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Abstract

Previous numerical investigations of gravitational particle production during the coherent

oscillation period of inflation displayed unexplained fluctuations in the spectral density of

the produced particles. We argue that these features are due to the quantum interference

of the coherent scattering reactions that produce the particles. We provide accurate

analytic formulae to compute the particle production amplitude for a conformally-coupled

scalar field, including the interference effect in the kinematic region where the production

can be interpreted as inflaton scattering into scalar final states via graviton exchange.
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Chapter 1

Introduction

During the period of coherent oscillations of the inflaton field following the quasi-de Sitter

(quasi-dS) phase of inflation [1–4], particles (including dark matter candidates) may be

produced via gravitationally-mediated nonthermal scattering processes in addition to the

comparatively well-studied inflaton-decay and thermal-scattering processes [5–55]. Nu-

merical investigations of gravitational particle production (GPP) employing the Bogoli-

ubov approach have displayed unexplained oscillations as a function of the wavenumber

k in the final phase-space distribution fχ(k) of the produced particles [56–58]. For ex-

ample, figure 1 of Ref. [57] showing the final phase-space density of dark-matter particle

production in a hilltop inflationary model displays large oscillations that resemble nu-

merical noise. Similar large oscillations in the final phase-space density can be seen in

the right-hand panel of figure 1 in Ref. [58] for GPP of the helicity-1/2 component of a

spin-3/2 Rarita-Schwinger field.

In this thesis we explain these oscillatory features as the result of a quantum effect aris-

ing from an interference of different amplitudes, which are analogous to gravitationally-

mediated nonthermal scattering processes,1 nφ→ 2χ for n ≥ 1. Typically the 2φ process

dominates nonthermal scattering production, but it has recently been pointed out [59]

that the nφ processes with n 6= 2 may also be important. Most of the effect comes from

interference of 2φ with the next leading amplitude, which is 3φ if cubic interactions exist
1We denote the inflaton as φ and the produced particle as χ. The produced particles, which may be

dark matter candidates, are assumed to only interact gravitationally. We sometimes denote nφ→ 2χ as
the nφ process, for short.
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and 4φ otherwise. We compute analytically the scattering contribution to the Bogoli-

ubov amplitude including the interference terms, and find the results compare well with

numerical computations. We also give a less technical semi-quantitative estimate of this

interference amplitude based on a coherent scattering picture of a modified Boltzmann

evolution. In this latter picture, the interference arises because the initial macroscopic

inflaton scattering state can be viewed as a cold coherent superposition of nφ states, e.g.,

c1|φφ〉 + c2|φφφ〉, such that the interference arises from |c1〈χχ|U |φφ〉+ c2〈χχ|U |φφφ〉|2

where U schematically depicts a time evolution operator which is made more precise in

this thesis. Note that we write nφ → 2χ to denote the net energy flow from the φ field

to χ field, but this can be different from underlying S-matrix amplitudes. For example,

φ→ 2χ has a contribution from the φφ→ φχχ scattering process.

Although the quantum nature of the inflaton coherent-oscillation induced GPP has

been known (e.g., see [60]), this thesis extends the previous ideas to graviton-mediated

scattering, and to our knowledge is the first to articulate clearly and to compute analyti-

cally the quantum interference effects. It also clearly explains the previously unexplained

“noise” in the particle production spectrum seen in the literature (see, e.g., [57, 58]). The

application of a novel perturbative technique to solve the background inflaton dynamics

is a technical highlight of this thesis.

The order of presentation is as follows. In Ch. 2, we give a brief review of the GPP

computation using the Bogoliubov transform technique. In Ch. 3.1 we describe the back-

ground field evolution in polar coordinates. In Ch. 3.2, we summarize the novel pertur-

bation technique used to solve the inflaton dynamics with asymptotic series involving

functions λ(t) and θ(t) that describe slow and fast time scales, respectively. In Ch. 4, we

derive an analytic formula for the relevant Bogoliubov coefficient using a novel pertur-

bation theory technique and a stationary phase approximation. The result is a sum of

amplitudes analogous to nφ→ 2χ, with Ch. 4.2 presenting explicit results for n ≤ 4, and

Ch. 4.3 discussing the quantum interference between amplitudes. In Ch. 4.4, we compare

the analytic results with numerical computations. We then conclude in Ch. 5 with a

summary and outlook.
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The appendices contain some of the supporting technical details of this thesis. Ap-

pendix A explains the technical details of evaluating the terms formally set up in the

stationary phase computation in Ch. 4 using this technique. In Appendix B.1, we inter-

pret the interference as a novel contribution to the Boltzmann collision equation arising

from the initial inflaton field being a macroscopic state described as a coherent superpo-

sition of nφ states. In Appendix B.2, we remind the reader how the statistical ensemble

factor enters the usual collision integral of a Boltzmann equation in a manner that is in

contrast with the picture of Appendix B.1.
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Chapter 2

Gravitational particle production

Here, we focus on a background spacetime described by standard Einstein gravity with a

spatially-flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric ds2 = dt2−a2(t)|d~x|2 =

a2(η) [dη2 − |d~x|2] where dη = a−1dt is conformal time. The dominant energy-momentum

tensor for the dynamics of the scale factor a(t) comes from a minimally-coupled real scalar

inflaton field φ with mass mφ and a slow-roll inflationary potential V (φ). We will assume

that m2
φ ≡ d2V (φ)/dφ2|φ=v 6= 0, where v is the minimum of V (φ) during the inflaton’s

coherent oscillation phase after the quasi-dS phase, and we will also assume that the

nonlinearities in V (φ) can be captured as a Taylor expansion about φ = v.

The inflaton potential will be parameterized as

V (φ) = 6M2
Pm

2
φ

[
1

2

(
φ− v√

6MP

)2

+ α3

(
φ− v√

6MP

)3

+ α4

(
φ− v√

6MP

)4

+ . . .

]
, (2.1)

αn ≡
(√

6MP

)n−2

m2
φ

1

n!

∂nV

∂φn

∣∣∣∣
φ=v

, (2.2)

where MP = 1/
√

8πG is the reduced Planck mass. When specific examples are needed,

we will consider two inflaton models denoted by

V (φ) =
1

2
m2
φφ

2 Quadratic , (2.3)

V (φ) =
m2
φv

2

72

[
1− φ6

v6

]2

Hilltop , (2.4)
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where we take v = 0 as the minimum for the Quadratic model and v = MP/2 for the

Hilltop model.1 Note that α3 = α4 = 0 for the Quadratic potential while α3 = 5
√

6 and

α4 = 155 for the Hilltop potential.

We augment the standard inflationary picture with a scalar “spectator” field χ̃ whose

action is given by

∆S =

ˆ
dη d3x

1

2

[
(∂ηχ)2 − (∇χ)2 − a2

(
m2
χ +

1

6
(1− 6ξ)R

)
χ2

]
, (2.5)

where χ ≡ aχ̃ is the rescaled field, mχ is the particle mass, and R = −6∂2
ηa/a

3 is the

Ricci scalar. Following the usual procedure (e.g., [60–63]), we promote the scalar field to

an operator χ̂ that satisfies the canonical equal-time commutation relations. The field

operator is decomposed into mode functions χk labeled by wavevector k as

χ̂(x, η) =

ˆ
d3k

2π3

[
α̂k χk(η) eik·x + α̂†k χ

∗
k(η) e−ik·x

]
, (2.6)

where the mode functions satisfy the normalization condition χk∂ηχ
∗
k − χ∗k∂ηχk = i, and

the creation and annihilation operators satisfy the canonical commutation relations. Due

to the action in eq. (2.5), the mode equation is ∂2
ηχk + ω2

kχk = 0, where

ω2
k = k2 + a2

(
m2
χ +

1

6
(1− 6ξ)R

)
(2.7)

is the angular frequency of the kth Fourier mode.2 The vacuum state |0〉 is defined as

α̂k |0〉 = 0 for all k, and particle creation is generated by the time-dependence of ωk(η).

While one can solve the mode equation directly given initial conditions, for our pur-

poses we use the Bogoliubov parameterization. The mode functions are expressed as

χk =
αk√
2ωk

e−iΩk +
βk√
2ωk

e+iΩk , (2.8)

1For the sake of comparison, this is the same hilltop model considered by Ref. [57].
2The mode functions will only depend on wavenumber k = |k| as the FLRW spacetime is isotropic.
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Ωk(t) ≡
ˆ t

ti

dt′

√
k2

a2(t′)
+m2

χ +
1

6
(1− 6ξ)R(t′) ≡

ˆ t

ti

dt′Ek(t
′) , (2.9)

where αk and βk are the Bogoliubov coefficients, which decompose the mode function

into positive and negative-frequency components, respectively. The nearly-adiabatic con-

ditions in the far past motivates the Bunch-Davies initial condition such that αk = 1 and

βk = 0 at initial time t = ti. In the evolution of χk from the initial negative-frequency

solution, a positive-frequency component may appear, signaling particle creation. In the

far late-time, the number density of produced particles is given by

nχ(t)a3(t) =

ˆ
d3k

(2π)3
fχ(k, t) , (2.10)

where fχ(k, t) ≡ |βk(t)|2 denotes the produced χ-particle phase-space density. We there-

fore seek a solution for βk to compute GPP. The time-evolution of the Bogoliubov coef-

ficients αk and βk can be written as3

α̇k(t) = Ñk(t) βk(t) e+2iΩk(t) (2.11)

β̇k(t) = Ñk(t)αk(t) e−2iΩk(t) (2.12)

as is done for example in [8, 60, 64]. For the case of a scalar χ field, we use the definition

Ñk ≡
ω̇k
2ωk

=
1

2

Hm2
χ + 1

6
(1− 6ξ)(HR + 1

2
Ṙ)

k2/a2 +m2
χ + 1

6
(1− 6ξ)R

, (2.13)

with Ωk defined in eq. (2.9). The background evolution (assumed driven by the dynamics

of the inflaton) enters the determination of Ñk through a, H, R, and Ṙ, while the

spectator field enters through k and mχ. Setting αk ≈ 1 in eq. (2.12), we write

βk =

ˆ tf

ti

dt Ñk(t)e−2iΩk(t) , (2.14)

which is valid for |βk| � 1. This important integral expression is the staring point for
3We will use the notation ẋ ≡ dx/dt throughout this thesis.
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the main results of this thesis.
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Chapter 3

Asymptotic series solutions of inflaton

dynamics

3.1 Novel polar coordinates

3.1.1 Definitions

The evolution of the inflaton field φ is usually described by the second-order equation

φ̈+ 3φ̇

√
φ̇2 + 2V (φ)

6M2
P

+ V ′(φ) = 0 , (3.1)

which is often referred to as the inflaton equation of motion. For our purposes we wish

to exchange the second-order differentiation to a set of two first-order equations at the

cost of introducing another dependent variable. There is freedom in choosing the two

variables; our choice is the Hubble rate H and phase Ξ (both reals), defined in terms of

φ and φ̇ as
√

6MPHe
iΞ ≡ sφ

√
2V (φ)− iφ̇ , (3.2)

where sφ ≡ sign(φ − v) and v is the field value where the potential is minimized. The

change of variables from {φ, φ̇} → {H,Ξ} is analogous to switching from Cartesian to

polar coordinates in phase space, with H representing the radial coordinate and Ξ the

angular coordinate.
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From eqs. (3.1) and (3.2), the equations of motion (EOMs) for H and Ξ are

Ḣ = −3H2 sin2 Ξ , Ξ̇ =
V ′(φH,Ξ)√

6MPH cos Ξ
− 3

2
H sin 2Ξ , (3.3)

respectively, where φH,Ξ is the solution to

√
6MPH cos Ξ = sφH,Ξ

√
2V (φH,Ξ) , (3.4)

which is simply the real part of eq. (3.2). We simplify the presentation of our problem by

using the change of variables

φ→ v +
√

6MPφ , t→ te +m−1
φ t , (3.5)

which is equivalent to setting
√

6MP = mφ = 1 and v = te = 0. Using the expansion of

the potential in eq. (2.1), we write eq. (3.4) as

H cos Ξ = φH,Ξ

√
1 + 2α3φH,Ξ + 2α4φ2

H,Ξ + . . . , (3.6)

and invert this to find

φH,Ξ = H cos Ξ

(
1− α3H cos Ξ +

(
5

2
α2

3 − α4

)
H2 cos2 Ξ + . . .

)
, (3.7)

which allows us to express the EOMs entirely in terms of H and Ξ:

dH−1

dt
=

3

2
(1− cos 2Ξ) ,

dΞ

dt
= 1− 3

2
H sin 2Ξ +

∞∑

n=1

νnH
n cosn Ξ , (3.8)

for some constants νn, with ν1 = 2α3, ν2 = −7
2
α2

3 + 3α4, and so on. We write the

derivatives for H−1 and Ξ to highlight that both grow linearly with time if H is small.

This will be useful when deriving the constants H and Ξ, which are associated with the

boundary conditions at t = +∞ for H and Ξ, respectively.
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3.1.2 Boundary conditions in asymptotic far future

Here we introduce the constants H, Ξ, and a that our formulas for β(n→2)
k ultimately

depend on. These constants quantify the boundary conditions in the far future as t →

+∞, and contain the same information as the initial conditions. This limit is necessary

to integrate the equations of motion starting at λ = 0 for our asymptotic expansions. We

start by noting that

d

dt

(
H−1 − 3

2
t+

3

4
sin 2Ξ

)
∼ d

dt
(Ξ− t) ∼ d

dt
log(H2/3a) ∼ O(H) (3.9)

is a consequence of the EOMs in eq. (3.8). We see that the quantities in parenthesis

approach constants as H → 0 at late times.1 We define them as

H−1 ≡ lim
t→∞

H−1(t)− 3

2
(t− te) +

3

4mφ

sin 2Ξ(t) , (3.10)

Ξ ≡ lim
t→∞

Ξ(t)−mφ(t− te) , (3.11)

a ≡ lim
t→∞

a(t) (H(t)/mφ)2/3 , (3.12)

where we restored units by reversing eq. (3.5).

While these constants can be determined by numerical integration of the background

field equations, they can also be estimated using an expansion in H(t)/mφ. Using dimen-

sional reduction of eq. (3.5), we write our three dynamical variables as

H−1(t) = H−1 +
3

2
(t− te)−

3

4
sin 2Ξ(t) +

∞∑

n=1

Hn(t)Rn (Ξ(t)) ,

Ξ(t) = Ξ + t− te +
∞∑

n=1

Hn(t)Xn (Ξ(t)) ,

a(t) = aH−2/3(t) exp

(
H

2
sin 2Ξ +

∞∑

n=1

Hn+1(t)An(Ξ(t))

)
, (3.13)

for some oscillatory functions Rn(Ξ), Xn(Ξ) and An(Ξ), which we obtain by solving

eq. (3.8) along with d
dt

log a = H at each order inH. The constants of integration are again

1We acknowledge that logH behavior at late times is consistent with eq. (3.9). However the λ, θ
asymptotic expansions show such divergences do not exist for the quantities in the parenthesis.
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determined by the condition of eliminating divergences to keep these functions bounded.

Unlike in the case of the λ, θ expansion, all constants are completely determined such

that the solution is unique with no scheme choices needed.

By simple subtraction, this solution immediately yields expressions for the boundary

constants of eqs. (3.10), (3.11), and (3.12) based on the values of H, Ξ and a at any target

time t. If we choose this time to be te, then to first order in He/mφ we have the estimates

mφ

H
≈ mφ

He

+
3

4
sin 2Ξe −

He

mφ

(
15α2

3

8
− 3α4

4
+

9

32
cos 4Ξe +

3α3

2
sin Ξe +

α3

2
sin 3Ξe

)
,

Ξ ≈ Ξe −
He

mφ

(
9

8
+

5α2
3

2
− α4 +

3

4
cos 2Ξe + 2α3 sin Ξe

)
,

a

ae
≈ H

2/3
e

m
2/3
φ

exp

[
− He

2mφ

sin 2Ξe −
H2
e

m2
φ

(
−3

8
− 5α2

3

8
+
α4

4

−3

8
cos 2Ξe −

3

32
cos 4Ξe − α3 sin Ξe −

1

3
α3 sin 3Ξe

)]
. (3.14)

3.1.3 A special property at the end of inflation

Here we note a special property about Ξe. The end of inflation is defined by

äe = 0 ↔ ρe + 3pe = 0 ↔ φ̇2
e = V (φe) , (3.15)

where the arrows represent equivalence between all three statements. Using the third

statement and eq. (3.2), we can show that

Ξe = arg
[
se(
√

2 + i)
]

= ±π
2
− arctan

√
2, (3.16)

where se ≡ sign(φe−v) = ±1. This has the advantage of specifying the end of inflation in

a closed-form and geometric manner using a single variable with no derivatives involved.

Examples of both physically distinct solutions for Ξe can be found in Table 4.1.

Using the geometric expression of Ξe in eq. (3.16), we can express the approximations
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for the boundary condition constants from the previous section as

mφ

H
=
mφ

He

+
1√
2

+
He

mφ

(
7

32
− 15α2

3

8
+

3α4

4
− 7seα3

3
√

3

)
, (3.17)

Ξ = arg
[
se(
√

2 + i)
]

+
He

mφ

(
−11

8
− 5α2

3

2
+ α4 −

2seα3√
3

)
, (3.18)

a

ae
=
H

2/3
e

m
2/3
φ

exp

[
−
√

2He

3mφ

+
H2
e

m2
φ

(
41

96
+

5α2
3

8
− α4

4
+

14seα3

9
√

3

)]
, (3.19)

which only uses the initial conditions of ae, He, and se, along with information about the

potential up to the quartic interaction, i.e., mφ, α3, and α4. We expect se to only appear

with quantities such as α3 that break the reflection symmetry of the potential about its

minimum, i.e., V (v + ∆φ) = V (v − ∆φ), i.e., αn = 0 for all odd n. If the potential is

symmetric, then H, Ξ − Ξe, and a must be independent of the se initial condition. In

this case, the action se → −se causes both Ξe and Ξ shift by the same factor of π such

that the difference is unaffected.

3.2 Perturbative asymptotic series formalism

This section lays out the formalism in which the equations of motion are solved using

asymptotic expansions of the variables as a function of “slow-” and “fast-” time variables

λ and θ. As shown in Ch. 4, this allows computation of the Bogoliubov coefficients as an

analytic expansion in powers of k−3/2.

We begin by using eq. (3.5) to scale and shift away various constants. It is convenient

to solve the dynamics using the polar coordinates H and Ξ defined by eq. (3.2), as the

former is used in GPP calculations. We use perturbative series in powers of λ to write

them as

H = λ+
∞∑

`=1

h`(θ)λ
`+1 , (3.20)

Ξ = θ +
∞∑

`=1

ξ`(θ)λ
` , (3.21)

where h`(θ) and ξ`(θ) are oscillatory functions that must remain bounded in magnitude
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to maintain the stability of the expansion. This requirement will determine most of the

constants of integration associated with solving for these functions at each order in λ. As

one can see from eq. (3.20), the expansion in powers of λ is justified if H/mφ is small.

To solve the EOMs from eq. (3.8), we must specify the time evolution of λ and θ. We

define the derivatives of both variables as

λ̇ = βλ(λ) ≡ −3

2
c0λ

2

(
1 +�

�c1λ+
∞∑

j=2

cjλ
j

)
, (3.22)

θ̇ = βθ(λ) ≡ ω0

(
1 +���ω1λ+

∞∑

j=2

ωjλ
j

)
, (3.23)

where cj and ωj are constant coefficients. While the EOMs determine c0 = ω0 = 1 and

c1 = ω1 = 0, the coefficients for all j ≥ 2 remain unfixed parameters. It will be shown

that the parameter

h1 ≡
1

2π

ˆ 2π

0

h1(θ)dθ (3.24)

also remains undetermined due to the time translation invariance of the EOMs, i.e., the

freedom to choose the origin of the time coordinate. We call every such choice of h1 and

{cj, ωj|j ≥ 2} a renormalization scheme (RS) because of the analogy with the coupling

flow equations. Of course, given that this degree of freedom is a diffeomorphism choice,

we could have also called it a gauge choice.

We are free to choose h1 by the following argument. The derivatives in eqs. (3.22)

and (3.23) are invariant under shifts in t or θ. Thus, if λ(t) and θ(t) are solutions for a

given set of coefficients {cj, ωj}, then λ(t + ts) and θ(t + ts) + θs must also be solutions

for any shifts ts and θs. Using the typical Taylor series, this can be expressed as making

the replacements

λ→ λ− 3

2
tsλ

2 +
9

4
t2sλ

3 +O(λ4) , (3.25)

θ → θ + θs + ts + ω2tsλ
2 +O(λ3) , (3.26)

with derivatives at t determined by eqs. (3.22) and (3.23). Applying these shifts to our
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asymptotic expansions yield equivalent solutions due to the time translation invariance of

the EOMs. However, the form of Ξ = θ +O(λ) is violated unless θs + ts = 0. Therefore,

we have one remaining symmetry parameter, which we will denote as δh1 = −3
2
ts = 3

2
θs

because of the shift it induces in h1. In summary, if we apply

λ(t)→ λ(t− 2
3
δh1) , θ(t)→ θ(t− 2

3
δh1) + 2

3
δh1 , (3.27)

then our asymptotic solutions transform as

H → λ+ λ2 (h1(θ) + δh1) + λ3
(
h2(θ) + 2h1(θ)δh1 + δh2

1

)
+O(λ4) , (3.28)

Ξ→ θ + λξ1(θ) + λ2

(
ξ2(θ) + (ξ1(θ)− 2

3
ω2)δh1

)
+O(λ3) , (3.29)

which is equivalent to a change of hj and ξj. Fixing the value of h1 breaks this shift

symmetry and therefore acts as an additional RS parameter.

Our results in Ch. 4 will be computed with a consistent truncation to render the

results explicitly independent of the renormalization scheme. This gives us the freedom

to choose the RS such that

ˆ 2π

0

h`(θ)dθ =

ˆ 2π

0

ξ`(θ)dθ = 0 (3.30)

for all ` ≥ 1, which is convenient as the expressions tend to be relatively compact in this

scheme. The relevant results to O(λ3) are given by h1 = 0 and

c2 =
27

32
− 15α2

3

8
+

3α4

4
, ω2 = −27

16
− 15α2

3

4
+

3α4

2
, c3 = ω3 = 0 ,

H = λ+
3λ2

4
sin 2θ + λ3 (−3α3 sin θ + α3 sin 3θ) + λ4

(
−21α3

4
cos θ

+

(
27

64
− 3α2

3

16
− 9α4

8

)
sin 2θ − 11α3

4
cos 3θ +

(
81

256
+

51α2
3

64
+

9α4

32

)
sin 4θ

)
,

aλ2/3

a
= 1 + λ2

(
9

32
− 5α2

3

8
+
α4

4
− 3

8
cos 2θ

)
+ λ3

(
3α3 cos θ − 9

16
sin 2θ − α3

3
cos 3θ

)
,

where a was found by perturbatively solving ȧ = Ha after the solution to H was found.
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Due to the defintion eq. (3.12), the constant of integration had to be a given that λ→ 0

in the far future limit.

We will now derive expressions for t and θ in terms of λ as these are needed for

evaluating the Ωs,k and nθ terms in eq. (4.9), respectively. Using eqs. (3.22) and (3.23),

we write

t =
2

3
λ−1(t) + s− 2

3
λ−1(s) +

ˆ λ(t)

λ(s)

dx

(
1

βλ(x)
+

1
3
2
x2

)

θ(t) =
2

3
λ−1(t) + θ(s)− 2

3
λ−1(s) +

ˆ λ(t)

λ(s)

dx

(
βθ(x)

βλ(x)
+

1
3
2
x2

)

for any t and s. Note that H−1 = λ−1 − h1 − 3
4

sin 2θ +O(λ) and Ξ = θ +O(λ) for any

RS, and therefore

s− 2

3
λ−1(s) = −2

3

(
H−1(s)− 3

2
s+

3

4
sin 2Ξ(s) + h1

)
+O(λ) ,

θ(s)− 2

3
λ−1(s) = Ξ(s)− s− 2

3

(
H−1(s)− 3

2
s+

3

4
sin 2Ξ(s) + h1

)
+O(λ) ,

which, along with the definitions of the boundary constants in eqs. (3.10) and (3.11),

implies that we can take the limit as s→ +∞ to write

t(λ) =
2

3
λ−1 − 2

3

(
H−1 + h1

)
+

ˆ λ

0

dx

(
1

βλ(x)
+

1
3
2
x2

)
, (3.31)

θ(λ) =
2

3
λ−1 + Ξ− 2

3

(
H−1 + h1

)
+

ˆ λ

0

dx

(
βθ(x)

βλ(x)
+

1
3
2
x2

)
, (3.32)

given that the O(λ(s)) corrections vanish in the limit. The integrals on the right converge

and can be expanded as polynomials in λ. We write

t(λ) =
2

3
λ−1 − 2

3
H−1 + λ

(
9

16
− 5

4
α2

3 +
α4

2

)
+O(λ3) , (3.33)

θ(λ) =
2

3
λ−1 + Ξ− 2

3
H−1 + λ

(
27

16
+

5α2
3

4
− α4

2

)
+O(λ3) , (3.34)

where we used the RS below eq. (3.30). In this scheme, the λ2 terms are exactly zero.
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Chapter 4

Novel computation of the Bogoliubov

coefficient

4.1 Stationary phase approximation

In situations where there are coherent oscillations of the inflaton, some contributions

to GPP can be interpreted as coming from scattering of the inflaton quanta into χs

via graviton exchange [13, 18, 54, 57]. Below, we explain a novel computation of this

coefficient that gives not only the amplitudes of nφ → 2χ during the inflaton coherent

oscillations, but also the interference between amplitudes with different n ≥ 1.

In the scenario with coherent oscillations of the inflaton field after the quasi-dS

phase, the Hubble expansion rate has two broad classes of components: intuitively,

H = Hslow + Hfast, where the oscillatory fast component is smaller in amplitude but

varies on a larger frequency scale compared to the monotonically decreasing slow com-

ponent. The respective scales are d
dt

lnHslow ∼ H and d
dt

lnHfast ∼ mφ, and therefore

H < mφ is required for a meaningful distinction. This condition holds in the oscillatory

era for most single field inflationary models. This decomposition is made precise using the

formalism summarized in Ch. 3.2. This approach differs from that of Ref. [59], where time

was partitioned into bins of size H−1/2
slow m

−1/2
φ to find the φ̇ behavior applicable to each of

those bins. That approach is suitable for the particle production computation without
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the interference, but to find the interference, we need to keep track of the time phase

of the Bogoliubov coefficients across different time bins ∆t. The approach we will take

below is to use a novel method of expanding the background field evolution in Hslow/mφ.

This formalism introduces functions λ(t) and θ(t) that partition the slow-time and

fast-time dependence of a general quasi-periodic function of time such as Ñk(t). The

monotonically decreasing slow-time variable λ can be thought of as

λ(t) ∼ Hslow(t)

mφ

∼ He/mφ

1 + 3
2
He(t− te)

∼ 2

3mφt
, (4.1)

where all quantities with a subscript-e index will refer to its value at the time te when the

quasi-dS era ends, also referred to as the end of inflation. For the two inflation models we

will consider, Quadratic and Hilltop, He/mφ ' 0.5 and 0.03, respectively (see Table 4.1),

and therefore λ(t) is less than unity for t ≥ te. The fast-time variable θ can be thought

of as a diffeomorphism of time to a monotonically increasing phase function such that

θ(t) ∼ mφt . (4.2)

In short, λ and θ describe time scales of H−1 and m−1
φ , respectively. This partitioning

is the basis for the perturbation technique of Ch. 3.1, which allows us to resum secular

effects and track βk(t) accurately for a long time (a time much longer than m−1
χ ). For

example, the Hubble expansion rate is expanded systematically as

H = mφλ

(
1 +

∞∑

`=1

h`(θ)λ
`

)
, (4.3)

where h`(θ) contains the fast-time behavior as a sum of sinusoids that depend on integer

multiples of θ. The higher-integer frequency components become increasingly negligible

as they generally come with higher powers of λ(t). This accurate tracking for a long time

is useful for capturing our sought-after interference effects, which develop on a time scale

∆t � H−1 � m−1
χ for the k/ae > mφ modes. The time evolution of these functions is
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defined by

λ̇ = −3

2
mφλ

2(1 +O(λ2)) , (4.4)

θ̇ = mφ(1 +O(λ2)) , (4.5)

where the initial conditions and details of the O(λ2) corrections are irrelevant for the

arguments of this chapter. The λ, θ decomposition is explained in further detail in Ch. 3.2.

To describe the interference effects, we write βk as a sum over β(n→2)
k contributions

by partitioning the time dependence of the integrand from eq. (2.14) into λ(t) and θ(t),

where an exact definition of β(n→2)
k is presented below. In summary, the n → 2 label

alludes to the nφ → 2χ scattering process, with the integer n denoting the frequency

that stems from an oscillatory dependence on nθ. As noted below eq. (4.3) and shown

in Ch. 4.2, larger n are increasingly suppressed, and therefore βk is well approximated by

the first few terms of this sum. This property motivates the use of this formalism, and is

analogous to the suppression of higher particle number processes in perturbative QFT.

We now present definitions used in the specification and computation of β(n→2)
k . Given

a general quantity X(λ, θ), we define the convention

X(λ, θ) =
∞∑

n=−∞

X(n)(λ)einθ , (4.6)

X(n)(λ) ≡ 1

2π

ˆ 2π

0

X(λ, θ)e−inθdθ , (4.7)

where X(n)(λ) is the nth-frequency component of X. The slow-time component Xs is

defined as the n = 0 term, which does not contain any fast-time information, i.e., no

θ-dependence, and the fast component Xf is defined as the remainder (i.e., the sum of

the n 6= 0 terms). As an example, it will be useful to separate the phase-factor Ωk into a

slow component Ωs,k(λ) ≡ Ω
(0)
k (λ) and a fast component Ωf,k(λ, θ) ≡ Ωk(λ, θ)− Ωs,k(λ).



19

We define β(n→2)
k for the resonant scattering situations of current interest such that

βk =
∞∑

n=1

β
(n→2)
k where β

(n→2)
k ≡

ˆ tf

ti

dtN (n)
k (λ) ei(nθ−2Ωs,k(λ)) , (4.8)

and Nk ≡ Ñke−2iΩf,k , with the transformation of t to λ, θ dependence as well as the

expression of Ñk(λ, θ) described in Ch. 3.2 and Appendix A.1 The exponential in eq. (4.8)

hints at the relation to the amplitude for nφ → 2χ as its phase is stationary when

nmφ ≈ 2
√
k2/a2 +m2

χ, which corresponds to the energy condition of n inflatons at rest

annihilating to produce two χ particles with momentum k/a. This correspondence to

scattering motivates referring to β(n→2)
k as the n→ 2 resonance component, and suggests

evaluation using the stationary phase approximation.

We compute the n→ 2 resonance component of the Bogoliubov coefficient using the

stationary phase approximation, which will ultimately lead to an expansion in powers of

k−3/2. For the purposes of explaining the computation, we write

Ψ
(n)
k (t) ≡ inθ(t)− 2iΩs,k(λ(t)) + logN (n)

k (λ(t)) (4.9)

as the total (complex-valued) phase for the n → 2 resonance. The phase is stationary

when Ψ̇
(n)
k (t

(n)
k ) ≡ 0, where we call t(n)

k as the resonance time,2 which will usually have

a small imaginary component due to the complex nature of the phase. The phase is

expanded as

β
(n→2)
k = eΨ

(n)
k (t

(n)
k )

ˆ tf

ti

dt exp

(
∞∑

`=2

1

`!
∂`tΨ

(n)
k (t

(n)
k ) (t− t(n)

k )`

)
, (4.10)

which is the starting point of the stationary phase approximation. We now define a new

variable z such that the quadratic term in the exponential becomes −1
2
z2, and evaluate

1The integral of eq. (4.8) for n ≤ 0 is exponentially suppressed for resonant scattering, i.e., k & mφae,
which is why the sum of eq. (4.8) starts from n = 1.

2While more than one stationary point may exist, we assume there is a single dominant point.
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using an expansion of Gaussian integrals as

β
(n→2)
k =

eΨ
(n)
k (t

(n)
k )

√
−Ψ̈

(n)
k (t

(n)
k )

ˆ +∞

−∞
dz e−

1
2
z2

exp

(
∞∑

`=3

∂`tΨ
(n)
k (t

(n)
k )

`![−Ψ̈
(n)
k (t

(n)
k )]`/2

z`

)
(4.11)

=
eΨ

(n)
k (t

(n)
k )
√

2π√
−Ψ̈

(n)
k (t

(n)
k )

(
1− 5[∂3

t Ψ
(n)
k (t

(n)
k )]2

24[Ψ̈
(n)
k (t

(n)
k )]3

+
∂4
t Ψ

(n)
k (t

(n)
k )

8[Ψ̈
(n)
k (t

(n)
k )]2

+ . . .

)
, (4.12)

where the coefficients of the higher powers of z are treated as increasingly negligible, an

assumption that will be justified shortly. In going from eq. (4.10) to eq. (4.11), we moved

the contour into the complex plane in addition to changing the integration limits. In

particular, the contour was rotated by approximately 45 degrees as Ψ̈
(n)
k at resonance is

dominated by its imaginary component due to the first two terms of eq. (4.9).

We need an expansion parameter to truncate the expansion of eq. (4.12), which we will

see is proportional to k−3/2 by the following argument. Since λ̇ ∼ λ2 and the derivatives

of the phase depend on λ, we know that ∂`tΨ
(n)
k ∼ λ`−1 and therefore the z` coefficient

in eq. (4.11) scales as λ`/2−1, which is suppressed for ` ≥ 3. Hence, the next step is to

evaluate λ(t̄
(n)
k ). The phase is stationary when nmφ ≈

√
k2/a2 +m2

χ for N (n)
k that is

non-singular in λ. The scale factor satisfies a = aλ−2/3(1 + O(λ)), where the constant

of integration a ∼ aeH
2/3
e /m

2/3
φ was determined by definition in eq. (3.12). Therefore, we

estimate

λ(t
(n)
k ) ≈


 k/a√

n2

4
m2
φ −m2

χ



−3/2

∼ He

mφ


 k/ae√

n2

4
m2
φ −m2

χ



−3/2

, (4.13)

which is a small number for all k & H
2/3
e m

1/3
φ ae for n = O(1). Since our present computa-

tion is focusing on scattering of particle-like modes at the end of the quasi-dS era, λ(t
(n)
k )

is small for all the modes of our present interest and thus is naïvely a useful expansion

parameter. This statement will be made more sharp in Ch. 4.4.

We would like to solve for λ(t
(n)
k ) itself as a function of k. Hence, we define a separate
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expansion parameter for the stationary phase approximation as

ε κ−3/2
n ≡


 k/a√

n2

4
m2
φ −m2

χ



−3/2

, (4.14)

where ε is a bookkeeping parameter inspired by the smallness of eq. (4.13). We can

parameterize a perturbation series solution of λ(t
(n)
k ) in powers of ε κ−3/2

n as

λ(t
(n)
k ) = ε κ−3/2

n

(
1 +

∞∑

j=1

r
(n)
k,j

(
ε κ−3/2

n

)j
)

(4.15)

where the constant coefficients r(n)
k,j are determined by solving the stationary phase con-

dition Ψ̇
(n)
k (t

(n)
k ) = 0 at each order in ε. When using the replacement of eq. (4.15), it

is important to write k in terms of ε−2/3κn using eq. (4.14) to cancel out the fractional

powers of ε that appear due to a ∼ λ−2/3. This is equivalent to assuming k and amφ

have the same magnitude at resonance. Afterwards, we can use our solution to evaluate

the phase-derivative coefficients appearing in eq. (4.12). Some of the technical details of

this computation are given in Appendix A.

4.2 Analytic formulas for the Bogoliubov coefficient

In this chapter, we explicitly list the analytic amplitudes β(n→2)
k for n ∈ {1, 2, 3, 4} solved

by the procedure described above, with the k-dependence expressed as an expansion

in κ
−3/2
n as defined by eq. (4.14). We choose a conformally-coupled (ξ = 1/6) scalar χ

field because of the relative simplicity of the source of nonadiabaticity. To make the

interference phase more manifest, we express our results as

β
(n→2)
k = A(n→2)

k eiΦ
(n→2)
k . (4.16)
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Up to a global phase that is independent of n, which therefore affects neither the inter-

ference nor the magnitude of βk, the leading terms for the phase can be written as

Φ
(n→2)
k,leading =

2

3
κ3/2
n

(
n− 2rχ 2F1

(
−3

4
,−1

2
; 1

4
; 1− n2

4r2
χ

))
+ n

(
Ξ− 2mφ

3H

)
, (4.17)

where rχ ≡ mχ/mφ, H and Ξ are boundary conditions defined in eqs. (3.10) and (3.11),

respectively, and 2F1 is the hypergeometric function. We will give a physical interpretation

of this leading order phase in Appendix B.1. If we define ∆Φ
(n→2)
k ≡ Φ

(n→2)
k − Φ

(n→2)
k,leading

and rχ = mχ/mφ, then we can write our results as

A(1→2)
k = −3α3

√
− i

2
π

1
4
− r2

χ

r2
χ

κ
15/4
1

(
1 +O(κ−3

1 )
)
, (4.18a)

A(2→2)
k =

3

16

√
−iπ

1− r2
χ

r2
χ

κ
9/4
2

(
1 +

x0 + x1r
2
χ + x2r

4
χ − 416r6

χ + 384r8
χ

1024(1− r2
χ)2κ3

2

+O(κ−6
2 )

)
,

(4.18b)

A(3→2)
k =

α3

9

√
−3i

2
π

9
4
− r2

χ

r2
χ

κ
15/4
3

(
1 +O(κ−3

3 )
)
, (4.18c)

A(4→2)
k =

3
(
−21 + 68α2

3 + 24α4 + 12r2
χ

)

4096

√
−2iπ

4− r2
χ

r2
χ

κ
21/4
4

(
1 +O(κ−3

4 )
)
, (4.18d)

∆Φ
(1→2)
k = κ

−3/2
1

(
y

(1)
0 + y

(1)
1 r2

χ − 1280r4
χ

480
(
1− 4r2

χ

) + z(1) +O(κ−3
1 )

)
, (4.19a)

∆Φ
(2→2)
k = κ

−3/2
2

(
y

(2)
0 + y

(2)
1 r2

χ − 80r4
χ

960
(
1− r2

χ

) + z(2) +O(κ−3
2 )

)
, (4.19b)

∆Φ
(3→2)
k = κ

−3/2
3

(
y

(3)
0 + y

(3)
1 r2

χ − 1280r4
χ

12960
(
9− 4r2

χ

) + z(3) +O(κ−3
3 )

)
, (4.19c)

∆Φ
(4→2)
k = κ

−3/2
4

(
y

(4)
0 + y

(4)
1 r2

χ + y
(4)
2 r4

χ + 2588r6
χ

960
(
4− r2

χ

) (
−21 + 68α2

3 + 24α4 + 12r2
χ

) + z(4) +O(κ−3
4 )

)
,

(4.19d)

where xi, y
(n)
i , z(n) are merely notational variables to allow a visually manageable display

of the results, with their explicit values given in Ch. 4.5. Given the generalized nature of
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Model mχ/He mφ/He Ξe mφ/H Ξ a/ae
Quadratic 0.1 1.981 0.615 2.748 −0.138 0.5662
Hilltop 10 31.31 −2.526 26.90 −9.755 0.1041

Table 4.1: Values in the Quadratic and Hilltop models of inflation defined by eqs. (2.3) and (2.4),
respectively. Note that dividing a/ae by (He/mφ)

2/3 gives 0.893 and 1.034 for the respective models,
which are O(1), as expected based on the definition of a in eq. (3.12).

αn as defined in eq. (2.2), these results are applicable to any inflationary potential which

can expanded as a polynomial with a positive quadratic term at its minimum. Since A(2→2)
k

will be the dominant term, we have shown it to higher order in the expansion. Note that

the higher order terms in these formulas are organized by time reversal symmetry, and

therefore have relative corrections that go as ε2κ−3
n instead of εκ−3/2

n .

The boundary conditions for the background functions {φ(t), a(t)} are given by 3

integration constants and are needed for specifying analytic formulas for β(n→2)
k . These

can be chosen to be H, Ξ, and a defined by limits as t → ∞ in eqs. (3.10), (3.11), and

(3.12), respectively. This method of writing the boundary conditions allows a cleaner

set of analytic expressions. Numerical solutions were used to obtain the values found in

Table 4.1 for two inflationary models of interest, and this was done mostly for accuracy

when comparing the analytic βk with numerically computed βk. Analytic expressions

can be obtained for these integration constants as an expansion in He/mφ for standard

slow-roll inflationary scenarios entering the coherent oscillations period. For example,

eqs. (3.17), (3.18), and (3.19) only require conditions at te and give comparable values

to those found in Table 4.1: mφ/H ≈ 2.799, Ξ ≈ −0.078, and a/ae ≈ 0.5571 for the

Quadratic model, and mφ/H ≈ 27.28, Ξ ≈ −9.144, and a/ae ≈ 0.1038 for the Hilltop

model.

The calculations were done without choosing a particular scheme, a type of gauge

choice concept that is particular to our computational formalism described in Ch. 3.2.

Instead, the scheme dependence was kept general throughout and completely cancelled

out in the final result. Checking scheme independence of observables was a robust tool

to verify different steps of the calculation. Another feature to note is that all amplitudes

vanish as they should when mχ/mφ → 0 since we are considering the conformally-coupled

case. A related feature is that the leading phase Φ
(n→2)
k,leading diverges in the limit that
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mχ/mφ → 0.

Let’s now compare the squared amplitudes between the current computation and an

earlier work by some of the present authors [59]. From the latter, we have the estimate

fχ(k) =
9π

256

H̃3
end

m3
φ

(
1−m2

χ/m
2
φ

)
(
mχ

mφ

)4

 k/aend√

m2
φ −m2

χ



−9/2

, (4.20)

where the definition of H̃end and the above equation for fχ are given by eqs. (8.13) and

(8.17) of Ref. [59], respectively. This can be compared to our eq. (4.18c). For the Hilltop

model of eq. (2.4), the leading expressions differ by a factor of

∣∣∣A(2→2)
k

∣∣∣
2

fχ(k, t)
≈

m3
φ

H̃3
end

a9/2

a
9/2
end

≈ (30.41Hend)3(0.1041ae)
9/2

(1.843H3
end)(0.875ae)9/2

= 1.052 (4.21)

where the value of a is found in Table 4.1, and the value of H̃end for this Hilltop model

is given by eq. (8.27) of Ref. [59]. The difference between ae and aend (also He and Hend)

is a result of different definitions for the end of inflation. This ratio can be used as an

estimate of corrections that this thesis represents to the computations of Ref. [59] as far

as the non-interference piece is concerned.

4.3 Discussion of the interference

Now, let’s consider the interferences arising from the results of Ch. 4.2. To focus the

discussion to the physically most significant case, consider the interference between 2→ 2

and 3→ 2 amplitudes:

∣∣∣A(2→2)
k eiΦ

(2→2)
k +A(3→2)

k eiΦ
(3→2)
k

∣∣∣ 3 2Re

{
A(2→2)
k A∗(3→2)

k e
i
[
Φ

(2→2)
k −Φ

(3→2)
k

]}
. (4.22)
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Since A(2→2)
k A∗(3→2)

k is real, the interference phase between these two processes comes

from

Φ
(2→2)
k − Φ

(3→2)
k =

2mφ

3H
− Ξ +

2

3

(
2κ

3/2
2 − 3κ

3/2
3

)
− 4rχ

3
κ

3/2
2 2F1

(
−3

4
,−1

2
; 1

4
; 1− 1

r2
χ

)

+
4

3

mχ

mφ

κ
3/2
3 2F1

(
−3

4
,−1

2
; 1

4
; 1− 9

4r2
χ

)
+ ∆ +O(ε3) , (4.23)

where rχ = mχ/mφ, and ∆ is defined as

∆ ≡ 1

κ
3/2
2

(
y

(2)
0 + y

(2)
1 r2

χ − 80m4
χ

960
(
1− r2

χ

) + z(2)

)
− 1

κ
3/2
3

(
y

(3)
0 + y

(3)
1 r2

χ − 1280r4
χ

12960
(
9− 4r2

χ

) + z(3)

)
,

(4.24)

with y(n)
m as numerical coefficients that depend only on the inflaton potential interaction

strengths α3 and α4, as can be seen in Ch. 4.5. The term proportional to 2κ
3/2
2 − 3κ

3/2
3

comes from 2θ(t̄
(2)
k )− 3θ(t̄

(3)
k ), and each of these terms with the respective coefficients are

effectively a rewriting of the resonance times. The hypergeometric functions correspond

to the 2Ωk phases appearing in eq. (2.12) evaluated at the respective resonance times.

Equation (4.23) is one of the main analytic results of this present work.

The ∆ term contains the leading higher-λ power correction to the leading stationary-

phase result. This contains the nontrivial corrections to the phases coming from the

cubic and quartic interaction terms of the inflaton potential: i.e., it depends on α3,4.

It vanishes in the large k/mφ limit because this is just the property of an asymptotic

expansion through the stationary phase method.

In Appendix B.1, we will discuss how the phases can be interpreted in terms of phases

accumulating through the Hamiltonian energy driven time evolution. In this intuitive

picture, for a given time interval, the inflaton background field self-interaction and self-

gravitational interaction change the accumulated phase of the inflaton interpreted as a col-

lection of one-particle states because of the change in the effective free propagator Hamil-

tonian energy. For example, in the parameter region of {mφ � mχ, α3 = 0,mφ � H},

one can easily check that ∆ increases as expected from the intuition that the steepening
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of the potential by the quartic potential contribution increases the effective oscillation

mass. The κ−3
2 correction term in |A(2→2)

k |2 of eq. (4.18c) increases with mχ increasing,

although the physical interpretation of this increase is not as obvious.

In the more generic region in the parameter space, ∆ is not monotonic with increasing

mχ/mφ. For example, ∆ goes through a zero as mχ/mφ is increased if α3/α4 & O(1).

Since ∆ generically diverges as mχ → mφ and decreases with increasing mχ for small

mχ/mφ, there can be two zeroes if ∆ > 0 when mχ/mφ = 0 and α3/α4 & O(1).

4.4 Numerical examples

In this section, we employ the analytic results of Ch. 4.2 to study GPP and quantum

interference for two specific models of inflation: the Quadratic Potential model from

eq. (2.3) and the Hilltop Potential model from eq. (2.4). We evaluate the absolute value

of the Bogoliubov coefficients |βk| using the analytic expressions for βk in eqs. (4.8),

(4.16), (4.18), and (4.19). We consider a range of dimensionless comoving wavenumbers

k ∈ (10−2, 102), where we’ve set aeHe = 1 such that the modes with k = 1 leave the

horizon at the end of inflation.

Our results for the Quadratic Potential model are presented in Fig. 4.1. The blue-

dotted curve corresponds to our leading-order analytic calculation |β(2→2)
k | on both the

upper and lower panels, while the red-dashed curve on the lower panel includes the first

sub-leading correction |β(2→2)
k +β

(4→2)
k |. Since the quadratic potential has a Z2 symmetry,

φ → −φ, the nφ processes with odd n have vanishing amplitudes: e.g. β(1→2)
k = 0 and

β
(3→2)
k = 0. The spectrum at large k is approximately a power law |βk| ≈ |β(2→2)

k | ∝ k−9/4,

but closer inspection reveals a sub-leading component that oscillates as k is varied. These

oscillations are explained in this work as an interference effect. Using eq. (4.17), the

oscillation period ∆k is controlled by the variation in the phase with respect to k, and

can be explicitly written as

∆k =
2π

|∂k(Φ(n1→2)
k − Φ

(n2→2)
k )|

≈
π
2
amφ

|n−1/2
1 − n−1/2

2 |

√
amφ

2k
(4.25)
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Figure 4.1: The Bogoliubov coefficient |βk| as a function of comoving wavenumber k (with aeHe = 1)
in the Quadratic Potential model. We assume a conformally-coupled (ξ = 1/6) scalar spectator with
mass mχ that experiences GPP due to an expanding spacetime background driven by an inflaton field
φ on a quadratic potential with mass mφ. Top: We calculate |βk| using the analytic results of this
thesis (blue-dotted) and using direct numerical integration of the mode equations (gray). Note that
|βk| scales as k−9/4 at large k. As a comparative contrast to this power law behavior in k, the black
curve shows an approximate expression for |βk| for GPP in a matter dominated (MD) universe,
extrapolated to lower k values (beyond the range of strict validity) for visual completeness of the
exponential behavior. Bottom: The Bogoliubov coefficient exhibits an oscillatory feature in the large k
power-law tail of the spectrum, which is explained in this work as a result of quantum interference
between β(2→2)

k and β(4→2)
k .
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Figure 4.2: Same as Fig. 4.1 but for the Hilltop Potential model and a different value of mχ. Note the
more pronounced and irregular oscillatory behavior, which is explained in this work as result of
interference among four components: β(1→2)

k , β(2→2)
k , β(3→2)

k , and β(4→2)
k .
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for any n1 and n2. For the Quadratic model used in Fig. 4.1, this evaluates to ∆k ' 2aeHe

for n1 = 2 and n2 = 4. For comparison, the gray curve shows the result of calculating |βk|

by direct numerical integration of the mode equations. The analytic results derived here

agree very well with the numerical integration at large k in both the average power-law

behavior and the oscillatory features. This agreement can be viewed as a validation of our

analytic approximations. The exponentially dropping black curve3 by contrast highlights

the power-law behavior |βk| ∝ k−9/4 coming from the oscillating inflaton field that drives

corresponding oscillations in the scale factor.

For the Hilltop Potential model, our results appear in Fig. 4.2. Once again, the leading

power-law behavior at large k is |βk| ≈ |β(2→2)
k | ∝ k−9/4 as seen from both the direct nu-

merical integration (gray-solid) and our analytic approximation (blue-dotted). The sub-

leading oscillatory components (green-dashed and red-dot-dashed) have a richer structure

in this model, which is evident by comparing the lower panels of Figs. 4.1 and 4.2. This

behavior can be understood as follows: for the Hilltop Potential model the components

β
(n→2)
k have similar amplitudes with increasing n, leading to a pronounced interference

pattern, whereas the amplitudes decrease more rapidly in the Quadratic Potential model,

and the interference is dominated by just the first two terms. Moreover, since the Hilltop

Potential model does not have a Z2 symmetry at the minimum of the inflaton’s potential,

the processes with an odd number of inflatons – φ → 2χ, 3φ → 2χ, and so on – are not

forbidden. It turns out that β(1→2)
k amplitude is numerically less important than that

of β(3→2)
k for the interference partly owing to the suppression of (κ3/κ1)15/4 � 1 (see

eq. (4.14)). By including up to the sub-sub-leading order in our analytic calculations,

|β(1→2)
k + β

(2→2)
k + β

(3→2)
k + β

(4→2)
k |, we obtain the red-dot-dashed curve that matches the

result of direct numerical integration (gray-solid) very well at large k.

Here we note the limits of applicability of our analytic results, using β
(2→2)
k as an

example. From the form of A(2→2)
k , we see that for mφ � mχ (which is the case for

both figures) the next-order corrections to A(2→2)
k are approximately x1/1024κ3

2. For the

3The formula for this curve is |βk| = exp
(
−2.47(k/(aeHe))

3/2(He/mχ)
1/2
)
valid for k � aeHe, and

it corresponds to an approximate |βk| of GPP in a matter dominated universe. It is easily computable
by several methods (e.g. [8, 65]). A related formula is given explicitly in [57].
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Quadratic Model x1/1024 ' −1, so the magnitude of the correction is approximately

κ−3
2 . For the Hilltop Model x1/1024 ' −800, and the magnitude of the correction is

approximately 800κ−3
2 . An upper limit on the magnitude of the correction results in a

lower limit on κ2, which, in turn results, in an mφ/He-dependent lower limit on k (see

eq. (4.14)). For the figures we have assumed that the next-order corrections to β(2→2)
k

are no more than 30% (since the lower limit on k only depends of the third-root of the

correction limit, the result is relatively insensitive to the choice of 30%). From the figures

is is clear that the k−9/4 behavior extends to k somewhat lower than the cutoff in the

convergence of our expansion.

4.5 Coefficients in the Bogoliubov formulas

The relevant coefficients for the results of Ch. 4.2 are listed here. The xj coefficients that

appear in A(2→2)
k are

x0 = −1037− 6496α2
3 + 960α4 ,

x1 = 4
(
425 + 608α2

3 + 576α4

)
,

x2 = 4
(
−177 + 1016α2

3 + 816α4

)
,

the y(n)
j coefficients are

y
(1)
0 = 919 + 1080α2

3 − 432α4 ,

y
(1)
1 = 16

(
509− 270α2

3 + 108α4

)
,

y
(2)
0 = 961 + 4320α2

3 − 1728α4 ,

y
(2)
1 = 2

(
7− 2160α2

3 + 864α4

)
,
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y
(3)
0 = 81

(
871 + 9720α2

3 − 3888α4

)
,

y
(3)
1 = 144

(
−521 + 2430α2

3 − 972α4

)
,

y
(4)
0 = −135258 + 704696α2

3 + 471216α4 + 2350080α4
3 − 110592α2

3α4 − 331776α2
4 ,

y
(4)
1 = 38073 + 795404α2

3 − 211512α4 − 587520α4
3 + 27648α2

3α4 + 82944α2
4,

y
(4)
2 = 2

(
4323− 52180α2

3 + 20616α4

)
,

and the z(n) are given by

z(n) =
−9 + 20α2

3 − 8α4

40

mχ

mφ
2F1

(
1

2
,
3

4
;
7

4
; 1−

n2m2
φ

4m2
χ

)

for all n ≥ 1, where 2F1 is the hypergeometric function.



32

Chapter 5

Conclusions

In this thesis we report on our study of quantum interference in the phenomenon of

gravitational particle production. Our main results appear in Ch. 4.2. We have derived

analytic expressions for the Bogoliubov coefficients βk describing the gravitational pro-

duction of conformally-coupled, massive scalar particles during the inflaton’s coherent

oscillations after inflation. By employing a novel perturbation technique (relying on a

nonlinear field redefinition) and a stationary phase calculation, we have expressed βk

as a sum over resonant contributions β(n→2)
k . Oscillatory features in the spectrum |βk|2

are understood to result from an interference among the resonant contributions, e.g.

|β(2→2)
k + β

(3→2)
k |2 6= |β(2→2)

k |2 + |β(3→2)
k |2; see also eq. (4.23) for details. These analytic

results are in excellent agreement with a direct numerical integration of the mode equa-

tions; as shown in Ch. 4.4, the agreement is within a few percent in certain kinematic

regions. Our work explains much of the previously unexplained “noise” in numerically-

computed spectra, seen for example in Refs. [56–58]. As we discuss in Appendix B.1, the

resonant contributions β(n→2)
k are related to gravity-mediated inflaton scattering ampli-

tudes nφ→ 2χ corresponding to n inflaton particles with mass mφ at rest annihilating to

2 scalar particles with mass mχ < nmφ/2. This work also elucidates the quantum nature

of gravitational particle production induced by classical inflaton coherent dynamics.

As noted in Appendix B.1, the interference phase can be understood as arising from

the free propagator phases of the external legs of the scattering process. This means
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that the phases are dependent on the kinematics of the inflaton and the χ particles,

as well as the scattering times of say n1φ → 2χ and n2φ → 2χ processes. Unlike the

usual scattering situations where n1φ → 2χ and n2φ → 2χ are incoherent, the coherent

oscillation nature of the initial inflaton state allows for the scattering amplitudes to

interfere. This interference is efficiently captured using the Bogoliubov transformation

formalism.

The modulations of the χ-particle momentum spectrum shown in Figs. 4.1 and 4.2

in principle can be probed by kinematic-dependent subsequent scattering dynamics of χ

particles. For example, if interesting motivated scenarios exist for χ particle scattering

resonances with judicious energy spacing, the interference pattern of χ energies may lead

to enhanced production of final states compared to situations without this interference

pattern in the χ particle spectrum. Investigations into possible applications will be left

to future work.
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Appendix A

Expansion of the Bogoliubov complex

phase

In this appendix, we will show that the complex phase of eq. (4.9) and its derivatives

can be evaluated using only the value of the slowly time-varying λ. We will detail the

calculations of each term to O(λ2) and then simply state the results to O(λ4). We have

already obtained θ(λ) in eq. (3.32), and therefore we focus remaining items of Ωs,k and

Ñk.

Before expanding in λ, we make the replacement k → aλ−2/3
√
E2
k −m2

χ, where

Ek ≡
√
k2

a2
λ4/3 +m2

χ (A.1)

is treated as O(λ0), which is justified as Ek ∼ mφ at resonance times. This eliminates any

fractional powers of λ from appearing in our expansion, and is equivalent to expanding

in powers of the bookkeeping parameter ε in eq. (4.14) after making the replacements

λ→ ελ and k → ε−2/3k.

To simplify the display of these results, we use eq. (3.5), k → mφk, and mχ → mφmχ

to effectively set mφ = 1. Furthermore, we use the RS defined by eq. (3.30). We write

R = −3λ2(1 + 3 cos 2θ)− 9

2
λ3 (sin 2θ + 4α3 (cos 3θ − cos θ)) (A.2)
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Ṙ = 18λ2 sin(2θ) + 9λ3 (1 + 2 cos 2θ + 2α3(3 sin 3θ − sin θ)) (A.3)

using R = −6Ḣ−12H2 and the chain rule. Applying this and the results below eq. (3.30)

to eq. (2.13) results in

Ñk =
λ

2E2
k

+
3λ2

4E2
k

(
1− 6ξ +

m2
χ

2

)
sin 2θ +

λ3

2E2
k

{
−3α3

2

(
1− 6ξ + 2m2

χ

)
sin θ

+
3m2

χ

2E2
k

(
1− 6ξ − E

2
k −m2

χ

2

)
cos 2θ + α3

(
9(1− 6ξ)

2
+m2

χ

)
sin 3θ

+
(1− 6ξ)

(
E2
k + 2m2

χ

)
+
(

9
4
− 5α2

3 + 2α4

)
m2
χ

(
E2
k −m2

χ

)

4E2
k

}
, (A.4)

where mχ and Ek are understood as mχ/mφ and Ek/mφ, respectively.

We now explain how to obtain Ωk(λ, θ). We start by subtracting terms that only

contribute a time-independent global phase to βk, writing eq. (2.9) as

Ωk(t) = mχt+
2mχ

3H
+

ˆ t

tf

dt′ (Ek(t
′)−mχ) +

���������������ˆ tf

ti

dt′Ek(t
′)−mχtf −

2mχ

3H

= mχt+
2mχ

3H
+

ˆ λ(t)

0

dλ′
Ek(λ

′, θ(λ′))−mχ

βλ(λ′)

where the slashed out terms are the neglected global phase, and the limit tf → ∞ was

taken in the second line. Crucially, this neglected phase is scheme independent, which

ensures the same about the remainder. Using the expression for t(λ) in eq. (3.31), we

reduce this to

Ωk(t) =
2mχ

3

(
λ−1(t)− h1

)
+

ˆ λ(t)

0

dλ′
(
Ek(λ

′, θ(λ′))

βλ(λ′)
+
mχ

3
2
λ′2

)
,

with the task being to evaluate the integral on the right. Using the decomposition of

eq. (4.6) on Ek(t), we write the slow and fast components of Ωk(t) as

Ωs,k(λ) =
2mχ

3

(
λ−1 − h1

)
+

ˆ λ

0

dλ′

(
E

(0)
k (λ′)

βλ(λ′)
+
mχ

3
2
λ′2

)
, (A.5)
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Ωf,k(t) =
∑

n6=0

ˆ t

∞
dt′E

(n)
k (λ(t′))einθ(t

′) , (A.6)

respectively. The slow component integral converges due to the mχ term, and the fast

component integral can be solved perturbatively as follows. We write Ωf,k as a sum over

Ω
(n)
k (λ)einθ for n 6= 0 and take a time derivative of eq. (A.6), which yields

∑

n6=0

(
βλ(λ)∂λΩ

(n)
k (λ) + inβθ(λ)Ω

(n)
k (λ)

)
einθ =

∑

n6=0

E
(n)
k (λ)einθ ,

where the time dependence is now implicit. For each n 6= 0, this implies

Ω
(n)
k (λ) =

E
(n)
k (λ)− βλ(λ)∂λΩ

(n)
k (λ)

inβθ(λ)
, (A.7)

which can be solved recursively to obtain Ω
(n)
k as an expansion in powers of λ. This is

because βλ∂λΩ
(n)
k is always suppressed by an extra power of λ relative to Ω

(n)
k .

To obtain the E(n)
k components, it is convenient to write

Ek = Ek

√
1 +

(
a2

a2λ4/3
− 1

)(
1− m2

χ

E2
k

)
+

1− 6ξ

6

R

E2
k

, (A.8)

in which k was written in terms of Ek. When expanding, it is important to not expand

the implicit λ dependence of Ek, and instead treat it as O(λ0). Using the results of the

RS below eq. (3.30), we write

Ek = Ek − λ2

{
1− 6ξ + (9

8
− 5α2

3

2
+ α4)(E2

k −m2
χ)

4Ek
+

3(1− 6ξ − E
2
k−m

2
χ

2
)

4Ek
cos 2θ

}

+ λ3

{
3α3(1− 6ξ − 2(E2

k −m2
χ))

2Ek
cos θ − 3(1− 6ξ − 3

2
(E2
k −m2

χ))

8Ek
sin 2θ

−3α3(1− 6ξ − 2
9
(E2
k −m2

χ))

2Ek
cos 3θ

}
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which we can now apply to eqs. (A.5) and (A.7) to solve for Ωk(λ, θ). The results are

Ωs,k =
2mχ

3λ
2F1

(
−3

4
,−1

2
; 1

4
; 1− E2

k

m2
χ

)
+ λ

{
9− 20α2

3 + 8α4

20
Ek+

(
1− 6ξ

6mχ

+
9− 20α2

3 + 8α4

80
mχ

)
2F1

(
1
2
, 3

4
; 7

4
; 1− E2

k

m2
χ

)}
,

Ωf,k = −3λ2(1− 6ξ − E
2
k−m

2
χ

2
)

8Ek
sin 2θ + λ3

{
3α3(1− 6ξ − 2(E2

k −m2
χ))

2Ek
sin θ+

9(1− 6ξ)(E2
k +

m2
χ

3
)− 21E4

k

2
+ 9E2

km
2
χ +

3m4
χ

2

16E3
k

cos 2θ − α3(1− 6ξ − 2
9
(E2
k −m2

χ))

2Ek
sin 3θ

}

up to O(λ2) and O(λ3), respectively. We did not include the λ3 term of Ωs,k as its

derivatives are suppressed by extra powers of λ relative to the λ3 term of Ωf,k. This

because only the latter depends on θ, which has an O(λ0) derivative. In addition, the

neglected term includes dependence on α5 and α6, which this appendix does not cover.
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Appendix B

Heuristic derivation

B.1 Main argument

Our aim in this chapter is to describe semi-quantitatively the Bogoliubov computation of

the resonance-induced GPP in terms of an approximate S-matrix perspective by showing

how the Boltzmann equation would need to be modified to capture the interference effects.

Here, we will focus on the interference of 2→ 2 and 3→ 2 scattering as this is often the

most interesting case, with other generalizations being straightforward.

Consider an incoherent gas of N ∼ ρeV3/mφ number of φ particles, where ρe ∼

M2
PH

2
e is the energy density and V3 ∼ H−3

e is the 3-volume of a large box approximating

the causal Hubble patch. Usually, one first decoheres this large N state system into

an ensemble of 2φ → 2χ and 3φ → 2χ, and then considers each process statistically

independent. In this case, the macroscopic particle production of χ is described by a

semiclassical 1-particle χ distribution obtained from integrating the collision term as

ˆ
∂tfχ(k, t)dt ∼ V 3

3

ˆ
d3k2

(2π)3

d3p1

(2π)3

d3p2

(2π)3
S2(p1, p2) |〈χkχk2 , tf |U(tf , te)|φp1φp2 , te〉|2

+ V 4
3

ˆ
d3k2

(2π)3

d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3
S3(p1, p2, p3) |〈χkχk2 , tf |U(tf , te)|φp1φp2φp3 , te〉|2 (B.1)

where U(t2, t1) is the time-evolution operator from time t1 to t2, and Sn factors are

φ initial-state dependent weighting factors (generalization of Bose-Einstein distribution),
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eventually leading to the cross chapter picture of the usual Boltzmann equations as shown

explicitly in Appendix B.2. This treats “typical” 2-body scatterings and 3-body scatter-

ings to be additive incoherently. However, this type of computation neglects the nontriv-

ial interference that can occur from Schrödinger time evolution phases between different

scatterings.

Hence, we arrive at the main idea. The scattering perspective that we will construct

below will simply replace the nonadiabatic period during which the 2χ particle frequencies

are in resonance with an approximate S-matrix scattering description. The different

scattering events are diagrams (e.g., see Fig. B.1) that interfere because of the coherence

of the waves entering the interaction region approximated by an S-matrix. This will allow

us to compute the interference phase using the wave free-propagation phase. Thus, before

we describe the scattering, let’s divide the time period [te, tf ] into 3 regions:

region 1: [te, t3) , region 2: (t3, t2) , region 3: (t2, tf ] ,

where tn is the time at which nφ → 2χ resonance occurs, i.e., 2
√

k2

a2(tn)
+m2

χ ≈ nmφ,

which is the analog of the time t̄(n)
k that satisfies the stationary-phase condition from

Ch. 4.

From a scattering perspective, we work in the Schrödinger picture with metric inho-

mogeneities in time, with φ treated as a quantum field, and the interaction Hamiltonian

coming from the metric fluctuation coupling to the φ energy-momentum tensor. To de-

scribe the spatially homogeneous classical inflaton field, imagine setting up a normalized

coherent state |φ) ∼ (a state containing a macroscopic number of particles)1 at time te

such that

(φ|U(te, t)φ(x, t)U(t, te)|φ) = φEOM(t) (B.2)

for t > te, where φEOM(t) is the solution to eq. (3.1). Note that the quantum phase of

U(t, te) has turned into the classical phases embedded in φEOM(t), approximated as nmφt

for integers n. This is one source of the interference phase as we will see below.
1Here we follow the covention of Ref. [66] denoting a normalized coherent state as “|...)”.
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Figure B.1: The Schrödinger propagator phase difference between 3φ→ 2χ and 2φ→ 2χ scatterings
leads to interference. The disk region of diameter δt represents the usual collision region of Boltzmann
equation, which is typically treated with an S-matrix taking the formal limit δt→∞. The observable
interference phase of χ is the Schrödinger-picture free-particle propagator between t3 and t2. The
φ-interference phase can contain te information as 3φ propagation phase from te to t3 does not cancel
the 2φ propagation conjugate phase from te to t3.
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We will assume for the semi-quantitative discussion that this coherent state can be

generalized straightforwardly to the effective FLRW background of an expanding box:

ds2 = dt2 − a2
slow(t)|d~x|2. Instead of treating Hslow as a Minkowski graviton effect, the

background is treated as an expanding box even in the scattering picture because a purely

Minkowski treatment is inefficient in explaining k/aslow dilution.

The normalized coherent state |φ) of eq. (B.2) can be decomposed as a superposition

of normalized wave packet states over r numbers of φ particles, written as [66]

|r, {qi}, te〉φ =

´
[dk1]...[dkr]F

({qi})
(r) (k1, ..., kr)a

†
~k1
...a†~kr

|0, te〉φ
√
r!
´

[dk1]...[dkn]|F ({qi})
(r) (k1, ..., kr)|2

, (B.3)

where F ({qi})
(r) controls the φ particle wave packets with central momenta {qi} ≡ {q1, ..., qr}.

For illustration, suppose the initial state in the notation of eq. (B.3) is decohered into

clusters of 2 and 3-particle states described by a density matrix ρ =
∑

ψ S(ψ)|ψ〉〈ψ|,

where

|ψ〉 ≈ |0, te〉χ ⊗ |Ψ〉φ ⊗ |0, te〉δgµν , (B.4)

|Ψ〉φ ≡
ζ2|2, {pi}, te〉φ + ζ3|3, {pi}, te〉φ√

|ζ2|2 + |ζ3|2
, (B.5)

and S partitions the macroscopic N -inflaton state into an ensemble of coherent super-

positions of 2-particle and 3-particle states. The wave packet function Fr appearing in

eq. (B.3) is assumed to be peaked at close to zero spatial momentum since the inflatons

are assumed to be cold. The amplitudes ζ2 and ζ3 control the mixing of 2- and 3-particle

inflaton states. The φ state of eq. (B.5) can be intuitively considered a “classical” coher-

ence because it represents a macroscopic state,2 and the Bogoliubov vacuum does not

contain the quantum data for φ in ζn. However, this “classical” coherence itself is really

part of the quantum coherence associated with the Schrödinger time evolution operator

just as in photon time-phase coherence in lasers.

2The sum over S is a macroscopic number, similar to V 3
3

´
d3k2
(2π)3

d3p1
(2π)3

d3p2
(2π)3S2(p1, p2) in eq. (B.1).
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With the illustrative partition of eq. (B.5), the analog of eq. (B.1) becomes

ˆ
∂tfχ(k, t)dt =

2Npartition[S]

|ζ2|2 + |ζ3|2
|〈χkχk2 , tf |U(tf , te) (ζ2|2, {pi}, te〉+ ζ3|3, {pi}, te〉φ)|2

(B.6)

where Npartition[S] is a multiplicity factor associated with the partition achieved through

the density matrix probability factor S. Because of the resonant behavior, we know

〈χkχk2 , tf |U(tf , te)|n, {pi}, te〉 ≈ e
−2i
´ tf
t+n

Ek(t)dtAn e−ni
´ t−n
te

mφdt , (B.7)

An ≡ 〈χkχk2 , t
+
n |U(t+n , t

−
n )|n, {pi}, t−n 〉 , (B.8)

where t±n ≡ tn ± δt/2, with δt as the interaction time, i.e., the time scale of a Boltzmann

collision term, which by construction is supposed to be much smaller than the free-

streaming time scale. However, δt is viewed in the S-matrix picture as an asymptotically

long time scale, as one formally takes δt → ∞ to take advantage of the properties

associated with meromorphic matrix elements.3 This is the usual requirement of the

validity of the Boltzmann treatment. Hence, the squared amplitude in the modified

Boltzmann collision analog of eq. (B.6) becomes

|ζ2A2|2 + |ζ3A3|2 + 2<[e
−2i
´ t+2
t+3

Ek(t)dt+2i
´ t−2
te

mφdt−3i
´ t−3
te

mφdt
ζ∗2ζ3A∗2A3] , (B.9)

where one notes in eq. (B.9) that the cross-term induced coefficient as part of the inter-

ference phase. More generically, the interference phase between n1φ→ 2χ and n2φ→ 2χ

is

− 2

ˆ tn2

tn1

Ek(t)dt+ n2

ˆ tn2

te

mφdt− n1

ˆ tn1

te

mφdt (B.10)

in the limit that δt � |tn2 − tn1 |. The phase of the Schrödinger-propagator indepen-

dent quantity ζ∗n1
ζn2 is apparently independent of n in the case of our particular |βk|2

computation.

3Note that A(n→2)
k is typically proportional to the scattering amplitude and An at tree level order.
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Comparing with eq. (4.23), we see that the 2F1-proportional pieces in Φ
(2→2)
k,leading −

Φ
(3→2)
k,leading matches −2

´ t2
t3
Ek(t)dt, where the hypergeometric function arises from integrals

of the form ˆ t2

t3

Ek(t)dt ≈
ˆ κ

−3/2
2

κ
−3/2
3

dλ

−3
2
mφλ2

√
k2

a2
λ4/3 +m2

χ , (B.11)

which used the relationship a ≈ aλ−2/3 and the definition of λ̇ in eq. (3.22). The hyper-

geometric function term by itself has a divergent piece as mχ → 0, which is obviously

spurious since the left hand side of eq. (B.11) is convergent for finite tn. Similarly, the

remaining terms of eq. (4.23) can be identified with the inflaton phase:

(2− 3)

(
Ξ− 2mφ

3H

)
+

2

3

(
2κ

3/2
2 − 3κ

3/2
3

)
←→ 2

ˆ t2

te

mφdt− 3

ˆ t3

te

mφdt , (B.12)

which also matches the interpretation of Ξ being the phase offset that depends on the

properties of the inflaton at the end of the quasi-dS era at time te.

B.2 Obtaining the usual collision term

Consider one of the collision terms of eq. (B.1)

C2→2(k) = V 3
3

ˆ
d3k2

(2π)3

d3p1

(2π)3

d3p2

(2π)3
S2(p1, p2) |〈χkχk2 , tf |U(tf , ti)|φp1φp2 , te〉|2 .

The matrix element of the box normalized states with box volume V3 can be written as

〈χkχk2 , tf |U(tf , ti)|φp1φp2 , te〉 ≈
(2π)4δ(4)(p1 + p2 − k2 − k)iM2→2

V 4
3

√
2Ep1

√
2Ep2

√
2Ek

√
2Ek2

, (B.13)

which gives

C2→2(k) =
V −1

3

2Ek

ˆ
dΠ(k2)dΠ(p1)dΠ(p2)S2(p1, p2)

∣∣(2π)4δ(4)(p1 + p2 − k2 − k)iM2→2

∣∣2

=
∆t

2Ek

ˆ
dΠ(k2)dΠ(p1)dΠ(p2)S2(p1, p2)(2π)4δ(4)(p1 + p2 − k2 − k) |M2→2|2

dΠ(p) ≡ d3p

(2π)32Ep
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where we used Fermi’s golden rule and ∆t is the long-time period defining the asymptotic

state region. Integrating over k:

ˆ
d3k

(2π)3
C2→2(k) = ∆t

ˆ
d3p1

(2π)3

d3p2

(2π)3
S2(p1, p2)

∣∣∣∣
~p1

E~p1

− ~p2

E~p2

∣∣∣∣
ˆ
dσ(p1p2 → kk2) , (B.14)

ˆ
dσ(p1p2 → kk2) =

´
dΠ(k)dΠ(k2)(2π)4δ(4)(p1 + p2 − k2 − k) |M2→2|2

4 |~p1E~p2 − ~p2E~p1 |
, (B.15)

where dσ is the differential cross section. Hence, we see that if we take S2(p1, p2) =

e−E1/T e−E2/T , we obtain the usual thermal averaged cross section:

ˆ
d3p1

(2π)3

d3p2

(2π)3
e−E1/T e−E2/T

∣∣∣∣
~p1

E~p1

− ~p2

E~p2

∣∣∣∣
ˆ
dσ(p1p2 → kk2) = 〈σv〉neq

1 n
eq
2 , (B.16)

justifying the interpretation of S2(p1, p2) as the generalization of the Bose-Einstein sta-

tistical factor in eq. (B.1). Note that eq. (B.13) is one of the key approximations that are

being modified as the actual interaction region is not [te, tf ] but [t2 − δt
2
, t2 + δt

2
].
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