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Abstract

Computer simulations have been widely used in the the study of complex fluids to provide

good consistency of macroscopic properties with experiments and understandings in the micro-

scopic view. In the last 10 years, the rise in computing power with graphical processing units

and modern data science techniques such as machine learning promote enormous improvements

on molecular simulations for studies of complex phenomena which can be challenging, in par-

ticular, the phase behavior of complex mixtures. In this thesis, we propose several methods for

obtaining phase coexistence of complex fluid mixtures and study phase behaviors of polymer so-

lutions utilizing molecular simulations and a neural network technique. We develop a simulation

method for getting phase coexistence from single cell simulations, which uses a spatial concentra-

tion autocorrelation function to spatially align instantaneous concentration profiles from different

snapshots. Except in the neighborhood of the critical point, the Interface method shows excellent

agreement with the phase diagrams of the Widom-Rowlinson model and the symmetric blends

of freely jointed polymer molecules available from conventional methods. To obtain coexistence

points even near the critical point, we propose a supervised machine learning framework fed by

single cell simulation data to optimize convolutional neural network (CNN) filter size as one of

hyperparameters. The CNN predictions with simulation data show good agreement with the phase

boundary of references close to the critical point. Also, we found that understanding intermediate

structures during a phase transition is important to consider them as training sets. Lastly, we study
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phase behaviors of poly(ethylene oxide) in imidazolium-based ionic liquids which have the unique

low critical solubility temperature phase behavior. We use a hybrid simulation method composed

of the Interface method and a neural network model to draw phase diagrams. As a result of pre-

diction of critical points for various systems with substitution of H with CH3 on C2 position and

different N-alkyl chain length of cation, our results agree with experimental results. Interestingly, a

polymer chain near single C2 methylated cation is likely to form not only wrapping but also crown

conformation which implies the entropic-driven phase separation.
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Chapter 1

Introduction

Molecular simulation is a powerful and useful tool for studies of chemical, physical, and biolog-

ical systems. As the simulation performs under physics principles and mathematical equations,

we obtain coordinates of molecule in time as output data. Using the data, we can not only cal-

culate various properties to compare with experimental studies such as density, energy, molecular

structures, and viscosity but also visualize how they move in such a tiny system. The simulation

results can help to interpret complex phenomena in molecular level such as phase behavior of con-

densed matter. Recently, improvements to both hardware and simulation methods ease obstacles

of usage simulations and lead to fast performance and better accuracy of simulation results. Also,

modern data-driven techniques such as deep neural network and machine learning combined with

simulation methods are rapidly developed with several success on phase behavior predictions. In

this dissertation, we aim to propose a new simulation method and a supervised machine learning

framework for getting phase boundary of complex fluids, and study the phase separation behavior

of polymer in ionic liquid systems utilizing a artificial neural network model.
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Figure 1.1: Two phase behaviors of polymer solution with respect to temperature and composition
for (left) UCST (right) LCST. The critical point has the critical temperature Tc and the critical
composition φc. Reprinted from Teraoka’s book.[1]

1.1 Thermodynamics for the miscibility of polymer solvents

The phase separation/mixing behavior of polymer solvent can be understood by a simple thermo-

dynamics equation, ∆Gmix = ∆Hmix − T∆Smix where G, H , T and S are for Gibbs free energy,

enthalpy, temperature, and entropy for mixing under constant pressure and temperature, respec-

tively. To be spontaneous mixing for the mixture, ∆Gmix should be negative with appropriate

values of temperatures and signs of ∆Hmix and ∆Smix.

In that sense, two terms of the phase transition behavior come out for thermal-responsive

mixtures; lower critical solubility temperature (LCST) and upper critical solubility temperature

(UCST) in Figure 1.1. UCST behavior of mixtures such as oil and water is that the mixture

shows separation (or two-phase, ∆Gmix > 0) at a low temperature and mixing (or one-phase,

∆Gmix < 0) at a high temperature. It is well understand in terms of relative interactions between

components. Like components interact attractively (∆Hmix < 0) or unlike components feel weak

repulsion (∆Hmix > 0) at a moderate temperature, then the interactions are weaken and mixing

entropy drives mixing at high temperature (∆Smix > 0). The mixing entropy is usually positive

because the number of configurations of components increases when mixing.

However, LCST behaviors can happen under the unusual condition ∆Smix < 0 with two pos-
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Figure 1.2: Conceptual picture of Flory-Huggins theory for polymer solution. Reprinted from
Teraoka’s book.[1]

sible mechanisms; loss of free volume when mixing by compressible polymers and reduction of

degree of freedom of orientation of polymer and solvents by directional interaction such as hy-

drogen bonding. The two representative examples of LCST behaviors of polymer solvent are

poly(ethylene oxide)[2] (in short, PEO) and poly(N-isopropylacryl amide) (in short, PNIPAM) in

water.[3] Because the monomer of those polymers have hydrogen bonding donor and/or acceptor,

the LCST behaviors are understood due to hydrogen bondings with water. Beyond the understand-

ings of such complicate phase behaviors in thermodynamics, a theory and a simulation is necessary

to explain the transition with details, for example, how the strength of interaction between com-

ponents affects on the critical point and spatial conformation and dynamics of molecules during

phase transition.

1.2 The Flory-Huggins theory of mixing/separation behavior

of polymer solvents

The simplest theory for phase separation behavior of polymer solution is the Flory-Huggins (FH)

theory. The theory hypothesizes that a polymer chain occupies lattice sites which are connected by

neighbor sites and a solvent occupies single site with same volume as single polymer site in Figure
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1.2. The (Helmholtz) free energy can be expressed by following equation;

∆Fmix
NsitekBT

= χφ(1− φ) +
φ

Np

lnφ+ (1− φ) ln(1− φ) (1.1)

where F , Nsite , kB, χ, φ, and Np are mixing free energy, the total number of lattice sites, Boltz-

man constant, interaction parameter, volume fraction of polymer, and the polymer chain length (or

the number of sites for single polymer), respectively. Comparing with the thermodynamics equa-

tion of ∆Gmix in previous section, the second and third term in Eq. 1.1 correspond with ∆Smix

for polymers and solvents and the first term (typically) correspond with ∆Hmix. (see the result

when multiplying temperature T on both side) Interaction parameter χ can be interpreted with

combination of interactions of component pairs like following equation;

χ =
Z

kBT

[
εPS −

(εSS + εPP )

2

]
(1.2)

where εPS represents interaction strength between polymer (P) and solvent (S) and Z is coordina-

tion number, e.g. 4 for a two dimensional lattice model. Rather than Eq. 1.2, in practical cases

of fitting phase diagram of polymer solvent, the simple equation with two another parameters A

and B is preferred as χ = A + B
T

. The practical equation for interaction parameter indicate the

appearance of another mixing entropy beside the configurational entropy of polymer and solvent

which are the second and third term in Eq. 1.1.

When applying the FH theory to studies of LCST-type phase diagrams, a modified FH theory

is necessary because of complicated interactions in mixture. For example, hydrogen bonding can

be regarded as a weak interaction between polymer and solvent weakening with increase of tem-

perature, which results in enthalpic correction on the FH equation.[4] Instead of using the specific

interaction, one may roughly adapt with solvation energy in terms of dielectric constants to correct

enthalpy contribution.[5] Also, an entropic correction can be applicable by reflecting architecture

and conformation effect of polymers.[6] For details, I refer a recent review article and polymer
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Figure 1.3: Infographics for phase diagrams of (left) poly(ethylene oxide) and (right) poly(N-
isopropylacryl amide) in water. The phase diagrams are modified on purpose from references.[2,
3].

physics books for basics of the Flory-Huggins theory and applications.[7, 8]

Connecting the Flory-Huggins (FH) theory with our study of polymer in ionic liquids (ILs),

the asymmetric critical composition toward to high fractions of polymer is a unusual behavior.

According to the FH theory, the critical composition approximates by φc ∼= 1√
Np

. In other words,

polymer solvent systems would show the shift of critical composition toward low volume fraction

of polymer for long polymer chain length, which explains the change of critical composition of

LCST-type polymer solvents; aqueous PEO solution and PNIPAM solution. Interestingly, Lee et

al showed a system of poly(ethylene oxide) (PEO) in imiadzolium-based ionic liquid shows 50 -

80 wt% critical compositions of polymers, which does not agree with the FH theory.[9] Thus, it

motivated us for a simulation study for PEO/ILs, which will be described in Chapter 4.

Beside the FH theory, there are available theoretical approaches such as integral equation the-

ory, random phase approximation approach, renormalization group theory, and self-consistent field

theory. What they works for phase behavior studies is that they hypothesize a model which is com-

posed of several (dominant) factors on partition function of the mixture and then check if the model

works for the phase behavior of a target system using the known phase boundary. But, a study of

phase behavior in a molecular/atomic level would be worth in order to obtain somewhat details of
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explicit molecules using simulation tools.

1.3 Simulation methods for getting phase boundary

Using simulation, the calculation of simple static properties such as pair correlation functions,

potential energy, and pressure are relatively straightforward, but the prediction of precise location

of phase transitions is not a simple research topic. Phase transitions as collective phenomena occur

over a relatively long time and length scales, thus a simulation study for the transition of even

single component was challenging until 1987 when Gibbs ensemble method was published.

Since mid-1980s, the Gibbs ensemble method has widely used as a powerful method for get-

ting phase equilibria. Typically, a direct interfacial (or single cell) simulation contains not only

coexisting two phases, e.g. A-rich and B-rich phase in A/B binary mixture, but also interface(s)

between two phases which is not necessary for getting phase boundary. Unlike the single cell

simulation, the Gibbs method takes the coexistence of phases by treating each phase as a separate

subsystem, such as one cell for A-rich phase and another cell for B-rich phase,thus there is no

physical interface. (see Figure 1.4) Instead of saving computational cost of interface(s) in the sin-

gle cell simulation, it requires a particle exchange/insertion algorithm to reach the phase equilibria

condition on both cells; T 1 = T 2, P 1 = P 2, and µ1
i = µ2

i for i = A or B component for binary

mixture in phase 1 and 2 in Fig. 1.4. While the Gibbs method shows success on phase equilibria

of toy models, as for practical applications, several bias or weighting algorithms are developed to

improve low acceptance rate of particle exchange/insertion in a condensed system. Also, some

expanded ensembles were developed for a specific purpose such as particle deletion algorithm in-

stead of insertion. I refer a review article and simulation books for simulations method.[10, 11, 12]

Note that we add a note of derivations of Claperyon equation for expanded ensemble simulations

of binary mixture in Appendix ?? and reproduce the phase diagram of vapor-liquid transition of

Lennard-Jones fluid using Gibbs-Duhem integration in Appendices A. Beside, I put some effects
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Figure 1.4: Conceptual pictures of Gibbs ensemble simulation of A/B binary mixture to get phase
boundary.

by utilizing expanded ensemble simulations and adapting weighted histogram to accelerate poly-

mer insertion in PEO/ILs. Unfortunately, it seems not to work in the way I thought at several

preliminary trials.

Since late 1990s, a molecular simulation using single cell started getting attentions back with

growing interest on structural properties near interface. With developments of hardware such as

the appearance of multithread central processing units (CPUs) and simulation algorithms such as

long-range correction and smooth particle mesh Ewald method (PME) on electrostatic potential

published in 1995, the simulation can provide both phase behavior and interfacial properties of

system simultaneously in a plausible time and length scale with improved accuracy.[13] Recently,

huge speed-up of parallel computation performance can be realized by graphics processing units

(GPUs) and a new PME method on Lennard-Jones potential appears for better accuracy on weak

dispersion energy.[14] In that sense, single cell simulation for drawing phase diagram seems not to

be unfeasible longer, but still there are some difficulties. For example, comparing gibbs ensemble

simulation, it may take a long computation time, e.g. a few µs, to reach separation/mixing equilib-

rium of a large molecules. Relatively strong finite size effect matters because many particles are

used for interface and it will suppress (or bias) the phase transition point. Also, simulation settings

such as dispersion correction algorithm studied on homogeneous systems can make a difference

on phase equilibria due to the inhomogeneous system in a single cell of separation. Nevertheless,

surpassing those risks, the good convenience of single cell molecular simulation technique leads
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Figure 1.5: Conceptual pictures of single cell simulation of A/B binary mixture to get phase
boundary.

to many applications for phase transition studies of condensed matters.

The basic idea to get coexistence is that phase boundary at a given temperature can be obtained

from the steady concentration regions which are well shown in Gibbs dividing interface. In other

words, when you plot local concentration profile in space for phase separation of mixtures, we

may see two steady regions for A and B-rich phase and one smoothly steep region for interface.

Unfortunately, in practice, we get the noisy profile every time due to very tiny system size (the

small number of particles) and movements of interfaces in time. To reduce noisy local concentra-

tion at position, the instantaneous profiles are needed to average in time and correct the movement

of interfaces not to artificially smear out concentration values for phases and broaden interfaces.

As seen in Figure 1.5, a conventional way to align the interface is to align the center of mass of

the total system. It makes sense in some extent because in A/B binary mixture, the concentrations

of A components for two steady regions are different enough to distinguish and the components

are presumed to evenly distributed within each phase. Although the method is not criticized yet,

the assumption would be weak in that noisy and/or asymmetric instantaneous profiles are likely

to occur under finite system size. In Chapter 2, we propose a good tool (called interface method)

to align interfaces for single cell simulations of phase separation study. Then, we apply the inter-

face method for PEO/ILs with OPLS/AA force field and SAPT-UA force field in Appendix C and

Chapter 4, respectively.

In addition to the alignment methods which can get two coexisting compositions at a given

temperature, other methods which find phase transition temperature at a given concentration are

available using single cell simulations. Depending on what property would be a good indicator for
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phase separation behavior of target system, there are various approaches available. In Appendix

B, we discuss about local number fluctuation, heat capacity, and polymer segment conformation

as order parameters for LCST behavior of PEO in [BMIM][BF4] and [BMIM][PF6].

While I got somewhat useful results of local number fluctuation approach for obtaining phase

transition of the two systems, it is not clear about how accurately the approach estimates transition

temperatures yet. Also, OPLS/AA force field I used for those systems has a problem on slow dy-

namics due to full charges of ions, instead of scaled charges which is widely used but shows wrong

phase behavior.[15] The slow dynamics indicate it takes a long simulation time for nonequilibrium

initial coordinates to be at equilibrium, which might be unfeasible. Also, the anion effect looked

obvious and seemed not to be interesting to publish. Meanwhile, symmetry adapted perturbation

theory united atom (SAPT-UA) force field of PEO and ILs was developed by Son for fast perfor-

mance and good accuracy.[16] Therefore, this project moved to use SAPT-UA force field and focus

on a cation modification effect by C2-methylation to block the hydrogen bonding on C2 position

of imidazolium cation, which will be described in Chapter 4.

1.4 New paradigm of data-driven techniques

Currently, machine learning is so popular for data analysis without explicit instructions. Although

machine learning algorithms were developed in past, the usage of techniques explosively increase

with fast computation performance following Moore’s law, the appearance of GPUs, and a number

of accessible data in public. As current problems are too complicated to understand underlying

principles, machine learning can provide a good solution (or prediction) based on huge amount of

available data or big data. The phase transition problem in physics is not an exceptional example

as one of machine learning applications.

The conventional method for the prediction of the critical point is to use concepts of universality

class, critical exponents, and scaling variables.[17] With Wegner expansion, the order parameter,
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e.g. mass fraction difference of A component in two phases (A-rich phase for phase I and B-rich

phase for phase II) of A/B binary mixture, can be expressed as

wIA − wIIA = B0τ
β +B1τ

β+∆, (1.3)

where τ = T−Tc
Tc

. The rectilinear diameter can be expressed as

wIA + wIIA
2

= wc + A0τ + A1τ
1−Γ (1.4)

Note that wc is the mass fraction of component A at the critical point, Ai, i = 0, 1 and Bi, i = 0,1

are non-universal constants as fitting parameters, while β, ∆ and Γ are universal critical exponents.

For the 3D Ising universality class relevant for the present study, the exponents are approximately

β = 0.326, ∆ = 0.5, and Γ = 0.1. Thus, using some coexisting mass fraction point of A, we can

obtain Tc from Eq. 1.3 and then wc from Eq. 1.4. The fitting functions for prediction of Tc and

wc work in some extent for many applications including PEO/[BMIM][BF4] with OPLS/AA force

field. (see Appendix C) However, the fitting method can be criticized when the coexisting mass

fractions are obtained at far from the critical point and a sudden change of phase boundary curve

occurs near the critical point.

Machine learning showed a success on predicting phase transition, fed big data without the

fitting function and critical exponents. The data can be raw such as coordinates of molecules

and molecular type (or kinds of components) from molecular simulation. In fact, other properties

calculated from raw data can be also possible for effective feeding and learning, but the order

parameter or cumulants such as Binder parameter is not preferred because it is already interfered

by some knowledge about phase transition. Under the situation that positions of molecules are only

available, human vision is very useful to roughly distinguish mixing/separation of system such as

sand/water and oil/water. Then, we can find the analogy between visual images of separation and

dog/cat pictures to categorize which image has dog or cat by computer. In Figure 1.6, you can see
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Figure 1.6: A brief explanation of the machine learning strategy about how to train and predict
phase of arbitrary binary system of red and blue components.

a strategy of phase prediction by machine learning. Applying the strategy for dog/cat problem in

computer vision field, there are various examples in phase transition but limited within 2D and 3D

lattice models. Thus, we aim to develop a machine learning framework of 3D off-lattice models in

Chapter 3.

Although machine learning (ML) massively contributes to solve many problem, the prediction

power is very sensitive on settings including hyperparameters. The hyperparameters define as pa-

rameters to set before learning. For example, they are the number and size of filters (or kernels)

for convolutional neural network (CNN) and the number of perceptrons for multilayer perceptron

(MLP). Also, the prediction result can be changed by architecture of neural network layers in-

cluding padding, stride size, activation function, optimizer, and initialization scheme on weights.

(see an example in Figure 1.7 These factors easily make pitfalls when applying ML to problems

in physics, and research scientist is required to have strong domain knowledge to get meaningful

result from machine learning.[18] In Chapter3, I was motivated about how to set CNN filter size

up for phase transition of binary mixtures of toy models.

In the context, finding optimal hyperparameters is such a overwhelming task to improve the

accuracy of machine learning. In order to ease the tedious and seemingly not insightful job, au-

tomation machine learning (AutoML) libraries are available. Rather than manually finding optimal

hyperparameters, we utilize the best architecture and result suggested from AutoML within one
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Figure 1.7: An example of several sets of candidate settings of hyperparameters for two-layer
CNN model to categorize a image into either of two classes. For the explanation of the number of
parameters to optimize and output data size from each layer, we indicate that Red color numbers
mean the number of parameters for each layer when choosing the hyperparameter shown as a black
underlined text.

day. As another difference with method in Chapter 4, we use collective variables for feeding data,

not spatial information in simulation cell. Such these cost-saving algorithm enables us to predict

the critical point of complex systems; PEO/IL mixtures in our dissertation. We will discuss details

of a hybrid method of molecular simulations and artificial neural networks later.
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Chapter 2

A Simulation Method for the Phase

Diagram of Complex Fluid Mixtures

2.1 Introduction

The phase behavior of mixtures of complex fluids is an important and interesting topic. There are

fundamental questions in, for example, the phase behavior of polymer solutions, especially with

complex solvents such as water or room temperature ionic liquids[1]. Polymer solutions can dis-

play a lower critical solution temperature (LCST), i.e., the solution is mixed at low temperatures but

phase separates upon heating, or an upper critical solution temperature (UCST), i.e., the solution is

mixed at high temperatures but phase separates upon cooling. The phase behavior of polymers can

be qualitatively different depending on the solvent. For example, poly (N-isopropylacrylamide)

(PNIPAm) exhibits an LCST in water,[2, 3] but a UCST in some ionic liquids.[4, 5, 6, 7] On the

other hand poly (ethylene oxide) (PEO) displays both an LCST and UCST in water,[8, 9, 10, 11]

but is soluble in many ionic liquids and displays an LCST in some cases.[1, 12, 13]

Computer simulations are a valuable tool to study the phase behavior of complex fluids, but are

challenging for polymer solutions. In the Gibbs ensemble method [14] for binary mixtures, for ex-
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ample, one starts with two simulation cells chosen so that the conditions are within the coexistence

region. In addition to moving the molecules around in each cell, attempts are made to transfer

molecules of each species from each cell to the other, with an acceptance criterion chosen to en-

sure equality of chemical potentials. This method has many successes [15, 16, 17], but for complex

fluids the challenge is that successful insertions are rare.[18] Expanded ensemble methods[19, 20,

21, 22, 23, 24] alleviate this problem for model polymer systems, but their implementation for

atomistic models is challenging and has not been attempted, to our knowledge. If one coexistence

point is known, the rest of the phase diagram can be obtained by Gibbs-Duhem integration[22, 21]

although, for binary mixtures, this still requires the insertion/deletion of one of the components.

An alternative for binary mixtures is to simulate a spatially inhomogeneous system with an

explicit interface. This requires a large simulation cell so that there are two “bulk” coexisting re-

gions well separated by an interface [25, 26]. Very large simulation cells are necessary but this is

not a significant factor given current computational resources. A more problematic issue is that

the interface moves during the course of the simulation[27, 28, 29]. For a long enough simula-

tion the interface should move through the entire simulation cell making it difficult to determine

coexisting concentrations. Another challenge is that finite size effects are particularly important

with an interface due to capillary waves. Single cell simulations have been used successfully to

investigate coexistence between the crystal and solution (or melt) of Urea[30, 31] and NaCl[32,

33] to determine the solubility, but the crystal interface is sharp, unlike a fluid-fluid interface.

Direct interfacial simulations can be useful if combined with methods to suppress the move-

ment of the interface.[34] For example, the center-of-mass of one of the components can be chosen

as the origin of the co-ordinate system. Alternatively the Gibbs dividing surface can be calculated

for each snapshot and this location used as the origin of the simulation cell. These methods have

some disadvantages; the center-of-mass of one of the components can be located outside its do-

main due to periodic boundary conditions and the interface location can be ambiguous when the

interface is broad.
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In this work, we present a method to align the interfaces obtained in different snapshots of

the simulation and therefore obtain converged average values for the coexistence properties. We

test the method by comparing our results for the phase diagram to previous simulations of the

Widom-Rowlinson (WR) model[35, 23, 36] and symmetric polymer blends.[37]; the agreement is

excellent except in the vicinity of the critical point where the interface is too broad. The method

can be readily applied to any complex fluid mixture.

2.2 Convolution Method

Consider a binary mixture of species A and B where Ni is the number of molecules of species i

and N = NA + NB. The simulation cell is a rectangular parallelepiped with dimensions Lx, Ly

and Lz in the three Cartesian coordinates, with the origin at (0,0,0). We assume that the interface

between the two phases occurs along the z direction. In practice this is always the case if the

dimension Lz is chosen to be much larger than Lx and Ly.

For a phase separated system (see figure 2.1) the position of the interface moves along z and we

wish to shift the concentration profile so that the center of the A-rich phase is at z=0. To achieve

this shift we define a concentration autocorrelation function and shift the concentration along the

z-axis to maximize the overlap with the autocorrelation function. We define a concentration auto-

correlation function, CAA(d), by

CAA (d) ≡
Lz∑
z=0

∆xA (z) ∆xA (z − d) (2.1)

where ∆xA (z) ≡ xA (z)−〈xA〉, xA(z) is the molecule fraction of speciesA, and 〈xA〉 = NA/V is

the average value of xA(z) in the simulation cell, and V is the volume. We use a summation instead

of an integral because the concentration profile is obtained by binning in the z direction. The

concentration autocorrelation function is a marker of the extent of the coexisting phases because

the local mole fraction at the center of A-rich phase positively correlates with that in the same
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Figure 2.1: Pictorial depiction of the convolution method: (a) Snapshot of A (black) and B (gray)
particles, (b) the instantaneous mole fraction profile xA(z), (c) the mole fraction autocorrelation
function CAA (d) (Eq. 2.1), (d) the pulse function pA(z) which has the same domain size as that
shown in CAA (d) (e) the function Xc(n) (Eq. 2.3), and (f) the optimally shifted mole fraction
profile xshiftA (z).
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bulk domain, weakly correlates with that near interface, and negatively correlates with that in the

opposite phase (A-poor phase). In other words, the (normalised) autocorrelation monotonically

decays from 1 at the origin to -1 at −Lz/2 and Lz/2. The pulse function, pA(d), defined as

pA(d) ≡


1 if CAA (d) ≥ 0

0 if CAA (d) < 0

(2.2)

has the same width as CAA(d) and we use this function to shift the concentration profile as follows.

To shift the concentration profile optimally we find the overlap of the concentration profile with

pA(d) and shift the former to maximize the overlap. We define the function

Xc (n) ≡
Lz∑
z=0

xA (z) pA (n− z) (2.3)

where n is a shift distance along z-direction and choose n so that this overlap is maximum. If nmax

is the value of n for which Xc(n) is a maximum, then the desired shifted concentration profile is

given by

xshiftA (z) = xA(z + nmax) (2.4)

which is the central result of this method. Concentration profiles from subsequence snapshots are

therefore aligned so that the center of the bulk A phase is at the origin.

Once the concentration profiles from different snapshots are aligned we can obtain an average

concentration profile from the simulations. The co-existing “bulk” concentrations are then obtained

by fitting this concentration profile to an error function.[38, 39, 40] One could, alternatively, just

take the concentration at the center of the bulk phases as the co-existing concentration but the

statistical uncertainties are larger.
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2.3 Models and simulation methods

We test the method by applying it to two model systems for which the phase diagram is already

available: The Widom Rowlinson mixture and a symmetric blend of freely-jointed polymer chains.

The WR mixture has two components A and B where the interaction potentials, uij(r), are

given by uAA(r) = uBB(r) = 0 and uAB(r) = 0 for r > σ and uAB(r) = ∞ for r < σ. This

system phase separates when the total density ρ ≡ (NA +NB)/V of the system is large enough.

We use canonical ensemble Monte Carlo simulations for the WR mixture. The simulation cell

has Lx = Ly and Lz/Lx = 5 with up to N = 131, 072 particles and Lz chosen to achieve the

desired density. Initial configurations are constructed with perfectly separated systems with a flat

interface. The system is propagated via single particle moves, i.e., a particle is chosen at random

and translated in a randomly chosen direction by an amount chosen uniformly on (0,σ). The

move is accepted if there is no overlap with a particle of the other species and rejected otherwise.

The system is equilibrated until the coexisting concentrations reach a steady value, approximately

5×1011 steps. Properties are then averaged over 5×1011 steps. Statistical uncertainties are reported

as one standard deviation about the mean from 10 independent runs.

The two components of the symmetric polymer blend model are freely-jointed tangent sphere

chains with Npol sites of mass m. Neighboring beads along the chain backbone interact via a

harmonic spring Ubond (r) = k(r − beq)2, where k is a spring constant and beq is equilibrium bond

length. We use k = 1000 and beq = σ. All other beads interact via a cut-and-shifted Lennard-Jones

potential, i.e.,

uij =


4εij

[(σij
r

)12 −
(σij
r

)6
]
− Ushift, r ≤ 2.5σ

0, r ≥ 2.5σ

(2.5)

where Ushift is the LJ potential at r = 2.5σ. We consider the system studied by Gromov and de

Pablo [37] where σAA = σAB = σBB = σ and εAA = εBB = ε and εAB = 0.9ε.

We perform molecular dynamics simulations using the GROMACS 2016.3 software pack-
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Figure 2.2: Time evolution of the concentration profile of the WR model with ρσ3 = 0.9998 and
N = 8, 192 particles: (left) raw concentration profile and (right) aligned concentration profile.
Blue and red regions denote A and B species, respectively.

age[41] to obtain the properties of the symmetric polymer blend. We investigate Npol = 32 and

64 with up to 4096 polymer chains for 32-mers and 2048 polymer chains for 64-mers. Initial con-

figurations are generated by placing the chains on a lattice with the mole fraction on the left half

of the box fixed at 0.95 and with Lx = Ly and Lz/Lx = 10. The system is equilibrated in the

isothermal-isobaric ensemble with fixed cross-sectional area and constant normal pressure. The

temperature and normal pressure are controlled using a Nose-Hoover thermostat and a Parrinello-

Rahman barostat with Pz = 1ε/σ3. The system is propagated using the Verlet integration with a

reduced time step of 0.004σ
√
m/ε. The equilibrated systems has a ratio Lz/Lx ≈ 5.0. Approxi-

mately 12× 107 time steps are required for equilibration and average properties are collected over

25× 107 time steps. Statistical uncertainties are obtained via block averaging.

2.4 Results and Discussions

The convolution method successfully aligns the concentration profiles from different snapshots.

Figure 2.2 depicts the instantaneous concentration profile (top) and the aligned concentration pro-

file (bottom) for the WR mixture. The position of the interfaces is clearly time independent in (b)

as required for the estimation of the concentration profiles and coexistence concentrations.
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Figure 2.3: Concentration profiles of the WR mixture for ρσ3 = 0.9998 (red), 0.8546 (blue),
0.8106 (green), and 0.7831 (purple). Solid lines are fits to the error function.

The average concentration profiles for the WR mixture are depicted in figure 2.3 for various

values of the density. As might be expected, the interface is sharp at high densities and becomes

broader as one approaches the critical point. Also shown are fits to the error function from which

the co-existing concentrations are determined. A good fit is obtained in all cases, although reading

off the concentration from the flat part of the concentration profile is also feasible.

The alignment of concentration profiles and fit to the average concentration profiles works

equally well for the symmetric polymer blend and these results are therefore not explicitly shown.

The phase diagrams obtained from direct interfacial simulations are in good agreement with

previous simulations. Figure 2.4 compares the results of this work to previous semi-grand canoni-

cal ensemble simulations of Shew and Yethiraj (SY)[35] Miguel, Almarza, and Jackson (MAJ),[23],

and Djikaev.[36]. The statistical uncertainties are smaller than the size of the symbols and the

agreement with previous simulations is excellent. The single cell method of this work fails very

close to the critical point because of the large concentration fluctuations, but we are able to obtain

results to within ∼6% of the critical density.

Figure 2.5 compares direct interfacial simulation results for the phase diagram of symmetric

polymer blends to expanded Gibbs ensemble simulations of Gromov and de Pablo [37] for 32-

mers and 64-mers. As with the WR mixture results from the direct simulations are in excellent
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Figure 2.5: Phase diagrams of the symmetric polymer blends from this work compared to the
results of Gromov and de Pablo (GP)[37]. Dotted lines are best fits to Ising scaling expressions[37].

agreement with previous work, within statistical uncertainties. The method has challenges near the

critical point, but the method is successful to within ∼5% of the critical temperature for 32-mers

and ∼11% of the critical temperature for 64-mers.

2.5 Conclusions

We present a method to obtain the phase behavior of complex fluids from direct interfacial sim-

ulations. The key idea is that a method to align the interface from different snapshots in order to



24

obtain average concentration profiles. The simulation results for the phase diagram are in excellent

agreement with previous simulations for the Widom-Rowlinson mixture and symmetric polymer

blends. These are stringent tests because in the first case concentration fluctuations are large, and

in the second case Gibbs ensemble simulations, although feasible, are challenging.

The only drawback is that the method fails near the critical point and to obtain the critical

properties accurately one would have to combine the method with another techniques which do

not simulate interfaces. As the critical point is approached, interface thickness w diverges as

w ∼ (T − Tc)−ν where Tc is the critical temperature and ν is the critical exponent,[42, 43] and

direct interfacial simulations are not computationally feasible. Far from the critical point, however,

we estimate the computational costs are comparable to Gibbs ensemble simulations. In practice,

Gibbs ensemble simulations are more computationally intensive than NVT simulations.[44] If one

assumes the computational time is proportional to the number of steps, for Lennard-Jones particles

an NVT simulation of 131,072 particles takes the same time as a Gibbs ensemble simulation of

4096 particles. For the systems studied here, the simulations with an interface required roughly 8

times the number of particles as in previous Gibbs ensemble simulations, suggesting the computa-

tional demands will be similar.

The method is expected to be particular useful for complex interacting systems such as mixtures

of polymers in room temperature ionic liquids. These systems are complicated by the necessity of

using atomistic polarizable models. In addition, the species are strongly interacting and bulky and

the combination of these factors makes standard Gibbs ensemble simulations daunting. Another

advantage of interfacial simulations is that the properties of the interface, such as interface width,

surface tension, molecular orientations and structures at interfaces, can also be investigated. The

convolution method might also be useful in simulations of crystal-liquid interfaces, especially

when crystal growth rates are of interest. In this case the location of the interface can be accurately

determined from the number fluctuation of solid molecules.[45, 46, 47] The method is trivially

implemented on standard simulation packages and only requires post-processing of simulation
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data.
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Chapter 3

Supervised Machine Learning of Binary

Off-lattice Systems for Prediction of Phase

Separation

3.1 Introduction

Machine learning has been greatly successful in predicting phase transitions in physics. Recently,

the convolutional neural network (ConvNet or CNN), one of popular deep learning models, can

effectively predict phase transition of two-dimensional Ising model utilizing local positions of

spins in lattice.[1] Beyond the Ising model, when one tries to apply the ConvNet to more general

systems such as three dimensional off-lattice systems, followings are considerable; what data is

fed to machine learning and how to set an effective ML model up. To solve those questions, we

develop a machine learning scheme based on the ConvNet to systematically construct a good ML

model and confirm the model comparing the results of two binary off-lattice models of which phase

separation diagrams are available from previous simulation studies.

With the growth of deep learning tools and recent developments of graphics processing unit
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(GPU), the new idea of phase prediction by ML have been widely applied from simple toy models

to complex systems.[2] Moving toward applications of off-lattice models from the Ising model,

one must decide how the positions of molecules are fed into the neural network. Wei and Chen[3]

pointed out that, while spin labels in Ising model represents spatial locations, input data of complex

systems such as liquid crystals should be defined in a standard way of constructing correlations of

index, position, and component of molecules. Naively, one can adopt an image recognition idea

by digitizing the continuum space into a grid and assigning a value of “occupied” or “unoccupied”

to a particular grid point, describing the occupancy of atoms and atom identity for detection of

polymer states and crystal structures of Lennard Jones particle and water.[4, 5]

Beside raw positions, input ML data can be constructed with structural descriptors or features.

The choice of features depends on what kind of ML models is used and what kinds of properties

are interested in, but structural order parameters are mostly chosen such as distance, bond, and

angle histograms.[6, 7, 8] In the case of off-lattice models, Jadrich and coworkers used a set of

close distances of neighbors as the feature of phase transition.[9, 10] However, maximum dis-

tance criteria of two molecules chosen as a phase transition feature is system-specific and distance

computation is expensive, thus becomes vulnerable when long-ranged correlation dominates phase

transition of system such as the Widom-Rowlinson (WR) model. Alternatively, the learning-by-

confusion scheme can be considered so that it classifies phases utilizing the performance of the

neural network after training with deliberately incorrectly labeled data.[11] In this work, we use

raw positions of molecules for input ML data to avoid prior knowledge and, instead, the ConvNet

will capture features of phase transition such as molecular positioning patterns by training.

Typically, the ConvNet has been a good choice of machine learning algorithms to capture local

features of a pattern in phase transition of condensed matters. Although the tool as a supervised

machine learning requires labelled data to train, it readily takes the advantage of spatial structure

by doing the convolution of relatively small size feature maps with coordinate images. ConvNet

studies show a highly accurate prediction of phase transition of 2D lattice models, e.g. ferromag-
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netic Ising model,[1, 12] Hubbard model,[13, 14] XY model,[15] and Anderson model.[16, 17]

Thus, it is worth to apply such a successful ML algorithm to the phase prediction of 3D off-lattice

models as well.

In this paper, we develop a ML framework which relies on the ConvNet to do the task of

identifying the phase separation point in binary mixture models: the WR model and a freely-

jointed polymer blend. To provide molecular positions into a neural network learning process,

we interpolate it into single values on grid points between -1 and 1. Then, we figure out the

optimal ConvNet filter size, one of hyperparameters for ConvNet, in a systematic way to build a

good machine learning model which is capable to predict phase transition points. We show the

features of phase behaviors of two models which machine learns and a good agreement with phase

boundary of two binary mixture models reported in past. We conclude with a discussion on general

application and limitation of our scheme.

3.2 Convolutional neural network approach for phase separa-

tion of off-lattice systems

We describe our machine learning scheme including data pre-/post-processing. (see Figure 3.1)

We consider coordinates of a binary mixture of A and B components with the total number of

molecules N and the mole fraction of A, e.g. xA. For the simplicity of explanation, we focus on

the WR model that shows phase separation behavior as density (ρ = N/V where V is simulation

cell volume) increases.

In brief, our supervised machine learning scheme consists of the following procedures. Once

we obtain equilibrium (continuum) coordinates of molecules from molecular simulations at var-

ious densities and a certain xA, we do data pre-processing to convert coordinates into a three

dimensional color map in an appropriate format for the convolution neural network. Finding the

optimal size of feature map for an effective ML model, machine learning is able to properly predict
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Figure 3.1: The Supervised machine learning scheme from equilibrated coordinates of the WR
model with various densities (ρ) to get the corrected transition density (red arrow on the rightmost
graph) using finite size scaling method at a given mole fraction. Details are described in Sec. 4.2.3.

a (finite-size) transition density at xA for a system size N . Finally, using transition densities with

differentN ’s, we can estimate the corrected coexisting density at xA via finite-size scaling method.

Let us go over details of construction of input ML data. Molecular simulations at various

densities and mole fractions output coordinates of molecules at equilibrium. Unlike lattice models,

coordinates of off-lattice models have continuous values. Rather than taking continuum values as

input, we interpolate both the molecular positions and components into values in single column,

which allows to reduce data dimension for efficiency. For assignment of values on grids, we apply

a three-dimensional linear interpolation by triangulating the coordinates with three values, such as

1 for A molecules, 0 for B molecules, and 0.5 for vacant on grids. As a result, a 3d image for

i-th simulation output has a set of values in a range between 0 and 1, which is, in mathematical

expression for a given density and mole fraction of A,

Si (ρ, xA) =
[
s1, · · · sng

3

]
(3.1)

where ng is the number of grids on an axis. We choose ng which is close to 3
√
N for simplicity.

When converting raw positions of particles into 3d images with any value between 0 and 1,

we split the collection of data depending on data set purposes; training CNN neural network and

predicting the probability of immiscible phase. We train our neural network with S’s at two density
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far from phase transition density. We do not know where phase transition density is located exactly

yet and instead we can easily figure out which phase dominates at an very high and low density

in our eye. At those extreme temperatures, we are able to label on the system with the dominated

phase, e.g. mixing or separation which digitized as 0 and 1. As a result, the training data set

Xknown would be a set of j images with the known j labels at two different temperatures;

Xknown = [S1 (ρmix) , · · · , Sj (ρsep)] (3.2)

where ρmix and ρsep are the densities where mixing and separation phase clearly dominates, respec-

tively. The rest of images at other densities between ρmix and ρsep will be used for the prediction

of phase transition;

Xunknown = [Sj+1 (ρ1) , · · · , Sk (ρm)] (3.3)

where m is total number of images for various ρ’s at xA.

The supervised machine learning algorithm mainly goes two steps: training and prediction.

In training step, our goal is to obtain an optimized neural network model (F ) that contains many

weights and biases to predict correct phases for training data set;

F (Xknown) = Ylabels = [0, · · · , 1] (3.4)

. Note that we use 1 and 0 for mixing and separation phase of the PB model. Our ML model

consists of two CNN layers and two linear classifier layers. CNN layers have nf feature maps (or

filters) to capture relatively small patterns on image. The i-th 3D feature map contains a set of

weights with a shape of ns x ns x ns, and and single bias bi, where ns is the filter size. Next to

CNN layers, at least two linear classifier layers with weights and np scalar-valued bias will finally

predict the probability of mixing and separation phase, P (ρ) activated by Softmax function. Those

weights and biases will be optimized by minimizing loss function with training data set by the
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Figure 3.2: Probability distributions of finding separation phase, P(ρ), as a function of system
density for Widom-Rowlinson model with N = 1024 (lightest colors), 2048, 4096 (darkest colors)
at xA = 0.3125 using filter size ns = 4. We define the system density with 50% probability of
separation as ρb(N). Solid lines are results of fitting to sigmoid curve.

backpropgation algorithm. In prediction process, the trained ML model, e.g. F in Eq. 3.4 will use

the prediction data set Xunknown like F (Xunknown) = Ypredict where Ypredict is a set of probability

of phases for images in a range of [0,1]. Then, the (finite) transition density, ρb(N), can be inferred

by fitting the probability distribution as a function of densities with sigmoid function as shown in

Figure 3.2.

Unlike parameters (weights and biases) of machine learning are optimized with training set,

hyperparameters such as ns, nf , and np have to be determined in prior machine learning. The filter

size ns determines the correlation or patterning range of small spatial features to help to predict

phase separation. Many studies of predicting phase transition of simple models used very small

values such as 2 or 3 for ns.[1, 12, 18, 19, 14] Such a tiny feature map could be enough for studying

the phase behavior of lattice models because interaction is very weak such as interacting adjacent

neighbors for Ising model. At least for the Widom-Rowlinson model, a small size of feature map

seems not to work because of their long range correlations.[10]. Using too large ns would become

worse because a large feature map would contain extra, unnecessary weights to force training and

give a slow learning rate. That is why we develop a scheme to find an appropriate hyperparamter,

filter size ns for complex systems.
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Figure 3.3: The V-shape trends of phase transition densities with a function of CNN filter size ns
at xA = 0.125 of the WR model.

The choice of the filter size ns affects on prediction quality. To see the dependency of ns on

predicted transition points, we get transition points varing from 2 to the maximum size of patterns,

e.g. ng

2
because of periodic boundary condition. As you can see Figure 3.3, the V-shaped trend

suggests two scenarios. Too small filter size would be weak to hold pattern information of such a

strong correlation of spatial distribution of molecules, which gives bias error because of too simple

ML model. In contrast, because additional unrelated colors would disturb learning patterns and

increase variance error, the optimized ML model with too large ns would be be vulnerable. Thus,

we choose the ns which has the lowest transition density in V-shaped trend. In the case of the PB

model, we see an inverse V-shaped trend and choose the highest transition temperature. Note that

we keep other hyperparameters nf and np constant for simplicity.

Once we decide the transition density varying ns, we can extrapolate the transition density for

infinite system using finite-size scaling (FSS).[20, 21, 22] Because transition density is suppressed

in finite systems, the scaling method provides the way to correct the transition density without

finite size effect, ρ(N =∞;xA);

ρb(N)− ρb(∞) ∼ L−1/ν ∼ N−1/3ν (3.5)

where ρb(N) and ρb(∞) are the transition density of the finite and infinite system, respectively.
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Figure 3.4: The system size dependence on transition densities of the WR model predicted by
machine learning. The infinite transition densities ρ(∞)’s (or ρb in Fig. 3.7) are extrapolated as
y-intercepts by finite-size scaling method with universal critical exponents, ν = 0.63012.[23]

Also, L is the cell length in the simulation, and ν is a universal exponent, e.g. 0.63012 for 3D Ising

universality class.[23] The results using FSS method for the WR model are shown in Fig. 3.4.

For a specific case with intermediate (plausible) phases during transition, we need to reset

Tsep as you can see our polymer blend model. For example of lamella transition, one may expect

phase separation transition smoothly occurs from lamellar structure to disordered phase, but we

found several intermediate structures during phase separation transition; perforated lamellar, two

dimensional channels, three dimensional channels, and then mixing phase. In fact, these partially

transformed network structures are plausible and appear instantly (not to form macro-phase). Thus,

if the structures appear frequently in coordinates and supervised machine learning learns only

lamellar and mixing structure, the predicted transition temperature would not feasible due to not

learned shape. In particular, we found considerable proportion of plausible domain structures at

intermediate temperatures with 0.375 ≤ xA ≤ 0.5. To solve such multi-structure problem, we

employ an additional training set with the coordinate which has three dimensional percolating

channels (3C). Using three categories (lamellar, mixing, and 3C) in ML, we can roughly estimate

a temperature where 3C structure mostly appears.

In Fig. 3.5, we plot probability of three phases as F(Xknown) is either 0, 1, or 2 for separation,

mixing, and 3C phase. While the training sets are chosen as coordinates which of Tsep = 1.0 and
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Figure 3.5: The probability of finding (a) lamellar structure, (b) mixing phase, and (c) three
dimensional channel (3C) with respect to system temperature for xA = 0.4375 and N = 64
of polymer blend model. Due to the appearance of such a plausible, intermediate structure, we
consider phase separation transition for systems would be a (b)-(c) transition (3C to mixing phase)
for our ML detection of phase boundary, instead of lamella-mixing transition. The example images
for training data with 2x2x2 supercell are shown on right side.

4.0, single coordinate which has 3C phase in eye is used for 3C phase. Then, we generate the total

number of the 3C (augmented) images will be the same as the amount of other training sets to

avoid data amount bias. Varying the filter size of the first CNN layer, we find the optimal filter size

which shows maximum probability of 3D channel to distinguish 3C phase. With the optimal filter

size, we can get a new Tsep where maximum probability of 3D channel phase locates. As you see

Fig. 3.5, the Tsep is 1.9 for xA = 0.435 and N = 64 which will be used for obtaining the transition

temperature.

With the new Tsep and Tmix for 0.375 ≤ xA ≤ 0.5, we train a new ML model with two outputs

(0 or 1 for 3C and mixing phase) in order to obtain the transition temperature between 3C phase

and mixing phase by varying the first CNN filter size. Note that for other concentrations xA <

0.375, we use Tsep = 0.6 - 1.0 without considering intermediate phases. Also, we do the FSS

method for some system sizes to extrapolate Tb(∞).
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3.3 Computational details

We study the phase classification of off-lattice models, labeling configurations as belonging to

either mixing or separation phases. Our goal is to answer the question whether supervised machine

learning with our bias-training method is capable of correctly classifying two phases of continuum

models; the Widom-Rowlinson mixture and a symmetric blend of freely jointed polymer chains.

The Widom-Rowlinson (WR) model is a binary (A/B) mixture model which shows phase sep-

aration under low density and mixing at high density. Their interactions are governed by a kind of

species; overlapping between same species are available without energy cost, otherwise different

species are repulsive within distance σ like hard sphere model. We prepared 100 ensembles per

temperature per concentration, which initially have randomly distributed particles in cubic cell with

N = 1024, 2048, 3072, 4096, and 8192 where N is total number of particles. We employ standard

Monte Carlo simulation methods to run up to ∼ 7 x 105 MC steps per number of particles at 7

different concentrations, xA = NA/N = [0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.4863, 0.5],

and at least 51 number densities ranging from ρ = 0.5, 0.51, ..., 0.75, 0.752, ..., 0.82, 0.83, ..., 1.0

σ−3 where V is the cell volume. The WR particles can move within σ distance except overlapping

with different species under periodic boundary condition.

We test our ML scheme for not only Widom-Rowlinson model but also a symmetry polymer

blends (PB) model. The model shows the upper critical separation temperature (UCST) behavior

as a function of temperature and mole fraction under constant pressure. The symmetric polymer

blend model we used is composed of binary components (A/B) with freely jointed polymer chains.

We consider a system that each polymer has 32 sites of mass m. Along the chain backbone,

neighbor beads are connected under a harmonic spring potential and all other beads interacts a cut-

and-shifted Lennard-Jones (LJ) potential, that is, the non-bonding potential is shifted to be zero

at any distance greater than 2.5σ. As for non-bonding interactions of beads, we use following LJ

parameters, σA−A = σA−B = σB−B = σ, εA−A = εB−B = ε, and εA−B = 0.9ε (see details in
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Gromov and de Pablo’s paper).[24] We run 30 simulations from 64 molecules up to 128 molecules

for each temperature and mole fraction, xA = [0.125, 0.1875, 0.3175, 0.375, 0.4375, 0.5 ] by

randomly inserting polymers on a cubic lattice at a large cell volume.

We perform molecular dynamics simulations of polymer molecules using GROMACS 5.1.2

software package[25] at a range of reduced temperature (∼ 25 reduced temperatures we use) from

0.6 kBT to 4.0 kBT . Note that below 0.6 kBT the system becomes freezing, thus we avoid those

temperatures due to inaccessible to equilibrium. We run the isothermal-isobaric (NPT) simulations

using a Nose-Hoover thermostat and a Parrinello-Rahman barostat with pressure P = 1σ−3. The

system is propagated using the Verlet integration with a reduced time step of 0.004 σ
√
m−1. Once

we get stable densities from NPT simulations with 3 × 106 time steps, we perform isothermal-

isochoric (NVT) ensemble simulations up to 108 time steps to obtain equilibrium coordinates.

In pre-processing of coordinates, we do three-dimensional grid interpolation with linear inter-

polation by assigning values for A and B particles and vacant grids; 1, 0, 0.5 for the WR model

and 1, 0, -1 for the polymer blends model, respectively. In addition, with few tens or hundreds of

coordinates, optimization of ∼ 200,000 parameters of ML model might be unfeasible to train ML

models. To enlarge the amount of coordinates, we produce virtual coordinates using an augmen-

tation method which generates a number of data sets by flipping, translating, and rotating images.

We make 100 and 400 augmented images per original image for training dataset of the WR model

and the PB model. We make 10 augmented images per original image for the prediction data of the

PB model as well. We implement these pre-processings with the Scipy intepolation library.[26]

Our convolutional neural network (CNN) is trained to minimize a loss function, standard cross

entropy function. Our data are composed of a set of coordinates obtain at number density 0.5 - 1.0

number densities for the WR model and 0.6 - 4.0 reduced temperatures for mixing phase of PB

model. The weights and biases of our CNN model are then optimized through back-propagation

with Adam algorithm[27, 28] to minimize the loss function on the training data during 30 epoches

through entire dataset with every 200 and 50 images per batch for the WR model and the PB
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model, respectively. Our ML model takes grid-interpolated color maps with periodic 3D padding

as input data. Utilizing the successful ML model architecture for critical exponents of 2D electron

system,[29] we use two CNN layers with 16 filters (e.g. nf = 16) and vary filter size for first CNN

layer to find the optimal size, but keep ns = 2 for second CNN layer. All scores as outputs of

CNN layers are activated by rectified linear (ReLu) activation function, e.g. f (x) = max (0, x).

Through linear classifier layers with np = 256, we utilize the normalized exponential function

(called softmax function) to get a set of the probability of mixing and separation phase. We imple-

ment the networks with the Keras library using the Tensorflow backend.[30]

3.4 Results and discussions

The general procedures of how CNN works for a problem such as phase separation is that one can

visualize the weights of CNN filters, which were also shown in studies of lattice models. In Fig.

3.6, we found there are roughly two types of CNN filters that show the spatial gradient of weights

and random weight parameter distributions, which is good agreement with previous studies of

lattice models.[19]. Interestingly, when sorted in ordering of bias, the filters indicates that most

of filters which have two large domains of weights even small filter size are likely to have a high

bias. This is because, when the weight distribution of filters matches to distribution of particles in

a cell, convolution calculation comes out a high score. Then, the score will be corrected by adding

bias and only positive score will be fed to the next ML layer. The high positive value is likely to

conclude this system is under separation state as we set 0 as output for mixing phase and 1 for

separated phase.

As mentioned in section 4.2.3, we independently train parameters of the ML model with data

obtained at a certain mole fraction for single transition density, not certain density for single tran-

sition mole fraction. As mole fraction of the WR system increases, the separated domain forms

sphere, cylinder, and lamellar structure, which is well known in gas-liquid transition of Lennard-
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Figure 3.6: The sorted 3D color maps of weights of CNN filters by values of bias at xA = 0.5 and
N = 1024 of the WR model. Most of separation and mixing patterns can be found with high bias
and low bias, respectively. Because CNN layers gives high scores by convolution (or matching) the
pattern of images with filters, CNN filters shows characteristics of separation and mixing patterns
within optimal filter size. For convenience, red to blue colors of voxels correspond normalized
weights in a range of -1 and 1 obtained by the largest magnitude of weights of all CNN filters.

Jone particles.[31] The domain shape dependency gives us to input simulation data under constant

mole fraction into ML rather than under constant density. Under constant density, the data will

have four different spatial patterns from mixing to lamella shape, which may require at least four

classifiers for prediction accuracy. Thus, we choose to use data under constant mole fraction but

various densities. As you can see in Fig. 3.7, our ML results of Widom-Rowlinson model shows

excellent agreement with previous simulation studies.[32, 33] Also, Fig. 3.8 shows the result of

polymer blend models agrees with previous simulation studies.

3.5 Conclusions

We have presented a machine learning framework fed by coordinates of molecular simulations for

obtaining the phase diagram of off-lattice models. To apply convolutional neural network (CNN)

for detection of phase transition, our idea is that we choose a good CNN filter size by checking
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the V-shaped dependency of predicted phase transition point with various filter sizes. Our ML

results for Widom-Rowlinson model and a freely-jointed symmetric polymer blend model show

good consistency with results of previous simulation studies.

When applying our supervised machine learning for phase behavior studies of complex sys-

tems, the input data is necessary to be constructed to contain two neighboring phases. Multi-phase

transition of block copolymer solution or aqueous surfactants can have three or more phases at a

fixed concentration and various temperatures; disordered (D), cylinder (C), gyroid (G), lamellar

(L) phase for block copolymer solution. To work the ML method, the input data consists of co-

ordinates in D and C, C and G, or G and L to get transition temperature for D-C, C-G, or G-L,

respectively. Also, we believe three or more component systems may be studied as extension of

our ML method. The color map for three components system can be represented by three kinds of

color maps for pairs of components, e.g. component 1/2, 2/3, and 1/3 pairs.

However, to apply other systems, the good choice of not only some hyperparameters such as nf

and np but also ML architectures such as the number of layers seems to be somewhat trial-error. We

take a ML model for the phase prediction of a quantum 2D model[29], but it is not easily transferred

to other cases. One way to construct a good ML model is to manually try reasonable values

depending on the complexity of systems to show good agreement with reference using another

method such as Gibbs ensemble simulation,[35, 36, 37, 38, 39] Gibbs-Duhem techniques,[40,

41, 42, 43] and Convolution method.[34] Usually, a deeper ML architecture is considerable for

prediction of two more phases in complicate systems. The phase prediction of the 2D Ising model

was done by single CNN layer with 64 2x2 filters.[1] In the WR model, a deeper ML with at least

two CNN layers should be necessary from our preliminary result of single CNN layer. To reduce

the effort of finding a ML architecture, automated ML (AutoML) techniques are recently developed

such as Cloud AutoML by Google and AutoKeras by DATA Lab at Texas A&M University[44]

because it automatically tune deep neural networks by searching ML algorithms.

One of challenges to apply ML technique utilizing molecular simulation data is that running
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numerous simulations is not cheap. While it is open question about how many amount of input

data is necessary for scientific research, the amount of simulation data is usually limited due to

computation performance and resources. In case of the WR model, we simulate at least 5100

simulations per system size per concentration, which means at least ∼ 15,000 runs with three

system sizes to get single point on phase boundary. The estimated time would be about 10 days

for Intel Core i7 6-core processor with base frequency 3.2 GHz when using 6 processors.

Beside, running molecular dynamics of polymers would be serious. In this work, we use GPU-

supported GROMACS software to speed up. It takes 280 minutes for single run with 64 polymer

molecules when using single NVIDIA GTX 1080 GPU and 2 Intel Xeon CPU cores. Because

we run at least 1400 simulations for two system sizes per concentration, total wall-time would

be ∼ 272 days with single GPU. This lead us to be granted for powerful GPU resources such as

Summit located at the Oak Ridge Leadership Computing Facility. Compared with performance

with NVIDIA GTX 1080, the result from our benchmark shows that simulation speed increases

by almost two times when using single NVIDIA Tesla V100 SXM2 GPU and 7 cores of Power9

CPU. In addition, Summit cluster is a good resource in that up to a few tens of thousands of GPUs

is available. Instead of using a few hundreds of GPUs, it might be considerable to alternatively

use transfer learning method with even relatively small amount of simulation data.[45] The idea is

to transfer the well pre-trained knowledge in a certain domain to solve closely related problems.

There is a few recent transfer learning studies for phase prediction of 3D Hubbard model[14] and

axial next-nearest-neighbor Ising model,[46] thus transfer learning studies would be interesting

when utilizing the universality of phase transition behavior.
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Chapter 4

Entropy-driven Phase Separation Behaviors

of Poly(ethylene oxide) in C2 Methylated

Imidazolium Ionic Liquids: A Molecular

Simulation and Deep Neural Network Study

4.1 Introduction

There has been considerable interest in ionic liquids (ILs) due to their unique properties such as

low melting points and large liquid range with high thermal stability and a low vapor pressure.[1,

2, 3, 4, 5] As a mechanical supporter for IL-based systems, polymers in ILs have potentially wide

application such as fuel cells, temperatures-sensitive sensor, electromechanical actuators, gas per-

meation membrane, and batteries.[6, 7, 8, 9, 10, 11] Especially, poly(ethyelen oxide) or PEO is

a polymer used in wide variety of applications ranging from biomedical to viscosity modifica-

tions.[12, 13, 14, 15] To realize hybrid systems composed of PEO and ILs, understandings of its

miscibility is necessary. In this work, we use molecular dynamics simulations and deep neural
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network techniques to study modification effects of ionic liquid cations on the miscibility behavior

of PEO/IL mixtures.

Incorporation of ILs with PEOs can result in lower critical solution temperature (LCST) behav-

ior. The LCST behavior is that, above critical point, a homogeneous solution of polymer separates

into the two equilibrium phases; polymer-rich phase and solvent-rich phase. In such LCST sys-

tems, the phase separation is driven by the unfavorable entropy of mixing and is mainly caused by

directional interactions. Typically, hydrogen bonding between unlike components interferes with

the rotational freedom. At low temperatures, the predominant species feel attractive with unlike

segments with many rotational degrees of freedom effectively frozen out. For higher tempera-

tures, the orientations will be essentially random and the like intermolecular forces will dominate,

possibly leading to entropic driven LCST behavior.

These LCST behaviors of various PEO/ILs have been experimentally studied in terms of hydro-

gen bonding. Watanabe et al. investigated the LCST phase behavior of different polyethers in vari-

ous classes of ILs.[16] They showed that polyethers are miscible in imidazolium- and pyridinium-

based ILs, whereas they were insoluble in the ammonium- and phosphonium-based ILs. For a

given IL, LCST increases with the polarity of polyethers and decreases by replacing the hydrogen

atom on imidazolium cation by an alkyl group. Lodge et al. studied the LCST phase behavior of

poly(ethylene glycol) or PEG in imidazolium-based ILs containing different alkyl chain length of

cation and polymer terminal group.[17, 18] They observed an increase in the cloud point tempera-

ture with the proportion of long alkyl chain of imidazolium in mixtures of two mixture. And lower

molecular weights of PEG are likely to largely increase critical point rather than high molecular

weights due to high portion of hydroxyl terminal group.

Also, these H-bonds on IL cation leads to peculiar dynamical phenomena near the phase sep-

aration of PEO/ILs. Li and Wu found during cooling process slightly blue-shift of unsaturated

C-H’s on imidazolium cations, then bounds back to red-shift of C-H during cooling through phase

transition temperature.[19] The interesting behaviour could be explained due to the existence of
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several hydrogen bonding types such as C2-H. When gradually forming the hydrogen bonds of

unsaturated C-H with oxygen of PEOs, the H-bonds would reach saturation, then extra free [BF4]

anions tend to form another hydrogen bonds with cations which induce negative effect. Xiao and

coworkers studied rheological behavior of PEO in [BMIM][BF4] and [EMIM][BF4].[20] They

found a V-shaped dips of storage modulus with respect to temperature. They suggested that dur-

ing heating the behavior might be a result of breaking of not only the H-bonds between PEO and

ILs but also their heterogeneous associations such as hydrogen-bonded clusters as analogy to the

PEO/water system.

By far, some theoretical studies have interested in asymmetric LCST behaviors of PEO/ILs us-

ing properties of pure components. White and Lipson used a lattice-based theory and investigated

ideal and excess contributions for the overall entropy of mixing.[21] Comparing with typical poly-

mer solvents or melts, they found that the stronger cohesive energy density and less free volume

of IL component result in unfavorable entropic effects. Also, the aggregation of the IL compo-

nent reduces the entropy of mixing. Nakamura studied spinodal decomposition of PEO/ILs with

various theory levels.[22, 23] The result indicated that the dielectric constant difference between

the polymer and the ionic liquid is essential to explain such the shift of the critical point toward

polymer-rich regions, rather than hydrogen bonding effect. Because those studies focus on the

pure component properties to explain the LCST behaviors, it is worth to discuss about how such

the hydrogen bonding affects on mixture properties and connects to phase behaviors of PEO/ILs,

which is still an open question.

Molecular simulation is a good tool to study the phase behaviors. For example, our previous

study run atomistic simulations of PEO/ILs to see hydrogen bonding effect on phase behavior.[24]

Although simulations are performed at two temperatures and single concentration of system, the

result suggested that the phase separation is driven by the hydrogen bonding of C2-H on the imida-

zolium cation ring. However, such an molecular simulation with high degree of freedom would not

appropriate for obtaining entire phase diagram due to slow performance. Especially near critical
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point, the phase boundary is suppressed by finite system size effect. Therefore, molecular simula-

tions of polymer solution typically obtain phase coexistence compositions at temperatures far from

the critical point using slab geometry.[25] Also, for accurate and fast performance, such an coarsed

modeling would be good such as united-atom modeling framework under symmetry-adapted per-

turbation theory, called SAPT-UA.[26, 27]

To study IL effect on the critical point of PEO/ILs, deep neural network (DNN) technique is a

possible solution for the prediction of phase diagram. Recently, DNN arises as a data-driven tool

to solve previously unaccessible problems including extrapolating phase boundary. Neural net-

works (NNs), a class of DNN techniques, showed remarkably predictive power for phase behavior

of multicomponent systems.[28, 29, 30, 31, 32, 33, 34] With collective variables from results of

molecular simulations, NN can predict phases of system under a wide range of temperatures and

compositions. Utilizing good quality of simulation data with improvements such as SAPT-UA

force field and Convolution method,[25] we believe that the prediction of phase diagrams of poly-

mer solutions becomes feasible.

Our hybrid way of a molecular simulation and a neural network technique is to investigate

cation modification effects on phase behaviors of short PEO chains with tetrafluoroborate anion,

[BF4]. To see the C2-H hydrogen bond effect and N-alkyl chain length effect, we use four dif-

ferent cations such as 1-butyl-2,3-dimethylimidazolium [BMMIM], 1-butyl-3-methylimidazolium

[BMIM], 1-ethyl-2,3-dimethylimidazolium [EMMIM], and 1-ethyl-3-methylimidazolium [EMIM].

[BMMIM] and [EMMIM] cations, e.g. [CnMMIM] (n = 2,4), would effectively prevent the hy-

drogen bonding between an unsaturated C2-H on [CnMIM] cation. (see the atomtype name in Fig.

4.1) With varius PEO/IL systems, we obtain collective properties in a wide range of temperature

where it is observed from completely mixing phase to separation phase up to staring PEOs decom-

position temperature, 580 K[35], and then predict phase boundaries of four PEO/IL mixtures via a

neural network. We describe our force field and methology in next section, then discuss shifts on

mixture properties and critical points by C2 methylation.
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Figure 4.1: A picture of the definition of united atom types of (a) [EMIM], (b) [EMMIM], and (c)
[BMMIM] cations.

4.2 Methods

4.2.1 The SAPT-UA force field for [CnMMIM] cations

Following the force field development procedure described in our previous works[26, 27], we

build united atom models of [BMMIM] and [EMMIM] cations. We transfer most of SAPT-UA

parameters of [CnMIM] cations from previous studies. Note that, as for a new CM atomtype

which bonded to C2 atomtype, we transfer force fields of C3 atomtype which bonded with N atom

on the [CnMIM] cation. You can see atomtype names in Figure 4.1. To assign the partial charges of

the cations, we fit all charges except atom types of N-alkyl chain with match ab initio electric field.

We refer the details of the fitting method in some studies.[26, 36] The partial charges and SAPT-

UA parameters are seen in Supporting information. The SAPT-UA parameter set shows a good

agreement with interaction energy components calculated by SAPT(PBE0) for [BMMIM][BF4]

dimers. Note that our SAPT-UA model does not consider induction parameter (no induced dipole).

As the result, the density of neat ILs is 1.161 g/cm3 at 323 K for [BMMIM][BF4] liquids, 1.262

g/cm3 at 323 K for [EMIM][BF4], and 1.251 g/cm3 at 298 K for [EMMIM][BF4], which shows

good agreements within 2% error with experiments .[37, 38, 39]

4.2.2 Molecular dynamics simulations

All molecular dynamics (MD) simulations are performed using the OpenMM version 7.3.0 soft-

ware that utilizes GPU-accelerated computing for molecular simulations.[40] The cut-off distance

for nonbonded van der Waals interactions is 1.4 nm. Long-range electrostatics are calculated with



57

the particle mesh Ewald method. The Langevin thermostat is used to constrain system tempera-

tures. For all isothermal-isobaric (NPT) simulations, we adapt Monte Carlo (MC) barostat at 1

atm. We use 4 fs of time step in our united atom model simulations. A PEO/IL system is com-

posed of PEO and [EMIM][BF4], [EMMIM][BF4], [BMIM][BF4], or [BMMIM][BF4]. Note that

the chain length of PEOs in this work is n=9 for CH3-[O-C-C]n-O-CH3.

We utilize MD simulations to manipulate input data of deep neural network (DNN) for the

prediction of phase boundary of PEO/ILs. Before applying the DNN, we use our Convolution

method[25] which obtains the phase boundary at relatively high temperatures (far from the critical

point). Initially, we make three independent cells which contain both pure IL phase and arbitrary

PEO-rich phase with slab interface but keep the total mole ratio NPEO/NIL = 0.5 in the cells. We

run 50 nsNPT ensemble simulations with a MC barostat coupling on z-axis under the constraint of

constant x, y-surface area. To fully reach equilibrium, we run canonical (NVT) simulations for 1.5

µs and then get average density profiles for the last 500 nsNVT simulations using the Convolution

method. As you can see Fig.4.2, the phase coexistence of PEO/ILs is strongly affected due to the

finite system size and becomes saturated for a large system size. To converge the dependency of the

finite size effect on x and z axis,[41] we perform simulations by varying cell lengths (Lx,y and Lz)

in a range of Lx = Ly = 3.5−5 nm and Lz/Lx = 3−5. Below 550 K, our PEO/IL systems with at

least 100,000 united atoms are needed for the convergence of phase boundary, which is not feasible

with current computation resource. Thus, we take the result of phase coexistence at relatively high

temperatures such as 550, 560, 570, and 580 K for PEO/[BMIM][BF4] and PEO/[BMMIM][BF4],

and 570 K and 580 K for PEO/[EMIM][BF4] and PEO/[EMMIM][BF4], respectively. Finally, the

result allows us to assign the equilibrium phase (e.g. one-phase or two-phases) when a system is

under a certain mole fraction and temperature, which will be used with its mixture properties to

train NN later.

In addition to obtain the training data, a set of collective properties under a wide range of mole

fractions and temperatures are obtained to analyze mixture properties and predict phase boundary.
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Figure 4.2: The finite size effect of phase boundary of PEO/[BMIM][BF4] mixtures at 580 K. The
phase boundary converges to a value as the cell volume (Lx × Ly × Lz) increase by enlarging it
in a range of Lx = Ly = 3.5 − 5 nm and Lz/Lx = 3 − 5. Gray line in the middle serves as an
eye-guide to see its convergence.

We generate cubic cells of ∼ 3, 000 total UA atoms varying 0 - 100 PEO molecules and 0 - 200 IL

pairs to have 11 different mole fractions of PEOs, [0.0, 0.0256, 0.811, 0.1243, 0.25, 0.333, 0.429,

0.6, 0.818, 0.905, 1.0]. For equilibrium process, NPT simulations are performed for 600 ns at

[420, 430, ..., 570, 580 K] for PEO/[BMIM][BF4] and PEO/[BMMIM][BF4] and [350, 360, ...,

570, 580 K] for PEO/[EMIM][BF4] and PEO/[EMMIM][BF4]. Then, with the last 100 ns NPT

simulation trajectories, we calculate some properties we will discuss at next paragraph. Note that

we run 10 ns NVT simulations for the calculation of mole cohesive energy

As a component for NN input data, the excess molar volume V E can depict the non-ideality of

a mixture, that is,

V E = Vmix −
∑

j=PEO,IL

xjVj,m (4.1)

where Vmix and Vj,m represent the molar volume for a mixture and pure component j, respectively.

xj represents the mole fraction of component j (1 for ILs and 2 for polymer). As for non-bonding

energy deviation in mixtures, we use the molar cohesive energy between polymer and ILs, Ecoh,

Ecoh(PEO − IL) = Emix −
∑

j=PEO,IL

Ej (4.2)
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where Emix is the molar non-bonding energy (electrostatic and Van der Waals) of mixture and Ej

is the molar non-bonding energy between component j’s (PEO-PEO and IL-IL) in the mixture.

To quantify the PEO-cation interactions, we use the weighted coordination number (Ncont)

which is the number of oxygen atoms of single PEO around a given imidazolium cation weight-

ing by the number of unsaturated carbon types (C1 and C2 atomtypes in Fig. 4.1) within 5 Å,

which is similar to CNO
BMIM in a previous study.[27] Ncont can be characterized by two types

of PEO segment conformations such as molar number of PEO-IL pairs with low contact num-

ber, N low
cont =

∑4
i=1 Npair(Ncont = i)/ (Npol +NILs) and that with high contact number, Nhigh

cont =∑∞
i=5 Npair(Ncont = i)/ (Npol +NILs), which will be used for input NN data later. Also, we cal-

culate the spatial distribution functions, g (r, φ, ϕ) of intermolecular pairs via Travis software.[42]

Also, as conformation of polymers, the radius of gyration (Rg) is defined as

Rg
2 =

∑
imi(ri − rcom)2∑

imi

(4.3)

where ri is the position of site i, mi is the mass of site i, and rcom is the position of the center-of-

mass.

4.2.3 Deep neural network

As the result of united-atom molecular simulations with good accuracy and fast performance, we

now have a data of quantitative collective properties and known phases under system condition

variables for prediction of phases by neural network. As the input layer, we use the normalized

values of V E , Ecoh, N low
cont, N

high
cont , temperature, mole fraction, and cation types, e.g. 0, 0.25, 0.75,

and 1.0 for [BMIM], [BMMIM], [EMMIM], and [EMIM], respectively. For the high resolution

of phase diagrams, we interpolate those collective quantities with 1 K for temperature interval at

101 mole fractions using following methods. As for interpolation of excess molar volumes and
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Figure 4.3: Pictorial image of our NN model utilizing mixture properties such as temperature,
cation types, mole fractions of PEOs, excess molar volume, molar cohesive energy between poly-
mer and ionic liquids, and molar number of two types of polymer-cation pairs. The hidden layers
have 64, 64, 64, 16, 16, 16, 2 neurons from left to right layers. Note that red filled circles and green
rectangular box represent ReLu activation and softmax function, respectively.

cohesive energy between PEOs and ILs, we use Redlich-Kister polynomials given below:

V E = x1x2

3∑
k=1

Ak(1− 2x1)k−1 (4.4)

where X is the excess molar volume and Ak’s are the fitting parameters. Otherwise, other proper-

ties are interpolated linearly. With those input data, we set output layer for already known mixing

and separated phases; as for PEO/[BMIM][BF4] and PEO/[BMMIM][BF4] systems, mixing phase

for any mole fraction at 420 K and mixing/separation phase for certain mole fractions at 550 - 580

K, and as for PEO/[EMIM][BF4] and PEO/[EMMIM][BF4] systems, mixing phase for any mole

fraction at 350 K and mixing/separation phase for certain mole fractions at 570 and 580 K. To

determine NN architecture, we use AutoKeras, one of Automated Machine Learning (AutoML)

libraries which automatically search a good model by testing candidates of NN architectures. One

of good NN models is found with seven hidden layers as you can see Fig.4.3. For the prediction

step at a given mole fraction, we define the transition temperature where 50% probability of mixing

phase . After 200 random initializations on NN weights, the phase diagram results are reported by

averaging predicted phase transition temperatures.
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4.3 Results and discussions

We investigate C2 methylation and alkyl chain length effect on cohesive energy between ILs and

PEOs. In Figure 4.4, we find that all mixtures show attractive energetic interaction. The attrac-

tive interactions between PEOs and ILs can be understood by electrostatic interactions between

negative partial charge of oxygen atoms of PEOs and the positive charge of cations while weaker

interactions between ILs and those of PEOs in mixture. Also, the attraction is maximized around

50 % mole fraction of PEOs, which is likely that equal molar ratio of PEO and ILs is preferred to

interact. The strength of the polymer-IL attraction can be alleviated by C2 methylation. Compared

with results of PEO/[BMIM][BF4], the molar cohesive energy slightly increases by ∼ 1 kcal/mol

for x = 0.5 of PEO/[BMMIM][BF4]. In other hands, C2 methylation leads to energetic repulsion

between PEOs and ILs due to loss of attractive interaction of C2-H hydrogen bonding. Because

the hydrogen bonding easily weaken by high temperature, we see the increase of molar cohesive

energy at the higher temperature. However, the C2 methylation effect is not such large difference

on the molar cohesive energy. Also, the attractive energy is pronounced by 2 - 3 kcal/mol for a

short alkyl chain length for [EMIM] cations. Due to the relatively small excluded volume or less

steric hindrance of the alkyl chain, it may form a closed conformation of PEO - cation pairs.

We calculate excess molar volumes in the whole composition range for the studies tempera-

tures. As you can see Figure 4.5, all the studied binary mixtures show negative V E with minima

near x = 0.6 mole fraction of PEOs. This implies that, because our UA model does not explicitly

regard the hydrogen bonding of C2-H · · · to oxygen atoms, electrostatic interaction between ions

and PEOs mainly accounts for the contraction behavior of V E . Compared with neat ILs and PEO

melts, mixture of PEO with ILs could make effective packing by negative point charge of oxygen

atoms of PEOs. Whereas PEOs in melts have a relatively large free volume and weakly interact,

previous strong attraction between PEO and ILs may drive packing of PEO-cation packing under

IL-rich phase with less free volume and strong cohesive energy of ions. The negative V E curve is
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Figure 4.4: Variation of molar cohesive energy of (top) PEO/[EMIM][BF4] and
PEO/[EMMIM][BF4] and (bottom) PEO/[BMIM][BF4] and PEO/[BMMIM][BF4] as a function
of mole fraction of PEOs at 430 K and 460 K. Solid and dashed curves show fits according to the
Redlich-Kister equation.

consistent with studies of polymer or short ethoxy group and imidazole-based ILs;poly(ethylene

glycol) or PEG in [BMIM][BF4],[43] [BMIM][PF6],[44] and [CnIM][Br],[45] and diethylene gly-

col dimethyl ether (or the dimer of PEOs) in [BMIM][BF4],[46] except ethylene glycol/IL mixture

which showed positive V E .[47, 48]

The C2 methylation effect on V E can be seen with comparison of PEOs in [EMIM][BF4] and

[EMMIM][BF4]. The top image of Fig. 4.5 shows that V E of [EMMIM][BF4] is higher than

that of [EMIM][BF4] and the gap is smaller as temperature increases. It clearly indicates that the

hydrogen bonding on C2 position leads to more negatively reduction on excess molar volume,

which is consistent with the results of [BMIM][BF4] or [BMMIM][BF4] + dimethyl sulfoxide

mixture.[47, 37]. Also, high thermal energy (high temperature) weaken the hydrogen bonding on

C2-H atoms as you can see the smaller gap of V E , which is supported by the MD simulation result

of PEO/[BMIM][BF4].[24]

One interesting behavior on V E is the negative dependency with temperature that the excess

molar volume of mixture is smaller as temperature increases. Typically, intermolecular interactions

weaken by the thermal motion of molecules which leads to volume expansion and the magnitude

of V E would reduce, as you can see aqueous PEG solutions[49, 50] and PEG in small alcohol
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Figure 4.5: Variation of excess molar volume of (top) PEO/[EMIM][BF4] and
PEO/[EMMIM][BF4] and (bottom) PEO/[BMIM][BF4] and PEO/[BMMIM][BF4] as a function
of mole fraction of PEOs at 430 K and 460 K. Solid and dashed curves show fits according to the
Redlich-Kister equation.

solvents.[51] However, there is no reason to increase intermolecular interaction with temperatures

for our PEO/ILs systems including ILs with PEG[43], polar organic solvents[52, 47, 37, 53, 54]

and water.[55, 56] Because hydrogen bonding weaken as temperature increases, the
(
∂V E

∂T

)
P
< 0

could be due to the strong Coulombic interaction which is relatively independent in a range of

temperatures we studied. In other words, that electrostatic attractions of PEO - ILs might be sturdy

enough to keep the contraction effect on V E upon mixing although temperature increases by some

extent to expand volumes of neat IL and PEO melts.

In terms of alkyl chain length effect on excess molar volume, the shorter alkyl chain length

shows more negative V E . It also observed similar results with mixtures of imidazolium based

cation and halide with several molecular weights of PEGs.[45] In general, the C-C bond of alkyl

chains are freely rotated by thermal motion, thus allows to increase the excluded volume. Thus,

longer chain on cations can occupy a large volume to prevent somewhat conformations of polymer

close to cations, which may induce less packing between PEOs and cations.

Figure D.14 shows radial distribution functions (RDF) of oxygen atoms of PEOs and fluorine

atoms with C1 and C2 atomtypes for PEO/[BMIM][BF4] and PEO/[BMMIM][BF4]. As for the

RDFs of PEO/[BMIM][BF4] from the top panel of Fig. D.14, the first peaks of both oxygen atoms
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and flourine atoms of PEO are correlated to C2 atomtypes. Figure 4.7 confirms that oxygen atoms

of PEOs mostly prefer the location near C2 atomtype in PEO/[BMIM][BF4], which was reported

in previous MD simulation studies.[27, 24, 57] In the case of PEO/[BMMIM][BF4], we find that

the probability of oxygen atom and C1 atomtype is pronounced as the shortest neighbor, which are

shown as the density map in the bottom panel of Fig. 4.7. It clearly indicates that the methylation

not only prevents intermolecular interaction via C2 atomtype but also significanly changes spatial

coordination surface of of both PEO and [BF4]. Similarly, the importance of interactions of C1

atomtypes with solute was found in a IR and DFT study of DMSO/[BMMIM][BF4].[58] Note that

the similar results are seen from the comparison of PEO/[EMIM][BF4] and PEO/[EMMIM][BF4]

and the alkyl chain effect on RDFs and probability density maps of intermolecular pairs is negli-

gibly small except the decrease of first RDF peak of F atom with C2 atomtype with alkyl chain

length. (See figures in Appendix D)
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Figure 4.7: The probability density map of fluorine atom (yellow) and oxygen atoms
(red) around the C1 and C2 atomtypes of cations of (top) PEO/[BMIM][BF4] and (bottom)
PEO/[BMMIM][BF4] at x=0.43 and 430 K. Isosurface values are 12.0 nm−3 for fluorine atom
pair density map and 2.3 nm−3 for oxygen atom pair density map.
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Figure 4.8: Probabilities of Rg of PEOs as a function of mole fractions of PEOs at 420 K for
PEO/[BMIM][BF4].

To study the methylation effect on polymer conformation, we calculate radius of gyration and

end-to-end distance of polymers for conformation properties of PEOs. As you can see Fig. 4.8

for PEO/[BMIM][BF4] at 430 K, it shows Rg probabilities for Rg < 6.5 Å increase by adding

ILs (from dark red to dark blue lines). In fact, the two Rg peaks near 5 Å and 6 Å are signatures

of PEO conformations as a result of PEO - [BMIM] cation interaction, which are known as ring

segment and linear segment of PEOs.[27] The combinations of ring segment and linear segment

are pronounced when very dilute solution of PEOs in IL. As a result of the segments, Fig. D.5

indicates the general trend that the average size of polymer increases with the mole fraction of

PEOs.

Interestingly, there is no significant change of average values and distributions of Rg by cation
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C2 methylation although the RDFs of oxygen atoms with IL cations are very different. As for

conformations of PEOs in [BMIM][BF4], it is known that the ring segments appear as PEO chains

wrap cations around C2 atomtypes.[27] (see on the left of Fig. 4.10) Like wrapping conformation

in PEO/[BMIM][BF4], we found that the ring segments of PEOs are also found around [BMMIM]

cations with the partial wrapping conformation to the C2-CM plane as shown in the right of Fig.

4.10. (For the 3D animations of the snapshots, see Supporting Materials) It indicates that the

wrapping conformation of PEOs around [BMMIM] cation is not necessarily caused by the C2

hydrogen bonding.

In addition to the partial wrapping conformation of PEOs around [BMMIM] cation, we see

”crown ether” conformation as another ring segment contributor. Fig. 4.11 shows that some portion

of oxygen atoms of single PEO forms crown ether conformation near C1 atomtypes. Unlike single

C2 atomtype of [BMIM] cation with alkyl chains on both N atoms, two atoms of C1 atomtypes

with positive point charges can have an opportunity for oxygen atoms to occupy space with the

crown ether shape and interact the negative charge of N atomtypes at a far distance. Therefore,

the crown ether conformation can lead to small Rg of PEO in PEO/[BMMIM][BF4] and not only

wrapping conformation but also crown ether formation positively affect on the probability of ring
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Figure 4.10: Representative snapshots showing ring segment conformations of PEOs in two
PEO/IL mixtures. The entire PEO chain is wrapped around a single cation of (left) [BMIM] and
(right) [BMMIM]. For colors of atomtypes, blue, cyan, tan, pink, and red represent N, C, F, B, and
O atomtypes, respectively.

Figure 4.11: Representative snapshot of crown ether conformations of PEO around single [BM-
MIM] cation in (left) the front view and (right) the left side view. The representative colors are the
same as the colors of Fig. 4.10.

segments or smallRg values, e.g. 4.5 - 6 Å in Fig. 4.8. The appearance of the additional directional

hydrogen bonding would be important for understanding of entropic-driven LCST behaviors of

PEO/[CnMMIM][BF4].

Those unique conformations of PEOs with ILs can be evaluated utilizing the weighted coor-

dination numbers of oxygen atoms of a particular PEO chain with single IL cation, Ncont’s. In

particular, because PEOs with the high Ncont value are likely to have ring segments (wrapping

and/or crown ether) around IL cations, we compare molar high contact numbers for Ncont > 4 as

a function of mole fraction. As you can see Fig. 4.12, methylation increase the number of oxygen

atoms of PEOs with IL cations with high contacts. In other words, [CnMMIM] cations enhance the
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Figure 4.12: Variations of molar high contact numbers of PEOs with IL cation for (filled triangle)
PEO/[BMIM][BF4] and (empty) PEO/[BMMIM][BF4] at (blue) 430 K and (red) 460 K. Dashed
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ring segment conformations. It implies that the appearance of crown ether formation of PEOs and

two interacting locations of PEO-[CnMMIM], such as near C1 atomtype and C3 atomtype may

increase the moiety of ring segments. Also, the Nhigh
cont is not changed by methylation for IL-rich

compositions but deviated for PEO-rich compositions. It may indicate the dependency of mole

fraction on crown ether formation. In addition, a long chain length of cation reduces the moiety of

ring segments, which may be also explained by the steric hindrance effect of long alkyl chains as

we explained for mixture properties.

Collecting those mixture properties and system conditions, we predict phase boundaries of

our four PEO/ILs systems to see effects of methylation and alkyl chain length on their phase

diagrams. As shown in Figure 4.13, the result of machine learning (ML) is somewhat promising to

predict phase boundaries and critical points. Although phase boundaries at very far critical points

are obtained from MD simulations and used to train our NN without any chemistry knowledge,

we find that a short alkyl chain length of cations and C2 methylation on cations reduces critical

temperatures (Tc), which is consistent with previous experimental studies.[17, 18, 20]

Although NN cannot give how our input data is utilized (or weighted) on prediction of phase

behaviors, some mixture properties can be accounted for the shift on LCST behaviors. As for a

long alkyl chain length of cation, we can explain the high critical temperature due to low density
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and cohesive energy of [BMIM] rather than [EMIM] cation in neat ILs.[59] The low density by

the flexibility of alkyl chains can hinder PEO-cation packing formation, but the weaker cohesive

energy of cation with anions may possibly enhance intermolecular interactions of PEO - cation.

Finally, our results indicate long alkyl chain length of cations improve solubility of PEOs in ILs.

Also, in regards of C2 methylation, we found crown ether formation and wrapping structure

contributing on ring segments of PEOs, and saw slightly increase of number of PEO-IL contacts

for ring segment. In contrast, the methylation leads to less effective packing, then gives higher

excess molar volume. As the mixed results by C2 methylation, our result shows slightly decrease

of Tc by ∼ 10 K. These weak methylation effect is also observed in acidity strength of ILs.[60]

For the effect of modification of cations on critical composition (wtc), we do not see significant

change of critical composition. In our PEO/ILs systems, the phase diagram shows asymmetric

phase boundary of all PEO/ILs, for example, critical points of our four mixtures are ∼ 60 wt%

of PEOs, which consistent with experimentally reported critical points of PEG/[EMIM][BF4] sys-

tems.[18] In fact, the C2 methylation effect for the critical point (wtc and Tc) is little unlike the

result of the experiments. In fact, we do not see significant shifts of peak position toward polymer-

rich for our mixture properties by methylation. Considering results of two theoretical studies,

cohesive energies of neat methylated ILs are greater by 18 kJ/mol and 9 kJ/mol comparing with

[EMIM][BF4] and [BMIM][BF4], which means slightly less attraction between ions. Then, the

less difference between cohesive energy of PEO and that of ILs can alleviate the increase of criti-

cal composition.[21] Also, due to the similar values of dielectric constants and acidity strength of

[BMIM][NTf2] and [BMMIM][NTf2],[61, 60] it seems to appear a small or negligible change on

wtc.[22]

Unlike our phase behavior result, Lee and coworkers reported∼ 56 K change of Tc and 20 wt%

shift toward high wtc due to C2 methylation. While PEO polymers only have ethoxy groups as hy-

drogen bonding acceptors (HBAs), end monomers of PEG are hydroxyl group which typically play

a role as a hydrogen bonding donor (HBD). With our small molecular weight of PEOs, the LCST
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result can be changed by the HBD end groups, well known as many aqueous polymer solutions

such as PEG,[62] poly(N-isopropylacrylamide),[63, 64, 65, 66] and poly(2-(dimethylamino)ethyl

methacrylate).[67] Note that they showed, as hydroxyl end groups of PEGs in [EMIM][BF4] are

replaced with methyl group, the Tc decreases by 30 K. It means the LCST behavior can be strongly

affected with even a large molecular weights (∼ 2 kg/mol for Mn) of polymers by the small por-

tion of end groups, thus our LCST result may deviate due to such a small molecular weight ∼ 0.4

g/mol.

Adding to the possible factor of LCST behavior difference with the experimental study, the

weak effect of C2 methylation in our work could be due to the united atom model which does not

explicitly consider hydrogen atoms. Typically, three-body interaction is considered to reflect the

directional hydrogen bonding in mlecular simulations. However, our united atom model depicts

simpler representations by removing hydrogen atoms to improve simulation performance, instead

of best accuracy. And we fit parameters of united atom types for non-bonding interactions (without

induction energy) using SAPT. Therefore, our SAPT-UA model for the H-bond candidate atom-

types would be plausibly interpreted by van der Waals or electrostatic energy, and it is possible

to miss some extent of covalent contribution, proton, and/or charge transfer contributions. In the
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sense, a study with atomistic or polarizable force fields or first-principle quantum simulation would

be worth if H-bonds are well considered for better accuracy.

4.4 Conclusions

Our study of utilizing molecular simulation and neural network investigated the effects of methy-

lation on the acidic position (C2 atomtype) and alkyl chain length of imidazole-based ionic liquids

on PEO mixture properties and phase behaviors. As for methylation effect, we found that mo-

lar cohesive energy between PEO and ILs and excess molar volume increases, which means less

attractive interaction between them. Because of lack of C2 hydrogen bonding (see Fig. 4.1) on

[CnMMIM] cation, PEOs prefer interacting near C1 positions and between CM and C3 positions

to avoid coordination around C2 atomtype. Although there are negligible change on average Rg

values by C2 methylation, the polymer conformation is somewhat different. PEOs shows not

only wrapping conformation around any single cation but also crowon ether form near [BMMIM]

cations, which serves as contributing ”ring segment” and increases the molar number of pairs with

higher Nhigh
cont for PEO/[BMMIM][BF4] compared with PEO/[BMIM][BF4]. These polymer con-

formation can contribute the entropic-driven LCST behaior of PEO/[CnMMIM][BF4] like the case

of PEO/[BMIM][BF4]. In terms of alkyl chain length effect, a short chain length of cations affects

smaller excess molar volume (more compact molar volume), which may due to a large excluded

volume of alkyl chain by thermal motion, but other properties are changed by a little. Lastly, from

predicted phase boundary by neural network, we found that critical temperature decreases due to

lack of hydrogen bonding on C2 position and increases with alkyl chain of cation with PEOs,

which shows good agreement with experimental studies.

Although some weakness of our united atom force field may exist for complex systems with

hydrogen bonding, neural network can predict phase boundary well using calculated properties

from simulations. As a result of NN, the critical points of PEO/ILs show consistent trends of
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methylation and alkyl chain effect on phase behavior with experimental studies. The NN model

is fed in the tremendous amount of data at wide range of temperature and compositions, but prior

knowledge is not necessary except small training data at far from the critical point. Although there

are some rigorous studies left such as optimizing hyperparameters, finding architecture, and testing

the NN reliability, the NN technique combining simulation data would be alternatively promising

because it is enough with a number of simulations with small system size regardless of critical

points with known phase coexistence points.
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Chapter 5

Conclusion Remark

We have presented several methods for obtaining phase coexistence of complex fluid mixtures and

study phase behaviors of polymer solutions utilizing molecular simulations and a neural network

technique. In Chapter 2, we developed the Interface method to obtain phase boundary of binary

mixtures and got good agreement with the result of previous simulation studies except near the

critical point of the Widom-Rowlinson model and a symmetric polymer blend model of freely

jointed polymer molecules. In Chapter 3, we developed a supervised machine learning scheme with

convolutional neural network by optimizing filter sizes to get phase boundaries near the critical

point. We tested with previous two toy models using spatial coordinates of molecules and found

the importance of understandings of intermediate phases during phase transition. However, these

methods need more work to apply for real systems beyond such toy models for validation. In

Chapter 4, we used an artificial neural network (NN) fed by collective properties for a study of

phase behaviors of polymer in ionic liquids with various cations with simulation data. Although

the NN result is needed to validate from future experimental studies, we can see the effect of

methylation on C2 position and alkyl chain length of cations on NN-predicted phase behaviors.

These projects described above illustrate our developed method to understand phase behaviors

of complex mixtures by finding phase boundaries using computer simulations and machine learn-
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ing techniques. With help of fast hardware performance and increasing data size accessible, we

can employ modern data-driven technique with less knowledge. Because the present time is a tran-

sition period of learning by machine for unknown findings or unsolved problems, I believe these

data-driven works would be more pronounced for next years by whom has deep domain knowledge

to apply in physics. I refer the phrase “To Infinity and Beyond!” in the Toy Story films.
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Appendix A

Vapor-Liquid Equilibrium of

Lennard-Jones Fluids using Gibbs-Duhem

Integration Method

In this appendix, we reproduce the vapor-liquid equilibrium (VLE) of Lennard-Jones (LJ) fluids us-

ing Gibbs-Duhem integration.[1] As we discussed in Introduction chapter, the integration method

is a powerful tool utilizing properties of phases for estimating next neighbors of phase boundary.

Thus, we aim to test the Gibbs-Duhem method with the Clapeyron equation of single component

such as Lennard-Jones system before doing trials for binary mixtures.

The potential energy of a pair of Lennard-Jones (LJ) particles as monoatomic non-polar molecules

use two parameters following this equation:

V (rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(A.1)

where rij is the distance between i-th particle and j-th particle. At 21/6σ ≈ 1.122σ, the potential

reaches its minimum, −ε. In settings GROMACS software package for the simple LJ model, we

simply set σ = ε = m = kB = 1 in reduced unit, then many variables and units become simple
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with σ and ε. As noted in GROMACS manual, use x
kB
≈ 120.272 for the reduced temperature

1 where kB is gas constant. For pressure in GROMACS, use following unit conversion equation

from bar to reduced pressure:

P [bar] =
P ∗ε [kJ/mol]

σ3 [nm3]

100

NAV [mol−1] · 10−23 (A.2)

where NAV is the Avogadro constant. For convenience, I upload the topology and force field

files for VLE of a LJ model and argon models in my Github repository: https://github.

com/jht0664 Our simulation system consists of up to 10,000 LJ particles which are randomly

distributed in a parallelepiped box, L × L × 4.5L, L = 22.82630σ. We use GROMACS 5.1.2

software package with Verlet integration algorithm.

Because the Gibbs-Duhem method starts at a stable state condition for which the two phases

are known to be in equilibrium, we perform a simulation with coexisting phases as initial data.

The simulation in the canonical ensemble starts at T ∗ = 0.7 above the triple point, Tc = 0.694.

Temperature is kept constant using a Nose-Hoover thermostat. In order to simulate the heteroge-

neous system with vapor-liquid interface, not only electrostatic interactions but also Van der Waals

interactions are treated using the particle mesh Ewald summation (PME)[2, 3]: real space cut-off

distance of 5σ, grid spacing of 1.2σ, and interpolation order of 6. Figure A.1 is the final coordinate

from 10, 000σ−1 (in reduced time unit) NVT simulation. The last 5, 000σ−1 trajectory is used for

density profile of LJ fluid in Figure A.2. Our result of densities, ρliq = 0.843 and ρgas = 0.002,

shows good agreement with that of grand-canonical transition-matrix Monte Carlo (TMMC).[4,

5]. From the result, we run a new simulation with the coexistence vapor density ρvap in NVT

ensemble to calculate the vapor pressure which will use for next NPT ensemble simulations.

For prediction and correction of coexistence conditions on VLE, simulations of each phase in

isothermal-isobaric (NPT) ensemble are performed, applying to Gibbs-Duhem integration method

with a simple forward Euler formula and Variable-Step-Size Corrector formula .[6] A cubic sim-

ulation box has 5,000 or 10,000 LJ particles for vapor or liquid phase, respectively. We compute

https://github.com/jht0664
https://github.com/jht0664
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Figure A.1: A LJ fluid system with gas phase and liquid phase: (pink) LJ particles and (blue line)
a simulation cell.

Figure A.2: An averaged density profile of 10,000 LJ particles at reduced temperature T ∗ = 0.7.



85

Figure A.3: The vapor-liquid equilibrium of LJ fluid: coexisting (gray circle) vapor phase and
(yellow circle) liquid phase in this work and (square and line) a reference data using TMMC.[4]
Error bars is small enough be within marks.

the averages of instantaneous enthalpy and volume which are acquired during 5,000 σ−1. Nose-

Hoover thermostat and Parrinello-Rahman barostat are used for NPT simulations at T ∗ = 0.7, 0.75,

0.8, 0.85, 0.9, 0.95, 1, 1.1, 1.2, and 1.25.

As the result of the Gibbs-Duhem integration, Figure A.3 and Figure A.4 indicate that this pre-

liminary study using the Gibbs-Duhem integration shows excellent agreement with a reference.[4]
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Appendix B

Anion Effects on the Phase Separation

Behavior of Polymer in Ionic Liquids

In this appendix, we test several approach to estimate phase transition temperature and see anion

effects on phase behavior of poly(ethylene oxide) (PEO) in [BMIM][BF4] and [BMIM][PF6].

B.1 Simulation method

For our molecular simulation method, we use GROMACS 5.0.4 software package. As for force

field of molecules, we take the force field parameters from our previous study for PEO and the

OPLS/AA force field of ILs.[1] The detail of simulation parameters is the following: 2 fs for

time step using leapfrog integrator, constrained hydrogen bonds via LINC algorithm, and Smooth

Particle-mesh Ewald (SPME) summation for calculating electrostatic field with cut-off distance,

1.4 nm, and PME order, 6. To simulate two phases with interfaces, we use NPzAT ensemble

(cross area fixed cell under Pz =1 atm) with Nose-hoover and Parrinello-Rahman couplings with

pressure control on z-direction.

Our hypothesis for finding LCST-type phase transition temperatures is that the initial system

with artificial two phases will disrupt at mixing temperatures T < Tc, then somewhat order pa-
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Figure B.1: Example of initial coordinates of pre-separated poly(ethylene oxide)/[BMIM][BF4];
(left) PEO polymers (right) ionic liquids are only shown in a cell for visualization. Note that black
empty regions are occupied by another component.

rameters should be significantly changed during phase transition. In order to make the initial

coordinates of system at high temperature T >> Tc, the following steps are:

1. The randomly distributed 100 pairs of a IL and 127 chains of PEO (CH3-[O-C-C]n-O-CH3,

n=9) in a box ( 4 x 4 x 8 nm) is made.

2. The simulation box is equilibrated at 600 K. After 30 ns, the system quickly show separation

phase, e.g. IL and polymer rich region.

3. Taken off the polymers, the system is filled by adding 127 chains of PEO and 5 pairs of the IL

randomly, then the weight fraction of the system is ∼ 70 wt%. The system is simulated for

120 ns to reach equilibrium state, then we acquire data for at least another 600 ns simulation

time.

The example of final coordinate after previous steps is shown in Figure B.1. Using the single cell

simulation, we discuss some properties in next section to figure out phase separation temperature

of PEO/ILs; Local number fluctuation, heat capacity, and polymer conformation.

B.2 Local number fluctuation during phase separation

To define the critical temperature, Tc, we use local number fluctuations as order parameter. Whereas

single cell is performed under constant N and Pz with fixed xy-area, it is regarded as an ensemble
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Figure B.2: Pictorial images for slicing a single cell and the relations of local number fluctuations.

which contains many but tiny grand canonical sub-cells by slicing into slabs. (see figure B.2) In

statistical mechanics, the number fluctuation of molecules in grand canonical ensemble has the

following relation with compressibility:

〈
(∆N)2〉
〈N〉2

= kBTχT/V (B.1)

where difference between the number of particles and ensemble average number of particles, N −

〈N〉 = ∆N , Boltzmann constant, kB, temperature, T , Volume, V , and isothermal compressibility,

χT are shown. In practice, we choose local number fluctuations of (center of mass of) anions

rather than cations or polymers. Due to the relatively compact sphere shape of anions and only

translational motion, it would be easy to distinguish phase transition temperature from simulations

at various temperatures.

The local number fluctuation of anions can be understood in terms of the relative amount of

mass transfer of anions between neighbor slabs in polymer region. Under phase separation condi-

tion such as T > Tc, the average number of anions in the polymer-rich region is very low. Also,

the change of the number of anions in the tiny cell would be relatively high by transferring just

1 or 2 anions from/to neighbor slabs. As a result, Figure B.3 shows the increase of local number
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Figure B.3: Local number fluctuation distribution along z-axis slab at various temperature for (left)
PEO/[BMIM][BF4] and (right) PEO/[BMIM][PF6]. Note that the slab thickness is around 0.12 nm.

fluctuation in the polymer-rich region with temperature.

In Figure B.3, we roughly estimate phase separation temperatures, 420 K and 480 K for

PEO(n=9) in [BMIM][BF4] and [BMIM][PF6], respectively. The result indicates replacing [BF4]

with [PF6] anion lowers solubility of PEO by ∼ 60K. Considering the fact of weaker (attractive)

cohesive energy between [BMIM] and [PF6] than [BF4],[2] the attractive interaction of [BMIM]

cations and oxygen atoms of PEO by hydrogen bonding can be broken with higher thermal energy

because of less electrostatic interactions between IL ions, which means enthalpy contribution. Note

that we tried to obtain precise separation temperature, but the local number flucuation distribution

becomes obscure due to fluctuation in time seen in Figure B.4.

B.3 Heat capacity changes near transition temperature

As you can see many example of Differential scanning calorimetry (DSC) experimental data, heat

capacity can be a good indicator for phase transition. From fluctuation-dissipation theory, the heat

capacity becomes infinity at the transition temperature in macroscopic system; see Eq. B.2,

Cp =
σ2
H

kBT 2
=

1

kBT 2

〈
(H − 〈H〉)2

〉
=

1

kBT 2

[〈
H2
〉
− 〈H〉2

]
(B.2)
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Figure B.4: Local number fluctuation distribution along z-axis slab at different time window and
various temperature for (top) PEO/[BMIM][BF4] and (bottom) PEO/[BMIM][PF6]. Near phase
transition temperature, the distribution fluctuates with a large magnitude within up to 1 µs simula-
tion time and it seems not to work to precisely get the temperature.
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Figure B.5: Heat capacities at various temperatures at 70 wt% of polymers in PEO/[BMIM][BF4].
Note that the error for Cp is within 25 - 35 kJ/K.

where H is the enthalpy of the mixture.

Figure B.5 shows the phase transition temperature of 70 wt% PEO/[BMIM][BF4] could be ∼

410 K where Cp peak appears. Although the error of Cp is too big (25 - 35 kJ/K) to figure out

phase transition temperature, the estimated temperature does not match with the result of local

number fluctuation. These discrepancy might be because the local number fluctuation and heat

capacity could be affected with somewhat different extent by finite size effect. Also, the difference

can be understood by the fact that phase transition point can vary with what experiment or analysis

is used to figure out. In addition, the absolute Cp value obtained by simulation is under lack of

accuracy because most of force fields focused on intermolecular interactions, not intramolecular

interactions which significantly contribute on internal energy U . A quantum calculation may be

asked for a good quality of Cp value to compare with experimental data, but it is not feasible for

phase separation studies.
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Figure B.6: Three representative segment conformations for poly(ethylene oxide). Reprinted from
a quantum calculation study.[3]

Table B.1: The probability of finding conformer types for PEOs from last 120 ns trajectory. All
values are in unit of percentage (%) except temperature T in unit of kelvin.

Anion in PEO/ILs T g+g+g+ g+tg+ tg+t ttt g+g+t g+tt

BF4
390 29.4 11.2 9.4 3.7 33.0 13.2
450 30.7 11.9 8.1 3.6 32.3 13.4

PF6

390 29.1 11.2 9.7 3.6 33.1 13.2
460 30.7 12.0 8.3 3.5 32.2 13.3
500 31.3 12.4 7.7 3.4 31.8 13.4

B.4 Polymer conformations below/above phase separation tem-

perature

The idea is to check if polymers have different structures depending on two-phase or one-phase. In

polymer physics, polymer chains expand at good solvent but form polymer coils at poor solvent.

Relating with LCST behavior of PEO/ILs, the solubility of IL decreases as temperature increase

like the analogy of a transition from good solvent to poor solvent for PEOs. Conventional poly-

mer properties such as radius of gyration and end-to-end distance of polymer change little for a

short chain length of polymer. Instead, we use the distribution of polymer conformer types which

characterises gauche or trans angles of C-O-C-C and O-C-C-O on single PEO backbone.[3] Our

preliminary result in Table B.1 shows the general trend but not steep change to figure out phase

transition.
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B.5 Conclusion

We use several approaches to obtain phase separation temperature at a given temperatures and the

result of local number fluctuation shows that weak interaction between [BMIM] and [PF6] lower

the solubility of PEO as Tc increases. The change of heat capacity and polymer conformation

during phase transition is very weak to recognize transition. Instead, the local number fluctuation

can be a good indicator for phase separation, but still difficult to accurately assign phase boundary.

As another disadvantage, while alignment algorithms described in Introduction chapter can obtain

two compositions at once from single simulation at a given temperature, this method is somewhat

expensive because it requires all simulations at different concentrations.

References

[1] Eunsong Choi and Arun Yethiraj. “Entropic mechanism for the lower critical solution tem-

perature of poly (ethylene oxide) in a room temperature ionic liquid”. In: ACS Macro Let-

ters 4.7 (2015), pp. 799–803.

[2] Jesse G McDaniel et al. “Ab initio force fields for imidazolium-based ionic liquids”. In:

The Journal of Physical Chemistry B 120.28 (2016), pp. 7024–7036.

[3] Richard LC Wang, H Jürgen Kreuzer, and Michael Grunze. “The interaction of oligo (ethy-

lene oxide) with water: a quantum mechanical study”. In: Physical Chemistry Chemical

Physics 2.16 (2000), pp. 3613–3622.



95

Appendix C

Examples of Prediction of the Critical

Point: A Simulation Study of PEO/ILs with

OPLS-AA Force Field

In this Appendix, our goal is to show the predicted critical point of poly(ethylene oxide) (PEO) in

[BMIM][BF4] with the conventional OPLS-AA force field. For prediction of the critical point, we

utilize critical exponents and some points on phase boundary obtained by the Convolution method

we described in Chapter 2. Although we did not check the finite size effect on phase coexistence

due to limited resource and time, we show our preliminary result as an example of those methods

for PEO/IL mixtures.

C.1 Simulation method

To obtain the mass fractions of PEOs in coexisting phases, we perform direct simulations of the

mixtures using GROMACS 5 software package. As for an initial configuration, we prepared the

coordinate of coexisting phases at 600 K. Initially, for a 50 wt% PEO solution, 255 short PEO

chains (CH3-[O-C-C]n-O-CH3 for n = 9), and 500 pairs of [BMIM][BF4] are randomly distributed
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Figure C.1: Example of density profiles in time for poly(ethylene oxide)/[BMIM][BF4] at mixing
and separation temperature; (left) the mixing phase made by scaling charge by a tenth (right)
separation phase at 560 K. While separation phase forms large size of domains in middle of cell,
the domain mostly disappears under mixing.

in a parallelepiped box, L x L x∼ 5L. Note that L = 4.2 nm which is bigger than 1.4 nm for cut-off

distance of Lennard-Jones Particle Mesh Ewald (LJ-PME) method. The system is equilibrated for

100 ns at 600 K (� Tc) and 1 bar with Nose-Hoover thermostat and Parrinello-Rahman barostat.

Then, the equilibrated system at 600 K is regarded as initial coordinates for simulations at 440 K

≤ T < 600 K. At lower temperatures, 400 K ≤ T < 440 K, we found the domain size of phases

is not equal, which prevents getting phase boundary effectively. Thus, we use a system of 280

PEO chains with n = 9, and 300 IL pairs for 65 wt% PEO solution, which allows to obtain similar

domain size for coexisting phases in a cell.

To check if the equilibrium can reach from mixing phase, we additionally simulate randomly

oriented coordinates. The initial mixing phases are prepared by artificially scaling charge down to

10 times smaller for a 100 ns simulation . You can see example of concentration profiles in time

using Convolution method for mixing and separated system in Figure C.1. The simulations run up

to 1 µs and the last few hundreds nanoseconds trajectories are used for averaged density profiles.

Figure C.2 shows raw and aligned concentration profile at 420 K as a result of the Convolution

method. Table C.1 summarizes configurations of our simulations to get some points on phase

boundary.

All simulations run with the following settings: Verlet integrator, NPzAT ensemble where x
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Figure C.2: Example of density profiles of [BF4] in time for poly(ethylene oxide)/[BMIM][BF4]
at 420 K; (left) raw density profile (right) aligned density profile using the Convolution method.

Table C.1: Summary of simulation cell settings for initial coordinates of PEO/[BMIM][BF4]. Note
that sep. and mix. in the last column mean pre-seperated cell and mixing cell, respectively.

Lx, nm Lz NPEO:NIL pairs T, K time, µs Note
4.2 ∼ 5 Lx 255:500 (50 wt%) 600 0.1 sep.

540 0.3 sep.
0.1 mix.

480 1.2 sep.
0.1 mix.

440 1.2 sep.
0.1 mix.

4.0 ∼ 2 Lx 127:105 (71 wt%) 430 0.75 sep.
420 0.85
410 0.95
400 0.65

4.2 ∼ 4 Lx 280:300 (65 wt%) 380 0.1 mix.
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and y length of simulation box are fixed, and periodic boundary condition (PBC). As for long

range correction for Van der Waals interaction, we use LJ-PME method recently implemented in

Gromacs 5 to handle spatially heterogeneous interactions with good accuracy. The PME parame-

ters for electrostatic and dispersion interaction are the same: real space cut off distance of 1.4 nm,

grid spacing of 0.12 nm, and interpolation order of 6.

C.2 The prediction of the critical point using critical exponents

Aligned number density profiles are block-averaged using the last a few hundred nanosecond tra-

jectories. Then, for the precise number densities of two components in coexisting phases, we fit

the density profiles with hyperbolic tangent model,

ρIL(z) = ρpoorIL +
ρrichIL − ρ

poor
IL

2

[
tanh

(
z − zrichcenter + zrichhalf−width

λinterface

)
− tanh

(
z − zrichcenter − zrichhalf−width

λinterface

)]
(C.1)

, where ρpoorIL is the number density of BF[4] in anion-poor region, zcenter is the position of center

of anion-rich region, zhalf−width is the half-width of anion-rich region, and λinterface is the width of

interface. As for fitting number density of anion with Eq. C.1, the nonlinear least-squares (NLLS)

Marquardt-Levenberg algorithm implemented in GNUPLOT is used. Those analysis procedures

are also used to obtain coexisting mass fractions of PEO in two-phase cell. The some results of

coexisting mass fraction at various temperature are shown in Figure C.3. Note that we do not use

number density profiles at T ≤ 420 K due to no flat region for PEO or IL-rich phase.

To extrapolate the critical point, we fit our coexisting data with Eq. 1.3 and Eq. 1.4 for OPLS-

AA and SAPT-UA force field from Chapter 4. Be aware that our simluation data is far from the

critical point which means the fitting equations would fail in the extrapolation of the critical point.

As the fitting result, the LCST point of PEO/[BMIM][BF4] is predicted at 390 K and 76 wt%

of polymers for OPLS-AA force field and 260 K and 50 wt% for SAPT-UA force field. We do

not rigorously investigate the finite size effect on phase boundary with OPLS-AA force field and
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Figure C.3: The block averaged number density profile of (left) [BF4] anions and (right) PEO
polymers with respect to temperatures using the Convolution method. Solid lines show a fit with a
hyperbolic tangent model in Eq. C.1.

the validation of machine learning method. In Figure C.6 and Figure C.7, we see that machine

learning results fairly fit with 3D Ising critical exponents for critical temperature. However, as for

prediction of critical weight concentration, an additional work might be needed for a better result

by searching a good property to represent the critical point.

We easily see the big difference of Tc depending on force fields. Comparing with SAPT-UA

force field result, the result of OPLS-AA force field shows less solubility of PEOs in ILs and very

low solubility of ILs in PEO melts, which contributes lower predicted Tc and asymmetric curve

toward to the higher weight fraction of PEOs. Unfortunately, because of limited experimental data

for phase diagram of PEO/ILs, we could not know which force field is better or not. To fill the gap

between experiments and simulations, a study of effects of terminal group and shorter chain length

of polymer in [BMIM] cation and [BF4] anion would be worth to confirm the accuracy of those

force fields.
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Figure C.7: The fitting plots of the left side of (left) Eq. 1.3 and (right) Eq. 1.4 with respect to
temperature using 3D Ising critical exponents for phase boundary with SAPT-UA force field for
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C.6
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Appendix D

Supporting Information for “Methylation

Effect on Phase Separation Behavior of

Poly(ethylene oxide) and Imidazolium Ionic

Liquids Mixture: A Molecular Dynamics

and Deep Neural Network Study”

D.1 SAPT-UA force field parameters

The total nonbonded interaction energy in SAPT-UA force field is given by

Etot =
∑
i,j

qiqj
rij

+
∑
i,j

(
Atotij exp (−Bijrij)−

∑
n=6,8,10,12

fn,ij
Cij
n

rnij

)
(D.1)

where rij is the distance between i and j particles, Atotij = Aexchij + Aelecij + Aindij + Adhfij , and fn,ij

is Tang-Toennies damping function.[1]
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Table D.1: The partial charges of united atom types of [EMIM], [EMMIM], and [BMMIM]
cations. See Fig. 4.1 for atomtype names.

Atom type [EMIM] [EMMIM] [BMMIM]
N -0.6754 -0.6772 -0.5945

CM - 0.2527 0.2439
C1 0.3040 0.3630 0.3366
C2 0.6944 0.3271 0.2604
C3 0.5165 0.5165 0.4886
C4 0.4585 0.4585 0.4608
C5 - - -0.0053
CE 0.0734 0.0734 0.0728

Table D.2: SAPT-UA force fields of atom types for the nonbonded interaction potential in Eq.
D.1. As for B values in , we use 39.061 Å−1 for N atom type and otherwise, 34.384 A−1 for other
atom types. Note that Ai’s are in kJ/mol and Cn are in kJ/(molÅ−n)

Atom type Aexch Aelec Aind Adhf

N 252624.4 102233.5 0.0 17537.3
C1, C2 869803 253355 0.0 94498.0

CM, C3, CE 2620353 765461 43780 144620
C4, C5 3038134 922261.5 65333 188853

Atom type C6 C8 C10 C12

N 1018.7 6246.0 92197.5 676941.7
C1, C2 2211.4 24830.1 149571 295630
CM, C3 3893.1 43280.5 430425 3438615

C4 2186.6 16556.1 309338 2831947
C5 2937.7 42270.1 566233 6097084
CE 5165.3 67458.1 848542 8569083
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Figure D.1: Variation of density for (left) PEO/[EMIM][BF4] and PEO/[EMMIM][BF4] and
(right) PEO/[BMIM][BF4] and PEO/[BMMIM][BF4] mixtures for several mole fractions of PEOs,
x’s, and the studied temperature range. Note that filled and empty symbols represent [CnMIM]
and [CnMMIM] cations in mixtures, respectively. The solid lines represent a fit to the equation
ρ = ρ0 + aT .

D.2 Thermophysical properties: density and excess molar vol-

ume
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Figure D.2: Variation of molar excess volume of (left) PEO/[EMIM][BF4] and (right)
PEO/[EMMIM][BF4] mixtures as a function of mole fraction of PEOs. The color of lines rep-
resents temperature from 370 K to 580 K with interval 30 K. Solid and dashed curves show fits
according to the Redlich-Kister equation.
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Figure D.3: Variation of molar excess volume of (left) PEO/[BMIM][BF4] and (right)
PEO/[BMMIM][BF4] mixtures as a function of mole fraction of PEOs. The color of lines rep-
resents temperature from 430 K to 580 K with interval 30 K. Solid and dashed curves show fits
according to the Redlich-Kister equation.
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Figure D.4: Variation of radius of gyration of (left) PEO/[EMIM][BF4] and (right)
PEO/[EMMIM][BF4] mixtures as a function of mole fraction of PEOs. The color of lines rep-
resents temperature from 370 K to 580 K with interval 30 K, which is the same as Fig. D.2. The
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D.3 Polymer conformations: radius of gyration and end-to-end

distance of poly(ethylene oxide)
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resents temperature from 370 K to 580 K with interval 30 K, which is the same as Fig. D.2. The
y-error bar (black) is the standard deviation at 580 K (red).
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Figure D.10: Probabilities of Rg of PEOs for (left) PEO/[BMIM][BF4] and (right)
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Figure D.11: Variation of molar cohesive energy of (left) PEO/[EMIM][BF4] and (right)
PEO/[EMMIM][BF4] mixtures as a function of mole fraction of PEOs. The color of lines rep-
resents temperature from 370 K to 580 K with interval 30 K, which is the same as Fig. D.2.

D.4 Molar cohesive energy between PEO and ILs
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Figure D.12: Variation of molar cohesive energy of (left) PEO/[BMIM][BF4] and (right)
PEO/[BMMIM][BF4] mixtures as a function of mole fraction of PEOs. The color of lines rep-
resents temperature from 430 K to 580 K with interval 30 K, which is the same as Fig. D.3.

D.5 Pair correlation functions of atoms in mixtures
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Figure D.15: Variation of radial distribution functions of (left) oxygen atoms of PEOs and (right)
flourine atoms of [BF4] anions. Solid lines and dashed lines are for PEO/[BMIM][BF4] mixture
and PEO/[EMIM][BF4] mixtures at 430 K for x=0.43, respectively.
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Figure D.16: Variation of radial distribution functions of (left) oxygen atoms of PEOs and (right)
flourine atoms of [BF4] anions. Solid lines and dashed lines are for PEO/[BMMIM][BF4] mixture
and PEO/[EMMIM][BF4] mixtures at 430 K for x=0.43, respectively.
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flourine atoms of [BF4] anions. Solid lines and dashed lines are for PEO/[BMMIM][BF4] mixture
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D.6 Molar total coordination number of PEO oxygen atoms

with unsaturated carbons (C1 and C2) of cation
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Figure D.18: Variation of Ncont for (top) molar high contacts and (bottom) molar low contacts
of oxygen atoms of PEOs in (left) PEO/[EMIM][BF4] and (right) PEO/[EMMIM][BF4] mixture.
The meaning of colors is working temperature, as shown in Fig. D.2. Solid lines are the linearly
interpolated lines.
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Figure D.19: Variation of Ncont for (top) molar high contacts and (bottom) molar low contacts
of oxygen atoms of PEOs in (left) PEO/[BMIM][BF4] and (right) PEO/[BMMIM][BF4] mixture.
The meaning of colors is working temperature, as shown in Fig. D.3. Solid lines are the linearly
interpolated lines.
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