixed state shown by the decrease in the peak

value of the variance. Also the peak shifts toward the light gas, which points to more mixing

occurring around bubble-like structures below the center of the mixing layer.

The mean of the spanwise velocity u+ remains close to zero over time, which is reason-

able from a mass conservation perspective in a wall-bounded flow: after the shock passes, the

mixing layer behaves in an incompressible manner such that in a finite domain in the span-

wise direction there shouldn’t be a bulk spanwise velocity. The spanwise velocity variance u+′2

shows an initial deposition of fluctuating velocity above and below the center of mixing layer,

which then decays and is transported toward the center of the mixing layer.

The mean of the streamwise velocity w+′ similarly shows a value close to zero for RS1 to

RS3 until RS4 where a linear velocity profile is present which describes a compression of the
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Figure 26: Skewness and kurtosis of the spanwise averaged light gas mole fraction from HS
data. Note that h∗ plays the role of a dimensionless time.

mixing layer whose cause can be seen in Fig. 13, in the compression wave being reflected from

the contact surface.

4.1.1 Higher Order Normalised Moments

The concentration and velocity fields are analysed following the definitions given in section

2.2.1 to study skewness, kurtosis and higher order moments. The dotted and dashed lines in

Fig. 26 show Eqs. (20) and (21) with ai = 1 for all i, which corresponds to the simple PDF

model not allowing any fitting parameters derived by Schopflocher and Sullivan [44].

This idea may be extended to mixed moments Mi j, of the velocity and concentration fields.

Figure 27 shows plots of Mi j against the spanwise-averaged light gas mole fraction ξ from

simulation results (obtained by Alex Ames using the Miranda code of LLNL) after shock and

after reshock, and for single-shot experimental data after reshock. The similarity in profiles
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suggests the possibility of a universal relationship such that Mi j = Mi j(ξ) which was not further

explored in the present work.

4.2 Probability Density Functions

Probability density functions (PDFs) are calculated in the mixing region defined by |z∗| ≤ 1 for

SS, HS and HSS campaigns. For all three sets of data, shown in Fig. 28, the PDFs of light gas

mole fraction show a very similar temporal progression with a trend toward a more mixed state

demonstrated by an increase in the PDF at values in the center of the range. In both sets of data

the trend in mixing also shows an asymmetry with a local peak skewed toward the light gas.

The RS1 time shown corresponds well with the PS4 time measured by Reese [35], and shows

the continued mixing after reshock.

The PDFs of both spanwise and streamwise velocity from SS and HSS data show a decay of

velocity kurtosis with an increase of the PDF peak at zero from RS1 to RS3 then a spread of the

tails at RS4 corroborating the deposition of velocity fluctuations arising from the interaction of

a compression wave with the mixing layer. The streamwise velocity PDF in Fig. 28 shows a

dual peak near-Gaussian distribution at RS4, showing the mean velocity divergence which is

seen in the spanwise averaged streamwise velocity profile in Fig. 25. This may be due to the

passage of the compression wave shown in Fig. 13. The velocity component PDFs for both SS

and HSS data seem to match pretty well with the evolution seen by Reese [35] for their high

Mach number case, here a similar decay in distribution tail widths is observed over time.
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Figure 28: Probability distribution functions of the light gas mole fraction and the spanwise
and streamwise velocities. Top: SS data. Middle: HS6 data. Bottom: HSS data
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4.3 Spectral Analysis

4.3.1 Power Spectrum Evolution

Focusing on the HS data set, and a subset of 3 experiments, Fig. 29 shows Λξ (Eq.(35)) from HS

data for HS4, 6 and 8 as specified in Table 3. Λξ is a measure of the magnitude of fluctuations

at a given wavenumber with a smaller magnitude meaning weaker fluctuations from the mean

and a more fully mixed state. The IC of HS6 in Fig. 21 visibly shows a broader range of

scales and larger x-gradients which leads to a period of strong mixing immediately after the

passage of the reflected shock. HS4 and HS8 show qualitative similarities in Fig. 29. HS4 and

HS8 begin with smaller values of Λξ at higher wavenumbers compared to HS6 which starts at

higher values that subsequently dissipate. In the current data the scaling at higher wavenumbers

does not appear to be IC dependent. All three experiments arguably show regions of KOC −
5
3

scaling, which would identify an inertial-convective regime, however a region closer to −
11
3

covers a much larger range for all three experiments.

Three representative wavenumbers are highlighted in Fig. 29 corresponding to the integral

scale L =

∫ ∞

−∞

k−1Eξdk∫ ∞

−∞

Eξdk
, the scalar Taylor scale λ2 =

ξ′2(
∂ξ′

∂xi

)2
, and an estimate of the scalar Kol-

mogorov scale, η, which is the Obukhov-Corrsin (OC) scale, using the isotropic homogeneous

relation λ =
√

10η2/3L1/3. For all three experiments, the Taylor scale seems to be a demarcation

point between the two scaling regions, an inertial range and an inertial diffusive range, with the

OC scale estimated as being below the measurement spatial resolution (∆ = 0.245 mm).

Moving to the HSS campaign, Figure 30 explores the coarse measures of the spectra in-

troduced in Sec. 2.6. Figures 30a) and 30c) show joint probability density functions (JPDF)
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Figure 29: Evolution of the integrated scalar power spectrum (Eq.(35)) from high-speed data.
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Figure 30: HSS data: a) joint PDF of spectral Schmidt number and scalar spectral slope. b)
conditional PDF of scalar spectral slope given a spectral Schmidt number. (White line:[11,
Eqn.(46)]). c) joint PDF of the spectral Reynolds number and the kinetic spectral slope. d)
conditional PDF of the spectral Reynolds number and the kinetic spectral slope.
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Figure 31: SS data: a) joint-PDF of spectral Schmidt number and scalar spectral slope. b)
conditional-PDF of scalar spectral slope given a spectral Schmidt number. (White line:[11,
Eqn.(46)]). c) joint-PDF of the spectral Reynolds number and the kinetic spectral slope. d)
conditional-PDF of the spectral Reynolds number and the kinetic spectral slope.



71

and figures 30b) and 30d) show conditional probability density functions (CPDF). In particu-

lar, Figure 30a) shows the JPDF of the turbulent Schmidt number and the scalar spectral slope.

A peak in the JPDF can be seen where the scalar slope is approximately between −8/3 and

−10/3 and the turbulent Schmidt number is between 0.3 and 0.4 which aligns with the esti-

mate of the material Schmidt number. Figure 30b) shows the CPDF which represents what the

expected spectral slope is for a given turbulent Schmidt number. The result here is close to

the interpolation formula by [11] (Eqn.(46) in that paper), providing some encouragement to

the proposition made in Sec. 2.6, that with the flow being far from HIT, the turbulent Schmidt

number is appropriate to use in place of the material Schmidt number to determine expected

behaviour.

Batchelor et al. [2] propose a scalar spectral slope of −17
3 for a Schmidt number S c << 1

which corresponds to the inertial-diffusive regime, whereas here S c = 0.3. They propose that

small scale mixing is independent of large scale straining. Gibson [11] argues that Batche-

lor’s assumption that low wavenumbers of the scalar spectrum are not affected by larger scale

straining is not necessarily a good approximation and instead of a −17
3 slope finds a −3 slope

for the inertial-diffusive range. Frisch and Wisth [9] however find that for a white-in-time

velocity field with an inertial range scaling of −5
3 , the inertial-diffusive range should have a

−11
3 scaling. Although this scaling appears in previous observations [29], its base assumption

of a white-in-time velocity field doesn’t match observed velocity field correlations that have

non-zero integral time scales.

These attempts at developing scaling relations are for passive scalar quantities whose struc-

ture does not affect the dynamics of the velocity field. In RMI flows, the light gas mole-fraction

is an active scalar. To the authors knowledge, there isn’t an accepted universal model for ac-

tive scalar scaling except for the well studied Bolgiano-Obukhov scaling which is expected in



72

buoyancy dominated flows.

Figure 30c) shows the JPDF of turbulent Reynolds number and kinetic spectral slope. A

peak can be seen at a slope between −5/3 and −2 at an Reτ between 20 and 25. The CPDF in

Fig 30d) points to a weak dependence of the kinetic spectral slope on the turbulent Reynolds

number, though it is difficult to draw conclusions at the lowest and highest Reτ due to the

lower number of observations available to generate the distribution there due to the turbulent

Reynolds number over all measurements being close to the peak.

Figure 31 shows the same measures as figure 30 but for the SS data set. Very similar

structures and values and trends are visible in the Schmidt number-based plots, 30a) and 30b).

The Reynolds number based plots do show a peak at a slightly lower value than the HS results

in plot 30c). Figure 30d) shows a similar trend for the small Reτ range, however a similar

problem occurs with fewer instances to produce statistics for the higher Reτ values.

Figure 32 then shows the joint-PDF of Reτ and S cτ. Overlaid on this contour plot is the time

evolution of the average values. The effective Schmidt number begins around unity, such that

the bandwidths of the kinetic and scalar spectra are the same. This follows from the structure of

the deposition of velocity due to the passage of the shock described in Sec. 2.3.1 where at first

order the spectrum of the deposited velocity deposition is proportional to the scalar spectrum.

There is a trend of the effective Schmidt number toward the material Schmidt number, while

the effective Reynolds number increases quickly and then gradually decreases.

Figures 34 and 33 show the terms in Eqs.(32a - 32b) that can be extracted from SS data, so

a pressure correlation term is not included. Each row corresponds to a time defined in Fig. 13.

The peaks of the scalar power spectra and the kinetic energy spectra (left columns in Figs.

33-34) demonstrate the same physics as the spanwise variances. However the spectra and

the transport terms provide significantly more details about the processes occurring within the
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Figure 32: HSS data: Contour plot of the joint-PDF of the effective "turbulent" Reynolds
number and effective "turbulent" Schmidt number. Overlaid × markers are the time evolution
of the mean values of Reτ and S cτ.
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mixing layer.

In Fig. 34 the first column is the inhomogenous kinetic energy spectrum and the second

column is the production term. For the kinetic production, for RS 1-3 there is no discernible

pattern until RS4 where there is a strong production due to a compression wave interacting

with the mixing layer. In contrast, for the scalar production in Fig. 33, there is always a mean

scalar gradient and as such there is a production term at each time. This reaches its peak at

RS3 where the kinetic energy spectrum also reaches its peak.

The fluctuating transport flux is shown in the third column of Figs.33,34. This describes

how energy is transported from a given location and wavenumber. In the unforced regime, a

consistent structure is observed in both the scalar and kinetic energy flux, with a negative flux

in the center of the mixing layer, with positive flux above and below the interface.

Figure 35 is a sketch of the processes occurring in quasi-steady state between RS2 and

RS3 for the scalar field. All terms (Table 1) are normalised by the peak of the power spec-

trum. This cartoon was constructed by making a separable assumption for all terms, such that

∆Eξ(z+, k+
x ) = E0(z+)φ(k+

x ), then a Gaussian distribution in z+ for all of the energy terms was

assumed. The phases were then prescribed to maximise each term, and then the form of each

term was readily available directly from these assumptions.

i) Scalar energy (Fig. 35a) - Energy is concentrated at larger wavelengths with an approxi-

mately Gaussian profile in the in-homogeneous direction.

ii) Production (Fig. 35e) - The production of scalar energy occurs at the largest scales on

the same order as the peak of the power spectrum.

iii) Fictitious transport (Fig. 35b) - This transport, due to the choice of coordinate system,

is concentrated in the same wavenumber range as the power spectrum and peaks above and

below the center of the mixing layer.
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iv) Homogeneous transport (Fig. 35c) - The flux of energy in wavenumber space is shown

here. Above and below the center of the mixing layer, the flux is positive, with energy being

transported from larger wavelength structures to smaller scales. In the center of the mixing

layer the flux takes a negative value implying a backward cascade of energy from smaller

scales to larger scales.

v) In-homogeneous transport (Fig. 35d) - The flux in the vertical direction shows that

energy is transported away from the center of the mixing layer. There is an asymmetry here

with a larger flux on the spike side of the mixing layer.

vi) In-homogeneous diffusion (Fig. 35f) - Energy diffuses due to mass diffusivity from the

center of the mixing layer to above and below the center.

vii) Homogeneous diffusion (Fig. 35g) - Energy is transported to higher wavenumbers by

molecular diffusion.

viii) Dissipation (Fig. 35h) - Energy is taken out of the system at shorter wavelengths due

to self-interaction of gradients.

4.3.2 Partition of Energy

Equation(42) describes the partition of scalar energy over a given change in time for the case

when velocity cannot be directly measured. The individual terms are plotted in Fig. 36 for

HS data for the subset of experiments (HS 4, 6 and 8). The time period represented here

begins after the reflected shock has fully traversed the mixing layer, it includes the passage of

an expansion wave and ends at the latest dimensionless time available before the arrival of a

compression wave.

The total change in energy, ∆Eξ, is concentrated at larger wavelengths on the order of the
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shocktube width which correspond to the growth and transport of bulk structures. This is cod-

ified in the plots of bulk transport, Tξ. The diffusion, Dξ doesn’t create or destroy energy, only

transporting it within the mixing layer. χξ is the dissipation term and represents the removal of

scalar energy which appears to occur at shorter wavelengths.

The previous terms can be directly estimated from the measurements of the light gas mole

fraction. The remaining term, the fluctuating flux Πξ, must be inferred from the time evolution

of the the power spectrum. Unfortunately the fluctuating transport and the production term

cannot be separated here as velocity isn’t measured directly.

Cook and Zhou [6] calculate the time varying dissipation, production and transport in non-

scaling coordinates for a shocked interface and find similar trends, with dissipation occurring

at smaller wavelengths and production and transport reaching peaks at longer wavelengths.

The terms described in Eqs.(50a and 50b) are plotted in Figs. 37 and 38 respectively.

For HSS data, we now have access to both the concentration and the velocity field so we no

longer have to infer a combined production and transport term, instead the production and

homogeneous and in-homogeneous fluxes can be directly calculated.

For the evolution of the scalar field we see the structures identified in the cartoon in Fig.

35 which gives some confidence that the underlying assumptions made to create the sketch are

not too aggressive. In this case though the assumption of a symmetric Gaussian variance in the

inhomogeneous coordinate doesn’t hold. An asymmetry about the center of the mixing layer

is present due to non-zero Atwood number effects such that the peak in the change in energy

∆Eξ and the production of energy Pξ are weighted to the bubble side of the mixing layer, and

the structure of the homogeneous transport Txξ is also skewed.

The Production term has an expected structure, where its peak is around the peaks of the

scalar and kinetic power spectra, and most of the production happens at large scales with the
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fluctuations feeding off of the mean gradient of the scalar field.

The homogeneous transport term has a structure similar to the time evolution of SS data

in Fig. 33. This shows a transport of energy above and below the interface from large scales

to small scales, while around the center of the interface a "backscatter" of energy is observed,

such that smaller structures seem to be absorbed and merge into larger structures.

The in-homogeneous flux Πzξ shows transport away from the center of the mixing layer,

with the bubble structures receiving more transported fluctuations.

The diffusion terms, Dxξ and Dzξ fit strongly with the structure of the scalar energy having

a weighted Gaussian structure in the streamwise coordinate.

The dissipation Xξ shows a broad structure in the inhomogeneous direction while its effect

is more localised than diffusion but is located at larger length scales around the integral scale.

Figure 38 shows the linear growth regime time integrated kinetic power spectrum evolu-

tion terms. The effect of diffusivity gradients on the flow can be seen in the γw term where

energy is taken out of the flow due to interaction between the gradients of the diffusivity (with

dependency on the temperature and scalar fields) and the gradients of the velocity field.

The transport in the homogeneous direction again says that energy below the mixing layer

is transported to small scales, in the center of the mixing layer a "backscatter" is observed, and

above the mixing layer no forward transfer is seen with the current parameters. Comparing

with the time evolution in Fig. 34, this behaviour is seen at the earliest times, and may be

dominant over more of the linear growth regime than could be seen at discrete times.

The homogeneous diffusion term Dwx is a little harder to disentangle. At lowest order, it is a

pure homogeneous diffusion of specific kinetic energy, that is to say the power spectrum of w+.

A first term in an expansion of the viscosity and density terms has the expression −µ+k+2ŵ+ŵ+
∗

and that is what can be seen in the center of the mixing layer and at large wavelengths. The next
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Figure 37: Partition of scalar energy from HSS experiments.
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terms in this expansion become positive and thus at higher wavenumbers these contributions

from the density and viscosity variation become apparent.

Dwz is the inhomogeneous diffusion term that describes how energy is transported by molec-

ular diffusion above and below the interface centroid. Energy is taken from the peak of the

kinetic energy and diffused away from the peak.

Figure 39 shows a comparison of the time evolution of the scalar production and homoge-

neous flux for both SS data and HSS data. The identifiable structures are very similar between

the two data sets and the absolute normalized values are comparable. The difference in the

strength of the production term, which is the dominant dissimilarity, is potentially a function

of IC dependence.

4.4 Structure Functions and Exponents

Figure 40 shows the integrated 2nd-order structure function Zξ,2 =

∫ ∞

−∞

S ξ,2dz∗ from HS data.

This is closely related to the energy spectrum and is another method of describing the energy

contained at a given scale. The plots of Zξ,2 support the same analysis as the plots of Λξ (Fig.

29) where HS6 begins with more energy at the smaller scales which subsequently dissipate

while HS4 and HS8 begin with less energy at small scales and energy subsequently transfers

down from larger scales.

The reference lines shown in Fig 40 are the KOC scaling of
2
3

and a scaling of unity that

very closely matches the observed slope.

KOC scaling proposes that the exact result of Kolmogorov’s
4
5

law can be extended beyond

the 3rd order for which it was derived such that the exponent, ζp, of the integrated structure

function, Zξ,p ∝ r∗ζp , is equal to
p
3

.

Figure 42 shows the evolution of the pth-order exponent for the scalar and spanwise and
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Figure 38: Partition of kinetic energy from HSS experiments.
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Figure 39: Comparison between SS and HSS experiments.
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streamwise velocity fields for SS data. The plot of the spanwise velocity exponent shows no

time evolution, with it following KOC scaling very well. On the other hand the streamwise

velocity exponent does have a time evolution that seems to tend toward the KOC scaling while

the exponent of the scalar structure functions looks to tend toward the K scaling similar to the

HS results.

In Figs. 40, 41, 42 and 43 ζp, the exponent of the pth-order integrated scalar structure

function is also plotted. Kraichnan [18] proposes a scaling of ζp =
1
2

[
√

6p + 4 − 2] using a

model for the diffusion of the passive scalar. The Kraichnan (K) prediction of
√

p at large p

works well for HS6 where the higher initial Reynolds number (Reh0) allows the flow to become

more fully mixed. HS4 and HS8 both have ICs far from KOC or K scaling but seem to be

trending toward these scalings. The single-shot data show large variation at higher values of

p, which points to potential IC dependence borne out by high-speed data which shows similar

evolution for HS4 and HS8 with similar structures in their IC and a distinct evolution for HS6

which has a wildly different IC.

Figure 44 shows the partition of scalar energy for the 2nd order structure function S ξn. The

second order production tells a similar story to the energy production term in Fig. 37. There

is a production at large scales that is asymmetric about the mixing layer. The second order

homogeneous transport term Πxξ2 shows a dominance of transport from large scales to small

scales while the inhomogeneous transport shows a similar trend to its Fourier counterpart in

that energy is transported away from the peak of the second order structure function.

The first dissipation Xξ2 is comparable to its Fourier counterpart, energy is taken out of

the system across a wide range of scales but this destruction is concentrated at larger scales.

The second dissipation XXξ2 does not have a Fourier comparison. This term is subdominant to

the first dissipation, and acts in the same sense, taking energy away from the system, but its
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Figure 40: Scalar structure functions. Left: temporal evolution of 2nd order integrated structure
functions. Right: temporal evolution of the p-th order structure function exponents. The dashed
line marks KOC p/3 scaling.
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Figure 41: Scalar structure function exponent for HS6 (Gray dashed lines - KOC scaling, pink
dashed line Kraichnan scaling. )

Figure 42: Structure function exponents from SS data. a) scalar SF exponent, b) spanwise SF
exponent and c) streamwise SF exponent (red dashed reference line - K scaling, blue dashed
reference line - KOC scaling)



89

Figure 43: Structure function exponents from HSS data (red dashed reference line - K scaling,
blue dashed reference line - KOC scaling).
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mechanism is that it feeds off of gradients in the averaged coordinates instead of just gradients

in separation space.

Lastly Fig. 45 allows the interrogation of how the transport terms behave as a function of

order p. The terms in Eq. (52) are integrated over z+ to attain transport terms for Zξp.

The odd order terms in the dissipation terms are the point of interest here. In the dissipations

Fourier equivalent, this term is always positive definite. Here the odd order terms point to the

dissipation term injecting energy into the system while the even orders perform as expected

removing energy from the system.

4.5 Filter-Based Scale-To-Scale Energy Analysis

Lastly, the use of a filter-based approach to exploring energy and energy transport at a given

scale is considered. The analysis described in Sec. 2.5.1 is performed on HSS data.

Figure 46 shows the relative contribution of the three mechanisms defined in Eqs. (60a),

(60b) and (60c).

The top row here describes the time evolution and the dependence on filter scale, while

the bottom row has integrated the terms over dimensionless time so the structure as a function

of location within the interface can be explored. The dominant term at all times and length

scales investigated is the local strain term (a) and (d) that, similar to the second order structure

function homogeneous transport, says that the transfer of energy from local scales to subfilter

scales dominates.

The non-local strain term is the secondary term, then followed by the non-local vortex

term. over the whole linear growth regime considered, the ratio of strengths of each term is

approximately steady such that ΠLS : ΠnLS : ΠnLΩ is 0.75 : 0.2 : 0.05. The ability to decompose

the contributions of different mechanisms and investigate their relative contributions allows the
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potential of modelling these separate terms and discussion of relative importance to decide if

some contributions may be needed in certain ranges or can be discarded.
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Chapter 5

Conclusions

The present work consists of three experimental campaigns, one set of single-shot simultaneous

PLIF and PIV measurements, one set of high-speed PLIF measurements and a set of high-speed

simultaneous PLIF-PIV experiments.

The single-shot experiments required a large set of runs to reach statistical convergence of

results, so 20 individual experiments were used for each of the post-reshock times considered.

The high-speed experiments allowed the time evolution from a given initial condition to be

traced, so the effect of the initial condition could potentially be explored.

High-speed simultaneous PLIF-PIV experiments provided time resolved measurements of

the concentration and velocity fields that enabled the direct calculation of terms that were

previously unable to be assessed.

To allow for the higher temperatures and pressures seen at reshock conditions an iterative

PLIF correction algorithm, developed by Herzog et al. [13], was implemented.

The high-speed experiment campaigns were enabled by the engineering of a pulse-burst

laser system by Professor Rothamer. Its capabilities enabled the time evolution of the mixing

layer to be analysed as opposed to needing to acquire large numbers of individual experiments

to determine a statistical depiction of the evolution.

This access to the time evolution of the system lead to an impulse to ask what coordinate

system can be constructed to give the most natural comparison between experiments. Others

had used ln h+, the number of generations, as a measure of time, though had not seemingly
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derived why it was reasonable to do so, only that it offered collapse of data. Here, the number of

generations has been shown to appear as a natural measure of time from the transport equations

if time dependent normalization values are used.

Introduced next were the transport equations for three different methods of analyzing scale-

to-scale energy transport, with a focus on the "homogeneous" direction transport terms, and on

the terms now available due to measurement of both velocity and concentration fields.

Some of the main results found were:

• The vorticity deposition model, developed by Weber[54] and further developed here,

shows a stronger predictive ability than the simple reshock model of Mikaelian.

• Mixed normalised spanwise moments of the streamwise velocity and scalar fields were

shown to have time-invariant functional forms that were matched by post-shock and

post-reshock Miranda simulation results.

• Scalar power spectra show small regions close to inertial range scaling and larger regions

of −11
3 scaling that may be indicative of an inertial-diffusive range.

• The slope of the scalar power spectra ζξ seems to follow the functional form as given

by Gibson [11] as a function of Schmidt number. The Schmidt number here though is

the effective rather than material Schmidt number, emphasising that the flow is not in the

homogeneous isotropic state.

• Concurrent scalar and velocity data allowed direct measurement of terms (all except

pressure related terms) in the spectral transport equation for the kinetic energy power

spectrum, as well as all the terms in the scalar power spectrum transport equation. RS2

and RS3 showed similar structure for the terms in the scalar spectrum transport terms
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leading to the identification of a cartoon of the terms in the quasi-stationary regime in

self-similar coordinates.

• Initial condition effects on the evolution of structure functions and their exponents sug-

gest that their is a trend toward Kraichnan, and therefore turbulent scaling, and that ICs

that begin with larger bandwidths and access to more scales will access this state faster.

There isn’t a guarantee that ICs with smaller bandwidths will reach these scalings though

they do appear to tend toward them.

• The second order structure function transport terms represent a similar story to their

corresponding Fourier analysis terms, except for the homogeneous transport term, which

is dominated by forward transport over a much larger range of vertical location. This

however matches with the structure observed in the filter based scale-to-scale transport

term.
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