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Abstract

Previous numerical investigations of gravitational particle production during the coherent
oscillation period of inflation displayed unexplained fluctuations in the spectral density of
the produced particles. We argue that these features are due to the quantum interference
of the coherent scattering reactions that produce the particles. We provide accurate
analytic formulae to compute the particle production amplitude for a conformally-coupled
scalar field, including the interference effect in the kinematic region where the production

can be interpreted as inflaton scattering into scalar final states via graviton exchange.
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Chapter 1

Introduction

During the period of coherent oscillations of the inflaton field following the quasi-de Sitter
(quasi-dS) phase of inflation [1-4|, particles (including dark matter candidates) may be
produced via gravitationally-mediated nonthermal scattering processes in addition to the
comparatively well-studied inflaton-decay and thermal-scattering processes [5-55|. Nu-
merical investigations of gravitational particle production (GPP) employing the Bogoli-
ubov approach have displayed unexplained oscillations as a function of the wavenumber
k in the final phase-space distribution f, (k) of the produced particles [56-58|. For ex-
ample, figure 1 of Ref. [57] showing the final phase-space density of dark-matter particle
production in a hilltop inflationary model displays large oscillations that resemble nu-
merical noise. Similar large oscillations in the final phase-space density can be seen in
the right-hand panel of figure 1 in Ref. [58] for GPP of the helicity-1/2 component of a
spin-3/2 Rarita-Schwinger field.

In this thesis we explain these oscillatory features as the result of a quantum effect aris-
ing from an interference of different amplitudes, which are analogous to gravitationally-
mediated nonthermal scattering processes,! n¢ — 2y for n > 1. Typically the 2¢ process
dominates nonthermal scattering production, but it has recently been pointed out [59]
that the n¢ processes with n # 2 may also be important. Most of the effect comes from

interference of 2¢ with the next leading amplitude, which is 3¢ if cubic interactions exist

'We denote the inflaton as ¢ and the produced particle as y. The produced particles, which may be
dark matter candidates, are assumed to only interact gravitationally. We sometimes denote n¢ — 2x as
the n¢ process, for short.



and 4¢ otherwise. We compute analytically the scattering contribution to the Bogoli-
ubov amplitude including the interference terms, and find the results compare well with
numerical computations. We also give a less technical semi-quantitative estimate of this
interference amplitude based on a coherent scattering picture of a modified Boltzmann
evolution. In this latter picture, the interference arises because the initial macroscopic
inflaton scattering state can be viewed as a cold coherent superposition of n¢ states, e.g.,
c1|pd) + c2|dp), such that the interference arises from |e; (xx|U|¢9) + ca(xx|U|dpd)|*
where U schematically depicts a time evolution operator which is made more precise in
this thesis. Note that we write n¢ — 2y to denote the net energy flow from the ¢ field
to x field, but this can be different from underlying S-matrix amplitudes. For example,
¢ — 2x has a contribution from the ¢¢ — ¢y x scattering process.

Although the quantum nature of the inflaton coherent-oscillation induced GPP has
been known (e.g., see [60]), this thesis extends the previous ideas to graviton-mediated
scattering, and to our knowledge is the first to articulate clearly and to compute analyti-
cally the quantum interference effects. It also clearly explains the previously unexplained
“noise” in the particle production spectrum seen in the literature (see, e.g., [57, 58]). The
application of a novel perturbative technique to solve the background inflaton dynamics
is a technical highlight of this thesis.

The order of presentation is as follows. In Ch.2, we give a brief review of the GPP
computation using the Bogoliubov transform technique. In Ch. 3.1 we describe the back-
ground field evolution in polar coordinates. In Ch. 3.2, we summarize the novel pertur-
bation technique used to solve the inflaton dynamics with asymptotic series involving
functions A\(¢) and 6(t) that describe slow and fast time scales, respectively. In Ch. 4, we
derive an analytic formula for the relevant Bogoliubov coefficient using a novel pertur-
bation theory technique and a stationary phase approximation. The result is a sum of
amplitudes analogous to n¢ — 2y, with Ch. 4.2 presenting explicit results for n < 4, and
Ch. 4.3 discussing the quantum interference between amplitudes. In Ch. 4.4, we compare
the analytic results with numerical computations. We then conclude in Ch.5 with a

summary and outlook.



The appendices contain some of the supporting technical details of this thesis. Ap-
pendix A explains the technical details of evaluating the terms formally set up in the
stationary phase computation in Ch. 4 using this technique. In Appendix B.1, we inter-
pret the interference as a novel contribution to the Boltzmann collision equation arising
from the initial inflaton field being a macroscopic state described as a coherent superpo-
sition of n¢ states. In Appendix B.2, we remind the reader how the statistical ensemble
factor enters the usual collision integral of a Boltzmann equation in a manner that is in

contrast with the picture of Appendix B.1.



Chapter 2

Gravitational particle production

Here, we focus on a background spacetime described by standard Einstein gravity with a
spatially-flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric ds? = dt*—a?(t)|d7|? =
a®(n) [dn? — |dZ|?] where dn = a~'dt is conformal time. The dominant energy-momentum
tensor for the dynamics of the scale factor a(t) comes from a minimally-coupled real scalar
inflaton field ¢ with mass m, and a slow-roll inflationary potential V' (¢). We will assume
that m3 = d*V(¢)/d¢?|y=, # 0, where v is the minimum of V(¢) during the inflaton’s
coherent oscillation phase after the quasi-dS phase, and we will also assume that the
nonlinearities in V' (¢) can be captured as a Taylor expansion about ¢ = v.

The inflaton potential will be parameterized as

V(¢) = 6MEm? 1(¢_U)2+a3(¢_v)3+a4<¢_v>4—|—... , (21
2 \V6Mp V6Mp V6Mp
_ (VeMp) 1 oy
T TR P (22)

where Mp = 1/+/87G is the reduced Planck mass. When specific examples are needed,

we will consider two inflaton models denoted by

V(p) = %micbz Quadratic , (2.3)

miuv’ #°1? .
V(p) = o [1 - E] Hilltop , (2.4)



where we take v = 0 as the minimum for the Quadratic model and v = Mp/2 for the
Hilltop model." Note that a3 = ay = 0 for the Quadratic potential while a3 = 5v/6 and
a4 = 155 for the Hilltop potential.

We augment the standard inflationary picture with a scalar “spectator” field x whose

action is given by

as = [ andte ] [<8nx>2—<vX)2—a2 (mi+é<1—6§>R) xﬂ L@y

where x = ax is the rescaled field, m, is the particle mass, and R = —683a/ a® is the
Ricci scalar. Following the usual procedure (e.g., [60-63]), we promote the scalar field to
an operator x that satisfies the canonical equal-time commutation relations. The field
operator is decomposed into mode functions yg labeled by wavevector k as

A &k 7. kx| At _ik-x
a,m) = | 555 [anxam) e+ alxiln e ] | (2.6)

273

where the mode functions satisfy the normalization condition xx0, X% — X0 Xk = ¢, and
the creation and annihilation operators satisfy the canonical commutation relations. Due
to the action in eq. (2.5), the mode equation is ngk + wixy, = 0, where

wi = k* + a? <m§< + é(1 - 6§)R) (2.7)

is the angular frequency of the k' Fourier mode.? The vacuum state |0) is defined as
ag |0) = 0 for all k, and particle creation is generated by the time-dependence of wy (7).
While one can solve the mode equation directly given initial conditions, for our pur-

poses we use the Bogoliubov parameterization. The mode functions are expressed as

Xk _iqy, Bk tioy
= ———¢ + —¢ ,
Xk vV ka vV ka

IFor the sake of comparison, this is the same hilltop model considered by Ref.[57].
2The mode functions will only depend on wavenumber k = |k| as the FLRW spacetime is isotropic.

(2.8)




Q(t) = /t; dtl\/a;ft’) +m2 + é(l —6E)R(t') = /It dt' E(t') , (2.9)

123

where «y and [, are the Bogoliubov coefficients, which decompose the mode function
into positive and negative-frequency components, respectively. The nearly-adiabatic con-
ditions in the far past motivates the Bunch-Davies initial condition such that a;, = 1 and
Br = 0 at initial time ¢t = ¢;. In the evolution of y; from the initial negative-frequency
solution, a positive-frequency component may appear, signaling particle creation. In the

far late-time, the number density of produced particles is given by

m(0e) = [ 555 fk). (210

where f,(k,t) = | Bk(t)|2 denotes the produced y-particle phase-space density. We there-

fore seek a solution for f; to compute GPP. The time-evolution of the Bogoliubov coef-

ficients ay, and B, can be written as®

G (t) = Ni(t) By(t) e 2% (2.11)

Bi(t) = Ni(t) ag(t) e 2O (2.12)

as is done for example in [8, 60, 64|. For the case of a scalar x field, we use the definition

o _ up  LHm]+§(1-65)(HR + jR)

= = 2.13
N 2w 2 ka4 m2 4 (1-65R (2.13)

with € defined in eq. (2.9). The background evolution (assumed driven by the dynamics
of the inflaton) enters the determination of N, through a, H, R, and R, while the

spectator field enters through k and m,. Setting a;, ~ 1 in eq. (2.12), we write

tf . )
B = / dt Ny (t)e 20 (2.14)
t;

which is valid for |5x| < 1. This important integral expression is the staring point for

3We will use the notation # = dz/dt throughout this thesis.



the main results of this thesis.



Chapter 3

Asymptotic series solutions of inflaton

dynamics

3.1 Novel polar coordinates

3.1.1 Definitions

The evolution of the inflaton field ¢ is usually described by the second-order equation

. ¢ + 2V (¢)

b+ 3¢ e +V'(¢) =0, (3.1)
P

which is often referred to as the inflaton equation of motion. For our purposes we wish
to exchange the second-order differentiation to a set of two first-order equations at the
cost of introducing another dependent variable. There is freedom in choosing the two
variables; our choice is the Hubble rate H and phase = (both reals), defined in terms of

¢ and ¢ as

V6MpHe™ = 547/2V(0) — ¢ (3.2)

where s, = sign(¢ — v) and v is the field value where the potential is minimized. The
change of variables from {¢,¢} — {H,Z} is analogous to switching from Cartesian to
polar coordinates in phase space, with H representing the radial coordinate and = the

angular coordinate.



From egs. (3.1) and (3.2), the equations of motion (EOMs) for H and = are

! =
__V0us)  _3pgnos , (3.3)
V6MpH cos= 2

[1]-

H = —-3H?sin’ = ,

respectively, where ¢y = is the solution to

V6MpH cos = = Son=\/2V (0mzE) , (3.4)

which is simply the real part of eq. (3.2). We simplify the presentation of our problem by

using the change of variables

¢ —v+V6Mpp,  t—tetmy't, (3.5)

which is equivalent to setting v6Mp = me = 1 and v = t, = 0. Using the expansion of

the potential in eq. (2.1), we write eq. (3.4) as

HcosZE = §Z5H,E\/1 + 2030p= + 2044@%,5 +..., (3.6)
and invert this to find
- = 5 4 2 92—
¢uz=HcosE (1 —azHcos=+ 5(13—(14 H?cos*=+ ... ] |, (3.7)

which allows us to express the EOMs entirely in terms of H and =:

dH™* 3 d= 3 -
s 5(1 — cos2Z2) , e 1-— §Hsin25 + nz:l v H" cos™ = | (3.8)
for some constants v,, with 1y = 2a3, vy, = —%a% + 3ay, and so on. We write the

derivatives for H~! and = to highlight that both grow linearly with time if H is small.
This will be useful when deriving the constants H and Z, which are associated with the

boundary conditions at ¢t = 400 for H and =, respectively.
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3.1.2 Boundary conditions in asymptotic far future

Here we introduce the constants H, =, and a that our formulas for li"_m ultimately

depend on. These constants quantify the boundary conditions in the far future as t —
+00, and contain the same information as the initial conditions. This limit is necessary
to integrate the equations of motion starting at A = 0 for our asymptotic expansions. We

start by noting that

d( . 3 3 d_ d »
p (H 2t+4s1n2_> o (2—1) dtlog(H a) ~ O(H) (3.9)

is a consequence of the EOMs in eq.(3.8). We see that the quantities in parenthesis

approach constants as H — 0 at late times.! We define them as

3 3
—1 — . —1 v _ . -
H = tlg(r)loH (t) 2(t te) + am, sin 22(t) , (3.10)
== lim =(t) —mg(t —t.) , (3.11)
t—00
a= tlim a(t) (H(t)/mg)*? (3.12)
—00

where we restored units by reversing eq. (3.5).

While these constants can be determined by numerical integration of the background
field equations, they can also be estimated using an expansion in H (t)/my. Using dimen-
sional reduction of eq. (3.5), we write our three dynamical variables as

3
H—l(t):ﬂflJri(t—t)——stu +ZH” L (2()

S =T+t t4 > HWX, (E0) |

n=1

a(t) = aH *3(t) exp <g sin 22+ ) H”“(t)An(E(t))> : (3.13)

n=1

for some oscillatory functions R,(Z), X,(Z) and A,(Z), which we obtain by solving

eq. (3.8) along Wlth ; loga = H at each order in H. The constants of integration are again

'We acknowledge that log H behavior at late times is consistent with eq.(3.9). However the \,6
asymptotic expansions show such divergences do not exist for the quantities in the parenthesis.
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determined by the condition of eliminating divergences to keep these functions bounded.
Unlike in the case of the A, 6 expansion, all constants are completely determined such
that the solution is unique with no scheme choices needed.

By simple subtraction, this solution immediately yields expressions for the boundary
constants of egs. (3.10), (3.11), and (3.12) based on the values of H, = and a at any target

time ¢. If we choose this time to be t., then to first order in H./my4 we have the estimates

3 H, (1502 3 9 3as . o
% ~ Zi + ZsinZEe — m, ( 8%’ — % + ﬁcosélEe + %sm:e + %sm?):e) )
H, (9 b5a2 3 )
s, — e (é + % —ay + ZCOSQEE+2043$HIE@> ,
a HP? H, . H:( 3 5a} a
- exp |— sin2=2, — —< | —— — —2 + —
a w2l P om, m2\ "8 8 4
3 3 1
—3 cos 22, — % cos4=, — azsin =, — §Oé3 sin 355)] ) (3.14)

3.1.3 A special property at the end of inflation

Here we note a special property about =.. The end of inflation is defined by
Ge=0 <+ pe+3p.=0 <« ¢2=V(e,), (3.15)

where the arrows represent equivalence between all three statements. Using the third

statement and eq. (3.2), we can show that
=, = arg [se(\/ﬁ—l— z)} = ig — arctan V2, (3.16)

where s, = sign(¢. —v) = £1. This has the advantage of specifying the end of inflation in
a closed-form and geometric manner using a single variable with no derivatives involved.
Examples of both physically distinct solutions for =, can be found in Table 4.1.

Using the geometric expression of =, in eq. (3.16), we can express the approximations
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for the boundary condition constants from the previous section as

me Mg 1 H, /7 150z§ 3oy TS.03
2 i — — 3.17
H H€+\/§+m¢(32 8 1 33/ (3:17)
H 11 5a2 25,03
E=ar seﬁ+z‘}+ e(————3+a— ; ) , 3.18
gV )|+l (-5 - e T (3.18)
a HP? 2H, H? (41 502 a4 lds.«
e V2 : (_ i R _3) : (3.19)
e m 3mg — mZ \96 8 4 9v/3

which only uses the initial conditions of a., H., and s., along with information about the
potential up to the quartic interaction, i.e., mgy, g, and ay. We expect s, to only appear
with quantities such as a3 that break the reflection symmetry of the potential about its
minimum, ie., V(v + A¢) = V(v — A¢), i.e., o, = 0 for all odd n. If the potential is
symmetric, then H, = — =, and a must be independent of the s, initial condition. In
this case, the action s, — —s, causes both =, and Z shift by the same factor of 7 such

that the difference is unaffected.

3.2 Perturbative asymptotic series formalism

This section lays out the formalism in which the equations of motion are solved using
asymptotic expansions of the variables as a function of “slow-" and “fast-” time variables
A and 0. As shown in Ch. 4, this allows computation of the Bogoliubov coefficients as an
analytic expansion in powers of k=3/2.

We begin by using eq. (3.5) to scale and shift away various constants. It is convenient
to solve the dynamics using the polar coordinates H and = defined by eq. (3.2), as the
former is used in GPP calculations. We use perturbative series in powers of A to write

them as

H =X+ h(@)XH", (3.20)
/=1

E=0+) &O)A, (3.21)
/=1

where hy(0) and &,(0) are oscillatory functions that must remain bounded in magnitude
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to maintain the stability of the expansion. This requirement will determine most of the

constants of integration associated with solving for these functions at each order in A. As

one can see from eq. (3.20), the expansion in powers of A is justified if H/m,, is small.
To solve the EOMs from eq. (3.8), we must specify the time evolution of A and . We

define the derivatives of both variables as

A=B(N) = —gcgv (1 + X+ Z ch?‘> : (3.22)
j=2

6 = By(N) = wo (1 +wiX + ij/\j> : (3.23)
=2
where ¢; and w; are constant coefficients. While the EOMs determine ¢y = wp = 1 and
c1 = wy = 0, the coefficients for all j > 2 remain unfixed parameters. It will be shown
that the parameter

1 21

hy=— [ hy(6)do (3.24)

=00 )
also remains undetermined due to the time translation invariance of the EOMs; i.e., the
freedom to choose the origin of the time coordinate. We call every such choice of h; and
{¢j,wj|j > 2} a renormalization scheme (RS) because of the analogy with the coupling
flow equations. Of course, given that this degree of freedom is a diffeomorphism choice,
we could have also called it a gauge choice.

We are free to choose h, by the following argument. The derivatives in egs. (3.22)
and (3.23) are invariant under shifts in ¢ or . Thus, if A(¢) and 6(t) are solutions for a
given set of coefficients {c;,w,}, then A\(t +¢,) and 0(t + t;) + 6, must also be solutions
for any shifts ¢, and #,. Using the typical Taylor series, this can be expressed as making

the replacements

A=A — gtsv + %tﬁk”’ + O\, (3.25)

O — 0+ 0, +t,+wat N2+ O\, (3.26)

with derivatives at ¢ determined by eqgs. (3.22) and (3.23). Applying these shifts to our
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asymptotic expansions yield equivalent solutions due to the time translation invariance of
the EOMs. However, the form of = = 6 + O()) is violated unless 6, + t;, = 0. Therefore,
we have one remaining symmetry parameter, which we will denote as dh; = —%ts = %95
because of the shift it induces in h;. In summary, if we apply

M)~ A(t— 20hy) . 0(t) — Ot — 20hy) + 20, . (3.27)

then our asymptotic solutions transform as

H = X+ X (hi(0) + 6hy) + X° (ha(0) + 2k (0)SR, + 0h7) + O(N) (3.28)

= o5 04 A6 (0) + X2 (w) (@) - §w2>6@1) oW, (3.29)

which is equivalent to a change of h; and &;. Fixing the value of h;, breaks this shift
symmetry and therefore acts as an additional RS parameter.

Our results in Ch.4 will be computed with a consistent truncation to render the
results explicitly independent of the renormalization scheme. This gives us the freedom

to choose the RS such that

/ T h@do = [ €0)a0 =0 (3.30)

0

for all £ > 1, which is convenient as the expressions tend to be relatively compact in this
scheme. The relevant results to O(\?) are given by h; = 0 and
27 1503 3y 27 1503 3y

T 32 738 L 2T 716 1 2

32 21
H=\+ Tsin?@ + A3 (—3agsinf + agsin 30) + A (— f?) cos 6

27 303 9y . 11 81  5laz  9ay) .
- _ 8 _= 20 — — - 4
+ ( ) sin 20 1 cos 30 + 556 + 5 + 5 sin4f | |

Co

\2/3 9  5a2 3 9
a4 =1+ (——&+%——00529)+/\3 (3a3cos€—1—651n20—%cos39) ,

where a was found by perturbatively solving @ = Ha after the solution to H was found.
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Due to the defintion eq. (3.12), the constant of integration had to be a given that A — 0
in the far future limit.

We will now derive expressions for ¢ and 6 in terms of A as these are needed for
evaluating the €, ; and nf terms in eq. (4.9), respectively. Using egs. (3.22) and (3.23),

we write

2 2 M) 1 1
t=2A1t) +s—=A(s +/ dx(—+—>

2

A(D) .
o(t) = ;A_l(t) +0(s) — ;xl(s) +/ dx (M N L)

A(s) NE) %xz
for any ¢ and s. Note that H=' = A™' — hy — 3sin20 + O()) and = = 6 + O()) for any

RS, and therefore

0(s) — %xl(s) _S(s)—s— 2 (H—l(s) _ ;s v Zsin25(s) +@1> Lo,

which, along with the definitions of the boundary constants in egs. (3.10) and (3.11),

implies that we can take the limit as s — +o00 to write

A
t(A) = %A‘l - ; (H™' + Iy) +/0 da (ﬁjw) + %) : (3.31)
0(A) = ;Al +E- % (H' + Iy) +/0 da <§i§g + %2) , (3.32)

given that the O(A(s)) corrections vanish in the limit. The integrals on the right converge

and can be expanded as polynomials in A. We write

2 2 9 5 «
0N FD g & o R W [t i 3 .
() 3 2+ <16 4a3+2)+O(A), (3.33)
2., - 2 27 bai  ay 5
= - =E—--H —t+t—— = :
9()\) 3)\ += 34 + A (16 + 1 5 +0()\ ) ; (3 34)

where we used the RS below eq. (3.30). In this scheme, the A\? terms are exactly zero.
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Chapter 4

Novel computation of the Bogoliubov

coefficient

4.1 Stationary phase approximation

In situations where there are coherent oscillations of the inflaton, some contributions
to GPP can be interpreted as coming from scattering of the inflaton quanta into xs
via graviton exchange [13, 18, 54, 57]. Below, we explain a novel computation of this
coefficient that gives not only the amplitudes of n¢p — 2y during the inflaton coherent
oscillations, but also the interference between amplitudes with different n > 1.

In the scenario with coherent oscillations of the inflaton field after the quasi-dS
phase, the Hubble expansion rate has two broad classes of components: intuitively,
H = Hgow + Hpast, where the oscillatory fast component is smaller in amplitude but
varies on a larger frequency scale compared to the monotonically decreasing slow com-
ponent. The respective scales are %ln Hyow ~ H and %ln Hgyse ~ my, and therefore
H < my is required for a meaningful distinction. This condition holds in the oscillatory
era for most single field inflationary models. This decomposition is made precise using the
formalism summarized in Ch. 3.2. This approach differs from that of Ref. [59], where time

was partitioned into bins of size H, S Qm(;l/ ? to find the ¢ behavior applicable to each of

slow

those bins. That approach is suitable for the particle production computation without
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the interference, but to find the interference, we need to keep track of the time phase
of the Bogoliubov coefficients across different time bins At¢. The approach we will take
below is to use a novel method of expanding the background field evolution in Hgoy /M.

This formalism introduces functions A(¢) and 6(¢) that partition the slow-time and
fast-time dependence of a general quasi-periodic function of time such as ./\N/k(t). The

monotonically decreasing slow-time variable A can be thought of as

Hslovv(t) He/m¢ 2

)\t ~ ~ ~
( ) Mg 1+ %He(t — te) 3m¢t ’

(4.1)

where all quantities with a subscript-e index will refer to its value at the time ¢, when the
quasi-dS era ends, also referred to as the end of inflation. For the two inflation models we
will consider, Quadratic and Hilltop, H./m, =~ 0.5 and 0.03, respectively (see Table 4.1),
and therefore A(¢) is less than unity for ¢ > ¢.. The fast-time variable 6 can be thought

of as a diffeomorphism of time to a monotonically increasing phase function such that
O(t) ~ meyt . (4.2)

In short, A and 6 describe time scales of H~! and m;l, respectively. This partitioning
is the basis for the perturbation technique of Ch. 3.1, which allows us to resum secular
effects and track ((t) accurately for a long time (a time much longer than m ). For

example, the Hubble expansion rate is expanded systematically as

H = mg\ (1 + i hg(@))\g) : (4.3)

/=1

where hy() contains the fast-time behavior as a sum of sinusoids that depend on integer
multiples of 6. The higher-integer frequency components become increasingly negligible
as they generally come with higher powers of A(¢). This accurate tracking for a long time
is useful for capturing our sought-after interference effects, which develop on a time scale

At > H™" > m' for the k/a. > my modes. The time evolution of these functions is
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defined by

J= —Sm (14 O) (4.4)

0 = my(1+0(N\?)), (4.5)

where the initial conditions and details of the O(A?) corrections are irrelevant for the
arguments of this chapter. The A, # decomposition is explained in further detail in Ch. 3.2.

) contributions

To describe the interference effects, we write 8, as a sum over /B,SHQ
by partitioning the time dependence of the integrand from eq. (2.14) into A(t) and 6(t),
where an exact definition of ﬁ,ﬁ"*) is presented below. In summary, the n — 2 label
alludes to the n¢ — 2x scattering process, with the integer n denoting the frequency
that stems from an oscillatory dependence on nf. As noted below eq.(4.3) and shown
in Ch. 4.2, larger n are increasingly suppressed, and therefore S is well approximated by
the first few terms of this sum. This property motivates the use of this formalism, and is
analogous to the suppression of higher particle number processes in perturbative QFT.

We now present definitions used in the specification and computation of 5’(€n—>2). Given

a general quantity X (), 6), we define the convention

X(A0) =Y X(nem (4.6)
1 [ .
ﬂ%mz—/lxwwamw, (4.7)
2w Jo

where X (”)()\) is the n'-frequency component of X. The slow-time component X is
defined as the n = 0 term, which does not contain any fast-time information, i.e., no
6-dependence, and the fast component X; is defined as the remainder (i.e., the sum of
the n # 0 terms). As an example, it will be useful to separate the phase-factor (2, into a

slow component € ;(\) = Q,(CO)()\) and a fast component Q; (X, 0) = Qi(\, 0) — Qs1(N).
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We define ,6’,(6”_’2) for the resonant scattering situations of current interest such that
e ty .
B = Zﬁ;(;Hm where 5,(9"%2) = / dt/\/’,i")(/\) ! (0-205 () (4.8)
n=1 ti

and N, = Nke_QiQf»k, with the transformation of ¢t to A, dependence as well as the
expression of /\~/k(/\, 0) described in Ch. 3.2 and Appendix A.! The exponential in eq. (4.8)
hints at the relation to the amplitude for n¢g — 2x as its phase is stationary when
nmg ~ 24/k?/a* + m?2, which corresponds to the energy condition of n inflatons at rest
annihilating to produce two x particles with momentum k/a. This correspondence to
scattering motivates referring to IETHQ) as the n — 2 resonance component, and suggests
evaluation using the stationary phase approximation.

We compute the n — 2 resonance component of the Bogoliubov coefficient using the

stationary phase approximation, which will ultimately lead to an expansion in powers of

k=3/2. For the purposes of explaining the computation, we write
U (1) = inb(t) — 20 (A1) + log NV (A(1)) (4.9)

as the total (complex-valued) phase for the n — 2 resonance. The phase is stationary
when ¥\ (#™) = 0, where we call £ as the resonance time,? which will usually have
a small imaginary component due to the complex nature of the phase. The phase is

expanded as
n) ~(n tf > 1 —(n z\n
(=) _ @) / dt exp (Z 7 orw (&) (t T ))g) : (4.10)
ti =2

which is the starting point of the stationary phase approximation. We now define a new

variable z such that the quadratic term in the exponential becomes —%22, and evaluate

!The integral of eq. (4.8) for n < 0 is exponentially suppressed for resonant scattering, i.e., k = mgae,
which is why the sum of eq. (4.8) starts from n = 1.
2While more than one stationary point may exist, we assume there is a single dominant point.
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using an expansion of Gaussian integrals as

S )

oo 2 > w (@)
(n—2) 1z ¢
By, = - / dze 2% exp ( E e/z ) (4.11)

—d ) = =)

B e‘l’gcn)(t;(gm)\/% 5[@?\1,1(: (z](c ))]2 34 (n)<‘(”))

T L= g T ggmgen T ) (412)
_\I[l(en)(fl(qn)) 4T @& 8 (HM))?

where the coefficients of the higher powers of z are treated as increasingly negligible, an
assumption that will be justified shortly. In going from eq. (4.10) to eq. (4.11), we moved
the contour into the complex plane in addition to changing the integration limits. In

particular, the contour was rotated by approximately 45 degrees as \'I'Jé")

at resonance is
dominated by its imaginary component due to the first two terms of eq. (4.9).

We need an expansion parameter to truncate the expansion of eq. (4.12), which we will
see is proportional to k32 by the following argument. Since A ~ A2 and the derivatives
of the phase depend on A, we know that 8f\If,(€") ~ M~1 and therefore the 2¢ coefficient
in eq. (4.11) scales as /21 which is suppressed for ¢ > 3. Hence, the next step is to
evaluate )\(fém). The phase is stationary when nmy =~ ,/k*/a®> +m2 for /\/'k(n) that is
non-singular in \. The scale factor satisfies a = aA\=%3(1 + O()\)), where the constant

3

of integration a ~ a,H_ /3 / mj)/ was determined by definition in eq. (3.12). Therefore, we

estimate

—3/2 —3/2

—(n H, e
M)~ | R N __kja. , (4.13)

n, 2 2 m n? 2 .2
4m¢> my 4m¢> my

<

which is a small number for all k > HZ/ Sm;/ %4, for n = O(1). Since our present computa-

tion is focusing on scattering of particle-like modes at the end of the quasi-dS era, )\(f,(cn))
is small for all the modes of our present interest and thus is naively a useful expansion
parameter. This statement will be made more sharp in Ch. 4.4.

We would like to solve for )\(f;n)) itself as a function of k. Hence, we define a separate
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expansion parameter for the stationary phase approximation as

-3/2
-3/2 — k/a

n - ) 9 Y
n- _ 2
\ e T My

where € is a bookkeeping parameter inspired by the smallness of eq.(4.13). We can

ck (4.14)

parameterize a perturbation series solution of )\(f,(ﬁn)) in powers of € kp, 32 as

A(%,i”)) — e 32 (1 + Z r,in]) (e Hn3/2)j> (4.15)

j=1

where the constant coefficients r,(:j) are determined by solving the stationary phase con-

dition \Ifl({n) (f,(cn)) = 0 at each order in €. When using the replacement of eq. (4.15), it

2/3

is important to write k in terms of e=*/?k,, using eq. (4.14) to cancel out the fractional

powers of ¢ that appear due to a ~ A~2/3.

This is equivalent to assuming k& and amy
have the same magnitude at resonance. Afterwards, we can use our solution to evaluate
the phase-derivative coefficients appearing in eq. (4.12). Some of the technical details of

this computation are given in Appendix A.

4.2 Analytic formulas for the Bogoliubov coefficient

In this chapter, we explicitly list the analytic amplitudes B,SHZ) for n € {1,2, 3,4} solved
by the procedure described above, with the k-dependence expressed as an expansion
in r,? as defined by eq. (4.14). We choose a conformally-coupled (§ = 1/6) scalar x
field because of the relative simplicity of the source of nonadiabaticity. To make the

interference phase more manifest, we express our results as

g2 _ A}(ﬁn—ﬂ)ez’@}f“) _ (4.16)
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Up to a global phase that is independent of n, which therefore affects neither the inter-
ference nor the magnitude of S, the leading terms for the phase can be written as

Wi = 3 (= 2rak (<4 kb= ) e (25 ) - @)

where 7, = m, /mg, H and Z are boundary conditions defined in egs. (3.10) and (3.11),

respectively, and o F} is the hypergeometric function. We will give a physical interpretation

(n—2) _ (Dl(gna2) (D(n%2)

of this leading order phase in Appendix B.1. If we define A®, Jleading

and r, = m, /mg, then we can write our results as

2
12 —;T T _

.A,g 7Y — 30, T —27“2 1;(/4 (1+0(k7?%) , (4.18a)

4 x K1
3 —ir 72 xo + 112 + xort — 41608 + 38478

A(2ﬁ2) _ 2 X X X X X 4 (’)(/56)

* 16/ 172 o/ 1024(1 — 12)213 2 ) |
(4.18b)

(3-2) Q3 —%W 7”2

A T\ 15/4 (1 +O(k3 )) ' (4.18¢)

4 x K3

3(—21+68a2+24a +12r2) —2im r

(4—2) 3 4 X

A = + 4.1

K 4096 4—r x/‘i4/ (1+0(%) (4.184)

(1), .2 4
_ yO —|— (v 1280r _
AQ T — 92 X4 M4 ok? 4.19
480 (1 —4r2) : (M) (4.192)
_ y +y1 r — 80r?
AP — 75/ X 4240 : 4.19b
¢ 960 (1 — 7‘2) © (27) (4.19b)

(4.19¢)

) (4), .4 6

)+ 'r’ + Yy 1y + 2588r)

y 3/1 Yo ey O(RZ?’) :
960 (4 — r2) (—21 + 6803 + 24ay + 1212)

(4.194)

where x;, yi(”), 2(") are merely notational variables to allow a visually manageable display

of the results, with their explicit values given in Ch.4.5. Given the generalized nature of
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Model my/H. my/H. Ee my/H = a/a.
Quadratic 0.1 1.981 0.615 2.748 —0.138 0.5662
Hilltop 10 31.31 —2.526 26.90 —9.755 0.1041

Table 4.1: Values in the Quadratic and Hilltop models of inflation defined by egs. (2.3) and (2.4),
respectively. Note that dividing a/a. by (H@/m¢)2/3 gives 0.893 and 1.034 for the respective models,
which are O(1), as expected based on the definition of g in eq. (3.12).

o, as defined in eq. (2.2), these results are applicable to any inflationary potential which
can expanded as a polynomial with a positive quadratic term at its minimum. Since A,(f_ﬂ)
will be the dominant term, we have shown it to higher order in the expansion. Note that
the higher order terms in these formulas are organized by time reversal symmetry, and
therefore have relative corrections that go as €%k, instead of ery, 32,

The boundary conditions for the background functions {¢(t),a(t)} are given by 3
integration constants and are needed for specifying analytic formulas for ,B,g"%m. These
can be chosen to be H, Z, and a defined by limits as ¢ — oo in egs. (3.10), (3.11), and
(3.12), respectively. This method of writing the boundary conditions allows a cleaner
set of analytic expressions. Numerical solutions were used to obtain the values found in
Table 4.1 for two inflationary models of interest, and this was done mostly for accuracy
when comparing the analytic 8, with numerically computed [;. Analytic expressions
can be obtained for these integration constants as an expansion in H./m, for standard
slow-roll inflationary scenarios entering the coherent oscillations period. For example,
egs. (3.17), (3.18), and (3.19) only require conditions at t. and give comparable values
to those found in Table 4.1: my/H ~ 2.799, = ~ —0.078, and a/a. ~ 0.5571 for the
Quadratic model, and my/H ~ 27.28, = ~ —9.144, and a/a. ~ 0.1038 for the Hilltop
model.

The calculations were done without choosing a particular scheme, a type of gauge
choice concept that is particular to our computational formalism described in Ch. 3.2.
Instead, the scheme dependence was kept general throughout and completely cancelled
out in the final result. Checking scheme independence of observables was a robust tool

to verify different steps of the calculation. Another feature to note is that all amplitudes

vanish as they should when m, /m, — 0 since we are considering the conformally-coupled

(n—2)

k. leading diverges in the limit that

case. A related feature is that the leading phase &
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my/my — 0.
Let’s now compare the squared amplitudes between the current computation and an

earlier work by some of the present authors [59]. From the latter, we have the estimate

—9/2

m? 0 k/aen
fy(k) = o T (%> _K/aema : (4.20)
256 m3 (1 —m2/m3) \'my /mi_mi

where the definition of He,q and the above equation for fy are given by egs. (8.13) and
(8.17) of Ref. [59], respectively. This can be compared to our eq. (4.18c). For the Hilltop

model of eq. (2.4), the leading expressions differ by a factor of

_ my a®?  (30.41Henq)%(0.1041a, )%
k) H3 Y (1.843H3 ,)(0.875a,)%/2

2
end Yend

= 1.052 (4.21)

where the value of @ is found in Table 4.1, and the value of Henq for this Hilltop model
is given by eq. (8.27) of Ref. [59]|. The difference between a, and acnq (also H, and Henq)
is a result of different definitions for the end of inflation. This ratio can be used as an
estimate of corrections that this thesis represents to the computations of Ref. [59] as far

as the non-interference piece is concerned.

4.3 Discussion of the interference

Now, let’s consider the interferences arising from the results of Ch.4.2. To focus the
discussion to the physically most significant case, consider the interference between 2 — 2

and 3 — 2 amplitudes:

52— 53— i|e(2=2) _p(B—2)
,,4,9%2)6@'(62 2) +A’(€3H2)€@§€s 2)‘ S 9Re {./4]({;2*>2)AZ(3*>2)61[¢1€ Py ]} ) (4.22)
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Since A;CQ_’Q)AZ(?’_Q) is real, the interference phase between these two processes comes

from

SH "
4m
_’__m_X/fS/QQFl <_%7_%7ia1_ %) +A+0(63) ? (4 23)
¢ X

where 7, = m, /mg, and A is defined as

2 2 3 3
Al L (yé Dy} — 80my Z(z)) 1 (yé Dy} — 1280r, Z<3)>
K

K2 960 (1 —r2) 3/2 12960 (9 — 4r2)

(4.24)

with ySZ} ) as numerical coefficients that depend only on the inflaton potential interaction
strengths a3 and ay4, as can be seen in Ch.4.5. The term proportional to 2&3/2 — 3/@2/2
comes from 20(2?22)) — 39(523)), and each of these terms with the respective coefficients are
effectively a rewriting of the resonance times. The hypergeometric functions correspond
to the 2Q; phases appearing in eq.(2.12) evaluated at the respective resonance times.
Equation (4.23) is one of the main analytic results of this present work.

The A term contains the leading higher-A power correction to the leading stationary-
phase result. This contains the nontrivial corrections to the phases coming from the
cubic and quartic interaction terms of the inflaton potential: i.e., it depends on «s4.
It vanishes in the large k/mg limit because this is just the property of an asymptotic
expansion through the stationary phase method.

In Appendix B.1, we will discuss how the phases can be interpreted in terms of phases
accumulating through the Hamiltonian energy driven time evolution. In this intuitive
picture, for a given time interval, the inflaton background field self-interaction and self-
gravitational interaction change the accumulated phase of the inflaton interpreted as a col-
lection of one-particle states because of the change in the effective free propagator Hamil-
tonian energy. For example, in the parameter region of {m, > m,,as = 0,mys > H},

one can easily check that A increases as expected from the intuition that the steepening
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of the potential by the quartic potential contribution increases the effective oscillation

7212 of eq. (4.18¢) increases with m,, increasing,

mass. The x5 ° correction term in |A,(€2
although the physical interpretation of this increase is not as obvious.

In the more generic region in the parameter space, A is not monotonic with increasing
my/mg. For example, A goes through a zero as m,/my is increased if as/ay 2 O(1).

Since A generically diverges as m, — m, and decreases with increasing m, for small

my/mg, there can be two zeroes if A > 0 when m,/m, =0 and az/ay 2 O(1).

4.4 Numerical examples

In this section, we employ the analytic results of Ch.4.2 to study GPP and quantum
interference for two specific models of inflation: the Quadratic Potential model from
eq. (2.3) and the Hilltop Potential model from eq. (2.4). We evaluate the absolute value
of the Bogoliubov coefficients || using the analytic expressions for i in egs. (4.8),
(4.16), (4.18), and (4.19). We consider a range of dimensionless comoving wavenumbers
k € (1072,10%), where we've set a.H, = 1 such that the modes with & = 1 leave the
horizon at the end of inflation.

Our results for the Quadratic Potential model are presented in Fig.4.1. The blue-
dotted curve corresponds to our leading-order analytic calculation | 5}&2—>2)| on both the
upper and lower panels, while the red-dashed curve on the lower panel includes the first

2—2) + B}(€4H2) ’

sub-leading correction | B,i . Since the quadratic potential has a Zs symmetry,

¢ — —@, the ng processes with odd n have vanishing amplitudes: e.g. 6,9_)2) = 0 and

5,533%2) = 0. The spectrum at large k is approximately a power law | 3| ~ ]ﬁfﬁm o k=94,
but closer inspection reveals a sub-leading component that oscillates as k is varied. These
oscillations are explained in this work as an interference effect. Using eq. (4.17), the

oscillation period Ak is controlled by the variation in the phase with respect to k, and

can be explicitly written as

Ak — 27 N Zamyg amg
0@ — @) g =y PV 2K

(4.25)
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Figure 4.1: The Bogoliubov coefficient |5i| as a function of comoving wavenumber k (with a.H, = 1)
in the Quadratic Potential model. We assume a conformally-coupled (£ = 1/6) scalar spectator with
mass m, that experiences GPP due to an expanding spacetime background driven by an inflaton field
¢ on a quadratic potential with mass mg. Top: We calculate |8)| using the analytic results of this
thesis (blue-dotted) and using direct numerical integration of the mode equations (gray). Note that
|Bk| scales as k=94 at large k. As a comparative contrast to this power law behavior in k, the black
curve shows an approximate expression for |Si| for GPP in a matter dominated (MD) universe,
extrapolated to lower k values (beyond the range of strict validity) for visual completeness of the
exponential behavior. Bottom: The Bogoliubov coeflicient exhibits an oscillatory feature in the large k

power-law tail of the spectrum, which is explained in this work as a result of quantum interference
between 6,&2_&) and 5124_)2)'
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interference among four components: B,(c , B , B
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for any n; and ny. For the Quadratic model used in Fig. 4.1, this evaluates to Ak ~ 2a.H,
for n; = 2 and ny = 4. For comparison, the gray curve shows the result of calculating |Sy|
by direct numerical integration of the mode equations. The analytic results derived here
agree very well with the numerical integration at large k in both the average power-law
behavior and the oscillatory features. This agreement can be viewed as a validation of our
analytic approximations. The exponentially dropping black curve® by contrast highlights
the power-law behavior | 3| oc k~%/4 coming from the oscillating inflaton field that drives
corresponding oscillations in the scale factor.

For the Hilltop Potential model, our results appear in Fig. 4.2. Once again, the leading

272)| o k=9/4 as seen from both the direct nu-

power-law behavior at large k is |G| ~ | ,6’,(C
merical integration (gray-solid) and our analytic approximation (blue-dotted). The sub-
leading oscillatory components (green-dashed and red-dot-dashed) have a richer structure
in this model, which is evident by comparing the lower panels of Figs. 4.1 and 4.2. This
behavior can be understood as follows: for the Hilltop Potential model the components
B,(Cn_ﬂ) have similar amplitudes with increasing n, leading to a pronounced interference
pattern, whereas the amplitudes decrease more rapidly in the Quadratic Potential model,
and the interference is dominated by just the first two terms. Moreover, since the Hilltop
Potential model does not have a Zy symmetry at the minimum of the inflaton’s potential,
the processes with an odd number of inflatons — ¢ — 2y, 3¢ — 2y, and so on — are not

1—2)

forbidden. It turns out that ﬁ,g amplitude is numerically less important than that

of B,E;Hz) for the interference partly owing to the suppression of (k3/k1)'*/* < 1 (see
eq. (4.14)). By including up to the sub-sub-leading order in our analytic calculations,

|ﬁ,iH2) + 5,52%2) + 5,&3%2) - ﬁ,(g4_>2)|, we obtain the red-dot-dashed curve that matches the

result of direct numerical integration (gray-solid) very well at large k.

Here we note the limits of applicability of our analytic results, using Bg_ﬂ) as an

example. From the form of A,(f_&), we see that for m, > m, (which is the case for

)

both figures) the next-order corrections to AfHQ are approximately z1/1024r3. For the

3The formula for this curve is |By| = exp (—2.47(k/(acH.))3/?(H./my)'/?) valid for k > a.H., and
it corresponds to an approximate |8;| of GPP in a matter dominated universe. It is easily computable
by several methods (e.g. [8, 65]). A related formula is given explicitly in [57].
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Quadratic Model z7/1024 ~ —1, so the magnitude of the correction is approximately
Ky 2. For the Hilltop Model /1024 ~ —800, and the magnitude of the correction is

3

approximately 800x5”. An upper limit on the magnitude of the correction results in a

lower limit on k3, which, in turn results, in an my/H.-dependent lower limit on k (see

eq. (4.14)). For the figures we have assumed that the next-order corrections to B,(f_ﬂ)

are no more than 30% (since the lower limit on &k only depends of the third-root of the
correction limit, the result is relatively insensitive to the choice of 30%). From the figures
is is clear that the k=% behavior extends to k somewhat lower than the cutoff in the

convergence of our expansion.

4.5 Coefficients in the Bogoliubov formulas

The relevant coefficients for the results of Ch. 4.2 are listed here. The x; coefficients that

)

. 22
appear in A,(C are

zo = —1037 — 649603 + 9600 |
zy =4 (425 + 60803 + 5760u) |

xo =4 (=177 + 101603 + 8160w ,

the yj(n) coefficients are

ysV =919 + 108002 — 432a

i) =16 (509 — 27002 + 108ay) |

y$? = 961 + 432002 — 1728 ,

Y\ =2 (7 — 216002 + 864ay) |



y? = 81 (871 4 972002 — 3888ay)

y$®) = 144 (=521 + 243002 — 972ay) |

yi" = —135258 + 70469602 + 4712160 + 23500800 — 11059202, — 33177602
Y = 38073 + 79540402 — 21151204 — 58752007k + 2764803y + 8294402,

ys) = 2 (4323 — 5218003 + 20616a,4) ,

and the 2™ are given by

2.9
L _ _9"'20@%_80‘4%2171 (1 37 n m¢>

40 me 5’1;1’ B 4m?

for all n > 1, where oF) is the hypergeometric function.

31
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Chapter 5

Conclusions

In this thesis we report on our study of quantum interference in the phenomenon of
gravitational particle production. Our main results appear in Ch.4.2. We have derived
analytic expressions for the Bogoliubov coefficients Sy describing the gravitational pro-
duction of conformally-coupled, massive scalar particles during the inflaton’s coherent
oscillations after inflation. By employing a novel perturbation technique (relying on a
nonlinear field redefinition) and a stationary phase calculation, we have expressed [y,
as a sum over resonant contributions B,?HQ). Oscillatory features in the spectrum |3y |*
are understood to result from an interference among the resonant contributions, e.g.
1827 4 gED 12 £ |32 12 85712 see also eq. (4.23) for details. These analytic
results are in excellent agreement with a direct numerical integration of the mode equa-
tions; as shown in Ch.4.4, the agreement is within a few percent in certain kinematic
regions. Our work explains much of the previously unexplained “noise” in numerically-
computed spectra, seen for example in Refs. [56-58]. As we discuss in Appendix B.1, the
resonant contributions 6,2"_}2) are related to gravity-mediated inflaton scattering ampli-
tudes ng — 2x corresponding to n inflaton particles with mass m, at rest annihilating to
2 scalar particles with mass m, < nmg/2. This work also elucidates the quantum nature
of gravitational particle production induced by classical inflaton coherent dynamics.

As noted in Appendix B.1, the interference phase can be understood as arising from

the free propagator phases of the external legs of the scattering process. This means
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that the phases are dependent on the kinematics of the inflaton and the y particles,
as well as the scattering times of say ni¢p — 2x and ng¢p — 2x processes. Unlike the
usual scattering situations where n;¢ — 2x and ny¢ — 2x are incoherent, the coherent
oscillation nature of the initial inflaton state allows for the scattering amplitudes to
interfere. This interference is efficiently captured using the Bogoliubov transformation
formalism.

The modulations of the y-particle momentum spectrum shown in Figs. 4.1 and 4.2
in principle can be probed by kinematic-dependent subsequent scattering dynamics of x
particles. For example, if interesting motivated scenarios exist for y particle scattering
resonances with judicious energy spacing, the interference pattern of y energies may lead
to enhanced production of final states compared to situations without this interference
pattern in the y particle spectrum. Investigations into possible applications will be left

to future work.
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Appendix A

Expansion of the Bogoliubov complex

phase

In this appendix, we will show that the complex phase of eq.(4.9) and its derivatives
can be evaluated using only the value of the slowly time-varying A. We will detail the
calculations of each term to O(A\?) and then simply state the results to O(A*). We have

already obtained #()\) in eq. (3.32), and therefore we focus remaining items of €, and

N
Before expanding in A, we make the replacement k — a\=2/3, [EF — mi, where

L2
& = §A4/3 +m2 (A.1)

is treated as O(\?), which is justified as & ~ my at resonance times. This eliminates any
fractional powers of A from appearing in our expansion, and is equivalent to expanding
in powers of the bookkeeping parameter ¢ in eq.(4.14) after making the replacements
A — e and k — e 23k,

To simplify the display of these results, we use eq. (3.5), k — myk, and m, — mgm,,

to effectively set my = 1. Furthermore, we use the RS defined by eq. (3.30). We write

R = —3)\*(1 + 3cos20) — g)\?’ (sin 260 + 4as (cos 30 — cos ) (A.2)
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R = 18)\%sin(26) + 9A% (1 + 2 cos 20 + 2a3(3 sin 30 — sin 6)) (A.3)

using R = —6H — 12H? and the chain rule. Applying this and the results below eq. (3.30)

to eq. (2.13) results in

2

< A A2 A3
N 43 (1—6§+%)sm29+—{—%(1—65+2m§)sm9

T 282 ag? 2 262 | 2
3m? E2 —m? 9(1—6 _
+ 25}3" (1 — 6¢ — %) cos 20 + a <% —|—mi> sin 30
(1—6¢) (& + Qmi) + (9 — 503 + 20u) m2 (&2 - mi) A4

where m, and &, are understood as m, /my and & /m, respectively.
We now explain how to obtain (), 6). We start by subtracting terms that only
contribute a time-independent global phase to (i, writing eq. (2.9) as

2m,, My

t ty
Qi(t) = myt dt' (Ex(t') — dt' By (' ty — —=
) =t S [ ) =)+ [ B

2mX + /)\(t) d)\/Ek()\/’ 0()\/)) — mX
3H  Jo Br(N)

=m,t+

where the slashed out terms are the neglected global phase, and the limit {; — oo was
taken in the second line. Crucially, this neglected phase is scheme independent, which
ensures the same about the remainder. Using the expression for ¢(\) in eq. (3.31), we
reduce this to

m At) ’ /’ / my
=23 -0 [ o (B0 )

with the task being to evaluate the integral on the right. Using the decomposition of

eq. (4.6) on Ey(t), we write the slow and fast components of () as

A E(U) \
Qs 1(A) = 27;” (A —hy) + /O dN ( ka (g,>> - ;g) : (A.5)
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Qult) =D / B () (A.6)

n#0 ¥
respectively. The slow component integral converges due to the m, term, and the fast
component integral can be solved perturbatively as follows. We write {27 as a sum over

Q,(c") (A)e™? for n # 0 and take a time derivative of eq. (A.6), which yields

> (BB ) + i (N (V) ¢ = ST B (e,
n#0 n#0

where the time dependence is now implicit. For each n # 0, this implies

BTN = BN (V)
- Znﬁg()\) ’

() (A7)

which can be solved recursively to obtain Q,(cn) as an expansion in powers of A. This is
because BA(?,\Q,(C") is always suppressed by an extra power of A relative to Q,(C").

To obtain the E,(Cn) components, it is convenient to write

a’ m2\ 1-66R

in which k was written in terms of &,. When expanding, it is important to not expand

the implicit A dependence of &, and instead treat it as O(A\Y). Using the results of the
RS below eq. (3.30), we write

N {3a3<1 66— 2A&E —m3)) 316§ — 3(EF — md))

1 —6¢+ (2 — 24 £2—m?) 3(1— 6 Em
Ek:gk_)\g{ é_’_(g B —I—Oé4)( k mx)+ ( f P )COSQQ

_ in?2
T cos 3, sin 20

3166 3(E —m})
28,
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which we can now apply to egs. (A.5) and (A.7) to solve for Qx (A, #). The results are

2 9— 2002+ 8
Qup = =0 F (—%,—%;isl—%MA{ T M gt

3\ 20
1—-6 9 — 2002 + 8« 2
( 6mX5 " S0 4m’<) o (35 _:T>} ’
2 2
3A2(1 — 66 — S 5 [ 3as(l — 66 — 2(E2 —m2))
Qs = — 3, sin 20 + A { 2, sin 0+
m2 4 m4
9(1 — 66)(EF + =) — Bk 1 9&2m? + as(1— 66 — 2(€2 —m2)) |
3 cos 260 — sin 30
16E3 28,

up to O(A?) and O()N?), respectively. We did not include the A\* term of Q) as its
derivatives are suppressed by extra powers of \ relative to the A* term of Q. This
because only the latter depends on 6, which has an O(\°) derivative. In addition, the

neglected term includes dependence on a; and «g, which this appendix does not cover.
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Appendix B

Heuristic derivation

B.1 Main argument

Our aim in this chapter is to describe semi-quantitatively the Bogoliubov computation of
the resonance-induced GPP in terms of an approximate S-matrix perspective by showing
how the Boltzmann equation would need to be modified to capture the interference effects.
Here, we will focus on the interference of 2 — 2 and 3 — 2 scattering as this is often the
most interesting case, with other generalizations being straightforward.

Consider an incoherent gas of N ~ p.V3/m, number of ¢ particles, where p. ~
MZH? is the energy density and V3 ~ H_? is the 3-volume of a large box approximating
the causal Hubble patch. Usually, one first decoheres this large N state system into
an ensemble of 2¢ — 2y and 3¢ — 2y, and then considers each process statistically
independent. In this case, the macroscopic particle production of x is described by a

semiclassical 1-particle x distribution obtained from integrating the collision term as

dPky dPpy dPp
/8tfx(k,t)dt ~ ‘/33/ (271')23 (271')13 (27T)2382(p17p2) ’<Xka27tf‘U(tf7te)’¢p1¢p27te>’2

+ya / Pky dPpy dPpy dPps
5 (2m)3 (2m)3 (2m)3 (2m)3

83(p17p27p3) |<Xka27 tf|U<tf7 te)|¢P1 ¢P2¢P37 t6>|2 (Bl)

where U(ty,t) is the time-evolution operator from time t; to ty, and S, factors are

¢ initial-state dependent weighting factors (generalization of Bose-Einstein distribution),



39

eventually leading to the cross chapter picture of the usual Boltzmann equations as shown
explicitly in Appendix B.2. This treats “typical” 2-body scatterings and 3-body scatter-
ings to be additive incoherently. However, this type of computation neglects the nontriv-
ial interference that can occur from Schrédinger time evolution phases between different
scatterings.

Hence, we arrive at the main idea. The scattering perspective that we will construct
below will simply replace the nonadiabatic period during which the 2y particle frequencies
are in resonance with an approximate S-matrix scattering description. The different
scattering events are diagrams (e.g., see Fig. B.1) that interfere because of the coherence
of the waves entering the interaction region approximated by an S-matrix. This will allow
us to compute the interference phase using the wave free-propagation phase. Thus, before

we describe the scattering, let’s divide the time period [t., ;| into 3 regions:

region 1: [t.,t3) , region 2: (t3,t3) , region 3: (t2,tf] ,

. . . . 2
where t,, is the time at which n¢ — 2x resonance occurs, i.e., 2 aglzt 5+ mi N nme,

which is the analog of the time z?;g") that satisfies the stationary-phase condition from
Ch. 4.

From a scattering perspective, we work in the Schrédinger picture with metric inho-
mogeneities in time, with ¢ treated as a quantum field, and the interaction Hamiltonian
coming from the metric fluctuation coupling to the ¢ energy-momentum tensor. To de-
scribe the spatially homogeneous classical inflaton field, imagine setting up a normalized
coherent state |¢) ~ (a state containing a macroscopic number of particles)' at time ¢,

such that

(¢|U(tea t) Qb('r? t) U(tv t€)|¢) = ¢EOM(t> (BQ)

for t > t., where ¢rpom(t) is the solution to eq.(3.1). Note that the quantum phase of
U(t,t) has turned into the classical phases embedded in ¢ronm(t), approximated as nmgt

for integers n. This is one source of the interference phase as we will see below.

'Here we follow the covention of Ref. [66] denoting a normalized coherent state as “|...)".
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S S S
|
N

Figure B.1: The Schrodinger propagator phase difference between 3¢ — 2y and 2¢ — 2x scatterings
leads to interference. The disk region of diameter dt represents the usual collision region of Boltzmann
equation, which is typically treated with an S-matrix taking the formal limit §t — oo. The observable
interference phase of x is the Schrédinger-picture free-particle propagator between t3 and t5. The
¢-interference phase can contain t. information as 3¢ propagation phase from ¢, to t3 does not cancel
the 2¢ propagation conjugate phase from t. to t3.
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We will assume for the semi-quantitative discussion that this coherent state can be
generalized straightforwardly to the effective FLRW background of an expanding box:
ds* = dt* — a3, (t)|dZ]>. Instead of treating Hgqy as a Minkowski graviton effect, the
background is treated as an expanding box even in the scattering picture because a purely
Minkowski treatment is inefficient in explaining k/age, dilution.

The normalized coherent state |¢) of eq. (B.2) can be decomposed as a superposition

of normalized wave packet states over r numbers of ¢ particles, written as [66]

~ Jdk)...[dk, JES (ks R )al ol 10, 80)
Vb (k] S (R k)2

7, {qi}ste)o : (B.3)

where F (g)Qi}) controls the ¢ particle wave packets with central momenta {¢;} = {q1, ..., ¢, }-
For illustration, suppose the initial state in the notation of eq. (B.3) is decohered into
clusters of 2 and 3-particle states described by a density matrix p = >, S(¥)[¢) (],

where

[9) 210, te)y @ [W)g @ 0, 2e)sg,, » (B.4)

g2|2> {pz}a te>q§ + g3|37 {pl}a te>¢
VIGP + G2 ’

W)y = (B.5)

and S partitions the macroscopic N-inflaton state into an ensemble of coherent super-
positions of 2-particle and 3-particle states. The wave packet function F, appearing in
eq. (B.3) is assumed to be peaked at close to zero spatial momentum since the inflatons
are assumed to be cold. The amplitudes (, and (5 control the mixing of 2- and 3-particle
inflaton states. The ¢ state of eq. (B.5) can be intuitively considered a “classical” coher-
ence because it represents a macroscopic state,? and the Bogoliubov vacuum does not
contain the quantum data for ¢ in (,. However, this “classical” coherence itself is really
part of the quantum coherence associated with the Schrodinger time evolution operator

just as in photon time-phase coherence in lasers.

2The sum over S is a macroscopic number, similar to V¥ [ (‘12752 (dif’)l d3p2 >Sa(p1,p2) in eq. (B.1).
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With the illustrative partition of eq. (B.5), the analog of eq. (B.1) becomes

o 2]\fpartition [‘5]

=GR+ G |(XeXha st U (g, te) (G212, (it te) + G313, {pi} te) o)

(B.6)

/8tfx(k, t)dt

where Npartition|S] 18 @ multiplicity factor associated with the partition achieved through

the density matrix probability factor S. Because of the resonant behavior, we know

t)dt

—2i [ By i [t m
<Xka27tf’U(tfate)‘na {pi}7t€> ~ e tf * Ane fte vt ) (B7)

An = XXk 1y [U (G 8) I {pi} 1) (B.8)

where t£ = t,, £ 6t/2, with dt as the interaction time, i.e., the time scale of a Boltzmann
collision term, which by construction is supposed to be much smaller than the free-
streaming time scale. However, 0t is viewed in the S-matrix picture as an asymptotically
long time scale, as one formally takes 0t — oo to take advantage of the properties
associated with meromorphic matrix elements.®> This is the usual requirement of the
validity of the Boltzmann treatment. Hence, the squared amplitude in the modified
Boltzmann collision analog of eq. (B.6) becomes
0; 13 oty oty

GAL? + IGoAsfP o ORI e ) (B)
where one notes in eq. (B.9) that the cross-term induced coefficient as part of the inter-
ference phase. More generically, the interference phase between n1¢ — 2y and nq¢p — 2x
is

tny tny tn,
— 2/ Ex(t)dt + nq / medt — ny / mgdt (B.10)
tn te te

1
in the limit that ¢t < |t,, — t,,|. The phase of the Schréodinger-propagator indepen-
dent quantity ( (, is apparently independent of n in the case of our particular | B |?

computation.

3Note that A,(fn_ﬂ) is typically proportional to the scattering amplitude and A,, at tree level order.
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Comparing with eq. (4.23), we see that the oFj-proportional pieces in @,fg;?ing —
CID,E?’I;Qd)mg matches —2 f "2 By (t)dt, where the hypergeometric function arises from integrals

of the form

e =y e
Ey(t)dt ~ _— —)\4/3 2 B.11
[ moas [ +m2 (B.11)

which used the relationship a ~ aA\~?/® and the definition of ) in eq. (3.22). The hyper-
geometric function term by itself has a divergent piece as m, — 0, which is obviously
spurious since the left hand side of eq. (B.11) is convergent for finite ¢,. Similarly, the

remaining terms of eq. (4.23) can be identified with the inflaton phase:

2 2
(2 — 3) (E - %) + g (2/%3/2 3/2 — 2/ m¢dt — / m¢dt (B12)

which also matches the interpretation of = being the phase offset that depends on the

properties of the inflaton at the end of the quasi-dS era at time ..

B.2 Obtaining the usual collision term
Consider one of the collision terms of eq. (B.1)

d3ky dpy dPp
02—>2(k) = ‘/33/ (271_)23 (27‘(‘)13 (271’)23 82(]71’]72) |<X/€Xk27 tf|U(tf7 ti)’¢p1¢p27 te>|2

The matrix element of the box normalized states with box volume V3 can be written as

which gives
Cora(h) = S [ ()T T ) S p2) | (27150 01+ — o — K)o
= o [ M) ) 1)1, ) 2 O o+ 2 — b = ) Mo

d3p

) = 5E,
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where we used Fermi’s golden rule and At is the long-time period defining the asymptotic

state region. Integrating over k:

A3k a3 d?
/—Cz—m(k) = At/ D ﬂ‘g (p1,p2)

BB
(2r)? (2n)? (2m)3 "

Eﬁ1 - Eﬁz

/dO'(plpg — k’k‘g) s (B14)

_ f dH(k)dH(k2)(27T)45(4) (p1 +p2 — ks — k) ‘M2a2’2

d kko) = B.15
/ 0(p1p2 -~ 2> 4 |ﬁ1Eﬁ2 - 52E151| ’ ( )

where do is the differential cross section. Hence, we see that if we take Ss(p1,p2) =

e P/Te=E2/T e obtain the usual thermal averaged cross section:

— —

b1 P2

E;  Ej

p p

[ i
m T

/dU(P1p2 — kky) = (ov)niny' ,  (B.16)

justifying the interpretation of Sy(pi,p2) as the generalization of the Bose-Einstein sta-
tistical factor in eq. (B.1). Note that eq. (B.13) is one of the key approximations that are

being modified as the actual interaction region is not [t.,ts| but [ts — %, to + %]
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