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ABSTRACT 

Light metal (e.g. Al, Mg) based metal matrix nanocomposites (MMNCs), where metal alloys 

are reinforced with ceramic nanoparticles, have been intensively studied recently because of their 

significant properties, such as high strength, machinability, and creep resistance at elevated 

temperature. While light metal MMNCs promise to offer superior properties, the fabrication of 

high quality MMNCs is very challenging. It is extremely difficult for the conventional methods, 

such as stir casting, to distribute and disperse nanoparticles uniformly in metal melts. Due to 

their large surface-to-volume ratio and poor wettabililty in most molten metal, nanoparticles tend 

to agglomerate and cluster together, which is detrimental to the final performance of MMNCs. 

Ultrasonic dispersion assisted fabrication of MMNCs is a very promising technology that can 

meet the needs of both uniform distribution of nanoparticles and fabrication of large and 

complex structural components. However, there are two significant and fundamental issues in 

scaling up the system for mass production of high quality MMNCs. First, there is a lack of in-

situ process optimization and monitoring method to control the fabrication quality. Second, there 

are no effective and easy-to-implement quality inspection techniques to evaluate the quality of 

the fabricated MMNCs. The objective of this dissertation is to address these two issues, i.e., to 

control the fabrication quality from both on-line and off-line aspects, and thus to facilitate the 

transition of this emerging process from lab environment to a scale-up industrial production.  

To control and optimize the nanoparticle dispersion process, a high speed data acquisition 

system is designed, which is able to collect the cavitation noise signals from the high temperature 

molten metal with high sampling frequency. Based on the cavitation physics, acoustic 

attenuation theory and experimental observations, the nanoparticles are found to be well 
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dispersed when the cavitation noise signals are steady. Therefore the in-situ monitoring and 

control of nanoparticle dispersion is formulated to an on-line steady state detection problem. 

Two robust on-line steady state detection algorithms are developed using multiple change-point 

models and Bayesian inference techniques. The first algorithm is based on the particle filtering 

techniques while the second one uses the exact Bayesian inference method. Extensive numerical 

analysis shows that the proposed methods are much more accurate and robust than other existing 

methods.  

Ultrasonic non-destructive testing is used to evaluate the microstructures of the fabricated 

MMNCs. The between-curve variation of ultrasonic attenuation curves is found to be highly 

related with the distribution of nanoparticle reinforcements and uniformity of microstructures. A 

hypothesis test based on the estimated attenuation variance is developed and it could accurately 

differentiate bad samples from good ones. A hierarchical linear model with level-2 variance 

heterogeneity is proposed to describe the relationship between ultrasonic attenuation profiles and 

the microstructural parameters for ultrasonic attenuation based quality control. An integrated 

Bayesian framework for model estimation, model selection, and inference of the microstructural 

parameters is proposed and implemented through blocked Gibbs sampling, intrinsic Bayes factor, 

and importance sampling. The effectiveness of the proposed approach is illustrated through 

intensive numerical and case studies. 

Specific contributions of this thesis include: (1) a novel data acquisition system to monitor 

the cavitation process, (2) discovery of the relation between the ultrasonic noise of cavitation and 

nanoparticle dispersion status, (3) two robust on-line steady state detection algorithms which can 

be used not only in the monitoring of the ultrasonic dispersion process, but also in many other 
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process monitoring and control areas, (4) discovery of the qualitative relation between ultrasonic 

attenuation and microstructures of MMNCs, (5) hierarchical linear modeling of ultrasonic 

attenuation profiles for quality inference and control of MMNCs.  

In the future, the dissertation work can be extended in the following aspects: (1) further 

signal analysis and experimental verification for particle dispersion process monitoring; (2) 

statistical process control charts on attenuation profiles for ultrasonic attenuation based quality 

inspection of MMNCs; (3) 3-dimention microstructural modeling, wave propagation simulation 

and uncertainty quantification.  
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1 Introduction 

1.1 Background  

1.1.1 Lightweight Metal Based Metal-matrix Nanocomposites 

Due to the increasing concerns on the energy efficiency and carbon emission, the need for 

structural components of high performance lightweight material is growing continuously, 

especially in the aerospace and automobile industries. Energy saving and carbon emission 

reduction will result from the application of lightweight and high strength materials. For example, 

it saves 7% fuel consumption for every 10% reduction in vehicle mass [1]. In the commercial 

aircraft industry, weight savings has been estimated to be $450/kg, and in spacecraft, it can reach 

up to $40,000/kg [2]. Light weighted alloys, e.g., aluminum alloys, are promising light weight 

materials, due to their high strength-to-weight ratio, long fatigue life and excellent damping 

characteristics. They are considered to be an alternative to conventional steels and the more 

expensive super alloys. For example, the amount of aluminum per North American light vehicle 

has increased from 258 lb. in 2000 to about 365 lb. in 2014 and is forecasted to grow 

significantly to 547 lb. by 2025 (Figure 1-1). Aluminum alloys account for nearly 80% of the 

materials used in the components of the aircrafts.  

In order to achieve better energy efficiency and higher material properties, considerable 

research effort has been directed to the metal-matrix composites (MMCs), a kind of hybrid 

material where micro-scale reinforcements are embedded into a ductile metal matrix to obtain 
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characteristics that are superior to the original metal matrix material [3]. MMCs combine 

metallic properties (high ductility and toughness) with reinforcements characteristics (high 

strength and modulus, etc), thus leading to a greater strength to shear and compression, higher 

stiffness and higher service temperature capabilities, etc. Reinforcing materials include carbides 

(e.g., SiC, B4C), nitrides (e.g., Si3N4, AlN), oxides (e.g., Al2O3, SiO2), as well as elemental 

materials (e.g., C, Si) [4]. The reinforcements may be in the form of continuous fibers [5, 6], 

particles [4, 7, 8], and whiskers [9] etc.  

 

Figure 1-1: Aluminum net pounds per North American light vehicle [10] 

Although MMCs offer many advantages, they do have shortcomings, such as low fracture 

toughness, low ductility and creep resistance, and low machinability. Metal matrix 

nanocomposites (MMNCs), where the ceramic nanoparticles (less than 100nm) are used as the 

reinforcement, have merged as a promising alternative to overcome the limitations of the 

conventional MMCs. Uniformly dispersed nanoparticles, even with a very low volume fraction, 
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provides a good balance between the strengthener and inter-particle spacing effects to maximize 

the yield strength and creep resistance while retaining good matrix ductility. Moreover, MMNCs 

could offer a significant improved performance at elevated temperatures [11].  

1.1.2 Challenges in the Fabrication of MMNCs 

While nanoparticle reinforced composites promise to offer superior properties, the 

fabrication of MMNCs is very difficult. Evenly dispersing the nanoparticles into the metal matrix 

is one of the key challenges in the mass production of MMNCs. The current processing 

technologies are still neither reliable nor cost effective to produce bulk MMNCs with 

reproducible structures and properties. Mechanical mixing (e.g. high energy ball milling) of 

metallic and ceramic powders [12-14] is generally used for the blending of powders to fabricate 

bulk MMNCs. This procedure is energy and time consuming as well as costly. Particle clustering 

and agglomeration present serious problems for the uniform blending of matrix and nanoparticles. 

In-situ reinforcement formation is still neither reliable nor flexible for high volume production of 

structural components with complex shapes [15-18]. Conventional solidification processing 

methods, such as mechanical stir casting[19] and squeeze casting [9] have been applied to 

produce microparticle (sizes above 5~10µm) reinforced aluminum MMCs. Stir casting is an 

versatile and cost-effective method for near-net-shape formation of bulk composites into 

complex shapes. It would be desirable to produce as-cast lightweight components of MMNCs 

with good reinforcement distribution and structural integrity. However, it is extremely difficult 

for the conventional mechanical stirring method to distribute and disperse nano-scale particles 

uniformly in metal melts. Due to their large surface-to-volume ratio and their poor wettability in 

most metal melts, nanoparticles tend to agglomerate and cluster together [20-22], as shown in 
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(Figure 1-2), which is detrimental for the final component performances and its machinability. 

Therefore, there is a strong need of a reliable and cost effective dispersion of nanoparticles in 

metal melts for the solidification processing of bulk high performance MMNCs.  

 

Figure 1-2: Clustered nanoparticles (Al2O3) within the A206 metal matrix [23] 

1.1.3 Ultrasonic Cavitation based Fabrication of MMNCs 

Ultrasonic cavitation is an enabling technology for particle dispersion in liquid [11, 24, 25]. 

High-intensity ultrasonic waves (with intensity above 106W/m2 and frequency above 18KHz) are 

cost effective and reliable for liquid-based materials processing in that they generate important 

non-linear effects in liquids. The basic idea is to shoot a beam of ultrasonic sound through the 

particle-liquid system. Then due to local violent pressure variations caused by ultrasonic 

vibrations [26], we will get a “cavitation” phenomenon, which refers to the formation, growth, 

oscillation, and implosive collapse of gas or vapor bubbles in liquids caused by the ultrasound, as 

shown in Figure 1-3. Based on the duration of bubbles, the cavitation is classified into two types: 

stable cavitation and transient cavitation [27]. For the stable cavitation, the bubbles oscillate non-
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linearly around the equilibrium size. They are relatively stable and last for many cycles of the 

acoustic pressure. While for the transient cavitation, the bubbles usually oscillate for much 

shorter time. They explosively grow into a cavity with a size of many times of their original sizes 

and then collapse violently. When the bubble collapses, it produces transient micro “hot spot” 

that can have temperatures of about 5000K, pressures above 1000 atms, and heating and cooling 

rates above 1010 K/s, high speed liquid jets of up to 300m/s [26]. Moreover, acoustic streaming 

can induce violent stirring in liquids [28]. Due to these intense effects, the cavitation can 

effectively mix and also break particle agglomerates into well-dispersed particles in the liquid.  

With the assistance of ultrasonic cavitation, the fabrication of micro/nanoparticle reinforced 

metal matrix composites has been successfully demonstrated [11, 20, 24, 29]. The dispersion of 

nanoparticles in aluminum A356 alloy melts was attained using the ultrasonic cavitation based 

technique on small, laboratory samples (1~2lbs). With only 1.0 wt.% of nano-sized SiC 

reinforcement, the ultimate tensile strength and yield strength of the aluminum alloy A356 were 

enhanced approximately 60%~80% while the ductility was retained [24]. The study on 

micro/nano structures of the nanocomposites validates that a roughly uniform distribution and 

effective dispersion of nanoparticles in the matrix were achieved, as shown in Figure 1-4. Thus, 

ultrasonic cavitation is promising as a reliable and cost effective tool for nanoparticle dispersion 

in metal melts.  
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Figure 1-3: Ultrasonic dispersion of nanoparticles in melts 

 

Figure 1-4: (a) Scanning electronic microscope (SEM) image of pure A356 alloy; (b) SEM 
image of nanoparticle dispersion in A356; (c) transmission electron microscopy (TEM) image of 
SiC nanoparticles embedded in Al allogy marix 

1.2 Motivation and Research Objectives 

Although ultrasonic cavitation based fabrication techniques are very promising, there are 

significant and fundamental challenges in scaling up the system to mass production of high 

quality MMNCs. The tremendous complexity and the lack of fundamental understanding in the 
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relationship among the processing parameters (e.g., ultrasonic power, cavitation duration), 

microstructure and material properties make it very difficult to optimize and control the process 

effectively for a scale-up production. Besides, to reach an economical scale-up production, an 

effective yet easy-to-implement quality inspection technique to evaluate the quality of 

nanoparticle dispersion in the final product and the quality of microstructures is required. At 

present the standard inspection method is based on the microscopic images, e.g., SEM images, 

optical microscope images and TEM images, which are costly and time-consuming to obtain. 

The skill requirement for foundry workers is also high to operate these microscopes. Therefore, a 

lack of easy and effective quality inspection techniques will also prevent scaling up the 

production from small laboratory samples of simple geometry to mass industrial production.  

 

Figure 1-5: Research objectives of this dissertation 
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The fundamental objective of this dissertation is to address these two abovementioned critical 

issues, i.e., to control the quality of the fabrication of MMNCs from both on-line and off-line 

aspects. The overall framework of this dissertation is illustrated in Figure 1-5. In the on-line 

aspect, the research objective is to discover the fundamental relationship between the quality of 

particle dispersion and the in-situ process sensing measurements through the integration of 

statistical and physical analysis and then utilize this relationship for process optimization and 

control. In the off-line aspect, the research objective is to develop a fast-yet-effective ultrasonic 

nondestructive testing (NDT) based quality inspection method. Similarly, we have two tasks in 

this objective: to identify the relationship between the microstructures and the NDT 

measurements, and then based on this relationship to develop quality inspection and control 

methods. 

The experimental set-up used to fabricate MMNCs is depicted in the right panel of Figure 

1-5. The system consists of a resistance heating furnace to melt the alloys, a nanoparticle feeding 

system, gas protection system and an ultrasonic processing system. Commercially available 

ultrasonic sonicator with acoustic energy up to 3.5 KW and frequency of 20 KHz is used. The 

ultrasonic vibrations are transferred into metal melts via a niobium ultrasonic probe, which can 

withstand temperatures as high as 1200 °C for 300 hours. Al alloys will be superheated 

(50~150 °C above its melting temperature) and processed with suitable ultrasonic intensity under 

the protection of argon. The nanoparticles are fed into the melt through the nanoparticle feeding 

system during the ultrasonic processing.  

The data to be collected in this research include the process parameters (ultrasonic power, 

cavitation duration, particle volume fraction, etc.), in-situ measurements of cavitation noise 
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through the acoustic cavitation sensor, microscopic images and NDT measuring data of the 

fabricated MMNCs, etc.  

1.3 Specific Research Tasks and Challenges 

The specific tasks and challenges are listed as follows: 

(1) To discover the relationship among the characteristics of the in-situ measured 

cavitation noise signal, the process parameters and nanoparticle dispersion condition. There 

are two big challenges in this task. The first one is the design of high speed data collection 

system. In the fabrication process, the temperature of the molten alloys can reach up to 1000 °C. 

How to effectively collect the in-situ noise without damaging the data acquisition system is an 

issue. Besides, the frequency of cavitation noise is extremely high. In order to fully capture the 

characteristics of the noise, the sampling frequency is required to be as high as 1 MHz, which 

results in high requirement on both the sampling frequency and data storage memory. The 

second challenge is that there is lack of fundamental understanding of how process parameters 

and nanoparticle dispersion status will influence the cavitation noise signals. The cavitation 

based dispersion process involves many complex physical processes, which makes the 

relationship difficult to identify.  

(2) To optimize the fabrication process and develop real-time monitoring algorithms for 

in-situ process control. In ultrasonic cavitation based material dispersion and processing, the 

ultrasonic power and processing time are usually chosen somewhat arbitrarily. Unnecessarily 

high ultrasonic power level or long processing time may result in waste of time and energy, or 

even damage of cavitation system, while too low a power level or too short a processing time 
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may lead to insufficient treatment. Based on the work in task 1, we seek to select optimal 

processing power and also to determine when to stop the cavitation processing. The challenge of 

this task is that the developed monitoring and control scheme need to be not only accurate but 

also timely to detect the nanoparticle dispersion finishing time. 

(3) To identify the qualitative relationship between the microstructures and NDT 

measurements. The microstructure provides an ultimate measure of the final product. However, 

it is very costly to obtain the microstructure images. In this task, we seek to use cheaper 

ultrasonic testing measurement to qualitatively characterize the MMNCs microstructures. 

Although ultrasonic testing has been widely used in industry, most of the applications are for 

flaw detection and dimension measurement. Considerable research has been done to characterize 

material microstructures using ultrasonic testing, but most of these studies are limited to single-

phase or two-phase materials, and also there are no wide industrial applications. Alloys based 

MMNCs have more than three phases in the microstructures, which makes it challenging to 

characterize the microstructure quality, especially the distribution of nanoparticles using 

ultrasonic testing methods. 

(4) To quantitatively evaluate and monitor the quality of the fabricated MMNCs using 

ultrasonic NDT data. In the quality inspection, it is critical to infer the dispersion of 

nanoparticles in microstructures and the grain size of Al primary phase based on the ultrasonic 

testing measurement. However, due to the complexity of ultrasound propagation in the MMNCs, 

and the limited experimental data because of the difficulty of fabricating MMNCs samples with 

planned microstructural features, it is very difficult to get the analytical relationship between the 

microstructural features (grain size, nanoparticle distribution, etc.) and ultrasonic testing 
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measurement. In this task, we seek to combine numerical modeling of microstructures and wave 

propagation, and statistical modeling of attenuation profiles for quality inference and control of 

MMNCs.  

1.4 Outline of the Dissertation 

The remainder of the dissertation is organized as follows. Chapter 2 addresses the first task 

mentioned in the previous section. In this chapter, the relationship among the cavitation noise 

signals, the processing parameters, and the dispersion status has been identified, which provides 

insightful guidance to optimize and monitor the micro/nanoparticle dispersion process. It is 

found that the steady state of the cavitation signal is an indicator of the completeness of the 

dispersion process. In Chapter 3, a robust steady state detection algorithm is developed, where a 

multiple change-point model is used to model any signals, and particle filtering techniques are 

developed and improved to approximate the posterior distribution of model parameters for steady 

state detection. Chapter 4 proposes an alternative steady state algorithm which applies exact 

Bayesian inference to the multiple change-point models. This algorithm is more accurate and 

computationally efficient. Chapter 5 investigates the qualitative relationship between the 

ultrasonic attenuation profiles and the microstructures of MMNCs. Significant non-uniformity of 

ultrasonic attenuation is observed on the bad samples with large primary dendrites, long inter-

metallic network, and unevenly distributed nanoparticles. Chapter 6 proposes a hierarchical 

linear model to model the relationship between the microstructural features and the ultrasonic 

attenuation profiles for quality inference and control. Chapter 7 summarizes the contributions of 

this dissertation and discusses the future work.  
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2 Acoustic Emission Monitoring for Ultrasonic Cavitation Based 

Dispersion Process
∗∗∗∗
 

In this chapter, a real-time monitoring technique is developed to monitor the 

micro/nanoparticle dispersion process based on the cavitation noise signals. The contribution of 

this work is the discovery of the relation between the particle dispersion condition and the 

characteristics of cavitation noise, or specifically, the formulation of particle dispersion 

monitoring into the problem of steady state detection, and the guidance of how to select optimal 

process parameters (i.e., ultrasonic power, processing time) in the ultrasonic cavitation assisted 

fabrication of MMNCs.  

2.1 Overview of Ultrasonic Cavitation 

Ultrasonic cavitation is an effective method to disperse micro/nanoparticles [20, 24, 25, 30, 

31]. The basic idea is to shoot a beam of ultrasonic sound through the particle-liquid system. 

Then due to local violent pressure variations caused by ultrasonic vibrations [32], we will get a 

“cavitation” phenomenon, which refers to the formation, growth, oscillation, and implosive 

collapse of gas or vapor bubbles in liquids. Based on the duration of bubbles, the cavitation is 

classified into two types: stable cavitation and transient cavitation [27]. For the stable cavitation, 

                                                           

∗ This chapter is based on the paper: Jianguo Wu, Shiyu Zhou, Xiaochun Li, “Acoustic Emission 
Monitoring for Ultrasonic Cavitation Based Dispersion Process”, ASME Transactions, Journal of 

Manufacturing Science and Engineering 135.3 (2013):031015  
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the bubbles oscillate non-linearly around the equilibrium size. They are relatively stable and last 

for many cycles of the acoustic pressure. While for the transient cavitation, the bubbles usually 

oscillate for much shorter time. They explosively grow into a cavity with a size of many times of 

their original sizes and then collapse violently. When the bubble collapses, it produces transient 

micro “hot spot” that can have temperatures of about 5000 K, pressures above 1000 atms, and 

heating and cooling rates above 1010 K/s, high speed liquid jets of up to 300 m/s [32].  Due to 

these intense effects, the cavitation can effectively mix and also break particle agglomerates into 

well-dispersed particles in the liquid.  

There are several methods to detect and monitor cavitation process, including high-speed 

photography [33, 34], laser diffraction technique [35], phase-Doppler technique[35, 36], acoustic 

attenuation method [37, 38] and cavitation noise spectrum analysis technique [25, 39-44] etc. 

The cavitation noise spectrum analysis is the most popular method due to its low cost, easiness to 

implement and its ability to capture various information of cavitation using acoustic transducers. 

The fundamental mechanism of acoustic cavitation has been experimental and theoretically 

studied in the last several decades to interpret the cavitation noise spectrum. It is known that the 

cavitation noise spectrum consists of continuous components and various discrete frequency 

components [45-48] close to 
=>?  where " is the fundamental or driving frequency, and �, @ are 

integers. These discrete components are: harmonics (
=? is integer), subharmonics ( @ 	 1, � 	

2,3, … ) and ultraharmonics ( � A  @, =? is non-integer). The continuous components are the 

broadband components (also called “white noise” [27]) that lie between the discrete components. 

The harmonics of the fundamental frequency are easily explained by the non-linear characteristic 

of forced pulsations of bubbles [49]. However, for the other components, the origin is still under 
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debate. Many theories have been proposed [44, 50]. For the origin of “white noise”, there also 

exist different explanations. One explanation is that it originates from the shock waves produced 

by the collapsing bubbles [40, 51]. Using numerical simulation, Yasui [52] explained that the 

temporal fluctuation in the number of bubbles results in the broad-band noise. In other words, the 

transient cavitation results in the broad-band noise. Stable cavitation does not cause the broad-

band noise even if it emits shock waves. All these explanations lead to that the broad-band noise 

can be used as an indicator of the intensity of acoustic cavitation.  

Although the mechanism of cavitation has been intensively studied, the works on real-time 

monitoring of the ultrasonic cavitation based material processing is very limited. The ultrasonic 

power and processing time are usually chosen somewhat arbitrarily in practice. An unnecessarily 

high ultrasonic power level or long processing time may result in waste of time and energy, 

while too low a power level or too short a processing time may lead to insufficient treatment. 

Some research works have been conducted to study the relationships between the ultrasonic 

cavitation parameters and processing efficiencies [25, 31, 42]. Although these studies provided 

insights on how to select optimal processing parameters, these studies are essentially off-line 

studies on specific system configuration. Thus, the results may not be applicable to general 

situations since the processing efficiency depends on many factors, such as volume, particle 

concentration, viscosity and temperature. Therefore an effective on-line technique to monitor the 

ultrasonic cavitation based dispersion process is critically important in engineering practices. 

In this Chapter, we developed a real-time monitoring technique to monitor 

micro/nanoparticle dispersion in aqueous liquid. This technique is tested in tap water with an 

addition of Al2O3 particles. The remainder of this chapter is organized as follows. In Section 2.2, 
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the experimental procedure is introduced. Section 2.3 presents descriptive analysis of the 

acoustic signals collected. Several off-line and on-line steady state detection methods are 

presented and compared in Section 2.4. The conclusions are presented in Section 2.5. 

2.2 Experimental Procedure 

The experimental setup mainly consisted of six components: Misonic Sonicator 4000, an 

ultrasonic horn/probe, a glass beaker, a titanium rod, an acoustic sensor and a Tektronix 

DPO7354 Oscilloscope, as shown in Figure 2-1.  

 

Figure 2-1: Experimental setup (left) and its schematic representation (right): 1. Misonix 
Sonicator 4000; 2. ultrasonic horn/probe; 3. standard 500 mL glass beaker; 4. titanium rod; 5. 
acoustic sensor; 6. Tektronix DPO7345 Oscilloscope 

The Misonic Sonicator 4000 has an operating frequency of 20 KHz and the output amplitude 

can be controlled by setting a range from 1 to 100% of the maximum vibration amplitude 55 µm.  

The tip of the ultrasonic probe, made of niobium alloy C103, is 12.7 mm in diameter. It is 

positioned in the center of the beaker and the distance between the probe tip and the surface of 

the water is about 2.0 cm. The vibration and shock waves produced by the ultrasonic cavitation 

are collected by the titanium rod with a length of 61.72 cm and a diameter of 1.59 cm. The 
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titanium rod is immersed in the water with length of 3.0 cm and with a distance of 3.0 cm to the 

probe tip. A MISTRAS R15S acoustic sensor was coupled to the top of the titanium rod by an 

ultrasonic couplant. The piezoelectric signal of the acoustic sensor was acquired by the Tektronix 

DPO7345 Oscilloscope.  

The experiments were carried out in tap water of 500 mL contained in a standard 500 mL 

glass beaker. The Al2O3 particles with a diameter of 1 µm were added to the tap water along the 

wall of the glass beaker before the power switch of the ultrasonic sonicator was turned on. The 

trigger mode was used in the oscilloscope and the cavitation noise signal was immediately 

acquired after the ultrasonic sonicator was turned on. The memory of the oscilloscope is capable 

of storing 5 9 10B  samples. With a sampling rate of  1 9 10C  samples/second, each cycle of 

signal acquisition lasted about 500 seconds. The signal can be stored to hard drive within about 

10 seconds and the next cycle of signal acquisition can resume immediately if necessary. The 

ultrasonic intensity was controlled by setting the vibration amplitude of the probe tip in the range 

of 1-100% of the maximum amplitude. 

2.3 Descriptive Analysis of the Cavitation Noise Signal 

2.3.1 Cavitation Noise Signal 

Figure 2-2 shows two representative cavitation noise waveforms with duration of 500 

seconds under ultrasonic power 40W from pure tap water and Al2O3-particle-filled tap water, 

respectively. There are 12 seconds of pre-trigger samples in each signal. Both waveforms show 

three stages: (I) immediately after the ultrasonic power is turned on, there appears a high peak in 

the waveform; (II) after the peak, the cavitation noise signal reaches the weakest and then 
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gradually increases; (III) finally the signal enters into steady state. The obvious difference 

between these two waveforms is that in stage II, for tap water with Al2O3 particles, the initial 

cavitation noise is lower than that without particles, and it increases more significantly than that 

without particles. This phenomenon is somewhat similar to Wojs’s results [25] that for pure 

water, there was no significant change on the spectrum characteristics at time 0, 15, 30, 60 

minutes while for PAA 0.1% solution, the spectrum was moved slightly upwards after 60 

minutes.  

 

Figure 2-2: Two representative cavitation noise waveforms with ultrasonic power 40 W for pure 
tap water and tap water with 20 g Al2O3 particles. 

Stage I reflects the step response of the beaker, water, sonicator system excited by the change 

of the power status, i.e., from off to on. When the step response diminishes, the cavitation noise 

falls. In stage II, an increasing number of air bubbles are formed by the rectified diffusion 

process [53] and thus the intensity of the cavitation noise increases gradually. In this process, the 

dispersion of initial impurities and the formation of a huge amount of small air bubbles cause 
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more cavitation nuclei (note that in the pure tap water there are also many impurities). As for 

stage III, which is characterized as the steady state, the liquid becomes uniform and the 

cavitation becomes the most intensive. 

The influence of Al2O3 particles or the possible reasons that result in the difference between 

tap water with and without Al2O3 in stage II are: first, the unwettable Al2O3 particles and extra 

air bubbles brought by these particles in suspension absorb part of the ultrasonic energy in the 

process of formation, growth of cavitation bubbles, and the vibration and breakage of Al2O3 

agglomerates. Second, the addition of Al2O3 particles increases the ultrasonic attenuation 

coefficient due to the scattering and absorption effects. Allegra and Hawley [54] studied the 

attenuation of sound for solid-in-liquid suspensions and the scattering coefficient was obtained 

by 

(! 	 12 DEFGH�I13 JKF L KMKF N� O J PM L P2PM O PN�Q                                     (2.1) 

where D is the volume fraction of the suspended particles, EF is the compressional wave number 

for the suspending medium, H is the radius of the suspended particles, KF is the compressibility 

of the suspending medium, KM is the thermal dilation of the suspended particles, P and PR are the 

densities of suspending medium and suspended particles, respectively. Equation (2.1) shows that 

the scattering coefficient is proportional to the cubic of the particle radius. In the cavitation and 

dispersion process in stage II, the sizes of Al2O3 clusters gradually reduce, which gradually 

decreases the scattering coefficient. The reduction of attenuation coefficient, the increase of 

cavitation nuclei caused by the breakage of Al2O3 particles, and the fast development of 

cavitation intensify the cavitation noise in stage II until it enters into stage III where the the 
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particles are well dispersed and uniformly suspended. Therefore the cavitation noise signal can 

be effectively used to monitor the status of the cavitation and dispersion. 

To confirm the above analysis and statements, we conducted an experiment. The basic idea 

of this experiment is to disperse the particles with different dispersion time and then we let the 

mixture sit for a fixed amount of time. Then, we can compare the severity of the segregation 

occurred after the sitting period. A better dispersed mixture should have less segregation. 

Specifically, in the experiment, six beakers were used with each beaker containing 20 g Al2O3 

particles and 500 mL tap water. The first beaker was used as the control group where there was 

no ultrasonic treatment. For the other 5 beakers, the ultrasonic processing times were 34.2s, 80s, 

180s, 300s and 450s respectively. The ultrasonic driving power was 40 W in the experiment. 

Please note that from Figure 2-2, we can see that after roughly 300s of the dispersion time, the 

acoustic noise is in the steady state. Figure 2-3 shows the Al2O3 suspension immediately after the 

ultrasonic treatment where Al2O3 particles are evenly distributed in the water.  

 

Figure 2-3: Al2O3 suspension immediately after the ultrasonic treatment 
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this goal, we shall introduce two quantitative indices that measure the power level of the 

cavitation noises. 

 

Figure 2-5: The volume of the deposited Al2O3 particles as a function of the processing time 

 

Figure 2-6: Cavitation noise spectrum for tap water with 10 g Al2O3 particles at the time of 40 
seconds after the ultrasonic power is turned on: (a) 40 W, (b) 100 W, (c) 40 W, natural 
logarithmic scale, (d) 100 W, natural logarithmic scale. 

0 100 200 300 400 500
30

40

50

60

70

80

90

100

Processing Time (Seconds)

A
l 2

O
3
 V

o
lu

m
e

 (
m

L
)



22 

 

2.3.2 Indices of Cavitation Noise Power 

Figure 2-6 shows the frequency spectrum of the cavitation noise 40 seconds after the 

ultrasonic power is turned on for (a) 40 W and (b) 100 W ultrasonic powers in tap water with 

addition of 10 g Al2O3. For (c) and (d) in Figure 2-6 the cavitation noise spectrum is expressed in 

a logarithmic scale. From this figure we can clearly see the harmonics, ultraharmonics, 

subharmonics, and “white noise”. For ultrasonic power 100 W, all of these components, 

especially the “white noise” and subharmonics, are stronger than that for power 40 W, indicating 

a more violent cavitation.  

Two indices are used to quantitatively describe the cavitation noise power (CNP) in this 

research. The first one, termed as CNP-1, is defined as the integration of cavitation noise 

spectrum over frequency from 0-200 KHz in a logarithmic scale to enhance the “white noise” 

contribution: 

CNP1 	 V W�"�X" Y Z W�"�∆"                                            (2.2) 

where W�"� is the DFT spectrum amplitude in a logarithmic scale and f denotes the frequency. 

This method was developed by Frohly [44] and later used by Gibson [25], who showed that 

CNP-1, multiplied with time t, is directly proportional to the ultrasound energy density obtained 

by the calorimetry technique. The second method, termed as CNP-2, is defined as the averaged 

square of the cavitation noise signal in each second,  

CNP2 	 ∑ <̂�=<_�@                                                          (2.3) 
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where <̂ is the cavitation noise signal and @ is the number of samples in each second. Using 

Parseval's theorem, it can be proven that CNP-2 is proportional to the summation of the spectral 

energy density (the square of the spectrum amplitude) across all frequency components.  

 

Figure 2-7: The influence of particle concentration and ultrasonic power on CNP-1: (a) CNP-1 as 
a function of time for different amounts of Al2O3 particles with ultrasonic power 40 W, (b) CNP-
1 evolves with time for different ultrasonic power in tap water with 30 g Al2O3 particles. 

In Figure 2-7(a) the CNP-1 is plotted as a function of time for different amounts of Al2O3 

particles with ultrasonic power 40 W.  Three stages are clearly seen in the figure, the initial burst 

in stage I, the increasing region in stage II, and the steady state in region III. The influence of 

particles concentration on the cavitation noise power is significant. The suspension with more 

particles has lower cavitation noise power, especially in stage II. This is consistent with what we 

expect since Al2O3 particles absorb and scatter acoustic energy. The more the particles, the 

higher the ultrasonic attenuation coefficient and thus the lower the cavitation noise power. After 

the particles are completely dispersed, the scattering effect is almost eliminated, which can be 

seen from the CNP-1 curves in the steady state that there is little difference among these curves.  
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Figure 2-7(b) shows the influence of ultrasonic power on CNP-1 for tap water with 30 g 

Al2O3 particles. We can clearly see that increasing the ultrasonic power could increase the 

cavitation noise power. Besides, it is faster for CNP-1 to reach steady state with higher ultrasonic 

driving power. The reason is obvious that increasing the ultrasonic driving power could intensify 

the cavitation, especially the transient cavitation, and thus increase the cavitation noise power 

and dispersion efficiency. We can also find that when the ultrasonic driving power is above 70 

W, there is almost no significant change on CNP-1 curves. The possible reason is that for the 

ultrasonic driving power above 70 W, the cavitation is fully developed. The corresponding 

curves for CNP-2 are shown in Figure 2-8, from which we can find that the variance of CNP-2 

bigger than that in CNP-1. Note that we present them separately to avoid overlapping due to 

large noise. In the following section, we will focus on the dispersion status detection by 

monitoring the CNP indices. 

 

Figure 2-8: CNP-2 as a function of time for different ultrasonic power in tap water with 30 g 
Al2O3 particles 
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2.4 Steady State Detection 

From above discussion, we can see that to monitor the ultrasonic cavitation based dispersion 

process using the acoustic emission signal, it is critical to detect the steady state of the acoustic 

signal. In the literatures, there exist some steady state detect techniques. Many of these exiting 

techniques are developed and used in the discrete-event simulations to remove or truncate the 

initialization bias [55-58]. These techniques are off-line methods and not applicable for on-line 

monitoring purpose because they require a large number of observations in the steady state to 

accurately estimate the truncation point. In real time monitoring, we want to detect the steady 

state as soon as possible with a very limited number of observations in the steady state. There are 

very limited on-line steady state detection techniques. Among these methods, a modified 

variance ratio test (call it R-test here) [54, 59], which was first used in chemical process control, 

is a very effective and well known method with low computationally cost and relative 

independence of system noise.  

In this section, we will introduce one off-line and two on-line steady state detection methods. 

The off-line method is called as EWMA-MSER method, where EWMA stands for Exponentially 

Weighted Moving Average and MSER stands for Marginal Standard Error Rules. This method is 

refined upon the exiting MSER method to make it more robust to noise. Although EWMA-

MSER is an off-line method, it can provide insights to the cavitation based dispersion process 

and serve as a benchmark to evaluate the performance of on-line detection algorithms. Among 

the two online methods introduced in this section, one is the newly proposed non-overlapping 

slope detection method (NSDM) and one is the existing R-test method. The performance of these 

two online methods will be systematically evaluated and compared as well.  
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2.4.1 Off-line Detection 

2.4.1.1 EWMA-MSER method 

The MSER [60] determines the truncation point (steady state point in this research) that 

minimizes the width of the marginal confidence interval about the truncated sample mean 

(steady state mean). It outperforms other heuristic algorithms on models that contain exponential 

shift bias [61] and these models are very similar to CNP signals. A later refinement, MSER-5 

[53], was developed where the raw observations are grouped into non-overlapping batches with 

each batch having 5 observations and MSER is performed on these batch means. It was shown 

that MSER-5 was better than MSER in most cases [61]. However, MSER-5 didn’t work well on 

CNP signals because using MSER-5 made the sample size very small, which significantly 

reduced its detection accuracy.  

Mathematically, the MSER method can be briefly described as follows. Given the 

observations `a<: c 	 1,2, … , @d, assume the steady state samples are `a<: c 	 X O 1, X O 2, … , @d. 

Then the half-width of the 100�1 L (�% confidence interval for the estimate of the steady state 

mean is given by 

fg�X O 1, @� 	 hi/� k=,l√@ L X             (2.4) 

where hi/� is the inverse of the cumulative density function for standard normal distribution at 

probability 1 L (/2, and k=,l is the standard sample deviation given by 
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k=,l 	 n 1@ L X L 1 Z oa< L a=,lp�=
<_lq�                     (2.5) 

where a=,l 	 �=$l ∑ a<=<_lq� . Thus, the optimal truncation point Xr  minimizes the confidence 

interval and is given by 

Xr 	 arg min=vlw� ofg�X O 1, @�p 
	 arg min=vlw� ofg��X O 1, @�p 
	 arg min=vlw� x ∑ oa< L a=,lp�=<_lq��@ L X��@ L X L 1�y                                         (2.6) 

Since n v d, the denominator can be simplified from �@ L X��@ L X L 1� to �@ L X��. Thus, the 

monitoring statistic of this method, denoted as “MSER”, is given as  

;k&H 	 1�@ L X�� Z oa< L a=,lp�=
<_lq�                                           (2.7) 

 

Figure 2-9: Illustration of MSER for CNP signals (power 40 W, Al2O3 30 g) 
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consistent with White’s results [61] that MSER failed to truncate all of the bias, particularly 

when the process noise level is high. 

In order to make the method more robust, we propose to use exponentially weighted moving 

average (EWMA) to smooth out short-term fluctuations without impacting on the long-term 

trends and then perform MSER on the filtered samples. We call this method as EWMA-MSER. 

Specifically, for the observations `a<: c 	 1,2, … , @d, the smoothed samples are given by: 

a>,< 	 �a< O �1 L ��a>,<$�        (2.8) 

where �  is a parameter such that 0 z � { 1 . A small �  puts a light weight on the recent 

observations and more noises are smoothed out. However, too low λ will delay the detection 

when the process enters into steady state. Here we choose � 	 0.5 and 0.1 for CNP-1 and CNP-2 

respectively and the detected transition times for all power levels are quite consistent with 

visually examined values. Figure 2-10 shows an example of MSER-EWMA.  

  

Figure 2-10: An example of MSER-EWMA on CNP signals (40 W, 30 g Al2O3) 
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2.4.1.2 Results and Discussion on Off-line Steady state Detection for Acoustic Signals 

Figure 2-11 shows the MSER and EWMA-MSER determined transition times as a function 

of ultrasonic powers for both CNP-1 and CNP-2. There is no significant difference between the 

transition times of CNP-1 and CNP-2 using the same detection method, indicating that both 

signals can be used to monitor the dispersion status. We can also find that the detection results of 

EWMA-MSER are larger than those by MSER, for the reason that MSER-EWMA has 

successfully reduced the influence of noise and more accurately detected the transition times 

than MSER did. We choose the time instance determined by EWMA-MSER method as the 

benchmark in the following work. 

 

Figure 2-11: MSER and MSER-EWMA detected transition times as functions of ultrasonic 
power for CNP-1 and CNP-2 (30 g Al2O3) 

Figure 2-12 shows the dispersion time (transition time) as a function of Al2O3 concentration. 
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changing particle concentration had relatively little effect (<5%) on the ability of ultrasound to 

break particles. The reason is that the suspended Al2O3 particles could act as cavitation nuclei 

and enhance the cavitation process. Increasing particle concentration could increase the acoustic 

energy loss due to attenuation effects. On the other hand, it can also increase the cavitation nuclei, 

which improves the dispersion process. When the particle concentration is high ( A 20 g/
500mL ), the acoustic attenuation effects overwhelm the influence of cavitation nuclei and 

therefore the dispersion time needed to break Al2O3 particles is significantly increased by adding 

more Al2O3 particles.  

 

Figure 2-12: The influence of Al2O3 concentration on dispersion time estimated by MSER-
EWMA on CNP-1 (40W) 
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power above 70 W, the mean CNP-1 reaches the maximum level and the subsequent increase of 

the ultrasonic power will not result in any significant changes. We can treat the cavitation in this 

region as the fully developed transient cavitation. Also in this region, the dispersion efficiency is 

almost unchanged, as shown in Figure 2-11. Therefore ultrasonic power 70 W can be considered 

as the optimal cavitation parameter in this experiment.  

 

Figure 2-13: Mean CNP-1 in the transient state as a function of ultrasonic power (30 g Al2O3) 
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where  

 	 arg min�c� |k�<q�� z kF , E 	 0,1, … , � L 1� 

An existing on-line method, the variance ratio test [62], is also an effective method to detect 

steady state. In this method, the variance of a moving data window is calculated in two different 

ways: (1) mean squared deviation from the average (��) and (2) mean squared difference of 

successive data (��). In the non-steady or transient state, the first variance will be larger than the 

second variance and the ratio ��/�� is larger than 1. In the steady state, this ratio is expected to 

approach 1. In the test, the null hypothesis (steady state) will be rejected until the ratio is below a 

threshold. In order to reduce the computational cost and data storage, Cao and Rhinehart [54, 59] 

used an recursive method to estimate the variances k�,<�  and k�,<� : 

a>,< 	 ��a< O �1 L ���a>,<$� 

�>,<� 	 ��oa< L a>,<$�p� O �1 L ����>,<$��  

�>,<� 	 ���a< L a<$��� O �1 L ����>,<$��  

k�,<� 	 �2 L �1��",c2 /2 

k�,<� 	 �",c2 /2 

Here ��, �� and �� are the parameters with 0 z �� { 1 �� 	 1,2,3�. The ratio is given by 

H< 	 k�,<�k�,<� 	 �2 L ����>,<��>,<�                                                   (2.10) 

Similarly, suppose the ratio threshold is HF, then �! is expressed by 

�! 	 arg min �c|H< z HF  �                                                (2.11) 
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There is a trade-off between rapid tracking of the process and separating the probability 

density function of R between the steady state and the non-steady state in the selection of the 

parameters  ��, �� and ��. In general, small parameters can reduce the influences of noise on 

estimating the variances and lead to bigger separation in the probability distribution of R of the 

steady state and the non-steady state. However, small parameters may delay the detection. Cao 

[59] provided some settings of parameters and their detection performance in different situations. 

Interested readers may refer to their paper for more details.  

2.4.2.2 Performance Evaluation and Comparison 

To evaluate and compare the performance of steady state detection algorithms, it is natural to 

use the bias in the detection as the evaluation metrics. Thus, in this research, we define a 

criterion named the expected detection bias (EDB) as 

EDB 	 &|!� L �|                                                      (2.12) 

where �!  and �  are the starting point of the steady state detected by the algorithms and the 

underlying true value, respectively. For the cavitation based dispersion, an early detection, i.e., 

�! z �, will lead to insufficient dispersion and bad quality product. Thus, it is critical to also 

evaluate the probability of early detection. Toward this goal, we define another criterion named 

false alarm rate (FAR),  

FAR 	 Pr �!� z ��                                                    (2.13) 

to quantitatively evaluate it.  
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For NSDM, these criteria (EDB and FAR) can be derived as follows. Given the observations 

a< 	 o'?�<$��q�, '?�<$��q�, … , '?<p for the c��  data window and the time index  < 	
o�?�<$��q�, �?�<$��q�, … , �?<p , where � is the window size, the OLS estimator of the slope 

is  k�< 	 ∑ ����������$������� ���������∑ ����������$������� �  where �  is the mean value of the time index. Suppose the 

observation noises follow independent and identically distributed normal 

distribution,  �?�<$��q� ~  �0, *��  and '?�<$��q� 	 "o�?�<$��q¡p O �?�<$��q�  where 

"o�?�<$��q¡p is the expected value, then k�<~ �¢<, *<�� with 

¢< 	 ∑ o�?�<$��q� L �p?�_� "��?�<$��q��∑ o�?�<$��q� L �p�?�_�                                       (2.14) 

*<� 	 *�∑ o�?�<$��q� L �p�?�_�                                               (2.15) 

Define (< as the probability that the absolute value of the slope of the c�� data window is below 

the slope threshold kF, then 

(< 	 Pro|k�<� z kFp 	 £��kF L ¢<�/*<� L £��LkF L ¢<�/*<�                       (2.16) 

Define the probability mass function (PMF) �= as the probability of receiving the steady state 

alarm after monitoring the @�� , �@ O 1���, … , �@ O � L 1���  non-overlapping moving windows 

(total � windows, suppose we stop the monitoring process immediately after we receive the 

steady state alarm). Let (� 	 0, then  

�= 	 Pr� 	 @� 	 Pr� 	 @| A @ L 1 L �� Pr � A @ L 1 L �� 
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	 ¤I�1 L (=$��(= … (=q¥$�Q ¦1 L Z �<=$�$¥
<_� § , for @ A 1 O ��1 L (=$��(= … (=q¥$�, for @ { 1 O �                                     ©                    (2.17) 

Although there are infinite terms in the expression above, it converges very fast due to the rapid 

convergence of �= and we only need to sum up a small number of terms to calculate it. FAR can 

be calculated by 

FAR 	 Z �<
=ª

<_�                                                           (2.18) 

Here @� 	 «�/� L � O 1¬, the largest index of the data window where the following � L 1 

data windows are before the steady state transition time �. EDB is expressed as 

EDB 	 &��! L �� 	 Z �=|��@ O � L 1� L �|
=_�                             (2.19) 

Clearly, �! is required to be as close as possible to � and thus the smaller the EDB, the higher 

the detection accuracy. 

For the R-test method, it is very difficult to get the analytical expression for these evaluation 

criteria due to the complexity of the algorithm. Thus, Monte Carlo simulations have to be used to 

compute them. In the simulation, we will need to simulate the signal with noise many times and 

then apply the detection algorithm to the simulated signals. Finally the detection results will be 

averaged to obtain the values of EDB and FAR.  

To compute EDB and FAR, we need to know the underlying true value of the starting point 

of the steady state. Thus, we need to assume an underlying function to describe the changes of 

the signal. Here, we select the exponential bias function as the underlying function. This function 
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was used by Cash [55] and White [61] as a generic function to assess off-line heuristic 

algorithms. Furthermore, the behavior of this function is quite similar to our CNP signals. The 

mathematical form of the function is given as  

"�c� 	 ® fo1 L ¯°�<$��p,   c { ����fo1 L ¯°��ª$��p,   c A ����©                                        (2.20) 

where ���� is the smallest integer i where the derivative of fo1 L ¯°�<$��p is less than f 9
10$G. f 	 0.7 is chosen to match the CNP signals. The time series are generated by a< 	 "�c� O
D< where D<~ �0, *�� and * 	 0.04. Eight values of  � and the corresponding �, as shown in 

Table 2-2, were chosen to study the influence of signal changing rate on the detection accuracy. 

One representative signal generated with � 	 461 is shown in Figure 2-14. 

Table 2-1: Bias function parameters 

Model # 1 2 3 4 5 6 7 8 � 0.01 0.012 0.015 0.019 0.026 0.039 0.07 0.1 � 461 339 334 276 214 153 94 69 

 

 

Figure 2-14: An example of generated signal (� 	 0.01, � 	 461) 
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Figure 2-15: The expected detection bias and false alarm rate as functions of detection threshold 
for NSDM and R-test (NSDM:  � 	 50, � 	 2; R-test: λ� 	 0.05, �� 	 0.05, �� 	 0.08) 

Figure 2-15 shows the EDB and FAR as functions of detection threshold for NSDM and R-

test. EDB and FAR of NSDM were directly calculated by Eq. (2.19) and (2.20) respectively. For 

R-test, computer simulations were performed where computer experiments were repeated for 

30,000 times for each set of detection parameters and signal parameters. For NSDM, � 	
50, � 	 2 and for R-test, �� 	 0.05, �� 	 0.05, �� 	 0.08. From Figure 2-15, we can find that:  

(1) For both NSDM and R-test, as we increase the detection threshold, EDB decreases rapidly 

at first, and then gradually increases. FAR  is always non-decreasing when the threshold is 
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increased. The optimal threshold should be the value that has low FAR and also low detection 

bias.   

(2) Both methods perform better on signals with fast changing rate (large�) than on slow 

changing signals in most cases. For these rapidly changing signals, NSDM and R-test have low 

detection bias and false alarm rate. Besides, the detection bias is more stable under different 

detection thresholds. In this situation, the R-test is better than NSDM due to lower computational 

cost and data storage;  

(3) For the signals with low changing rate, the bias and false alarm rate of R-test are more 

sensitive to the change of detection threshold than NSDM. An optimal detection threshold for 

one signal may work badly on the other signals; 

(4) For R-test, the optimal detection threshold HF for different signals varies significantly. 

Two or even more sets of detection parameters are required to make R-test work well on all 

signals with different ². NSDM outperforms R-test on signals with large range of changing rate 

in terms of easiness in selection of detection parameters and the stability of detection accuracy.  

2.4.2.3 Results of On-line Steady state Detection on CNP Indices 

The detection parameters (shown in Table 2-2) for NSDM and R-test were selected by 

minimizing the difference between the detected starting points of the steady state with EWMA-

MSER detected results. 
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Table 2-2: Detection parameters for NSDM and R-test 

CNP 

NSDM R-test � � 
kF �� �� �� HF Power { 50W Power A 50µ 

CNP-1 20 2 1 9 10$G 3 9 10$G 0.1 0.05 0.05 2 

CNP-2 30 2 2 9 10$� 4 9 10$� 0.05 0.05 0.08 2 

 

 

 

Figure 2-16: Illustration of NSDM (above) and R-test (below) for CNP signals (40W, Al2O3 30 g) 

An illustration of R-test on CNP signals is shown in Figure 2-16. Figure 2-17 shows the 

transition time as a function of ultrasonic power detected by EWMA-MSER, NSDM and R-test. 

It should be noted that the changing rate for CNP-1 before the steady state is lower than CNP-2. 
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CNP-1 increases rapidly to a level close to the steady state level at first, and then drifts slowly 

into the steady state, while CNP-2 increases with a relatively constant and high changing rate.  

The difference between CNP-1 and CNP-2 leads to different performance of the detection 

methods. R-test works better on CNP-2 signals than on CNP-1 signals, which is consistent with 

the simulation results that for high changing rate, R-test performs well with only one threshold 

while for signals with low changing rate, it is hard to find a threshold that works for all signals. 

NSDM works well on both CNP-1 and CNP-2 signals. 

 

Figure 2-17: Transition time detected by MSER-EWMA, NSDM and R-test (Al2O3 30 g). 

The above results show that R-test and CNP-2 are the optimal choice in our current 

experiments. R-test is less influenced by the noise. In addition, R-test requires less calculation 

and data storage than NSDM. In the real-world application, however, the signals may show wide 

range of changing rate, where NSDM may be preferred. CNP-2 is better than CNP-1 for 

detection purpose since it has larger changing rate than CNP-1. Besides, CNP-2 is 

computationally less expensive to calculate than CNP-1 since the latter requires Fourier 

transform. 
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2.5 Cavitaion Signal in Molten Al Alloy 

We also collected the cavitation signals from molten Al alloys with Al2O3 particles using a 

new data acquisition system installed in a desktop. The experimental setup and its schematic 

illustration are shown in Figure 2-18. The raw signal and its CNP-2 signal are shown in Figure 

2-19 and Figure 2-20, respectively. Note in Figure 2-19 the signal is not centered (i.e., mean 

voltage is not zero). The CNP-2 signal in Figure 2-20 is obtained from the centered raw signal. 

As we can see, these signals are quite similar to those obtained from tap water. It is what we 

have expected since the fundamental physical processes are the same, except that in tap water the 

bubbles are made of air while in molten metal the bubbles are mainly hydrogen.   

 

Figure 2-18: Experimental setup and schematic illustration 

 

Figure 2-19: Raw cavitation signal 
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Figure 2-20: CNP-2 signal obtained from the centered cavitation noise signal 

2.6 Conclusion 

In the present work we have proposed a method based on the cavitation noise to monitor the 

particle dispersion process. The cavitation noise signals and their spectrum are analyzed and 

discussed in details. The cavitation noise signals are divided into three stages. The first stage 

corresponds to the step response of the cavitation system. The second stage is the most important 

stage which characterizes the evolving of the cavitation and the dispersion process. The third 

stage is the steady state in which the particles are dispersed well. The Al2O3 particles can reduce 

the strength of the cavitation noise by increasing the acoustic attenuation characterized as 

absorption and scattering of the acoustic wave. The attenuation effect is reduced as the particles 

are well dispersed. These characteristics of the cavitation noise can be used to monitor the 

dispersion status.  

Two quantitative indices (CNP-1 and CNP-2) are chosen to capture the evolution of the 

cavitation noise and CNP-2 is better in terms of computational cost and detection accuracy. The 

off-line method MSER and its modification EWMA-MSER are used to identify the dispersion 
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steady state. The proposed EWMA-MSER works quite well and its detection results are used as 

the benchmark to develop and evaluate the on-line detection methods. Two online methods, 

NSDM and R-test are applied and systematically compared. In the comparison, we proposed to 

use the expected detection bias and the false alarm probability to quantitatively evaluate the 

performance of these two detection methods. We further derived the analytical expressions for 

these quantities for the proposed non-overlapping slope detection method. With these 

expressions, we can easily calculate the average run length, expected detection bias and false 

alarm rate for a given signal. We also obtained these quantities for R-test using numerical 

methods. Both methods work well on signals with high changing rate and R-test outperforms 

NSDM in terms of computational costs and data storage. For signals with large range changing 

rate, NSDM outperforms R-test in terms of easiness in selection parameters in the algorithm and 

the stability of detection accuracy.  

We also tested this monitoring technique in ultrasonic cavitation-assisted fabrication of Al 

MMNCs. Similar signal trend and characteristics are also observed. The results of this research 

provide useful guidelines for establishing a real-time process monitoring and control scheme for 

ultrasonic cavitation based dispersion processes, which is a critical process in the manufacturing 

of many composite materials.  
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3 On-line Steady State Detection Using Multiple Change-point 

Models and Particle Filters
∗∗∗∗
 

In Chapter 2 we showed that the nanoparticles are considered completely dispersed when the 

CNP signals are stationary. Therefore is it critical to accurately and timely detect the steady state 

of the cavitation noise signals. In this chapter we develop a more robust and accurate steady state 

detection algorithm using multiple change-point models and particles filtering techniques. It is a 

general algorithm which can be applied to not only nanoparticle dispersion monitoring, but also 

many other process control areas. This chapter is organized as follows. Section 3.1 presents the 

literature review of steady state detection problems. In Section 3.2, the multiple change-point 

model for the steady state detection is formulated as a non-standard state space model. In Section 

3.3, a particle filter algorithm is developed to estimate this state space model and detect the 

steady state. Section 3.4 presents the numerical analysis of the proposed steady state algorithm 

and the comparison with several existing methods. The discussion and conclusion are given in 

Section 3.5. 

                                                           

∗ This chapter is based on the paper: Jianguo Wu, Yong Chen, Shiyu Zhou, Xiaochun Li, “On-line 
Steady State Detection for Process Control Using Multiple Change-point Models and Particles Filters”, 
IEEE Transactions on Automation Science and Engineering (2015, in press) 
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3.1 Literature Review 

Steady state detection of noisy process signals is critical in process performance assessment, 

data reconciliation [63, 64], fault detection and diagnosis [65, 66], process optimization [67] and 

process control [54, 68, 69]. In these applications, the steady state refers to the state where the 

mean of the time series is unchanging. Unlike the traditional statistical process control (SPC) 

which usually employs control charts to monitor the change from the normal condition (steady 

state) to the abnormal state (another steady state or transient state), the steady state detection uses 

statistical methods to monitor or detect the change from the transient state to the steady state to 

facilitate process control, performance evaluation and optimization, etc. In discrete-event 

simulation, for example, the simulated data consist of warm-up period (or start-up period) and 

the steady state period. Only the data in the steady state period represents the true steady state 

performance of the system and therefore the start of the steady state period in the simulation 

outputs has to be identified (also called the initialization bias elimination problems) [53, 57, 60, 

61, 70, 71]. In the online process control, the steady state needs to be detected to trigger the next 

stage of the process or operation. For example, in the batch processes manufacturing [72], where 

the batch operations in start-up period are unsteady and cannot guarantee the satisfied product 

qualities due to the unstablized material or machine conditions (i.e., temperature). An efficient 

online steady state detection of the operation state can avoid expensive laboratory analysis of 

product quality. In the chemical industry, the steady state of the operation conditions such as the 

temperature, flow rate, pressure and pH value etc, needs to be detected for process modeling, 

control and optimization [54, 73]. Most of the fault detection and diagnosis methodologies on the 

cooling systems are based on the steady state assumption [65, 74]. Steady state detection can also 
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used as the stopping criteria for iterative numerical methods, such as nonlinear regression, 

optimization, neural network training [75]. The procedure can be stopped when the objective 

function (e.g., sum of squared error) reaches steady state. 

During the past several decades, various off-line steady state detection methods, mostly from 

the discrete-event simulation literature, have been developed to remove the warm-up period in 

the initialization bias elimination problems [76]. According to Robinson [76-78], these methods 

can be classified into five categories: 1. Graphical methods where visual inspection and human 

judgment are used to truncate the time-series data. The representative methods in this category 

include the simple time-series inspection [79], CUSUM plots [80], exponentially weighted 

moving average control charts [81] and statistical process control method (SPC) [78], etc.; 2. 

Heuristic rules among which the marginal standard error rules (MSER and MSER-5) [60, 61] are 

among the most popular methods. These methods are simple and straightforward and free of 

subjectivity of the graphical methods; 3. Statistical methods which apply the principles of 

statistics to estimate the warm-up period. The representative methods include the goodness-of-fit 

test [82] and wavelet-based spectral method [83], etc; 4. Initialization bias tests which determine 

whether initialization bias is present in a series of data to estimate the warm-up period. These 

methods include batch-means based tests [70], students t-tests and compound test method [84] 

etc. and 5. Hybrid methods which employ initialization bias tests in conjunction with graphical 

or heuristic approaches. Two methods of this type are the sequential method [82] and the scale 

invariant truncation point method [85]. 

Although the off-line steady state detection has been extensively studied, the on-line steady 

state detection, which is only based on the observations up to the current time, is more difficult 
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and not well-developed. The existing on-line methods, which are mostly from the process control 

literature, can be summarized as: (a) slope detection method (SDM) where linear regression is 

performed over a moving data window and the fitted slope is monitored [69, 86, 87]; (b) 

performing a t-test on two recently computed means of two adjacent windows with pooled 

standard-deviation [88]; (c) monitoring the standard deviation of a moving window [65]; and (d) 

performing an F-test on the ratio of variances of a moving window calculated using two different 

methods, the mean-squared-deviation and the mean of squared differences of successive data 

[62]. Based on the last method, Cao [54] developed a computationally efficient method in which 

the variances are calculated recursively using exponentially weighted moving average. These 

existing methods have certain limitations. One common disadvantage is that a data window has 

to be used. Too long a moving window may delay the detection while too short a moving 

window may increase the false detection rate. Another disadvantage is that the optimal detection 

parameters (i.e. window size, threshold) often depend on the characteristics of signals, e.g. 

variance of signal noises (for SDM, t-test and standard deviation method) or signal changing rate 

(for variance ratio test [69]). The characteristics may be different across different signals or even 

in a single signal. These existing methods with fixed detection parameters are not sufficiently 

flexible to be effective in various situations. Therefore a more robust method with more 

flexibility is desirable. 

In this chapter a novel steady state detection method is developed where signals are 

sequentially fitted to a piecewise linear model using Bayesian inference techniques and the 

observations in the latest linear segment are mainly used for steady state detection. The multiple 

change-point models have been actively studied and widely used in many practical fields, e.g., 
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economics, muscle activation, climatic time-series, DNA sequences and neuronal activity in the 

brain [89-95]. In our steady state detection method, the given time series are modeled as linear 

segments connected at change-points. Then the steady state detection problem becomes an 

inference problem for multiple change-point models. The Bayesian inference is one of the most 

common and effective approaches, where a joint prior distribution is placed over the change-

points and model parameters and the posterior distribution is obtained based on the prior 

information and observations. In the proposed method, the particle filtering algorithm as an 

online Bayesian inference technique is used to update the posterior distribution of the latest 

change-point and other model parameters (e.g., slope, intercept, noise variance) sequentially. The 

slope parameter since the latest change-point is then used to determine if the signal is steady. The 

key challenges of the particle filter are the efficiency of importance sampling, the particle 

degeneracy and impoverishment issues, and its computational cost. In this work we develop a 

stratified sampling technique for the importance sampling and a partial Gibbs resample-move 

technique to solve the particle degeneracy and impoverishment problem and reduce the 

computational cost for the specific steady state detection problem. We also propose a timeliness 

improvement strategy to reduce the detection delay which is inherent for on-line change-point 

detection. 

3.2 Multiple Change-point Model for Steady State Detection 

In this method, a piecewise linear model is used as the multiple change-point model for the 

signal, as illustrated in Figure 3-1. The steady state is inferred by estimating the parameters (e.g. 

slope) of the current linear segment. The proposed method has one key advantage over these 

moving window based methods which utilize only the data in the current moving window for 
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detection. The window may contain both transient state observations and steady state 

observations, or may contain oscillating signals with unchanging mean, which may influence the 

testing effectiveness. The proposed method seeks to use the observations in the current linear 

segment for steady state detection and therefore it is expected to be more robust. 

 

Figure 3-1: Illustration of approximating nonlinear functions using piece linear model: (a) signal 
generated using exponential function and noise; (b) oscillating function 

Note that we can alternatively use polynomials with higher order instead of the linear model 

in each segment to approximate the signals, which will reduce the number of change-points 

needed. However, higher-order polynomials can significantly increase the computational cost 

and complexity. Another alternative is to use the step function as the model or constant function 

in each segment. The status of the process is monitored by sequentially estimating the duration of 

the current segment. However, this method cannot handle signals with small changing rates, e.g., 

linear signals with a very small slope. Due to these reasons discussed above, we adopt the 

segmented linear model in our work.  

The Bayesian inference of the latest change-point (LCP) and other model parameters is 

illustrated in Figure 3-2, where their posterior distributions are sequentially updated, i.e., re-

estimated when a new data point is obtained. For example, at time ��, with the emergence of the 
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new linear segment starting at ��, the center of the posterior of LCP (the second row in Figure 

3-2) jumps from � 	 1 to the location around �� and the posterior is almost zero at the locations 

far before ��. Therefore mainly the observations between �� and �� are used to estimate the other 

models parameters (e.g., slope, noise variance) of the current linear segment.  

 

Figure 3-2: Illustration of the segmented linear model and Bayesian inference. 

Suppose the model parameter at time �  is ¶� 	 ���, ·�, *��� where ��  is the slope, ·� is the 

intercept of the linear segment, and *��  is the variance of the noise corresponding to time �. 

Denote the LCP at time � as ¸� and the prior transition probability of change occurring at time � 

given that the LCP at � L 1 is c as +�¸� 	 �|¸�$� 	 c�. The most popular and simplest prior for 

the change-point is a geometric prior [90, 96] applied on the segmental duration, which 

corresponds to a Markov transition process with a constant prior transition probability. Other 

common priors include Poisson distribution and gamma distribution, which are often used in 

speech segmentation [97]. For the purpose of simplicity, we select a constant prior transition 

probability + in this work.  
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To facilitate the online sequential Bayesian estimation of the model parameters, we propose a 

non-standard state-space model. Let ¹� 	 �¶�, ¸�� and denote '�as the observation at time �. At 

each time step, the state transition process can be formulated as 

¹� 	 º ¹�$�  with probability  1 L +�¶M, � �  with probability  + ©                                          (3.1) 

where ¶M is sampled from "�·�, the prior distribution of ¶� . The observation '�  is modeled as 

'� 	 ��� O ·� O À� where À� is the noise and À�~ �0, *���.  

If there are no change-points (¸� 	 1 for all �), the above model degenerates to a simple 

linear state-space model with constant model parameters as the state vectors, which can be easily 

inferred using the conventional Kalman filtering techniques. However, due to the unknown 

change-points, this state-space model is nonlinear, which makes the inference more difficult. 

Particle filtering techniques which are based on the sequential importance sampling are 

particularly effective for non-linear state space models [95]. In the following section a particle 

filtering algorithm is developed to solve this problem. 

3.3 Particle Filtering for Multiple Change-point Model Estimation 

3.3.1 Review of Particle Filtering Techniques 

For the sake of completeness, we provide a brief review of the particle filtering technique. 

The basic idea in the particle filtering technique is the sequential importance sampling (SIS). 

Suppose the state space model is expressed as [95]  

¹�~"�¹� 
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¹�|¹�$�~"�¹�|¹�$� � 

'�|¹�~Á�'�|¹��                                                          (3.2) 

Denote the posterior distribution as Â=�¹�:=�, 

Â=�¹�:=� 	 +�¹�:=|'�:=� 	 +�¹�:=, '�:=�+�'�:=� 	 "�¹�� ∏ "�¹�|¹�$��=�_� ∏ Á�'�|¹��=�_�+�'�:=�          (3.3) 

where for any sequence `h=d=w�, and any c { �, h<:� is defined as the vector �h<, h<q�, … , h��. If we 

select an importance distribution with the following structure 

Ä=�¹�:=� 	 Ä��¹�� Å Ä��¹�|¹�:�$��=
�_�                                           (3.4) 

then the unnormalized weight for particle ¹�:= can be expressed as  

Æ=�¹�:=� 	 +�¹�:=, '�:=�Ä=�¹�:=� 	 

Ç"�¹��Á�'�|¹��Ä��¹�� È ÇÁ�'�|¹��"�¹�|¹��Ä��¹�|¹�� È … ÇÁ�'=|¹=�"�¹=|¹=$��Ä=�¹=|¹�:=$�� È 

	 Æ��¹�� Å (�
=

�_�                                                          (3.5) 

where 

Æ��¹�� 	 "�¹��Á�'�|¹��Ä��É��                                                    (3.6) 

(� 	 Á�'�|¹��"�¹�|¹�$��Ä��¹�|¹�:�$��                                                    (3.7) 
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Equation (3.5) indicates that the weight can be calculated recursively or sequentially, i.e., 

knowing Æ�$��¹�:�$��, we can calculate Æ��¹�:�� by multiplying Æ�$��¹�:�$�� with (�  at time 

step �. 

The expectation of any function Ê=�¹�:=�  with respect to the posterior probability 

Â=�¹�:=� can be estimated by 

&�Ê=�¹�:=�|'�:=� Y Z µ=�<�Ê=�¹�:=�<� �ËÌ
<_�                                          (3.8) 

where µ=�<�
 is the normalized weight of particle ¹�:=�<�

 and  ! is the number of particles . Denote 

�=ÍÎÍ�Ê� 	 ∑ µ=�<�Ê=�¹�:=�<� �ËÌ<_�  and g=�Ê� 	 &�Ê=�¹�:=�|'�:=�, then 

Ï !o�=ÍÎÍ�Ê� L g=�Ê�p ¥Ð  �0, £ÑÒ� � 

with the asymptotic variance given by 

£ÑÒ� 	 V Â=��¹�:=�Ä=�¹�:=� �Ê=�¹�:=� L g=�Ê���X¹�:=                                    (3.9) 

The estimate is biased for finite  ! and the asymptotic bias is given as  

limËÌÐ  !��=ÍÎÍ�Ê� L g=�Ê�� 

	 L V Â=��¹�:=�Ä=�¹�:=� �Ê=�¹�:=� L g=�Ê��X ¹�:=                                    (3.10) 

The generic particle filtering algorithm is shown in Algorithm 3.1. Note in the algorithm 

there is a resampling step (Step 3) which is a “Darwinian” procedure that obtains samples 

distributed approximately as Â=�¹�:=� . It has the advantage of removing particles with low 
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weights and keeping particles with high weights at a high probability. The multinomial 

resampling is one of the most common resampling methods and is used in this work. In the 

following subsections, the specific challenges of the particles filtering algorithm for our steady 

state detection problem will be discussed with Subsection 3.3.2 addressing the importance 

sampling step (Step 1 and 2), Subsection 3.3.3 solving the particle degeneracy and 

impoverishment problems by adding an extra step after the resampling step (Step 3), and 

Subsection 3.3.4 proposing a timeliness improvement strategy to reduce the detection delay. 

Algorithm 3.1. Sequential Monte Carlo Filtering Algorithm 

At time � 	 1,  

1. Sample ¹��<�~Ä��¹��, c 	 1,2, Ó  ! 

2. Compute the weights Æ��¹��<�� and normalized weights µ��<� 	 Ô�Õ¹����Ö∑ Ô�Õ¹����Ö×Ì���  

3. Resample `µ��<�, ¹��<�d according to the particle weight µ��<�
 to obtain  ! equally 

weighted particles ` �ËÌ , ¹Ø��<�d and set Ùµ��<�, ¹��<�Ú Û ` �ËÌ , ¹Ø��<�d.   

At time � Ü 2,  

1. Sample ¹��<�~Ä��¹�|É�:�$��<� �, set ¹�:��<� Û �¹�:�$��<� , ¹��<�� 

2. Compute (��¹�:��<�� and µ��<� Ý (��¹�:��<� �  

3. Resample `µ��<�, ¹�:��<�d to obtain particles ` �ËÌ , ¹Ø�:��<� d and set Ùµ��<�, ¹�:��<� Ú Û ` �ËÌ , ¹Ø�:��<� d 

 

3.3.2 Importance Density and Sampling Methods 

One common issue with particle filtering is the particle degeneracy problem, which means 

that, after a few iterations, the weight may concentrate only on a few particles and most particles 

will have negligible weights, especially when the particle weights are highly skewed [95, 98]. A 
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natural way to reduce the effect of degeneracy problem is to select the importance density that 

minimizes the variances of the importance weights. Doucet [99] showed that the optimal 

importance density is Ä�Õ¹�Þ¹�:�$��<� Ö 	 +�¹�|¹�$��<� , '�� . In practice, however, the optimal 

importance density is often not obtainable and instead the most common and convenient choice 

is to select the prior as the importance density function  

Ä� Õ¹�Þ¹�:�$��<� Ö 	 "�¹�|¹�$��<� �                                              (3.11) 

This greatly simplifies the computation since after the resampling step the importance weights at 

time � is simply Æ� 	 ÁÕ'�Þ¹��<�Ö. In our model we select the prior "�¹�|¹�$�� as the importance 

density function which is a mixture distribution as shown in Eq. (3.1). An efficient sampling 

method is the stratified sampling method [100] where we sample from "�¹� with a deterministic 

sample size @�  and resample from the particles obtained at time � L 1  with @� 	  ! L @� 

samples. Note the particles at time � L 1 are approximately distributed as Â�$�� ¹�$��. The target 

distribution is Â��¹�� 	 +�¹�|'�:�� 	 ß�¹à|��:à���á��à|¹à�ß��à|��:à���  and the importance density is 

+�¹� 	 ¹|'�:�$�� 

	 +"�¹� O �1 L +�Â�$��¹�$� 	 ¹�                                         (3.12) 

Suppose ¹�,����, ¹�,����, … , ¹�,��=ª�
 are independent random samples from "�¹� and ¹�,����, ¹�,����, … , ¹�,��=��

 

are from Â�$�� ¹�$��. Define �̂,� 	 �=â ∑ ÊÕ¹�,��<�ÖÆ��¹�,��<��=â<_�  and ��,� 	 �=â ∑ Æ��¹�,��<��=â<_� , � 	 0,1 

where Æ��¹�,��<�� 	 Á�'�|¹�,��<��. Let 
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�� 	 + �̂,� O �1 L +� �̂,�+��,� O �1 L +���,�                                                  (3.13) 

then we can derive the following results of the asymptotic distribution. The proof of Theorem 1 

(1) can be found in Raghavan’s work [101] and the proof of Theorem 3.1 (2) and (3) is given in 

the Appendix. 

Theorem 3.1 Denote ã� 	 " , ã� 	 Â�$��¹�$��  and ã 	 +�¹�|'�:�$�� 	 +" O �1 L +�ã� . 

Assume for � 	 0,1, &�â�Ê�É���Æ��É���� z ∞ and &�â�Ê�É���� z ∞. @� Ð ∞, @� 	  ! L @� Ð
∞  and 

=ªËÌ Ð Ä . Also assume that the samples ¹�$�  at time � L 1  are directly sampled from Â�$��¹�$�� (neglect the variance accumulated before time � L 1). then 

(1) Ï ! Õ�� L &äàoÊ�¹��pÖ ¥Ð  �0, ���Ä�� with the asymptotic variance ���Ä� given as 

���Ä� 	 +�Ä ��ª O �1 L +��1 L Ä ���                                             (3.14) 

where for � 	 0,1 

��â 	 1I+�'�|'�:�$��Q� ��å�â æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç 

(2) The estimate is biased for finite  ! with the asymptotic bias given by 

limËÌÐ  !o�� L &äàIÊ�¹��Qp 	 +�Ä è� O �1 L +��1 L Ä è�                              (3.15) 

where for � 	 0,1 

è� 	 L 1I+�'�|'�:�$��Q� fé,�âoêÊ�¹�� L &äàoÊ�¹��pëÆ�, Æ�p 
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(3) The asymptotic variance reaches its minimum when Ä²ß� 	 ßìíªßìíªq��$ß�ìí�. Denote ��ras 

the asymptotic variance of direct sampling from  ã  using the composition method, 

then ���Ä²ß�� { ���+� { ��r. 

Note ��â and è� in Theorem 1 are slightly different from the asymptotic variance and bias of 

the importance sampling calculated using only ã�  as the importance density. Chopin [102] 

summarized the structure of a particle filter as three steps at each iteration: mutation, correction 

and selection. The asymptotic variance of the particle filter can be calculated iteratively based on 

these three steps. In Theorem 1 we only consider the asymptotic variance of the mutation and 

correction processes over one time step, which may provide some insights on the total 

asymptotic variance of the particle filter.  

Theorem 3.1 (3) tells us that there exists an optimal Ä²ß� which can minimize the asymptotic 

variance. However, in practice this value is always changing along iterations and it is also very 

difficult or even impossible to calculate. In the real application we can use the proportional 

allocation, i.e., Ä 	 + or @� 	  !+ to reduce the variance. In this work we select @� 	  !+. Note 

that usually there is a tradeoff between minimizing the bias and minimizing the variance. It is 

very hard to directly compare their asymptotic biases using (3.10) and (3.15). However, in this 

case the variance is more important than the bias since in the application we may adjust the 

detection threshold to reduce the bias effect. 

From (3.13) we know that using the deterministic sample size @�  and @�, the normalized 

importance weight for particle ¹�,��<�
 can be expressed as 
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µ�,��<� 	
îïï
ðï
ïñ @�+Æ� ÕÉ�,��<�Ö@�+ ∑ Æ� ÕÉ�,��<�Ö=ª<_� O @��1 L +� ∑ Æ� ÕÉ�,��<�Ö=�<_� , c" � 	 0

@��1 L +�Æ� ÕÉ�,��<�Ö@�+ ∑ Æ� ÕÉ�,��<�Ö=ª<_� O @��1 L +� ∑ Æ� ÕÉ�,��<�Ö=�<_� , c" � 	 1
©                   (3.16) 

When Ä 	 +, the weight for each particle is simply Æ��¹��, the same as using the composition 

resampling method. The sampling algorithm with deterministic sample size is shown in 

Algorithm 3.2.  

Algorithm .3.2. Stratified Sampling with Deterministic Sample Size  

At time step � 	 1,  

1. Sample ¹��<�~"�¹�, c 	 1,2, … ,  ! 

2. Compute Æ�Õ¹��<�Ö 	 Á�'�|¹��<�� and µ��<�
 

At time step � A 1,  

1. Sample ¹�,��<�~"�¹�, c 	 1,2, … , @� to obtain @� new particles. Resample `µ�$��<� , ¹�$��<� d to 

obtain @� 	  ! L @� particles ¹Ø�$��<� , c 	 1,2, … , @�and set ¹�,��<� Û ¹Ø�$��<�
 

2. Set ¹� Û �¹�,�, ¹�,�� and compute µ��<�
 using Eq. (3.16) 

 

3.3.3 Partial Gibbs Move 

Although the resampling step could reduce the particle degeneracy effect, it may reduce the 

particle diversity to cause another problem, the particle impoverishment, where there may be less 

and less unique particles along iterations. For our state space model, this problem could become 
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serious because the state variable is unchanged with some probability. Besides, the resampling 

step cannot solve the particle degeneracy issue completely when the sample size is small. The 

resample-move algorithm proposed by Gilks [103] is a common way to reduce both particle 

degeneracy and impoverishment problem. In this algorithm, a “move” step is added following 

the resampling step (Step 3 in Algorithm 3.1) to generate new particles through MCMC kernels 

with the posterior as the invariant distributions. Resample-move algorithm not only diversifies 

particles, but also produces more particles with significant weights. Because of this, it can 

significantly reduce the required number of particles in the calculations. This is critical for on-

line detection algorithm which requires low computational cost. The MCMC move step is often 

implemented using a Metropolis-Hastings move. In our model, we use the one-step Gibbs 

sampler to move only the model parameters ¶ 	 I2� , *�Q� where 2 	 I�, ·Q�. 

It is common to assume a normal distribution as the prior of 2 and an inverse Gamma 

distribution as the prior of *� where 2~ �ò�, ó�� and *�~gô�(�, (��. The conditional posterior 

distribution of 2 and *� can be computed using Lemma 1 (the proof is included in the Appendix 

of this chapter)  

Lemma 3.1 Assume *�  and K  are independent and K~ �¢�, õ�� , *�~gô�(�, (��  where ¢�, õ�, (�, (� are known parameters. Denote 

ö� 	 ÷ ¸� 1¸� O 1 1ø ø� 1ù and a� 	 'úà:�, then  

�*��|'�:� , 2� , ¸��~gô�(� O � L ¸� O 12 , (� O ûü� L ý�2�û�2 � 
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�2�|'�:�, *��, ¸��~ �ò� , ó��                                               (3.17) 

where  

ò� 	 Çý��ý�*�� O ó�$�È$� Çý��ü�*�� O ó�$�ò�È 

ó� 	 Çý��ý�*�� O ó�$�È$�
                                                   (3.18) 

Sampling based on (3.17) and (3.18) can diversify particles and produce more particles close to 

the true state. Note that particles that have low weights may have significant weights in the 

following time steps. That is why we also need more unique particles. Besides, the Gibbs move 

strategy can also increase the survival rate of newly generated particles from prior in the 

resampling step and thus increase the change-point detection timeliness. 

Usually it is desirable to have a constant computational cost in each time step for particle 

filtering algorithms, which is particularly critical for the real-time monitoring purpose. However, 

the introduction of Gibbs-move step breaks the balance. Denote the duration since the latest 

change-point as X�  which is expressed as X� 	 � L ¸� O 1. It is observed that the longer the 

duration, the higher the computational cost of the Gibbs move. Note that the increase of the 

computational cost here is due to the Gibbs move, not the re-sampling process, new particle 

generation or the calculation of ��. To control the computational cost of each time step, we apply 

the “partial move” strategy proposed by Chopin [90] where we move only a subset of resampled 

particles. The subset is obtained by randomly drawing particles without replacement among the 

resampled particles until the sum of X��<�
 is larger than some constant f. Another advantage of 

“partial move” strategy is that it will improve the detection timeliness because it can increase the 
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disappearing rate of old particles with large X� and boost the survival of new particles at the 

transition region that can fit the most recent signals better. In summary, the improved particle 

filtering algorithm is given in Algorithm 3.3. 

Algorithm 3.3. Particle Filtering Algorithm 

At time step � 	 1,  

1. Sample ¹��<�~"�¹�, c 	 1,2, … ,  ! 

2. Compute Æ�Õ¹��<�Ö 	 Á�'�|¹��<�� and µ��<�
 

3. Resample `µ��<�, ¹��<�d to obtain ` �ËÌ , ¹Ø��<�d and set Ùµ��<�, ¹��<�Ú Û ` �ËÌ , ¹Ø��<�d 

For time step � A 1,  

1. Sample ¹��<�
 according to Algorithm 3.2.  

2. Compute µ��<�
 according to Algorithm 3.2. 

3. Resample `µ��<�, ¹��<�d to obtain ` �ËÌ , ¹Ø��<�d and set Ùµ��<�, ¹��<�Ú Û ` �ËÌ , ¹Ø��<�d 

4. Gibbs move: select a subset k of resampled particles such that ∑ X���� �þÍ { f 

� Sample 2Ø����~ Õò����, ó����Ö and set 2���� Û 2Ø����
 

� Sample *�������� ~gô�(� O �$úà�â�q�� , (� O �üà$ýà�â� 2à�â���
� � and set �*������ Û *��������

 

 

3.3.4 Timeliness Improvement Strategy 

The timeliness is a very important factor for on-line steady state detection. In the simulation, 

we observe that the posterior distribution of the model parameters conditioning on the LCP 

concentrates on a small region around the true model parameters, as the number of observations 

following this model accumulates. Since the prior is typically far different from the posterior 
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distribution, only a small number of new particles generated from the prior are close to the true 

model parameters, i.e., having significant weights. Therefore it becomes harder for these new 

particles to survive in the resampling step when the duration of the current model becomes very 

large. This may lead to a large detection delay because of the lack of survived new particles 

generated around the period where the model changes. In this work we propose a heuristic 

timeliness improvement strategy to overcome this issue: at each time �  we randomly select 

@M particles among @� particles resampled from Â�$�� ¹�$�� in the sampling step (Step 1) and 

“move” the discrete component ¸�  of the selected particles to integers which are randomly 

sampled from [1,2, … , �]. It can diversify the discrete component of particles and increase the 

number of particles with ¸�  close to the true value. We observe that selecting only several 

particles can lead to a significant timeliness improvement for signals with long linear segments.  

3.3.5 Steady state Detection Based on the Particle Filtering Estimation 

Define detection index �� as the probability that the absolute value of the slope |��| is below 

a threshold �� at time step �. It is estimated as 

�� 	 �å�|��| z ��|'�:�� Y Z µ��<�gÙÞ°à���Þ�!ªÚ Õ¹��<�ÖËÌ
<_�                              (3.19) 

where g�·� is an indicator function with  

gÙÞ°à���Þ�!ªÚ Õ¹��<�Ö 	 ®1  c" Þ���<�Þ z ��0  é�ã¯å-c�¯ © 
The estimated observation '�� is calculated as 
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'�� 	 ���� O ·�� 	 Z µ��<�����<�� O ·��<��ËÌ
<_�                                        (3.20) 

When �� A +�, the signal is considered steady. Typically there is a rapid increase of �� around 

the steady state entering. Therefore +� is not considered as a tuning parameter and is set to be 0.9 

in the algorithm. Note the above calculations and detection are performed after Step 3 in 

Algorithm 3.3. For the purpose of clarity, we refer to the entering time from transient state (or 

steady state) to the steady state (or transient state) as the transition point in the rest of the article.  

In implementation, we need to specify the prior parameters for 2~ �ò�, ó��  and 

*�~gô�(�, (�� . For *� , we can roughly estimate the variance of the historical data in the 

application and choose appropriate (� and (�. In practice the change of (� and (� will not result 

in significant difference on the detection results since we use Gibbs sampler to move particles in 

the algorithm. For 2, we can use a noninformative prior with ò� 	 � and ó� 	 σ��� where � is 

the identity matrix and σ�� is a large variance. As for the transition probability +, any value in the 

interval I0.1,0.5Q works quite well in numerical studies. 

3.4 Case Studies for Performance Evaluation and Comparison 

3.4.1 Illustration 

In the numerical study the signals are generated using bias functions and noises. The bias 

functions consist of transient state and steady state. In total five bias functions are used in this 

work: linear, quadratic, exponential, oscillating and trapezoidal functions, as shown in Table 3-1. 

The first four bias functions are most commonly used to test off-line heuristic algorithms in 

initial bias elimination problems [53, 61, 70, 76]. Without loss of generality we only consider the 
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negative bias scenarios, i.e. non-decreasing before steady state, for the first three types of bias 

functions. The oscillating and trapezoidal bias functions are used to illustrate the detection 

process.  

Table 3-1: Five bias functions 

Type Function ��	� 

Linear '��� 	 ¤ �� ã  , � 	 1, … , �ã  , � 	 � O 1, … , @© 
Quadratic '��� 	 ¤ã Ç1 L �� L ����� L 1��  È  , � 	 1, … , �ã  , � 	 � O 1, … , @© 

Trapezoidal '��� 	
îïð
ïñ �� ã  , � 	 1, … , �ã  , � 	 � O 1, … , @ L �ã�@ L ��@ L �   , � 	 @ L � O 1, … , @ © 

Oscillating '��� 	 ¤ã � L �� L 1 sin ¦Â�" § , � 	 1, … , �0  , � 	 � O 1, … , @© 
Exponential '��� 	 ¤ã 
1 L 10 �$��ª$��   , � 	 1, … , �'���  , � 	 � O 1, … , @© 

 

We set ã 	 1, @ 	 500 and *� 	 0.1 in the simulation. � 	 100 for the trapezoidal signal 

and � 	 300, " 	 30 (total 
�ª> 	 10 peaks and troughs, fixed in this work) for the oscillating 

signal. The prior parameters are set to:ò� 	 I0,0Q� , ó� 	 100g and *��~gôI10,0.1Q. The state 

transition probability is set as  + 	 0.2 . The slope threshold �� 	 0.004 . Total  ! 	 2000 
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particles are used in the simulation and the Gibbs move constant f is set as 10 !. The parameter 

for the timeliness improvement strategy is set @M 	 20.  

 

Figure 3-3: Illustration of the steady state detection for (a) trapezoidal signal and (b) oscillating 
signal. The vertical dashed lines denote the transition points between transient state and steady 
state (100 and 400 for step signal and 300 for oscillating signal). 

Figure 3-3 illustrates the steady state detection process where the solid black line is the 

detection probability indicator and the dashed vertical lines denote the steady state transition 

point. We can see that the detection index changes steeply near the transition points between the 

transient state and steady state. The estimated values of the observations are also close to the true 

value. Select +� 	 0.9 as the probability threshold, then the detected state transition times for the 

step signal are 123 (true value: 100) and 411 (true value: 400), and for the oscillating signal the 

detected value is 308 (true value: 300).  

(a)

(b)
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Figure 3-4: Histograms of the estimated values of the latest change-point (LCP), slope and signal 
noise variance for the trapezoidal signal at different time steps; the true values of the parameters 
are indicated by the vertical dashed lines.  

To see how the model parameters evolve, we have plotted the histograms of the simulated 

values of the LCP  ¸� , the slope ��  and the variance *��  at different time for the trapezoidal 

function, as shown in Figure 3-4. At time � 	 100, 400 and 500 the LCP of all particles are 

concentrated near the true change-points 1, 100 and 400, respectively. The corresponding slopes 

and noise variance are also concentrated to the true value. Therefore our algorithm is able to 

accurately detect the change-points and estimate the model parameters. 
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3.4.2 Comparison with/without Gibbs Move 

To compare the particle filtering algorithms with and without Gibbs move, a signal is 

generated using the linear bias function with ã 	 1, @ 	 500 and � 	 200 . The standard 

deviation of the signal noise is set as 0.1. The detection parameters are the same with those used 

in the previous subsection. Three conditions are considered: (1)  ! 	 2,000, no Gibbs move, (2) 

 ! 	 20,000, no Gibbs move, and (3)  ! 	 2,000, Gibbs move.  

 

Figure 3-5: Histograms of the slope �� at time step � 	 1, 100 and 300 for (a-c)  ! 	 2000, no 
Gibbs move; (d-f)  ! 	 20,000, no Gibbs move; (g-i)  ! 	 2000, Gibbs move. 

The histograms of the slope at � 	 1, 100 and 300 are shown in Figure 3-5. For the particle 

filter without Gibbs move, the particle impoverishment is so severe that almost all particles 
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collapse to a single point at time step � 	 100 and 300, even if we increase the number of 

particles from 2000 to 20000. Besides, the particle degeneracy problem also exists for particle 

filters without Gibbs move, especially when  ! 	 2000. At time � 	 300, almost all particles 

are far away from the true state and thus have negligible weights for  ! 	 2000 and no Gibbs 

move, as shown in Figure 3-5 (c). In this case, the particle filter algorithm totally fails to detect 

the steady state, as shown in Figure 3-6 (a).  

 

Figure 3-6: Steady state detection using particle filters with (a)  ! 	 2000, no Gibbs move, (b)  ! 	 20,000, no Gibbs move and (c)  ! 	 2000, Gibbs move. 

Increasing the sample size from 2000 to 20000 reduces the degeneracy effect, as shown in 

Figure 3-5 (f), where all particles are close to 0 and thus have more significant weights. However, 
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the filtered signal is still not smooth and the detection has a large delay, as shown in Figure 3-6 

(b) (detected time: 298). Besides, using a very large sample size is impractical in on-line 

applications since it would significantly increase the computational cost. The Gibbs move 

strategy has solved both the particle degeneracy and particle impoverishment problems, as can be 

seen in Figure 3-5 (h-i). Figure 3-5 (h) shows more unique particles and Figure 3-5 (i) shows 

more particles close to 0. The detected steady state time is 240 (Figure 3-6 (c), detection delay: 

40), which is much more timely than that of Figure 3-6 (b). The estimated signal is smoother, 

indicating a more accurate estimation of model parameters. 

3.4.3 Comparison with Other Methods 

the statistical monitoring schemes for change-point problems, the performance is typically 

evaluated by two types of criteria, the false alarm rate (FAR) before the change and the detection 

delay after a change occurs. In this research the FAR refers to the probability of signaling a 

steady state alarm when the process is still in the transient state. Usually a required FAR is 

specified and the corresponding detection delay is used to compare different detection schemes. 

However, in the steady state detection FAR does not capture the closeness of the detected steady 

state transition time to the true value. In this research, we develop an evaluation metric, the 

weighted standard detection error (WSDE) which is defined as 

WSDE 	 1 Z w��<�o�< L �p�Ë
<_�                                         (3.21) 

Here �< is the detected steady state time,   is the number of replications and w��<� is the penalty 

weight. If - 	 1, we put equal penalty on detection delay and false detection and only consider 
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the closeness of the detection. Usually the cost of false detection is higher than the detection 

delay for the same amount of detection bias; therefore we may put more penalties on the false 

detection and select -��<� as 

-��<� 	 ®- þ �0,1Q  c" �< Ü �1  if �< z � © 
We compare our method (PF) with three existing on-line methods. The first one is the slope 

detection method (SDM) [86, 87], in which an ordinary least square estimator of the slope of a 

moving data window is calculated until its absolute value is below a threshold. The second one is 

the variance ratio test (VRT) [62]. In this method the variance of a moving data window is 

calculated using two different methods, the mean squared deviation from the average ( ��) and 

the mean squared differences of the successive data ( ��). The testing statistic is the ratio of these 

two variances ��/��. In the transient state the ratio is expected to be larger than 1 while in the 

steady state this ratio is close to 1. The third method is to perform a �-test on two recently 

computed means of two adjacent windows with pooled standard deviation [88]. Note in this 

work we do not compare the performance of detecting the change from steady state to transient 

state, since this kind of detection is relatively easier and has been intensively studied in the 

statistical process control (SPC) field. 

The linear, quadratic, exponential and oscillating bias functions are used to generate 

simulated signals, as shown in Table 3-1. For each type of signals, three sets of signal parameters 

are used: (1) ã 	 1, � 	 200, (2) ã 	 1, � 	 300 and (3) ã 	 5, � 	 300. Note here we use 

different bias functions with different parameters to simulate different shapes and severity of the 

initial bias before the steady state. In practice the signal noise may not be i.i.d, so we use three 
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kinds of autoregressive model for the signal noise: no auto-correlation (AR(0)), first-order 

autoregressive correlation (AR(1)), and second-order autoregressive correlation (AR(2)), as 

shown in Table 3-2. For AR(0), three noise levels are used, *� 	 0.06, 0.1 and 0.14. For AR(1) 

and AR(2), *� 	 0.06 and 0.1 are used.  

Table 3-2: Noise Auto-correlation Types and Their Parameters 

Type Equation Parameter 

AR(0) ����� 	 D� D�~ �0, *��� 

AR(1) ����� 	 £���$���� O D� £� 	 0.6 

AR(2) ����� 	 £���$���� O £���$���� O D� £� 	 L0.25, £� 	 0.5 

In the simulation,  	 500  replications are generated for each signal. The detection 

parameters (window size, threshold) for SDM, VRT and t-test are selected in such a way that the 

overall WSDE among all signals under each autoregressive noise type and penalty weight - is 

minimized. The number of particles used in PF method is set as  ! 	 1,000  and threshold 

parameter ��  is selected using the same way as used in the other three methods. All other 

detection parameters are the same as in Section 3.4.1. 

Figure 3-7 shows the WSDE and FAR of these four detection methods as functions of - 

under different noise autoregressive models. Note that here the WSDE and FAR are calculated 

over all signals for each -. The PF method outperforms all other methods in terms of overall 

WSDE under all penalty weights and noise autoregressive models. Besides, the FAR of the PF 

method is also lower than almost all other methods in all cases. Note that if we reduce the FAR 

of other three methods for each - to that of the PF method by changing the detection parameters, 
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the advantage of the PF method in term of WSDE over the other methods will be further 

increased. 

 

Figure 3-7: The weighted standard detection error and false alarm rate of PF, SDM, VRT and t-
test as a function of penalty weight for (a-b) AR(0), (c-d) AR(1) and (e-f) AR(2). 

Table 3-3 shows the detailed detection results for - 	 1 and AR(0) (the results for AR(1) 

and AR(2) are quite similar and therefore are not put in this dissertation). FAR is used to see the 

contribution of early detection on WSDE. From this table we can see that the PF method is more 

robust and accurate in terms of the overall WSDE in handling signals with various shapes and 

changing rates in the transient period. In other words, the PF method is able to detect the steady 

state more accurately using only one set of detection parameters. For other three methods, one 

set of fixed detection parameters are not sufficiently flexible to be effective in different situations.  
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Table 3-3: Comparison of PF, SDM, VRT and �-�¯��  for - 	 1  and AR(0). The Detection 
Parameters Are (1) PF, �� 	 0.0024; (2) SDM, Window Size � 	 51, Threshold=0.00012; (3) 
VRT, � 	 93, Threshold=0.6; (4) �-�¯��, � 	 26, Threshold=0.004. 

Signal �� ���� 
 ��� 

PF SDM VRT t-test  PF SDM VRT t-test 

Linear h=1,T0=200 0.06 40.8 53.2 74.8 71.9  0 0 0 0 
0.10 51.6 51.7 65.4 69.5  0 0 0 0 
0.14 66.5 52.2 52.4 60.6  0 0.01 0 0.04 

h=1,T0=300 0.06 40.1 47.8 65.2 70.6  0 0 0 0 
0.10 56.4 47.8 57.6 73.1  0.01 0.02 0.05 0.09 
0.14 65.8 90.0 138.4 130.8  0.01 0.37 0.86 0.63 

h=5,T0=300 0.06 42.6 56.0 84.6 78.6  0 0 0 0 
0.10 51.9 58.0 80.6 73.1  0 0 0 0 
0.14 64.2 62.6 77.1 70.8  0 0 0 0 

Quad. h=1,T0=200 0.06 10.4 25.4 34.1 43.0  0.25 0.01 0 0.06 
0.10 18.3 23.1 18.6 34.2  0.11 0.19 0.16 0.17 
0.14 27.7 32.2 16.4 28.6  0.06 0.33 0.62 0.44 

h=1,T0=300 0.06 40.0 19.7 18.2 27.9  0.99 0.43 0.5 0.46 
0.10 31.9 34.9 44.6 45.1  0.97 0.77 0.95 0.87 
0.14 26.6 67.2 83.7 83.2  0.82 0.88 1 0.95 

h=5,T0=300 0.06 22.4 33.6 51.0 52.5  0.05 0 0 0 
0.10 33.1 32.0 42.0 52.0  0.05 0 0 0 
0.14 39.9 38.9 33.1 42.4  0.01 0.04 0 0.03 

Exp. h=1,T0=200 0.06 12.7 35.5 42.2 48.3  0.33 0.03 0 0.04 
0.10 20.4 35.0 26.1 38.8  0.15 0.24 0.34 0.34 
0.14 30.0 32.6 32.7 40.7  0.08 0.5 0.78 0.66 

h=1,T0=300 0.06 72.0 34.0 27.9 41.9  1 0.35 0.52 0.40 
0.10 62.2 64.7 72.0 73.5  1 0.88 0.97 0.87 
0.14 49.2 101.2 118.8 109.3  0.99 1 0.99 0.97 

h=5,T0=300 0.06 38.5 49.2 70.7 63.5  0 0 0 0 
0.10 49.8 51.1 59.5 63.1  0 0 0 0 
0.14 59.4 55.4 47.5 50.4  0.005 0 0 0.01 

Osc. h=1,T0=200 0.06 24.4 79.3 69.5 71.6  0.01 0.79 0 0.78 
0.10 25.2 88.2 57.3 98.4  0.025 0.81 0 0.82 
0.14 24.6 77.8 48.6 101.4  0.08 0.83 0 0.9 

h=1,T0=300 0.06 21.0 63.4 58.2 104.0  0.05 0.61 0 0.55 
0.10 24.6 90.3 47.1 78.6  0.32 0.65 0 0.72 
0.14 32.9 113.7 38.6 120.1  0.61 0.67 0 0.78 

h=5,T0=300 0.06 40.4 46.8 83.3 142.0  0.005 0.2 0 0.52 
0.10 56.5 47.7 79.9 57.0  0 0.13 0 0.41 

0.14 66.2 53.0 77.2 55.6  0 0.19 0 0.53 

Overall 43.4 58.5 63.8 71.6  0.21 0.30 0.22 0.35 
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Note that in order to minimize the overall WSDE, the selection of the slope threshold of the 

PF method may not guarantee that the detection results of all signals are better than other 

methods. However, the maximum WSDE among all signals for PF method is far lower than 

other three methods. From the table we can also see that decreasing the signal changing rate (e.g., 

changing � from 200 to 300 for linear signals) or increasing the signal noise before the steady 

state would result in higher FAR. It is intuitive since more bias (deviation from steady state) will 

be immersed by the noise and thus more difficult to detect when decreasing the changing or 

increasing the signal noise. That is also why FAR is mostly contributed by quadratic and 

exponential signals. 

The computational time of PF method on a signal of 500 observations is about 12 seconds 

using MATLAB running on a Q9550 2.83 GHz Intel processor, which is relatively longer than 

other three methods (less than 1 second). However, the increased execution time could bring 

considerable robustness in handling different signals. Besides, the selection of  ! and the Gibbs 

move constant f in the simulation is very conservative. Smaller values may be selected to reduce 

the computational time without hurting the detection accuracy. 

3.4.4 Illustration of Application to CNP signals 

We use the same detection parameters as used in Table 3-3 for all methods. Figure 3-8 shows 

the detection results of the proposed method for the CNP signal with ultrasonic power 70 W and 

30 g Al�O� particles. The popular off-line method MSER-5 [61, 104] is used as a benchmark to 

evaluate the proposed method. The MSER-5 detected steady state time is 175. The detection 

result for the proposed method is 231. In contrast, the detected results for SDM, VRT and t-test 



75 

 

are 238, 251 and 240, respectively. As we can see, the proposed method is more accurate than 

the other three methods.  

 

Figure 3-8: Steady state detection of CNP signals in the dispersion of 30 g Al2O3 for ultrasonic 
power 70 W. The vertical dash-dotted line (right) denotes the detected time using the proposed 
method and the vertical dashed line (left) denotes the off-line method MSER-5 detected time. 

3.5 Discussion and Conclusion 

In this chapter we have proposed a new on-line steady state detection algorithm using a 

multiple change-point model and particle filtering techniques. The multiple change-point model 

is represented by a non-standard state-space model and the particle filtering algorithm is 

developed to approximate the posterior of the LCP and other model parameters sequentially.  

The mixture importance density is used and sampled using the stratified sampling method, 

which is proven to have a lower asymptotic variance, and thus more stable than the conventional 

composition method. The partial Gibbs move algorithm is developed to overcome the particle 

degeneracy and impoverishment problem and reduce the number of particles needed. To further 
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balance the computational cost, a “partial move” strategy is used where only part of particles is 

moved. A timeliness improvement strategy is proposed to reduce the detection delay for signals 

with long linear segments before the steady state.  

Compared with the existing methods, the PF method has the following advantages. First, 

there is no moving data window in the PF method. For most of existing methods, a moving 

window is required and it is usually chosen somewhat arbitrarily in practice. Too small a moving 

window may result in unstable detection and high false alarm rate, while too large a moving 

window may delay the detection. The PF method functions like a slope detection method with an 

adaptive window size. Second, the PF method is based on the Bayesian framework and is able to 

“learn” signals in the monitoring process. It incorporates the information of signal noises to the 

detection algorithm. Therefore it is able to handle signals with different noise levels more 

robustly. Although the noninformative priors are used in the current work, in practice the prior 

knowledge may be available to further improve the detection accuracy. Third, we can 

sequentially obtain the filtered signal, which may be a useful by-product for many applications.  

Admittedly, the higher accuracy of the proposed method is obtained at the price of higher 

computational burden. However, in the algorithm all the hyperparameters are easy to select and 

only the detection threshold needs to be tuned in the application. Although computationally 

intensive, the code of the proposed method is not very complex. With well documented release 

of this method, people can apply it to their own time series without much difficulty.  
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3.6 Appendix 

3.6.1 Proof of Theorem 3.1 (2) and (3)  

Theorem 3.1(2): 

Let ¢�,� 	 &�âIÊ�¹��Æ�Q , ,�,� 	 &�â�Æ��  and Define �� 	 o �̂,�, ��,�, �̂,�, ��,�p�
, ò�à 	

o¢�,�, ,�,�, ¢�,�, ,�,�p�
. Let �� 	 Á���� 	 ß�à,ªq��$ß��à,�ßìà,ªq��$ß�ìà,� , then  

Á Õò��Ö 	 +&ã0IÊ�¹��Æ�Q O �1 L +�&ã1IÊ�¹��Æ�Q+&ã0�Æ�� O �1 L +�&ã1�Æ�� 	 &ã�Ê�¹��Æ��&ã�Æ�� 	 &Â�IÊ�¹��Q 
The asymptotic bias can be computed using the �-method with a second order Taylor series 

expansion.  

Á���� Y Áoò�àp O ê�Áoò�àpë�o�� L ò�àp O 12 o�� L ò�àp���Áoò�àpo�� L ò�àp 

where 

�Áoò�àp 	 

J +&��Æ�� , L+&��Ê�¹��Æ��&���Æ�� , 1 L +&��Æ�� , L�1 L +�&��Ê�¹��Æ��&���Æ�� N�
 

Since �̂,�, ��,� are independent of �̂,�, ��,�, 

& ÕÁ���� L Áoò�àpÖ Y 

+�&��Ê�¹��Æ��@�&���Æ�� ��å�ª�Æ�� O �1 L +��&��Ê�¹��Æ��@�&���Æ�� ��å���Æ�� 
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L +�@�&���Æ�� fé,�ª�Ê�¹��Æ�, Æ�� L �1 L +��@�&���Æ�� fé,���Ê�¹��Æ�, Æ�� 

	 1 ! Ç+�&��Ê�¹��Æ��Ä&���Æ�� ��å�ª�Æ�� O �1 L +��&��Ê�¹��Æ���1 L Ä�!&���Æ�� ��å���Æ�� L +�Ä&���Æ�� fé,�ª�Ê�¹��Æ�, Æ��
L �1 L +���1 L Ä�&���Æ�� fé,���Ê�¹��Æ�, Æ��È 

	 1 !&���Æ�� Ç+�Ä fé,�ªoê&äàoÊ�¹��p L Ê�¹��ëÆ�, Æ�p
O �1 L +��1 L Ä fé,��oê&äàoÊ�¹��p L Ê�¹��ëÆ�, Æ�pÈ 

Therefore  

limËÌÐ  !o�� L &äàIÊ�¹��Qp 	 +�Ä è� O �1 L +��1 L Ä è�  
where for � 	 0,1 

è� 	 L 1I+�'�|'�:�$��Q� fé,�âoêÊ�¹�� L &äàoÊ�¹��pëÆ�, Æ�p 

 

Theorem 3.1(3): 

X��XÄ 	 0 	A Ä²ß� 	 +��ª+��ª O �1 L +���� 

When Ä 	 +, the asymptotic variance becomes 

���Ä� 	 +��ª O �1 L +���� 

	 1I+�'�|'�:�$��Q� Ù+��å�ª æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç O �1 L +���å�� æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�çÚ 
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	 1æ+Õ'�Þ'1:�L1Öç2 ®+&ã0 æ¦Ê�¹�� L &Â� ÕÊ�¹��Ö§ Æ�ç2 O o1 L +p&ã0 æ¦Ê�¹�� L &Â� ÕÊ�¹��Ö§ Æ�ç2

L + Õ&ã0 æ¦Ê�¹�� L &Â� ÕÊ�¹��Ö§ Æ�çÖ2 L o1 L +p Õ&ã1 æ¦Ê�¹�� L &Â� ÕÊ�¹��Ö§ Æ�çÖ2� 

If we use the composition method and directly sample from ã 	 +" O �1 L +�Â�$� , then 

according to (2.9), the asymptotic is given by 

��r 	 1I+�'�|'�:�$��Q� ��å� æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç
	 1I+�'�|'�:�$��Q� º&� æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç�

L Õ&� æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�çÖ�Ú 

Since &� æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç 	 &�IÊ�¹��Æ�Q L &äàoÊ�¹��p&��Æ�� 	 0, then we have 

��r 	 &� æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç�
I+�'�|'�:�$��Q�

	 1I+�'�|'�:�$��Q� º+&�ª æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç�

O �1 L +�&�ª æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�ç�Ú 

Therefore  

��r L �� 	 1I+�'�|'�:�$��Q� º+ Õ&�ª æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�çÖ�

O �1 L +� Õ&�� æÕÊ�¹�� L &äàoÊ�¹��pÖ Æ�çÖ�Ú Ü 0 
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3.6.2 Proof of Lemma 3.1 

Denote ý� 	 ÷ ¸� 1¸� O 1 1ø ø� 1ù and ü� 	 'úà:�, then 

��*��|'�:�, 2� , ¸�� Ý ��*����o'úà:��*��, ¹�p Ý  �*���$�i�q��¯$i��à��*���$��$úàq��� ¯$ûüà$ýà2àû���à�  

Ý �*���$¦i�q��$úàq��� $�§ exp�L (� O ûü� L ý�2�û�2*��    

Therefore  

�*��|'�:� , 2� , ¸��~gô�(� O �� L ¸� O 1�2 , (� O ûü� L ý�2�û�2 � 

��2�|'�:�, *��, ¸�� Ý ��2���o'úà:��*��, 2� , ¸�p     
Ý exp ÇL �2� L ò���ó�$��2� L ò��2 È exp JL ûü� L ý�2�û�2*�� N
Ý exp ÇL �2� L ò���ó�$��2� L ò��2 È exp JL �ü� L ý�2����ü� L ý�2��2*�� N
Ý exp ®L 12 Ç2�� Jó�$� O ý��ý�*�� N 2� L 2 Jò��!�$� O ü��ý�*��  N 2�È�
Ý expIL 12 �2� L ò���ó�$��2� L ò��Q   

where  

ò� 	 Çý��ý�*�� O ó�$�È$� Çý��ü�*�� O ó�$�ò�È 

and  
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ó� 	 Çý��ý�*�� O ó�$�È$�
 

Therefore 

�2�|'�:�, *��, ¸��~ �ò�, ó��
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4 On-line Steady State Detection Using Multiple Change-point 

Models and Exact Bayesian Inference
∗∗∗∗
 

In Chapter 3 a robust steady state detection algorithm is developed using multiple change-

point models and particle filters. Compared with other existing methods, this method is much 

more robust in handling different kinds of signals with only one set of detection parameters. 

However, the robustness and accuracy is at a price of relatively high computational burden. In 

this chapter, we develop a new on-line steady state detection algorithm with less computational 

cost by using exact Bayesian inference method. In this algorithm, conjugate priors are used and 

the explicit analytical form of the posterior distribution is obtainable, which is more efficient 

than using particle filtering techniques to approximate the posterior distribution. In this method, 

the piecewise linear model is used to approximate the noisy signals sequentially and the exact 

Bayesian inference used to calculate the posterior distribution of the latest change-point and 

model parameters sequentially. The exact Bayesian inference is implemented with a recursive 

message-passing algorithm [105, 106] to calculate the posterior distribution of latest change-

point. The steady state can be detected when the probability of the slope amplitude of the latest 

linear segment is below a certain threshold. 

                                                           

∗ This chapter is based on the paper: Jianguo Wu, Yong Chen, Shiyu Zhou, “On-line Steady State 
Detection using Multiple Change-point Models and Exact Bayesian Inference”, submitted to IIE 

Transactions 
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4.1 Exact Calculation of Posterior Distribution of the Latest Change-

point 

Since the steady state detection is mainly based on the observations in the latest linear 

segment, it is critical to calculate the posterior distribution of the latest change-point. In this 

section, the recursive algorithm [105, 106] to obtain the posterior will be introduced. To facilitate 

the on-line inference, we first formulate the multiple change-point model into a non-standard 

state-space model 

Denote '� as the observation at time step �. The corresponding model parameter is defined 

as ¶� 	 ���, ·�, *��� where �� is the slope of the line segment, ·� is the intercept, and *�� is the 

variance of the signal noise. The multiple change-point models can be expressed as 

¶� 	
îïð
ïñ ��   c" 1 { � z f���   c" f� { � z f�ø              ø          �?   c" f?$� { � z f?�?q�   c" f? { � { @

©                                             (4.1) 

where �< þ "� , @ is the number of observations, � and f<, c 	 1,2, … , �  are the number and 

locations of the change-points. The parameters are assumed to be independent across different 

segments. The observation '�  is modeled as '� 	 ��� O ·� O À�  where À�  is the i.i.d. Gaussian 

noise and À�~ �0, *���.  

Denote the state vector ¹� 	 �¶�, ¸��, where ¸� is the latest change-point at time �. Suppose 

the prior probability mass function and cumulative distribution function for the length of the 
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linear segments is Á�·�  and ô�·� , respectively. Then the prior transition probability can be 

expressed as  

+�¸� 	 �|¸�$� 	 c� 	
îïð
ïñ 1 L ô�� L c�1 L ô�� L c L 1� , c" � 	 c

1 L 1 L ô�� L c�1 L ô�� L c L 1� , c" � 	 �0, é�ã¯å-c�¯
©                           (4.2) 

where c { � L 1. At each time step, the state transition process can be formulated as 

¹� 	 º�¶�$�, ¸�$��  with probability  +�¸� 	 ¸�$�|¸�$���¶M, �� , with probability  +�¸� 	 �|¸�$�� ©                            (4.3) 

where ¶M  is different from ¶�$� . Let '!:� 	 �'!, '!q�, … , '��� . For � 	 1, 2, Ó , � O 1 , the 

posterior for the latest change-point at time step � O 1 can be calculated recursively as  

��¸�q� 	 �|'�:�q�� Ý ��¸�q� 	 �, '�q�|'�:�� 	 ��'�q�|¸�q� 	 �, '�:����¸�q� 	 �|'�:��            (4.4) 

��¸�q� 	 �|'�:�� 	 Z ��¸�q� 	 �|¸� 	 c���¸� 	 c|'�:��#�$��,��
<_�                               (4.5) 

��'�q�|¸�q� 	 �, '�:�� 	 ¤�o'�:�q��¸�q� 	 �p�o'�:��¸�q� 	 �p   c" � { � ��'�q��  c"� 	 � O 1©                          (4.6) 

Define ���, �� 	 ��'!:�|'!:� is in the same linear segment�, and substitute Eq. (4.5) and (4.6) 

into Eq. (4.4) we can get 

��¸�q� 	 �|'�:�q�� Ý
îïð
ïñ ���, � O 1����, �� ��¸�O1 	 �|¸� 	 ����¸� 	 �|'1:��  c" � { � 

��� O 1, � O 1� Z ��¸�O1 	 �|¸� 	 c���¸� 	 c|'1:���
c	1   c" � 	 � O 1 © (4.7) 
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From Eq.  (4.7) we can see that the distribution of the latest change-point at time � O 1 can be 

recursively calculated based on the previously calculated distribution at time �. The terms 
%��,�q��%��,��  

and ��� O 1, � O 1�  are the only terms that incorporates the information of the newest 

observation '�q�  into the updating of the posterior distribution of the latest change-point. 

Therefore, they play the decisive role on the detection of change-point. For example, if the latest 

true change-point is at time step � O 1 with '�q� significantly different from '�:�, then 
%��,�q��%��,��  is 

expected to be much smaller than ��� O 1, � O 1� and thus more weight is put on time step � O 1 

as the latest change-point.  

The calculation of ���, �� is the key part in the above recursion equation. By using conjugate 

priors for model parameters, it can be calculated analytically and involves no complex numerical 

integrations. Let 2  be the parameter of the linear segment, 2 	 ��, ·�� . The joint prior 

distribution for 2 and noise variance *� can be assigned using Gaussian and inverse Gamma 

distribution as  

*�~gô�,2 , &2� 

2|*�~ �2�, *�!�                                                        (4.8) 

where ,, &, 2� and ! are known parameters. Define ý!� 	 ÷ � 1� O 1 1ø ø� 1ù. The term ���, �� in Eq.  

(4.7) then can be calculated by integrating out K and *�: 

���, �� 	 Â$��$!q��/� J|'!�||!| N�� &(��)!����$!q�q(�/� Γ�� L � O 1 O ,2 �Γ�,/2�                     (4.9) 
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where  

'!� 	 �ý!�� ý!� O !$��$� 

+!� 	 �!$�2� O ý!�� '!:�� 

)!� 	 '!:�� '!:� O & O  2��!$�2� L+!�, '!�+!�                                  (4.10) 

The deviation of Eq. (4.9) is shown in the Appendix of this chapter.  

4.2 Steady State Detection 

In the steady state detection, we conduct the Bayesian inference on the slope of the latest 

linear segment. When the amplitude of the slope |��| is sufficiently small, the signal can be 

claimed to be steady. Naturally we can use the estimated slope amplitude of the latest linear 

segment |��- | as the detection index. In this research we use a more flexible and stable detection 

index  �� , which is defined as the probability of |��|  being less than a threshold ��  given 

observations '�:�: 

�� 	 Pr�|��| z ��|'�:�� 	 Z ��|��| z ��|¸� 	 c, '<:���
<_� ��¸� 	 c|'�:��            (4.11) 

In the above equation, the probability of the latest change-point ��¸� 	 c|'�:�� can be calculated 

by Eq.  (4.7) and ��|��| z ��|¸� 	 c, '<:�� can be calculated based on Lemma 4.1 as follows (see 

Appendix for proof). 

Lemma 4.1. Suppose *�~gô�(� , .�� and 2|*�~ �2�, *�!�. Define  ý!� 	 ÷ � 1� O 1 1ø ø� 1ù, then  
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(1) �2�|¸� 	 �, '!:�� follows bivariate � distribution with degrees of freedom X!� 	 � L � O1 O , , mean ò!� 	 '!�+!�  and covariance matrix 
lÌàlÌà$� ó!�  ( X!� A 2 ) where ó!� 	 /Ìà'0	lÌà , 

'!� ,+!�  �@X )!� are defined in Eq. (4.10). Denote it as �2�|¸� 	 �, '!:��~���X!�, ò!�, ó!��. 

(2) Suppose ó!� 	 1!�2!�1!��  where 2!�  is the correlation matrix and 1!�  is a diagonal 

matrix with positive diagonal entries E!��<,<�
, then  

�1!�$�2�|¸� 	 �, '!:��~���X!�,1!�$�ò!�,2!�� 

and  

� °à�Ìà��,�� |¸� 	 �, '!:��~��oX!�, �1!�$�ò!�����, 1p  

or �°à$òÌà���
�Ìà��,�� |¸� 	 �, '!:��  follows standard �  distribution with degrees of freedom  X!� . Here 

�1!�$�ò!����� and ò!����
 denote the first element of the vector 1!�$�ò34 and ò!� respectively. 

Based on Lemma 1, the detection index �� can be calculated as 

�� 	 Z 5�l�à xs� L ò<����E<���,�� y L�l�à xLs� L ò<����E<���,�� y6�
<_� ��¸� 	 c|'�:��                    (4.12) 

where �l�à�·�  is the cumulative distribution function (CDF) of standard �  distribution with 

degrees of freedom X<�. The filtered observation '�� at time � can be calculated as  

'� 	 Z Õò<����� O ò<����Ö ��¸� 	 c|'�:���
<_�                                         (4.13) 

In the development of decision rule, we need to specify or tune the thresholds for both the 

slope amplitude and the probability detection index. However, in the application, the probability 

index often increases rapidly to 0.9 at certain time after the signals enter into steady state. 
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Therefore, to simplify the algorithm, we just set the threshold for the probability index to be 0.9 

in the application and treat the slope amplitude threshold as a tuning parameter. This will also be 

illustrated in the numerical illustration section. 

In Bayesian inference, informative priors are often preferable if prior knowledge or historical 

data are available. However, when we know very little about the data and we just want the data 

to “speak” for themselves, the non-informative priors then would be a better choice. In the steady 

state detection, we often face nonlinear signals which may need multiple linear segments with 

both increasing and decreasing trends for approximation. Besides, the amplitude of slopes and 

line durations may also vary significantly among different segments. In such cases a non-

informative prior for 2 is recommended. We can assign flat priors for 2 with zero mean (2� 	 �) 

and large variance, i.e., large value for the diagonal entries of ! and to describe the uncertainty of 

the slope and intercept. For the signal noise, typically we can select an informative prior. The 

noise amplitude for each signal in most cases is fixed and we can roughly estimate it based on 

the historical data or prior knowledge. For simplicity, we still set the prior transition 

probability +�¸�|¸�$�� as a constant value + in this method.  

The steady state detection process can be summarized in Algorithm 4.1. After the posterior of 

the latest change-points ��¸�|'�:��are calculated for all time steps � 	 1,2, … , @, we can easily 

reconstruct the trajectories of all change-points backwards for the purpose of illustration using 

Algorithm 4.2. 
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Algorithm 4.1 Steady state Detection Algorithm Using Exact Calculation 

1. Specify ,, &, K�, Σ, + and �� 

2. Set �� 	 0 and ��¸� 	 1|'�� 	 1 

3. For � 	 2, 3, Ó , @ 

• For c 	 1, 2, Ó , �  
Calculate the un-normalized ��¸� 	 c|'�:�� based on Eq.  (4.7) 

End 

• Calculate the normalized ��¸�|'�:��: ��¸� 	 c|'�:�� 	 %�úà_<|��:à�∑ %�úà_�|��:à�àâ��  

• Calculate the probability index �� based on Eq. (4.12) 

• If �� A 0.9, the signal is steady and stop 

End 

 

Algorithm 4.2 Simulation of Change-point Trajectories in N Realizations 

1. Count[c]=0 for c 	 1,2, … , @ 

2. For å¯+ 	 1:   

• Simulate �� from ��¸=|'�:=�. Set Count[��]=Count[��]+1 and E 	 1 

• While �� A 1 

Simulate ��q�from the support `1,2 … , �� L 1d with the discrete probability 

proportional to ��¸��$�|'�:��$��+o¸�� 	 ���¸��$�p.  

Set E 	 E O 1 and Count[��]=Count[��]+1 

End 

End 

3. Calculate the frequency "< 	 CountIcQ/  for c 	 1,2, … , @  
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4.3 Computational Issues and Approximation 

Algorithm 4.1 uses the exact calculation for the posterior distribution and is expected to be 

very accurate. However, there may be various computational issues that may limit its 

applications. The first and most important issue is that the computational cost and memory cost 

in the recursive calculation of ��¸�|'�:�� increase significantly with time  � . For example, at 

time �, we have to calculate � discrete probabilities. The calculation of each probability ��¸� 	
�|'�:�� also increases rapidly with � in the recursion. A natural way to reduce the computational 

cost is to approximate the calculated ��¸�|'�:�� using another probability mass function with 

fixed size of support � z �. In practice when � is large, ��¸�|'�:�� almost equals to zero in many 

locations. Setting ��¸�|'�:�� to be zero at these locations can reduce the computational cost in the 

calculation of ��¸�q�|'�:�q�� and ��.  

In this work, we use this strategy: at each time step �  (� A � ), we only calculate the 

probability ��¸�|'�:�� at � certain locations that are very likely to be the latest change-points. 

The specific steps are: (1) select � L 1 locations from `1,2, Ó � L 1d using weighted sampling 

without replacement [107]. The weight for location c is ��¸�$� 	 c|'�:�$��; (2), normalizing the 

weights of the selected locations; (3) calculate ��¸�|'�:�� at � and these � L 1 selected locations; 

(4) Set ��¸�|'�:�� 	 0 at other locations. In other words, this method is to select location ¸� 	 � 

and other � L 1 locations from the support of ��¸�$�|'�:�$�� of size � to be the support for 

��¸�|'�:��. In this strategy, the computation is almost balanced at large time step �.  

Another computational issue is the calculation of %��,�q��%��,�� , which can be expressed as 
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���, � O 1����, �� 	 1√Â J�;�,�q���;�,�� N�� J )��)�,�q�N�$�q($�� 1Ï)�,�q�
9 Õ� L � O , O 22 Ö9 Õ� L � O , O 12 Ö              (4.14) 

In the above equation, the calculation of 9 Õ�$�q(q�� Ö may be a problem as � L � increases to a 

very large value. For example, in MATLAB, 9�172� becomes infinite because of the precision 

issue. One way to solve this issue is to compute the difference of the natural logarithm of the 

gamma function 9 Õ�$�q(q�� Ö and 9 Õ�$�q(q�� Ö instead and then calculate the exponential function 

of this difference. Another method that is more preferable in terms of the computational cost is to 

use Stirling’s series to approximate the ratio of the Gamma function [108]: 

9�h O h��9�h O h�� 	 h:�$:� Ç1 O �h� L h���h� O h� L 1�2h O ;�|h|$��È 

The Gamma ratio in Eq. (4.14) can thus be approximated as 

9 Õ� L � O , O 22 Ö9 Õ� L � O , O 12 Ö Y � L � O , O 12 
1 L 14�� L � O , O 1��                       (4.15) 

This approximation has high accuracy and can be calculated very fast.  

The calculation of �� in Eq. (4.12) involves many cumulative distribution functions �l�·� of 

�  distribution, which can also be approximated to reduce the computational cost. The first 

method is to use normal approximation. It is well-known that the Student’s t distribution can be 

well approximated by a normal distribution with the same mean and variance when X Ü 30 

[109]. Therefore, for X Ü 30 , �l�É� Y <�É/ÏX/�X L 2�� where <�·�  is the cumulative 

distribution function of standard normal distribution. An alternative method is to use the 
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estimated *��~  to calculate the posterior distribution  �2�|¸� 	 �, '!:��  based on Lemma 4.2 as 

follows. 

Lemma 4.2 All the definitions and notations are the same as in Lemma 1. Then  

(1) �*��|¸� 	 �, '!:��~gô�lÌà� , /Ìà� � 

(2) �2�|¸� 	 �, *��, '!:��~ �ò!�, *��'!�� 

The mean value of *��  given ¸� 	 �  and '!:�  is *��~ 	 /ÌàlÌà$� . We can use 

o2��¸� 	 �, *�� 	 *��~, '!:�p  to approximate �2�|¸� 	 �, '!:�� . Based on Lemma 2, 

o2��¸� 	 �, *�� 	 *��~, '!:�p follows the normal distribution as 

Õ2�Þ¸� 	 �, *�� 	 *��~, '!:�Ö~ �ò!� ,)!�'!�X!� L 2�                                   (4.16) 

Interestingly, this approximation is exactly equivalent to the first method, i.e., using <�É/
ÏX/�X L 2�� to approximate �l�É� in the calculation of �� in Eq. (4.12). 

4.4 Approximation of the Average Run Length (ARL) for Steady State 

Time Series 

The average run length (ARL) is an important performance criterion used to evaluate a 

detection scheme, and it is commonly used in the statistical process control charts. Similarly, 

ARL on the stead-state time series can also provide insight and guidance on understanding and 

tuning the algorithm in application. In this section, we developed an approximation of ARL for a 

steady state time series as follows.  
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Suppose the detection probability index is approximated using the normal CDF described in 

Section 4.3.3 as  

�� Y Z 5< x s� L ò<����E<���,��Ïd<�/�d<� L 2�y L < x Ls� L ò<����E<���,��Ïd<�/�d<� L 2�y6�
<_� ��¸� 	 c|'�:�� 

Suppose '�, '�, … '= is a steady state time series and y�~ccX  �0, *��. In the detection process, it 

is observed that the posterior ��¸�|'�:�� is almost focused on � 	 1 or ��¸� 	 1|'�:�� Y 1 for 

linear signals (see Figure 4-2 for details). Therefore  

�� Y 5< x s� L ò�����E����,��Ïd��/�d�� L 2�y L < x Ls� L ò�����E����,��Ïd��/�d�� L 2�y6 
When !�<,<� Ð ∞  and 2� 	 �  (flat prior for 2 ), ò�� Y �ý��� ý���$�ý��'�:� , which is the 

ordinary least square estimator for 2�  and therefore ò�� Y � . !�� Y I'�:�� ��L >�'�:� O
&Q�ý��� ý���$�/X�� where > is the projection matrix > 	 ý���ý��� ý���$�ý��� .Therefore  

E����,�� Y I '�:�� ��L >�'�:� O &Q 12���� L 1�X��  
and  

�� Y 2<?�� ���� L 1��� L 2 O ,�12I'�:�� ��L >�'�:� O &Q@L 1 

Suppose the detection will be stopped when �� Ü (, that is  
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'�:�� ��L >�'�:�*� { ������ L 2 O ,���� L 1�12h��qi�/�� *� L &*�                                (4.17) 

where h��qi�/� is the quantile for standard normal distribution with <oh��qi�/�p 	 �1 O (�/2. 

Denote a� 	 ��:àA ��$>���:à��  and ã��� 	 !ª����$�q(����$����:���B�/�� �� L .��. It is well known that a�~#�$�� . Based 

on Eq. (4.17) it is almost impossible to get the exact analytical form for ARL since it involves 

multiple integrals and conditional distributions. For example, ARL can be expressed as  

WHC 	 Z � Pr�a� { ã���|a< A ã�c�for c z �� 
�_�  

where the conditional probabilityPr�a� { ã���|a< A ã�c�for c z ��is hard to derive. Here we use 

an approximation method as follows. 

 

Figure 4-1: Illustration of the change of ã���, #�$�,�.%%� , #�$�,�.���  and &�#�$�� � with � 
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Suppose we select �� 	 0.003, * 	 0.1, , 	 20, & 	 0.2 and ( 	 0.9. Figure 4-1 shows the 

function ã���, the 0.99 and 0.01 quantiles of #�$��  distribution and the mean of #�$�� . From it we 

can see that ã��� { 0 for � { �� and then increases much more rapidly (polynomial of 4th order) 

than other three curves. For � { ��, a� is always larger than ã��� and the detection will not stop. 

At � 	 ��, �oa� { ã���p 	 0.01 and �oa� { ã���p D 0.01 in the interval I��, ��� because of the 

rapid decreasing of the probability density function of the #�$�� . Similarly, at � 	 �G , �oa� {
ã���p 	 0.99 and in the interval ��G,∞�, �oa� { ã���p v 0.99. Therefore, it is highly possible 

that the stopping time will be in the time interval I��, �GQ. Since the width of the interval is small, 

we use �G as the ARL: 

WHC Y arg min� `�|#�$�,�.%%� { ã���d                                         (4.18) 

We found that this approximation is very close to the simulated ARL under different values of ��, 

*, ,, & and (, which will be shown in Section 4.5.3.  

4.5 Case Studies for Illustration and Comparison 

4.5.1 Illustration 

Simulated signals are used to illustrate the detecting process of this steady state algorithm 

and compare it with other existing algorithms. They are generated using bias functions and 

noises, where the bias functions consist of initial transient state and steady state. Total five bias 

functions are used: step function, linear function, quadratic function, exponential function and 

oscillating function, as shown in Table 4-1. Note the step function is not strictly bias function 

since it is composed of piecewise steady state period. The last four bias functions are often used 
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to test off-line heuristic truncation algorithms used in the discrete-event simulations [53, 61, 70, 

76]. For simplicity, only the negative bias scenarios (i.e., increasing before steady state) are 

considered for the linear, quadratic and exponential functions. 

Table 4-1: Five bias functions and their shapes 

Signal Function Shape 

Step '��� 	 Eã�  , � 	 1, … , �ã�  , � 	 � O 1, … , �ã�  , � 	 �, … , @ © 
 

Linear '��� 	 ¤ �� ã  , � 	 1, … , �ã  , � 	 � O 1, … , @© 
 

Quadratic '��� 	 ¤ã Ç1 L �� L ����� L 1��  È  , � 	 1, … , �ã  , � 	 � O 1, … , @© 
 

Exponential '��� 	 ¤ã 
1 L 10 �$��ª$��   , � 	 1, … , �'���  , � 	 � O 1, … , @© 
 

Oscillating '��� 	 ¤ã � L �� L 1 �c@ ¦Â�" § , � 	 1, … , �0  , � 	 � O 1, … , @© 
 

 

The step function and oscillating functions are used to illustrate the detection process for 

signals with fixed noise amplitude. For the step function, ã� 	 0, ã� 	 0.5, ã� 	 1 � 	 200 

and � 	 400. For the oscillating function, ã 	 1, � 	 400 and " 	 30 (total 10 peaks and 

troughs). For both signals, number of observations @ 	 600 and noise *� 	 0.14. The priors for 
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the steady state detection algorithm are set to be: 2� 	 �, ! 	 1 9 10G�, , 	 20, & 	 0.2 and 

+ 	 0.2, where g is the 2 9 2 identity matrix. The detection results are not very sensitive to the 

value of the prior transition probability + in most cases. The interval I0.01, 0.5Q is suggested for 

+  in applications. The moving window is not used here. The size of the support �  for the 

posterior ��¸�|'�:�� is set to be 50 and the slope threshold �� is set to be 0.003. 

 

Figure 4-2: Illustration of the steady state detection using step function and oscillating function: 
(a)-(d): step function; (e)-(f): oscillating function; (a) and (e): simulated observations '  and 
estimated values '� using Eq. (4.13). The dotted vertical lines indicate the starting point of the 
steady state; (b) and (f): the estimated duration of the latest linear segment; (c) and (g): simulated 
posterior (frequencies) of change-points (CPs) using Algorithm 4.2. (d) and (h): the probability 
index ��. 
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Figure 4-2 shows the steady state detection process for the step signal and oscillating signal. 

Figure 4-2 (a) and (e) show the observations and estimated signals, where the estimated values 

are very close to the true values. Besides, the estimations become smoother and smoother as the 

length of the linear segments grows. Figure 4-2 (b) and (f) show the sequentially estimated 

durations of the latest linear segments and Figure 4-2 (c) and (g) show the simulated frequencies 

of all change-points using Algorithm 4.2. They are used to capture the jump of the center of the 

posterior ��¸�|'�:��. For the step signal, there are immediate jumps at the mean shift locations. 

The reason is that ���, �� in Eq. (4.7) is significantly larger than ���, ��/���, � L 1� for a mean 

shift or jump change at time � and thus the change can be immediately detected without any 

delay. Besides, the posterior of the latest change-point is focused almost on the starting time of 

the linear segment, which is the assumption in the approximation of ARL, and therefore the 

estimated duration of the latest linear segment almost equals to the true value. For the oscillating 

signal, there are nine jumps, which correspond to the movement of posterior at nine peaks and 

troughs of the oscillating signal. The last trough is disappeared into the signal noise and is 

difficult to detect. The probability detection indices are shown in Figure 4-2 (d) and (h), from 

which we can see that the detection index rise sharply around the steady state starting point. This 

can be explained by Eq. (4.17), where ã��� is a 4th order polynomial of � and increases rapidly 

with � shortly after the steady state transition.  

In many applications, the signals have a decaying variance while the mean is unchanging. In 

such cases, the slope detection method and �-test on the mean of two adjacent moving windows 

may totally fail. To see effectiveness of our algorithm, we use the signal with zero mean and 

noise amplitude as: 
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*��� 	 º30��ª$��/��ª$��*�  c" � { � *�  c" � A � © 
where � 	 300 and *� 	 0.1. The detection results in Figure 4-3 show that the steady state can 

also be effectively detected with small detection delay.  

 

Figure 4-3: Steady state detection for the signal with zero mean and exponentially decreasing 
variance. 
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Figure 4-4 shows the computational cost of each time step using three different number of 
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Without setting fixed �, the total computational cost would increase quadratically. Note the 

selection of � 	 50 is conservative. In the application, � may be set as low as 10 to further 

reduce the execution time. The computational time (� 	 10) for 500 observations is about 1.5 

seconds using MATLAB running on a Q9550 2.83 GHz Intel processor, which is much lower 

than the particle filter based method (12 seconds for 500 observations with 1000 particles). 

 

Figure 4-4: Computational cost each time step for number of support � 	 50, 100 and 150 
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Figure 4-5: Average run length (ARL) calculated using Monte Carlo simulation and 
approximation Eq. (4.18). The parameters are set as ( 	 0.9, �� 	 0.003 , * 	 0.1, + 	 0.2, , 	 20, and γ 	 0.2 for all calculations except the changing parameter.  

Figure 4-5 shows the ARL as functions of different parameters calculated using both 

simulation and approximation method. As we can see, the approximated ARL is almost identical 

to the simulated one in all cases. We also observe that the simulated ARL is slightly higher than 

calculated one in most cases. The reason is that the posterior of the latest change-point is not 

completely focused on � 	 1, i.e., there is more than 1 support, yet in the approximation we 

assume � 	 1 is the only support.  

The ARL is not very sensitive to (, as shown in Figure 4-5 (a), therefore ( is not treated as a 

tuning parameter and we suggest using ( 	 0.9  in the application. The transition prior 

probability + almost has no influence on the ARL in the range [0.05, 0.5], as shown in Figure 4-5 

(d). The ARL is also not sensitive to the noise prior parameters , and &. In the application we 
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can roughly predict the noise amplitude and select ,  and &  accordingly. The only tuning 

parameter is the slope threshold ��, which influence the ARL most significantly. Figure 4-5 (c) 

shows that the ARL increases almost linearly with signal noise amplitude. This is an advantage 

of this algorithm since it could automatically adjust the ARL to reduce the false alarm rate when 

signal noise is large and reduce the detection delay when the noise is small.  

4.5.4 Evaluation and Comparison with Other Methods 

In the comparison, we still use the weighted standard detection error (WSDE) defined in Eq. 

(3.21) as the evaluation metric to evaluate and compare the proposed method (EB: exact 

Bayesian inference) with other methods. EB is compared with four other methods, the particle 

filters based method (PF) proposed in Chapter 3, the slope detection method (SDM) [69, 86, 87], 

the variance ratio test method (VRT) [54, 62], and the t-test method [88]. The linear, quadratic, 

exponential and oscillating signals are used to generate for comparison. For each type of signal, 

two sets of signal parameters are used: (1) ã 	 1, � 	 200, (2) ã 	 1, � 	 300 to simulate 

different severity of the initial bias. To test the algorithm for both Gaussian/non-Gaussian noise, 

we use three kinds of autoregressive noise: no auto-correlation (AR(0)), first-order 

autoregressive correlation (AR(1)), and second-order autoregressive correlation (AR(2)), as 

shown in Table 4-2. Three noise amplitudes *� 	 0.06, 0.1, 0.14  are used for AR(0) and 

*� 	 0.06 and 0.1  are used for AR(1) and AR(2). In the simulation,  	 500  signals 

(replications) are generated for each set of signal parameters. For each set of penalty weight - 

and noise type, the detection parameters (window size and threshold for SDM, VRT and t-test, 

slope threshold ��  for PF and EB) are selected that minimize the overall WSDE of all 
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generated signals (e.g., 4 9 2 9 3 9 500 for AR(0)). The support size � 	 10for EB and the 

other algorithm parameters are the same as in Section 4.1.  

Table 4-2: Noise types and their parameters 

Auto-correlation type Equation Parameter 

AR(0) G���� 	 D� D�~ �0, *��� 

AR(1) G���� 	 £�G�$���� O D� £� 	 0.4 

AR(2) G���� 	 £�G�$���� O £�G�$���� O D� £� 	 L0.25, £� 	 0.5 

 

 

Figure 4-6: The weighted standard detection error (WSDE) and false alarm rate (FAR) of the 
proposed method (EB), PF, SDM, VRT and t-test as a function of penalty weight - for (a)-(b): 
AR(0); (c)-(d): AR(1) and (e)-(f): AR(2). 

Figure 4-6 shows the WSDE and FAR as functions of - for each noise autoregressive type. 

Here FAR is only used to provide extra detection information. As we can see, the proposed 

0.1 0.3 0.5 0.7 0.9
0.05

0.15

0.25

0.35

0.45

0.55

0.65

w

F
A

R

 

 

EB

PF

SDM

VRT

t-test

(b)

0.1 0.3 0.5 0.7 0.9
0.05

0.15

0.25

0.35

0.45

0.55

0.65

w

F
A

R

 

 

EB

PF

SDM

VRT

t-test

(d)

0.1 0.3 0.5 0.7 0.9
0.05

0.15

0.25

0.35

0.45

0.55

0.65

w

F
A

R

 

 

EB

PF

SDM

VRT

t-test

(f)

0.1 0.3 0.5 0.7 0.9 1
15

25

35

45

55

65

75

w

W
S

D
E

 

 

EB

PF

SDM

VRT

t-test

(a)

0.1 0.3 0.5 0.7 0.9 1
15

25

35

45

55

65

75

w

W
S

D
E

 

 

EB

PF

SDM

VRT

t-test

(c)

0.1 0.3 0.5 0.7 0.9
15

25

35

45

55

65

75

w

W
S

D
E

 

 

EB

PF

SDM

VRT

t-test

(e)



104 

 

method EB and PF are much more accurate than SDM, VRT and t-test in terms of WSDE in all 

penalty weights. Besides, EB is slightly better comparing with PF method. The FAR of the 

proposed method is also lower than other methods in most cases.  

Table 4-3: Comparison of EB, PF, SDM, VRT and t-test for - 	 1 and noise type AR(0). The 
detection parameters are (1) EB, �� 	 0.0020; (2) PF, �� 	 0.0022; (2) SDM, window size � 	 50 , threshold= 8 9 10$: ; (3) VRT, � 	 98 , threshold=0.6; (4) t-test, � 	 28 , 
threshold=0.9. 

Signal �� ����  ��� 

EB PF SDM VRT t-test  EB PF SDM VRT t-test 

Lin. T0=200 0.06 38.0 42.0 59.8 78.6 79.0  0 0 0 0 0 
0.10 47.8 53.9 60.7 66.1 65.8  0 0 0 0 0 
0.14 55.4 64.5 57.6 60.4 81.4  0 0 0 0 0.02 

T0=300 0.06 37.5 40.9 58.0 70.9 92.1  0 0 0 0 0 
0.10 38.3 53.1 55.9 56.6 65.0  0 0 0 0.04 0.04 
0.14 47.2 70.4 58.6 121.6 122.0  0.02 0.01 0.03 0.75 0.44 

Quad. T0=200 0.06 15.3 12.1 33.6 37.6 39.1  0 0.11 0 0 0.04 

0.10 25.7 21.2 31.9 26.7 32.7  0.06 0.04 0.02 0.04 0.16 

0.14 37.2 33.7 28.2 18.5 40.8  0 0.06 0.14 0.36 0.58 

T0=300 0.06 34.0 33.8 22.4 16.3 46.4  1 1 0.11 0.33 0.2 

0.10 32.8 28.1 23.9 37.5 49.8  0.98 0.93 0.45 0.83 0.72 

0.14 34.6 22.4 34.5 72.8 70.0  0.84 0.62 0.62 0.93 0.84 

Exp. T0=200 0.06 18.4 16.6 45.9 44.4 58.0  0.06 0.12 0 0 0.02 
0.10 24.7 26.3 40.5 23.2 48.6  0.1 0.08 0.03 0.30 0.22 
0.14 40.7 35.0 34.8 26.1 47.5  0.08 0.06 0.17 0.73 0.7 

T0=300 0.06 54.0 61.7 35.5 27.2 41.0  1 1 0.04 0.51 0.28 
0.10 54.9 49.4 32.2 67.3 65.1  0.96 0.98 0.38 0.96 0.8 
0.14 52.6 40.1 55.7 107.8 103.6  0.94 0.88 0.82 0.99 0.98 

Osc. T0=200 0.06 23.3 27.1 94.9 74.4 60.0  0 0.01 1 0 1 
0.10 31.6 27.6 90.2 61.5 70.1  0 0.04 0.99 0 0.98 
0.14 35.1 26.6 94.0 54.1 82.8  0 0.06 1 0 0.94 

T0=300 0.06 21.7 23.0 156 63.6 73.2  0 0.04 1 0 1 
0.10 24.7 25.7 156 49.8 71.5  0 0.2 0.99 0 0.98 
0.14 24.2 29.4 152 40.6 72.5  0.1 0.55 1 0 0.98 

Overall 37.3 39.1 59.9 60.3 69.0  0.25 0.28 0.38 0.28 0.50 

 

Table 4-3 shows the detailed detection results among different bias signals and noise 

amplitudes in the case of - 	 1 and Gaussian noise. The proposed method is much more robust 



105 

 

than other methods in handling different bias signals with different severity and noise amplitude. 

The maximum WSDE among different signals, as well as the overall WSDE are much lower 

than other methods. For other methods, especially SDM, VRT and t-test, only one set of 

detection parameters is not sufficiently flexible to be effective in all cases.  

4.6 Application in the Micro/nanoparticle Dispersion Process 

 

Figure 4-7: Steady state detection of CNP signals in the dispersion of 30 g Al2O3 for (a) 
ultrasonic power 30 W and (b) ultrasonic power 40 W. The dash-dotted line denotes the detected 
time using the proposed method and the dashed line denotes the EWMA-MSER (off-line) [69] 
detected time.  

In this section, we use cavitation noise power (CNP) signals taken from the 

micro/nanoparticle dispersion to illustrate the application of the proposed steady state detection. 

Figure 4-7 shows the detection of CNP signals in the dispersion of 30 g Al2O3 particles under 

ultrasonic power 30 W (a) and 40 W (b). We use the same detection parameters except the 

threshold as used in the simulation. The new threshold is set as 0.001. The offline method 
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EWMA-MSER [69] developed in Chapter 2 is used as a benchmark to evaluate the proposed 

method. The offline method detected steady state times are 418 and 293 for CNP signals of 

power 30 and 40 W, respectively. In contrast, the detection results for the proposed method are 

434 and 329, or the detection delays are 16 and 35 respectively, both of which are below 40.  

4.7 Discussion and Conclusion 

In this chapter, we have developed a new on-line steady state detection method using the 

multiple change-point models and exact Bayesian inference method. The signals are formulated 

as piecewise linear models and state space models and the posterior of the latest change-point is 

recursively calculated using a recursive message-passing algorithm. The slope and intercept of 

the current linear segment conditioning on the latest change-point and observations is proved to 

follow nonstandard bivariate student � distribution. Based on this finding, a probability index is 

developed to detect the steady state.  

A fixed support size strategy for the posterior of the latest change-point is proposed using 

weighted sampling without replacement to control and balance the computational cost of each 

time step. Other approximation strategies for the Gamma ratio and probability index are also 

proposed for further reduction of computational cost. The computational cost of the proposed 

method is significantly lower than the particle filters based method. An accurate approximation 

formula for the average run length on the steady state observations are derived to provide insight 

and guidance on understanding and tuning the proposed method.  
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The performance of the proposed method is evaluated based on the weighted standard 

detection error. The simulation results demonstrate that the proposed method is much more 

robust in detecting different bias signals under different noise levels/types and bias severity. It 

functions like an adaptive slope detection method, using mainly the observations since the latest 

change-point and adaptive window sizes based on the bias shape and noise amplitude. In this 

numerical illustration only the non-informative priors are used for change-point model 

parameters. In practice, however, we may have prior knowledge about the signals (e.g., bias 

shapes, steady state transition point interval, etc), and thus informative priors could be applied 

for further improvement of the detection accuracy.  

4.8 Appendix 

4.8.1 Calculation of >�0, 	� 

���, �� 	 V ��'!:�|*�, 2�+�*��+�2|*��X*�XK
	 V ÷ Õ&2Ö(�Γ Õ,2Ö �*��$(�$�¯$ .���ù Ç�2Â�$�|*�!|$��¯$�2$2ª� A!���2$2ª���� È Ç�2Â�$�$!q�� �*��$�$!q�� ¯$û�Ì:à$ýÌà2û����  È X*�X2  

	 V Õ&2Ö(�Γ Õ,2Ö �2Â�$�$!q�� �*��$�$!q(q:� |!|$�� expIL )!�2*�Q expIL �2 L ò!����ý!�� ý!� O !$���2 L ò!��2*� Q X*�X2 

	 V Õ&2Ö(�Γ Õ,2Ö �2Â�$�$!q�� �*��$�$!q(q�� |!|$�� exp 
L )!�2*�� |ý!�� ý!� O !$�|$��X*�  
	 Â$��$!q��/� J|'!�||!| N�� &(��)!����$!q�q(�/� Γ�� L � O 1 O ,2 �Γ�,/2�  

where  
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'!� 	 �ý!�� ý!� O !$��$� 

+!� 	 �!$�2� O ý!�� '!:�� 

ò!� 	 '!�+!� 
)!� 	 '!:�� '!:� O & O  2��!$�2� L+!�� '!�+!� 

 

4.8.2 Proof of Lemma 4.1 

(1) For simplicity, we use 2 and *� instead of 2	 and *�� in the following derivation.  

��2|¸� 	 �, '!:�� 	 V ��2, *�|¸� 	 �, '!:�� X*� 	 V ��2, *�����'!:�|2, *�, ¸� 	 �����, �� X*�

	 1���, �� V ÷ Õ&2Ö(�Γ Õ,2Ö �*��$(�$�¯$ .���ù Ç�2Â�$�|*�!|$��¯$�2$2ª�A!���2$2ª���� È Ç�2Â�$�$!q�� �*��$�$!q�� ¯$û�Ì:à$ýÌà2û����  È X*� 

	 Õ&2Ö(����, ��Γ Õ,2Ö |!|$���2Â�$�$!q�� Γ ¦� L � O 3 O ,2 § Ç�û'!:� L ý!�2û� O �2 L 2���!$��2 L 2�� O &�2 È$�$!q�q(�
 

Ý Ç�û'!:� L ý!�2û� O �2 L 2���!$��2 L 2�� O &�2 È$�$!q�q(�
 

Ý ê�2 L ò!����ý!�� ý!� O !$���2 L ò!�� O '!:�� '!:� O 2��!$�2� O &
L �'!:�� ý!� O 2��!$� ��ý!�� ý!� O !$��$��ý!�� '!:� O !$�2��ë$�$!q�q(�  

Ý 
1 O 1� L � O , O 1 �2 L ò!���!!�$��2 L ò!���$�$!q�q(�
 

where  

ò!� 	 '!�+!� 

!!� 	 )!�'0	�� L � O , O 1� 
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Therefore 

�24|¸� 	 �, '!:��~���� L � O , O 1, ò!� ,!!�� 

(2) Suppose !!� 	 1!�20	1!�, where 10	 	 5E!���,�� 00 E!���,��6  and 2!�  is the correlation matrix. Let 

2r 	 1!�$�2	, then  

��2r|¸� 	 �, '!:�� Ý 
1 O 1� L � O , O 1 �2r L1!�$�ò!���2!�$��2r L1!�$�ò!���$�$!q�q(�
 

Therefore 

�2r|¸� 	 �, '!:��~���� L � O , O 1,1!�$�ò!�,2!�� 

According to [110], the marginal distribution  

� ��E!���,�� |¸� 	 �, '!:��~o� L � O , O 1, �134$�ò34����, 1p 

or �°à$òHI���
�Ìà��,�� |¸� 	 �, '!:�� follows standard univariate �  distribution with degrees of freedom 

� L � O , O 1. 

 

4.8.3 Proof of Lemma 4.2 

(1) ��*��|¸� 	 �, '!:�� 	 J��2� , *��|¸� 	 �, '!:�� X2� Ý J��2� , *�����'!:�|2� , *��, ¸� 	 ��X2� 

Ý V KLL
MÕ&2Ö(�Γ Õ,2Ö �*���$(�$�¯$ .��à�NOO

P 5�2Â�$�|*��!|$��¯$�2	$2ª�A!���2	$2ª���à� 6 Ç�2Â�$�$!q�� �*���$�$!q�� ¯$û�Ì:à$ýÌà2àû����  È X2�  
Ý V 
 �*���$(�$�$��$�$!q�� � 5¯$�2	$2ª�A!���2	$2ª���à� $û�Ì:à$ýÌà2àû���� $ .��à�6X2�   
Ý �*���$�$!q(q�� exp ÇL )!�2*��È 
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Therefore  

�*��|¸� 	 �, '!:��~gô�� L � O , O 12 ,)!�2 � 

(2) 

��2�|*��, ¸� 	 �, '!:�� Ý ��2�|*�����'!:�|*��, 2� , ¸� 	 ��
Ý exp ÇL �2� L 2���!$��2� L ò��2*�� È exp JL û'!:� L ý!�2�û�2*�� N 

Ý  �ò!� , *��'!�� 
Therefore 

�2�|'�:!, *��, ¸� 	 ��~ �ò!� , *��'!�� 
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5 Ultrasonic Attenuation based Inspection Method for Scale-up 

Production of A206 Metal Matrix Nanocomposites
∗∗∗∗
 

In Chapter 2, 3 and 4 we have developed the nanoparticle dispersion monitoring and control 

methods for the fabrication of MMNCs. In this chapter, a new quality inspection method is 

developed using ultrasonic nondestructive testing method. The main contribution of this work is 

the discovery of the relation between ultrasonic attenuation curves and microstructures of Al 

MMNCs.  

5.1 Introduction  

Recently, there has been a growing market for high performance lightweight materials, 

especially in the automotive, aerospace, and defense industries. Aluminum-Copper alloy A206 is 

such a kind of promising material. It has a chemical composition of Al (93.5-95.3%), Cu (4.2-

5.0%), Fe (≤0.1%), Mg (0.15-0.35%), Mn (0.2-0.5%) and Ti (0.15-0.3%). It offers superior 

mechanical properties with excellent high strength at both room and elevated temperature and 

long fatigue life [111]. However, due to its long solidification range and the formation of a long 

continuous intermetallic phase, A206 alloy is extremely susceptible to hot tearing in the casting 

process, which limits its widespread applications [111, 112]. 

                                                           

∗ This chapter is based on the paper: Jianguo Wu, Shiyu Zhou, Xiaochun Li, “Ultrasonic Attenuation 
Based Inspection Method for Scale-up Production of A206-Al2O3 Metal Matrix Nanocomposites”, ASME 

Transactions, Journal of Manufacturing Science and Engineering,137(1), 011013) 
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A206-Al2O3 metal matrix nanocomposites (MMNCs) provide a promising solution to 

improve hot tearing resistance [111]. The A206-Al2O3 MMNCs are fabricated by dispersing 

nano-sized Al2O3 particles into the A206 metal matrix using the ultrasonic cavitation method 

during the liquid phase and then casting into required solid shape [20, 113-116]. The well-

dispersed Al2O3 nanoparticles in A206 work as heterogeneous nucleation agents which could 

significantly reduce the grain size of α-Al and refine the θ-Al2Cu network, thus reducing the hot 

tearing susceptibility and enhance the mechanical properties, e.g., strength and ductility [117].  

The amount and distribution of Al2O3 in A206 play a significant role in grain refinement and 

eutectic morphology modification [69, 111]. Due to their high surface energy, large surface-to-

volume ratio, and poor wettability in liquid, Al2O3 nanoparticles tend to agglomerate and cluster 

together in the fabrication process [11, 23, 69, 118], which may limit their effectiveness. The 

microscopic images, e.g., the scanning electron microscope (SEM) images, are typically used to 

analyze the distribution of Al2O3 particles and the grain refinement of A206. However, the 

microscopic images are very expensive and time-consuming to obtain. As a result, the inspection 

of microstructure based on microscopic images cannot satisfy the quality control needs for the 

scale-up production of A206-Al2O3 MMNCs. It is highly desirable to develop a simpler and more 

economical method for the quality control of the fabrication process of A206-Al2O3 MMNCs.  

In this work, we investigate the feasibility of relating the ultrasonic attenuation with the 

microstructure of A206-Al2O3 MMNCs for the purpose of quality control. Ultrasonic techniques 

have been widely used for material characterization [119-124]. In these techniques, ultrasonic 

velocity and attenuation are two typical indicators used to evaluate microstructures and material 

properties, such as density, porosity, elastic constant, and grain size. The variation of ultrasonic 
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velocity with frequency is typically very small in solid (<1%) [125]. Therefore, ultrasonic 

attenuation is used more frequently than the velocity measurement in characterizing solids since 

it provides a better characterization of the microstructure [126]. 

Acoustic attenuation is the decaying rate of the acoustic wave as it propagates through 

materials. It arises from two loss mechanisms: material absorption and scattering. Material 

absorption is the conversion of the mechanical energy of the acoustic wave into thermal energy 

and it usually dominates the acoustic attenuation at low frequencies. Material absorption 

involves various kinds of mechanisms [125], including hysteresis absorption, thermoelastic 

losses and thermal conduction. Hysteresis absorption is caused by physical relaxation mechanism 

and it typically occurs in single crystals, amorphous solids, and especially polymers [127]. It is 

observed to be proportional to the frequency [127, 128]. Thermoelastic absorption is defined as 

coupling of the thermal and elastic fields created by the propagating acoustic wave and is present 

in almost all materials [125]. The acoustic scattering arises at the boundaries between materials, 

grains or inclusions with different acoustic properties. The total attenuation coefficient is the sum 

of the acoustic absorption coefficient and scattering coefficient. In the low frequency range, the 

absorption losses dominate the attenuation while at high frequencies, the absorption losses are 

negligible and the attenuation is mainly caused by the scattering losses.  

Although considerable work has been done on the relationship between ultrasonic attenuation 

and material microstructures, most of the studies are focused on the single-phase materials where 

the scattering is mainly caused by the grains with different orientations. The attenuation of two-

phase systems has also been studied where each phase is often modeled as a continuum and the 

scattering only occurs at the boundary of different phases [126, 129-133]. These models match 
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well with experimental results for solid or liquid particles in the liquid continuum. While in the 

two-phase system with both phases are solid, the scattering effects in the grain boundaries of the 

same phase may dominate in the total attenuation, which makes these models inaccurate. For 

A206-Al2O3 MMNCs, the attenuation is much more complex since there are three phases, the α-

Al base phase, θ-Al2Cu intermetallic phase and Al2O3 clusters.  

In this research, the relationship between the ultrasonic attenuation and the microstructure of 

A206-Al2O3 MMNCs is investigated through experiments and statistical analysis, which provides 

a useful guideline for the quality control in the manufacturing of A206-Al2O3 MMNCs. The 

chapter is organized as follows. In Section 5.2, the fabrication of the samples and the ultrasonic 

attenuation measurement are introduced. Section 5.3 first presents the microstructures of A206 

and its nanocomposites and the morphology modification mechanisms of Al2O3. Then the 

relationship between the ultrasonic attenuation and microstructures are discussed in details. The 

conclusions are presented in Section 5.4. 

5.2 Experimental Procedure 

5.2.1 Sample Preparation 

Figure 5-1 shows the experimental setup for ultrasonic processing before casting of A206-

Al2O3 MMNCs. It consists of a resistance heating furnace, an ultrasonic cavitation based 

processing system (Misonic Sonicator 3000) with a niobium probe of 12.7 mm in diameter and 

92 mm in length, a temperature control system and a gas protection system. A graphite crucible 

with an inner diameter of 88.9 mm and a height of 101.6mm was used for melting. The 

ultrasonic probe vibrates with the operating frequency of 20 KHz and power of 4.0 KW. Due to 



their low density and poor wettability with A206, Al

A206 melt. Therefore, the double

particles are wrapped by ultrathin aluminum foil

Figure 5-1: The experimen

Table 

Sample ID Sample

1 A206 pure

2 A206 pure

3 A206

4 A206

5 A20

 

About 500 g A206 alloy was first melted in the graphite crucible under the protection of 

argon gas and the temperature was controlled to be 

their low density and poor wettability with A206, Al2O3 particles tend to float on the surface of 

e double-capsulate feeding method [117] is used where the Al

particles are wrapped by ultrathin aluminum foils and discharged into the melt. 

 

The experimental set-up for ultrasonic processing 

 

Table 5-1: Details of fabricated samples 

Sample Al2O3 (wt%) Ultrasound (minutes)

A206 pure 0 0 

A206 pure 0 15 

A206-Al2O3 1% 15 

A206-Al2O3 5% 0 

A206-Al2O3 5% 15 

About 500 g A206 alloy was first melted in the graphite crucible under the protection of 

argon gas and the temperature was controlled to be at 700 ℃. Then the ultrasonic
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is used where the Al2O3 

 

(minutes) 

About 500 g A206 alloy was first melted in the graphite crucible under the protection of 

. Then the ultrasonic cavitation 
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system was turned on and the γ-Al2O3 nanoparticles with a diameter of 50 nm were added into 

the molten melt. After all Al2O3 nanoparticles were added, the ultrasonic cavitation continued for 

15 minutes and then the ultrasonic probe was lifted out of the melt. After that, the molten melt 

was heated up to 740 ℃  and then poured into a steel permanent mold with a preheated 

temperature of 400 ℃. Total 5 samples were fabricated, as shown in Table 5-1. The casted 

samples were cut and polished to 8.5cm×8.5cm×1.6cm blocks, as shown in Figure 5-2. Note for 

sample 4, only mechanical stirring was applied to disperse Al2O3 nanoparticles.  

 

Figure 5-2: A representative casted sample 

5.2.2 Attenuation Measurement 

Figure 5-3 illustrates the ultrasonic attenuation measurement process using the spectral ratio 

analysis technique [134-136]. The attenuations were measured using the Olympus Epoch 1000 

series NDT device with two dual element transducers working in pulse-echo mode: transducer 

D785-RP with diameter of 6 mm and nominal central frequency of 2.25MHz, and transducer 

MTD705 with diameter of 3.8 mm and nominal central frequency of 5MHz. The transducer was 

coupled to the largest surface of samples (thickness 1.6cm) using couplant glycerin with acoustic 

impedance of 2.42 9 10: g/�cm� · sec�. The first and the second back wall echoes k���� and 
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k����were extracted from the measured signals using a rectangular window. Note that in Figure 

5-3 there is a time shift for k���� and k����.  

 

Figure 5-3: Illustration of the attenuation measurement using spectral ratio technique 

The frequency spectra were obtained by performing the Fast Fourier Transform (FFT) on the 

extracted echoes. The spectra k�"� can be expressed as [134, 137, 138] 

k��"� 	 HR²��²?��", 2X�k��"� exp�L2(�"�X� exp�c�2Â"� L 2XE�"��� 

k��"� 	 H�²ßHR²��²?� ��", 4X�k��"� exp�L4(�"�X� exp�c�2Â"� L 4XE�"��� 

(5.1) 

where (�"� is the attenuation coefficient, k��"� is the source spectrum, H�²ß and HR²��²? are the 

acoustic reflection coefficients for the top surface and bottom surface, respectively, E is the wave 

number, � is the traveling time, X is the thickness of the sample, and ��", h� is the diffraction 

coefficient [139]. ��", h� is given as  
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��", h� 	 1 L exp ¦L c2Â� § 
S� ¦2Â� § O cS� ¦2Â� §� (5.2) 

where S� and S� are the cylindrical Bessel functions and � 	 �ä:�T� with å being the radius of the 

transducer. The compressive wave velocity (6320 m/s) for Al material is used to calculate the 

wave number. The attenuation can be calculated using Eq. (5.1) as 

(�"� 	 12X Çln Uk1k2U L ln V��", 2X���", 4X�V O ln�H�é+H·é��é��È (5.3) 

Note that the unit of the calculated attenuation is Nepers/mm  using Eq. (5.3), which 

equals  8.686 dB/mm . The reflection coefficient HR²��²? Y 1  and H�²ß  can be approximated 

using the formula [119] 

H�²ß 	 W� L W�W� O W� (5.4) 

where W� 	 2.42 9 10: g/�cm� · sec�  and W� 	 17.1 9 10: g/�cm� · sec� are the acoustic 

impedances of glycerin and aluminum, respectively. Since the spectrum with large deviation 

from the central frequency has low accuracy, about L6dB bandwidth is selected such that only 

the center 50% of the frequency range is used to calculate the attenuation.  

5.3 Experimental Results and Analysis 

5.3.1 Microstructures and Morphology Modification Mechanism 

Figure 5-4 shows the micrographs of the pure A206 alloy and A206-1wt%Al2O3 

nanocomposite in as-cast form taken at random positions of the samples. For the pure A206 alloy, 
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there are large dendritic primary α-Al phases surrounded by continuous θ-Al2Cu intermetallic 

phases. These θ-Al2Cu phases accumulate along the grain boundaries of the primary α-Al phases 

with the morphology of long continuous network. For the A206-1wt% Al2O3 nanocomposites, 

the morphology of the primary α-Al phases is changed from the large dendritic structures to 

small equiaxed crystals. Besides, the θ-Al2Cu phases become thinner and much less continuous. 

It should be noted that the ultrasonic processing for the pure A206 has almost no influence on the 

microstructure. Choi et al [111] found that the average grain size for pure A206 with ultrasonic 

processing is slightly reduced compared with pure A206 without ultrasonic processing.  

 

Figure 5-4: Optical micrographs of as-cast pure A206 and A206-1wt%Al2O3 MMNCs with 15 
min ultrasonic processing 

The polarized-light micrographs of the pure A206 alloy and A206-1wt%Al2O3 MMNCs are 

shown in Figure 5-5. The average grain size for the primary α-Al phases of the pure A206 is 

20 μm
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about 160 µm measured using the linear intercept method. Compared with pure A206, the 

average grain size for A206-1wt%Al2O3 is significantly reduced by almost 50%. It indicates that 

the Al2O3 nanoparticles work as heterogeneous nucleation agents and thus could noticeably 

reduce the grain size of α-Al and refine the θ-Al2Cu network. 

 

Figure 5-5: Polarized light micrographs of as-cast pure A206 and A206-1wt%Al2O3 MMNCs 
with 15 min ultrasonic processing 

The mechanisms for the formation of continuous network of the eutectic θ-Al2Cu phase in 

the pure A206 and the morphology modification by Al2O3 in A206-Al2O3 nanocomposites are 

well studied [20, 111, 117, 140]. For the pure A206 alloys, the primary α-Al phases will first 

nucleate and grow to large dendritic structure in the solidification process. Due to the high 

supercooling of the θ-Al2Cu phase nucleation, the Cu solute will be pushed out of α-Al phases 

into the remaining liquid phase and accumulates between dendrite arms and adjacent dendrites. 

When the Cu content increases to the eutectic composition (33%Cu), the θ-Al2Cu phase starts to 

nucleate and grow into a long continuous eutectic microstructure in-between the α-Al dendrites.  

Pure A206
A206+1wt% Al2O3
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For the A206-Al2O3 nanocomposites, the formation mechanism of the eutectic phase is 

modified with the existence of Al2O3 nanoparticles. Similarly, the Cu solute and the Al2O3 

particles are pushed to the remaining liquid in the formation of the primary α-Al phases. The 

concentrated Al2O3 particles have good nucleant potency and could serve as effective nucleation 

sites for θ-Al2Cu to nucleate and grow before the remaining liquid reaches the eutectic 

composition. The depletion of Cu due to the formation of θ-Al2Cu will on the other hand enrich 

the content of Al around the θ-Al2Cu phases and thus form α-Al phases to block the growth of 

long θ-Al2Cu phases. Therefore, the Al2O3 nanoparticles can effectively refine both α-Al phases 

and θ-Al2Cu phases, and thus reduce the hot tearing susceptibility and enhance the material 

strength and ductility.  

5.3.2 Relationship between the Acoustic Attenuation and Microstructures 

5.3.2.1 Non-uniformity of Acoustic Attenuation  

Figure 5-6 shows the ultrasonic attenuations as functions of frequency measured at 25 

randomly selected locations using the transducer D785-RP of 2.25MHz as nominal frequency for 

each casted sample. Note that zero-padding is used as a frequency interpolation method in the 

Discrete Fourier Transform to increase the number of observations within the selected bandwidth. 

From this figure we can clearly see that there are large variations for the measured attenuation at 

each frequency for the first four samples while for sample 5 A206-5%Al2O3 the variation is 

much lower. Figure 5-7 shows the ultrasonic attenuation measured at 25 randomly selected 

locations using the transducer MTD705. Similarly, the variations of the attenuation among 

different locations are very large for the first four samples, especially the sample A206-5%Al2O3 
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without ultrasonic processing. While for the sample A206-5%Al2O3 with ultrasonic treatment, 

the attenuation is quite uniform.  

 

Figure 5-6: Ultrasonic attenuation as function of frequency measured at multiple random 
locations using transducer with nominal central frequency 2.25 MHz: (a) sample 1, pure A206 
without ultrasonic processing; (b) sample 2, pure A206 with ultrasonic processing; (c) sample 3, 
A206+1%Al2O3+ultrasonic processing; (d) sample 4, A206+5%Al2O3, no ultrasonic processing; 
(e) sample 5, A206+5%Al2O3+ultrasonic processing. 

There are three types of inherited uncertainties in the ultrasonic measurement system itself 

that may lead to large variation, namely the couplant thickness between the sample and 

transducer, the reflection or transmission coefficient due to different coupling conditions, and the 

electronic noises. To determine if these factors are significant in our experiments, we measured 

the attenuation of sample 2 at 10 randomly selected locations with each location measured 10 

times. The results are shown in Figure 5-8. From the results we can clearly see that the variation 

of the attenuation at the same location is negligible compared with the variation across different 
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measurement locations. It indicates that the large non-uniformity of the attenuation is mainly due 

to the variation in microstructures of the samples. 

 

Figure 5-7: Ultrasonic attenuation as function of frequency measured at multiple random 
locations using transducer with nominal central frequency 5 MHz: (a) sample 1, pure A206 
without ultrasonic processing; (b) sample 2, pure A206 with ultrasonic processing; (c) sample 3, 
A206+1%Al2O3+ultrasonic processing; (d) sample 4, A206+5%Al2O3, no ultrasonic processing; 
(e) sample 5, A206+5%Al2O3+ultrasonic processing. 

This non-uniformity of ultrasonic attenuation is quite similar to the phenomenon of large 

anisotropies of the acoustic backscattering found in titanium alloys [141-144]. In these alloys 

(e.g., Ti6242, Ti-6Al-4V [145-147] ), there exist microtextures or colonies of crystallites sharing 

a common crystallographic orientation over a long range. The formation of long microtextures 

due to the preference of certain orientations directly results in the plastic anisotropy and thus 

large inhomogeneities of the backscattering or ultrasonic attenuation along different acoustic 

paths. For example, Mukhopadhyay et al. [143] measured the nonlinear ultrasonic (NLU) 
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parameters at different locations of β heat treated near α titanium alloys under different cooling 

rates. The slow cooling rate tends to produce microtexture structures while fast cooling rate 

results in fine acicular α structure with random orientation in the primary β phase. Their results 

showed that the variance of NLU parameter was significant for the specimen with slowest 

cooling rate and the variance decreased with increasing cooling rate.  

 

Figure 5-8: Ultrasonic attenuation of the pure A206 with ultrasonic processing (sample 2) 
measured at 10 random locations with each location measuring 10 times using the transducer 
D785-RP. 

The non-uniformity of the acoustic attenuation in A206/A206-Al2O3 can be explained in a 

similar way. Three main sources may cause the non-uniformity of attenuation: the primary α-Al 

phase, the θ-Al2Cu phase and the cluster of Al2O3 nanoparticles in the A206-Al2O3 MMNCs. In 

the pure A206 with/without ultrasonic processing, the primary α-Al phase exhibits large 

dendritic structures with grain size up to several hundred micrometers, as shown in Figure 5-4 

and Figure 5-5. Typically the orientations of these dendrites are not randomly distributed due to 

the preference of certain crystalline orientations, e.g. the heat flow direction, in different 

locations. Besides, the θ-Al2Cu phase along the grain boundaries exists in the morphology of 
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long continuous network. The interfaces between the α-Al phase and the θ-Al2Cu phase are quite 

anisotropic along different acoustic paths. Since the difference of acoustic properties between α-

Al and θ-Al2Cu are much more significant than that between α-Al grains with different 

orientations, the acoustic non-uniformity is mainly caused by the θ-Al2Cu network.  

 

Figure 5-9: Optical micrographs of A206-5wt% Al2O3 nanocomposites with ultrasonic 
processing treatment 

For the A206-5% Al2O3 nanocomposites with ultrasonic processing, due to the enhanced 

nucleation by evenly distributed Al2O3 nanoparticles, both the grain size of the primary phase 

and the long continuous θ-Al2Cu phase are significantly reduced, which makes the material 

much more isotropic. Figure 5-9 shows the optical micrographs of the A206-5wt%Al2O3 

nanocomposites with ultrasonic processing, from which we can clearly see that the θ-Al2Cu 

network is totally broken and the boundaries of the primary phase are much more difficult to 

recognize.  

θ-Al2Cu

θ-Al2Cu+Al2O3
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Figure 5-10: SEM image of A206-Al2O3 nanocomposites showing big Al2O3 clusters 

For the A206-5wt% Al2O3 nanocomposites without ultrasonic processing, the Al2O3 particles 

agglomerate together and form big clusters (Figure 5-10), which could significantly reduce their 

effectiveness in refining grain sizes. Besides, without ultrasonic processing, the Al2O3 

nanoparticles or clusters may not be evenly distributed in the nanocomposites, which may make 

the material even more anisotropic. For the A206-1% Al2O3 nanocomposites, there still exists 

long θ-Al2Cu phase, though less continuous and thinner. Therefore the non-uniformity is still 

notable compared with A206-5wt% Al2O3 nanocomposites.  

5.3.2.2 Quantification of the Non-uniformity in Ultrasonic Attenuation 

To quantitatively describe the non-uniformity, we use the variance in the ultrasonic 

attenuation and built a model to estimate it as follows. Denote (<� as the attenuation of the j-th 

location under the frequency "< and it is given as 

(<� 	 ¢< O D<� (5.5) 

Al2O3 Cluster
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where ¢<  is the mean attenuation at frequency "<  and D<�  is the attenuation bias for the j-th 

location at frequency "<. Assume that D<� follows independent and identically distributed (i.i.d.) 

normal distribution.  D<�~ ccX  �0, *��. It is reasonable to assume i.i.d. normal distribution since 

at different measuring locations the attenuation at a specific frequency is random and at a 

specific location, the attenuation at different frequencies is somehow independent in many cases 

when the frequency increment is large. The unbiased estimator for the mean ¢<  and variance *� 

can be calculated as  

¢̂< 	 1� Z (<�?
�_�  (5.6) 

*�~ 	 k� 	 ∑ ∑ o(<� L ¢̂<p�?�_�=<_� @�� L 1�  (5.7) 

where @  and �  are the number of frequencies (no zero-padding) and number of measuring 

locations at each frequency, respectively.  

 

Figure 5-11: The estimated variance of the acoustic attenuation measured using (a) transducer 
with nominal central frequency 2.25MHz; (b) transducer with nominal central frequency 5MHz 
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Figure 5-11 shows the estimated variance of the ultrasonic attenuation measured using these 

two transducers. It clearly shows that sample 4 (A206+5%Al2O3, no ultrasonic processing) has 

the highest variances while sample 5 (A206+5%Al2O3, ultrasonic processing) has the lowest 

variances for both transducers. Sample 3 has the second lowest variance of the attenuation. It is 

consistent with the discussion above that sample 5 has the most uniform structure and it is 

followed by sample 3. For sample 4, due to the unevenly distributed Al2O3 particles and 

formation of large Al2O3 clusters, the microstructure becomes the most inhomogeneous. In 

addition, the variances for the first three sample in Figure 5-11 (a) are much lower than in Figure 

5-11 (b), indicating that at low frequencies, the ultrasonic attenuation is more isotropic. This 

result is similar to Han’s theoretical result [142] that at high frequencies, the backscattering is 

much more anisotropic. For sample 1 and sample 2, there is almost no difference in the variance 

in Figure 5-11 (a) and the former is a little lower than the latter in Figure 5-11 (b).  

From the discussion above we know that the non-uniformity of the acoustic attenuation can 

provide insight on the microstructures of A206/A206-Al2O3 nanocomposites. When there exist 

long continuous intermetallic phase and large dendrites, the variance is significant. Therefore, in 

the scale-up production, the estimated variance can be used as an indicator to inspect the quality 

of A206-Al2O3 nanocomposites. 

Specifically, suppose we have a good sample with evenly-distributed Al2O3 and well refined 

microstructures, and a target sample to be inspected. We can construct a hypothesis test based on 

the estimated variances as follows. The null hypothesis ()�) and the alternative hypothesis ()�) 

are defined as 
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)�: *�� { *�� 

)�: *�� A *�� 

where *��  and *��  are the attenuation variances for the good sample and the target sample, 

respectively. If the null hypothesis is accepted, then the target sample can be determined as a 

good sample. On the other hand, if the null hypothesis is rejected and the alternative is accepted, 

then the target sample is deemed as a poor sample. The estimated variances for the good sample 

and the target sample are k�� and k��, respectively. Then we have 

k��/*��k��/*�� ~[�@���� L 1�, @���� L 1�� (5.8) 

where @<  and �<  are the number of frequencies and number of measuring locations for good 

sample (c 	 1) and the target sample (c 	 2). The test statistic is defined as  

H 	 k��k�� (5.9) 

The critical value for the test with significance level (M(upper bound of type I error, typically 

select 0.05) is given as [�$i\�@���� L 1�, @���� L 1��, namely, the �1 L (M�-th quantile for the 

[  distribution with freedom @���� L 1� and @���� L 1� . The null hypothesis )�  can be 

rejected if  

H A [�$i\�@���� L 1�, @���� L 1�� (5.10) 

In practice, 1wt% Al2O3 nanoparticles are sufficient to improve the A206-Al2O3 

nanocomposites to reach the desired material properties [111, 117]. Suppose we select Sample 3 
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as the reference sample with acceptable properties. @� 	 @� 	 3  and �� 	 �� 	 25  in the 

frequency range 2.0~2.5MHz. The critical value with (M 	 0.05  is 1.4656. Then if k�� A
1.4656k�� 	 0.0023, the null hypothesis can be rejected. From Figure 5-11 (a) we can see that 

Sample 1, 2, and 4 have variance larger than 0.0023. In the quality inspection we can treat them 

as poor samples. The testing results are the same if we use the attenuation data in the frequency 

range 4.5~6MHz. Note that the critical value in Eq. (5.10) is specifically related to the selected 

frequency range and the number of measuring locations. 

5.3.2.3 Frequency Dependency of Acoustic Attenuation 

Besides the attenuation variance, the mean attenuation also highly depends on the 

microstructures and it is also used to characterize the microstructures. In this section, the 

frequency dependency of the attenuation for both absorption and scattering mechanisms was first 

introduced and then used to interpret the experimental results.  

As mentioned in the introduction section, the attenuation can be split into two parts, the 

absorption loss and the scattering loss. The main absorption mechanisms include the 

thermoelastic losses and thermal conduction. For the thermoelastic losses can be classified into 

two types: interparticle and intraparticle thermoelastic absorption. The intraparticle thermoelastic 

absorption (�]� can be expressed as [125] 

(�]� Y 2Â�&Í L &��&Í
""��"� O "���  (5.11) 

where &! and &� are the elastic moduli under adiabatic and isothermal conditions respectively, " 

is the acoustic frequency and "�� is the frequency of the maximum attenuation given as 
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"�� Y Â2 #��fì (5.12) 

where # is the thermal conductivity of the particle and � is the particle size or grain size and fì 

is the specific heat at constant volume. The interparticle thermoelastic absorption (�]� is given as 

[125] 

(�]� Y "°�f% L fì�fì
""��"� O "���  (5.13) 

where "° is the anisotropy factor, f% and fì are specific heat at constant pressure and volume. 

Here "�� is given as 

"�� Y 3Â2 #��fì (5.14) 

The thermal conduction absorption (�F has similar dependence on " and can be given as [125] 

(�F 	 Â J�����N ¦;Í L ;^;� § ""��"� O "���  (5.15) 

where � is the acoustic velocity at the current frequency, �� is the velocity at zero frequency, ;Í 

and ;�  are the combinations of the elastic constants under adiabatic and isothermal conditions, 

and "�� is the frequency where (�F reaches maximum and it is given as  

"�� 	 12Â �fì��# � ;Í;� (5.16) 
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The scattering coefficient (!  depends on the ratio of the grain or inclusion size �  to the 

wavelength � and the functional dependence of scattering losses on frequency can be expressed 

as [121, 148] 

(! Ý
îïð
ïñ�� · "G, H�'_¯cÁã å¯Ácé@ 2Â�� D 1

 � · "�, k�é`ã���c` å¯Ácé@ 2Â�� Y 11� , �c""a�c,¯ å¯Ácé@ 2Â�� v 1
© (5.17) 

Typically the scattering is of the Rayleigh type when � A 8~10� [125]. Based on the 

absorption and scattering equations above, the idealized attenuation coefficient may have the 

shape shown in Figure 5-12, where there are three regions: the increasing region caused by the 

absorption loss before "� (denoted as Region I), the decreasing region after "� (Region II), and 

the increasing region dominated by the scattering loss (Region III). It will be used to explain the 

attenuation results of the A206/A206-Al2O3 nanocomposites as follows.  

 

Figure 5-12: Idealized attenuation coefficient identifying absorption and scattering dominant 
regions based on theoretical models 
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Figure 5-13 shows the average ultrasonic attenuations of these five samples measured using 

these two selected transducers. In the frequency range of 2~2.5 MHz, the attenuation of the pure 

A206 with/without ultrasonic treatment (UT) decreases with increasing frequency, which 

corresponds to Region II in Figure 5-12 and indicates that the absorption losses dominate the 

attenuation in this low frequency range. Similar decreasing trend of attenuation has also been 

reported on the cement-based materials in the low frequency range [129]. As for the scattering 

loss, since the wavelength is about 2.5mm~3.16mm (wave speed 6320m/s), there may exist both 

Rayleigh scattering and stochastic scattering.  

 

Figure 5-13: The average ultrasonic attenuation as a function of frequency measured using 
transducer with nominal central frequency 2.25MHz; (b) transducer with nominal central 
frequency 5MHz.  

For both A206-1% Al2O3 and A206-5% Al2O3 nanocomposites with ultrasonic treatment, the 

attenuation increases with frequency. One possible reason is that as the grain size decreases, "� 

increases since "� Ý �°� as described in Eq. (5.12) and (5.14). The frequency range lies in the 

Region I of Figure 5-12 and the absorption increases with the increasing of frequency. The 
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attenuation of A206-1% Al2O3 is higher than A206-5% Al2O3 with ultrasonic treatment. The 

possible reason is that a large amount of Al2O3 particles increases the absorption losses. For these 

two samples, the Rayleigh scattering dominates due to the significant reduction of grain sizes. 

For A206-5% Al2O3 without ultrasonic treatment, the attenuation is much more complex due to 

the clusters of nanoparticles and the attenuation is essentially flat.   

In the frequency range of 4.5~6 MHz, the attenuation for all samples increases with 

increasing frequencies, as shown in Figure 5-13 (b). In this frequency range, the attenuation is 

dominated by the scattering losses (Region III in Figure 5-12) and the absorption losses may be 

negligible. The A206-5% Al2O3 with ultrasonic treatment has the lowest attenuations while the 

pure A206 w/o UT have the largest attenuations in the high frequency range. The attenuations of 

A206-1% Al2O3 with UT and A206-5% Al2O3 without UT lie between the two extreme cases. 

The results are consistent with what we expected since the attenuations are dominated by the 

scattering along the grain boundaries at high frequency range and increasing the grain size could 

increase the scattering effects.  

5.4 Conclusion and Discussion 

In this chapter, we propose a new method to evaluate the microstructures of MMNCs using 

ultrasonic nondestructive detection methods. We have two main findings in this work: (1) Due to 

the large primary dendrites, long continuous intermetallic phase and unevenly distributed Al2O3 

nanoparticles, the acoustic attenuations will be non-uniform at different locations of the same 

sample of A206-Al2O3 MMNC. As a result, the variance of the acoustic attenuation could be 

used as an indicator of the microstructure of MMNCs. A statistical hypothesis test based on the 
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estimated variance is constructed and through this test, we can tell the quality of microstructure 

refinement of the A206-Al2O3 MMNCs. (2) The functional form of the average attenuation at 

different frequencies is also highly related with the microstructures of MMNCs. For the pure 

A206, the attenuation function decreases with increasing frequencies at low frequency range 

where the absorption mechanism dominates the attenuation losses. For the A206-Al2O3 

nanocomposites, the average attenuation increases with frequencies in the low frequency range. 

In the high frequency range, the attenuation curves for all samples have increasing trend and the 

samples with smaller grain sizes have lower attenuations due to the reduced scattering losses. 

These results provide useful insight and promising tools on using ultrasonic non-destructive 

testing techniques to examine the quality of A206-Al2O3 nanocomposites.  
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6 Bayesian Hierarchical Linear Modeling of Ultrasonic Attenuation 

Profiles with Heterogeneous Level-2 Variances in the Production 

of A206-Al2O3 Nanocomposites
∗∗∗∗
 

6.1 Introduction 

In Chapter 5, we found that well-dispersed samples with more homogeneous microstructures 

(i.e., smaller grain size, thinner and less continuous Al2Cu intermetallic phase, and well 

dispersed Al2O3 nanoparticles) have lower between-curve variation of attenuations measured at 

randomly selected locations, as shown in Figure 5-6 (c) and (e). This phenomenon has also been 

observed by Liu et al [149] through microstructural modelling and wave propagation simulation 

approach. The attenuation profiles from both experiment and physical simulation have the 

following characteristics: (1) the attenuation linearly increases with frequency for each profile in 

a selected frequency range; (2) for each nanocomposite sample, the attenuation profiles can be 

well modelled using linear mixed-effects model (LME) where each profile can be modeled by 

polynomials and the coefficients of the polynomials follow normal distribution; (3) the mean and 

variance of the polynomial coefficients vary across samples with different microstructural 

quality. 

                                                           

∗ This chapter is based on the paper: Jianguo Wu, Yuhang Liu, Shiyu Zhou, “Bayesian Hierarchical 
Linear Modeling of Ultrasonic Attenuation Profiles with Heterogeneous Level-2 Variances in the Scale-
up Production of A206-Al2O3 Nanocomposites”, ( to be submitted) 
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To capture the above mentioned characteristics, we propose a hierarchical linear model 

(HLM), or specifically a two-level model, with heterogeneous level-2 variances in modelling of 

the attenuation profiles. There are three parts in the proposed model: (1) the attenuation is 

modeled as a linear function of ultrasonic frequency in level-1; (2) the coefficients in level-1 are 

modeled as linear functions of the microstructural parameters in level-2 with diagonal residual 

covariance matrix; (3) the residual variances in level-2 are modeled as log-linear functions of the 

microstructural parameters. Note that the model with only the first two parts is a hierarchical 

linear model, which is a variant term for multilevel model or for what are broadly called LME 

model. In this chapter, we use the term HLM instead of LME to differentiate the new model 

from the common LME model used in [150]. The third part of the proposed model is an 

embedded variance regression to characterize the heterogeneity of the coefficient variance under 

different microstructures. Therefore our model can capture not only the within and between-

profile variations for a specific microstructure, but also the variations across different 

microstructures. The purpose of this study is twofold, (1) to establish a general methodology to 

incorporate underlying relevant parameters, e.g., microstructural parameters, into the profile 

modelling, (2) to ultimately infer the microstructural parameters based on the established model 

for simultaneous profile monitoring and diagnosis in quality control. Note that compared with 

the traditional LME model based profile modeling and monitoring [150, 151], our model has the 

advantage of directly relating the qualitative parameters with profiles and diagnosing the 

qualitative parameters.  

HLM has been widely used to model hierarchically structured data in the biomedical and 

social research [152, 153]. Extensions of the HLM with heterogeneous within-profile noise 
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variances (e.g., residual variance in level-1 model) have also been intensively studied [154-156]. 

However, there is very limited work on modeling heterogeneous variances for random effects. 

For the standard HLM, model parameters can be estimated using two general methods, the 

maximum likelihood (ML) and the restricted maximum likelihood (REML) [157]. However, 

these methods cannot be directly applied to the proposed model, as the addition of the log-linear 

model makes the optimization much more complicated. In this chapter, we propose to estimate 

the model using the Markov chain Monte Carlo (MCMC) simulation under the Bayesian 

framework. This approach can not only efficiently estimate the model parameters, but also 

provide another two benefits, one being the model selection (e.g., determining the degree of 

polynomial, which coefficient is random) which is critically important in model building, and the 

other one being the Bayesian inference of microstructural parameters based on newly observed 

attenuation profiles, which is our ultimate goal in profile monitoring and diagnosis for quality 

control. 

The remainder of this chapter is organized as follows. In Section 6.2 the new HLM with 

heterogeneous variances is formulated. The MCMC estimation of model parameters and model 

selection are given in Section 6.3 and Section 6.4 respectively. Section 6.5 evaluates the 

performance of model selection and estimation through numerical simulations. Section 6.6 

presents the case study where the proposed model is applied to the ultrasonic attenuation profiles 

of MMNCs. The conclusions and discussions are given in Section 6.7. 
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6.2 Two-level Hierarchical Linear Model with Heterogeneous Level-2 

Variances 

 

Figure 6-1: Illustration of the hierarchical data structure. 

Figure 6-1 shows the hierarchical data structure. Suppose the data are obtained from � 

samples of different microstructures, where each sample was measured multiple times using 

ultrasonic testing at randomly selected locations on the polished surface. For each measurement 

we obtain one attenuation profile, which is the attenuation coefficient as function of ultrasonic 

frequency. Without loss of generosity, we assume that each sample has _ attenuation profiles and 

each profile has @  observations at the same frequencies. Let �<  denote the microstructural 

parameters of the i-th sample, �<� be the j-th profile of sample i, and É� be the E-th frequency. 

The hierarchical linear model with heterogeneous level-2 variances is defined as follows: 
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Sample 1 (��)

Profile 1 (���) ….

Obs. 1 ('���) ….

Profile l (��d)

Obs. n ('��=)

….

….

….

Sample m (�?)

Profile 1 (�?�) ….

Obs. 1 ('?d�) ….

Profile l (�?d)

Obs. n ('?d=)



140 

 

�É�, É, 1�′ for quadratic polynomial, c<� is a + 9 1 vector of regression coefficients, and D<�� is 

the within-profile error which follows i.i.d. Gaussian distribution, D<��~ �0, *4��. We assume a 

homogeneous within-profile variance, as all profiles are smooth with very small random errors. 

Level-2: 

 c<� 	 e���<�2 O ¶<� (6.2) 

where e��.<� 	 �ß fb����g� is a + 9 +Ä matrix (f: Kronecker product operator), b���g�  is a 

Ä 9 1  vector of Ä  explanatory variables, 2 	 o2�M , … , 2ßM pM
 with 2l  being a Ä 9 1  vector of 

regression coefficients for d-th component of c, and ¶<� is the error term, which is a random 

vector following i.i.d. p-dimensional Gaussian distribution for each c:  
 ¶<�~ ��, ó<� (6.3) 

Submodel (6.2) is used to model the dependence of coefficients in Submodel (6.1) on the sample 

parameter � by the mean term, and to account for correlation among observations within the 

same profile by the error term. Combining (6.1) and (6.2) we obtain the general LME model as  

 �<� 	 e��¹�e���g�2 Oe��¹�¶<� O h<�  (6.4) 

where �<� 	 o'<��, … , '<�=pM
, ¹ 	 �É�, … , É=�M , e��¹� 	 ob��É��, … ,b��É=�pM

, and 

h<�~+��, *4��i�. 

Heterogeneous Level-2 Variances: 
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To model the variance heterogeneity, we assume the covariance matrix ó<  in Eq. (6.3) is 

dependent on the sample parameter �, which is modeled as 

óc 	 diago*����<�, … , *ß���<�p 

 log *l� 	 b����′3l O �l , X 	 1,2, … , + (6.5) 

where b���� is a å 9 1 vector of explanatory variables, 3l is a å 9 1 vector of coefficients, and 

�l~ �0, *5j� �. This part is used to model the heterogeneity of residual variance in Eq. (6.2). The 

log-linear model is commonly used in variance function regression or heteroscedastic regression 

[158, 159]. In these studies, however, the error term �l is often neglected. In this research, we 

add the error term to make the model more flexible.  

In the proposed model, level-1 is to model each individual profile or within-profile variations, 

level-2 is to model both the model heterogeneity across different samples and the between-

profile variations within each sample, and the log-linear model is to capture the heterogeneity of 

residual variance of the level-2 model. After the new model is proposed, the remaining issues are 

how to efficiently estimate the model parameters and how to accurately select the right models 

among a set of candidate ones. In the model estimation, the parameters of interest include the 

fixed effects 2 , within-profile error term variance *4� , variance component regression 

coefficients `3l , X 	 1, … , +d  and the error term variances `*5j� , X 	 1, … , +d . Denote  k 	
Ù2, *4�, `3ld, �*5j� �Ú. The likelihood function for the model can be expressed by integrating out 

nuisance parameters, which include all unobservable random effects ¶ 	 `¶<�, c 	 1, … , �, � 	
1, … , _d and variance components l¶m 	 `*l���<�, c 	 1, … , �, X 	 1, … , +d, as 
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 C�k|ü� 	 V "oü|k, ¶,l¶mp "�¶|l¶m,k�"�l¶m|k�Xl¶mX¶ 
(6.6) 

where ü is the vector of all observations, ü 	 ����M ,���M , … ,��dM , … ,�?dM �M. Eq. (6.6) involves high 

dimensional integration and is not analytically tractable, which makes the maximum likelihood 

estimation very challenging. In this research, we propose to estimate the model parameters under 

the Bayesian framework. The posterior distribution of the models parameters are approximated 

using blocked Gibbs sampling method, which will be given in detail in the next section. Another 

issue in model building is the model selection, where the predictor variables, or the degrees of 

polynomials if polynomial regression is used, for all three submodels have to be determined. The 

detailed model selection process will be given in Section 6.4.  

6.3 Bayesian Model Estimation using Blocked Gibbs Sampler 

6.3.1 Blocked Gibbs Sampling for Posterior Estimation 

Under the Bayesian framework, the model estimation is to calculate the posterior distribution 

of model parameters conditioning on observations. Once the posterior is obtained, we can either 

use the mean or median of the posterior as the point estimates of model parameters, or directly 

use the posterior distribution for future model estimation and inference. In this research, the 

posterior distribution of interest is ��k|ü� 	 �o2, *4�, `3ld, �*5j� ��üp . As the nuisance 

parameters, i.e. random effects ¶ 	 `¶<�, c 	 1, … , �, � 	 1, … , _d  and variance components 

l¶m 	 `*l���<�, c 	 1, … , �, X 	 1, … , +d  are not observable, the join posterior distribution 

including all nuisance parameters need to be found and the posterior of interest can be obtained 

by marginalizing out all nuisance parameters. The joint posterior distribution is written as  
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 �o2, *D2, �3X�, �*5j� �, ¶,l¶m�üp (6.7) 

Since the joint posterior is not analytically tractable, it cannot be directly sampled. Gibbs 

sampling [160, 161] is one of the most popular Markov Chain Monte Carlo (MCMC) methods to 

estimate hierarchical models by generating sequence of random samples that approximately 

follow the target posterior distribution. The basic idea is to repeatedly replace the value of each 

component with a sample from its distribution conditioning on the current values of all other 

components. The blocked Gibbs sampler [162] is a more efficient version of Gibbs sampler, 

where the variables are grouped into blocks, and each entire block is sampled from its 

conditional distribution given the other components. In this study, we propose to use a blocked 

Gibbs sampler to draw samples from the joint conditional posterior distribution. For the standard 

Bayesian LME model all conditional distributions can be directly sampled [150]. However, due 

to the log-linear heterogeneity variance regression, the nuisance parameters l¶m  in our model 

cannot be directly sampled through their conditional distributions. To overcome this problem we 

propose a Metropolis-Hastings [163] algorithm to sample l¶m  in the blocked Gibbs sampling 

process.  

In the sampling procedure, the parameters including those of interest and nuisance 

parameters can be divided into 4 groups as follows: 

G1: The fixed effects 2 and within-profile variance of random error *4� 

G2: The random effects ¶ 	 `¶<�, c 	 1, … , �, � 	 1, … , _d 

G3: The variance components l¶m 	 `*l���<�, c 	 1, … , �, X 	 1, … , +d 
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G4: The variance heterogeneity regression coefficients `3l, X 	 1, … , +d and variance of random 

error �*5j� , X 	 1, … , +� 

The Gibbs sampling procedure can be summarized using the following steps: 

Step 1: Sampling G1 parameters from their conditional posterior distribution 

�o2, *4���3X�, �*5j� �, ¶,l¶m, üp 	 ��2, *4�|¶, ü� 

Step 2: Sampling G2 parameters from their conditional posterior distribution 

�o¶�2, *4�, �3X�, �*5j� �,l¶m, üp 	 �o¶�2, *4�,l¶m, üp 

Step 3: Sampling G3 parameters from their conditional posterior distribution 

�ol¶m�2, *4�, �3X�, �*5j� �, ¶, üp 	 �ol¶m� �3X�, �*5j� �, ¶p 

Step 4: Sampling G4 parameters from their conditional posterior distribution 

�o�3X�, �*5j� ��2, *4�,l¶m, ¶, üp 	 �o�3X�, �*5j� �� l¶mp 

By iteratively drawing samples from the conditional posterior distributions in the above four 

steps, a sequence of samples will be obtained, which constitutes a Markov chain with the 

stationary distribution following the join posterior distribution of interest. Note that in Step 1 and 

Step 4 the regression coefficient and the random error variance are sampled together from the 

join conditional posterior distribution, which is more efficient than sampling from each one 

individually, e.g., sampling from ��2 |*4�, ¶, ü� and ��*4� |2, ¶, ü�. The following subsections 

will discuss the prior specification which is critical in the Bayesian model fitting, and present the 

detailed conditional posterior distribution for blocked Gibbs sampling. 
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6.3.2 Specification of Priors 

In the Bayesian analysis of the proposed model, the priors for the mean parameters  2 , 

and `3l , X 	 1, … , +d, and variance parameters *4� and �*5j� , X 	 1, … , +� need to be specified. 

For the mean parameters, normal priors and noninformative priors are most commonly used in 

the Bayesian linear regression [160]. The normal priors often provide the benefit of conjugacy in 

simple linear regression or conditional conjugacy, i.e., conjugate prior conditioning on other 

model parameters, in hierarchical linear regression. However, in most cases the prior information 

beyond the data is not available, and thus noninformative prior is more preferred, which provides 

both objectiveness and convenience in Bayesian analysis. In this research, we specify the 

noninformative priors for 2 and `3l, X 	 1, … , +d as  

 Â�2� Ý 1 

Â�3l� Ý 1, X 	 1, … , + 

(6.8) 

For the variance components, there is a lot of literature discussing how to select appropriate 

priors [150, 161, 164]. Two types of priors have been widely used, the noninformative prior of 

the form 

 Â�*�� Ý �*��$�°q�� (6.9) 

and the weakly-informative inverse gamma prior  

 Â�*�� Ý gô�Æ, Æ� (6.10) 
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In the noninformative prior, � 	 0 corresponds to a uniform prior on log *, i.e., Â�log *� Ý 1, or 

equivalently Â�*� Ý 1/* . � 	 L1/2  corresponds to a uniform prior on * , i.e., Â�*� Ý 1 . 

� 	 L1 corresponds to a uniform prior on *�. For the weakly-informative prior, the inverse-

gamma distribution is within the conditionally conjugate family, with Æ set to a low value, e.g., 1, 

0.1 or 0.001. Zeng et al [150] used the weekly-informative prior for the variance components of 

the random effects in LME model to facilitate the computation in model selection. However, 

Gelman [164] showed that the inferences become very sensitive to Æ for datasets in which low 

values of random effects variance are possible, and the prior distribution hardly looks 

noninformative. In this research, we select the noninformative priors for both *4� and �*5j� , X 	
1, … , +� for convenience and objectiveness: 

 Â�*4�� Ý 1 

Âo*5j� p Ý 1, X 	 1, … , + 

(6.11) 

6.3.3 Conditional Posterior Distributions for Gibbs Sampling 

This subsection will show the conditional posterior distributions corresponding to the four 

steps in Subsection 6.3.1 for Gibbs sampling. The Metropolis-Hastings algorithm used in Step 3 

will also be proposed.  

(1) �o2, *4��`3ld, �*5j� �, ¶,l¶m, üp 	 ��2, *4�|¶, ü� 

Let H be the stack of `e��¹�e���<�d, n be the stack of `e��¹�¶<�d, and o be the stack of 

`h<�d,  
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e 	
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,o 	
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LLL
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P
 

Then  

 ü L p 	 e2 O o (6.12) 

where Â�2� Ý 1, o~+��, *4��?d=� and Â�*4�� Ý 1. Given `¶<�, c 	 1, … , �, � 	 1, … , _d or p, Eq. 

(6.12) is a simple linear model. The joint conditional posterior distribution can be written as  

��2, *4�|¶, ü� 	 �� *4�|¶,����2|¶, *4�, ü� 

It can be easily proven that [160] 

 *4�|�¶, ü�~gô?�@_ L 22 , oü Le2� L np′oü Le2� L pp2 @ 

2|`*4�, ¶, üd~ ¦2,� *4� Õe′′′′eÖ$� § 

 

 

(6.13) 

where  

2� 	 �eMe�$�eM�ü L n� 

(2) �o¶�2, *4�, `3ld, �*5j� �,l¶m, üp 	 �o¶�2, *4�,l¶m, üp 
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Given all other parameters, the random effects `¶<�, c 	 1, … , �, � 	 1, … , _d are independent. 

Therefore they can be sampled individually. The distribution for each component ¶<� is 

�o¶<��2, *4�,l¶m ü©p 	 �o¶<�|2, *4�, ó<,� ©<�p 

Ý Âo¶<��ó<p�o�<��2, *4�, ¶<�p 	  �¶<�|�, ó<� ·  ��<�|e��¹�e���g�2 Oe��¹�¶<�, *4��=� 

It can be shown that the conditional posterior distribution of ¶<�  follows multivariate normal 

distribution [118]: 

 ¶<�|2, *4�, ó<,� ©<�~ o¶�<� , ó�< p, c 	 1, … , �, � 	 1, … , _  (6.14) 

where  

¶�<� 	 êe�Me� O *4�óg$që$� Õe�M o�<� Le��¹�e���g�2pÖ 

ó�< 	 *4�êe�Me� O *4�óg$që$�
 

(3) �ol¶m�2, *4�, `3ld, �*5j� �, ¶, üp 	 �ol¶m� `3ld, �*5j� �, ¶p 

Given all other parameters, the variance components l¶m 	 `*l���<�, c 	 1, … , �, X 	
1, … , +d are independent, which can be sampled individually. In this research, we sample + 

components `*l���<�, X 	 1, … , +d simultaneously each time for the purpose of convenience. Let 

t<l 	 logÕ*l���<�Ö, u< 	 �t<�, … , t<ß�′, e���<� 	 gß fb����<�, 3 	 o3�M , … , 3ßM pM
, then  

u< 	 e���<�3 O v 
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where v 	 o��, … , �ßpM~ �0, diag�`*5j� , X 	 1, … , +d��. The conditional posterior of u< is  

 �ou<��¶<� , � 	 1,2, … , _�©, `*5j� d, 3 p Ý �ou<��*5j� �, 3p�o�¶<�, � 	 1,2, … , _��u<p (6.15) 

where  

ou<��*5j� , X 	 1, … , +�, 3p~ Õe���<�3, diago�*5j� , X 	 1, … , +�pÖ 

and 

� ÕÙ¶c�, � 	 1,2, … , _Ú Þu<Ö Ý ¦Å exp�t<l�ß
l_� §$d� exp?L 12 Z ¶c�R

d
�_� !g$q¶c�@ 

Since the conditional posterior in Eq. (6.15) cannot be sampled directly, we propose the 

Metropolis-Hastings algorithm as follows. At each iteration step � in the Gibbs sampling, we 

propose a new value for u<  using a symmetric normal proposal distribution centered at the 

current value as  

 u<r 	 u<��$�� O  ��, ∆��ß� (6.16) 

where u<��$��
 is as sample of u<  at step � L 1, ∆ is the step-width of the random walk or the 

standard deviation of the proposal distribution.  

The Metropolis-Hastings acceptance ratio is given by 
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 å° 	 min ¤1, � Õu<rÞ�*5j� ���$��, 3��$��Ö � ÕÙ¶<����, � 	 1,2, … , _Ú Þu<rÖ� Õu<��$��Þ�*5j� ���$��, 3��$��Ö � ÕÙ¶<����, � 	 1,2, … , _Ú Þu<��$��Öw (6.17) 

Set u<��� 	 u<r with probability å°, otherwise set u<��� 	 u<��$��
.  

(4) �o`3ld, �*5j� ��2, *4�,l¶m, ¶, üp 	 �o`3ld, �*5j� �� l¶mp 

Since �3l , *5j�  �  is independent of Õ3l\ , *5j\� Ö  for X x XM , the joint conditional posterior 

distribution of �3l , *5j�  �, which is similar to Eq. (6.13), can be sampled individually. Let yl 	
�log *l����� , … , log *l���?��′, eG is the stack of `b���g�� , c 	 1, … , �d, then similar to (6.13), 

the conditional posterior distributions follow the distribution as  

 *5j� |yl~gô x� L 22 , �yz Le{3-l�′�yz Le{3-l�2 y 

3z|yl , *5j�  ~ J3-l , *5j� ¦eG′′′′eG§$qN 

(6.18) 

where  

3-l 	 �eGMeG�$�eGM yl 

The overall blocked Gibbs sampling is shown in Algorithm 6.1 below. To speed up the 

convergence efficiency, the initial value for all the models parameters can be set using multiple-

stage analysis, i.e., fitting linear regression for each profile and treat each coefficient as response 

in the level-2 model fitting, and then use the residual variance of level-2 model as the responses 
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in the variance regression. After the iteration of the Gibbs sampling is finished, the obtained 

samples can be truncated to remove the initial bias for the posterior estimation. 

Algorithm 6.1. Blocked Gibbs Sampling for Model Estimation 

Select the iteration number  Á and step-width Δ 

Specify the initial value Õ2�0�, o*D2p�0�, ¶���, ol¶mp�0�, 3�0�, �*�X2 , X 	 1, … , +��0�  Ö 

For � 	 1:  á 

(1) Sample o*D2p���~� ¦*D2U Õ¶��L1�, üÖ§ and 2���~� J2V Õ¶��L1�, o*D2p���, üÖN using Eq. (6.13) 

(2) Sample ¶<����~� Õ¶c� Þ2���, o*D2p���, óc��L1�,� ©<�Ö for c 	 1, … , �, � 	 1, … , _ using Eq. (6.14) 

(3) Metropolis-Hastings algorithm for ol¶mp���
 

    For c 	 1: � 

• Generate ucr using Eq. (6.16) 

• Calculate å� based on Eq. (6.17) 

• Sample a~^�0,1�; if a { å°, set olgmp��� 	 exp�ucr� ; else set olgmp��� 	 olgmp��L1�
 

 End 

(4) Sample o*�X2 p���~��*�X2 |yX����  and 3X���~� Õ3zÞyl���, o*�X2 p���Ö  using Eq. (6.18) for X 	     1, … , + 
End 

 

6.4 Model Selection using Intrinsic Bayes Factor 

6.4.1 Introduction of Bayes Factor 

The most popular model selection methods are the information criteria based methods, such 

as Akaike Information Criteria (AIC;[165]) and Bayesian Information Criteria (BIC;[166]), 

where the criteria is to find a model that minimizes an estimate of a criterion consisting of a loss 

function �L2 9 log-likelihood) and a penalty function. These methods are commonly used in 
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linear regressions, where the penalty function is a function of model complexity, or number of 

parameters. However, for the model proposed in this research, there are both mean parameters 

and variance parameters at different levels, which have different relative importance in analysis. 

Therefore it is very challenging to incorporate the relative importance into penalty function in the 

information criteria.  

The Bayes factor (BF) is a very flexible model selection method that can compare models of 

any forms [167]. For two competing models ;< and ;~, c x �, the BF of ;< to ;� is defined as 

the observed marginal densities 

 è<� 	 ��ü|;<��oü�;�p 	 J��ü|kg, ;<�Â�kg|;<�XkgJ�oü�k�, ;�pÂ�k�|;��Xk� (6.19) 

where ��ü|;<� is the marginal or predictive densities of ü, kg is the vector of model parameters 

and Â�kg|;<� is the prior density function of model parameters under model ;<. It can also be 

interpreted as the weighted likelihood ratio of ;<  to ;� , with the priors being the “weighting 

functions”. Intuitively, higher è<� indicates a stronger evidence of ;< against ;�. A set of cutoff 

values of è<� has been suggested and widely used in literature [168], as shown in Table 6-1: 

Table 6-1: Range of BF values and its evidence in favor of ;g 
�g� m �����g�� Evidence against '� 
1~3 0~2 Barely worth mentioning 

3~20 2~6 Positive 

20~150 6~10 Strong 

>150 >10 Very strong 
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Although BF is very flexible, a direct computation is very challenging, since the marginal 

density involves integration over the parameter space of high dimension. A natural approach to 

solve this issue is MCMC simulation [169], where two popular methods are used, the product 

space search and the marginal likelihood estimation method. In the product space search method, 

the BF can be alternatively calculated as  

 è<� 	 ��ü|;<��oü�;�p 	 ��;<|ü�/Â�;<��o;��üp/Â�;�� (6.20) 

where Â�;<� is the prior for ;<. To estimate ��;<|ü�, we can first estimate the join posterior 

��;,k|ü� over the product space � 9 ∏ ���þ�  through Gibbs sampler, or reversible jump 

MCMC. The ��;<|ü�  can be estimated by marginalizing out kg . Plugging the estimated 

��;<|ü� and �o;��üp into Eq. (6.20) we can get the estimated è<�. In the marginal likelihood 

estimation method, the BF is estimated as follows 

 log è<� 	 logo��ü|;<�p L log Õ�oü�;�pÖ (6.21) 

6.4.2 Intrinsic Bayes Factor and Computation 

When the two competing models have parameters of different dimensions, however, using 

improper noninformative priors for all models parameters will lead to indeterminate BFs, as the 

marginal density ��ü|;<� 	 J��ü|kg, ;<�Â�kg|;<�Xkg is not well-defined for Â�kg|;<� Ý 1. 

To see how this happens, suppose Â�kg|;<� Ý 1 and Â�k�|;�� Ý 1 are used as priors for ;< and 

;�  respectively. Then `<Â�kg|;<� and �̀Â�k�|;�� can also be used as improper priors, which 

results in another BF `</ �̀è<�. To address this issue, Zeng et al [150] assumed that different 
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models share the same dimension of fixed effects parameters, while they differ only on the 

dimension of random effects variance in the Bayesian LME model estimation. Under this 

assumption, the improper noninformative priors are used for fixed effects and weakly-

informative priors are used for random effects variance components. However, this approach is 

not applicable to our case, as the dimensions of parameters could differ in all three submodels. In 

this research, we propose to use the intrinsic Bayes factor (IBF) [170] for model selection.  

Let ü��� denote the training profiles and ü�L�� denote the remaining profiles for testing. 

The basic idea of IBF is to use the training profiles ü��� to convert the improper noninformative 

priors to proper posterior distributions and then to compute the BF with the remainder of the 

profiles ü�L��. The IBF can be expressed as 

 gè<� 	 ��ü�L��|ü���, ;<��oü�L���ü���, ;�p 	 J��ü�L��|kg�Â�kg|ü����XkgJ�oü�L���k�pÂ�k�|ü����Xk� (6.22) 

As we can see, the computation of the marginal densities in IBF is quite similar to the cross-

validation technique commonly used in the model validation. Naturally, we can partition all the 

profiles into several groups and calculate the IBF using each group of profiles as the testing 

profiles and the remainder as the training profiles. By averaging all the IBFs, we would get a 

more stable IBF.  

Although the marginal density is well-defined with proper posterior distribution Â�kg|ü����, 

the direct computation is still challenging. With the availability of posterior samples of 

Â�kg|ü���� obtained from the blocked Gibbs sampler, we can compute the IBF using MCMC 

approach as follows. The marginal density for ;< is written as 



155 

 

�<oü�L���ü���p 	 V "oü�L���k<, �l¶m�L���<pÂo�l¶m�L���<�k<pÂok<�ü���pX�k<, �l¶m�L���<� 

Note that the nuisance parameters l¶m are specific to profiles of consideration. Here �l¶m�L���< 
denote the variances of random effects of the testing profiles ü�L��  under the model ;< . 

Suppose the posterior samples of the training data ü��� obtained in the Gibbs sampling are  

º¦k<�á�, ¶���<�á�, Õl¶m���Ö<�á�§ , Á 	 1,2, … , ô � 
Then for Á 	 1, … , ô , we can sample the ol¶m�L��p�á�

conditioning on k�á�  through the 

lognormal distribution, as shown in Eq. (6.5). The marginal density could be estimated by 

 �<oü�L���ü���p Y 1ô Z " ¦ü�L��Uk<�á�, Õl¶m�L��Ö<�á�§�
á_�  (6.23) 

where the profile ���� given k and l¶m follows normal distribution based on Eq. (6.4): 

���� |k,!����~+�e1�¹�e2���2,e1�¹�!����e1�¹�′ O *4��� 

6.4.3 Inference on the Parameter � 

After the model is selected and estimated through the Gibbs sampler and IBF, we can use it 

to infer the microstructural parameters � for quality control and diagnosis. Suppose the measured 

profiles for a new MMNC sample is ü=]�, then the posterior of �=]� given ü=]�  and model 

parameters is of interest. We can use the mean or median of the posterior distributions of k as 

the point estimate of the model parameters, denoted by k� , to calculate the posterior of �=]�  
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���=]�|ü=]�,k� � . Alternatively, we could use all the Gibbs samples instead of the point 

estimate for the model parameters. The posterior is expresses as  

 ���=]�|ü=]�, ü� Ý Â��=]����ü=]�|�=]�, ü� (6.24) 

where Â��=]��  is the prior distribution for � . To estimate this posterior, the importance 

sampling [171] can be applied with the prior Â��=]��  as the importance function 

and  ��ü=]�|�=]�, ü� as the weight function, which can be estimated using Eq. (6.23). The 

expectation of ã��=]�� with respect to ���=]�|ü=]�, ü� where ã��=]�� is any function of �=]�, 

can be estimated using the following importance sampling algorithm.  

Algorithm 6.2. Importance Sampling for Inference of . 

Specify the number of samples  � 

(1) Draw samples ��1�, … , �� ��
from Â��=]�� 

(2) Calculate the importance weight of each sample using Eq. (6.23) 

-��� 	 �oü=]������, üp, � 	 1, … ,  ! 

(3) Approximate the expectation 

&%��|üÒ��,ü�oã���p 	 ∑ -���ão����pËÌ�_�∑ -���ËÌ�_�  

 

6.5 Simulation Study for Performance Evaluation 

In this section, simulated profiles are used to evaluate the efficiency of the proposed method 

for model estimation, model selection, and parameter inference. In total two models are used in 
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the simulation, with one model for the illustration of posterior sampling and both models for 

model selection and parameter inference.  

6.5.1 Simulation Setup 

The models used in the simulation with specified parameters are shown in Table 6-2. For 

simplicity we assume that .  is a scale parameter and ã<�·�, c 	 1,2,3  are polynomials of 

degrees + L 1, Ä L 1 and å L 1 respectively. For each model, _ 	 60 profiles are generated with 

� 	 33 equally spaced design points for . in [0.1, 0.9], i.e., . 	 0.1,0.125, … ,0.9, and @ 	 11 

equally spaced design points for É in [2, 3], i.e., É 	 2, 2.1, … ,3. The first model will be used to 

show the efficiency of blocked Gibbs sampling and both models will be used to illustrate the IBF 

model selection and parameter inferences. Figure 6-2 shows part of the simulated profiles from 

Model 1, where we can see obvious increase of between-curve dispersion when increasing ..  

Table 6-2: Model setting for simulation 

Model 1 Model 2 

+ 	 2, Ä 	 3, å 	 2 ã1�É� 	 �É, 1�R  
ã2�.� 	 Õ.2, ., 1ÖR  

ã3�.� 	 �., 1�R 21 	 �2,2,2�R, 22 	 �L1, L1, L1�R 31 	 �6, L6�R, 32 	 �4, L4�R *D2 	 0.01, *�12 	 *�22 	 0.1 

+ 	 2, Ä 	 2, å 	 2 ã1�É� 	 �É, 1�R  ã2�.� 	 �., 1�R  ã3�.� 	 �., 1�R 21 	 �2,4�R, 22 	 �L1,3�R 31 	 �4, L5�R, 32 	 �6, L7�R *D2 	 0.01, *�12 	 *�22 	 0.01 
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Figure 6-2: Illustration of the simulated profiles from Model 1 with increasing . from 0.1 to 0.9: �a�, �b�, … , �i� corresponds to . 	 0.1,0.2, … , 0.9 respectively. 

6.5.2 Results of Posterior Sampling 

In the posterior sampling, we assume that the true model of the simulated profiles is given 

but the model parameters are unknown and are to be estimated. The initial values for all 

parameters are arbitrarily set to 1. The standard deviation of the proposal distribution is set as 

∆	 0.1. Figure 6-3 and  

Figure 6-4 show the sample paths of mean and variance parameters of Model 1 respectively. 

As we can see, all the chains gradually move into the true values of the model parameters after 

about 20K iterations. We also observe that the sequences of samples are highly correlated, i.e., 

requiring many iterations to forget the starting point and reach the equilibrium distribution. The 

y y y

y y y

y y y
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step-width ∆  could be increased or adjusted to reduce the correlation and speed up the 

convergence. Since it is not the focus, we will not discuss it here.  

 

Figure 6-3: Sample paths of the mean parameters 2 and 3 from blocked Gibbs sampling; the 
horizontal dashed lines denote the true parameters of the model.  

 

Figure 6-4: Sample paths of the variance parameters *4�, *5�� and *5��  from blocked Gibbs 

sampling; the horizontal dashed lines denote the true parameters of the model.  
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The histograms of the samples in the equilibrium stage are shown in Figure 6-5, where the 

last 10K samples of each chain are selected. As we can see, the centers of the posterior are very 

close to the true values. 

 

Figure 6-5: Histograms of the parameter samples; the vertical dashed lines denote the true 
parameters 

6.5.3 Model Selection 

Changing the degree of the polynomial in each submodel, or setting certain coefficients to 

zero with fixed degree at each level, will result in many candidate models, which makes it 

unrealistic to fit all models and compare them all. In application, the multiple-stage analysis (i.e., 

fitting the model from the first level to the last one, and using fitted parameters in current level as 

responses in the next level fitting) can be used to select some most likely models and then use 

IBF to select the best one among them. Alternatively, the forward selection strategy can be used, 

where one starts from the simplest model, and each time adds one variable that has the most 
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significant improvement (i.e., increase in marginal density) to the model fitting until there is no 

significant improvement. For simplicity, we only compare models with different degrees to 

illustrate the effectiveness of IBF in model selection. 

Table 6-3: Candidate models, marginal densities and the IBF of the true models to others 

Model  Dimension 
Data1  Data2 ����sg� m ��������  ����sg� m �������� ;1 + 	 2, Ä 	 1, å 	 1 17.3 221.2  92.7 111.2 ;2 + 	 2, Ä 	 1, å 	 2 67.6 120.6  108.6 79.4 ;3 + 	 2, Ä 	 1, å 	 3 58.5 138.8  101.3 94 ;4 + 	 2, Ä 	 2, å 	 1 100.8 54.2  141.4 13.8 ;5 + 	 2, Ä 	 2, å 	 2 123.9 8  148.3 L ;6 + 	 2, Ä 	 2, å 	 3 123.1 9.6  126.6 43.4 ;7 + 	 2, Ä 	 3, å 	 1 105.9 44  140.0 16.6 ;8 + 	 2, Ä 	 3, å 	 2 127.9 L  148.2 0.2 ;9 + 	 2, Ä 	 3, å 	 3 127.5 0.8  147.1 2.4 ;10 + 	 3, Ä 	 1, å 	 1 46.0 163.8  45.7 205.2 ;11 + 	 3, Ä 	 1, å 	 2 38.9 178.0  52.3 192 ;12 + 	 3, Ä 	 1, å 	 3 26.5 202.8  41.9 212.8 ;13 + 	 3, Ä 	 2, å 	 1 53.3 149.2  65.2 166.2 ;14 + 	 3, Ä 	 2, å 	 2 64.5 126.8  64.6 167.4 ;15 + 	 3, Ä 	 2, å 	 3 45.4 165  59.9 176.8 ;16 + 	 3, Ä 	 3, å 	 1 48.9 158  67.5 161.6 ;17 + 	 3, Ä 	 3, å 	 2 72.8 110.2  67.5 161.6 ;18 + 	 3, Ä 	 3, å 	 3 53.3 149.2  62.2 172.2 
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In the IBF computation, the profiles with . 	 0.1, 0.125, … ,0.725 are used as training data 

and others with . 	 0.75, 0.775, … ,0.9 are used as testing data. Table 6-3 shows the candidate 

models, estimated marginal densities and the IBF for the two set of profile data (Data1 and Data2) 

generated from Model 1 and Model 2 in Table 6-2. As we can see, the true models for both 

dataset, i.e., ;B for Data1 and ;: for Data2, have the highest marginal densities than all other 

candidate models. Almost all the IBFs of the true models to other candidate models are 

significant according to the recommended BF range and evidence given in Table 6-1. Note that 

the IBF of ;B to ;% for Data1 and the IBF of ;: to ;B for Data2 are not significant based on 

Table 6-1. However, ;B is simpler than ;% and ;: is simpler than ;B, indicating that the true 

models ;B and ;: are preferable to ;% and ;B for Data1 and Data2 respectively. Therefore, the 

IBF can effectively select the best model among all candidate models.  

6.5.4 Inference of the Designing Parameter � 

. 	 0.4, 0.6, 0.8 are used to generate the new data using Model 1 and Model 2 for parameter 

inference. 20 profiles are generated for each .. The prior distribution of . is assumed to be 

uniform in the interval [0,1]. The posterior distribution of . is estimated using the importance 

sampling algorithm shown in Section 6.4.3. Figure 6-6 shows the estimated posterior 

distributions. We can see that the center of the posterior is very close to the true value of ., and 

the variance of the posterior using 20 profiles is also very small.  
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Figure 6-6: Estimated posterior distribution of .: (a)-(c) for Model 1 and (d)-(f) for Model 2. The 
vertical dashed lines denote the true ..  

6.6 Case Study 

In this section the proposed HLM is applied to build the relationship between the ultrasonic 

attenuation profiles and microstructural parameters of A206-Al2O3 nanocomposites. Due to high 

experimental cost and difficulty in fabricating nanocomposites of desired microstructural 

features, Liu et al [149] recently proposed a microstructural modelling and wave propagation 

simulation approach to enrich the database of microstructures and the corresponding ultrasonic 

attenuation profiles, as illustrated in Figure 6-7. 
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Figure 6-7: Illustration of generated microstructures, wave propagation simulation and 
transducer output by VEFIT 

A Voronoi diagram is modified to simulate the microstructures based on the micrographs and 

morphology modification mechanism of Al2O3 nanoparticles, and an elastodynamic finite 

integration technique VEFIT [172] is used to simulate the wave propagation. The simulation 

approach can effectively capture the features of microstructures and reproduce the comparable 

attenuation profiles. In the microstructure generation, two key parameters are used to control the 

morphology, the number of cells  , and the percentage of Voronoi edge length left after 

dissolving, denoted as .. Figure 6-8 shows the attenuation profiles (20 profiles each sub-figure) 

of microstructures with . 	 �0.1,0.2, … ,0.9�  and the corresponding   that keeps the total 

amount of intermetallic phase unchanged. As we can see, the attenuation profiles linearly 

increase with frequency in the selected frequency range, and the between-profile variation 
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increases with . . Note that for nonlinear profiles or higher order polynomials, the spectrum 

length can be reduced to get approximately linear profiles.  

 

Figure 6-8: Attenuation profiles for microstructures with . 	 �0.1,0.2, … ,0.9� from (a) to (i). 

Figure 6-9 shows the exploratory analysis of the attenuation profiles using the multiple-stage 

analysis, where the slope, intercept, and their log-variances are shown for each .. We can see 

that the slope, intercept and their log-variances are quite linear with .. The model selection is 

applied to the data and the best model with + 	 2, Ä 	 2 and å 	 2 is selected. The mean of the 

posterior samples obtained in the Gibbs sampling are K�� 	 0.231,  K�� 	 0.253,  K�� 	 L0.489,
K�� 	 L0.396, *4� 	 4.95 9 10$G, &�� 	 9.92, &�� 	 L12.72, &�� 	 11.31, &�� 	 L12.68,
*5�� 	 0.0077  and *5�� 	 0.01.  

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

Frequency (MHz)

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)



166 

 

 

Figure 6-9: Exploratory analysis for the attenuation profiles using multiple-stage analysis. The 
solid lines denote the simple linear regression lines.  

 

Figure 6-10: Posterior distribution of . for (a): A206+1wt%Al2O3, and (b): A206+5wt%Al2O3 
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The estimated model is used to diagnose the microstructural features of two fabricated 

samples with attenuation profiles shown in Figure 5-6 (c) and (e). Figure 6-10 shows the 

posterior distribution of . with uniform prior distribution ^�0,1�. The mean estimates of the 

posteriors are 0.68 and 0.46 for Figure 6-10 (a) and (b), respectively. We can see that the . of 

first sample is higher than the second one, which is consistent with the experimental result that 

the second sample has smaller grain size and more homogeneous microstructure. By setting a 

threshold .� for ., the posterior can be used to estimate the probability of . z .� and use it to 

for quality control. Therefore the estimated posterior distribution can be used for both quality 

control and microstructure diagnosis in the ultrasonic attenuation based quality inspection of 

nanocomposites.  

6.7 Conclusion and Discussion 

In this chapter, we propose a hierarchical linear model with level-2 variance heterogeneity to 

model the ultrasonic attenuation profiles in the quality inspection of Al based nanocomposites. 

The integrated Bayesian framework for model estimation and selection is proposed through the 

blocked Gibbs sampling and intrinsic Bayes factor. The inference of the microstructural 

parameters based on the estimated model is proposed using importance sampling. The numerical 

study shows that the proposed approach can effectively identify the true model, estimate the 

model parameters, and infer designing parameters for new profiles. The proposed approach is 

also applied to the ultrasonic attenuation profiles. The results show that this approach can be 

effectively used for quality control and diagnosis.  
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We have to admit that there are still two issues that need to be addressed in the ultrasonic 

attenuation based quality inspection, which will be our future work. The first issue is that the 

simulated attenuation profiles rather than the experimental data are used to build the model. 

Although simulated microstructures can effectively capture the key microstructural features, they 

may not be sufficient to describe the complex microstructures. In the future, more MMNCs 

samples need to be fabricated and the corresponding microstructural parameters need to be 

characterized and quantified for model building. The second issue is that for some 

microstructures with big nanoparticle clusters, the attenuation profiles may not follow the model 

developed using well dispersed samples. Therefore new hypothesis testing method needs to be 

developed to test if the new profiles follow the estimated model. Note that the application of the 

proposed modeling framework is not limited to ultrasonic attenuation profiles. It can be extended 

to other profiles monitoring where the relationship between the underlying parameters and the 

profiles is of interest.    
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7 Conclusions and Future Work 

Achieving uniform dispersion of nanoparticle reinforcements in the base material is the key 

challenge in the fabrication of high performance lightweight MMNCs. The research presented in 

this dissertation aimed to develop and implement dispersion process monitoring, control and 

quality inspection techniques and methodologies for the ultrasonic cavitation based scale-up 

production of MMNCs. It can be classified into two tasks, the online dispersion process 

monitoring and control, and the offline quality inspection.  

In the online process monitoring and control, a high speed data acquisition system was 

developed to collect the cavitation noise signals from molten metal. Based on the cavitation 

mechanism, acoustic scattering theory and experimental validation, the dispersion was found to 

be finished when the cavitation noise signals enter into steady state. Therefore, the monitoring 

and control of the dispersion process can be achieved by detecting the steady state of cavitation 

noise signals. Two robust online steady state detection algorithms were developed using multiple 

change-point models and Bayesian inference. In both methods, piecewise linear models were 

used to model process signals, and the flatness of the latest line segment was used to evaluate the 

steadiness of signals. In the first method, the posterior of the parameters for the latest line 

segment is approximated using particle filters. The second algorithm used exact Bayesian 

inference to calculate the posterior distribution by selecting conjugate priors. Numerical analysis 

showed that both methods are much more accurate and robust than other moving window based 

methods.   
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In the offline quality inspection, ultrasonic testing based quality inspection of MMNCs was 

investigated. It was found that large primary dendrites, long continuous intermetallic phase and 

unevenly distributed Al2O3 nanoparticles cause large between-curve variation among attenuation 

profiles measured at different surface locations of the fabricated MMNCs. Therefore, the 

variation of the acoustic attenuation profiles can be used as an indicator to evaluate the 

microstructural quality. A hierarchical linear model with level-2 variance heterogeneity is 

developed to establish the relationship between ultrasonic attenuation profiles and the 

microstructural parameters for inference of microstructural features and quality control using 

ultrasonic profiles. An integrated Bayesian framework with MCMC approach was developed for 

model estimation, model selection and parameter inference. The proposed framework is able to 

infer the microstructural features accurately.  

The contributions of this dissertation include the following five aspects: (1) development of a 

novel data acquisition system for dispersion process monitoring, (2) discovery of the relation 

between the ultrasonic cavitation noise and nanoparticle dispersion conditions, (3) two robust on-

line steady state detection algorithms with broad applications, (4) discovery of qualitative 

relation between ultrasonic attenuation and microstructures of MMNCs, (5) hierarchical linear 

modeling of ultrasonic attenuation profiles for microstructural quality inference and control of 

MMNCs.  

The enabling process and quality control methodologies for MMNCs manufacturing is 

critical to facilitate the scale-up production and bring the impact on the economic growth. 

However, there are still many issues that can be further investigated or extended to improve the 

process and quality control. The potential future directions are listed as follows: 
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(1) Particle dispersion process monitoring: Currently the steady state of the cavitation noise 

power index in used to monitor the nanoparticle dispersion. To make the monitoring and control 

process more reliable and accurate, further signal analysis and experiment validation may be 

needed. For example, instead of using the cavitation noise power, certain components (i.e., 

harmonics, ultraharmonics, subharmonics, white noise) of the frequency spectrum of the 

cavitation noise may be used for particle dispersion process monitoring. To verify the 

effectiveness of the monitoring scheme, more MMNCs with different ultrasonic dispersion times 

need to be fabricated and examined.  

(2) Statistical process control (SPC) of MMNCs based on the attenuation profiles: In this 

dissertation, it is observed that the attenuation profiles are highly dependent on the 

microstructural quality. Therefore the SPC control charts on the attenuation profiles will be a 

good research direction in the future. 

(3) 3D microstructural modeling, wave propagation simulation and uncertain quantification: 

In this dissertation, different microstructures and attenuation profiles were generated through 2D 

microstructure modeling and wave propagation simulation to build the relationship between the 

microstructural features and attenuation profiles. In the future, the 2D microstructure modelling 

and wave propagation simulation can be extended to 3-dimention to better represent the real 

microstructures and wave propagation processes. In addition, the hierarchical linear model 

developed in this dissertation did not utilize the experimental attenuation profiles. In the future, 

the model emulation and calibration can be used to incorporate both experimental and simulation 

data for microstructural quality inference and control.    
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