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Abstract 

 Coronary artery disease leading to myocardial infarction (MI) is the number one cause of 

mortality worldwide. MI is typically caused by prolonged durations of ischemia. Murine models 

of myocardial ischemia and infarction and ischemia-reperfusion (IR) play an instrumental role to 

gain mechanistic insights into cardiac remodeling post-MI. However, the success of these models 

depends on the availability of accurate and reproducible techniques for measuring cardiac 

physiology. The goal of this dissertation is to demonstrate a composite imaging framework 

combining two different modalities (cardiac strain and photoacoustic imaging) for in vivo 

assessment of functional and perfusion changes in the myocardium associated with MI and IR 

murine models non-invasively.  

 Cardiac strain imaging (CSI) is an ultrasound-based approach to estimate myocardial 

relative tissue elasticity by tracking cardiac deformation induced by the natural contraction and 

relaxation of the heart. CSI is now used for assessing global and regional myocardial function. 

Displacement estimation is an important processing step to ensure accuracy and precision of CSI-

derived strain tensors. To this end, we developed a multi-level block matching algorithm with 

Bayesian regularization (BR) which imposes local spatial continuity during displacement 

estimation using Bayes theorem. Later, an adaptive BR scheme was developed which utilizes local 

input data statistics to perform optimal regularization. A spatiotemporal BR method was also 

developed to utilize temporal information for regularization. The results from a pre-clinical 

longitudinal study demonstrate the efficacy of the BR methods for estimating cardiac strain 

accurately along with correlation to histopathological findings. 
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 There is an unmet clinical need for non-invasive imaging to efficiently study myocardial 

blood flow and perfusion. We propose to utilize PAI to generate parametric maps of blood oxygen 

saturation (sO2) to quantify cardiac perfusion in murine models. We developed a myocardial sO2 

estimation method termed Oxygenation estimation using Physiological signal gating and Motion 

Compensation (OPMC). Novel adaptive beamforming and image processing algorithms such as 

spatiotemporal coherence weighting, photoacoustic sub-aperture processing and spatiotemporal 

singular value decomposition were developed for OPMC. Our results suggest that OPMC had 

better spatiotemporal resolution owing to elimination of high persistence and data collection at 

higher frame rate compared to a conventional approach. 
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Chapter 1 

Introduction and Research Question 

 Coronary heart disease (CHD) including myocardial infarction (MI) is the number one 

cause of mortality worldwide according to American Heart Association annual statistical update 

2021 [1]. Virani et al. reported that roughly 13% of deaths in USA were caused by CHD with more 

than 360,000 deaths annually in 2018 [1]. According to data available from 2013, CHD was one 

of the most expensive conditions treated in US hospitals with an annual financial burden of $9.0 

billion [1]. MI results from hypoxia in cardiac muscle cells leading to cell death, typically caused 

by prolonged duration of ischemia (from a diminished supply of blood) [2]. Myocardium 

undergoes a series of morphological changes (e.g., change in mass and geometry, scar formation) 

after MI known as cardiac remodeling [3]. Improved management strategies for patients after MI 

can be realized with better understanding of these changes [4].  

Animal models of ischemia and infarction have been instrumental for gaining better insights 

on cardiac remodeling [4, 5]. In particular, murine models of CHD have been routinely utilized in 

pre-clinical research due to its similarity to human cardiovascular physiology and ease of genetic 

alteration [6]. The greatest advantage of the murine model is the availability of various relevant 

transgenic and knockout (KO) strains [7]. It allows us to gain mechanistic insights into 

pathogenesis of heart failure and disease progression and detect targets for pharmacological or 

molecular therapy [7] which is not feasible in clinical situations [8]. Additionally, these models 

are amenable choices to enable translation of novel treatments and therapeutic interventions such 

as stem cell therapy from laboratory to the clinic [9]. To understand the anatomical and 

physiological changes associated with these models, accurate and reproducible techniques for 
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measuring cardiac physiology in mice is of utmost importance [9]. In this regard, non-invasive 

cardiac imaging plays a pivotal role to meet the technological demand of studying mice cardiac 

physiology [6, 7] and is the focus of this dissertation.   

1.1 Non-Invasive Imaging Tools to Study Cardiac Mechanics 

The heart demonstrates complex left ventricular (LV) motion mechanics during a cardiac cycle 

while circulating blood and oxygen to the cardiovascular system consisting of arteries and veins 

[10, 11]. The LV demonstrates inward motion associated with myocardial wall thickening, the 

base moving towards the apex and ventricular twist due to the apex and base rotating in opposing 

directions [11, 12] during ventricular systole with reverse motion mechanics during diastole. In 

the event of myocardial ischemia and infarction, normal LV structure and function undergoes rapid 

changes such as loss of contractile tissue, bulging of infarcted area, LV wall dilation, enhanced 

myocardial stiffness and hyperkinesia of viable tissue [9, 13]. Assessment of cardiac function 

through non-invasive imaging can provide valuable information regarding LV mechanical changes 

associated with MI.  

Echocardiography has been routinely used to assess myocardial function as it is cost-effective, 

fast, portable and provides high temporal resolution for real-time visualization of the heart in a 

clinical setting [14, 15]. Qualitative assessment of echocardiographic image sequences over 

several cardiac cycles (visual wall motion scoring and wall thickening evaluation) by expert 

clinicians have been used to quantify myocardial function [16]. However, the accuracy of these 

assessments is dependent on extensive training, expertise [17, 18] and suffers from inter-observer 

variability. Myocardial deformation imaging has therefore been utilized to obtain clinically 

valuable information based on an objective assessment of regional and global ventricular function 

[19]. Deformation imaging methods quantify myocardial function in terms of regional cardiac 



3 
 

displacement and strain, an unitless measure of the degree of deformation with respect to initial 

cardiac dimensions [20]. Deformation imaging in mice is typically done by deriving cardiac 

motion either using ultrasound echocardiography or by strain mapping via tagged magnetic 

resonance imaging (MRI) data such as displacement encoding via-simulated echo (DENSE), and 

spatial modulation of magnetization (SPAMM)  [6, 9]. Tagged-MRI methods allow direct 

measurement of myocardial tissue properties, however, this method suffers from limitations such 

as low temporal resolution and not being real-time unlike echocardiography [6, 21]. On the other 

hand, cardiac strain imaging (CSI) utilizing two-dimensional (2-D), or three-dimensional (3-D) 

echocardiography data, has shown widespread applicability in both clinical and pre-clinical setups 

as it can be performed with data collected during a conventional echocardiographic examination 

[21-27]. In particular, CSI using ultrasound radiofrequency (RF) data (cardiac or myocardial 

elastography) is more sensitive to subtle myocardial motion abnormalities compared to 

conventional echocardiography and envelope-based speckle tracking [28-30]. However, accurate 

strain estimation in murine models poses unique challenges due their small size and rapid heart 

rate [31]. Higher heart rate results in increased RF signal decorrelation and additional out-of-plane 

scatterer motion due to complex 3-D cardiac deformation imaged in 2-D thus degrading the quality 

of CSI. Therefore, CSI is still being actively researched to address the above-mentioned 

challenges. 

1.2 Myocardial Microcirculation and Role of Perfusion Imaging 

 Myocardial blood flow (MBF) is regulated by coronary circulation comprising an extensive 

network of arteries and arterioles penetrating the cardiac muscle tissue [32]. Oxygen supply and 

nutrient demand of cardiac tissue are met by MBF whose dysfunction leads to cardiac hypoxia and 

tissue necrosis [33]. Positron emission tomography (PET), single-photon positron emission 
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computed tomography (SPECT) and magnetic resonance imaging (MRI) are currently being 

employed for imaging MBF in humans with PET being the clinical reference standard [33]. 

However, the small size and rapid heart rate in the mouse heart poses significant challenges for 

myocardial perfusion imaging with these techniques [34, 35]. Application of these tools is difficult 

in murine models for financial (e.g., expense of a MR/PET scanner, requirement of cyclotron 

facilities to produce radionuclide [33]) and technical reasons (e.g., ionizing dose, poor spatial 

resolution of SPECT [33], low temporal resolution, long acquisition time) [34]. For example, blood 

oxygen level-dependent (BOLD) MRI imaging and first-pass MRI with intravenous bolus 

injection can quantitatively investigate MBF at the expense of relatively longer image acquisition 

time and technical challenges associated with bolus injection [9, 33]. Furthermore, these methods 

do not operate in real-time. A relatively low cost solution without the use of any ionizing radiation 

is myocardial contrast echocardiography (MCE) which has been used to evaluate myocardial 

perfusion and identify perfusion defects in ischemia models [36]. MCE involves intravenous 

injection of contrast agents (gas filled micro bubbles) to enhance the myocardial ultrasound B-

mode images with higher spatial and temporal resolution than SPECT, PET and MRI [36]. 

However, performing MCE in a small animal model with a rapidly beating heart is quite 

demanding both in terms of surgical procedures and image acquisition with a high resolution 

scanner [37]. Therefore, there is an unmet need for a non-invasive imaging method to efficiently 

study MBF in murine models. We propose to utilize photoacoustic imaging (PAI) to generate 

parametric maps of blood oxygen saturation to assess perfusion of ischemic regions. 

1.3 Specific Research Aims 

 The primary objective of this dissertation was to develop a unified imaging framework to 

study mechanical and perfusion changes in the myocardium due to myocardial infarction and 
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ischemia-reperfusion injury in murine models. Four specific aims were established to achieve the 

above-mentioned research objective. 

Aim 1: Non-invasive quantification of myocardial oxygen saturation with Photoacoustic 

imaging. Non-invasive quantification of myocardial perfusion may be more definitive for 

indicating the extent of ischemia. We hypothesized that photoacoustic imaging (PAI) has the 

potential to be a non-invasive, non-ionizing and real time monitoring tool for studying perfusion 

changes in the myocardium due to ischemia.  

Aim 2: Development of a complete strain estimation framework by incorporating Bayesian 

regularization-based hierarchical block matching algorithm with Lagrangian motion 

description and myocardial polar strain estimation. Cardiac elastography (CE) has been 

utilized to perform objective assessment of regional and global myocardial function [23, 27]. We 

hypothesized that application of Bayesian regularization techniques in CE will result in a robust 

and accurate strain estimation framework to study functional changes associated with ischemia. 

Aim 3: Development of an adaptive Bayesian regularization algorithm for robust low and 

high strain estimation. Spatial variation of elasticity in the myocardium requires a strain 

estimation algorithm to be robust for both low and high strain field estimation. We hypothesized 

that adaptively varying the extent of regularization based on the quality of data (e.g., signal 

decorrelation) will allow estimation of both low and high strain fields in a robust manner. 

Aim 4: Development of spatiotemporal Bayesian regularization-based motion estimation 

approach for invoking temporal consistency in cardiac elastography. Dynamically varying 

strain rates in the cardiac cine loops due to cardiac pulsation pose a fundamental challenge in CE. 

We hypothesized that spatiotemporal regularization-based motion estimation framework will be 
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more robust to tackle dynamically varying myocardial strain rates resulting in smoothly varying 

temporal strain curves.  

1.4 Dissertation Outline 

Chapter 2 presents a literature review on ultrasound elastography methods and relevant signal 

processing techniques for cardiac function assessments using strain imaging. 

Chapter 03 introduces photoacoustic imaging (PAI) and provides a detailed literature review on 

solving acoustic (beamforming) and optical (oxygen saturation estimation) inverse problem related 

to PAI. 

Chapter 04 proposes and validates a complete cardiac strain estimation pipeline incorporating 

Bayesian regularization-based hierarchical block matching algorithm, Lagrangian description of 

motion and myocardial polar strain estimation (Aim 2). 

Chapter 05 presents an adaptive iterative Bayesian regularization framework based on local signal 

decorrelation levels derived from input RF data that adaptively varies the extent of regularization 

thus allowing estimation of both low and high strain fields in a robust manner (Aim 3). 

Chapter 06 extends the Bayesian regularization algorithm into the temporal domain with an 

underlying assumption of smooth variation in velocity over a short span of time during tissue 

deformation and validates it using simulation and in vivo cardiac datasets (Aim 4). 

Chapter 07 investigates dynamic frame skip and log compression of the correlation function in 

the context of improving Bayesian regularization for ultrasound strain imaging. (Aim 2 and 3). 

Chapter 08 reports on the utilization of a commercially available dual-wavelength PAI solution 

to generate parametric maps of blood oxygen saturation that were overlaid on high resolution high-
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frequency ultrasound images of the myocardium. Our results demonstrate that PAI is sensitive to 

changes in myocardial oxygenation associated with acute myocardial ischemia (Aim 1). 

Chapter 09 proposes and validates a photoacoustic beamforming algorithm incorporating 

spatiotemporal information to tackle temporally varying incoherent clutter noise seen in cardiac 

PAI (Aim 1). 

Chapter 10 presents photoacoustic image formation based on sub-aperture processing to optimally 

recover both coherent and diffuse photoacoustic (PA) signals while suppressing clutter and 

sidelobes (Aim 1).  

Chapter 11 incorporates the developed photoacoustic sub-aperture processing (PSAP) method in 

Chapter 10 into a minimum variance (MV) beamformer to address sidelobe corruption while 

preserving resolution improvement obtained with MV.  

Chapter 12 presents a spatiotemporal singular value decomposition (SVD) processing method to 

enhance myocardial signal specificity using ECG and respiratory signal (ECG-R) gating and in 

vivo cardiac murine PAI data beamformed with delay-and-sum (DAS) (Aim 1).   

Chapter 13 demonstrates a physiological signal gated PAI technique with motion compensation 

to improve the sensitivity and resolution of myocardial oxygen saturation estimation in vivo (Aim 

1). 

Chapter 14 reports on a Lagrangian CSI framework incorporating Adaptive Bayesian 

Regularization (ABR-CSI) and investigate the feasibility of this method for longitudinal 

monitoring of cardiac remodeling in murine models of myocardial infarction and ischemia-

reperfusion injury in vivo (Aims 2 – 3).  
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Chapter 15 summarizes the contribution of this dissertation and outlines future research 

directions. 

Supplemental materials are presented in the Appendices.  
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Chapter 2 

Ultrasound Elastography for Cardiac Health Assessment: A Literature 

Review 

 Objective quantification of myocardial function non-invasively has been a key area of 

interest in clinical cardiology [1]. Echocardiography has been routinely used to assess myocardial 

function as it is cost-effective, fast, portable and provides high temporal resolution for real-time 

visualization of heart in a clinical setting [2, 3]. Qualitative assessment of echocardiographic image 

sequences over several cardiac cycles (visual wall motion scoring and wall thickening evaluation) 

by expert clinicians have been used to quantify myocardial function [4]. However, the accuracy of 

these assessments is dependent on extensive training, expertise [1, 5] and suffers from inter-

observer variability. Quantitative parameters such as left ventricular ejection fraction (LVEF) can 

also be derived from echocardiographic images to assess cardiac function. However, LVEF has 

been shown to have limited ability for risk prediction in heart failure patients with reports of 

preserved LVEF even in the event of heart failure [6]. To address these issues, cardiac deformation 

imaging has been developed and utilized to obtain clinically valuable information based on an 

objective assessment of regional and global ventricular function [7]. In this chapter, we review 

peer-reviewed literature related to technical developments and applications of cardiac deformation 

imaging performed based on ultrasound. 

2.1 Strain and Strain Rate Imaging with Tissue Doppler Imaging (TDI) 

 Initial approaches to perform cardiac deformation imaging was based on tissue Doppler 

imaging (TDI) for strain rate and strain estimation. Strain rate (SR) measurements were typically 
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done based on the spatial velocity gradient by assessing at least two fixed points along the 

ultrasound (US) beam as shown below [8-10]. 

 
( ) ( )  




v r v r r
SR

r
  (2.1) 

where, v is the tissue Doppler velocity and r  is the distance between interrogation points. 

Alternatively, SR was also measured using linear regression over multiple velocity estimates over 

a fixed distance [11]. Finally, strain was derived though temporal integration of these SR curves. 

Even though TDI derived strain measurements have been investigated for clinical applications [8, 

12], they suffer from several limitations limiting clinical applicability [13]. First, these 

measurements are angle-dependent thus limited to measuring strain and strain rates from 

myocardial segments aligned only along the US beam [14-16]. Second, they were highly 

susceptible to signal contribution from the left ventricular blood pool and reverberation artifacts 

[15]. Third, TDI is intrinsically one-dimensional (1-D) while cardiac deformation is three-

dimensional (3-D) in nature [16, 17]. Therefore, there was shift towards developing non-Doppler 

US based cardiac deformation approaches.  

2.2 Ultrasound Elastography Approaches for Cardiac Deformation Estimation 

2.2.1 Basic Principles of Ultrasound Elastography 

 Ultrasound elastography (UE) refers to signal processing methods to estimate tissue 

elasticity properties using US radiofrequency (RF) data from perturbed tissue [18-21]. 

Elastography was pioneered by the research group headed by Dr. Jonathan Ophir back in 1991 

when they demonstrated the formation of two-dimensional (2-D) images of tissue elasticity (strain) 

by estimating inter-frame deformation between two consecutive RF frame under uniaxial 

compression [22]. Thirty years later, elastography is a well-researched technology being readily 
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available in clinical US machines (e.g., VirtualTouchTM from Siemens [23], LOGIQ E9 from GE). 

Based on several innovations driven by researchers around the world,  UE has widespread 

applications in clinical settings for assessing diagnostic information from organs such as the breast 

[24], liver [25], heart [26] and so on. Typically, UE is a three-step process. First, induction of tissue 

deformation and collection of RF data at pre- and post-deformation state. Second, tracking of 

induced displacements either using 2-D normalized cross-correlation (NCC) based block matching 

(BM) [27-29], phase-based estimators [30, 31] or cost function-based optimization methods [32-

34]. Finally, strain estimation as a spatial gradient of tracked displacement [20, 22, 35].  

Based on perturbation techniques to induce local tissue deformation, UE can be broadly 

categorized into two groups. The first group includes quasi-static elastography where a constant 

stress is applied (e.g., freehand compression with the imaging transducer) to induce tissue 

deformation [36, 37]. Varghese et al. [37] further classified quasi-static elastography into three 

categories based on the mechanical stimulus generating the quasi-static compression namely: (a) 

Steady state quasi-static excitation (e.g., known applied deformation) , (b) Steady state quasi-static 

low frequency excitation (e.g., free-hand perturbation [38]) and (c) Steady state quasi-static 

physiological excitation (e.g., deformation induced from cardiac muscle and cardiovascular 

sources [4, 39-41]). Note that, the stress ( ) and strain relationship ( ) can be described by 

Hooke’s law in terms of Young’s modulus (E) as shown below. 

 E    (2.2) 

However, in practice, the applied deformation is unknown thus quasi-static elastography provides 

a relative measurement of tissue elasticity. For further details, interested readers are referred to the 

following seminal review articles [21, 36, 37, 42, 43] and books [19, 44]. The second group of 

methods is termed as dynamic elastography, where continuous or transient mechanical vibration 
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induces dynamic tissue deformation. Examples include sonoelasticity imaging [45], acoustic 

radiation force impulse imaging (ARFI) [46], vibro-acoustography [47], shear wave elasticity 

imaging (SWEI) [48]. For further details, interested readers are referred to the following seminal 

review articles describing dynamic elastography [36, 49-51] and books [19, 44]. In the following 

section, we discuss both quasi-static and dynamic elastography in the context of cardiac elasticity 

imaging. 

2.2.2 Cardiac Strain Imaging for Cardiac Deformation Quantification 

 Cardiac strain imaging (CSI) estimates myocardial tissue elasticity by processing US data 

corresponding to the natural contraction and relaxation of the myocardium [26, 41]. Widespread 

application of cardiac strain imaging in both human and animal studies has been reported in the  

literature [7]. Applications in human imaging [15] include detection of patients with coronary heart 

disease (CHD) [52], myocardial ischemia [53], monitoring cardiac radiofrequency ablation in 

human subjects in vivo [54] and dilated cardiomyopathies [55]. CSI has also been used in detection 

of myocardial infarction in murine models [56, 57] and assessment of response to cardiac therapy 

[58]. These wide ranges of applications were the driving force behind innovations and 

improvements in CSI. Accurately estimating underlying cardiac motion or displacement is critical 

for CSI. The myocardium exhibits complex 3-D motion patterns due to torsion, thickening across 

and contraction along fibers  over a cardiac cycle [59]. This complex 3-D motion causes out-of-

plane motion of scatterers when 2-D imaging is employed for CSI resulting in significant 

challenges for accurate strain quantification [60]. Improving the accuracy of cardiac displacement 

and strain estimation is one of the main goals of this dissertation. Therefore, related signal 

processing approaches to improve CSI have been reviewed in detail separately in Section 2.3. 
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2.2.3 Dynamic Elastography for Cardiac Stiffness Quantification 

 In this section, we summarize literature reports pertaining to the use of ARFI induced 

dynamic elastography methods for estimating myocardial stiffness. For a broader review of ARFI 

elastography methods, interested readers are referred to following review papers [49, 50]. 

2.2.3.1  Acoustic Radiation Force Impulse (ARFI) Imaging for Myocardial Stiffness 
Measurement 

ARFI Imaging is a dynamic elastography technique using a transient excitation mechanism where 

internal tissue motion is induced using an impulsive focused acoustic radiation force (ARF) [44, 

46, 61]. The magnitude of ARF (F) inducing the localized tissue defamation can be represented as 

follows. 

 
2 I

F
c


   (2.3) 

where,  , I and c represent acoustic absorption coefficient, local mean temporal intensity of 

acoustic beam and speed of sound, respectively. ARFI data acquisition starts by collecting 

“reference” data in single lateral location without any ARF excitation. Then, using the same US 

transducer, ARF excitation pulse or “pushing” pulse (pushing pulse with longer pulse length 

compared to conventional B-mode imaging pulses) is delivered to generate impulsive ARF and 

consequently induce localized tissue deformation. Finally, multiple diagnostic US pulses 

(“tracking” pulses) are used to collect post deformation data and induced tissue displacements are 

tracked typically using correlation-based estimators [30]. Similar pulse sequences are repeated 

across a lateral spatial extent to generate 2-D ARFI images which can provide qualitative maps of 

local tissue stiffness [44]. Several clinical applications of ARFI imaging are reviewed in the 

following papers [44, 62]. In this chapter, we review ARFI imaging in the context of cardiac health 
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and dynamics assessment. Fahey et al. [63] first demonstrated the use of ARFI to image 

myocardial radiofrequency ablation (RFA) of a beating heart in an open chest experimental setup. 

Authors demonstrated that ARFI could be used to visualize cardiac lesions formed in two sheep 

hearts by RFA and argued for the potential use of this method to monitor myocardial ischemia and 

infarction [63]. ECG-gating was employed to discard frames with motion artifacts resulting in a 

single ARFI image per heartbeat. Later, Hsu et al. [64] extended the technique for monitoring the 

dynamic variation of myocardial stiffness over a cardiac cycle using ARFI M-mode imaging. 

Experimentation involved imaging exposed canine hearts using linear array transducers and 

employed advanced beam sequencing and parallel-receive imaging [65] to collect data at a higher 

frame rate (40 Hz for ARFI M-mode imaging). Even though, ARFI induced displacements 

demonstrated cyclic variation over the cardiac cycle, fixed ROI placement for ARFI M-mode 

imaging could induce uncertainty in the results due to underlying cardiac motion. Recently, 

Kakkad et al. [66] investigated the in vivo feasibility of ARFI M-mode imaging using transthoracic 

RF data from 12 healthy human volunteers and found that the success rate of the proposed method 

in studying dynamic myocardial stiffness was somewhat limited (41 % of total 204 acquisitions). 

Authors limited their analysis to the intra-ventricular septum and collected data in both parasternal 

long and short axis views. ARFI images were quantitively studied by deriving parameters such as 

stiffness ratio, rates of relaxation and contraction and time constants of relaxation and contraction 

through analysis of the ARF-induced displacement profiles. These studies highlight potential 

challenges for using ARFI for in vivo cardiac imaging which stems from the fundamental physics 

behind ARFI imaging. First, ARF-induced displacements are directly related to the intensity of 

acoustic excitation pulse which might be absorbed by highly attenuating tissue layers such as 

muscle and connective tissue before reaching the myocardium. This is turn in will contribute 
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towards unsuccessful ARFI acquisition. Second, the ARFI analysis ROI was fixed in location and 

size based on the estimate of focal point of ARF pulse. However, the myocardium continuously 

moves and changes shape due to contraction and relaxation of the myocardium thus potentially 

leaving the ROI during data acquisition.  

2.2.3.2 Shear Wave Elasticity Imaging (SWEI) for Myocardial Stiffness Assessment  

 Shear Wave Elasticity Imaging (SWEI) is a quantitative dynamic elastography technique 

pioneered by Sarvazyan et al. [48] based on shear waves generated by remote excitation using 

acoustic radiation force. Assuming linear, isotropic, semi-infinite medium, Sarvazyan 

demonstrated that the velocity of shear wave propagation (cT) is related to shear modulus (µ) and 

medium density (ρ) in the following form. 

 Tc



   (2.4) 

Myocardial tissue typically violates the required assumption, therefore cT is typically used to 

measure myocardial stiffness [67-70]. One of the initial reports on the use of SWEI for myocardial 

stiffness assessment was by Bouchard et al. [67] where authors employed ARFI-induced SWEI to 

investigate the mechanical properties of left ventricular (LV) free wall at the mid-myocardium 

level. Experimentation involved a canine beating heart in an open chest setup with shear wave 

speed (cT) measurements done at mid-diastole of cardiac cycle after ECG-gating. They reported 

on consistent beat-to-beat shear wave speed measurements (calculated using Lateral Time-To-

Peak algorithm) at a fixed location while the shear wave speed varies both with depth and lateral 

tracking beam location. Couade et al. [68] later demonstrated shear wave speed variation over a 

cardiac cycle by repeated ARFI pushes with displacement tracking utilizing ultrafast ultrasound 

imaging at 12000 frames/sec. Authors employed the SuperSonic Shear Imaging (SSI) method [71] 
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to image the epicardium of 10 sheep hearts in an open chest setup. They reported reduction (~25%) 

of the systolic shear wave after coronary artery ligation to induce myocardial ischemia. Pernot et 

al. [69] applied a similar SWEI method to an ex vivo experiment involving six Langendorff 

perfused isolated rat hearts and reported higher shear modulus at systole compared to diastole. 

Hollender et al. [70] performed shear wave speed measurements in vivo using intracardiac 

echocardiography (ICE) on six healthy pig models and reported cyclic variation of cT over a cardiac 

cycle like the results reported by Couade et al. [68]. However, their approach was less invasive 

than open chest experiments thus moving towards clinical translation. Hollender et al. [72] also 

investigated the potential of intracardiac echocardiography based SWEI for identifying focal 

infarction in pigs. However, no clear distinction could be made between healthy and infarcted 

hearts based on the reported data. Later, Pernot et al. reported on the differentiation between 

stunned and infarcted myocardium using passive myocardial stiffness measured at end-diastole 

(ED) by SWEI. Experimentation was done on 10 sheep in an open chest setup. Authors reported a 

statistically significant increase in ED SWEI stiffness value in an infarct case when compared to 

stunned myocardium. The infarcted group also demonstrated further increment in ED SWEI 

stiffness values after re-perfusion while stunned group remained constant.  

All the papers reviewed so far involved animal models either in an open-chest setup or 

using ICE, however, for clinical application, the preferred imaging mode would be transthoracic 

closed chest imaging. Song et al. [73] measured the myocardial stiffness of LV for the first time 

in vivo by performing transthoracic closed chest imaging of seven healthy human volunteers. 

Authors utilized pulse inversion harmonic imaging for shear wave tracking. The measurement was 

limited to end-diastole phase of the cardiac cycle where heart motion was relatively slow [73]. 

Song et al. [74] later investigated the feasibility of the technique for end-diastole SWEI in a cohort 
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of 20 pediatric volunteers. Recently, Villemain et al. [75] reported the differentiation between 

healthy volunteers and hypertrophic cardiomyopathy patients using passive myocardial stiffness 

measured at ED by SWEI. Even though these reports are encouraging, there are several technical 

challenges that remain with SWEI to assess myocardial stiffness non-invasively. First, 

measurements are localized in both space (excitation site) and time (end-diastole), and would 

therefore require another imaging modality such as cardiac strain imaging [41] to localize the 

disease site. A more suitable SWEI approach should cover a larger field-of-view with dynamic 

measurement over the cardiac cycle [44]. Secondly, myocardial anisotropy might be a 

complicating factor which has to be addressed before comparing SWEI derived parameters across 

patient groups [72]. Further details regarding SWEI for cardiac imaging can be found here [44]. 

 

Figure 2.1 High level description of a Cardiac Strain Imaging framework. 

2.3 Signal Processing Approaches for Cardiac Strain Imaging (CSI) 

 In this section, we review the literature reports on the signal processing approaches utilized 

for CSI. The CSI process can be described as a three-step process on a high level namely – (a) US 

data collection over several cardiac cycles, (b) motion estimation and (c) cardiac strain derivation 

as shown in Figure 2.1 and discussed in detail below. CSI can be performed either using a sequence 
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of ultrasound envelope or B-mode images (envelope detected and log compressed signals) or using 

radio-frequency (RF) data [76, 77]. 

2.3.1 Speckle Tracking Echocardiography for Cardiac Strain Estimation 

 Ultrasound B-mode or envelope-based methods for CSI are commonly termed as speckle 

tracking echocardiography (STE). Readers interested to learn about the clinical applications of 

STE are referred to following review papers published between 2010 – 2021 [15, 78-81]. This 

section focuses more on the technical aspects of STE. A common approach for motion estimation 

in STE is to search for similar speckle patterns in a sequence of cardiac B-mode images using 

block matching (BM) [16, 82]. In this approach, similarity between matching blocks is quantified 

using similarity metrics such as normalized cross-correlation coefficient (NCC), sum of absolute 

difference (SAD) or sum of squared difference (SSD).  

A second popular approach for motion tracking using B-mode ultrasound images are 

optical flow based motion estimation approaches [83, 84] . These methods assume brightness 

consistency of a pixel over a short period of time and derive motion by matching pixel intensity 

across frames. Optical flow-based motion estimation using RF signals was also reported in the 

literature [85, 86]. Finally, a third approach for motion estimation for STE is the utilization of non-

rigid B-mode image registration [87-90]. In these registration methods, cardiac deformation is first 

modelled as a weighted sets of basis functions and then weights are adjusted appropriately to 

represent the dense cardiac deformation field [44]. These methods aim to find a spatiotemporal 

deformation field by iteratively minimizing difference between motion compensated images and 

a reference [87]. This task is formulated as a global optimization problem where the optimal 

deformation field minimizes a specific cost function. Smooth basis functions such as B-splines or 

radial basis functions are typically used to parametrize the myocardial deformation field with 
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additional regularization terms in the cost function to be minimized [87, 90]. Regularization 

enforces additional constraints such as smoothness on the derived motion field [87, 88].  

Ledesma-Carbayo et al. [87] proposed a spatiotemporal elastic registration framework for 

estimating 2-D displacement fields from a sequence of ultrasound B-mode images of the heart. A 

parametric model based on B-spline functions was utilized to represent the motion field. They 

proposed a regularization-free optimization criterion to derive a globally plausible spatiotemporal 

motion field over the entire image sequence with respect to a reference frame (end-diastole). They 

then enforced spatial smoothness and temporal coherence on the estimated deformation function 

by defining B-spline basis functions for both spatial and temporal direction. Finally, the 

registration problem is solved utilizing a multi-resolution optimization strategy. The approach was 

validated in a cardiac simulation model revealing the benefit of adding temporal consistency to the 

framework. They also reported initial clinical validation by performing analysis on in-vivo 

volunteer data from healthy (n=6) and patient (n=6) population. This approach was later extended 

to 4D data sets (3-D+t) by Metz et al. [91] and evaluated on computed tomography (CT) and 

ultrasound (US) image sequences. Their additional contribution was to enforce a cyclic motion 

constraint to ensure uniqueness of their optimization solution.  

Similar image intensity-based non-rigid image registration framework has been applied in 

3-D ultrasound image voxels by Elen et al. [88] to derive the cardiac motion field. They also 

utilized a B-spline transformation model to parametrize the spatial motion field. Their proposed 

cost function included mutual information as a similarity measure term and two spatial smoothness 

term as regularizer. The regularization terms enforced spatial smoothness and volume conservation 

to prevent non-physical estimations. Frame-to-frame image registration was performed to derive 

the inter-frame displacement field. Finally, inter-frame displacements were accumulated to derive 
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a Lagrangian representation of the motion field. They showed motion tracking with reasonable 

performance and accuracy in a simulation study of healthy and infarcted heart. Initial clinical 

validation was done on in-vivo data derived from healthy (n=3) and apical aneurism patient (n=1).  

De Craene et al. [92, 93] also proposed a 4D image registration approach (3-D+t) to 

estimate motion and strain sequences from 3-D ultrasound volume sequences. The proposed 

method referred as Temporal Diffeomorphic Free-Form Deformation (TDFFD) attempted to 

enforce temporal consistency by the use of continuous spatiotemporal B-spline kernels to represent 

velocity fields. The proposed approach was evaluated using synthetic 3-D US images, in-vivo 

healthy volunteers (n=9) and Cardiac Resynchronization Therapy (CRT) treated patients (n=13). 

Zhang et al. [94] proposed an elastic image registration framework for 3-D echocardiography 

images with spatiotemporal regularization (3-D+t approach). The proposed problem formulation 

closely resembles the approach reported in [87, 88] as authors parameterize the deformation field 

using tensor product of 1-D cubic B-splines. The approach differs from [87, 88] in terms of 

regularization where they propose to use two regularization terms (spatial and temporal). The 

spatial regularization term enforces spatial smoothness while temporal regularization terms 

enforce smoothness in velocity assuming that any point in myocardium will experience continuous 

velocity. The temporal penalty term is determined using three consecutive images. They reported 

improved performance in cardiac motion estimation against no temporal regularization. Nora et. 

al. proposed spatial and sparse regularization with dictionary learning and reported better motion 

estimation accuracy compared to state-of-the-art methods [95]. Later, they extended their approach 

to incorporate temporal domain information [96]. Despite regularization being inherently 

embedded in these NRIR-based methods, they suffer from reduced sensitivity to small inter-frame 

displacements and lower elastographic signal-to-noise ratio (SNR) due to the use of US B-mode 
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or envelope data instead of RF data [97]. To address this issue, Bidisha et al. proposed a NRIR-

based method for RF-based CSI. However, their results did not include analysis on strain 

estimation accuracy limiting its effectiveness for CSI. 

2.3.2 Cardiac Elastography for Myocardial Strain Estimation 

 RF echo-signal based speckle tracking technique for CSI is commonly termed as Cardiac 

Elastography (CE) [41] or Myocardial Elastography (ME) [26]. Elastography was originally 

developed as a technique to estimate local [98] tissue strain via NCC of time-shifted RF signals 

under an external compression along the ultrasound beam propagation direction [20, 22]. CE on 

the other hand uses the natural contraction and relaxation of myocardium as a mechanical stimulus 

for strain estimation [41, 99]. One added advantage of CE is the presence of phase information 

with RF signals resulting in accurate deformation estimation when compared to B-mode or 

envelope-based methods (e.g., STE) in detecting small deformations [76, 97, 100]. However, the 

lack of phase information in the lateral direction (perpendicular to beam direction) makes motion 

estimation challenging resulting in noisier lateral strain estimates [60, 101]. Further difficulty in 

accurate 2-D motion estimation results from the “out-of-plane” motion artifacts due to imaging 3-

D myocardial deformation using 2-D imaging planes [3, 60, 98, 102]. Therefore, these approaches 

typically utilize high lateral interpolation factors (e.g., Langeland et al. interpolated RF data 

laterally 30 times with Sinc interpolation [103]) with multi-level tracking and re-correlation 

strategies to improve the accuracy and precision of the estimates [4, 39, 60, 104]. To further 

improve the quality of strain estimation, several innovative approaches have been implemented 

such as displacement regularization [105-107], high frame rate echocardiography [108], spatial 

angular compounding [109-111] and transverse oscillation approaches [112-114]. 
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2.3.2.1 Improving RF-based Displacement Estimation with Regularization 

 Regularized displacement estimation algorithms for RF-based ultrasound strain imaging 

can be broadly categorized into two groups: optimization and BM-based methods. In the first class 

of algorithms, displacement estimation is modelled as an optimization problem combining 

measures of speckle similarity and motion continuity [44]. The continuity constraint is usually 

formulated to penalize large displacement gradients and acts as a regularization term. Pellot-

Barakat et al. [32] utilized SAD as similarity measure [28] and used an iterative conditional mode 

algorithm to solve the optimization problem. Brusseau et al. [115] modelled motion estimation as 

a minimization problem with NCC as similarity measure and solved the problem using sequential 

quadratic programming. Rivaz et al. [116] introduced Dynamic Programming Analytic 

Minimization to efficiently resolve sub-sample displacement by solving the optimization problem. 

Hashemi et al. proposed Global US Elastography algorithm termed as GLUE where a non-linear 

optimization problem is formulated to estimate displacement in all RF A-lines simultaneously by 

enforcing a spatial constraint [117]. Majority of these algorithms enforce regularization to produce 

spatially smooth displacement fields [33, 117-121]. However, in the context of CSI, temporal 

smoothness may be a reasonable assumption supported by NRIR-based reports as discussed in 

Section 2.3.1. Rivaz et al. [122] applied the concept of temporal consistency in optimization-based 

displacement estimation using multiple RF frames. The proposed method initially estimates 

motion between paired images using 2-D analytic minimization (2-D AM) [116]. The initial 

estimates were then utilized to derive physics based constrains to construct a likelihood function 

to incorporate data from multiple images. Finally, a posterior probability density was constructed 

by combining the estimated likelihood function and a spatial smoothening regularization term to 

derive final displacement estimates. The proposed method was compared against strain image 

averaging and Lagrangian particle tracking [4] and provided improved performance. Recently, 
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Ashikuzzaman et al. proposed using the GLUE algorithm in spatial and temporal domain termed 

as GUEST to incorporate temporal continuity in the GLUE framework and validated the algorithm 

using simulation, phantom and in vivo liver data. The results were however limited to axial strain 

images only making it unclear how generalizable it will be for CSI where lateral and shear 

components play equally important roles in the derivation of cardiac strain tensors.  

Typically, RF-based CSI or CE involves performing BM either with 2-D [4, 123] or 1-D 

kernels in a  2-D search region [103, 124-128]. Initially, CE was performed using 1-D cross-

correlation of time-shifted signals along the ultrasound beam propagation direction [26, 41]. As 

myocardium undergoes 3-D deformations during a cardiac cycle [1], several approaches of CE 

have been proposed to estimate cardiac motion and strain in 2-D [2, 4, 16, 39, 57, 60, 100, 103, 

124, 128, 129] and even 3-D [3, 98, 102, 130]. For these BM displacement estimation algorithms, 

n-D kernels (n=1,2 or 3) from pre-deformation RF data are matched with post-deformation kernels 

in a pre-defined search range using a similarity metric (e.g., NCC, SAD, SSD, mutual information, 

phase correlation [30, 131, 132]). In this dissertation, we focus on 2-D NCC based BM algorithms 

where the NCC peak location is used to obtain axial and lateral sub-sample shifts to determine the 

displacement vector. Regularization can be included in BM algorithms either post estimation or 

during estimation. Examples of post estimation regularization include median filtering [39, 103, 

124],  application of geometric shape constraints on the estimated motion fields [133], Gaussian 

smoothening [134]. Examples of regularization during estimation include application of Viterbi 

algorithm [34, 118, 135, 136] and Bayesian strain imaging [105-107, 123, 137]. For example, Jiang 

et al. [34] used correlation as similarity measure and used Viterbi algorithm for optimization. 

Bayesian strain imaging involves the use of prior knowledge to reduce estimation errors using 

Bayes theorem [137]. McCormick et al. [107] applied an iterative Bayesian regularization 
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algorithm to ultrasound strain imaging with successful application to carotid plaque strain imaging 

in human subjects [138]. They reported significant improvement in estimation quality compared 

to conventional peak-hopping error filtering approaches such as median filtering. Byram et al. 

[105, 106] proposed a Bayesian framework with a scaled likelihood function for improved 

discriminant ability and showed higher displacement accuracy compared to NCC approaches using 

a generalized-Gaussian-Markov random field prior in their Bayesian framework [137] with 1-D 

NCC kernels. However, for applications such as cardiac strain imaging, displacement vector 

estimation using 2-D or 3-D kernel is a key requirement to reduce kernel dimensions for improved 

spatial resolution and lateral estimation accuracy [139]. However, there are not many reports on 

the use of temporal consistency concepts for kernel-based displacement estimation. Jiang et al. 

[140] proposed a method of estimating a composite strain image by processing multiple RF frames 

rather than pairwise processing. The method starts of by selecting three RF frames based on a 

displacement quality metric (DQM) [140]. Two strain images were estimated from these RF data 

sets and finally, a composite strain image is obtained by weighted averaging of the pair of strain 

images. They reported higher SNR with this method compared to simple strain image averaging 

schemes. Bayer et al. [141] explored the idea of temporal continuity based on the assumptions that 

motion changes gradually over time and accumulation of smaller strain step-size induced 

displacement would be same as estimated displacement induced from the total large strain step-

size. Based on these assumptions and principles, they proposed four algorithms aiming to achieve 

a temporally smooth displacement field. The first algorithm was accumulation guidance where 

inter-frame displacements were accumulated to reduce peak-hop errors and used as a guidance for 

large-step displacement estimation. The second algorithm was named velocity regularization, 

where a cost function including a temporal smoothness penalty is solved to derive temporally 
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smooth displacement from three consecutive image frames. The regularization resembles the 

spatial regularization process described by Jiang and Hall in [136]. The third algorithm named 

multi-step regularization involved replacing the temporal smoothness constraint with a step-size 

consistency constraint. Finally, spatial and temporal regularization was combined in a space-time 

regularization algorithm. Initial investigation in phantom sequences and breast data showed 

comparable performance with a spatial regularization algorithm [136] and improvement in some 

specific cases. Initial investigation in phantom sequences and breast data showed comparable 

performance with the spatial regularization algorithm described by Jiang and Hall [136]. Recently, 

Mirzaei et al. proposed the use of 3-D NCC (2-D+time) and reported robustness against noise 

corruption for axial strain imaging [142]. 

2.3.2.2 High Frame Rate Echocardiography (HFRE) for Cardiac Elastography 

 Several reports on high frame rate echocardiography such as plane/diverging wave imaging 

[143, 144], multi-line transmission [145] is described in the literature and reviewed in detail by 

Cikes et al. [108]. Grondin et al. [126] reported on the use of coherently compounded diverging 

waves for performing cardiac elastography for the first time. Their initial simulation and in vivo 

feasibility suggested that reasonable strain estimation can be obtained by compounding multiple 

diverging waves with the added benefit of high frame rate imaging. Later on, Sayseng et al. [127] 

reported on the optimization of transmit parameters related to coherently compounded diverging 

wave imaging to improve the performance of CE. In 2020, Sayseng et al. applied the developed 

technique to monitor myocardial infarction in canine hearts [146].  Joos et al. [147] applied speckle 

tracking echocardiography on motion-compensated HFRE and reported comparable results 

obtained using a clinical scanner.  Recently, Orlowska et al. [148] followed the similar strategies 
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reported by Grondin et al. [126] who performed detailed algorithm optimization with performance 

bench marking against a clinical system.  

2.3.3 Strain Estimation and Quantification Approaches 

 The final stage of a CSI framework is derivation of cardiac strain along with quantification 

in a meaningful way to assess myocardial dynamics. Strain estimation can be done by integrating 

the estimated displacements over a cardiac cycle either using an Eulerian description (observation 

through fixed spatial location) or Lagrangian description (observation through material 

coordinates) [4, 15]. For CSI, typically Lagrangian strains are reported as the myocardium deforms 

over a cardiac cycle with the end-diastolic frame generally being the original reference point [7].  

CSI also allows regional analysis of myocardial abnormalities by dividing the entire heart into 

multiple segments based on image acquisition planes [149, 150]. Furthermore, several quantitative 

parameters have been derived through analysis of the temporal variation of regional strain curves 

for example peak strain, end-systolic strain, peak systolic strain, positive peak systolic strains and 

interventricular dyssynchrony through time-peak-analysis [56, 58, 151, 152]. Additionally, layer-

specific (epicardial, mid-myocardial and endocardial) segmental strain analysis has also been 

reported to study left ventricular function [153]. Interested readers might find the following review 

papers and consensus reports helpful for designing CSI based experimental studies [76, 77, 149, 

154]. 
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Chapter 3 

Photoacoustic Image Beamforming and Oxygen Saturation Estimation: 

A Literature Review 

 Photoacoustic imaging (PAI) is a hybrid biomedical imaging modality based on broadband 

ultrasound (US) signal generation using short pulsed electromagnetic optical irradiation of tissue 

[1, 2]. US signal generation in PAI is a result of rapid thermal expansion of tissue due to absorption 

of optical energy by either endogenous chromophores (e.g., oxygenated [HbO2] and deoxygenated 

hemoglobin [Hb]), or exogenous contrast agents (e.g., nanoparticles, organic dyes) [1, 3] which 

can be detected using conventional US transducers [4]. Thus, higher optical contrast at US spatial 

resolutions can be achieved in PAI making it an attractive imaging modality in biomedicine with 

both clinical (e.g. cancer detection [5, 6], monitoring microcirculation [7], [8], surgical guidance 

[9-11], prostate brachytherapy [12]) and preclinical applications (e.g. therapeutic response 

monitoring [13], cardiovascular [14]). The clinical and pre-clinical applications of PAI have been 

reviewed by several groups [1, 2, 9, 14-18]. In this chapter, we focus our literature review on two 

important aspects of PAI – (a) Beamforming methods for PAI reconstruction and (b) Oxygen 

saturation estimation methods using PAI. 

3.1 The Photoacoustic Effect: Basic Principle of PAI 

 PAI is based on the photoacoustic effect reported back in 1880 by Alexander Graham Bell 

when he observed sound generation from modulated light [19]. PAI can be considered to be a 

three-step process – (a) optical irradiation of the tissue region of interest (ROI) and light 

absorption, (b) thermal expansion causing acoustic wave generation and (c) detection of these 

generated acoustic waves at tissue surface for image formation [20]. Typically, the tissue ROI is 
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irradiated with pulsed or time-modulated light [1] from the surface which penetrates the tissue 

while undergoing multiple scattering and absorption (by optical absorbers referred to as 

chromophores) [2, 21-24]. This optical absorption causes local temperature rise (<0.1 K) through 

conversion of optical energy to heat by vibrational and collisional relaxation [1] which in turn 

induces a rapid thermal expansion of tissue leading to the generation of broadband acoustic waves 

[2, 21-24]. There are two main pre-requisites for effective PA signal generation as described below 

[20, 23]. 

1) Thermal confinement – The pulse width ( p ) of optical excitation should be less than 

thermal relaxation time ( th ).  th  denotes the time needed for the heat generated by optical 

absorption to dissipate due to thermal conduction. This indicates that thermal diffusion 

during optical illumination should be negligible.  

2) Stress confinement – The pulse width ( p ) of optical excitation should be less than stress 

relaxation time ( s ).  s  denotes the time needed for the stress (induced by the PA effect) 

to propagate through the heated region. This indicates that there is negligible volume 

expansion of absorbers during optical illumination.  

 If thermal and stress confinement are met (which is typically the case as  p  is on the order 

of nanoseconds), the initial pressure rise ( 0p ) due to thermal expansion can be described as 

follows.  

 
2

0 ( , ) ( ) ( , , , , ) ( )


       a a s
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where, ( )a x is local absorption coefficient, ( , , , , )   a s gx  is the local fluence which is a 

function of absorption coefficient, scattering coefficient (s ) and anisotropy factor (g), β denotes 

volume thermal expansivity, c is speed of sound, Cp is the specific heat capacity at constant 

pressure,  is the Gruneisen coefficient (dimensionless) defined as 
2

 
p

c

C
 and H(x) is the 

absorbed optical energy defined as ( ) ( ) ( , , , , )    a a sH gx x x .  Equation (3.1) indicates that 

0p  varies non-linearly with a . This process is described as the optical forward problem in Figure 

3.1. The optical inverse problem aims to estimate a  using 0p  which will be discussed in Section 

0. After generation of 0p , the acoustic wave travels in two opposite directions,  being divided into 

two waves with equal magnitude [20] and will be impacted by tissue acoustic properties such 

frequency dependent acoustic attenuation before reaching the tissue surface [2]. Finally, the 

propagating acoustic waves from the initial source are detected at the tissue surface for PA image 

generation. This process is indicated as the acoustic forward problem Figure 3.1. Note that the 

initial pressure magnitude in PAI (<10 kPa) is generally significantly lower than diagnostic 

ultrasound pressure (< 1MPa) [1, 21]. Furthermore, the bandwidth of the PA transient is generally 

broadband depending on the optical absorber’s size (e.g., higher frequency content from smaller 

optical absorbers). However, the bandwidth of the detected PA signals at tissue surface will be 

limited by tissue acoustic attenuation and ultrasound transducer bandwidth [1, 21]. For the acoustic 

inverse problem, we aim to reconstruct 0p  using detected data from the US detector which is 

discussed in detail in Section 3.2.  
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Figure 3.1 Schematic representation of PA signal generation and detection using bandlimited ultrasound 

transducer 

3.2 Photoacoustic Beamforming 

 PAI can be broadly classified into– (a) Photoacoustic tomography (PAT) and (b) 

Photoacoustic microscopy (PAM) [1, 25, 26]. This dissertation is focused on PAT specifically on 

photoacoustic (PA) integrated US imaging systems where acoustic waves generated by pulsed 

optical irradiation are detected by conventional US array transducers [27]. Image reconstruction 

or beamforming algorithms use received channel data to form PA images. For its simplicity and 

speed, delay-and-sum (DAS) is the most common beamforming algorithm utilized. However, DAS 

has several undesirable characteristics such as wider main lobes, higher sidelobe levels and 
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incoherent clutter that reduce image quality [4, 27-29]. DAS is particularly unsuitable for PA due 

to absence of a transmit (Tx) focus which increases both sidelobes and induced off-axis clutter. 

Therefore, extensive research to translate adaptive beamforming techniques from US to PA image 

reconstruction is being pursued. Several adaptive beamforming methods have been reported in the 

peer-reviewed literature for the reduction of these artifacts [30-33]. State-of-the-art adaptive 

beamforming approaches include data driven adaptive beamforming (e.g., minimum variance 

(MV) [33], coherence processing [33-35], delay-multiply-and-sum (DMAS) [36-38], iterative 

reconstruction [39-41]) and the use of machine learning (ML) [42-45]. Other post beamforming 

approaches to improve PAI quality include signal averaging [46-48], spatial angular compounding 

[49], singular value decomposition [50] and synthetic aperture focusing [51, 52]. However, in this 

chapter, we have limited our contextual literature review to beamforming methods using raw 

channel data and summarized the reviewed papers in Table 3.1. 

3.2.1 Minimum variance (MV) beamforming 

 MV beamforming calculates optimal aperture weighting using data statistics in the aperture 

domain to reduce contributions from off-axis signals [53, 54]. Park et al. adapted MV 

beamforming for PAI and demonstrated resolution improvement over DAS [33]. Mozaffarzadeh 

et al. combined both MV and eigen-based MV with DMAS to improve the resolution of DMAS 

beamforming [30, 31, 55]. In eigen-based MV, the covariance matrix utilizes eigen decomposition 

to determine the signal subspace using a subset of eigen vectors to improve the resolution and 

sidelobe suppression. Recently, Shamekhi et al. combined eigen based-MV with coherence 

processing and applied the algorithm for linear array PAI [56]. Paridar et al. incorporated a sparse 

regularization constraint to the MV optimization problem thereby improving performance [32]. 

Even though MV improves resolution and reduces sidelobes when compared to DAS, some level 
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of sidelobe signals persist. One simple solution is to weight MV images with the coherence factor 

[33]. However, this may not be an ideal solution in low signal-to-noise ratio environments resulting 

in undesirable PA signal suppression [57]. 

3.2.2 Delay-Multiply-and-Sum (DMAS) beamforming 

 In DMAS, time delayed PA signals in the aperture domain are combinatorically coupled 

and multiplied before summation. Park et al. [38] proposed a DMAS algorithm [58] where time 

delayed PA signals in the aperture domain are combinatorically coupled and multiplied before 

summation to enhance signal coherence non-linearly thus gaining higher image contrast. 

Mozaffarzadeh et al. [59] introduced a double stage DMAS algorithm where DAS terms in signal 

coherence estimation were replaced with DMAS terms. This approach showed improvement in 

terms of signal-to-noise ratio (SNR) and image contrast when compared to conventional 

approaches. Kirchner et al. demonstrated the applicability of DMAS for multi-spectral PAI by 

proposing a signed DMAS method where the sign of DAS beamformer is preserved to ensure 

linearity of the reconstructed results [36]. Ma et al. proposed Multiple DAS with Enveloping 

algorithm where they demonstrated suppression of sidelobe artifacts by calculating the whole N-

shaped PA signal for each pixel [60]. Several other variations of DMAS beamformers have also 

been reported in literature [37, 55, 61, 62].  

3.2.3 Coherence based beamforming 

 Another class of beamforming algorithms utilized to improve PAI quality employ 

coherence analysis of received channel data, termed as coherence factor (CF). Wang et al. applied 

CF weighting to synthetic aperture focused DAS images and demonstrated improvement in lateral 

resolution along with better representation of vascular networks in rat dorsal dermis [63]. Zemp et 

al. [29] used CF for PAI of microvasculature with a high-frequency array. Park et al. [33] 
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calculated CF weighting as a ratio of the coherent to incoherent sum of received channel data and 

weighted MV beamforming to obtain better performance than DAS for point target and inclusion 

phantoms. Robustness of CF calculations was improved by Wang et al. by incorporating local 

channel SNR [64]. Several variations in CF calculation such as sign coherence factor for high 

frequency annular-array PAI [65],  sign coherence factor for eigen-space MV beamforming [56], 

CF weighting using DMAS [66] and MV [67] respectively for coherence calculation have also 

been reported. Another popular coherence-based beamformer is the short-lag spatial coherence 

(SLSC) beamformer where spatial correlation of channel data at short lag values are utilized to 

generate PA images [34, 68-70]. SLSC has shown remarkable image quality improvements when 

applied to PA-based surgical guidance [9-11, 71, 72]. Recently, Graham et al. [73] theoretically 

derived spatial coherence functions for PAI and explored the influence of noise and incident 

fluence on the spatial coherence functions. The derived spatial coherence functions can be utilized 

to optimize the SLSC application. However, SLSC image contrast stems from spatial correlation 

of channel data rather than optical absorption of imaged tissue which is detrimental when multi-

wavelength PAI is used for spectral unmixing to estimate blood oxygenation. To address this, 

Mora et al. [74] recently proposed a generalized spatial coherence method combining SLSC and 

DMAS to preserve PA signal amplitude. However, from the reported results it was not clear how 

the method will perform for multispectral PAI. 

3.2.4 Model based iterative reconstruction 

 Use of model based iterative reconstruction methods employing signal sparsity and low 

rankness have also been reported [40, 41, 75-77].  Model based iterative reconstruction methods 

performs image reconstruction by minimizing the error between experimentally measured and a 



53 
 

forward model (analytical or semi analytical) generated PA data. These methods typically 

discretize the PA forward problem as follows.  

 0r p Hp   (3.2) 

where, 1LM
r

p   denote received PA signals by a L-element array each having M-time samples 

(raw channel data), 
1

0
x yN N 

p   is the beamformed initial pressure distribution image and 

x yLM N N
H    is the model or measurement matrix (forward model) which links rp and 0p . But, 

equation (3.2) is an ill-posed problem, thus regularization (e.g., total variation) is added to solve it 

[39]. Most of these algorithms are in developed PA tomography systems where data collection is 

done from multiple angles covering the imaged object [40, 41, 75, 76, 78-80]. However, in this 

dissertation, we are restricting our review to the methods developed only for linear array 

transducers due to their clinical and pre-clinical relevance. For example, Shang et al. [81] proposed 

a sparsity-based image reconstruction with compressed sensing [82] for linear array PAI.  Here 

authors constructed the forward model by directly measuring the impulse response for each pixel 

location of the reconstructed image. Then a sparsity-based optimization problem is built 

incorporating the forward model and solved using an iterative shrinkage/thresholding algorithm 

[83]. Simulation and phantom validation showed performance improvement over conventional 

methods. Recently, Vilov et al. [84] applied a similar method for performing image reconstruction 

with data collected from sparse arrays (using only 8 elements out 128 elements available in the 

transducer). Instead of measuring the impulse response from each location as Shang et al. [81], 

they performed the calculation in  a single pixel location and built the model matrix by time 

shifting. Paridar et al. [77] also proposed a sparse beamforming algorithm and solved the 

optimization problem using a simple iterative algorithm. DAS beamformed data was used to 
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initialize the iterative solver. The model matrix was data-independent and specific to the linear 

array geometry and imaging system. Liu et al. [85] incorporated dictionary learning using K-SVD 

to define the sparse transform for regularization and reported better image quality over Wavelet 

based sparse transforms. All these methods improve image quality by adopting sophisticated data 

statistics and models with a high computational burden [42]. Recently, Steinberg et al. [86] 

proposed Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) algorithm for 

addressing the challenge of real-time implementation. They designed a model matrix considering 

propagation medium properties and properties of each element (directivity, sensitivity) of a 

concave array. They have reported results from simulation, point target phantom, ex vivo pancreas 

tissue and in vivo contrast enhanced (ICG) prostate imaging with 10 patients. For in vivo 

experiments, the SPANNER method showed statistically significant PA amplitudes before and 

after injection.  Results demonstrated the potential of model-based methods clinically.  

Table 3.1 Summary of Reviewed Papers on Adaptive PAI Beamforming 

Methods Reviewed Papers Application demonstrated  

MV Beamforming 

Park et al. [33] Point target and inclusion phantom 

Mozaffarzadeh et al. [30] Simulation and phantom wire targets, 

single in vivo example of human 

antebrachial vein imaging 

Mozaffarzadeh et al. [31, 

55] 

Simulation and phantom wire targets 

Shamekhi et al. [56] Point target simulation, ex vivo (graphite 

rods in chicken breast) and in vivo sentinel 

lymph node (skin removed and contrast 

agent used) 

Paridar et al. [32] Simulation and ex vivo imaging for point 

type targets 

 

DMAS 

Beamforming 

Park et al. [38] Acoustic resolution photoacoustic 

microscopy 

Mozaffarzadeh et al. [59] Simulation and phantom wire targets 
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DMAS 

Beamforming 

Kirchner et al. [36] Phantom with silicone tubes filled with 

diluted methylene blue, in vivo sO2 % 

estimation for human radial artery  

Jeon et al. [62] Phantom with nylon thread and in vivo 

human forearm imaging 

Alshaya  et al. [61] Carbon fiber rods in hydrogel phantom 

Ma et al. [60] Simulation and phantom wire targets, 

single in vivo example of human finger 

joint imaging 

Coherence Based 

Beamforming 

Wang et al. [63] Point target phantom and one in vivo rat 

example 

Zemp et al. [29] High frequency imaging with one in vivo 

rat example 

Park et al. [33] Point target and inclusion phantom 

Wang et al. [64] Simulated point target and cyst phantoms, 

in vivo breast imaging   

Chitnis et al. [65] Point target phantom and in vivo mouse 

embryo microvasculature visualization 

Shamekhi et al. [56] Point target simulation, ex vivo (graphite 

rods in chicken breast) and in vivo sentinel 

lymph node (skin removed and contrast 

agent used) 

Mozaffarzadeh et al. [66] Simulation and phantom point targets, ex 

vivo (graphite rods in chicken breast) 

Mozaffarzadeh et al.  [67] Simulation and phantom wire targets 

Mora et al. [74] Simulation, phantom and in vivo human 

palm imaging 

SLSC [9-11, 34, 68-72, 87]  ex vivo and in vivo image-guided 

interventions  

 

 

 

Iterative 

reconstruction 

 

 

 

 

Shang et al. [81] Simulated point target and Shepp–Logan 

phantom, experimental point target 

phantom 

Paridar et al. [77] Point target simulation, ex vivo (graphite 

rods in chicken breast) and in vivo sentinel 

lymph node (skin removed and contrast 

agent used) 

Liu et al. [85] In vivo imaging on human hand and two 

rats 
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Iterative 

reconstruction 

Vilov et al. [84] Phantom experiments with microfluidic 

channels 

Steinberg et al. [86] Simulation, point target phantom, ex vivo 

pancreas tissue, in vivo contrast enhanced 

(ICG) prostate imaging with 10 patients 

Machine learning  Please refer to  

Table 3.2 for details 

 

3.2.5 Machine learning based methods 

In the past few years, ML based algorithms that achieve image quality improvement while 

maintaining low computational burden have gained momentum [42]. ML models have been used 

to address PAI issues such as the limited view and use of adaptive beamforming [42, 45, 88-92], 

reflection artifact removal [43, 93], expanding penetration depth [44] and contrast enhancement in 

low fluence PAI [94].  The journal papers reviewed for this chapter are summarized in  

Table 3.2. Waibel et al. [88] proposed the use of U-Net architecture for direct 

reconstruction of raw channel data and correction of DAS beamformed data. Their synthetic image 

generation incorporated fluence contribution and acoustic propagation using open-source 

simulation software packages (mcxyz [95] and k-Wave [96]). The U-Net performed better for DAS 

image correction when compared to direct image reconstruction. Authors hypothesized that direct 

reconstruction requires the U-Net to learn the required time delays from the raw channel data first 

followed by beamforming which might have a detrimental effect. Anas et al. [92] trained a dense 

convolutional neural network (CNN) to perform beamforming from raw channel data. Compared 

to the method proposed by Waibel et al. [88], they additionally simulated sound of speed 

heterogeneity, to mimic realistic in vivo imaging scenarios. Finally, Kim et al. showed that direct 

reconstruction can be improved if a U-Net is trained using 3-D aperture domain data (after time 

delay correction) and demonstrated better image quality when compared to training the U-Net on 
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the raw 2-D channel data [42]. Realistic ground truth images were generated by convolving 

vascular maps derived from oculi drive with the system of impulse responses of their custom 

PAUS system. One potential limitation of this method is that their synthetic data generation did 

not account for acoustic propagation related issues such as attenuation, reverberation, sound of 

speed heterogeneity.  In contrast to the method proposed by Kim et al. [42], Lan et al. utilized 

information from both raw channel and DAS beamformed data for DL based beamforming [45]. 

They proposed Y-Net, which is modification of U-Net to handle two individual encoder networks 

for channel and DAS beamformed data respectively. Synthetic image generation was done using 

the k-Wave MATLAB toolbox [96] and the vascular maps derived from oculi drive.  The method 

also provided a comparison against basic U-Net [97] with DAS beamformed data as an input 

resulting in better image quality.  

Vu et al. [89] reported the use of Wasserstein generative adversarial network with gradient 

penalty (WGAN-GP) to remove limited view artifacts from DAS beamformed images. Other 

reports on DL based limited view correction and adaptive beamforming can be found here [90, 91, 

98-100]. Allman et al. [43] trained a CNN to identify point sources and remove reflection artifacts 

induced by strong acoustic reflections from hyperechoic objects using pre-beamformed raw 

channel data. Their DL model consisted of two modules, where the first module included a deep 

CNN of VGG16 architecture [101] and a region proposal network [102] while the second module 

included Fast-RCNN [103] (Fast Region-based CNN). Their training data synthesis stage 

considered a wide range of imaging scenarios such noise corruption, source point target location, 

multiple point targets and impact of bandlimited transducers. Their results showed higher success 

rate in point source localization and artifact removal when compared to conventional methods in 

simulation and phantom experiments. Significant optical and acoustic scattering hinders 
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localization of PA signals from deeper depth. To address this issue, Johnstonbaugh et al. [44] 

proposed the use of a encoder-decoder type neural network to localize PA signals in deep-tissue 

medium. Their synthetic dataset generation considered both optical and acoustic physics. Superior 

performance was demonstrated when compared to DAS beamforming. However, the simulation 

and phantom experiments were limited to point like targets making it unclear how it would perform 

for the localization of deeper microvasculature in vivo. Finally, Hariri et al. [94] trained a multi-

level wavelet-CNN (MWCNN) [104]to recover high fluence PA images from noisy low fluence 

PA images. Their proposed method showed better results for in vivo Methylene blue (MB) 

concentration imaging. Even though the results from these ML methods are promising and 

encouraging, most reported ML models were trained on synthetic data tuned for specific problems 

thus the generalizability of these methods when applied to in vivo imaging requires further 

investigation. For further details on this topic, interested readers are referred to review papers 

published during 2020 – 2021 [105-109]. 

Table 3.2 Summary of Reviewed Papers on Machine learning based PAI Beamforming  

Problem 

Statement 

Paper Deep 

Learning 

Architecture 

Training 

Sample 

Size* 

Testing 

Sample 

Size 

Application 

 

 

Limited view 

artifact 

removal and 

adaptive 

beamforming 

 

 

 

 

 

Waibel et al. 

[88] 

U-Net 2880 720 Simulated vessels in 

transverse view 

Anas et al. 

[92] 

Dense CNN 3500 1500 Simulated vessels in 

transverse view, 

phantoms with plastic 

tubes and human hair, 

in vivo skin vasculature 

Vu et al. [89] WGAN-GP 11200 2800 Simulated disks and 

micro vessel data 

Kim et al. [42] U-Net with 

3-D channel 

data as input 

16000 1000 Simulated 

microvasculature, wire 
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Limited view 

artifact 

removal and 

adaptive 

beamforming 

phantom and in vivo 

human finger imaging 

Lan et al. [45] Y-Net  4700 400 Simulated 

microvasculature, in 

vitro pencil lead in 

chicken breast and in 

vivo human palm 

imaging 

Awasthi et al. 

[90] 

U-Net with 

scaled root 

mean 

squared loss 

1000 

(patch 

wise 

training 

with 

105000 

patches) 

100 Simulated phantoms 

(blood vessels, 

modified Derenzo, 

breast and PAT 

phantom), horse-hair 

phantom and in vivo rat-

brain data  

Reflection 

artifact 

removal 

Allman et al. 

[43] 

Deep CNN of 

VGG16 

architecture 

[101], a 

region 

proposal 

network 

[102] and 

Fast-RCNN 

[103] 

Sample 

size 

varied 

based on 

scenario 

(e.g., 

baseline 

training 

sample 

size 

13872) 

Sample 

size 

varied 

based 

on 

imaging 

scenario  

Simulation and 

phantom experiments 

Expanding 

penetration 

depth 

Johnstonbaugh 

et al. [44] 

Combination 

of U-Net and 

Res-Net 

[110] 

16240 4600 Simulated vessels in 

transverse view 

Low fluence 

PAI 

Hariri et al. 

[94] 

MWCNN 

[104] 

3442** 608*** Simulation, phantom 

and in vivo Methylene 

blue (MB) 

concentration imaging  

 *Sample is divided 80:20 for training and validation 

** Not explicitly mentioned  

*** Test sample size varied based on application 
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3.3 Quantitative Photoacoustic Imaging (qPAI) : Oxygen Saturation Estimation 

  Several reports on deriving quantitative information from photoacoustic imaging are 

described in the literature. For example, Hysi et al. [111] performed spectral analysis of PA radio-

frequency data to study tumor vasculature progression in vivo. Landa et al. [112] applied PAI for 

temperature monitoring in photothermal therapy. However, the most prominent and widespread 

application of qPAI is to determine the spatial distribution and concentrations of optical 

chromophores [26] present in tissue which in turn can provide valuable physiologically relevant 

information such as blood oxygen saturation in vivo. This section focuses on relevant papers 

discussing blood oxygen saturation estimation techniques. 

3.3.1 Linear spectral unmixing and spectral coloring artifact 

 To discuss blood oxygen saturation estimation using PAI, we assume that the only 

chromophores present in the ROI are oxy- and deoxy-hemoglobin ((HbO2 and HbR) respectively 

and re-represent equation (3.1) in terms of chromophore concentrations and known molar 

extinction coefficient as follows.  

 0
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( , ) ( , , , , ) ( ) ( )
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a s k k
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where, k  and ck denote the molar extinction coefficient and concentration of the kth chromophore. 

To estimate the chromophore concentration, PAI data collection is done using multiple 

wavelengths and can be represented in a matrix form as shown below. 
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Then, inversion of equation (3.4) will result in the concentration of oxy- and deoxy-hemoglobin 

present in the tissue as shown in the following equation. 

 

2

2

2

†

1 11 0 1

0

1
. . 0

( ) ( )( ) ( )

. .. . ..1

. .. . ..

( ) ( )1( )
0 . .

( )

HbO HbR

HbO

HbR

HbR N NHbO N

N

p

c

c

p

    

   



 
                                     

 

  (3.5) 

where, †  denotes the pseudoinverse. Equation (3.5)  shows that to estimate the absolute 

concentration of chromophores, we require information regarding the spatially variant wavelength-

dependent fluence distribution   which is not readily available and must be estimated from the 

data which is a challenging problem to solve. Furthermore, it is assumed that the initial pressure 

distributions are perfectly reconstructed from the measured data which is not valid in practice (e.g., 

limited view artifacts [113]). However, the most commonly used approach is to assume that   is 

constant over space and wavelength. Then, considering the reconstructed PA image is proportional 

to the absorption coefficient, the concentrations of HbO2 and HbR can be calculated using linear 

least squares method termed as linear spectral unmixing (LSU) [26]. Additionally, non-negativity 

constraints are also used to make sure physiologically relevant concentration values are extracted 

[114]. Furthermore, the impact of wavelength on the accuracy of LSU was also investigated and 

optimal wavelength selection algorithms have been reported [115, 116]. Finally, blood oxygen 

saturation (sO2) can be calculated as follows.  

 2

2

2 (%)
HbO

HbO HbR

c
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c c
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
  (3.6) 



62 
 

Even though the LSU method provides quick and easy estimates of sO2, it will result in highly 

inaccurate results especially deep into tissue as fluence compensation was typically not done [117] 

. For example, if we consider a blood vessel deep in tissue, then the PA signal from that vessel will 

not only depend on local a  but also on the local fluence which is turn is dependent on the a  and 

s  of the surrounding medium (nearby blood vessels, scattering tissues, skin, water) resulting in 

distortion of the spectrum of the measured PA signals. This distortion of the PA spectrum due to 

non-uniform fluence distribution is termed as spectral coloring [26, 117] or spectrum corruption 

[118] in the literature. For further details on spectral coloring effect, readers are referred to the 

following papers [26, 117]. In the next section, we review approaches reported in the literature to 

account for fluence distribution. 

3.3.2 Fluence corrected oxygen saturation estimation methods 

 Several approaches have been reported in the literature to solve the optical inverse problem 

by accounting for the non-uniform fluence distribution. Several published review papers have 

discussed these methods [26, 119, 120]. In this dissertation, we took the approach of reviewing the 

related literature by categorizing the proposed algorithms into five broad categories namely – (a) 

analytical fluence models for direct inversion, (b) iterative error minimization methods, (c) adjunct 

modality assisted methods, (d) data driven methods and (e) machine learning assisted approaches.  

3.3.2.1 Analytical Fluence Models for Direct Inversion 

 Model-based fluence correction approaches utilize analytical expressions or numerical 

methods to estimate the local optical fluence distribution using mathematical modelling of light 

propagation through tissue [26]. One such method was reported by Kim et al. [114] where a simple 

2-D skin-tissue model and Beer’s law was used to estimate local fluence as shown below. 
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where, Φ(λ,r) and Φ0(λ) denote the local fluence at position r and incident tissue-surface fluence 

measured using laser power meter respectively, |r| denotes distance between skin and pixel 

location (r), µeff  is the effective attenuation coefficient (wavelength and tissue dependent) = 

3 ( )a a s   . This model requires prior information regarding chromophore present in the tissue 

to estimate µeff. Authors used fluence compensated PA data and a minimum mean square error 

estimator with non-negativity constraint to obtain the final estimate of chromophore 

concentrations. Recently, Zhou et al. [121] employed the similar model in a comparative study of 

fluence correction algorithms. Guo et al. also utilized Beer’s law in a frequency domain method 

to derive absolute concentration of HbO2 and HBR under assumption of homogenous non 

scattering tissue [122]. Under these assumptions, the detected PA signal can be represented using 

the following equation. 
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  (3.8) 

where, c is the speed of sound. The proposed method calculates the spectral ratio between Fourier 

transform of detected PA signals collected at two wavelengths λ1 and λ2 as shown below. 
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  (3.9) 

The system, acoustic attenuation related, and PA efficiency terms get cancelled during the ratio 

calculation. Then, curve fitting was used to estimate the unknown terms in equation (3.9) – µa(λ1), 
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µa(λ2) and surface fluence ratio ( 0 1

0 2

( )

( )








). This method was used for optical-resolution 

photoacoustic microscopy (OR-PAM) therefore may not be a suitable choice for deep tissue sO2 

estimation [119]. In a recent study, Zhou et al. [121] employed the diffusion dipole model to 

represent optical transport through tissue and reported improvement over 1-D Beer’s law based 

modelling [114]. Monte Carlo (MC) modelling of optical transport through tissue has also been 

reported in the literature for fluence distribution estimation [123]. MC methods solve the radiative 

transfer equation (RTE) by simulating photon packets undergoing gradual absorption and random 

scattering during propagation through a medium based on the local optical properties [26, 124]. 

Bu et al. reported MC model based fluence compensation for a model based PA tomography 

reconstruction method [125]. Recently, Bulsink et al. used MC model and tissue structural 

information derived from ultrasound images to perform fluence correction for LED-based sO2 

estimation system [126]. Other reports on the use of analytical and MC model for fluence 

correction are described in the following papers [121, 127, 128]. All of these methods reported 

improvement over conventional linear spectral unmixing without fluence correction however their 

accuracy would be dependent on accurate modelling of the tissue geometry and unknown optical 

and acoustic properties thus making in vivo applicability challenging [119].  

3.3.2.2 Iterative Error Minimization Approaches 

 Iterative error minimization based methods first formulate a forward image generation 

model utilizing prior knowledge of underlying physics and assumed optical properties [26, 129]. 

Then, modelling parameters (e.g., total hemoglobin concentration, local fluence) are iteratively 

adjusted to minimize the discrepancy between the model generated and experimentally collected 

PA data. The model parameters minimizing the error are considered as the estimated parameters 
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for the experimentally collected image [129]. Laufer et al. reported on a two-step model-based 

inversion scheme where time independent diffusion approximation (DA) of the RTE was utilized 

to estimate the local fluence distribution [130]. For a specific simulation phantom design (a 

capillary bed), a mathematical forward model is used to estimate the expected PA signal using an 

acoustic propagation model with the input initial pressure distribution derived using DA-RTE. 

Then, an inversion step compares the measured PA and model estimated PA data to derive the 

final chromophore concentration. Naser et al. also proposed a similar local fluence correction 

method based on finite element methods (FEM) and SNR regularization [131]. The method 

assumes spatially-invariant, wavelength reduced scattering coefficient (µs
⸍) following power law 

as below. 
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  (3.10) 

where, regularization was imposed by setting coefficient a and b to be same for all voxels in an 

imaging frame. First, a forward model estimates local fluence numerically using diffusion 

approximation of RTE with tissue-surface fluence, µs
⸍ and initial hemoglobin concentrations as an 

input [132]. Normalized fluence values for all possible tissue-surface locations were generated by 

raster scanning a 1-mm diameter ball placed on the surface of gelatin stand-off to empirically 

determine the tissue-surface fluence. The optical inverse problem was solved using a recursive 

approach where a l1-norm objective function was evaluated using the measured PA data and model 

estimated PA data iteratively for different values of scattering coefficients (a and b). Local fluence 

estimates were also updated using forward model during the iteration. Final estimated relative 

hemoglobin concentrations correspond to the value of a and b where the l1-norm objective function 

had the global minimum. The optimization region was limited to a SNR mask generated by 
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comparing measured PA data to an experimentally determined noise distribution thus achieving 

SNR regularization.  

In a recent paper, Buchmann et al. proposed a MC model based iterative error minimization 

method for 3-D PA tomography [133]. Authors employed the MC model to estimate the local 

fluence in their forward model and designed a least squares error functional to compare the model 

generated results against experimental data. The proposed method assumed that scattering 

coefficient remained constant to ensure the validity of their inversion scheme.  However, the 

algorithm validation was limited to a tissue phantom. Additional reports on model-based inversion 

methods and iterative error minimization for PA fluence correction can be found here [134-137]. 

These set of algorithms demonstrated encouraging results in simulation experiments however 

translation of these methods to in vivo experimental setups still remain challenging for several 

reasons. For example, the accuracy of these methods largely depend on the accuracy of the forward 

model in formulating real image acquisition pathways which will be particularly difficult to 

achieve in an in vivo setup [129]. To address the issue of sensitivity to modelling geometry, a 

recent publication (January 2021) from Jeng et al. [113] proposed an interleaved photoacoustic 

and ultrasound system with diffusion dipole model based real-time fluence correction.  In contrast 

to conventional broad-beam illumination, authors proposed a fast-swept scanning approach by 

creating partial PA images through illuminating tissue with 20 narrow laser beams by sequentially 

firing 20 individual fibers integrated on the US transducer. To perform fluence correction, a 

diffusion dipole fluence model [23] for ith fiber, defined in terms of unknown effective attenuation 

co-efficient (µeff) and reduced scattering coefficient (µs
⸍) and denoted as ( )i r


 with r


 being the 

distance from the ith fiber to the pixel of interest was used. Note, ( )i r


was calculated for all fibers 

(Nf = 20) at a particular wavelength. Then, a non-linear optimization function is defined to estimate 
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µeff  and µs
⸍ by minimizing the error between measured PA signals ( )i r

 for each fiber (sampled 

from the partial PA images) and model prediction using following equation. 

 
, 1

( ( ) ( ))
ˆ ˆ, arg min

f

eff s

N

i i
eff s

i f

r r

N 

 
 

 
  

 
  (3.11) 

A brute-force search was used to solve equation (3.11). Authors validated the fluence correction 

method in phantom and ex vivo experiments [138] and demonstrated the application of the 

developed system in the context of PA based needle guidance. In this method, the working 

assumption is that the PA signal variation at a pixel location among partial PA images is due to 

the fluence variation only as light has to travel different distances to that location for different fiber 

locations. The fast sweep scanning method allowed the use of compact light weight lasers, 

potentially opening up the opportunities for successful clinical translation.  

3.3.2.3 Adjunct Modality Assisted Approaches  

 Adjunct modality assisted approaches combine additional independent tissue optical 

measurement systems (e.g., diffuse optical tomography (DOT) [139]) with a PAI system to 

perform fluence correction. For example, Daoudi et al [140] and Altaf et al. [141] utilized acousto-

optics to estimate fluence compensated PA signals for absolute blood oxygen saturation 

measurement.  Acousto-optics (AO) refers to a technique of modulation of optical phase at the 

focal point of a focused ultrasound beam [142]. The modulation is caused by local density variation 

induced by the focused US wave inside a medium [142]. Daoudi et al [140] and Altaf et al. [141] 

proposed a scheme where a point of interest (point 2) located in a turbid medium is illuminated 

sequentially from two points (point 1 and 3) on the tissue surface and related the AO measurement 

to PA measurements using the following equation. 
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where, µa,2 denotes the local absorption coefficient at point 2, 1,2p  and 1,3p  indicate detected PA 

signals originated from point 2 after sequential illumination from point 1 and 3 respectively. The 

AO signal is denoted as Pl,123 where illumination source was point 1, US beam was focused at 

point 2 and measurement was done at point 3. Pl,123 was calculated by quantifying speckle contrast 

changes [143]. By performing dual-wavelength imaging, simple linear spectral unmixing can be 

used to estimate the absolute sO2. The proposed method may be well suited for imaging ex-vivo 

samples but may not be applicable in vivo due to its specific requirement of dual-illumination and 

US focusing. This method might also increase acquisition times as the US focal point must be 

translated sequentially for AO at different depths for achieving deep tissue imaging. DOT 

enhanced fluence correction has also been proposed by Bauer et al [144]. DOT illuminates tissue 

with an array of light sources and utilizes a set of detectors to measure light leaving the tissue 

[145]. Then, a model of light propagation is utilized to estimate low resolution 2-D images of 

optical and scattering coefficients [145]. Authors utilized a hybrid PA-DOT [146] system and 

extracted the fluence information from the DOT system to correct the non-uniform fluence related 

errors in raw PA measurements [144]. Other reports on the use of DOT for fluence correction can 

be found here [139, 147, 148]. Additional examples of adjunct modality based fluence correction 

methods include utilization of multiple illumination sources [149]  and use of reference optical 

contrast agents [150]. These methods provide better performance compared to raw PA 

measurements for oxygen saturation measurement at increased system cost due to additional 

hardware requirements [121]. 
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3.3.2.4 Data driven Approaches 

 Data driven approaches attempt to reduce or eliminate apriori or assumed knowledge 

requirement of analytical or iterative error-minimization methods by performing fluence 

correction using derived information from the detected PA signals. For example, Tzoumas et al. 

reported eigenspectral multispectral optoacoustic tomography (eMSOT) with a hypothesis that any 

unknown fluence distribution can be represented using an affine function of few base spectra 

irrespective of depth or distribution of tissue optical properties [118]. To estimate the base spectra, 

principal component analysis (PCA) was applied on 1470 simulated optical fluence distributions 

considering uniform oxygenation states of hemoglobin. PCA resulted in four significant spectra – 

a mean fluence spectrum ΦM(λ) and three eigen spectra: Φ1(λ), Φ2(λ) and Φ3(λ) which were used 

to define the fluence spectrum of an arbitrary position r using following equation. 

 1 1 2 2 3 3( , ) ( , ) ( , ) ( , ) ( , )            M m m mr r r r r   (3.13) 

where, m1, m2 and m3 were Eigen fluence scaler parameters.  A constrained optimization problem 

was formulated to simultaneously estimate hemoglobin concentration and Eigen fluence 

parameters requiring data collection for at least 5 wavelengths. eMSOT demonstrated significant 

error reduction over linear spectral unmixing without fluence correction. However, 

generalizability of the algorithm in vivo would require training data synthesis using more 

complicated physiological models and diverse chromophore concentrations. Recently, Olefir et al. 

improved the robustness of eMSOT technique to noisy PA data using a Bayesian approach [151].    

 Dynamic variation of sO2 levels were utilized to account for non-uniform fluence 

distributions by Xia et al. [152]. The working assumption was that during single wavelength 

imaging under dynamic variation of sO2 levels, fluence does not vary if the sO2 change is small 

and localized.  Authors have validated this method in simulation, phantom and in vivo experiments 
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with controlled variation of oxygenation states. They also reported performance degradation under 

large change of sO2. Quantification of sO2 using with this method under tissue motion may also 

be challenging.  

 Fadhel et al. recently proposed a fluence correction method where fluence profiles of 

multiwavelength PA images are matched to the fluence at a reference wavelength [153, 154]. The 

proposed method first calculates the power spectral ratio between PA data collected at two 

different wavelengths as shown below.  
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where, ( , )E    is the power spectrum at wavelength λ,  ( )H   and ( )a   indicate the impact of 

system dependent and attenuation related parameters respectively. Authors observed that fluence 

impacts the frequency content of spectral ratio while absorption coefficient impacts the amplitude. 

Based on this observation, a frequency filter is designed to perform the fluence matching using the 

spectral slope estimated within the bandwidth of the transducer. 

3.3.2.5 Machine learning assisted oxygen saturation estimation 

 Machine learning assisted methods reported in literature utilize synthetic data to train a 

generic model to either quantify absolute sO2 %  or estimate local optical properties [129]. For 

example, classical random forest regression was applied for quantitative PAI by Kirchner et al. 

[155]. To circumvent the requirement of a large simulation dataset for training, they proposed the 

use of fluence contribution maps (FIC) to generate context images (CI) as input feature vectors for 

machine learning model training. For each voxel in an image, CI encodes information about the 

input PA signals and local fluence due to a particular scanning geometry derived from the FIC. 
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Therefore, a single simulation results in large number of feature vectors thus reducing the necessity 

of the simulation of a large number of training images. Their in silico results demonstrated better 

performance than conventional linear spectral unmixing.  Recently, several groups have reported 

on the use of deep learning for performing qPAI. A summary of the methods reviewed in this 

chapter is presented in Table 3.3. Cai et al. trained a residual U-net (Res U-net) [97] using 2048 

synthetic images generated using a diffusion model of light propagation [156] and tested the model 

in a simulation setting. Yang et al. also proposed a variant of an U-Net namely Deep Residual and 

Recurrent U-Net (DR2 U-Net)  [157] for solving a similar problem [158]. For both methods, 

training was done using simulated initial pressure distributions which is a major limitation because 

it assumes that the acoustic inverse problem is solved perfectly which is not the case in pre-clinical 

and clinical applications. However, the proposed methods provide superior performance when 

compared to the conventional LSU method. Chen at al. demonstrated the use of U-Net for 

recovering 2-D optical absorption coefficient maps using a single wavelength PA image as input 

[159]. Training data was sampled using both simulated and phantom experiments. The results 

showed excellent agreement with ground truth however the simplicity of the training and testing 

dataset make generalizability of this method unclear. Luke et al. proposed O-Net combining two 

U-Nets in parallel to achieve simultaneous vessel segmentation and sO2 % quantification [160]. 

In contrast to the studies reported above, Yang et al. took the acoustic inverse problem into account 

and trained an Encoder, Decoder and Aggregator Neural Network (EDA-Net) using PA images 

generated by optical (MC Model) and acoustic simulation (k-Wave [96]). Realistic training 

datasets were generated based on 3-D breast phantom. Bench et al. further closed the gap between 

simulation and in vivo conditions by generating training 3-D multi-wavelength PA images from 

CT images of human lung vessels in a multi-layered skin-tissue model [129]. Acoustic inversion 
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for linear array detectors were also incorporated thus training was done with PA image having 

limited-view artifacts. An convolutional encoder-decoder network with skip connection (EDS-

Net) was trained for simultaneous vessel segmentation and sO2 % quantification like O-Net [129]. 

The methods discussed above trained the deep learning models based on spatial information of 

fluence from images [108]. In contrast, Grohl et al. proposed an alternative approach for sO2 % 

quantification by training models using multi-spectral data per pixel [161]. The proposed method 

was termed Learned Spectral Decoloring where they trained a fully connected feed-forward neural 

network using simulated initial pressure distributions. Their work reported the use of deep learning 

assisted sO2 % quantification in vivo for the first time. The key idea behind the method was the 

generation of training datasets that closely resemble phantom and in vivo situations. Authors made 

their data and code open source which can be found here: 

https://zenodo.org/record/4304359#.YIePhrVKg54. Other reports on machine learning assisted  

sO2 % quantification can be found here [162, 163]. Even though results of  machine learning 

assisted  sO2 % quantification is very encouraging in simulation studies, broader validation studies 

in vitro or in vivo are still required to understand the generalizability of these methods [113]. 

Further details can be found in the review articles published during 2020 – 2021 [105-109].  
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Table 3.3 Summary of Papers on Deep learning assisted sO2 (%) quantification 

Paper Deep Learning 

Architecture 

Training 

Sample Size 

Testing 

Sample Size 

Application 

Cai et al.  

[156] 

Res U-Net 2048 256 In silico sO2% estimation and 

contrast agent concentration 

quantification 

Yang et al. 

[158] 

DR2 U-Net 2560 320 Simulated artery and veins  

Chen et al. 

[159] 

U-Net 2890 361 Simulation and phantom 

Luke et al. 

[160] 

O-Net 3000 1000 In silico sO2% estimation and 

vessel segmentation 

Yang et al. 

[164]  

EDA-Net 4880 1440 Simulated breast phantom 

Bench et 

al. 

[129] 

EDS-Net 500 40 Simulated vessels 

Grohl et al. 

[161] 

Feed-forward 

neural network 

75% of total 

dataset* 

20 % of total 

dataset 

In silico, phantom and in vivo 

(porcine brain and human 

forearm data) 

*Total dataset size was not explicitly mentioned in the paper 
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Chapter 4 

Bayesian Regularization for Cardiac Elastography  

 This chapter1 focuses on examining the feasibility of applying Bayesian regularization with 

a hierarchical block matching algorithm for cardiac elastography [1-4]. Cardiac elastography (CE)  

is an ultrasound radio-frequency (RF) echo-signal based speckle tracking technique for cardiac 

strain imaging (CSI). Bayesian regularization has been previously implemented by our group [5] 

for a hierarchical block matching algorithm for carotid elastography [6]. Application of the 

proposed method provided clinically significant results for in vivo plaque imaging [7-9]. Our group 

previously reported the use of a hierarchical block matching algorithm for CE [10-13]. However, 

Bayesian regularization was not applied and validated for CE.  

 This chapter reports on three main contributions. First, a complete strain estimation 

pipeline for incorporating Bayesian regularization-based hierarchical block matching algorithm, 

Lagrangian description of motion and myocardial polar strain estimation is presented. Second, we 

present results with a canine cardiac deformation model [12] and an in vivo healthy murine model 

to evaluate the performance of the hierarchical block matching algorithm with and without 

Bayesian regularization. Rigorous quantitative analysis demonstrates that Bayesian regularization 

improves the quality of strain imaging for CE. Third, we present results from an initial comparison 

study of the proposed strain estimation pipeline against a commercially available CSI software to 

demonstrate its in vivo applicability.  

 
1 R. Al Mukaddim, N. H. Meshram, C. C. Mitchell, and T. Varghese, “Hierarchical Motion Estimation With Bayesian 
Regularization in Cardiac Elastography: Simulation and in vivo Validation.” IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, vol. 66, no. 11, pp. 1708 – 1722 (2019) PMCID: PMC6855404 
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4.1 Cardiac Strain Estimation Framework with Bayesian Regularized Hierarchical 
Motion Estimation 

4.1.1 Inter-frame Displacement Estimation 

 In this study, a multi-level block matching algorithm with Bayesian regularization [5] was 

used for displacement tracking of both simulation and in vivo RF data. Inter-frame displacement 

estimation was performed over a cardiac cycle starting from end-diastolic (ED) phase. We use the 

term pre-deformation and post-deformation image to describe the current and the next frame used 

for inter-frame displacement estimation, respectively. Initially, both pre-deformation and post-

deformation RF data were up-sampled in the lateral direction (perpendicular to beam propagation 

direction) by a factor of two using a windowed Sinc interpolator to improve lateral displacement 

estimates [14-16]. Following upsampling, a coarse to fine pyramid with three levels were 

constructed for performing an iterative coarse-to-fine motion estimation [5, 11, 13, 17, 18]. 

Pyramid construction was performed by applying decimation factors presented in Table 4.1 to 

original RF data with Gaussian smoothening having a variance of 2( )
2

fd
 where fd  denotes the 

decimation factor. 

 Following pyramid construction, pre and post-deformation data were divided into a 

rectangular grid of 2-D kernels. 2-D NCC [18] calculation was performed to compare a kernel 

between the pre to post-deformation RF frame. NCC calculation was restricted within an 

empirically chosen search region in the post-deformation frame. This process results in a 2-D 

similarity metric for each estimation location of the rectangular grid. Parameters employed for 2-

D NCC are shown in Table 4.1. Progressively decreasing block sizes were used to improve spatial 

resolution of the estimated displacement vectors. 
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Table 4.1 Motion Estimation Algorithm Processing Parameters 

Parameter Value 

Hierarchical Block-matching parameters  

Levels in multi-resolution pyramid 3 

Lateral interpolation factor 2 

Axial decimation factors  [3, 2, 1] 

Kernel overlaps [Axial, Lateral*] [10%, 90%] 

Lateral decimation factors  [2, 1, 1] 

Axial kernel length (Wavelengths) [8λ, 3λ, 1λ] 

Lateral kernel length (A-lines) [15, 12, 10] 

Axial search range (Wavelengths) [3λ, 2λ, 1λ] 

Lateral search range (A-lines) [5, 5, 3] 

Strain filtering threshold  

[axial strain, lateral strain] 

[2.5%, 2.5%] 

  

Bayesian regularization specific parameters  

Axial strain regularization sigma  0.150 

Lateral strain regularization sigma 0.075 

Number of iterations** 1/3 

*Lateral overlap of 90% corresponds to lateral window shift of 3 A-lines 

**Number of iterations was chosen empirically based on the application. For FEA simulation 

study, one iteration provided good results while in vivo study required three iterations 

 

 To improve motion estimation accuracy, each similarity metric was regularized using a 

recursive Bayesian regularization algorithm [5, 6]. In brief, the algorithm tries to remove noisy 

NCC estimates from a given similarity metric using guidance from left, right, top and bottom 

neighbors of the similarity matrices. This is achieved by formulating regularization as a maximum 

a posteriori estimation problem in a Bayesian framework. The algorithm requires a parameter 

referred to as strain regularization sigma (SRS), which is related to the maximum expected strain 

in both axial and lateral directions. SRS parameter values for axial and lateral directions were 

chosen empirically and listed in Table 4.1. This process results in regularized similarity metrics, 

which were used in the next stage to generate displacement vectors.  
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 For subsample displacement estimation, parabolic interpolation was used for level 1 to 

level 2 while the final level employed Sinc interpolation to achieve unbiased estimation [6, 15]. 

Subsample estimation using 2-D windowed Sinc interpolation was performed using a multilevel 

global peak finder scheme [19]. A central-difference gradient was used to estimate strain from 

corresponding displacement vectors for replacing erroneous displacement estimates due to peak-

hopping errors. Inter frame displacement vectors generating strain magnitude > 2.5% were 

replaced using linear interpolation from neighboring displacement estimates with strain 

magnitudes less than 2.5%. This is done to inhibit the propagation of peak-hopping errors which 

present as irrationally high strains [6]. After obtaining displacement vectors and strains at the 

current level, signal re-correlation using matching block alignment and local temporal stretching 

is performed for the next level. Signal alignment and stretching improves displacement and strain 

accuracy by reducing signal decorrelation within the matching block [20-23].  

 To achieve matching block alignment in our multi-level framework, estimated 

displacement vectors at each level are used to translate the center of post-deformation matching 

block in the next higher level. Next, in the align and stretch stage a 9 point least squares fit is used 

to estimate strain. Using the estimated strain, we stretch the post-deformation block of next level 

using a 2-D windowed Sinc interpolation for resampling and using a scale factor: 1i iiS e   where 

iie  denotes the normal strain in that direction. This estimation process is repeated until we reach 

the final level, i.e., level three in this study. At the final level, we perform a 2-D median filtering 

of estimated displacement vectors with a [5 pixels × 5 pixels] window to remove any outliers. The 

displacement estimation procedure is summarized in the flowchart in Figure 4.1. 
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Figure 4.1 Flowchart depicting the various steps involved in the multi-level block matching displacement 

estimation algorithm with Bayesian regularization.  The dotted line indicates that the estimated 

displacement and strain from the current level guides the search region initialization in the next level. 

4.1.2 Lagrangian Description of Motion for Displacement and Polar Strain 
Estimation 

 To determine cumulative displacements and strains occurring over a cardiac cycle, inter-

frame displacements are integrated over time based on a Lagrangian description of motion. This 

accumulation process is not trivial as the myocardium changes its location over the cardiac cycle. 

An ED frame is considered to be the reference frame. Location of each pixel in this frame is defined 

as the reference state. For every other frame, these locations are updated by translation of axial 
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and lateral coordinates of pixel locations using the estimated inter-frame axial and lateral 

displacements respectively. Displacement values derived from updated locations are registered 

back to reference initial location in the ED frame and accumulated. Pixel registration ensures that 

the cumulative displacement represents motion along the same tissue geometry [24]. In this way, 

incremental inter-frame displacements are integrated over a cardiac cycle to obtain cumulative 

displacement over the cycle. For each individual point, baseline drift is compensated by 

performing a linear de-trending of temporal displacement and strain curves with the constraint that 

curves should return to zero after a cardiac cycle [25].  

 We perform cumulated strain estimation using the resulting cumulated displacement maps.  

First, the displacement gradient tensor, G is calculated, defined as: 

 

  
  
 
  
 
  

x x

y y

u u

x y

u u

x y

G   (4.1) 

where, ux and uy denotes estimated displacement in lateral and axial direction respectively. G is 

obtained by differentiating lateral and axial displacement maps using least squares estimator [26] 

with 0.2 mm and 1 mm kernels respectively. To account for the large myocardial deformation 

(~30-40%) that occurs from ED to end-systole (ES), an in-plane Lagrangian finite strain tensor, E 

[27-29] is used. E is formulated using displacement gradient tensor, G as follows [30]: 

 
1

( )
2

  T TE G G G G   (4.2) 

The diagonal components of E denoted by exx and eyy are the cumulative lateral and axial strains 

respectively.   
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 The strain measure, E is coordinate dependent as it involves spatial derivatives in the 

orthogonal coordinate system used for ultrasound imaging [27, 29]. This poses a challenge in 

interpretation of these strains in a cardiac coordinate system [31]. In the cardiac coordinate system 

for apical and parasternal long axis views, we are interested in strains along radial and longitudinal 

directions, which are defined as follows [28, 31]:  

 Radial direction is perpendicular to the endocardial border and provides positive radial 

strain during contraction. Positive and negative radial strain illustrates thickening and 

thinning of myocardial walls respectively [32]. 

 Longitudinal direction is tangential to the endocardial border and provides negative 

longitudinal strain during contraction. Positive and negative longitudinal strain illustrates 

lengthening and shortening of the ventricle respectively [32].  

 To be consistent with the interpretation of strains in the cardiac coordinate system, radial 

and longitudinal strains are derived from E using the coordinate transformation [27]: 

 rl TE MEM   (4.3) 

where, M is a rotation matrix defined as:  

 
cos sin

sin cos

 

 

 
  
 

M   (4.4) 

where, the superscript rl denotes strain in radial and longitudinal direction respectively in the 

cardiac coordinate system. The diagonal components of Erl denoted by err and ell are radial and 

longitudinal strains respectively. The angle θ used in equation (4.4) is calculated locally along a 

sampling grid encompassing the entire myocardium. The heart is segmented manually in the ED 

frame using the B-mode image. This process results in a binary label image. We generate a mesh 
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of points using this binary label image containing 600 points longitudinally (tangentially) and 40 

points radially to the myocardial wall resulting into 24,000 points of interest in the entire 

myocardium. For a sample point with coordinate value (xn, yn), the angle θ was calculated by 

considering a neighborhood of ten sample points around it along the longitudinal direction and 

using the following equation for angle of a normal to a line. 

 1 5 5

5 5

tan n n

n n

x x

y y
   

 

 
  

 
  (4.5) 

This angle denotes the radial direction for the point located at (xn,yn). 

4.2 Experimental Protocol for Validating Proposed CSI Framework 

4.2.1 Finite Element Analysis (FEA) Model for Cardiac Elastography 

 A 3-D FEA model of a healthy canine heart [12] was employed in this study to validate the 

performance of the proposed strain estimation framework. The original 3-D deformation model of 

canine heart was developed by the Cardiac Mechanics Research Group at the University of 

California San Diego (UCSD) [33]. This experimentally validated model allowed simulation of 

the complex left ventricular mechanics accurately providing a realistic validation setup for cardiac 

motion estimation algorithms [27, 34].  The original model contained movement of 1296 points 

located in the canine heart wall acquired at a temporal sampling rate of 250 Hz. Each time point 

of these movements will correspond to one frame of RF data in the simulation study. These 

positional deformation information were adapted for ultrasound simulation by a reconstructing a 

3-D continuous smooth surface of the canine heart model [12]. Finally, to ensure Rayleigh 

scattering, over 1 × 106 scatterers were randomly positioned in the myocardium of the cardiac 

model. From this 3-D model, a 2-D plane was selected to simulate a parasternal long axis (PLAX) 
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ultrasonic imaging view. To obtain independent strain estimation we utilized the stochastic nature 

of scatterer generation, generating five independent speckle realizations of the FEA simulation.   

 A frequency domain ultrasound simulation program [35] was utilized to generate the RF 

data that incorporated realistic 3-D ultrasound propagation on FEA generated cardiac deformations 

seeded with a randomly generated scatterer distribution. This simulation approach is used due to 

its greater flexibility in modelling frequency-dependent ultrasonic imaging properties such as 

attenuation, dispersion and backscattering over time domain simulation models. The 1-D linear 

array modeled, consisted of 0.2×10 mm elements with a pitch of 0.2 mm. Conventional Delay and 

Sum (DAS) beamforming with 128 consecutive elements were utilized to form each A-line. The 

incident pulse was modeled to be Gaussian shaped with 8 MHz center frequency and 80% 

bandwidth. The speed of sound and attenuation coefficient were set to 1540 m/s and 0.5 dB/cm-

MHz respectively. Each simulated ultrasound image had an 80×100 mm2 field of view. The 

ultrasound simulation program related parameters are summarized in Table 4.2. Three regions of 

interests (ROIs) were placed in anterior, apical and posterior walls of myocardium to quantify the 

simulated sonographic signal-to-noise ratio (SNRs). SNRs calculation was performed using a 

frequency domain approach described in [36]. The calculated SNRs for over five scatterer 

realizations at end-systole frame were 30.38 ± 5.026 dB, 29.34 ± 5.20 dB and 33.76 dB ± 7.64 dB 

respectively for anterior, apical and posterior wall. Simulation of electronic noise was not 

performed in this study. 

 

 

 



99 
 

Table 4.2 FEA Simulation Program Parameters 

Parameter Value 

Probe specific parameters 

Transducer type 1-D linear array 

Number of active elements 128 

Single element geometry [width × length] [0.2 mm × 10 mm] 

Pitch 0.2 mm 

Aperture size 25.6 mm 

Focusing mode Single  

Transmit focus location 40 mm 

F-number (Dynamic receive focusing) 1 

Number of A-lines 500 

  

Parameters for RF signal reconstruction from  

scatter frequency response 

Incident pulse  Gaussian-shaped 

Center frequency 8 MHz 

Pulse bandwidth 80% 

Attenuation coefficient  0.5 dB/cm-MHz 

Assumed speed of sound 1540.0 m/s 

Beamforming method Delay and sum  

RF Sampling frequency 78.84 MHz 

Lateral sampling spacing 0.2 mm 

Frame rate of acquisition 250 Hz 

 

4.2.2 In vivo Experimental Protocol and Image Acquisition 

 To validate in vivo use of the proposed framework, a 12 weeks old male BALB/CJ mouse 

obtained from Jackson Labs (ME, USA) was scanned using a Vevo 2100 LAZR imaging system 

(FUJIFILM VisualSonics, Inc., Toronto, Canada). All in vivo procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin-Madison. 

During the imaging session, the mouse was anesthetized using 1.5% isoflurane with a constant 

flow of oxygen. Hair was removed from the chest region using depilatory cream. Mouse was 

placed in the supine position on a heated imaging platform with continuous monitoring of 
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physiological parameters. High frequency ultrasound imaging was performed using a MS 550D 

transducer (broadband frequency range of 22– 55 MHz) operating at a center frequency of 40 

MHz. 2-D RF data were collected in parasternal long axis (PLAX) view.  The field of view was 

11×12.08 mm2 with a sampling frequency of 512 MHz resulting into acquisition of 220 A-lines. 

Single transmit focusing with the focal depth set at 7 mm from the face of the transducer was used. 

Imaging frame rate was 235 Hz. 2-D gain (25dB) and time gain compensation (TGC) were adjusted 

carefully to acquire RF data with optimal signal-to-noise ratio (SNR) for CE. We acquired 1000 

frames per imaging plane, which was stored for off-line analysis. 

 

Figure 4.2 Definition of cardiac segments for studying regional variation in displacement and strain. Cardiac 

segments defined in the PLAX view are: (1) Anterior Base, (2) Anterior Mid, (3) Anterior Apex, (4) 

Posterior Apex, (5) Posterior Mid and (6) Posterior Base.   

4.2.3 Myocardial Region Definition for Segmental Analysis   

 In this study, we performed segmental analysis of estimated displacement and strains over 

the entire myocardial wall using American Heart Association (AHA) recommended standard six 

segment model (employed for global 16-segment model) [37]. Figure 4.2 shows the definition of 

segments employed for the PLAX view. Segmental analysis was achieved easily as we have 

already warped the cumulative displacement and strain maps for the ED geometry during 
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accumulation. Six segments were defined such that all segments have equal length in the ED frame. 

All the results reported in this work denote displacement and strain measures averaged over the 

entire cardiac walls on a segment basis.  

4.2.4 Comparative Performance Analysis   

 We evaluated the performance of our hierarchical block matching algorithm using NCC 

with and without Bayesian regularization. Displacement and strain estimation accuracy using the 

FEA simulation model was compared over n=5 randomly generated independent collection of 

scatterers. True inter-frame displacement estimates were derived from the FEA canine heart model 

and integrated over time to obtain cumulative true displacement and strain. True and estimated 

temporal displacement and strain curves for six segments were extracted and compared 

qualitatively for both approaches. Radial and longitudinal strains were compared in terms of two 

error metrics, namely - strain error (%) at ES and total temporal relative (TTR) strain error (%).  

Strain error (%) at ES [38] and total temporal relative strain error (%) were computed using the 

following equations: 

Strain Error (%) at ES = 

 1
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where ES and TS denote estimated and true strain respectively, ES (t) and TS (t) denote average 

of estimated and true strain values respectively at time t, P is the number of points in the segment 

of interest and T is the number of frames in the cardiac cycle of interest. Strain error (%) at ES 

quantified the deviation of estimated from ideal FEA strain image at ES while total temporal 

relative strain error (%) quantified the deviation of estimated from ideal temporal strain curve. 

Statistical significance was evaluated using paired t-test with p values less than 0.001. 

 To demonstrate in vivo feasibility, our proposed approach was compared to a commercially 

available strain estimation software, VevoStrain on the Vevo 2100 LAZR imaging system 

(FUJIFILM VisualSonics, Inc., Toronto, Canada) for a healthy murine model. Suitable B-mode 

cine loop containing a cardiac cycle of deformation was loaded into VevoStrain for analysis based 

on clear visualization of myocardial borders and absence of respiratory artifacts. After endocardial 

and epicardial borders were delineated in the ED frame, the software automatically tracks 

myocardial wall deformations using speckle tracking echocardiography. Manual correction of wall 

tracings was performed to improve quality of tracking and obtain segmental strain curves. 

VevoStrain reports longitudinal strain curves for epicardial and endocardial wall separately and 

radial strain curves for the entire myocardial wall. Therefore, endo and epicardial strain curves 

were averaged along the longitudinal direction. Finally, global radial and longitudinal strain curves 

were calculated by averaging segmental strain curves for comparison to our approach on the same 

cine loop. For the in vivo study, the elastographic SNR (SNRe) at ES was computed as: 

 e 10SNR  [in decibels] = 20log




 
 
 

  (4.8) 

where, µ and σ denote the mean and standard deviation of strain (radial/longitudinal) image 

respectively at ES.  
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4.3 Findings from FEA Simulation Studies 

 Axial displacement maps at ES from FEA model, along with those estimated using our 

multi-level NCC without and with Bayesian regularization are shown in Figure 4.3 (a) – (c) 

respectively. We refer to the approach without regularization as “NCC” and approach with 

regularization as “Bayesian" for simplicity in the rest of this chapter. Positive axial displacements 

shown in red color shades indicate motion away from the transducer and negative axial 

displacements in blue color shades indicate motion towards the transducer. Figure 4.3 (b) and (c), 

we observe good agreement between FEA and estimated axial displacements with both methods. 

Note that in the apical region indicated using arrows in Figure 4.3 (b) and (c), we observe a 

smoother transition from positive to negative displacement values with regularization when 

compared to NCC without regularization. Figure 4.3 (d) – (f) represent lateral displacement maps 

at ES for FEA, NCC and Bayesian respectively. Positive lateral displacements in red color indicate 

motion to the right and negative lateral displacements in blue color indicate motion to the left. In 

the displacement transition regions (shown using arrows in Figure 4.3 (e) and (f)), application of 

Bayesian regularization provided smoother transitions when compared to the NCC approach. 

Moreover, in the unregularized lateral displacement image (Figure 4.3 (e)), we observe 

heterogeneity in estimated lateral displacement vectors in the apical region (seen as white bands 

and indicated using an arrow) and not seen in the FEA result in Figure 4.3 (d).  These artifacts 

were also absent with Bayesian regularization, which provides smooth apical lateral displacement 

estimation. 

Figure 4.4 summarizes the comparison between ES radial and longitudinal strains between 

the FEA model and estimation results. ES radial strain images from FEA, NCC and Bayesian are 

shown in Figure 4.4 (a) – (c) respectively. Radial thickening of the myocardial wall was observed 
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from positive radial strain at ES in the FEA model. NCC provides reliable radial strain estimates 

in anterior and posterior walls as shown in Figure 4.4 (b). However erroneous negative radial strain 

values were observed in significant portions of the apical region (indicated using arrows). On the 

other hand, the radial strain image with Bayesian regularization (Figure 4.4 (d)) provided reliable 

strain estimation around the myocardium with significantly lower number of negative radial strain 

values in the apical region when compared to NCC. Figure 4.4 (d) – (f) represent longitudinal 

strain images for FEA, NCC and Bayesian respectively. Myocardial wall shortening was observed 

from negative longitudinal strain values in FEA model. Like radial strain, NCC provides reliable 

longitudinal strain estimation in the anterior and posterior walls. However, the method was prone 

to errors in the apical region showing positive longitudinal strain values in significant portions of 

the apex (indicated using arrows). In Figure 4.4 (f), note the significant improvement in strain 

estimation through incorporation of Bayesian regularization in the longitudinal direction. Regions 

with highest improvement after regularization are indicated using arrows in Figure 4.4 (d) and (f). 

Overall, regularized radial and longitudinal strain images showed better qualitative agreement with 

FEA results. 

Figure 4.5 (a) presents the segmental and global radial strain error (%) and Figure 4.5 (b) 

summarizes the results for longitudinal strain error (%). A logarithmic scale was used for the y-

axes in both figures. Application of Bayesian regularization showed statistically significant error 

reduction of 48.88% (p<0.001) globally with highest improvements in anterior and apical regions 

(see segments 1-4 in Figure 4.5 (a)). Benefit of Bayesian regularization was also evident in 

longitudinal strain error (%) results (Figure 4.5 (b)) with statistically significant global error 

reduction of 50.16% (p<0.001). For longitudinal strain, highest reductions in error percentages 
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were observed in anterior mid and apical regions (see segments 2-4 in Figure 4.5 (b)). Table 4.3 

summarizes quantitative comparison results between NCC and Bayesian at ES. 

 

 

Figure 4.3 End-systole accumulated axial displacement maps from (a) FEA model, (b) NCC and (c) 

Bayesian. ES accumulated lateral displacement maps from (d) FEA model, (e) NCC and (f) 

Bayesian. NCC = no regularization. Bayesian = with regularization.   
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Figure 4.4  End-systole radial strain images from (a) FEA model, (b) NCC and (c) Bayesian. End-systole 

longitudinal strain images from (d) FEA model, (e) NCC and (f) Bayesian. NCC = no regularization. 

Bayesian = with regularization.   
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Figure 4.5 Segmental and global strain errors (%) at end-systole. (a) ES radial strain error (%), (b) ES 

longitudinal strain error (%).  

Table 4.3 Comparison of End-Systole Strain Error (%) between NCC and Bayesian 

 Radial Strain Error (%) * Longitudinal Strain Error (%) ** 

NCC Bayesian NCC Bayesian 

Segment 1 54.63 ± 3.33 38.51 ± 0.86 24.20 ± 2.09 26.66 ± 1.76 

Segment 2 65.36 ± 8.57 28.87 ± 1.88 55.19 ± 15.86 31.22 ± 0.98 

Segment 3 217.90 ± 39.97 67.35 ± 5.39 182.53 ± 38.48 56.18 ± 3.39 

Segment 4 367.03 ± 28.97 197.45 ± 6.63 193.51 ± 32.16 64.29 ± 6.10 

Segment 5 58.40 ± 5.93 48.90 ± 8.79 37.96 ± 5.88 43.60 ± 4.67 

Segment 6 39.28 ± 4.97 36.16 ± 2.88 24.25 ± 3.53 23.90 ± 3.42 

Global 98.57 ± 8.50 50.39 ± 1.55 77.92 ± 8.77 38.83 ± 2.57 

*Segments 5 and 6 did not show statistically significant difference with p<0.001.  

**Segments 1, 5 and 6 did not show statistically significant difference with p<0.001.  

 

Figure 4.6 and Figure 4.7 summarize results from comparative segmental analysis between 

NCC and Bayesian for radial and longitudinal strain estimations respectively. Figure 4.6 (a)-(f) 

represent FEA and estimated radial strain curves while Figure 4.7 (a)-(f) represent longitudinal 

strain curves for the six segments. FEA radial strain curves (shown in black) demonstrated positive 

peak systolic strains in all six segments indicating cumulative radial thickening over a cardiac 

cycle. Strain curves estimated using Bayesian regularization (shown in blue) exhibit good 
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agreement with FEA results in all six segments with positive peak systolic strains and very small 

standard deviations over realizations. On the contrary, unregularized NCC strain curves (shown in 

red) showed good agreement with FEA results in the posterior and anterior basal regions (segments 

1, 5 and 6) as shown in Figure 4.6 (a), (e) and (f). But NCC strain curves significantly deviated 

from FEA results for the anterior mid and apical regions (segments 2, 3 and 4) with negative peak 

systolic strain at segment 4. A similar trend in the estimation performance was observed for the 

longitudinal strain curves. Good qualitative agreements between FEA and Bayesian strain curves 

were seen in all segments. NCC produced good strain curves in posterior and anterior basal regions 

(segments 1, 5 and 6) as shown in Figure 4.7 (a), (e) and (f) but significantly deviated from FEA 

results for the anterior mid and apical regions (segments 2, 3 and 4). NCC radial and longitudinal 

strain curves also exhibited higher standard deviations over scatterer realizations when compared 

to regularized curves. Overall, Bayesian regularization provided better quality strain curves in all 

six segments and showed very good qualitative agreement with FEA results when compared to the 

unregularized strain curves utilizing only NCC processing.  

Figure 4.8 (a) presents the segmental and global TTR radial strain error (%) results and 

Figure 4.8 (b) summarizes the TTR longitudinal strain error (%). Statistically significant TTR 

radial strain error reduction of 78.38 % (p<0.001) globally was observed with highest 

improvements in anterior mid and apical regions (see segments 2-4 in Figure 4.8 (a)) after 

incorporating Bayesian regularization. Benefits of Bayesian regularization was also clearly evident 

in TTR longitudinal strain error (%) results (Figure 4.8 (b)) with statistically significant global 

error reduction of 86.67 % (p<0.001). For longitudinal strain, highest reductions in error 

percentages were observed in the apical region (see segments 3 and 4). Although, we observe a 

2.17 × increased error for the anterior basal segment (segment 1) with Bayesian regularization, 
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this reduction of performance was negligible when compared to improvements in the apical region 

where NCC has 15.44 and 12.36 × TTR longitudinal strain error (%) in the anterior apical and 

posterior apical segments respectively. Table 4.4 summarizes the quantitative comparison results 

between NCC and Bayesian estimated strain curves.  

 

Figure 4.6 Regional radial strain curves from (a) Anterior Base, (b) Anterior Mid, (c) Anterior Apex, (d) 

Posterior Apex, (e) Posterior Mid and (f) Posterior Base segments respectively. These segments 

are referred as segments 1-6 respectively in the discussion. 
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Figure 4.7 Regional longitudinal strain curves from (a) Anterior Base, (b) Anterior Mid, (c) Anterior Apex, 

(d) Posterior Apex, (e) Posterior Mid and (f) Posterior Base segments respectively.  
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Figure 4.8 Segmental and global TTR strain error (%) results. (a) Temporal radial strain error (%), (b) 

Temporal longitudinal strain error (%). 

Table 4.4 Comparison of Total temporal relative error (TTR %) between NCC and Bayesian 

 TTR Radial Strain Error (%) * TTR Longitudinal Strain Error (%) ** 

 NCC Bayesian NCC Bayesian 

Segment 1 17.40 ± 4.97 11.81 ± 1.63 5.79 ± 1.22 12.62 ± 1.87 

Segment 2 19.48 ± 5.69 6.09 ± 2.85 13.72 ± 8.02 19.28 ± 3.69 

Segment 3 199.06 ± 63.33 37.23 ± 7.07 325.05 ± 153.76 21.05 ± 5.17 

Segment 4 376.90 ± 156.96 55.68 ± 20.35 545.35 ± 144.52 44.11 ± 15.80 

Segment 5 10.16 ± 9.02 11.74 ± 3.32 9.81 ± 2.71 10.45 ± 1.05 

Segment 6 21.33 ± 14.03 29.62 ± 3.41 16.47 ± 0.72 14.58 ± 0.88 

Global 107.39 ± 19.08 25.36 ± 5.93 152.70 ± 29.69 20.35 ± 3.77 

*Segments 5 and 6 did not show statistically significant difference with p<0.001.  

**Segments 2,5 and 6 did not show statistically significant difference with p<0.001.  

 

4.4 Experimental Findings from the in vivo Murine Model 

Figure 4.9 summarizes the displacement estimation results over a cardiac cycle. Figure 4.9 

(a) - (c) show axial displacement maps of the entire myocardium at ES estimated using NCC, and 

for one iteration and three iterations of Bayesian regularization respectively. A visual analysis of 

the results shows that the estimated axial displacement vectors were consistent with the expected 
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inward motion of myocardium during contraction. No qualitative difference in estimated axial 

displacement maps was observed for NCC and Bayesian regularized images. Figure 4.9 (d) - (f) 

illustrate lateral displacement maps at ES estimated using NCC, one iteration and three iterations 

of Bayesian respectively. All approaches provided displacement estimations consistent with the 

inward myocardial deformation during systole. However, application of Bayesian regularization 

(both one and three iterations) resulted in higher lateral motion estimation at the posterior wall 

(Figure 4.9 (e) and (f)) when compared to NCC.  

In Figure 4.10, we present strain estimation results for the same mouse over a cardiac cycle. 

Figure 4.10 (a) - (c) show radial strain images of the entire myocardium at ES estimated using 

NCC, and one and three iterations of Bayesian regularization respectively. Radial wall thickening 

was observed in the estimated radial strain results with all the methods. But the NCC strain image 

exhibited some erroneous negative strain values in the basal segment of the posterior wall. Both 

one and three iterations of Bayesian regularization were able to correct these erroneous radial strain 

estimates shown using arrows in Figure 4.10 (b) and (c). In general, better quality radial strain 

images were obtained using both one and three iterations of regularization (SNRe = 6.89 and 4.76 

dB respectively) compared to the NCC only strain image (SNRe = 3.83 dB). 

Figure 4.10 (d) - (f) show longitudinal strain images of the entire myocardium at ES 

estimated using NCC without regularization, along with one iteration and three iterations of 

Bayesian regularization respectively. Longitudinal strain images exhibit ventricular shortening at 

ES based on negative strain values. NCC provided incorrect positive longitudinal strain values in 

significant portions of anterior wall and basal segment of posterior wall indicated with yellow 

arrows in Figure 4.10 (c). With one iteration of Bayesian regularization, improvements in the 

posterior and apical walls were observed but the anterior wall still suffered from erroneous positive 
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strain values (shown with yellow arrows) as seen in Figure 4.10 (e). Significant improvement of 

longitudinal strain estimation was achieved with three iterations of Bayesian regularization (Figure 

4.10 (f)). Positive strain estimates in the anterior wall observed with only NCC and one iteration 

of regularization were corrected using three iterations of regularization. Notable improvement was 

also seen in the basal segment of the posterior wall with more uniform negative strain values. 

Highest ES SNRe was achieved with three iterations (SNRe = 4.58 dB) compared to one iteration 

and no regularization (SNRe = 1.62 dB and 2.29 dB respectively). A small portion of apical wall 

shown in red arrows in Figure 4.10 (e) and (f) indicated positive strain values in the regularized 

strain images when compared to the NCC image shown in Figure 4.10 (c). However, this effect 

was negligible when compared to the improvement achieved by utilizing Bayesian regularization.  

 Figure 4.11 presents the results for temporal segmental radial and longitudinal strain curves 

estimated with and without regularization. Radial strain curves are shown in Figure 4.11 (a) and 

(c). Both approaches were able to resolve radial myocardial wall thickening by exhibiting peak 

positive radial strains at ES. But regularized radial strain curves in the posterior apical and basal 

segments (segments 4 and 6 respectively) were smoother compared to unregularized curves 

indicated using arrows in Figure 4.11 (c). Figure 4.11 (b) and (d) show estimated longitudinal 

strain curves. The regularized strain curves showed negative peak systolic longitudinal strain 

indicating ventricular shortening during systole. We observed smooth temporal variation of strain 

in all six segments over the cardiac cycle as expected from a healthy murine model. But we 

observed deterioration of performance without regularization as shown in Figure 4.11 (d). All six 

segments resulted in noisier strain curves when compared to the regularized cases. Erroneous 

positive longitudinal strain values in segments 2 and 4 as high as 10% was observed towards the 

end of the cardiac cycle as indicated using arrows Figure 4.11  (d). Higher variations in peak 
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systolic strain values were also observed in Figure 4.11 (d) compared to Bayesian regularized 

strain curves in Figure 4.11 (b). Overall, the benefit of Bayesian regularization for estimating 

regional longitudinal strain curves is clearly visualized from Figure 4.11 (b) and (d). 

 

Figure 4.9 ES in vivo axial displacement images (a) without regularization, with (b) one iteration and, (c) 

three iterations of Bayesian regularization respectively. Lateral displacement images (d) without 

regularization, with (e) one iteration and, (f) three iterations of Bayesian regularization respectively. 



115 
 

 

Figure 4.10 ES in vivo radial strain images (a) without regularization, with (b) one iteration and, (c) three 

iterations of Bayesian regularization respectively. Longitudinal strain images (d) without 

regularization, with (e) one iteration and, (f) three iterations of Bayesian regularization respectively. 
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Figure 4.11 In vivo segmental radial and longitudinal strain curves. (a) Radial and (b) Longitudinal strain 

curves with Bayesian regularization, (c) Radial and (d) Longitudinal strain curves with no 

regularization. 

In Figure 4.12, we present comparison results between global strain estimation using regular 

NCC, Bayesian regularized NCC and speckle tracking echocardiography using VevoStrain. Figure 

4.12 (a) shows radial strain results while Figure 4.12 (b) shows longitudinal strain results. In Figure 

4.12 (a), all three methods provided positive peak systole strain magnitudes with close resemblance 

in the overall shape indicating radial wall thickening. For longitudinal strain results in Figure 4.12 

(b), negative peaks systolic strain values were observed in estimation from all three methods 

indicating ventricular shortening at end systole. However, variations of the strain magnitude 

among CSI and CE approaches were observed.  
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Figure 4.12 Comparison between cardiac strain estimation between cardiac elastography and speckle 

tracking echocardiography using VevoStrain (FUJIFILM VisualSonics). (a) Radial strain results and 

(b) Longitudinal strain results. 

4.5 Computational Complexity Comparison 

 The algorithm was implemented in MATLAB (Mathworks Inc., MA) using a standard 

gateway interface (MEX) in conjunction with C++ and CUDA for cross-platform acceleration. 

GPU acceleration of computationally intense sections such as Bayesian Regularization and Sinc 

subsample estimation was achieved by writing a mex wrapper for the original CUDA 

implementation reported in [19]. All tests were performed on an Intel(R) Xeon(R) CPU E5-2640 

v4 at 2.40 GHz, while the CUDA C++ code was run on a Tesla K40c GPU belonging to the Kepler 

architecture with compute capability 3.5. In the simulation study with RF data dimensions of 

8192×500 samples, the proposed algorithm with and without regularization takes 128.63 and 66.67 

secs respectively (mean value) to calculate the displacement map between two consecutive frames 

with parameters presented in Table 4.1. In the in vivo study with final RF data dimension of 

6016×440 samples, inter-frame displacement estimation execution time with and without 

regularization was 91.83 and 55.10 secs respectively.  
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4.6 Discussion on the Results from Simulation and in vivo Validation Studies 

4.6.1 FEA Simulation Study 

 In this chapter, we investigated the feasibility of using a multi-level motion estimation 

framework using NCC coupled with Bayesian regularization for CE. The primary findings of the 

FEA simulation study can be summarized as follows. 

1) Cumulative axial and lateral displacements at ES estimated using both NCC and Bayesian 

showed good qualitative agreement with FEA results. But Bayesian regularization provided 

smoother displacement estimates (Figure 4.3). 

2) Bayesian regularization improved radial and longitudinal strain images estimated at ES when 

compared to NCC alone (Figure 4.4). Highest improvements were observed in apical segments 

(segments 3 and 4). Regularized images had fewer negative radial and positive longitudinal 

strain values respectively. 

3) Quantitative analysis of ES strain images revealed that ES radial strain error (%) decreases 

from 98.57 ± 8.50% without regularization to 50.39 ± 1.55 % with regularization (Figure 4.5). 

Similarly, the ES longitudinal error reduces from 77.92 ± 8.77 % without regularization to 

38.83 ± 2.57 % with regularization. In both cases, Bayesian regularization resulted in 

statistically significant error reduction (p<0.001) globally (Table 4.3).  

4) Bayesian regularization improved the quality of radial and longitudinal temporal strain curves 

when compared to NCC (Figure 4.6 and Figure 4.7). In anterior and posterior walls, both 

approaches provided strain curves of comparable quality (segments 1,2,5 and 6). NCC alone 

fails to estimate strain for apical segments (segments 4 and 5) with higher deviation from FEA 

results. Use of Bayesian regularization significantly improved NCC results. Bayesian 
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regularization also provided consistent estimation with lower standard deviation (see error bars 

in Figure 4.6 and Figure 4.7).   

5) Temporal radial strain error (%) decreased from 107.39 ± 19.08 % without regularization to 

25.36 ± 5.93 % with regularization (Figure 4.8). Similarly, the temporal longitudinal error 

reduces from 152.70 ± 29.69 % without regularization to 20.35 ± 3.77 % with regularization. 

In both cases, Bayesian regularization provided statistically significant error reduction 

(p<0.001) globally (Table 4.4).  

Bayesian regularization resulted in smoother displacement vectors when compared to 

utilizing only NCC (arrows in Figure 4.3). The Bayesian inference process utilizing a regularized 

similarity metric (from NCC map) incorporates information from neighboring location as a 

likelihood function significantly reduces errors by not allowing for any abrupt changes resulting 

in a smooth deformation field. NCC alone can result in some incorrect displacement discontinuities 

amplified into noisier strain images by the gradient operation. In addition, the lower spatial 

resolution and lack of phase information in lateral direction pose significant difficulty in lateral 

motion tracking with NCC [22]. However, within this limitation Bayesian regularization provided 

reasonable lateral motion estimation.  

  We observed the highest improvement in strain estimation from Bayesian regularization 

for the apical segments (segments 3 and 4). In these segments radial and longitudinal strains had 

significant contributions from shearing components of E and we hypothesize that the smoothly 

varying deformation field with regularization contributed to better estimation of these components. 

Although we obtained significant improvements some of these errors were not fully corrected 

using our approach. Several factors might contribute to this.  First, the FEA model used in this 

study contains all deformation information (compression, translation, and torsion) derived 
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experimentally from a canine heart resulting in a realistic complex 3-D deformation model [12, 

33, 34]. Imaging this 3-D deformation using 2-D image planes result in significant “out-of-plane” 

motion [39, 40]. This issue can be resolved by extending the proposed approach to 3-D image 

planes using 2-D matrix transducers. Secondly, there exists spatial variations in the elasticity of 

the myocardial wall (see Figure 4.4 (a) and (d)). Our proposed algorithm attempts to remove noisy 

NCC estimates from a given similarity metric using guidance from neighboring values. However, 

in some regions most of the initial similarity metric estimates may be noisy resulting in a noisy 

final estimate even after regularization. Finally, as mentioned in the discussion on lateral 

displacement estimation, lower spatial resolution and lack of phase information also introduces 

errors in lateral displacement estimation. Strain estimation is performed on the cumulated 

displacement. Any small error in inter-frame displacement estimates is propagated through the 

accumulation process. Strain estimation through the gradient operation also has a tendency for 

amplification of displacement estimation noise [26]. Thus, any small error in lateral displacement 

estimates will cause significantly noisier lateral strain estimates. These issues indicate that motion 

estimation in lateral direction requires additional improvement.  

In the proposed framework, regularization is performed in an iterative manner and the 

performance of the algorithm is dependent on correctly chosen number of iterations.  For the FEA 

study, we found that a single iteration was sufficient to improve image quality. The number of 

iterations should be increased with caution as over-regularization might adversely affect the image 

quality resulting into “banding” artifacts due to over smoothening. Figure 4.13 illustrates the effect 

of over-regularization on a longitudinal strain image at ES with three iterations of Bayesian 

regularization.  
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Figure 4.13 Effect of overregularization in strain estimation. End-systole longitudinal images with (a) one 

iteration and (b) three iterations of Bayesian regularization. Overregularization resulted into 

“banding” artifacts in the estimated strain image. 

4.6.2 In vivo Healthy Murine Model  

 Myocardial contraction in vivo during systole was clearly visible in axial displacement 

maps (Figure 4.9 (a) – (c)), with anterior wall moving away from the transducer (red shades) and 

posterior wall moving towards the transducer (blue shades). Estimated lateral displacement maps 

from all three methods were consistent with the healthy myocardial contraction during systole 

(Figure 4.9 (d) – (f)). Both one and three iterations of Bayesian regularization provided smoother 

lateral motion estimations in the apical region. This contributed to improved radial and 

longitudinal strains. Physiologically inaccurate radial and longitudinal strain values incurred using 

NCC alone were corrected using Bayesian regularization. Optimal estimation performance 

required three iterations for the in vivo murine model. This emphasizes the importance of correctly 

choosing the number of iterations for Bayesian regularization.  In clinical practice, quantitative 

estimates of the SNRe could be utilized to determine the optimal number of iterations. In future 

work, we will look into maximization of the conditional expected value of the SNRe [10, 41] to 

determine the optimal number of iterations.  



122 
 

 In addition, we were able to resolve to clinically relevant details [28] from longitudinal 

strain curves such as peak positive strain, ES strain and post-systole strain (see segment 1 and 6 in 

Figure 4.11 (b)) with Bayesian regularization. These details were suppressed by noise in the NCC 

only longitudinal strain curves (Figure 4.11 (d)).   In Figure 4.11 (d), we observed that strain curves 

from segments 2 and 3 were noisier. One potential reason for this finding in the apical region of 

this mouse is that an acoustic shadowing artifact (most likely from a rib or the sternum) is present 

in the image. As reported in literature [42], acoustic shadowing may result in underestimation of 

strain and/or the appearance of a regional wall motion abnormality. This made tracking more 

challenging in those segments and consequently lower quality strain curves.  

 Comparison of estimated strain curves using CE (NCC and Bayesian) and VevoStrain 

showed an overall shape agreement but variation in strain magnitudes. Strain estimation in 

VevoStrain is based on speckle tracking echocardiography, which calculates strain by motion 

tracking from ultrasound B-mode imaging sequences. In contrast, our proposed method uses 

ultrasound radio-frequency (RF) signals, which contains additional phase information when 

compared to B-mode images. A previous study from our group reported that RF signals results 

into more accurate strain estimates when compared to envelope/B-mode signals [10]. This could 

explain the magnitude variation between the two methods. Overall, comparable performance of 

the proposed method against a commercial system shows its potential for in vivo CSI.  

  Some of the previously reported regularization approaches for elastography used 

assumption of continuous and smooth displacement fields, enforcing an explicit smoothness 

constraint as a regularizer [43-49]. This assumption limits the application of these approaches to 

CE where discontinuous deformation is expected (opposing movement of anterior and posterior 

wall). Incorporation of Bayesian regularization in our multi-level framework provides a balance 
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between discontinuous motion estimation and error correction. This enables successful application 

of our framework for CE as shown in FEA simulation and in vivo study. 

 In vivo imaging for murine models was performed with a frame rate of 235 Hz which is 

comparatively lower than the literature reported values for CE in murine models with 1D tracking 

or plane wave imaging approaches [50-52]. Our group has previously demonstrated that a frame 

rate ten times the heart rate provides high SNRe and reliable strain estimation using RF signals in 

a phantom study [53]. The murine model in this study had a heart rate of 5 beats per second and 

was imaged with a frame rate of 235 Hz, leading to 47 frames in a cardiac cycle. Our 2-D 

hierarchical multi-level NCC approach provides deformation tracking for reliably estimating 

maximum strains up-to 5% axial and 2.5% lateral strain between consecutive RF frames [5, 6], 

whereas 1-D NCC kernels with 2-D search approaches fail due to increased signal decorrelation 

in this applied strain range. Using our multi-level approach with 2-D kernels, we are able to reduce 

kernel dimensions to accurately track these high strains. Reliable strain estimation in human RF 

data sets with comparatively lower frame rates was previously reported by our group [10, 11, 13, 

54] using this multi-level approach without regularization. Our approach with Bayesian 

regularization in this chapter provides reliable polar strain estimation for the in vivo murine model. 

However, with higher frame rates, we anticipate additional improvement in strain estimation using 

the proposed approach.  

 One limitation of our study is the discrepancy between the transducer center frequency of 

simulation and in vivo experiments. The simulation study was performed based on the 3-D 

deformation model of a canine heart developed by the Cardiac Mechanics Research Group at the 

University of California San Diego (UCSD) [33]. The imaging field of view was 80 mm × 100 

mm. In the ultrasound imaging simulation, we also modelled an attenuation coefficient of 0.5 
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dB/cm-MHz. If simulation was performed with 40 MHz center frequency, we will not be able to 

image the posterior part of heart due to depth-dependent attenuation co-efficient. Thus, the imaging 

simulation was performed using 8 MHz rather than the 40 MHz center frequency in the in vivo 

study. If we are able to obtain 3-D deformation models for a mouse heart, we would be able to 

extend the simulation to utilize a 40 MHz center frequency. 
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Chapter 5 

Adaptive Bayesian Regularization with Local Optimization for 

Ultrasound Strain Imaging  

In this chapter2, we propose an adaptive iterative Bayesian regularization framework 

(AIBRF) based on local signal decorrelation levels derived from input radiofrequency (RF) data. 

The Bayesian regularization algorithm proposed by McCormick et al. [1] has been successfully 

applied for both carotid [2] and cardiac strain imaging (Chapter 04) [3]. This regularization 

scheme was formulated to reduce large displacement or peak-hop errors due to high signal 

decorrelation of RF signals and was applied in an iterative manner to improve the quality of 

estimated displacements. However, incorrect choice in the number of iterations can lead to over-

regularization and negatively impact the quality of displacement estimates especially in the lateral 

direction [3].  Previously, the desired number of iterations were determined heuristically based on 

the clinical application [1, 3, 4]. In addition, the number of required iterations was also shown to 

be dependent on the strain distribution present in an imaged region [1]. Furthermore, we 

hypothesize that due to spatial and temporal strain heterogeneities expected with in vivo imaging, 

the number of iterations should be varied locally rather than as a global application of a fixed 

number of iterations to each displacement estimation location. To address these issues, we utilize 

local correlation between RF signals to guide the Bayesian regularization based on the underlying 

strain distribution thus inhibiting the possibility of over-regularization. Furthermore, correlation 

 
2 Rashid Al Mukaddim, Nirvedh H. Meshram, and Tomy Varghese, “Locally optimized correlation-guided Bayesian 
adaptive regularization for ultrasound strain imaging.” Physics in Medicine and Biology, vol. 68, no. 3, 065008 (2020) 
PMCID: PMC7682728 
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guidance will automatically determine the optimal number of iterations in local regions eliminating 

the need for a fixed heuristic determination of the number of iterations. 

5.1 Theory Behind Adaptive Bayesian Regularization 

5.1.1 Basic Principle of Bayesian Regularization 

Assume I1 and I2 are two ultrasound RF frames of size i×j acquired as the pre- and post-

deformation frames respectively. In block matching algorithms, I1 and I2 are divided into a 

rectangular grid of 1-D or 2-D matching blocks with Y and X number of grid locations along axial 

and lateral directions respectively. To compare a matching block between I1 and I2, we perform 2-

D NCC calculations over a set of possible displacements defined as 

 { : } { : }        k x k x m y m yu D u D u D u D   (5.1) 

where Dy and Dx are maximum possible axial and lateral displacement estimates respectively in a 

user defined search grid. This process results in a similarity metric image for each grid location 

with  size of M×K.  These similarity metric images can be treated as probability density (PDF) 

images, through application of a basic transformation [1] and regularized using Bayes’ theorem to 

improve motion estimation accuracy.  

 The regularization estimator calculates the posterior probability density (PPD), 

Pr ( | )
xxu u  for a possible displacement estimate,  , axial lateralu uxu  of the matching block 

located at grid location, x = [xaxial , xlateral] given observed displacements at neighboring matching 

blocks, 
x

u  in a Bayesian framework 
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where, 
x

u is the set of displacements at neighboring matching blocks, Pr ( )xu is the prior 

probability density obtained by mapping the similarity metric image to a probability density image 

and Pr ( | )
x xu u  is the likelihood function. In the original implementation, four immediate 

neighbors (left, right, top and bottom) were considered for 
x

u . In conventional ultrasound motion 

tracking, the estimated displacement vector maximizes Pr ( )xu [5]. This estimate will be 

considered as the NCC estimate in this chapter. However, in the Bayesian framework, information 

from neighboring matching blocks modifies the prior PDF, Pr ( )xu resulting in a regularized 

motion tracking framework.  

Assuming the neighbors are independent, the likelihood function Pr ( | )
x xu u  is defined 

as follows. 

 Pr ( | ) Pr ( | )


 x

x

x x x
x

u uu u


  (5.3) 

where,  Pr ( | )x xu u  is the probability that a neighboring block at x  has a displacement xu  given 

displacement xu  at x .  The independence assumption can be invalid due to expected correlation 

among neighboring matching blocks but is necessary to simplify mathematical modelling for 

Bayesian regularization. Application of Bayesian regularization for medical image registration [4, 

6] have also made a similar independence assumption for modelling the likelihood function. In the 

case of ultrasound strain estimation, some degree of independence can be achieved by utilizing no 

kernel overlaps in both axial and lateral directions along with a iterative application of the 

algorithm [1]. Pr ( | )x xu u term is modelled as follows.   
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where xv  is the displacement at x⸍, 
xu  is a set of possible displacements evaluated in a 

neighborhood where xu  is evaluated and σu is the variance of a Gaussian weighting term. To 

evaluate equation (5.4), we need to consider all the possible displacements defined by the domain, 

Ω in equation (5.1) at the neighboring matching block location  xx  . For each possible 

displacement, we consider a subset of local displacements around it, 
  xx uv   and weight them 

with a Gaussian term. The Gaussian term is modelled such that   x xv u   with   being a 

constant. In an approximate sense, a Gaussian model of spatial displacement variation is imposed 

by equation (5.4). The maximum among these Gaussian weighted displacements is utilized in 

equation (5.4). The variance σu controls the type of displacements allowed by the model. 

McCormick et al. coupled σu with the maximum expected strain in an image by introducing a 

parameter called strain regularization sigma (SRS), σε [1]. PPD is then estimated by multiplying 

likelihood function with the prior PDF. Finally, regularized displacement estimate is determined 

using a maximum a posteriori (MAP) principle shown in eq. (5.5).   

 arg max Pr( | )
x

map
x

x
u

u u u


 (5.5) 

 Integer displacements are derived by determining the axial and lateral shift corresponding 

to the maximum value of PPD. Subsample precision of the displacement is obtained using 

interpolation of PPD. 
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Figure 5.1 (a) Flowchart describing AIBRF. (b) Proposed algorithm for adaptive refinement of NCC 

displacement estimates using Bayesian regularization. 

5.1.2 Adaptive Application of Bayesian Regularization 

 Equation (5.4) can be applied iteratively to regularize the initial NCC similarity metric 

image. At each iteration, influence from neighboring matching blocks beyond the adjacent blocks 

get incorporated into the regularization process. Thus, we expect that based on the degree of signal 

decorrelation between pre- and post-deformation RF echo signal data, the number of required 

iterations will vary locally within the displacement estimated. Based on this observation, we 

propose the AIBRF framework for a locally optimized correlation-guided adaptive iterative 
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Bayesian regularization framework for ultrasound strain imaging. The key steps of the proposed 

framework are summarized in Figure 5.1 (a). Axial and lateral displacement estimates obtained 

using 2-D NCC are used as an input to the AIBRF. In the original implementation, these estimates 

were refined using a fixed number of iterations. In the proposed framework, we provide RF data 

as an additional input to the BRF to locally control the number of iterations. Finally, refined axial 

and lateral displacement estimates are passed through a least squares spatial gradient operator to 

derive underlying tissue strain [7].   

5.1.2.1 Quality metrics for optimizing Bayesian regularization  

 We consider two quality metrics for determining local signal de-correlation during the 

regularization process. Firstly, we derive a quality metric for the un-regularized similarity metric 

by converting peak cross-correlation estimate of the NCC function into a signal-to-noise ratio [8, 

9] measure defined as follows. 

 max

max1








SNR  (5.6) 

where ρmax is the peak cross-correlation coefficient.  

Secondly, we evaluate the quality of estimated displacements after each iteration by 

performing 2-D NCC calculation between RF data I1 and 2I  after motion compensation. We term 

this metric as motion compensated SNR and denote using ( ) l
mc  for iteration l. To derive ( ) l

mc  

between I1 and 2I  , we consider a kernel, W1  of size r c  from I1  around the point 1 1( , )x y . A post-

deformation kernel, W2  of same size is extracted from the corresponding point 2 2( , )x y  in the 

image 2I  by re-sampling post-RF data with linear interpolation using the following equation [10, 

11].  
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where,  y and x  are the estimated axial and lateral strains derived by applying a central-difference 

gradient operator on the estimated axial (uy) and lateral (ux) displacements respectively. Linear 

interpolation was chosen due to its simplicity and lower computational load compared to other 

approaches (e.g., bicubic/Sinc). 

5.1.2.2 Algorithm for Adaptive Bayesian Regularization 

 The algorithm for adaptive refinement of NCC estimates using Bayesian regularization is 

presented in Figure 5.1 (b). The key steps of the proposed algorithm are follows.  

(i). Initialize the algorithm by estimating NCC displacement, NCCu  and ( )


NCCSNR . ( )


NCCSNR  is 

estimated using equation (5.6) and considered as a de-correlation measure of the 

unregularized similarity metric. 

(ii). Set iteration, l=1 and regularization location counter 0lMAP . The parameter lMAP  keeps 

track of the number of grid locations requesting regularization in the next iteration, l+1. 

(iii). Estimate Bayesian regularized displacement, lu  using equation (5.5). 

(iv). Using lu , estimate motion compensated SNR, ( ) l
mc . 

(v). For iteration equal to one, if ( )


NCCSNR  is less than decorrelation threshold,   then refined 

displacement estimate, regu is updated using current regularized estimate, lu  and lMAP  is 

incremented otherwise NCCu  is assigned to regu . 

(vi). If iteration is greater than 1 then 

a. If there is an improvement in motion compensated SNR with current estimate 

compared to estimate from previous iteration i.e.  ( ) ( 1)   l l
mc mc  where, ζ is an 

improvement tolerance then  regu is updated using current regularized estimate, lu  

and lMAP  is incremented. 
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b. If there is no improvement, then retain previous iteration’s estimate.  

(vii). Repeat step (iii) – (vi) for all grid locations (grid dimension of X×Y). 

(viii). Estimate percentage of locations requiring regularization using following equation. 

 
( )




ratio l
l

MAP
MAP

X Y
  (5.8) 

(ix). To adaptively stop regularization after an optimal number of iterations, we have defined 

two stopping criteria based on ratio
lMAP . We stop regularization if either of the following 

conditions get satisfied  

a. The number of locations requiring regularization between consecutive iterations is 

within a tolerance, TOL and ratio
lMAP is less than the upper regularization ratio,  

( )upr   

b.  ratio
lMAP  is less than the lower regularization ratio, ( )lowr  

(x). If none of the conditions stated in step (ix) are met and l+1 is less than the maximum 

number of iterations, maxl  then continue to step (iii). 

Note that the grid locations where lMAP  is incremented are marked for regularization in the next 

iteration while the remaining locations will not be regularized. Thus, the number of required 

iterations will vary for different local locations in contrast to the same number of iterations for all 

locations in the original implementation. The parameters decorrelation threshold, τ and 

improvement tolerance, ζ are used to inhibit under-regularization and over-regularization 

respectively. Parameter TOL is designed to stop regularization when the number of locations 

requesting regularization between consecutive iterations does not vary significantly indicating that 

additional regularization is unlikely to provide any additional benefit. At very high applied 

deformations, it might be the case that lMAP  between initial iterations are within TOL thus 

stopping regularization even though it requires further refinement. Upper regularization ratio, r(up) 

is used to impede this. Additionally, to prevent the algorithm from stalling by trying to improve 
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the grid locations near edges (especially in the simulation study), we break the regularization loop 

if  ratio
lMAP  falls below the lower regularization ratio r(low). This rule is used to improve 

computational efficiency and our initial experiments demonstrate that the performance of the 

proposed approach was not compromised. 

5.1.3 Algorithm Implementation 

We incorporate the adaptive Bayesian regularization framework into our multi-level 2-D 

BM algorithm for strain estimation. We denote displacement estimation methods without 

regularization, with fixed number of iterations and adaptive regularization as NCC, MAP-Iter and 

MAP-Adapt respectively. A coarse-to-fine pyramid with three levels was constructed by applying 

the decimation factors reported in Table 5.1 to the up sampled RF data with Gaussian smoothening. 

Smoothening was performed using a discrete Gaussian function with variance of  
2

2
f  where f 

denotes the decimation factor. This approach combines the robustness of envelope tracking at 

higher strains with precision of RF data at lower strains [12-14]. B-mode data used for coarse 

motion tracking at the first level ensures global estimation of displacement reducing errors incurred 

with larger deformations, while the rest of the levels use RF data for precise displacement and 

strain estimation. To improve spatial resolution of the estimated displacements, the coarse-to-fine 

search strategy with progressively decreasing kernel size was utilized (Table 5.1). The processing 

kernel overlap was 10% and 90% in the axial and lateral directions respectively. The final 

processing kernel size was 1 wavelength by 10 A-lines. Parabolic interpolation was used for levels 

1 and 2 while the final level used 2-D windowed Sinc interpolation [15-17] for unbiased subsample 

displacement estimation. Signal alignment and stretching was used at each level to improve 

displacement estimation accuracy [2, 11, 18]. To compute the ( )NCCSNR  term for MAP-Adapt, 2-
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D windowed Sinc interpolation with a window radius of 8 points was used to precisely locate the 

peak of the NCC function. This was necessary due to the non-linear relationship between SNR  

and peak NCC coefficient max . 2-D displacement estimation and regularization related parameters 

are summarized in Table 5.1. 

Table 5.1 Displacement Estimation Algorithm Processing Parameters 

Parameter Value 

Multi-level Block-matching parameters  
Levels in multi-resolution pyramid 3 
Lateral interpolation factor 2 
Axial decimation factors  [3, 2, 1] 
Kernel overlaps [Axial, Lateral] [10%, 90%] 
Lateral decimation factors  [2, 1, 1] 
Axial kernel length (Wavelengths) [8, 3, 1] 
Lateral kernel length (A-lines) [15, 12, 10] 
Axial search range (Wavelengths) * [3, 2, 1] 
Lateral search range (A-lines) * [5, 5, 3] 
  
Bayesian regularization specific parameters  
Axial strain regularization sigma  0.150 
Lateral strain regularization sigma 0.075 
Number of iterations [1,5] 
  
Adaptive Bayesian regularization specific parameters  
Maximum number of iterations, lmax 10 
Decorrelation threshold, τ 90 
Improvement tolerance, ζ 0.01 
Iteration tolerance, TOL (pixels) 100 
Lower regularization ratio, r(low) 0.15 
 Upper regularization ratio, r(up) 0.80 
*Search range reported for cardiac strain imaging applications (simulation and in vivo)  
Updated appropriately for quasi-static elastography applications (simulation) 
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5.2 Validation Experiments for Adaptive Bayesian Regularization 

5.2.1 Numerical Quasi-static Elastography Simulation Study  

Two experiments using numerical phantom simulations were used to evaluate the 

performance of the MAP-Adapt algorithm. First, a uniform tissue mimicking phantom with 

background modulus of 2 kPa was simulated to test algorithm performance for tracking 

displacements in a homogeneous medium. Second, an inclusion phantom with a stiffer inclusion 

in soft background was simulated to characterize algorithm performance for lesion visualization. 

Finite-element analysis (FEA) model generated displacement fields were applied on the top 

surface of each phantom axially to produce nominal strain of 0.5 %, 1.0 %, 3.0 %, 5.0 %, 7.0 %, 

9.0 % and 11.0 %. For each applied deformation, ten independent scatterer distributions were 

generated to obtain statistically significant results. Details about the FEA can be found in [1]. RF 

data were generated using a frequency domain ultrasound simulation program developed in our 

laboratory [19]. A 1-D linear array with 128 elements and a kerf of 0.2 mm was modeled. Each 

individual element had a height of 10 mm and width of 0.15 mm. The linear array was operating 

at a center of frequency of 8.0 MHz and RF data was sampled at a frequency of 78.84 MHz. A 

single transmit focus was set at a depth of 20 mm. Conventional Delay and Sum (DAS) 

beamforming with 128 consecutive elements were used to form each A-line. The speed of sound 

and attenuation coefficient were set to 1540 m/s and 0.5 dB/cm-MHz respectively.  

To reduce the effects of boundaries, a 20×25 mm2 region of interest (ROI) around the 

transducer’s focus was considered for quantitative evaluation. Estimation accuracy was evaluated 

using displacement mean absolute error (MAE), jitter error [20] and normalized strain error (%), 

 : 
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In equations (5.9) and (5.10), eu and tu  denote estimated and FEA displacements respectively. In 

equation (5.11), ES and TS  denote estimated and FEA strains respectively. Experimental strain 

filters [21] were generated for each method by calculating elastographic signal-to-noise ratio 

(SNRe) [22] : 

  [dB] =  20 log
 

  
 

e
e

e

m
SNR

s
  (5.12) 

where, em  and es  denote the mean and standard deviation of estimated strain respectively.  

Detectability in inclusion phantom strain images were quantified by calculating Contrast 

to Noise ratio (CNRe) [23, 24] : 

 
2

2 2
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CNR   (5.13) 

where, bm  and tm  are spatial strain average of background (wb) and target (wt) window 

respectively, 2 b  and 2 t  denote spatial variance of wb and wt respectively. A rectangular ROI of 

size 3.35×3.35 mm2 was placed inside the lesion as wt. Two rectangular ROIs were placed at same 

depth as the target ROI (wt) but offset 9.25 and 9.73 mm laterally to the left and right respectively 
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from the center of the inclusion were used as background ROIs. Area of each background ROI was 

half the area of wt.  

5.2.2 Finite Element Analysis (FEA) Model for Canine Cardiac Simulation 

A 3-D FEA model of a healthy canine heart [25, 26] was employed to compare the 

performance of NCC, MAP-Adapt and MAP-Iter approaches in the presence of complex cardiac 

deformation. Over 1×106 scatterers were randomly positioned in the myocardium of the 3-D 

model to ensure Rayleigh scattering statistics. A 2-D parasternal long axis (PLAX) ultrasonic 

imaging view from this 3-D model was used. The description of the RF data simulation is the same 

as that presented for quasi-static elastography simulation above. RF data were collected at a 78.84 

MHz sampling frequency. Each simulated ultrasound image had an 80×100 mm2 field of view.  

5.2.3 In vivo Cardiac Imaging of Murine Model 

 To demonstrate in vivo feasibility, cardiac strain estimation was done in a healthy murine 

model (10-12 weeks old male athymic nude mouse acquired from Jackson Labs, ME, USA). All 

in-vivo procedures were approved by the Institutional Animal Care and Use Committee (IACUC) 

at the University of Wisconsin-Madison. The mouse was anesthetized using 1.5% isoflurane and 

placed in the supine position on a heated imaging platform with a constant flow of oxygen. A 

representative image of in vivo cardiac image acquisition experimental setup is shown in Figure 

5.2. A Vevo 2100 LAZR imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada) was 

employed for collecting ultrasound RF data. High frequency ultrasound imaging was performed 

using a MS 550D transducer operating at a center frequency of 40 MHz. 2-D conventional focused 

ultrasound RF data at a 512 MHz sampling frequency along the PLAX and parasternal short axis 

(PSAX) views were acquired. We acquired 1000 frames per imaging plane, which was stored for 

off-line analysis. During image acquisition, electrocardiogram (ECG) and respiratory signals were 
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continuously monitored and acquired. A single cardiac cycle was chosen for strain estimation 

gated to ECG and respiratory signal. Image acquisition related parameters are summarized in Table 

5.2. 

 

Figure 5.2 Representative image of in vivo cardiac image acquisition experimental setup. 

Table 5.2 In vivo Image Acquisition Parameters 

Parameter PLAX PSAX 

Transducer MS550D 

Center frequency (MHz) 40 

Field of view (mm2) 11 × 12.08 10 × 8.08 

Number of A-lines 220 148 

Imaging Framerate (Hz) 235 347 

Sensitivity Standard 

2-D Gain (dB) 25 
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5.2.4 Adaptive Bayesian Regularization for Cardiac Strain Imaging 

 A cardiac strain estimation pipeline [27] described in detail in Chapter 4 was employed to 

estimate myocardial strain from FEA canine cardiac simulation and in vivo murine model data. 

Incremental axial and lateral displacements were estimated using approaches reported in Section 

0. These incremental displacements were integrated over time based on a Lagrangian description 

of motion from end-diastole (ED) to end-systole (ES). In plane Lagrangian finite strain tensors 

were then derived from the accumulated displacements using a least squares (LS) strain estimator 

[7] with 0.2 mm and 1 mm kernels in axial and lateral directions respectively. Cartesian to cardiac 

coordinate transformation was utilized to calculate myocardial strain for ease of interpretation. 

Radial and longitudinal strain curves were derived from PLAX view while the PSAX view was 

used to derive radial and circumferential strain curves. ES strain images and segmental strain 

curves from both FEA and in vivo models were compared for NCC, MAP-Adapt and MAP-Iter 

approaches. FEA model results were quantitatively compared using eqn. (5.11). 

5.3 Findings from Numerical Quasi-static Elastography Simulation Study  

5.3.1 Uniform Phantom Simulation Results 

Displacement and strain estimation accuracy for MAP-Adapt as a function of applied 

deformation is compared against NCC and MAP-Iter with 1 and 5 iterations. Our previous studies 

showed that in some cases a single iteration of Bayesian regularization was sufficient while others 

required three or larger number of iterations [27]. Therefore, we investigated cases with both low 

and high number of iterations for MAP-Iter in this study. MAP-Iter with 1 and 5 iterations will be 

termed as MAP-Iter=1 and MAP-Iter=5 respectively.  Strain errors are strongly influenced by the 

choice of LS kernel length and amount of smoothening [14]. Thus, we decided to use a small 

kernel length (3.2 mm for both axial and lateral direction) for LS and perform no spatial filtering 
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(e.g., median filtering) so that any noise in the estimated displacement fields gets amplified in the 

strain images. Ground truth strain images were derived by applying the same LS strain estimator 

on the FEA displacement fields. Error bars denote twice the standard error computed over ten 

independent simulations at each applied deformation. Statistical analysis was performed using the 

paired t-test with the aforementioned ten independent simulation instances. 

Representative results from a uniform phantom simulation study at low (3 %) and high (7 

%) applied deformations are presented in Figure 5.3 and Figure 5.4 respectively for qualitative 

comparison between NCC, MAP-Iter=1, MAP-Iter=5 and MAP-Adapt methods. Qualitatively all 

methods provide fairly similar axial displacement and strain results. In the case of axial strain, 

MAP-Iter=5 strain image (Figure 5.3 (i) [g]) was smoother when compared to MAP-Iter=1 (Figure 

5.3 (i) [f]) and MAP-Adapt images (Figure 5.3 (i) [h]). Note that for lateral displacement and strain 

images, Map-Iter=1 and MAP-Adapt displacement results were smoother (Figure 5.3 (ii) [b] and 

[d] respectively) when compared to NCC (Figure 5.3 (ii) [a]). Subsequently, lateral strain images 

estimated by MAP-Iter=1 (Figure 5.3 (ii) [f]) and MAP-Adapt (Figure 5.3 (ii) [h]) had higher 

uniformity when compared to NCC (Figure 5.3 (ii) [e]). On the other hand, observe the severe 

deterioration in the displacement and strain image quality with MAP-Iter=5 (Figure 5.3 (ii) [c] and 

[g]). Impact of over-regularization appears as “vertical banding” artifacts in these lateral strain 

images. 

Figure 5.4 summarizes the estimation results at 7 % applied deformation. Visual inspection 

shows that Bayesian methods provide higher quality axial displacement (Figure 5.4 (i) [b – d]) and 

strain images (Figure 5.4 (i) [f – h]) when compared to NCC (presence of peak-hop errors in Figure 

5.4 (i) [a] and [e]). Lateral displacement and strain images at 7 % applied deformation indicate that 

higher quality results were obtained using MAP-Iter=1 (Figure 5.4 (ii) [b] and [f]) and MAP-Adapt 
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(Figure 5.4 (ii) [d] and [h]) when compared to NCC (observe presence of peak-hop errors in Figure 

5.4 (ii) [a] and [e]) or MAP-Iter=5 (vertical bands in Figure 5.4 (ii) [c] and [g]). 

 

Figure 5.3 Representative axial (i) and lateral (ii) estimation results from uniform phantom simulation at 3 

% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-Iter=1, (c) MAP-Iter=5 

and (d) MAP-Adapt along with corresponding strain images estimated by (e) NCC, (f) MAP-Iter=1, 

(g) MAP-Iter=5 and (h) MAP-Adapt respectively. l = maximum required iterations by MAP-Adapt. 
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Figure 5.4 Representative axial (i) and lateral (ii) estimation results from uniform phantom simulation at 7 

% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-Iter=1, (c) MAP-Iter=5 

and (d) MAP-Adapt and corresponding strain images estimated by (e) NCC, (f) MAP-Iter=1, (g) 

MAP-Iter=5 and (h) MAP-Adapt respectively. l = maximum required iterations by MAP-Adapt. 

 Figure 5.5 (a) – (c) demonstrate the results for axial displacement MAE ( MAE
yd ), jitter error 

( Var
yd ) and normalized axial strain error (  axial ) respectively. Figure 5.5 (a) shows that all methods 

had similar axial displacement MAEs at low and moderate strains (up to 5 % strain). At higher 
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strains, MAP-Adapt and MAP-Iter=5 provided lower MAE
yd  values compared to NCC and MAP-

Iter=1. At 11 % strain, due to significant decorrelation, all methods fail to provide any reliable 

estimate. Figure 5.5 (b) shows that MAP-Iter=5 had the least amount of jitter errors compared to 

other methods. MAP-Adapt had slightly higher jitter errors compared to MAP-Iter=5 but retained 

improved performance compared to NCC and MAP-Iter=1. Similar trend was observed in axial 

strain error results presented in Figure 5.5 (c). Best performance in terms of   axial  was achieved 

with MAP-Iter = 5. However, improvements were on par with MAP-Adapt as it had slightly higher 

axial strain error ( | 5% axial =1.51 %) compared to MAP-Iter=5 ( | 5% axial =1.29 %). These results 

indicate that strain estimation performance in the axial direction was dominated by jitter errors. 

Figure 5.5 (d) – (f) present the results for lateral displacement MAE ( MAE
xd ), jitter error ( Var

xd ) and 

normalized lateral strain error (  lateral ) respectively. Figure 5.5 (d) shows that MAP-Iter=5 had 

higher lateral displacement MAEs when compared to MAP-Adapt and MAP-Iter=1. This result 

demonstrates the impact of over regularization on lateral displacement estimates. At 4.5 % strain, 

MAP-Adapt demonstrated superior performance (p < 0.001) with lower lateral displacement MAE 

( MAE
xd = 23.73 µm) when compared to MAP-Iter=1 ( MAE

xd = 114.16 µm). NCC has higher MAEs 

when compared to MAP-Adapt showing the benefit of regularization. Similar trends were 

observed in lateral jitter error results presented in Figure 5.5 (e). MAP-Adapt had the least amount 

of jitter errors up to 3.5 % strain. However, there was performance degradation of MAP-Adapt (

Var
xd = 1.74 µm2) compared to MAP-Iter=5 ( Var

xd = 0.79 µm2) at 4.5 % strain. Figure 5.5  (f) shows 

that most accurate lateral strain estimation was achieved with MAP-Adapt except for the 4.5 % 

strain. For instance, at 1.5 % lateral strain, MAP-Iter=5’s lateral strain error ( |1.5% lateral = 104.49 

%) was significantly reduced using MAP-Adapt approach ( |1.5% lateral = 27.51 %) with p-value 
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less than 0.001. At 4.5 % strain, MAP-Iter with 5 iterations showed improved performance. Note 

that maximum required number of iterations vary as a function of applied deformation as shown 

in Figure 5.5 (g).  

 Figure 5.6 (a) and (b) represent experimental axial and lateral strain filter results 

respectively. NCC axial strain filter showed comparable performance with Bayesian regularization 

methods for low strains (0.5 % to 3 %). Note that SNRe values drastically reduce at higher applied 

deformations (5.0% to 9.0%). MAP-Iter=5 had the highest axial SNRe values at all applied 

deformations and MAP-Iter=1 had the worst axial estimation performance among Bayesian 

regularization approaches. MAP-Adapt had comparable performance with MAP-Iter=5 up to 7 % 

strain. For instance, at 7 % strain, MAP Adapt and MAP-Iter=5 had SNRe of 35.10 dB and 36.40 

dB respectively. However, MAP-Iter=5 performed significantly better (p < 0.01) than MAP-Adapt 

at 9 % strain (SNRe = 34.22 dB and 28.11 dB respectively). Our findings from error analysis in 

Figure 5.5 (a) – (c) corroborate these results. For lateral strain, NCC had the lowest SNRe values 

for all applied deformations. MAP-Adapt and MAP-Iter=1 performed significantly better than 

NCC and MAP-Iter=5 up to 3.5 % strain. For instance, at 1.5 % strain, MAP Adapt and MAP-

Iter=5 had SNRe of 9.18 dB and -0.39 dB respectively (p < 0.001). Although MAP-Iter=5 had 

slightly higher SNRe value at 0.25 % strain, it severally underestimated the underlying strain 

(median estimated 0.0012% lateral ). A distinct peak was observed in the strain filter of MAP-

Iter=5 at 4.5 % strain showing improved performance with higher iterations at high strain. Overall, 

MAP-Adapt approach achieved a balance between axial and lateral displacement and strain 

estimation accuracy without the over-regularization seen with MAP-Iter=5.   
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Figure 5.5 Uniform phantom simulation error analysis as a function of the applied deformation. (a) Axial 

displacement MAE (µm), (b) axial displacement jitter error (µm2), (c) axial normalized strain error 

(%), (d) lateral displacement MAE (µm), (e) lateral displacement jitter error (µm2), (f) lateral 

normalized strain error (%) and (g) Maximum required number of iterations as a function of applied 

deformation for MAP-Adapt. 
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Figure 5.6 Comparison of experimental strain filters estimated using NCC, adaptive Bayesian and Bayesian 

with fixed iterations. (a) Axial strain filter and (b) lateral strain filter. 

5.3.2 Inclusion Phantom Simulation Results 

In this section, we present representative results from the inclusion phantom study at low 

(3 %) and high (7 %) applied deformation for a qualitative comparison. Figure 5.7 summarizes the 

estimation results at 3 % applied deformation. Axial displacement and strain images are shown in 

Figure 5.7 (i).  Qualitatively all methods provide similar axial displacement results (Figure 5.7 (i) 

[a – d]). In case of axial strain, NCC had some erroneous strain values near the bottom right of the 

lesion (Figure 5.7 (i) [e]) which were corrected by all Bayesian regularization methods (Figure 5.7 

(i) [f – h]). Lateral displacement and strain images at 3 % applied deformation are shown in Figure 

5.7 (ii). Note that Map-Iter=1 and MAP-Adapt methods provide smoother displacement images 

(Figure 5.7 (ii) [b] and [d] respectively) compared to NCC (Figure 5.7 (ii) [a]). Subsequently, 

lateral strain images estimated by MAP-Iter=1 (Figure 5.7 (ii) [f]) and MAP-Adapt (Figure 5.7 (ii) 

[h]) had higher quality with clearer lesion boundary and smoother background compared to NCC 

(Figure 5.7 (ii) [e]). Severe deterioration of displacement and strain image quality was observed 
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with MAP-Iter=5 (Figure 5.7 (ii) [c] and [g]). Impact of over-regularization appears as “vertical 

banding” artifacts in these results. 

Figure 5.8 summarizes the estimation results at 7 % applied deformation. Figure 5.8 (i) 

shows the axial displacement and axial strain images estimated using the methods previously 

described. Visual inspection shows that MAP-Adapt and MAP-Iter=5 provide higher quality 

displacement (Figure 5.8 (i) [c – d]) and strain images (Figure 5.8 (i) [g – h]). Axial displacement 

images estimated by NCC and MAP-Iter=1 (Figure 5.8 (i) [a – b]) suffer from peak-hop errors 

causing significant reduction of corresponding strain image quality (Figure 5.8 (i) [e – f]).  Lateral 

displacement and strain images at 7 % applied deformation are shown in Figure 5.8 (ii). MAP-

Adapt provided the best displacement (Figure 5.8 (ii) [d]) and strain (Figure 5.8 (ii) [h]) images 

showing the improvement obtained with adaptive Bayesian regularization. NCC (Figure 5.8 (ii) 

[a] and [e]) and MAP-Iter=1 (Figure 5.8 (ii) [b] and [f]) suffer from peak-hop errors while the 

vertical banding artifact due to over-regularization was seen in MAP-Iter=5 results (Figure 5.8 (ii) 

[c] and [g]).  

Figure 5.9 (a) – (c) demonstrate the results for axial displacement MAE ( MAE
yd ), jitter error 

( Var
yd ) and normalized axial strain error (  axial ) respectively from the inclusion phantom 

simulation study. In case of axial displacement and strain estimation, both MAP-Adapt and MAP-

Iter=5 provided improved performance compared to NCC and MAP-Iter=1 over the entire range 

of applied deformations. NCC and MAP-Iter=1 suffered from performance degradation at 

moderate and higher strains (5% or higher) due to under-regularization. Figure 5.9 (d) – (f) present 

the results for lateral displacement MAE ( MAE
xd ), jitter error ( Var

xd ) and normalized lateral strain 

error (  lateral ) respectively.  These results demonstrate the superiority of MAP-Adapt over MAP-
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Iter=5 with significantly lower MAE
xd , Var

xd  and   lateral  up to 3.5 % strain (p < 0.001). At 4.5 % 

strain, MAP-Iter=5 showed the best performance. Overall, a balance between under-regularization 

and over-regularization was achieved using MAP-Adapt approach. 

 

Figure 5.7 Representative axial (i) and lateral (ii) estimation results from inclusion phantom simulation at 3 

% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-Iter=1, (c) MAP-Iter=5 

and (d) MAP-Adapt and corresponding strain images estimated by (e) NCC, (f) MAP-Iter=1, (g) 

MAP-Iter=5 and (h) MAP-Adapt respectively. l = maximum required iterations by MAP-Adapt. 
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Figure 5.8 Representative axial (i) and lateral (ii) estimation results from inclusion phantom simulation at 7 

% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-Iter=1, (c) MAP-Iter=5 

and (d) MAP-Adapt along with corresponding strain images estimated by (e) NCC, (f) MAP-Iter=1, 

(g) MAP-Iter=5 and (h) MAP-Adapt respectively. l represents the maximum required iterations for 

the MAP-Adapt algorithm. 
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Figure 5.9 Inclusion phantom simulation error analysis as a function of the applied deformation. (a) Axial 

displacement MAE (µm), (b) axial displacement jitter error (µm2), (c) axial normalized strain error 

(%), (d) lateral displacement MAE (µm), (e) lateral displacement jitter error (µm2), and (f) lateral 

normalized strain error (%).  

To compare the methods quantitatively, CNRe as a function of applied deformation is 

compared in Figure 5.10. Figure 5.10 (a) – (b) show the axial and lateral CNRe results respectively. 

The MAP-Adapt approach had higher axial CNRe values compared to other methods. For lateral 

strain, MAP-Adapt retained its improved performance at all deformations expect 0.25 % lateral 

strain. However, strain error analysis shows that MAP-Adapt had lower lateral strain error (
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| 0.25% lateral  = 91.15 %) compared to MAP-Iter=5 ( | 0.25% lateral  = 99.39 %). Overall, qualitative 

and quantitative analysis demonstrate that MAP-Adapt method provides improved image quality 

at both low and high applied deformations. 

 

Figure 5.10 CNRe analysis of strain images estimated using NCC, adaptive Bayesian and Bayesian with 

fixed iterations. (a) Axial CNRe results and (b) Lateral CNRe results. 

Adaptive variation in the required iterations against applied deformation for the MAP-

Adapt method is presented in Figure 5.11. Figure 5.11 (a) shows that at low and moderate strains, 

two iterations were sufficient for regularization while increased number of iterations were required 

at higher strains. We also quantified the number of displacement image pixels (MAPl) refined after 

each iteration (Figure 5.11 (b)). Figure 5.11 (b) shows that MAPl exponentially decreases with the 

number of iterations. This result demonstrates that after the initial iteration, MAPl does not change 

significantly, and algorithm stops the regularization process when the conditions stated in step (ix) 

of algorithm description is reached. Hence, the number of iterations is varied locally (per grid 

locations) rather than globally setting the number of iterations, in the proposed MAP-Adapt 

approach illustrating the adaptive and optimal nature of the regularization scheme. Here we do not 

over-regularize displacement estimates that do not require correction. 
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Figure 5.11 Adaptive variation of number of iterations against applied deformation. (a) Number of required 

iterations. (b) Number of pixels refined at each iteration. 

5.3.3 Performance evaluation as a function of MAP-Adapt parameters 

Strain estimation accuracy of MAP-Adapt as a function of different choices of 

decorrelation threshold (τ), improvement tolerance (ζ) and iteration tolerance (TOL) are presented 

in Figure 5.12. Uniform phantom simulations at applied deformations of 3% and 7% were utilized. 

Figure 5.12 (a) – (c) show the impact of ζ on axial strain error, lateral strain error and number of 

required iterations respectively. At higher strain, smaller value of ζ will perform better. However, 

choosing too small a value for ζ has a detrimental impact on lateral strain estimation accuracy at 3 

% strain [Figure 5.12 (b)]. Optimal performance was achieved at ζ = 0.005 resulting in a balance 

between strain estimation accuracy and the number of required iterations. Figure 5.12 (d) – (f) 

show the variation of axial strain error, lateral strain error and number of required iterations 

respectively as a function of decorrelation threshold (τ). Axial and lateral error for both low and 

high strain reaches a plateau at τ = 65 with no significant impact on the number of iterations. 

Impact of TOL on estimation performance is summarized in Figure 5.12 (g) – (i). No variation 

among estimation accuracy was observed [Figure 5.12 (g) – (h)]. However, lower TOL required 
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larger number of iterations prior to stopping regularization. Note that, for this particular instance, 

r(low) threshold was not utilized. Thus, these results also demonstrate that improvement of 

computational efficiency was achieved with the use of r(low) threshold without comprising 

estimation performance. 

5.3.4 FEA Canine Cardiac Simulation Results 

ES myocardial stain images are presented in Figure 5.13 for comparison among NCC, 

MAP-Iter=3 and MAP-Adapt methods. Figure 5.13 (a) – (d) show ES radial strain images for FEA, 

NCC, MAP-Iter=3 and MAP-Adapt respectively. Apical and some portion of anterior region of 

myocardial wall had erroneous negative radial strain values in NCC result (indicated with arrows 

in Figure 5.13 (b)). These errors were resolved using Bayesian regularization approaches (Figure 

5.13 (c) – (d)) resulting in close similarity with FEA result (Figure 5.13 (a)). However, MAP-

Iter=3 result presents with the “banding artifact” as shown with an arrow in Figure 5.13 (c). Figure 

5.13 (e) – (d) show ES longitudinal strain images for FEA, NCC, MAP-Iter=3 and MAP-Adapt 

respectively. MAP-Adapt provided the best longitudinal strain image (Figure 5.13 (f)) having 

excellent agreement with FEA result (Figure 5.13 (e)). NCC image had some erroneous positive 

strain values near apex as indicated with an arrow in Figure 5.13 (f). MAP-Iter=3 result severely 

underestimated the underlying strain as several regions with almost zero strains (arrows in Figure 

5.13 (g)) were observed around the myocardium. Axial strain error (  axial %), lateral strain error 

(  lateral  %), radial strain error (  radial  %) and longitudinal strain error (  long %) were quantified 

for ES myocardial strain images are presented in Table 5.3. Quantitative results confirm our 

qualitative observations with best performance obtained with the MAP-Adapt method. 
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Figure 5.12 Variation of (a) axial strain error (%), (b) lateral strain error (%) and (c) number of iterations as 

a function of improvement tolerance (ζ). Variation of (d) axial strain error (%), (e) lateral strain error 

(%) and (f) number of iterations as a function of decorrelation threshold (τ). Variation of (g) axial 

strain error (%), (h) lateral strain error (%) and (i) number of iterations as a function of iteration 

tolerance (TOL).  
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Figure 5.13 ES radial strain images for (a) FEA, (b) NCC, (c) MAP-Iter=3 and (d) MAP-Adapt respectively. 

ES longitudinal strain images for (e) FEA, (f) NCC, (g) MAP-Iter=3 and (h) MAP-Adapt respectively.  

l = required iterations by MAP-Adapt. 

Table 5.3 Comparison of ES estimation errors 

Methods axial (%) lateral (%) radial (%) long (%) 

NCC 47.22 49.81 54.44 33.22 
MAP-Adapt 28.23 26.46 28.10 18.05 
MAP-Iter=1 28.62 26.55 29.00 18.24 
MAP-Iter=2 29.34 37.93 29.44 25.24 
MAP-Iter=3 32.41 58.10 32.86 41.08 

 

Figure 5.14 shows the results for performance evaluation of NCC, MAP-Adapt and MAP-

Iter as a function of the number of iterations. Median error computed over 125 frames from one 

cardiac cycle of FEA simulation is used comparison. Figure 5.14 (a) – (d) show results for  axial

,  lateral ,  radial  and  long respectively. In all cases, NCC presented with the largest errors. Best 

performance was achieved with the MAP-Adapt method. For MAP-Iter approaches, as the number 

of iterations increased  lateral ,  radial  and  long also increased drastically when compared to 

MAP-Adapt. 
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Figure 5.14 Performance evaluation of NCC, MAP-Adapt and MAP-Iter as a function of the number 

iterations. Figs. 14 (a) – (d) show axial strain error (%), lateral strain error (%), radial strain error 

(%) and longitudinal strain error (%) respectively. 

5.3.5 Computational Cost 

The algorithm was run in MATLAB (Mathworks Inc., MA) with a standard gateway 

interface (C++ MEX) and CUDA for cross-platform acceleration. All experiments were done on 

an Intel(R) Xeon(R) CPU E5-2640 v4 at 2.40 GHz, while the CUDA C++ code was run on a Tesla 

K40c GPU belonging to the Kepler architecture with compute capability 3.5. Computational cost 

is expected to vary depending on the input RF data dimension and algorithm processing parameters 

as presented in Table 5.1. Therefore, we present the execution timing analysis from the uniform 

phantom study in Table 5.4. The final RF data dimension was 8192×400 and mean execution time 



162 
 

for ten independent simulations is reported. With higher number of iterations for Bayesian 

regularization, the computational load is increased resulting in longer execution times (Table 5.4). 

Table 5.4 Execution Timing Analysis (n=10) 

Methods Time (secs) 

NCC 64.40 
MAP-Adapt [Minimum, Maximum] * [134.80, 261.34] 
MAP-Iter=1 80.88 
MAP-Iter=5 230.21 

* MAP-Adapt execution times varied based on signal decorrelation. Lowest and highest execution times 
were recorded at 0.5 % and 9 % applied deformation. 

 

5.4 In vivo Example of Adaptive Bayesian Regularization for Cardiac Strain Imaging 

 Figure 5.15 summarizes in vivo estimation results from the murine model in parasternal 

long axis view. PLAX B-mode image at end-diastole with segmentation scheme is presented in 

Figure 5.15 (i).  Figure 5.15 (ii) and (iii) present radial and longitudinal strain estimation results 

respectively. For healthy myocardial function, radial and longitudinal strain images should exhibit 

uniformly positive and negative strain values respectively throughout the myocardium. Figure 5.15 

(ii) [a] and [c] show ES in vivo radial strain images estimated with NCC and MAP-Adapt 

respectively. Radial wall thickening (positive strain magnitudes) at ES was observed in all 

estimated results. However, the NCC strain image showed some erroneous negative strain values 

in the anterior region (segments 1 and 2) indicating presence of ischemia in a healthy mouse. These 

errors were corrected with MAP-Adapt. Figure 5.15 (iii) [a] and [c] show ES in vivo longitudinal 

strain images estimated with NCC and MAP-Adapt respectively. Ventricular shortening (negative 

strain magnitudes) at ES was observed in all estimated results. The NCC longitudinal strain image 

exhibited some erroneous positive strain values in significant portions of myocardial wall. Higher 

quality longitudinal strain image was realized with the MAP-Adapt approach. 
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Figure 5.15 (ii) [b] and [d] show segmental radial strain curves estimated using NCC and 

MAP-Adapt approach respectively. All approaches resolve radial myocardial wall thickening by 

exhibiting peak positive radial strains at ES. Bayesian regularized radial strain curves in the 

anterior basal and mid segments (segments 1 and 2 respectively) were smoother compared to 

unregularized curves. Furthermore, regularized strain curves achieved improved homogeneity in 

temporal variation across six segments compared to NCC results. Figure 5.15 (iii) [b] and [d] show 

estimated segmental longitudinal strain curves. All approaches were able to resolve ventricular 

shortening during systole by exhibiting peak negative longitudinal strains at ES. Smooth temporal 

variation of strain in all six segments near end of the cardiac cycle was observed in regularized 

strain curves (Figure 5.15 (iii) [d]) compared to NCC (Figure 5.15 (iii) [b]). Overall, higher quality 

ES strain images and segmental strain curves were achieved with MAP-Adapt approach. Note that 

the median value of the required iterations by MAP-Adapt for estimating the results presented in 

Figure 5.15 were four. 
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Figure 5.15 (i) PLAX B-mode image at end-diastole with segmentation scheme. (ii) Radial strain estimation 

results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt respectively. In vivo 

segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. (iii) Longitudinal strain 

estimation results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt 

respectively. In vivo segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. l = 

median maximum required iterations by MAP-Adapt. 

 Figure 5.16 summarizes in vivo estimation results from the murine model in parasternal 

short axis view. Figure 5.16 (ii) and (iii) present radial and circumferential strain estimation results 

respectively. For normal cardiac function, the radial and circumferential strain images should 
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exhibit uniformly positive and negative strain values respectively throughout the myocardium. 

Figure 5.16 (ii) [a] and [c] show ES in vivo radial strain images estimated with NCC and MAP-

Adapt respectively. Radial wall thickening (positive strain magnitudes) at ES was observed in all 

estimated results. No significant difference was observed between NCC and MAP-Adapt 

estimates. Figure 5.16 (iii) [a] and [c] show ES in vivo circumferential strain images estimated 

with NCC and MAP-Adapt respectively. Circumferential strain estimated by NCC is less 

homogeneously negative (segments 1, 2, 3 and 6) compared to MAP-Adapt result. Although 

improvement was achieved with MAP-Adapt method (Figure 5.16 (iii) [c]), presence of erroneous 

positive circumferential strain values was still observed in the posterior segments (segments 2, 3 

and 4).   

Figure 5.16 (iii) [b] and [d] show segmental radial strain curves with NCC and MAP-Adapt 

respectively. Circumferential strain curves with NCC and MAP-Adapt methods are presented in 

Figure 5.16 (iii) [b] and [d] respectively. Radial estimation results indicate smooth temporal 

variation as expected from a healthy murine model without any significant difference between 

NCC and MAP-Adapt approach. Improved performance with MAP-Adapt was noted in 

circumferential strain curves. Regularized strain curves (Figure 5.16 (iii) [d]) achieved better 

homogeneity and smoothness (segments 2 and 4) in temporal variation across six segments 

compared to NCC results (Figure 5.16 (iii) [c]). Note that the median value of the required 

iterations by MAP-Adapt for estimating these results were three. 
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Figure 5.16 (i) PSAX B-mode image at end-diastole with segmentation scheme. (ii) Radial strain estimation 

results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt respectively. In vivo 

segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. (iii) Circumferential strain 

estimation results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt 

respectively. In vivo segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. l = 

median maximum required iterations by MAP-Adapt. 
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5.5  Adaptive Bayesian Regularization Achieves Optimal Performance in 
Simulation and in vivo Experiments  

5.5.1 Numerical Phantom Simulation Studies 

The results from uniform phantom simulation study show that Bayesian based methods 

outperform conventional NCC approach both in terms of motion estimation accuracy and 

elastographic signal-to-noise ratio. These findings corroborate those previously reported in 

literature [1, 28]. The key finding from the uniform phantom error analysis study demonstrates 

that the MAP-Adapt approach achieved concurrent estimation quality improvements in both axial 

and lateral directions. With higher fixed number of iterations (e.g. MAP-Iter=5), we achieve 

similar improvements in only the axial displacement and strain estimation accuracy when 

compared to MAP-Adapt [observe that performance of MAP-Adapt is close to that of MAP-Iter=5 

in Figure 5.5 (a) – (c) and Figure 5.6 (a)]. However, this improvement was achieved at the expense 

of severe performance degradation in the lateral direction [Figure 5.5 (d) – (f) and Figure 5.6 (b)]. 

Bayesian regularization [1] and other optimization based motion estimation approaches [10, 29-

34] were designed to limit the occurrence of large displacement errors or peak-hopping errors by 

imposing a motion continuity constraint as a regularization term. Estimation bias introduced 

through the regularization term have been shown to reduce estimation variance significantly. 

However, for Bayesian regularization, over-regularization tends to have a negative impact on 

lateral estimation resulting in higher bias and variance as shown in this paper. To gain further 

insight into the mechanism of over-regularization, posterior pdfs after each iteration of Bayesian 

regularization was carefully studied. After each iteration, as information from neighboring blocks 

further away from adjacent blocks gets incorporated into the posterior pdf through the likelihood 

function presented in equation (5.4). This process leads to peak-hop error filtering by attenuating 

false correlation peaks while enhancing the peak closest to the dominant peak of the neighboring 
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matching blocks. With additional iterations, the probabilities get concentrated more around the 

dominant correlation peak. Therefore, after an optimal number of iterations, the posterior pdf from 

Bayesian regularization is expected to resolve into a 2-D unimodal Gaussian distribution.  

However, if the number of iterations is set beyond the optimal operating point, the lateral 

projection of the posterior pdf becomes a delta function due to the lower lateral sampling frequency 

of RF data. Thus, when sub-sample displacement estimation is performed through interpolation 

(parabolic/Sinc), estimation error incurred, as displacements are not resolved with the necessary 

sub-sample precision. These errors appear as vertical bands in lateral displacement maps (Figure 

5.3 and Figure 5.4 (ii) [c]) and as regions with very high and low strains in lateral strain maps 

(Figure 5.3 and Figure 5.4 (ii) [g]). The impact of over-regularization on lateral displacement and 

strain is more pronounced at lower strains than higher strains (compare Figure 5.3 (ii) [c] to Figure 

5.4 (ii) [c]). Probable reasons are due to the diffuse nature of initial pdf at higher strains that require 

larger number of iterations to converge to an optimal unimodal pdf and the requirement of higher 

subsample precision at lower strains. Keeping this principle in mind, in our proposed approach we 

limit the number of unnecessary regularizations by locally determining the optimal iteration 

requirement based on RF signal decorrelation. RF signal decorrelation was evaluated by assessing 

the correlation information between pre-RF and motion-compensated post-RF data after each 

iteration. This correlation information had been previously used as a framework for performance 

evaluation of strain imaging algorithms [35]. In this work, we use it to optimize Bayesian 

regularization. Regions with higher signal decorrelation utilize larger number of iterations when 

compared to regions with lower signal decorrelation. Thus, possibilities of over-regularization 

were reduced, and improved motion estimation accuracy was achieved in the lateral direction as 

shown in Figure 5.5 (d) – (f) and Figure 5.6 (b) while maintaining comparable estimation accuracy 
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in the axial direction. Axial and lateral strain filters estimated with MAP-Adapt corroborates trends 

previously reported in literature [21, 36, 37]. However, note that the bandpass nature of the lateral 

strain filter was not observed for MAP-Iter=5 as a result of over-regularization. Based on these 

results, we claim that a trade-off exists between axial and lateral strain estimation accuracy, which 

was achieved with our proposed MAP-Adapt method.   

The results from our inclusion phantom study further substantiates our claim. Higher 

number of iterations might an attractive approach for MAP-Iter method to estimate axial strain 

images (Figure 5.7 (i) and Figure 5.8 (i)). However, this results in negative impact on lateral strain 

images with “vertical banding” artifacts seen in Figure 5.7 (ii) and Figure 5.8 (ii). Further 

understanding of the proposed method can be attained by closely analyzing Figure 5.8 and Figure 

5.11. Figure 5.8 (i) [f] and Figure 5.8 (ii) [f] show that MAP-Iter=1 was able to refine most of the 

peak-hopping errors present in the NCC results. MAP-Adapt approach identifies locations, which 

were not corrected with initial iterations by using ( )l
mc   and increases iterations for those specific 

locations (Figure 5.11 (b)). As a result, peak-hopping errors were corrected and at same time sub-

sample precision was maintained in the lateral direction, achieving a balance between under-

regularization and over-regularization. Quantitative results presented in Figure 5.9 corroborate the 

aforementioned qualitative observations. The results from CNRe study also show the superior 

performance of MAP-Adapt methods over other approaches (Figure 5.10). Although MAP-Iter=5, 

produces higher lateral CNRe value at very small deformations (0.25 % strain), visual inspection 

reveals that the inclusion was not discerned in the estimated strain image. At such low deformation, 

strain estimation performance is limited by electronic and quantization noise [21]. In our study, 

we utilized a lateral interpolation factor of two. The resultant lateral sampling frequency together 

with absence of phase information and resolution limitations of ultrasound imaging systems further 



170 
 

impede reliable tracking of small lateral deformations [14, 38, 39]. Therefore, all methods incurred 

very high lateral strain estimation errors up to 0.5 % lateral strain. The quality of MAP-Adapt 

lateral strain images can be improved further with the application of median filtering. However, 

for the comparative study, we followed an approach similar to [40], which did not use any median 

filtering for numerical simulation study. 

Impact of parameter selection on the performance of MAP-Adapt approach was 

investigated using uniform phantom simulation. Proper choice of improvement tolerance and 

decorrelation threshold provide a balance between under-regularization and over-regularization. 

Smaller value of ζ will drive the algorithm towards higher regularization as evident from the 

improvement in axial strain estimation accuracy [Figure 5.12 (a)]. However, this improvement will 

be at a cost of performance degradation in the lateral direction at low strain and corresponding 

increased number of iterations [Figure 5.12 (b) – (c)] resulting in over-regularization. Optimal 

choice of ζ will impede over-regularization with concurrent axial and lateral strain estimation 

quality at a reasonable computational load. Figure 5.12 (d) – (f) show that smaller value of 

decorrelation threshold results in higher strain estimation error with performance approaching that 

obtained with NCC. These results suggest that τ should be chosen high enough to inhibit any 

instances of under-regularization. With τ and ζ fixed, no variation in strain estimation quality was 

observed with the range of iteration tolerance evaluated in this work. However, Figure 5.12 (i) 

suggests that proper choice of TOL will result in computationally efficient implementation with 

improved estimation quality. 

5.5.2 FEA Canine Simulation Study 

Accurate lateral displacement estimation is crucial for cardiac elastography or strain 

imaging applications [41]. Myocardial polar strains (radial, longitudinal and circumferential) are 
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derived using axial, lateral and shear strain components. Thus, estimation error in any of these 

strain tensors directly impacts the quality of myocardial strain images [42]. The results from this 

study show that MAP-Adapt achieves optimal regularization thus producing the best radial and 

longitudinal strain images at ES (Figure 5.13 and Table 5.3). The data presented in Figure 5.14 

show that over-regularization severely deteriorates the lateral estimation quality. This result 

corroborates with our findings from numerical phantom simulation study. The degradation of 

lateral estimation quality severely impacted the longitudinal strain estimation with a 65% increase 

in median error compared to MAP-Adapt method. The quality degradation for radial strain 

estimation is not as severe as the longitudinal case because the axial component has more 

contributions to radial strain than lateral strain [27].  

5.5.3 In vivo Cardiac Strain Imaging Study  

In this study, in vivo feasibility of MAP-Adapt method has been shown. End-systolic strain 

is a recommended parameter to investigate cardiac dynamics [43]. Physiologically inaccurate 

radial and longitudinal strain values from NCC were corrected by MAP-Adapt method (Figure 

5.15). For PSAX view, higher improvement was observed in circumferential strain image quality 

when compared to radial strain result with MAP-Adapt (Figure 5.16). However, some erroneous 

positive strain values were still retained in the posterior segments (segments 2, 3 and 4). These 

errors can be attributed to lateral strain estimation quality as it contributes more to circumferential 

strain estimation [44]. Segmental analysis was done for in vivo estimated strains and segmental 

temporal strain curves were presented for PLAX and PSAX views respectively. Overall, both NCC 

and MAP-Adapt resolved clinically relevant details [43] such as peak positive strain, ES strain, 

and post systole strain reliably. However, smoother temporal variation was achieved using the 

Bayesian approach when compared to NCC which corroborates our previous findings [27]. 
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Adaptive behavior of the proposed method was also observed in these in vivo examples. 

Imaging frame rates for PLAX and PSAX data acquisition were 235 Hz and 347 Hz respectively. 

As the median heart rate of the mouse under anesthesia was 340 bpm, it was expected that higher 

signal decorrelation will be observed while performing inter-frame motion estimation with PLAX 

data compared to PSAX data. Accordingly, MAP-Adapt required higher number of iterations 

(four) for PLAX data motion estimation compared to PSAX case (three). We anticipate that this 

adaptive nature will be crucial when the proposed Bayesian regularization will be used in clinical 

cardiac imaging as optimal performance will be automatically achieved based on input RF data.  

One other important finding is that better lateral estimation with MAP-Adapt was observed 

in PLAX view compared to PSAX view (errors in the circumferential strain image). Moreover, we 

did not observe significant difference in estimation quality in PSAX view between NCC and MAP-

Adapt for radial strain tensors. These findings might be attributed to lower incurred inter-frame 

lateral motion due to higher imaging frame rate [42, 45, 46]. One possible solution might be the 

use of dynamic frame skip [2], by using a short frame skip when strain rate is high and a long 

frame skip when strain rate is low.  
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Chapter 6 

Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging  

 In Chapter 04 of this dissertation, we demonstrated the use of Bayesian regularization in 

the context of a multi-level block matching-based (BM) cardiac strain imaging (CSI) and reported 

significant performance improvement over conventional 2-D normalized cross-correlation 

coefficient (NCC) based method without regularization. The proposed algorithm incorporated 

information from a local spatial neighborhood to regularize 2-D NCC matrices. In this chapter3, 

we extend the Bayesian regularization algorithm into the temporal domain with an underlying 

assumption of smooth variation in velocity over a short span of time during tissue deformation [1] 

and validate it using simulation and in vivo cardiac dataset. Note that all previous reports on 

Bayesian strain imaging utilized information only from its spatial neighbors [1-9].  

 This chapter reports on two main contributions. First, two schemes for incorporating 

temporal domain information into our Bayesian regularization algorithm is proposed and 

implemented into a Lagrangian cardiac strain estimation framework [10]. Second, we report results 

from a comparative study involving conventional NCC, spatial and spatiotemporal Bayesian 

regularization using data from finite-element-analysis (FEA) canine cardiac simulations and ten 

healthy murine hearts collected in vivo. 

 
3Rashid Al Mukaddim, Nirvedh H. Meshram, Ashley M. Weichmann, Carol C. Mitchell and Tomy Varghese, 
“Spatiotemporal Bayesian Regularization For Cardiac Strain Imaging: Simulation and in vivo Results.” IEEE Open 
Journal of Ultrasonics, Ferroelectrics, and Frequency Control, under review (2021) 
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6.1 Basic Principle of Spatiotemporal Bayesian Regularization (STBR)  

 For mathematical details on conventional spatial Bayesian regularization (SBR), please 

refer to Chapter 05 of this dissertation. In this section, we present the basic principles utilized to 

extend SBR into the temporal domain. For STBR, we consider a set of four consecutive RF frames 

for displacement estimation. First, inter-frame 2-D NCC estimation is performed, resulting in three 

similarity metric images (SMI) for each BM location. Specifically, for a BM location x, we have 

past, present and future temporal unregularized SMIs denoted by SMI(t-1,x), SMI(t,x) and 

SMI(t+1,x) respectively with SMI(t,x) being regularized by the proposed STBR method as shown 

in Figure 6.1.  To enforce temporal continuity assuming smooth variation of velocity over time, 

we propose two schemes for incorporating temporal information into Bayesian regularization as 

described below. 

 

Figure 6.1 Neighborhood definition for spatial and spatiotemporal Bayesian regularization. The SMI being 

regularized is denoted by the blue circle while its spatial and temporal neighbors are indicated by 

red and green circles, respectively. Each rectangle represents a SMI. 

6.1.1 Spatial then Temporal Bayesian (STBR-1) 

 In this scheme, first one iteration of SBR is applied on all SMIs independently resulting in 

spatially regularized SMI for each BM location. Then, temporal regularization is done by 
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considering these regularized SMI as the prior with a likelihood function incorporating information 

from its past and future temporal neighbors using following equation. 

 Pr ( | ) Pr ( | )Pr ( | )
t t xx x xu u u uu u     (6.1) 

where, Pr ( | )
txu u is the posterior PDF after temporal regularization, 

t
u is the set of 

displacement vectors from a temporal neighborhood, t� defined with two adjacent neighbors (past 

and future) and Pr ( | )
xxu u is PPD after one iteration of SBR. To define the temporal likelihood 

function [ Pr ( | )
t xu u ], models like those reported in Chapter 05 are utilized and a 2-D temporal 

Gaussian term with a width vector σt is defined. Finally, the regularized displacement estimator 

determines the integer displacement vector as the point where Pr ( | )
txu u  maximizes is obtained 

using sub-sample precision through interpolation. We term this method as the STBR-1 

displacement estimator. 

6.1.2 Simultaneous Spatiotemporal Bayesian Regularization (STBR-2) 

 In the second scheme, STBR is done simultaneously on the present unregularized SMI 

using following equation. 

 Pr ( | ) Pr ( )Pr ( | ) 
xt xtx xxu u u uu �   (6.2) 

where, Pr ( | )
xtxu u is the posterior PDF after spatiotemporal regularization, 

xt
u is the set of 

displacement vectors from a spatiotemporal neighborhood, xt� defined with two adjacent 

temporal neighbors (past and future) and four adjacent spatial neighbors for the present SMI (left, 

right, top and bottom). To define the spatiotemporal likelihood function [ Pr ( | )
xt xu u ], models 

like those reported in Chapter 05 are utilized with appropriate use of Gaussian terms for 
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modulation depending on either spatial or temporal neighbors. Finally, maximum a posteriori 

(MAP) principle was applied on Pr ( | )
xtxu u  to determine integer displacement with sub-sample 

precision obtained through interpolation. This approach is termed as the STBR-2 displacement 

estimator in this chapter. 

6.2  Experimental Protocols to Validate STBR for Cardiac Strain Imaging 

6.2.1 Cardiac Finite-Element Analysis Simulation Study 

 To evaluate the performance of STBR for CSI, a simulation study was performed using a 

3-D  FEA model of a healthy canine heart [11, 12] containing complex cardiac deformation over 

a cardiac cycle. A detailed description of FEA analysis, scatterer generation and simulation was 

previously described in Chapter 04 and 05. Cardiac cycle RF data (125 frames) in 2-D parasternal 

long axis (PLAX) US imaging view extracted from the 3-D model was generated using a frequency 

domain US simulation program [13].  Five independent scatterer realizations were simulated for 

statistical analysis. For each scatterer realization, two sets of RF datasets were generated by 

superimposing additive, white Gaussian noise (AWGN) on the simulated noise-less RF signals to 

achieve sonographic signal-to-noise (SNRs) of 30 dB and 0 dB respectively [5]. AWGN profiles 

were generated relative to the noiseless RF signal derived from a 2-D region of interest (ROI) 

placed on the anterior wall.  

6.2.2 In vivo Murine Cardiac Imaging  

 In vivo feasibility study was done by collecting cardiac RF data from 10 BALB/CJ mice (7 

male, 3 female, median age = 10 weeks, acquired from Jackson Labs, Bar Harbor, ME, USA) using 

a Vevo 2100 LAZR imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada). All in-vivo 

procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the 
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University of Wisconsin-Madison. High frequency US imaging was performed using a MS 550D 

transducer (center frequency = 40 MHz). We acquired 1000 frames in PLAX view, which were 

stored in inphase/quadrature (IQ) format for off-line CSI. Electrocardiogram (ECG) and 

respiratory signals were continuously monitored and simultaneously acquired during RF data 

collection. Finally, one cardiac cycle of RF data (sampling frequency = 512 MHz) was extracted 

from the collected 1000 frames by applying ECG and respiratory gating and used for CSI. Further 

details regarding data collection can be found here [10]. 

6.2.3 STBR Algorithm Implementation 

 The STBR algorithm is incorporated into a multi-level BM algorithm [14] and 

implemented using MATLAB and CUDA to run on a GPU (NVIDIA Tesla K80) for cross-

platform acceleration. Figure 6.2 presents pseudocode for the STBR algorithm where RFData and 

SearchParameters are structures containing four consecutive RF frames and displacement 

estimation parameters, respectively. The algorithm is as follows. 

1) For all input frames, RF data are up-sampled using a 2-D windowed Sinc interpolator [15, 

16] and a multi-level pyramid are formed by data decimation. 

2) At each level, inter-frame 2-D-NCC are estimated for all frames and stored in a 3-D SMI 

store array. 

3) A First-in-First-out (FIFO) buffer and a 3-D Bayesian store array are initialized on GPU and 

CPU memory respectively for Bayesian regularization. 

4) STBR is applied iteratively for all SMI using either equation 4 or 5.  Perform Scaling in 

Figure 2 denotes the normalization applied on SMIs to generate the PDFs. In this chapter, we 

have limited STBR to a single iteration thus requiring only past and future neighbors for PPD 

calculation. However, to integrate information beyond adjacent temporal neighbors, we need 
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more than four RF frames as an input to the algorithm resulting in higher memory 

requirement on the GPU. To avoid illegal memory access on GPU, the FIFO buffer holds 

required SMI data on GPU device memory for a specific time, t while results after performing 

regularization on GPU are copied back to the CPU Bayesian store array.  

5) Finally, subsample motion estimation [15] with 2-D Sinc interpolation is done and RF data 

prepared (by aligning and stretching [17]) for the next level.  

6) Repeat steps (1) – (5) for the given number of levels. 

 

Figure 6.2 Algorithm for STBR incorporated into a multi-level block matching displacement estimator. SMI 

= Similarity metric image, PPD = Posterior Probability Density. 

6.2.4 Lagrangian Cardiac Strain Imaging  

 Lagrangian radial and longitudinal strain tensors were derived using a cardiac strain 

estimation framework proposed in Chapter 04. Inter-frame displacement estimation was 

performed with the multi-level BM algorithm [14] with and without regularization (SBR, STBR-

1 and STBR-2). The displacement estimation parameters used for FEA simulation and in vivo 
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studies are summarized in Table 6.1. For STBR, width vector σt was set empirically. Default axial 

and lateral direction σt values for FEA simulation and in vivo study were [0.01,0.01] and [0.1,0.1] 

respectively. A mesh of 24000 points covering the entire myocardium was generated by utilizing 

user-defined segmentation of epicardial and endocardial walls of the heart at end-diastole (ED) of 

a cardiac cycle (R-Wave of ECG) [10, 18]. The cardiac mesh was then used to integrate the inter-

frame incremental displacements over time based on a Lagrangian description of motion starting 

from ED [2, 9, 10]. Before accumulation, 2-D median filtering was performed to remove any 

outliers from the estimated displacement vectors. The Lagrangian strain tensor (E) was derived by 

applying a least squares (LS) strain estimator on the accumulated displacement vectors to estimate 

axial, lateral and shear strain components [10, 19]. Axial and lateral LS strain estimator kernel 

dimensions were 0.5 mm and 1 mm respectively. Finally, radial (er) and longitudinal (el) strains 

were derived by applying a coordinate transformation on E. Further details regarding strain 

estimation and coordinate transformation can be found here [10]. End-systole (ES) strain images 

and segmental strain curves from both FEA simulation and in vivo mice data were investigated to 

qualitatively compare NCC, SBR, STBR-1 and STBR-2.  

Table 6.1 Displacement Estimation Parameters for FEA Simulation and in vivo Studies 

 Value Unit 

Number of levels 3 - 

RF data sampling factor [Axial: Lateral] 1:2 - 

Axial decimation factors [3,2,1] - 

Lateral decimation factors [2,1,1] - 

Axial kernel length [8λ, 5λ, 1λ] Wavelengths 

Lateral kernel length [15, 12 ,10] A-lines 

Kernel overlaps [Axial, Lateral] [10*,90] % 

Median filter kernel [Axial, Lateral] [5** × 5] pixels 

Subsample estimation 2-D Sinc - 

* In vivo axial kernel overlap was 50 % 

** In vivo median filter axial kernel dimension was 7 pixels 
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6.2.5 Quantitative Performance Analysis 

 Theoretical strain tensors were derived from the 3-D cardiac FEA simulation and used to 

compare the strain estimation accuracy among NCC, SBR, STBR-1 and STBR-2 respectively. 

Quantitative performance analysis was done by evaluating the strain bias (%), normalized strain 

error (%) or  (%) and total temporal relative error (TTR) as follows. 

  Strain bias (%) =   true estimated   (6.3) 
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where,  true  and estimated  denote estimated and theoretical strain while ( ) true t  and ( ) estimated t  

denote the estimated and true strain value, respectively, P is the number of points in the cardiac 

mesh (24000 points)  and T is the total number of frames in a cardiac cycle (125 frames). We 

computed strain bias and  for each method at all time points and for all scatterer realizations and 

concatenated the results in 1-D arrays for statistical analysis resulting in a sample size of 620 [20]. 

TTR quantified the resemblance between the true and estimated strain curves per scatterer 

realizations resulting in a sample of size of 5 [10]. One-way analysis of variance (ANOVA) with 

the Bonferroni multiple comparison test was done to determine statistical significance among 

NCC, SBR, STBR-1 and STBR-2. Statistical analysis was performed using MATLAB Statistics 

and Machine Learning Toolbox Version 11.4 (R2018b). 



186 
 

 To compare the algorithm performance in vivo, strain filters [21] were derived for the 

accumulated radial and longitudinal strains at all time points for each method by performing 

stochastic precision analysis [21-23]. First, the local elastographic signal-to-noise (SNRe) was 

computed as follows. 

 eSNR



   (6.6) 

where, µ and σ the mean and standard deviation of strain values within a 5 pixel × 9 pixel ROI 

centered at each cardiac mesh point. The window was translated over the entire cardiac mesh and 

calculation was repeated for all time points within a cardiac cycle resulting into strain-SNRe pairs 

which were used to generate a 2-D histogram representing the SNRe PDF, e(SNR , )f   and a 1-D 

histogram representing the strain PDF, ( )f  . Then, e(SNR , )f  was normalized by ( )f   

resulting into the conditional PDF, e(SNR , )f  . Finally, the strain filter or the conditional 

expected value of the SNRe was derived using the follow equation. 

 e e e e0
(SNR ) SNR (SNR ) SNRE f d 



    (6.7) 

To perform comparative analysis among NCC, SBR, STBR-1 and STBR-2, we qualitatively 

compared the corresponding strain filters. Additionally, e(SNR )E   values for radial and 

longitudinal strains at 46 % and -17.69 % strains were compared using ANOVA with the 

Bonferroni multiple comparison test following an approach reported in [24].  

6.3 STBR Performance Assessment using Cardiac FEA Simulation Study 

 Figure 6.3 (a) – (e) show end-systole (ES) radial strain images obtained using FEA model, 

NCC, SBR, STBR-1 and STBR-2, respectively. Input RF data for this example had SNRs value of 
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0 dB. Radial thickening of myocardium at ES was observed in the FEA result with positive strain 

values. The myocardium was divided into six equal segments denoted as segments 1 – 6 

respectively in Figure 6.3 (a). Segments 1 – 6 denote anterior base, anterior mid, anterior apex, 

posterior apex, posterior mid and posterior base segments respectively. NCC had noisy estimates 

in apical and posterior segments (3 – 6) with spuriously elevated positive and negative strain 

values. Regularization (SBR, STBR-1 and STBR-2) reduced strain noise when compared to NCC 

in segments 3 – 6. STBR-1 suffered from under-estimation in anterior base (segment 1). 

 Segmental radial strain curves corresponding to Figure 6.3 are summarized in Figure 6.4. 

Figure 6.4 (a) – (f) compare the segmental radial strain curves estimated using NCC, SBR, STBR-

1 and STBR-2 for anterior base, anterior mid, anterior apex, posterior apex, posterior mid and 

posterior base segments respectively against FEA results. NCC results had higher deviation from 

the FEA in apical and posterior segments (Figure 6.4 (c) – (f)). Significant improvement in strain 

estimation quality was achieved with SBR, STBR-1 and STBR-2 methods. Note that STBR 

improved the quality further in posterior mid and posterior base segments compared to SBR 

(observe the STBR-2 results in Figure 6.4 (e)). However, STBR-2 underestimated radial strain in 

anterior base segment corroborating the finding from Figure 6.3. 

 Figure 6.5 (a) – (e) show ES longitudinal strain images obtained using FEA, NCC, SBR, 

STBR-1 and STBR-2, respectively. Longitudinal shortening of myocardium at ES was observed 

in the FEA result with uniform negative strain values. NCC provides noisy estimates in apical and 

posterior segments (3 – 6) indicated spurious high positive negative strain values. All 

regularization methods (SBR, STBR-1 and STBR-2) reduced strain noise compared to NCC in 

segments 3 – 6 with better qualitative agreement with FEA result. No significant qualitative 

difference was observed among SBR, STBR-1 and STBR-2 results. 
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Figure 6.3 Qualitative comparison of ES radial strain estimation for FEA simulation.   (a) – (e) denote FEA, 

NCC, SBR, STBR-1 and STBR-2 results, respectively. SBR = Spatial Bayesian regularization, 

STBR-1 = Spatial then temporal Bayesian regularization and STBR-2 = Simultaneous STBR. 

 Comparison of segmental longitudinal strain curves shown in Figure 6.5 are summarized 

in Figure 6.6. Figure 6.6 (a) – (f) compare the segmental longitudinal strain curves estimated using 

NCC, SBR, STBR-1 and STBR-2 for the 6 segments versus FEA results. NCC results had higher 

deviation from the FEA in apical and posterior segments (Figure 6.6 (c) – (f)). Significant 

improvement in strain estimation quality was achieved with SBR, STBR-1 and STBR-2 methods 

when compared to NCC with significant difference among each other.  
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Figure 6.4 Qualitative comparison of radial strain curves for FEA simulation. Radial strain curves 

comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, (c) 

anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments respectively.  
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Figure 6.5 Qualitative comparison of ES longitudinal strain estimation for FEA simulation.   (a) – (e) denote 

FEA, NCC, SBR, STBR-1 and STBR-2 results, respectively. SBR = Spatial Bayesian regularization, 

STBR-1 = Spatial then temporal Bayesian regularization and STBR-2 = Simultaneous STBR. 
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Figure 6.6 Qualitative comparison of longitudinal strain curves for FEA simulation. Longitudinal strain 

curves comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, 

(c) anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments respectively.  

 Figure 6.7 summarizes the comparison results for strain estimation bias. Figure 6.7 (a) – 

(b) show radial strain estimation bias for input RF data with SNRs = 30 dB and 0 dB respectively. 

Both spatial and STBR methods had lower radial strain estimation bias with statistical significance 
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(p<0.001). For 30 dB data, STBR-2 had the lowest mean estimation bias (0.16%) but was not 

significantly different than SBR (0.17%). For 0 dB data, SBR had the lowest mean estimation bias 

with statistical significance with all other methods (p<0.01). Figure 6.7 (c) – (d) show longitudinal 

strain estimation bias for input RF data with SNRs = 30 dB and 0 dB respectively. All 

regularization methods had lower longitudinal strain estimation bias with statistical significance 

(p<0.001) compared to NCC with no statistically significant difference among each other. For 

example, for 30 dB data, mean el estimation bias for NCC, SBR, STBR-1 and STBR-2 were 1.01 

%, 0.18%, 0.15% and 0.18% respectively.  

 

Figure 6.7 Strain estimation bias comparison (n = 620). (a) – (b) Radial strain estimation bias for input RF 

data with SNRs = 30 dB and 0 dB respectively. (c) – (d) Longitudinal strain estimation bias for input 

RF data with SNRs = 30 dB and 0 dB respectively. Red line and black square in the box-whisker 

plot denote median and mean statistics, respectively. 
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 Figure 6.8 summarizes the comparison results for normalized strain error or  (%). Figure 

6.8 (a) – (b) show radial strain  (%) for input RF data with SNRs = 30 dB and 0 dB respectively 

while Figure 6.8 (c) – (d) show longitudinal strain  (%) for input RF data with SNRs = 30 dB 

and 0 dB respectively. All regularization methods performed significantly better than NCC 

(p<0.001) with no statistically significant differences among each other.  

 Figure 6.9 (a) – (b) show radial TTR for input RF data with SNRs = 30 dB and 0 dB 

respectively while Figure 6.9 (c) – (d) show longitudinal TTR for input RF data with SNRs = 30 

dB and 0 dB respectively. All regularization methods performed significantly better than NCC. 

For 30 dB data, SBR had the lowest TTR for radial and longitudinal strains. For 0 dB data, STBR-

2 and SBR had the lowest TTR for radial and longitudinal strains, respectively. However, the 

values did not differ significantly (For SNRs = 0 dB, mean er TTR for NCC, SBR, STBR-1 and 

STBR-2 were 169.44%, 32.07%, 30.04% and 27.70% respectively).  

 Figure 6.10 shows the variation of strain estimation bias as a function of the width vector 

σt for both STBR-1 and STBR-2 algorithms. Figure 6.10 (a) – (b) show the variation of radial 

strain estimation bias as a function of σt for STBR-1 and STBR-2 respectively while Figure 6.10 

(c) – (d) show the variation of longitudinal strain estimation bias. Width vector = [0.01, 0.01] had 

the lowest bias for all cases therefore used as a default parameter in FEA study.  
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Figure 6.8 Normalized strain error or (%)  comparison (n = 620). (a) – (b) Radial (%)  for input RF data 

with SNRs = 30 dB and 0 dB respectively. (c) – (d) Longitudinal (%)  for input RF data with SNRs 

= 30 dB and 0 dB respectively. 
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Figure 6.9 Total temporal relative (TTR) error comparison (n = 5). (a) – (b) Radial TTR for input RF data 

with SNRs = 30 dB and 0 dB respectively. (c) – (d) Longitudinal TTR for input RF data with SNRs = 

30 dB and 0 dB respectively. 
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Figure 6.10 Variation of strain estimation bias as a function of σt (n = 125).  (a) – (b) Variation of radial 

strain estimation bias as a function of σt for STBR-1 and STBR-2 respectively. (b) Variation of 

longitudinal strain estimation bias as a function of σt for STBR-1 and STBR-2 respectively. 

6.4 In vivo Murine Cardiac Strain Imaging for STBR Validation 

 Figure 6.11 (a) – (d) show ES radial strain images obtained using NCC, SBR, STBR-1 and 

STBR-2, respectively for a healthy mouse heart. Radial thickening of myocardium at ES was 

observed in all results. However, NCC depicts patches of spuriously high non-physiological 

negative strain values throughout the entire myocardium. All regularization methods significantly 

reduced these erroneous strain values providing performance improvement. The best strain 

distribution was achieved with STBR-2 in vivo (observed regions indicated with arrows) 

correlating with the physiological expectation from a healthy mouse heart.  
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Figure 6.11 In vivo end-systole radial strain image comparison.  (a) – (d) Radial strain images estimated 

with NCC, SBR, STBR-1 and STBR-2 respectively. Segments 1-6 shown in Fig. 11 (a) denote 

anterior base, anterior mid, anterior apex, posterior apex, posterior mid and posterior base 

segments respectively. 

 Figure 6.12 (a) – (f) compare segmental radial strain curves estimated using NCC, SBR, 

STBR-1 and STBR-2 for the 6 segments respectively. NCC without regularization resulted in 

noisy radial strain curves. For example, observe the peak shift and temporal jitter noise in anterior 

mid and posterior apex segments respectively. Significantly better radial strain curves were 

obtained using Bayesian regularization (both spatial and spatiotemporal). STBR-2 had the best 

quality curves quantified in terms of physiological relevant strain variation and temporal 

smoothness thus corroborating the ES strain image quality observation from Figure 6.11.   
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Figure 6.12 In vivo qualitative strain comparison of radial curves. Radial strain curves comparison among 

NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, (c) anterior apex, (d) 

posterior apex, (e) posterior mid and (f) posterior base segments respectively. 

 Figure 6.13 (a) – (d) show ES longitudinal strain images obtained using NCC, SBR, STBR-

1 and STBR-2, respectively for a healthy mouse heart. Longitudinal shortening of myocardium at 

ES was observed in all results. However, NCC result had patches of spuriously high 
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unphysiological positive strain values throughout the entire myocardium with higher concentration 

in the apical and posterior base segments. All regularization methods significantly reduced those 

erroneous strain values providing performance improvement. The most homogeneous strain 

distribution was achieved with STBR-2 in vivo with significant improvement in the apical regions 

(observed regions indicated with arrows).  

 

Figure 6.13 In vivo end-systole longitudinal strain image comparison.  (a) – (d) Longitudinal strain images 

estimated with NCC, SBR, STBR-1 and STBR-2 respectively.  

 Figure 6.14 (a) – (f) qualitatively compare segmental radial strain estimated using NCC, 

SBR, STBR-1 and STBR-2 for anterior base, anterior mid, anterior apex, posterior apex, posterior 

mid and posterior base segments respectively. NCC resulted in noisy longitudinal strain curves in 

the apical [Figure 6.14 (c)] and posterior base [Figure 6.14 (f)] segments. SBR provided significant 

performance improvement in all segments except anterior apex [Figure 6.14 (c)] with reduced ES 

longitudinal strain value. STBR-2 had the best quality curves quantified in terms of physiological 
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relevant strain variation and temporal smoothness thus corroborating the ES strain image quality 

observation from Figure 6.13. 

 

Figure 6.14 In vivo qualitative comparison of longitudinal strain curves. Longitudinal strain curves 

comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, (c) 

anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments respectively. 
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 Figure 6.15 summarizes the results for in vivo stochastic precision analysis performed using 

ten healthy mice for radial (Figure 6.15 (a)) and longitudinal (Figure 6.15 (b)) strain filter 

comparisons, respectively. The strain filter  presented in Figure 6.15 denote the mean of strain 

filters estimated individually for ten mice. Strain filter comparsion illustrate performance 

improvement with Bayesian regularization for both radial and longitudinal strain when compared 

to NCC. SBR and STBR-1, where the strain filters were coincident with each other indicating no 

performance improvement with STBR-1. However, STBR-2 produced the strain filters with higher 

e(SNR )E  values for both er and el strains. Figure 6.15 (c) – (d) illustrate the comparison of 

e(SNR )E   values for each method at 46 % accumulated radial strain and -17.69 % accumulated 

longitudinal strain, respectively. All regularization methods performed significantly better than 

NCC (p<.0.05). Note that STBR-2 had the higher e(SNR )E   values both for radial and 

longitudinal strains even though it was not statistically significant when compared to SBR and 

STBR-1. The mean e(SNR )E   values at 46% accumulated radial strain for NCC, SBR, STBR-1 

and STBR-2 were 5.03, 9.43, 9.42 and 10.58, respectively. The mean e(SNR )E   values at -

17.69% accumulated longitudinal strain for NCC, SBR, STBR-1 and STBR-2 were 7.24, 11.68, 

12.06 and 13.62, respectively.  

 Figure 6.16 (a) – (b) show the variation of in vivo radial strain and longitudinal estimation 

performance as a function of σt. For both STBR-1 and STBR-2, we have generated strain filters 

with σt = [0.01,0.01] and [0.1,0.1] respectively. Figure 6.16 show that σt = [0.1,0.1] provided 

higher e(SNR )E  values for both methods with best performance achieved with STBR-2 when 

assessed for radial and longitudinal strain results. 
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Figure 6.15  In vivo stochastic precision analysis (n = 10). (a) – (b) Radial and longitudinal strain filter 

comparison, respectively. (c) – (d) Comparison of e(SNR )E   for each method at 46 % accumulated 

radial strain and -17.69 % accumulated longitudinal strain, respectively.  
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Figure 6.16 Variation of in vivo strain estimation performance as a function of σt.  (a) – (b) Radial and 

longitudinal strain estimation performance as a function of σt.  

 Table 6.2 presents computational times for NCC, SBR, STBR-1 and STBR-2 for inter-

frame displacement estimation. The results are measured in seconds and evaluated for a mouse RF 

dataset. The final RF data dimension was 6016×440 and mean execution time for 49 frames 

covering a complete cardiac cycle is reported. Bayesian methods required more computational 

time than NCC with highest time required by STBR-1.  

Table 6.2 Summary of Computational Time (Seconds) 

NCC SB STB-1 STB-2 

73.20 114.30 316.15 156.86 

 

6.5 Discussion on the Findings from STBR Validation Studies 

 In this chapter, we evaluated two STBR approaches (STBR-1 and STBR-2) and compared 

them against conventional NCC and spatial Bayesian regularization (SBR) using FEA and in vivo 

small animal studies both qualitatively and quantitatively. The key findings from these studies are 

summarized as follows. 
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a) Both spatial and spatiotemporal regularization methods performed significantly better than 

NCC for both FEA simulation and in vivo studies. 

b) For the FEA simulation study, STBR-1 and STBR-2 performed as good as SBR in most of 

the cases. Few cases resulted in lower estimation errors with STBR however without any 

statistical significance.  

c) Incorporation of temporal domain information resulted in better ES strain images and 

smoother strain curves in vivo. 

d) STBR-2 is the preferred spatiotemporal regularization scheme because of lower errors in 

FEA simulation and higher SNRe in vivo. 

 Qualitative comparison of ES radial strain images and temporal strain curves derived from 

RF data with SNRs = 0 dB showed the robustness of Bayesian regularization to handle significant 

noise corruption when compared to NCC. Posterior segments had higher noise compared to 

anterior segments in the FEA simulation because of the modelled frequency dependent acoustic 

attenuation and noise profile calculation with data derived from anterior segments. However, better 

qualitative agreement with FEA results in posterior segments (apex, mid and base) with STBR-1 

and STBR-2 were seen compared to NCC and SBR indicating benefit of using temporal 

regularization for low SNR regions [Figure 6.3 (c) – (d) and Figure 6.4 (d) – (f)]. No statistically 

significant difference between SBR and STBR methods for SNRs = 30 dB data was observed. 

These results suggest that for high SNR input data, additional regularization with temporal 

information may not be necessary. Additionally, spatial then temporal regularization (STBR-1) 

resulted in under-estimation of radial strain in apical anterior base segment (Figure 6.3 (d) and 1.4 

(a)) suggesting iterative application of Bayesian regularization with only temporal information 

might result in undesirable bias due to “over-regularization [2]”. SBR, STBR-1 and STBR-2 
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longitudinal results demonstrated good agreement with FEA results compared to NCC with no 

clear distinction between them [Figure 6.5 and Figure 6.6]. These results might be attributed to the 

simulated higher lateral sampling frequency (500 A-lines) and lateral Sinc interpolation used 

before displacement estimation [16]. These qualitative findings correlate well with the quantitative 

evaluation of strain bias, normalized strain error and total temporal relative error. Note that, higher 

TTRs with STBR-1 compared to SBR and STBR-2 resulted from underestimation with only 

temporal regularization. Overall, these results suggest that STBR-2 regularization is preferred over 

STBR-1 when performing STBR for CSI. Additionally, adaptive application of either SBR or 

STBR-2 might be a preferred approach for Bayesian regularization depending on local signal 

decorrelation and input RF data for future studies.  

 In vivo qualitative results suggest benefits from using temporal information for CSI 

observed with uniform strain distribution and strain curves with smooth temporal variation and 

physiological relevance (Figure 6.11 – Figure 6.14). Quantitative stochastic analysis results 

(Figure 6.15) corroborate the qualitative findings with STBR-2 demonstrating the best 

performance in terms of e(SNR )E  . Even though STBR-2 had higher radial and longitudinal 

e(SNR )E   values compared to all other methods, the results were not statistically significant 

possibly due to small sample size (n = 10) and the choice of a conservative post-hoc test 

(Bonferroni) for multiple comparisons after ANOVA for four algorithms. Additionally, the best 

performance with STBR-2 correlates with our conclusion from FEA simulation study where 

STBR-2 is preferred over STBR-1 due to lower errors.  

 We also demonstrated performance variation with the choice of σt (temporal Gaussian 

width vector) in FEA simulation and in vivo experiments [Figure 6.10 and Figure 6.16] with 
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optimal σt being 0.01 and 0.1, respectively. One interesting observation from these results is the 

dependence of σt to image acquisition frame rate (simulation = 250 Hz for canine heart and in vivo 

= 213 Hz mouse heart) suggesting lower σt for data collected at higher frame rate. Our previous in 

vivo STBR for carotid strain imaging also corroborates the finding (optimal σt = 0.005 for carotid 

artery with imaging frame rate = 538 Hz). σt can be considered as a tuning parameter controlling 

the type of displacements allowed by the model [note that likelihood function construction]. Lower 

σt enforce higher temporal continuity and vice versa. Thus, it is reasonable to expect the optimal 

choice to be tissue and imaging frame rate specific. In this dissertation, we set σt empirically, a 

potential drawback which must be addressed before employing STBR for future in vivo studies. 

Possible solutions include dynamic variation of σt based on local signal decorrelation [2, 25, 26] 

or designing tissue-specific presets for displacement estimation parameters as suggested by 

Ashikuzzaman et al. [27].  

 Computational timing analysis showed that STBR methods require more time to execute 

when compared to NCC or SBR (Table 6.2). Additional timing requirement stems from the 

referred time loops shown in Figure 6.2 [Algorithm 1]. There are several methods to improve 

computation efficiency. For example, currently NCC calculation is done within a temporal for loop 

which calls a NCC computation CUDA kernel having 2-D blocks of threads. The temporal loop 

can be replaced with 3-D blocks of threads achieving better parallelization. However, higher 

memory requirement will be a potential challenge while adopting this approach.   

 Several state-of-art US imaging techniques with plane or diverging wave imaging have 

also been implemented for cardiac and vascular strain imaging applications [28-30]. These 

techniques achieve significantly higher frame rates compared to focused line-by-line image 
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acquisition approaches. We anticipate more robust Bayesian regularization for these applications 

using both spatial and temporal domain information simultaneously.  

 One limitation of the current study is the use of data only from healthy models for both 

FEA and in vivo studies. To better understand the robustness and efficacy of the STBR, diseased 

heart models [20] (e.g., ischemia, dyssynchrony) should also be considered in future studies.  

Another limitation is the algorithm implementation for linear arrays as opposed to phased array 

transducers. This must be addressed before possible application of STBR to in vivo human studies. 

Finally, our analysis was limited to a single iteration of temporal regularization thus sampling 

information only from its immediate past and future neighbors. Iterative application will be 

investigated in future studies to better understand the effect of neighborhood size for STBR. 
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Chapter 7 

Dynamic Frame Skip and Log Compressed Correlation Function for 

Ultrasound Strain Imaging 

 This chapter focuses on two signal processing approaches: (a) dynamic frame skip (DFS) 

and (b) log compression of the correlation function in the context of improving Bayesian 

regularization for ultrasound strain imaging. In Section 7.14, we investigate if the DFS algorithm 

can provide improved estimation of cardiac strain tensor components (radial and longitudinal 

strain) when compared to a conventional inter frame tracking approach. In Section 7.25, we 

investigative the utility of log compression of the regularized correlation function to tackle over-

regularization artifacts seen with Bayesian regularization (refer to Chapters 04 and 05 for more 

details). 

7.1 Dynamic Frame Skip (DFS) for Cardiac Strain Imaging 

 In Chapter 04, we proposed and validated a cardiac strain imaging framework with 

Bayesian regularization using simulation and in vivo data. In this sub-section, we are primarily 

focused on investigating the feasibility of using dynamic frame skip (DFS) to further improve 

cardiac strain imaging accuracy. Optimal frame selection to improve strain estimation quality has 

been investigated by several groups.  Jiang et al. [1] proposed to select optimal frames by assessing 

a displacement quality metric [2]. Xia et al. [3] used a one-predication-one-correction method for 

 
4 Rashid Al Mukaddim, and Tomy Varghese, “Cardiac Strain Imaging with Dynamically Skipped Frames: A 
Simulation Study.” IEEE International Ultrasonics Symposium Proceedings, 2020. 
 
5 Rashid Al Mukaddim, and Tomy Varghese, “Improving Ultrasound Lateral Strain Estimation Accuracy using Log 
Compression of Regularized Correlation Function.” 2020 42nd Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC), IEEE, 2020. 
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dynamic frame pairing in quasi-static elastography. Zayed et al. [4] utilized principal component 

analysis and a multi-layer perceptron classifier to choose suitable frame pairs. In this chapter, we 

extend the DFS approach reported by Daniels and Varghese [5], and previously used by 

McCormick et al. [6] for carotid strain imaging to cardiac strain imaging. Dynamic frame skip 

relies on automatically selecting pre- and post-deformation frames with sufficient deformation to 

ensure reliable 2-D tracking of both axial and lateral displacement vectors. McCormick et al. [7] 

applied DFS for carotid strain imaging by determining frame skip (FS) criterion based on absolute 

axial strain in a rectangular region of interest (ROI) of the image. The ROI  was chosen by 

discarding top and bottom portions of the image such that it only contained the arterial wall [7]. 

For cardiac applications, we are interested in optimizing the strain estimation accuracy within the 

myocardial wall. Thus, three ROIs were placed at anterior, apical, and posterior segments of 

myocardium at end-diastole (ED) to automatically determine DFS criterion. FS was determined 

from the two axial strain criteria defined as follows. The first criterion was to increase skip until 

mean absolute ROI strain (ROI
MAA

) exceeds a threshold, τmax. Second, a limit was imposed on the 

percentage of ROI pixels, ROIper greater than τmax. The maximum allowed FS was 5 frames. After 

tracking was done with an optimal FS, estimated axial and lateral displacements were used to 

update the positions of anterior, apical and posterior DFS ROIs to evaluate skip criteria for 

following frame pairs. The algorithm initially utilizes the previous FS which was increased if it 

satisfied all the above-mentioned criteria. Otherwise, FS was decreased until all criteria were 

satisfied.  The DFS algorithm is summarized in Figure 7.1. In this chapter, τmax and ROIper values 

were empirically chosen to be 1.5 % and 10 % respectively.  
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Figure 7.1 Flowchart representation of Dynamic Frame Skip Algorithm. 
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7.1.1 Simulation Study to Investigate Feasibility of DFS 

7.1.1.1 Cardiac Strain Imaging with Bayesian Regularization   

 DFS was integrated into our cardiac strain imaging pipeline with Bayesian regularization-

based hierarchical block-matching algorithm for displacement estimation reported in Chapter 04. 

Default setup for displacement estimation was three levels of tracking, one iteration of Bayesian 

regularization with no lateral interpolation. Axial kernel dimensions for three levels were 8λ, 6λ, 

and 5λ respectively while lateral kernel dimensions were 15, 13 and 11 A-lines respectively. 

Kernels had an overlap of 10 % and 50 % in axial and lateral directions respectively. 2-D 

windowed Sinc interpolation [8] was used to determine sub-sample displacement estimates. 

Lagrangian strain estimation was performed after delineating the myocardium and integrating 

incremental displacement estimates over a cardiac cycle [9]. A modified Akima piecewise cubic 

Hermite interpolation was used to interpolate estimates for skipped frames. Strain estimation was 

also done with skip = 0, termed as continuous frame skip (CFS) to compare with DFS. For ease of 

interpretation of results in the cardiac coordinate system, the cardiac strain tensor was derived 

using Lagrangian strain tensor through coordinate transformation. Further details regarding the 

CSI framework can be found in Chapter 04. Additionally, the impact of the maximum iteration 

number for Bayesian regularization on DFS performance was also investigated.   

7.1.1.2 Canine Cardiac Deformation Simulation Study   

 A 3-D finite element analysis (FEA) canine cardiac deformation model [10] was used for 

the simulation study. Here 125 frames of radiofrequency (RF) data in parasternal long axis view 

covering one cardiac cycle of deformation were simulated. A 128-element linear array was 

simulated using a frequency domain ultrasound imaging program [11] and used to collect 500 A-

lines at a sampling frequency of 78.8 MHz for each frame. A Gaussian-shaped transmit pulse with 
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8 MHz center frequency and 80% fractional bandwidth was used. To quantitatively compare 

performance between CFS and DFS, total temporal relative (TTR) error (%) was computed using: 

 1
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where estimated and ground-truth strain were denoted by ES and TS respectively, t is the time 

index. Further details regarding the simulation framework can be found in Chapter 04. 

7.1.2 Experimental Findings from the DFS Feasibility Study 

 Regional analysis was performed by dividing the myocardial wall into six segments based 

on American Heart Association (AHA) classification to evaluate the performance of DFS. 

Segments 1 – 6 represent anterior base, anterior mid, anterior apex, posterior apex, posterior mid 

and posterior base segments, respectively. Figure 7.2 shows the comparison between DFS and 

CFS for estimation of regional axial displacement temporal curves. No apparent performance 

difference was observed between DFS and CFS.  The comparison results between DFS and CFS 

for estimation of regional lateral displacement temporal curves are shown in Figure 7.3. Note that 

DFS showed improved qualitative agreement with ground truth when compared to CFS. 

Quantitative analysis shows that DFS reduced axial and lateral displacement TTR of CFS by 24.89 

% and 46.07 % respectively. Figure 7.4 shows the comparison between DFS and CFS for 

estimation of regional temporal radial strain. No apparent performance difference was observed, 

expect for segment 4 where DFS results were comparatively better than CFS. Figure 7.5 presents 

comparison between DFS and CFS for estimation of regional temporal longitudinal strain. In 

segment 1 and 4, DFS had comparatively better agreement with true strain results when compared 

to CFS. TTRs comparison between DFS and CFS as a function of the maximum regularization 
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iteration value is presented Table 7.1. DFS with a single iteration provided the best performance 

in terms of strain TTRs (shown in bold font in Table 7.1). With increased number of iterations, 

both DFS and CFS resulted in higher TTRs attributed to the over-regularization artifact previously 

discussed in Chapter 05. However, DFS still maintained lower errors than CFS. One solution to 

tackle over regularization would be employing adaptive Bayesian regularization as reported in 

Chapter 05. One additional solution is also presented in Section 7.2 of this chapter.  

 

 

Figure 7.2 Regional axial displacement estimation performance comparison between DFS and CFS. 
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Figure 7.3 Regional lateral displacement estimation performance comparison between DFS and CFS. 
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Figure 7.4 Regional radial strain estimation performance comparison between DFS and CFS. 
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Figure 7.5 Regional longitudinal strain estimation performance comparison between DFS and CFS. 

Table 7.1 TTR Comparison Between DFS and CFS: No Lateral Interpolation 
 

Iteration 1 Iteration 2 Iteration 3 
 

DFS CFS DFS CFS DFS CFS 

Axial 18.37 22.39 26.42 21.89 22.19 25.00 

Lateral 29.92 30.89 26.87 50.19 33.09 61.71 

Radial 17.32 22.35 23.56 26.25 22.17 30.6 

Longitudinal 14.52 15.87 22.26 22.83 26.61 31.77 
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7.1.3 Discussion on the use of the DFS Algorithm for CSI 

 In section 7.1, we have investigated the impact of using DFS for cardiac strain imaging 

using a realistic 3-D deformation model of the canine heart. DFS and CFS performed similarly in 

estimating axial displacement due to phase information and higher sampling frequency of RF data 

along the axial or beam direction. Performance improvement was more evident in lateral 

displacement estimation results which could be for following three reasons. First, magnitude 

dependence of strain estimation quality as shown by Varghese et al. [12] using strain filter. Second, 

tracking small deformations using envelope signals results in strain quality degradation [13]. 

Third, Bayesian regularization performs better under higher deformation (between 1% to 5%) [14]. 

Improved displacement quality resulted in accurate axial and lateral strain estimates [Table 7.1]. 

Consequently, components of cardiac strain tensor (radial and longitudinal strain) had fewer 

estimation errors when compared to CFS [Table 7.1]. Note that the performance improvements in 

apical segments (segments 3 – 4) shown in Figure 7.4 and Figure 7.5, is attributed to improved 

lateral-shear strain estimation with the DFS method. These results suggest that DFS can be 

potentially utilized to enhance cardiac strain imaging quality. However, these are preliminary 

results and several other factors such as kernel dimension optimization, performance in the case 

of noise corrupted RF data, lateral interpolation factor and simulation models of diseased hearts 

(e.g., ischemic) should be investigated to decide conclusively if there are clear benefits of using 

DFS over CFS for cardiac strain imaging. For example, higher lateral interpolation might be 

sufficient to reduce some of the errors seen with CFS. In future studies, DFS will be applied for in 

vivo murine cardiac strain imaging.  
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7.2 Log Compression of the Regularized Correlation Function 

 Bayesian regularization for ultrasound strain imaging proposed by McCormick  et al. [15] 

can be iteratively applied to improve the quality of displacement estimation. At each iteration, new 

data from kernels located further from the current grid location are incorporated into the likelihood 

function resulting in attenuation of the magnitude of any secondary random peak. After the desired 

number of iterations, the probability values get concentrated around the peak that is similar to the 

dominant peaks of neighboring kernels. Thus, the PPD converges to a 2-D unimodal Gaussian 

distribution as shown in Figure 7.6 (a). Though significant improvement can be achieved in the 

axial direction, we observed that the PPD shown in Figure 7.6 (a) incurs lateral estimation errors 

in the estimation of subsample lateral displacements through interpolation (e.g., 

parabolic/cosine/Sinc) due to the delta like profile along the lateral direction [blue curve in Figure 

7.6 (c)]. This behavior is due to over-regularization, where the lateral displacement subsample 

resolution gets bounded by the sub-line resolution of up-sampled RF data. One computationally 

intensive solution would be to interpolate RF data with a high interpolation factor [16] in the lateral 

direction. For instance, Byram et al. [17] used RF data with sampling frequency of 10 GHz to 

avoid using any subsample estimators. Another robust approach is to adaptively vary desired 

iteration as discussed in Chapter 05. Here, we propose a logarithmic transformation of PPD 

[Figure 7.6 (b)] as a low-cost alternative to recover the lateral displacements with improved 

subsample resolution. As shown in Figure 7.6 (c), Log(PPD) does not shift the mode of PPD but 

enables a more manageable data presentation using interpolation. 
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Figure 7.6 (a) PPD after Bayesian regularization. (b) Log of the PPD. (c) Lateral profiles of PPD along the 

integer axial shift location corresponding the peak. 

7.2.1 Experimental Protocol to Investigate the Feasibility of Log Compressed 
Regularized Correlation Function 

7.2.1.1 Displacement and Strain Estimation 

 Three levels of tracking using a hierarchical 2-D BM algorithm with Bayesian 

regularization is used in this study [9, 18, 19]. RF data were up sampled by a factor of 2 in both 

axial and lateral directions. Final level used a spatial kernel dimension of 1 wavelength by 10 A-

lines. Axial and lateral kernel overlaps were 10% and 90% respectively. At each level, three 

iterations of Bayesian regularization were performed. Subsample estimation was performed with 

parabolic interpolation using both PPD and Log(PPD) for comparison. These approaches will be 

termed as “parabolic” and “log+parabolic” in this chapter. No additional filtering was performed 
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on the estimated displacements. A linear least squares with kernel dimension of 3.2×3.2 mm was 

then used for strain estimation [20]. 

7.2.1.2 Numerical Simulation Study 

 Numerical finite-element analysis (FEA) models of uniform and inclusion phantoms under 

3% and 7% uniaxial deformation were used for our comparative study. Ultrasound imaging was 

performed using a 128 element 1-D linear array (element dimension = 10×0.15 mm2) operating at 

a center frequency of 8.0 MHz. The array was modelled using a frequency-domain ultrasound 

simulation program [11]. Delay-and-sum beamforming was used to generate each A-line of RF 

data. Ten independent scatterer distributions were utilized for statistical analysis with a paired t-

test used to compute significance. Displacement bias, variance and normalized strain error,  were 

calculated in a ROI around the focus of the transducer (20 mm) using the following equations. 

 bias( ) e tm E         (7.2) 

 2variance( ) var( )e tm      (7.3) 

  2 2( ) 100ES TS TS          (7.4) 

where, τe and τt denote estimated and FEA displacement respectively. In equation (7.4), ES and 

TS  denote estimated and FEA strain respectively. Additionally, signal-to-noise ratio (SNR) and 

contrast-to-noise ratio (CNR) were calculated in the uniform and inclusion phantom respectively  

7.2.2 Results from the Simulation Comparative Study 

 Due to the low lateral sampling frequency, the impact of over-regularization is more readily 

observed in lateral estimation results. We present qualitative results in Figure 7.7 and Figure 7.8 

showing lateral estimation results for 3% and 7% deformation respectively. “Vertical banding” 
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artifacts are clearly visible in displacement and strain images obtained with parabolic interpolation 

[Figure 7.7 (a) and (c)]. Improvement in image quality with reduction in banding artifacts were 

achieved with log+parabolic processing [Figure 7.7 (b) and (d)]. Log+parabolic displacement 

image [Figure 7.8 (a)] showed smoother transitions from low to high values compared to parabolic 

alone [Figure 7.8 (b)]. Thus, the log+parabolic strain image Figure 7.8 (d)] achieved improved 

homogeneity than the parabolic strain image [Figure 7.8 (c)]. Table 7.2 summarizes the 

quantitative analysis results. No significant difference was observed in the axial estimation 

accuracy. However, log+parabolic had significantly lower lateral displacement bias, variance and 

strain errors when compared to parabolic (p < 0.001) for both the low and high deformation. SNR 

results are summarized in Table 7.3. Significant improvement in lateral SNR were achieved with 

the log+parabolic approach (p < 0.001). 
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Figure 7.7 Uniform phantom at 3% deformation. Panels (a) and (b) show lateral displacement images with 

parabolic interpolation before and after log compression. Panels (c) and (d) show corresponding 

strain images.  

Table 7.2 Comparison of Estimation Accuracy Before and After Log Compression of PPD 

Uniform Phantom Results (n = 10) 

  3% Applied Deformation 7% Applied Deformation 

  Parabolic  Log+Parabolic  Parabolic  Log+Parabolic  

Axial 

Estimates* 

Bias (μm) 2.43 ± 0.04 2.40 ± 0.04 5.33 ± 0.08 5.28 ± 0.08 

Jitter (μm2) 0.002±9.11×10-5 0.003±9.11×10-5 0.01±3.09×10-4 0.01±3.15×10-4 

StrainError (%) 1.62 ± 0.03 1.58 ± 0.03 1.28 ± 0.02 1.27 ± 0.02 

Lateral 

Estimates 

Bias (μm) 12.91 ± 0.11 5.86 ± 0.18 12.86 ± 0.31 10.78 ± 0.36 

Jitter (μm2) 0.22 ± 0.005 0.05 ± 0.003 0.25 ± 0.01 0.17 ± 0.01 

StrainError (%) 56.33 ± 0.49 15.17 ± 0.48 13.94 ± 0.26 10.37 ± 0.42 

*No difference along axial directions 
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Figure 7.8 Uniform phantom at 7% deformation. Panels (a) and (b) show lateral displacement images with 

parabolic interpolation before and after log compression, while (c) and (d) show corresponding strain 

images. 

Table 7.3 SNRs* Before and After Log Compression of PPD 

Methods 

3% Deformation 7% Deformation 

Axial Lateral Axial Lateral 

Parabolic 33.76±0.18 4.51±0.08 35.98±0.15 14.83±0.17 

Log+Parabolic 33.92±0.18 14.61±0.27 36.04±0.15 17.61±0.36 

*SNR results are in decibels (dB) 

 Figure 7.9 (a) – (b) show 3% axial strain images using parabolic and log+parabolic 

estimation respectively, while Figure 7.9 (c) – (d) show the corresponding images for 7% axial 

strain. No difference was observed among these results due to presence of phase information and 

high sampling frequency in the axial direction. CNR values in Table 7.4 corroborate this 

observation. Figure 7.10 and Figure 7.11 show lateral estimation results for the 3% and 7% 
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deformation, respectively. Note that the inclusion appearance is distorted due to the banding 

artifacts in the parabolic results [Figure 7.10 (a) and (c)]. Improved lateral strain images with 

clearer inclusion boundary delineation was achieved with log and parabolic processing [Figure 

7.10 (b) and (d)]. Observe that the 7% lateral strain image with parabolic interpolation had banding 

artifacts both in background and inside the inclusion [Figure 7.11 (a) and (c)]. These issues were 

resolved with log+parabolic processing [Figure 7.11 (b) and (d)]. Significant improvement in 

lateral CNR was achieved with log and parabolic (p < 0.001). 

 

Figure 7.9 Axial strain images from an inclusion phantom. Panels (a) and (b) show 3% axial strain, while 

(c) and (d) show 7% axial strain with parabolic interpolation before and after log compression. Green 

ROI = target, Red ROI = background. 
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Table 7.4 CNRs* Before and After Log Compression of PPD 

Methods 

3% Deformation 7% Deformation 

Axial Lateral Axial Lateral 

Parabolic 15.21±0.83 1.31±0.13 17.41±1.63 3.13±0.22 

Log+Parabolic 15.28±0.83 3.12±0.28 17.49±1.63 4.79±0.41 

*CNR results are in decibels (dB) 

 

Figure 7.10 Inclusion phantom at 3% deformation. Panels (a) and (b) show lateral displacement images 

with parabolic interpolation before and after log compression. Panels (c) and (d) show 

corresponding strain images.  

 In this section, the use of log compressed regularized NCC to reduce banding artifacts due 

to over-regularization was investigated. Peaks similar to a Delta function in the lateral projection 

of PPD cannot be represented with conventional interpolation schemes. Our results demonstrate 

that log compression enables improved subsample estimation with significant reduction of lateral 

banding errors without additional computational burden or bias. As sub-sample displacement 
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estimation is more critical at lower when compared to higher deformations, the benefit of our 

proposed approach is therefore more evident at lower strains. Future work will focus on using 

cosine and Sinc interpolation [8] and in vivo validation. Furthermore, this approach will be 

compared against adaptive Bayesian regularization to benchmark its performance against more 

sophisticated algorithms developed to tackle over-regularization. 

 

Figure 7.11 Inclusion phantom at 7% deformation. Panels (a) and (b) show lateral displacement images 

with parabolic interpolation before and after log compression, while (c) and (d) show corresponding 

strain images. 
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Chapter 8 

Real-Time in vivo Photoacoustic Imaging of Myocardial Ischemia 

In recent years, efforts have concentrated on in-vivo quantitative imaging by capitalizing 

on the absorption spectra of endogenous contrast agents such as hemoglobin [1, 2], leading to the 

use of dual-wavelength photoacoustic imaging (PAI) to estimate blood oxygen saturation (% sO2). 

Differing absorption spectra of oxyhemoglobin (HbO2) and deoxyhemoglobin (HHb) enables 

quantification of blood oxygenation with this approach [3]. Real-time PAI and its sensitivity to 

blood oxygenation levels coupled with the recent development of PA integrated micro-ultrasound 

systems [4] make it suitable for diagnosis and monitoring of myocardial ischemia in-vivo. This 

chapter6 focuses on the use of such a commercially available PA imaging system (Vevo 2100 

LAZR, FUJIFILM VisualSonics, Inc., Toronto, Canada) for the diagnosis and monitoring of 

myocardial ischemia in murine models.  

Initial reports of PAI for murine cardiovascular dynamics was reported in [5]. They utilized 

a 30-MHz linear array to image the beating heart of athymic nude mice at ~50 frames per second. 

Li et al. (2011) tried to establish a correlation between the extent of myocardial ischemia and 

variation of PA signal intensity in rats submerged in water under tracheal intubation, on a section 

of the left ventricular wall. They used a wavelength of 532 nm and a single element transducer 

with center frequency of 3.5 MHz for reception [6]. They reported an exponential decay in the PA 

signal intensity with time after left anterior descending (LAD) artery occlusion. In this chapter, we 

report on the utilization of a commercially available dual-wavelength PAI solution to generate 

parametric maps of blood oxygen saturation, % sO2 that were overlaid on high resolution high-

 
6 Rashid Al Mukaddim, Allison Rodgers, Timothy A. Hacker, Andrew Heinmiller and Tomy Varghese, “Real-time in 
vivo photoacoustic imaging in the assessment of myocardial dynamics in murine model of myocardial ischemia.” 
Ultrasound in Medicine and Biology, vol. 44, no. 10, pp. 2155-2164 (2018) PMCID: PMC6135705 
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frequency ultrasound images of the myocardium and show that PAI is sensitive to changes in 

myocardial oxygenation associated with acute myocardial ischemia.  

8.1 Murine Models and Photoacoustic Data Analysis 

8.1.1 Murine model of Myocardial Ischemia  

 Ten 10-12 weeks old male BALB/CJ mice obtained from Jackson Labs (ME, USA) were 

studied using PAI and high frequency ultrasound (HFUS) imaging. Myocardial ischemia was 

established in each murine model using the procedure described below. All in vivo procedures 

were performed under an approved protocol by the Institutional Animal Care and Use Committee 

(IACUC) at the University of Wisconsin-Madison. 

Following induction of isoflurane anesthesia (3%), the mouse was intubated with an 18-gauge 

catheter and placed on a ventilator at 120-130 breaths per minute with a stroke volume of 150 µL 

and maintained on 2% isoflurane. A left lateral incision through the fourth intercostal space was 

made to expose the heart. After visualizing the left coronary artery, a 7-0 clear prolene suture was 

placed through the myocardium in the anterolateral wall and secured [7, 8]. Coronary artery 

entrapment was confirmed by observing blanching of the distal circulation (ventricular apex) and 

ECG changes indicative of myocardial ischemia. The lungs were over inflated, and the ribs and 

muscle layers were closed by absorbable sutures. The skin was closed by additional suturing using 

6-0 clear nylon or silk sutures. The mouse was then recovered from anesthesia and extubated. 

8.1.2 Photoacoustic (PA) and High-frequency Ultrasound Imaging 

 Longitudinal variations of perfusion and cardiac function of the heart after ischemia, was 

evaluated using PA and HFUS. Imaging sessions were performed before LAD ligation (baseline) 

and at 30 minutes, 80 minutes, 120 minutes and 24 hours after LAD ligation. The objective of 
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imaging after LAD ligation (from 30 minutes to 24 hours) was to study the ability of PAI in the 

early detection of ischemia in the ventricular wall. All imaging was performed using a Vevo LAZR 

imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada). During imaging sessions, mice 

were anesthetized using 1.5 % isoflurane and a constant flow of oxygen was maintained. Hair was 

removed from the chest region using depilatory cream to ensure better transmission of optical 

energy. Mice were placed supine on a heated imaging platform for imaging with continuous 

monitoring of physiological parameters.  

 2-D PAI was performed in “Oxy-Hemo” mode to obtain parametric maps of oxygen 

saturation (% sO2) and hemoglobin (Hbt) concentration in the anterior myocardium. In this mode, 

an automated imaging sequence is used to perform dual-wavelength PAI at 750 and 850 nm. 

Parametric maps of % sO2 and Hbt are then generated using the algorithm reported in [4, 9, 10], 

implemented on the system. Mice hearts were imaged in a parasternal long axis (PLAX) view 

using a LZ 400 transducer (FUJIFILM VisualSonics, Inc., Toronto, Canada) with broadband 

frequency range from 18 – 38 MHz and operating at a center frequency of 30 MHz. The imaging 

parameters used for PAI are presented in Table 8.1. 

Table 8.1 PAI Presets 

Imaging Parameter Set Value 

PA Gain 52 dB 
2-D Gain 27 dB 

Image Width 10.36 mm 
Image Depth 15.00 mm 

Image Depth Offset 2.00 mm 
Focus Depth 10.00 mm 
Persistence 10 

Correct Energy On 
Threshold Hbt 20 % 
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 A large amount of centrifuged acoustic gel was applied on the chest and in the transducer 

cavity to ensure that no air bubbles were present in the imaging plane. This precaution was taken 

to avoid reverberation artifacts which can interfere with PA images. Special attention was also 

paid to keeping the heart in the imaging plane such that the anterior myocardium or interventricular 

septum or anterior wall LV lies within a depth of 9-11 mm where laser energy is focused. The 

transducer was also placed horizontally keeping the skin surface at a depth of 7.5 mm or higher to 

avoid any reverberation artifacts from the skin whenever possible. Manual time gain compensation 

(TGC) was applied to improve the signal to noise ratio at this depth setting and to compensate for 

the attenuation of light as its energy drops with depth in the tissue. The imaging parameters were 

optimized by experimenting on two mice models in the group and then saved as a preset in the 

scanner for the remainder of the animal models. Figure 8.1 presents a representative Oxy-Hemo 

PA image of the mouse heart using the above-mentioned preset. Note that our study focused only 

on the anterior myocardium, since most of the light energy is absorbed here leaving very little 

energy for posterior myocardium to generate any reasonable PA estimates which is also evident 

from Figure 8.1. 3-D PAI was then performed using the acquisition motor with a scanning range 

of 6 mm and step size of 0.16 mm resulting in 37 2-D slices/volume. Persistence (frame averaging) 

of 10 was also maintained during 3-D PA acquisition. Figure 8.2 illustrates a representative case 

of 3-D Oxy-Hemo PA image.  
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Figure 8.1 Representative Oxy-Hemo PA Image of Mice Heart at baseline (before LAD ligation). Left panel 

shows the ultrasound image while right panel shows the corresponding Oxy-Hemo PA image. The 

region outlined in pink represents the region of interest (ROI). The anterior myocardium is placed 

within a depth range of 9-11 mm with the skin surface at 7 mm maintained parallel to the transducer 

face. The reverberation artifact (indicated by green arrows) is seen at a depth of 13-14 mm caused 

due to the PA signal being reflected between the skin layer and transducer face. High oxygen 

saturation (% sO2) (in red) is visible in the anterior myocardium within the ROI. No estimates are 

obtained in posterior myocardium (black region in the Oxy-Hemo Image). 

 HFUS was performed using two transducers - MS 550D (broadband frequency range of 22 

– 55 MHz) operating at center frequency of 40 MHz and LZ 400 transducer (broadband frequency 

range of 18 – 38 MHz) operating at center frequency of 30 MHz. 2-D B-mode images were 

collected in both PLAX and short axis (PSAX) views using MS 550D while LZ 400 was used to 

collect only PSAX views. Image width, depth, gain and TGC were adjusted carefully to optimize 

image quality by maximizing the signal-to-noise ratio and adjusting for the attenuation of light 

with depth. A 235 Hz frame rate was maintained over all ultrasound only imaging sessions. This 

frame rate ensured optimal temporal resolution and captured the motion of the rapidly beating 
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mouse heart without distortion which is critical in performing 2-D echocardiographic 

measurements. Cine loops containing 1000 frames per imaging plane were stored digitally for 

further analysis. 

 3-D imaging was performed along the parasternal long axis view using the acquisition 

motor by translating the transducer perpendicular to the long axis imaging orientation. For all mice, 

scanning range of 5 mm with step size of 0.14 mm was maintained resulting in 36 2-D 

slices/volume.  

 

Figure 8.2 Representative 3-D Oxy-Hemo PA Image of Mice Heart at baseline (before LAD ligation). Left 

panel shows the cube-view representation of sO2 average estimates overlaid on ultrasound images 

while the right panel presents an orthogonal representation of the same heart. 

8.1.3 Photoacoustic (PA) Image Analysis 

 Quantitative analysis of Oxy-Hemo PA images were performed offline using VevoLab 

Software commercially available with Vevo LAZR imaging system. For each imaging session, an 

average of 20 frames per cine loop of Oxy-Hemo data were collected and digitally stored. Given 
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that frame averaging was used while acquiring OxyHemo images (average of 10 frames per 

wavelength), each frame represents an average of % sO2 values throughout multiple cardiac cycles. 

The system is therefore not sensitive enough to detect variation of % sO2 over one cardiac cycle. 

However, in this work, our main focus was to detect the general trend in the variation of % sO2 

after induction of LAD ligation which is still measurable using the frame averaging scheme. Even 

with persistence of 10, we experienced signal dropouts in some of the collected frames. Therefore, 

a single frame with reasonable amount of % sO2 estimate was chosen for analysis. A ROI was 

delineated manually in the anterior myocardium based on the anatomical ultrasound images. 

Delineated ROI encompassed the entire myocardium and sometimes a thin portion of ventricular 

chamber adjacent to endocardium. Both the OxyZated™ and HemoMeaZure™ tool were utilized 

to quantify oxygen saturation (% sO2) and total hemoglobin (Hbt) respectively within the ROI. 

The software reports two measures of oxygen saturation, namely % sO2 Average and % sO2 Total. 

Values of % sO2 Total calculates the average oxygen saturation in all pixels including those with a 

zero/void estimate within the ROI while % sO2 Average calculates the average oxygen saturation 

within the ROI after excluding the zero/void estimates [11]. After LAD ligation we sometimes 

observe loss of PA signal in the ROI due to presence of a suture in the path of light transmission. 

This also resulted in higher numbers of zero/void estimates within ROI than for the baseline case 

which could introduce a small bias in the longitudinal study. To avoid this issue, % sO2 Average was 

chosen as the measure of oxygen saturation in our study. The percent change of oxygen saturation 

(% sO2 Average) between baseline and post- LAD ligation cases were calculated using the following 

formula: 

 2 Post 2 Baseline
2

2 Baseline

sO sO
sO (%) 100

sO


     (8.1) 
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Quantitative results from VevoLab software were exported to excel files for statistical analysis 

using MATLAB (The MathWorks, Inc., Natick, MA, USA).  

8.1.4 Two-Dimensional Echocardiographic Measurements 

 Conventional echocardiographic measurements were derived from both grayscale B-mode 

and M-mode images acquired along the PLAX views. PLAX cardiac measurement protocol for 

VevoLab software was utilized for performing the measurement of left ventricular (LV) ejection 

fraction (% EF), fractional shortening (% FS) and stroke volume (SV µL).  

EF and SV were derived from PLAX B-mode images obtained using LZ550D transducer. For 

performing the measurements, endocardial wall was delineated at end diastole (ED) and end 

systole (ES) of a cardiac cycle. Software then automatically traces out the intermediate frames and 

calculates the left ventricle volume at ED (LVvol;d) and left ventricle volume at ES (LVvol;s). 

Finally, EF (%) was calculated as ; ;

;

(%) 100vol d vol s

vol d

LV LV
EF

LV


   while SV (µL) was calculated 

as ; ;( ) vol d vol sSV L LV LV   .  

 M-mode PLAX images were used to derive the measure of FS using LZ400 transducer. A 

section of the cine loop without breathing motion artifacts was chosen for analysis. LV trace tool 

was used to delineate the left ventricular anterior wall (LVAW) and posterior wall (LVPW). Based 

on the delineation, the software automatically calculates the ED diameter (LVEDD) and ES diameter 

(LVESD). Finally, FS (%) was calculated as (%) 100EDD ESD

EDD

LV LV
FS

LV


  .  
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 These measurements provide anatomical information about the heart after induction of 

myocardial ischemia. Quantitative results from VevoLab software were exported to excel files for 

statistical analysis using MATLAB.  

8.1.5 Statistical Analysis 

 All data are represented as mean ± standard deviation. One-way analysis of variance 

(ANOVA) with Tukey-Kramer post hoc test was performed for the five observation time points 

(Baseline, 30 minutes, 80 minutes, 120 minutes and 24 hours) to determine the statistical difference 

between observations. A p <0.05 was considered statistically significant. Correlation obtained 

using linear regression and Pearson correlation coefficient (r-value) was reported. All statistical 

analysis was performed using MATLAB (Statistics and Machine Learning Toolbox Release 

2017b, The MathWorks, Inc., Natick, Massachusetts, United States). 

8.2 Quantification of oxygen saturation levels post LAD ligation 

 The main results of the reported study are visualization and quantification of alterations in 

oxygen saturation levels post LAD ligation using dual-wavelength PA imaging. The variation in 

the % sO2 Average also exhibits a positive linear relationship with conventional echocardiographic 

measurements. 

8.2.1 Detection of alterations in oxygenation level in anterior myocardium after LAD 
ligation  

 Representative PA images of myocardial ischemia are presented in Figure 8.3. Figure 8.3 

(a) shows baseline PA image with very high oxygen saturation (dark red) in the anterior 

myocardium indicating high perfusion. Figure 8.3 (b) – (e) illustrates the oxygen saturation levels 

at 30 minutes, 80 minutes, 120 minutes and 24 hours after LAD ligation. Qualitative observations 

indicate a reduction of % sO2 level shown in blue in the PA-US co-registered images. We also 
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observed a decrease in the total colored area in post-surgery cases when compared to the baseline 

indicating lower % sO2 level in the anterior myocardium. 

 

Figure 8.3 Dual-wavelength in-vivo PA monitoring of acute myocardial ischemia. Representative Oxy-

Hemo PA images at (a) baseline, (b) 30 minutes, (c) 80 minutes, (d) 120 minutes and (e) 24 hours 

after LAD ligation. The heat map represents % sO2 levels ranging from 0% (dark blue) to 100% (dark 

red). ROI in the anterior myocardium is shown in green. Figure (b) and (d) represents images where 

a thin sliver of the ventricular chamber could have been included in chosen ROI for analysis (red 

line right against the inside of the anterior myocardium).  

 To obtain statistically significant results, the experiment was repeated over seven 

additional mice. All mice experienced similar rapid decreases in blood oxygen saturation (% sO2) 

starting at 30 minutes after LAD ligation with p <0.001. One-way ANOVA with Tukey-Kramer 

post hoc test indicate statistical difference of blood oxygen saturation (% sO2) at baseline 

compared to post ligation time points (p <0.001). There was no statistically significant difference 

of % sO2 level among post ligation observations compared to each other. Figure 8.4 shows the 

box-and-whisker plots of blood oxygen saturation (% sO2) at five time points of observation. The 

plot illustrates that % sO2 level at 30, 80, 120 minutes and 24 hours are close to each other and 
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lower than baseline % sO2 level. One outlier is observed at 120 minute’s which can be attributed 

to the physiological variability among the mice. Highest variability is observed at 24 hours which 

might be caused by the variation in response to ischemia among mice. Even then, the oxygenation 

level after 24 hours remained significantly lower than the baseline (p <0.001) showing the effect 

of permanent ligation on anterior myocardium of LV. In general, LAD ligation was associated 

with significant decrease (p <0.001) in blood oxygen saturation (% sO2) post-LAD ligation (30 

min: 33.05% ± 6.80; 80 min: 36.59% ± 5.22; 120 min: 36.70% ± 9.46; 24 h: 40.55% ± 13.04) 

when compared to baseline (87.83% ± 5.73). This reduction of oxygenation level is a clear 

suggestion of ischemia revealing the sensitivity of PAI for real time monitoring. 

 

Figure 8.4 Variation in blood oxygen saturation levels (% sO2) over time. Box-and-whisker plots of blood 

oxygen saturation (% sO2) at five time points of observation (at baseline, 30 minutes, 80 minutes, 

120 minutes and 24 hours). Box-and-whisker plot present min and max values (whiskers), and the 

25th and 75th percentile (box), finite outlier (red plus) and median % sO2 level. The trend indicates 

rapid fall from baseline to 30 minutes with a 62.97% reduction.  



243 
 

8.2.2 Relationship between variation of % sO2 Average and echocardiographic 
measurements  

 To obtain a relationship between cardiac perfusion and cardiac structural changes, PA in 

vivo oxygen saturation measurements were correlated with % EF, % FS and SV µL derived from 

2-D echocardiographic measurements. It has been reported previously that myocardial infarction 

in mice models were associated with declines in EF, FS and SV with time after ligation [12-16]. 

Our results corroborate these previous reports revealing declines in % EF, % FS and SV µL over 

time. Table 8.2 summarizes results obtained from echocardiographic measurements. Statistically 

significant difference was observed in post-ligation cases compared to baseline (p<0.001). 

Table 8.2 Conventional echocardiographic measurements over monitoring period  

Measurement Baseline 30 min 80 min 120 min 24 Hours p < 

% EF 48.05±6.47 26.04±11.16 28.76±9.45 23.95±8.88 28.15±14.92 0.001 

% FS 29.05±4.98 15.65±7.39 14.53±6.55 13.24±6.91 16.95±10.55 0.001 

SV (µL) 33.73±6.81 15.99±5.92 19.79±5.05 17.52±7.18 19.12±8.04 0.001 

 

 Correlation analysis of % sO2 was performed with EF, FS and SV to understand the 

relationship between functional and perfusion changes associated with myocardial ischemia. Our 

analysis reveals a positive linear (p <0.001) relationship of blood oxygen saturation with each of 

the conventional echocardiographic measurements as shown in Figure 8.5. In Table 8.3, we present 

the Pearson correlation coefficient (r) along with the corresponding p-values for blood oxygen 

saturation with EF, FS and SV respectively for all mice.  
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Table 8.3 Correlation of blood oxygen saturation with EF, FS and SV. 

Parameters Baseline – Day 1 

 r value p value < 

Ejection Fraction (%) 0.66 0.001 

Fractional Shortening (%) 0.67 0.001 

Stroke Volume (µL) 0.77 0.001 

 

 

Figure 8.5 Linear regression of blood oxygenation, % sO2 against parameters from 2-D echocardiography 

measurements. Positive correlation of blood oxygenation (% sO2) with (a) Ejection Fraction (r=0.66), 

(b) Fractional Shortening (r=0.67) and (c) Stroke Volume (r=0.77) was found. All relationships have 

a p value less than 0.001. 
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8.3 Discussion of utility of a Commercial dual-wavelength system for % sO2 

mapping 

 Our results indicate that cardiac dysfunction associated with myocardial ischemia in a 

murine model can be detected using PAI. In Figure 4, we show that blood oxygen saturation 

decreases over time when compared to baseline measurements (p <0.001). We consider this 

alteration of % sO2 being indicative of myocardial ischemia. PAI contrast is “absorption-based” 

because the PA signal can be considered to be proportional to optical absorption properties of 

tissue [3]. In dual-wavelength PAI, the absorption spectral difference between oxyhemoglobin 

(HbO2) and deoxyhemoglobin (HHb) is utilized to generate estimates of relative blood oxygen 

saturation, % sO2. In particular, equation (2) is utilized in the Vevo 2100 LAZR imaging system 

to estimate blood oxygen saturation of blood [4]. 
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Where [HbO2] and [HHb] are the molar concentrations of oxyhemoglobin and deoxyhemoglobin 

respectively, A  is the PA signal intensity at wavelength λ, HHb  and 
2HbO  are molar extinction 

coefficient of deoxyhemoglobin and oxyhemoglobin respectively, 
2HHB HBO HHB     . In cardiac 

muscle, PAI contrast can be attributed to oxygenated hemoglobin present in blood perfused into 

the anterior myocardium. At baseline, the continuous flow of arterial blood contributed to the PAI 

contrast with high oxygen saturation values in the PA image.  In our experimental setup, a 

permanent LAD ligation was performed to restrict the flow of arterial blood into the myocardium. 

We then observed a significant decline in % sO2 from baseline measurements after ligation at the 

30 minutes time step. The decline in % sO2 can be caused either by a decrease in arterial blood 

with rich oxygenation affecting the [HbO2] term or by possible pooling of venous blood affecting 
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the [HHb] term in equation (2). In the current setup, it is difficult to state with specificity the exact 

contributing factor to the % sO2 decline. We hypothesize that the major contributor is reduced 

arterial blood flow as LAD ligation was performed in these mice. 

 In this study, we present observations from baseline to 24 hours post-LAD ligation to image 

changes in perfusion of the heart at possible initial stages of myocardial infarction. Acute ischemic 

insult of heart shortly following the beginning of MI is well reported in literature [17-19]. Our 

results indicate that PAI can track a rapid fall in the oxygenation due to LAD ligation which could 

lead to an MI. The accuracy of measuring real tissue oxygen saturation has been previously 

reported in phantom studies [20, 21]. These studies support the use of PAI for detection of oxygen 

saturation changes associated with acute myocardial ischemia with LAD ligation. At 30 minutes 

post ligation, a 62.37% decrease in % sO2 was observed when compared to baseline measurements. 

This preliminary study provides us with possible future directions to assess chronic changes 

associated with MI using PAI.  

 A persistence of 10 (frame averaging) was utilized to generate reasonable % sO2 estimates 

as the estimation of % sO2 using multi-wavelength imaging is very prone to system noise. This 

persistence setting generates the % sO2 estimate in one frame by taking average of 10 frames per 

wavelength (in this case 750 nm and 850 nm). Thus, each acquired frame represents an average of 

% sO2 values throughout multiple cardiac cycles. This results in reduced sensitivity in detecting 

subtle variation of % sO2 over a single cardiac cycle and limits us to detect less severe ischemic 

events. However, in this work, our main focus was to detect the general trend in the variation of 

% sO2 after induction of permanent LAD ligation which is still measurable using the frame 

averaging scheme. One possible solution is to have an ECG gated method for acquiring PA images. 
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This would greatly improve accuracy and precision of the measurements and potentially make this 

much more sensitive to assessing less severe ischemic events. 

 Change of % EF, % FS and SV (µL) are indicative of left ventricular dysfunction after MI. 

We have shown statistically significant positive linear correlation (p <0.001) of tissue oxygenation 

with EF, FS and SV in this study. This linear relationship substantiates our claim that dual-

wavelength PAI has potential to be a real-time monitoring tool for myocardial ischemia. While 

performing PAI, we were cautious to ensure that no bubbles are present in the images to avoid 

bubble related artifacts. Presence of bubbles causes unreliable tissue oxygenation estimates and in 

some case may corrupt information inside the ROI where analysis is performed. We recommend 

application of large amount of centrifuged gel to overcome these artifacts. Another key challenge 

in PAI imaging are reverberation artifacts appearing at a depth twice that of the skin surface. 

General recommendation is to use higher standoff to push the artifact out of the field of view. In 

our work, the skin surface was placed at depth of around 7.5 mm to avoid reverberation artifacts. 

Even after using clear sutures in our study, we sometimes observe a significant loss of PA signal. 

Although light propagated though the suture without interference, we suspect that the suture was 

blocking the light induced ultrasound signal. Therefore, care should be taken to avoid possible 

suture locations while imaging the myocardium which can be quite challenging.  

 Limitations with use of PAI for studying myocardial dynamics include the following; First, 

the VisualSonics system performs Oxy-Hemo imaging with a frame rate of 5 Hz resulting in lower 

temporal resolution when compared to conventional echocardiography. Thus, it may not be 

possible to accurately time-register PA signals with ECG events in the heart. Secondly, in our 

study we focused on the anterior myocardium as most of light energy is absorbed in this region. 
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This imposed a fundamental limit on the penetration depth achievable using PAI. Resolving these 

issues will further enhance the potential of PAI for routine cardiovascular assessment. 
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Chapter 9 

Spatiotemporal Coherence Weighting for Photoacoustic Image 

Beamforming 

 This chapter focuses on the use of a high frequency linear array photoacoustic (PA) 

imaging system to assess myocardial health in a murine model. We are interested in deriving 

blood-dominated cardiac pathological information in myocardial wall to complement functional 

information derived from ultrasound (US) imaging. However, when a rapidly moving murine heart 

is imaged with photoacoustic imaging (PAI), reliable localization of PA signal from the 

myocardial wall becomes challenging due to signals picked up by the wide-band high frequency 

transducer from surrounding muscle and blood circulating inside left ventricular (LV) chamber. 

Consequently, reconstructed PA images with conventional delay-and-sum (DAS) beamforming 

have temporally varying noise which causes reduced myocardial PA signal specificity thus making 

image interpretation difficult. In this chapter7, we address noise suppression utilizing signal 

processing of received raw channel photoacoustic radiofrequency (PA-RF) data. We demonstrate 

that dominant PA signals from the myocardial wall can be differentiated from background noise 

signals utilizing spatiotemporal coherence in the aperture domain. We propose to use both spatial 

and temporal information in the aperture domain during beamforming to calculate a coherence 

factor (CF) termed spatiotemporal coherence factor (STCF) to weight DAS and MV beamformed 

PA images. Under low SNR, the benefit of using temporal information across a transmit pulse 

 
7 Rashid Al Mukaddim, and Tomy Varghese, “Spatiotemporal Coherence Weighting for in vivo Cardiac Photoacoustic 
Image Beamformation.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 3, 
pp. 586 – 598 (2021) PMCID: PMC8011040 
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length for CF-type methods has been previously demonstrated for US imaging [1]. Here, assuming 

dominant PA signals are sustained over adjacent time frames after laser irradiation, temporal 

information is added to STCF for improved suppression of linear array PAI noise artifacts.  

 Three main contributions are reported in this chapter. First, STCF is proposed and 

extensive simulation studies by varying inherent contrast between dominant absorbers and 

backgrounds, acoustic absorption levels, non-uniform optical fluence distribution and channel 

SNR is presented. Second, in vivo feasibility is demonstrated by using the proposed method to 

reconstruct PA M-mode image for ECG and respiratory signal gated murine cardiac imaging 

without temporal averaging. Third, the use of coherence based beamformers (CF and STCF) for 

single wavelength cardiac PAI is compared against conventional [DAS and minimum variance 

(MV)] methods in an objective manner. 

9.1 Conventional and Proposed Beamforming Approaches for PAI Reconstruction 

9.1.1 Delay-and-sum and Coherence Factor Beamforming 

 Consider a linear array with M equally spaced transducer elements that receive PA signals 

at time t. DAS beamforming can be used to reconstruct the PA image from the detected signals 

using the following equation: 

 
1

( ) ( ) ( ) ( ) ( )


   
M

H
DAS m m m

m

y t w t x t W t X t   (9.1) 

In equation (9.1), ( )DASy t  is the beamformed image, ( )mw t  is the aperture weight for an element 

m, ( )mx t  is the received signal by mth element,m  is the time delay applied to element m to focus 

at a specific point in the image, W(t) and X (t) are M-element vectors containing the aperture 

weights and the time delayed versions of the detected signals respectively, and ( ) H  denotes a 
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conjugate transpose operation. For DAS, W(t) is a vector of ones. DAS with uniform aperture 

weighting, however, suffers from reduced off axis interference signal rejection thus degrading 

image quality [2].  

 Improved off-axis signal rejection can be achieved with MV beamforming [2-4], that 

adaptively calculates aperture weights to maximize the signal-to-interference-plus-noise ratio [3]. 

Optimal MV aperture weights, ( )MVW t  are given by: 
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where R(t) is the covariance matrix expressed as ( ) ( ) ( )   
HR t E X t X t  and a is the steering 

vector. Before calculating minimum variance optimal weights, received PA signals are pre-steered 

with appropriate delays to implement dynamic receive focusing. Thus, the steering vector become 

an array of ones [5]. To achieve good estimation of the covariance matrix, sub-array averaging has 

been proposed [3]. Sub-array averaged estimated covariance matrix is given by: 
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where S is the number of subarray elements and Xs(t) is the subarray signal vector. Finally, output 

of MV beamformer is: 
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 To achieve additional contrast enhancement and sidelobe reduction for both DAS and MV 

beamformed images, CF weighting has been proposed [2, 3, 6, 7]. CF adaptively considers aperture 
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signal coherence by calculating the ratio of coherent and incoherent sums of detected PA signals 

[3]. CF is defined as: 
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DAS and MV beamformers with CF weighting (DAS-CF and MV-CF) are given by: 

 ( ) ( ) ( )  DAS CF DASy t CF t y t   (9.6) 

 ( ) ( ) ( )  MV CF MVy t CF t y t   (9.7) 

9.1.2 Spatiotemporal Coherence Factor (STCF) Weighting 

 Conventional CF weighting considers the spatial spectrum of aperture data for a single 

frame. In this chapter, we extend CF to the temporal domain by considering multiple adjacent 

image acquisitions for beamforming. To perform beamforming with STCF, we consider of set of 

K (odd) adjacent PAI frames with  1 1
2

 
th

K  frame being the frame of interest, Kc. DAS and 

MV beamformed images are produced using equation (1) and (4) for frame, Kc. To calculate STCF, 

we consider a 2-D spatiotemporal matrix, ( , )MKX t k  with dimensions M×K. Each column of 

( , )MKX t k contains an M-element array of time-delayed received PA signal for the kth frame. Thus, 

( , )MKX t k  has the following form: 
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Using ( , )MKX t k , STCF is calculated by following equation: 
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Finally, STCF weighting is incorporated into DAS and MV beamformers (DAS-STCF and MV-

STCF) using: 

 ( , ) ( , ) ( )  DAS STCF c c DASy t K STCF t K y t   (9.9) 

 ( , ) ( , ) ( )  MV STCF c c MVy t K STCF t K y t   (9.10) 

9.2 Simulation and in vivo Validation Studies and Quantitative Analysis 

9.2.1 Numerical Simulation Studies 

 k-Wave Matlab toolbox was used to perform all numerical simulation experiments reported 

in the paper [8]. Numerical phantoms were designed by placing four 0.1 mm radius spherical 

absorbers as point targets in a scattering background simulated by randomly distributing 10,000 

independent 0.1 mm scatterers. Scattering background was simulated assuming that in vivo tissue 

comprises of both optical absorbers (hemoglobin, lipid or water) and scatterers (fibrous tissue, 
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collagen) [9]. Point targets were positioned along the vertical axis separated by 4 mm with the first 

point target located 8 mm from the transducer surface. A linear array with 128 elements, 72 µm 

element width, 18 µm kerf and 84 MHz sampling frequency operating at 21 MHz central frequency 

and 55% fractional bandwidth was utilized as the sensor in k-Wave to detect PA signals. These 

parameters modeled a commercial PA LZ 250 transducer (FUJIFILM VisualSonics, Inc., Toronto, 

Canada) [10, 11]. The speed of sound was assumed to be 1540 m/s. Imaging field of view (FOV) 

was 25 × 11.5 mm2. k-Wave computational grid with a node spacing of 15 µm covered the entire 

FOV. For statistical analysis, all simulations were repeated using 30 independent realizations. 

9.2.1.1 Simulating Inherent Tissue Contrast 

 Optical absorbers are expected to have higher PAI contrast compared to scattering from 

background tissue. Furthermore, absorption induced contrast is dependent on the concentration of 

chromophores present in tissue [12]. To simulate this contrast, we varied initial pressure 

distribution, 0 ( )p r of point targets relative to the maximum initial pressure amplitude of the 

background. Background initial pressure amplitudes were sampled from a zero mean normal 

distribution. Lower and higher inherent contrasts were simulated by setting point targets, 0 ( )p r to 

be 6 and 10 times the maximum initial pressure amplitude of the background respectively. These 

initial pressure distributions were input to the k-Wave toolbox [8] to solve for acoustic wave 

propagation within a 2-D loss-less homogenous propagation medium governed by: 
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where, u is the acoustic particle velocity, 0  and   denote ambient and acoustic density, c is the 

speed of sound and p is the acoustic pressure. Temporally varying noise backgrounds were 

produced by generating 30 independent background scattering distributions (n = 30).  

9.2.1.2 Simulating Acoustic Absorption 

 The effect of acoustic absorption on beamforming performance was investigated by 

simulating different power law absorption exponent values [8]. The attenuation coefficient was set 

to α0 = 0.3 dB MHz-y cm-1 [13] where y is the power law exponent. 0 ( )p r of point targets were set 

to 10 times maximum initial pressure amplitude of the background and k-Wave was used to 

generate acoustic RF data. 

9.2.1.3 Optical Fluence Distribution 

 Initial pressure, 0p  of an absorber located at r after absorbing optical energy can be 

modeled using [14]: 0 ( ) ( , ) p r A r , where,   is the dimensionless Grueneisen parameter and 

A(λ,r) is the absorbed energy density which is dependent on spatially variant optical fluence 

distribution and optical absorption co-efficient, ( , ) a r . To evaluate performance under varying 

optical fluence distributions, a hybrid simulation approach is adopted using MCmatlab [15] and k-

Wave toolbox [8] for optical and acoustic simulations respectively. MCmatlab calculated A(λ,r)  

through Monte Carlo simulation of light propagation in a 3-D voxel space using the optical 

simulation parameters listed in Table 9.1. Setting   to be 0.129 [16], point targets, 0 ( )p r were 

calculated for k-Wave to generate acoustic RF signals. Finally, Gaussian random noise was added 

to have a channel signal-to-noise (SNRchannel) ratio of -3 dB. A schematic diagram summarizing 

key steps of our hybrid photoacoustic imaging simulation is presented in Figure 9.1.  
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9.2.1.4 Noise Corrupted Photoacoustic Channel Data 

 To model noise floors present in real imaging systems, zero-mean Gaussian random noise 

with standard deviation, σnoise was added to channel data to achieve desired channel SNR, SNRchannel 

in dB. Noise standard deviation is given by: 

 
20

( )
( )

10


 
 
 


channel

rms
noise SNR

S m
m   (9.12) 

where, Srms(m) is the root-mean squared amplitude for the mth channel. 

 

 

Figure 9.1 Schematic diagram with key steps of the hybrid photoacoustic imaging simulation. Optical 

fluence distribution estimated using MCMatlab is used to generate the initial pressure distribution 
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for k-Wave acoustic simulation. Finally, a beamforming algorithm is utilized to reconstruct PA images 

from the received channel data. 

Table 9.1 Optical Simulation Parameters 

Parameter Value Unit 

Simulation cuboid 2×1.5×1.5 cm3 

Vessel absorption (µa) 5.21 cm-1 

Vessel scattering (µs) 58.82 cm-1 

Vessel oxygen saturation 75.0 % 

Background absorption (µa) 0.01 cm-1 

Background scattering (µs) [10,15,112] cm-1 

Optical Wavelength 850 nm 

Collimated top-hat beam radius 0.5 cm 

9.2.2 In vivo Murine Cardiac Photoacoustic Imaging 

 To demonstrate in vivo feasibility, cardiac PAI in parasternal long axis (PLAX) view was 

performed with four healthy murine models (10-12 months old BALB/CJ mouse acquired from 

Jackson Labs, ME, USA). All in-vivo procedures were approved by the Institutional Animal Care 

and Use Committee (IACUC) at the University of Wisconsin-Madison. Imaging was done by 

placing the mouse in supine position on a heated platform under 1.5% isoflurane and constant flow 

of oxygen. A Vevo 2100 LAZR imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada) 

was used for collecting PAI data. 1000 frames of pre-beamformed PA RF channel data at 850 nm 

wavelength were acquired using a LZ 250 transducer (256-element array) operating at a nominal 

frequency of 21 MHz. Four sequential laser pulses are required to cover maximum FOV for LZ 

250 with 64-element parallel acquisition per pulse. This reduces the imaging frame rate to one 

fourth the laser repetition rate [17]. Therefore, FOV was adjusted [green rectangles in Fig. 14 (a) 

and 15 (a)] to limit acquisition with only 64-elements to achieve maximum possible PAI frame 

rate (20 Hz) on Vevo LAZR. Simultaneous ECG and respiratory signals were collected using the 

dedicated physiological monitoring system. A custom MATLAB script (MathWorks, Inc., Natick, 
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MA, USA) acquired from VisualSonics was utilized to reconstruct a single cardiac cycle of PA 

data by temporally rearranging collected frames using image time stamp information, along with 

ECG and respiratory signals. Finally, beamforming was performed on the rearranged frames to 

reconstruct cardiac PAI cine loops. End-diastolic (ED) and end-systolic (ES) PAI frames were 

selected using reconstructed PAI M-mode image. 

9.2.3 Quantitative Parameters for Performance Evaluation 

 For simulation studies, quantitative evaluations were done by calculating the SNR as [4]: 

 1020 log
 

   
 

Signal
SNR

Noise
  (9.13) 

where, Signal denotes the difference between maximum and minimum signal amplitude of a 2×1 

mm2 rectangular region-of-interest (ROI) including the point target [green rectangle in Figure 9.2 

(a)] and Noise represents the standard deviation of two noise regions [red dotted rectangles in 

Figure 9.2 (a)] within the original ROI. 1-D lateral curves through the center of each point target 

were used to calculate Full-width-at-half-maximum (FWHM) at -6 dB quantifying the lateral point 

spread function (PSF). FWHM was determined as the lateral distance in mm between the curve 

points at the peak half maximum level. 

 In in vivo cardiac PAI, optical absorbers present in muscle tissue between skin and 

myocardium, the myocardial wall and circulating blood in LV chamber act as initial pressure 

sources. In the context of myocardial ischemia detection, we are interested in differentiating PA 

signals that arise only from the myocardial wall [18]. Thus, a beamformer with improved contrast 

between myocardial wall and surrounding background structures (either muscle or LV chamber 

blood) is ideal. Quantitative analysis to assess in vivo cardiac PAI quality at ED and ES phase was 
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done using SNR, contrast ratio (CR) and generalized contrast ratio (gCNR) as defined below [19, 

20].  

 1020 log
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In equations (9.14) and (9.15), mmyo and mb denote the mean signal amplitudes within myocardial 

wall and background ROIs (either surrounding muscle or LV chamber blood), respectively and σb 

denote the standard deviation of signal amplitudes within the rectangular ROI placed in the gel 

region. Equation (9.16) is a histogram-based discrete expression [19] equivalent to the original 

probability density-based definition of gCNR [20] where, hmyo and hb represent myocardial wall 

and background histograms derived with 100 bins over the signal dynamic range with bin centers 

denominated by k. The white, blue, black and green dotted ROIs shown in DAS images in Figure 

9.14 and Figure 9.15 represent ROIs for gel noise, muscle, myocardium and LV chamber blood, 

respectively. All metrics were evaluated using envelope detected PA data. 

9.3 Findings from Simulation and in vivo Validation Studies  

 We compare the performance of our proposed DAS-STCF and MV-STCF against DAS, 

DAS-CF, MV and MV-CF beamformers. A 64-element (M = 64) aperture was utilized to perform 

DAS beamforming. For the MV beamformer, we set the sub-array length, S = 16 and use diagonal 

loading with  1 100 S    to estimate the covariance matrix. Diagonal loading ensures stability 
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of the covariance matrix [3]. For STCF, the default ensemble length was 5. Envelope detected 

normalized log compressed images with dynamic range of 65 dB are presented for qualitative 

comparison. Plots are presented as mean ± standard error computed over thirty independent 

simulation instances.  

9.3.1 Results from Numerical Simulation Studies 

9.3.1.1 Inherent Tissue Contrast 

 Figure 9.2 shows beamforming results for point targets positioned in a high contrast 

background. Figure 9.2 (a) – (f) show the output of DAS, DAS-CF, DAS-STCF, MV, MV-CF and 

MV-STCF, respectively. Visually point targets can be detected in DAS and MV results but higher 

levels of background signals were seen. CF shows improvement in background signal rejection 

compared to only DAS and MV beamformers. Figure 9.2 (c) and (f) show that STCF provides 

significant noise reduction with the best quality reconstructed images. Figure 9.3 (a) – (b) present 

lateral PSF results from low contrast background at depths of 8 and 20 mm, respectively. Figure 

9.3 (c) – (d) show PSF results from high contrast background at depths of 8 and 20 mm, 

respectively. Table 9.2 summarizes the -6 dB FWHM values for both low and high contrast 

background simulation. With STCF weighting, -6 dB FWHM values were same as CF but sidelobe 

levels were comparatively lower. 
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Figure 9.2 Beamformed images of simulated point targets in a high contrast background. (a) DAS, (b) DAS-

CF, (c) DAS-STCF, (d) MV, (e) MV-CF and (f) MV-STCF. Display dynamic range is 65 dB. Green 

and red (dotted) rectangles denote signal and noise ROIs, respectively. STCF weighted images had 

the lowest level of background signal or noise. 
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Figure 9.3 Lateral profiles of PSF of at depth of (a) 8 mm and (b) 20 mm for low contrast, (c) 8 mm and (d) 

20 mm for high contrast background. Profiles around center of the point targets are zoomed in and 

displayed in the insets. Both CF and STCF weighting had similar FWHM values with improvement 

over DAS and MV beamformer alone. 

Table 9.2 -6 dB FWHM (mm) Values with Inherent Contrast Variation 

 Depth = 8 mm Depth = 20 mm 

Methods Low High Low High 

DAS 0.14 0.14 0.37 0.37 

DAS-CF 0.10 0.10 0.28 0.29 

DAS-STCF 0.10 0.10 0.28 0.29 

MV 0.15 0.14 0.43 0.39 

MV-CF 0.10 0.10 0.30 0.29 

MV-STCF 0.10 0.10 0.29 0.29 
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 Figure 9.4 (a) – (b) show results of SNR variation as a function of low and high inherent 

contrast of point targets at a depth of 8 and 20 mm, respectively. Significant SNR improvement 

with STCF is seen. For instance, consider the depth of 20 mm for low contrast case where mean 

SNR (dB) of DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-STCF were 29.62, 44.57, 62.39, 

29.25, 44.58 and 63.06, respectively. Overall, both qualitative and quantitative results from these 

experiments show superior performance of beamforming with STCF. 

 

Figure 9.4 Variation of SNR for the simulated point targets with contrast variation at a depth of (a) 8 mm 

and (b) 20 mm, respectively.  STCF weighting had higher SNR values attributed to better 

background signal suppression.  

9.3.1.2 Acoustic Absorption 

 Figure 9.5 shows beamformed images of simulated point targets with power law exponent, 

y = 1.5. Figure 9.5 (a) – (f) show the output of DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-

STCF, respectively. CF shows improvement in background signal rejection compared to DAS and 

MV beamformers. With STCF, point targets were resolved with lowest amount of background 

noise signal. Figure 9.6 (a) – (b) present PSF results at depths of 8 and 20 mm, respectively. STCF 

weighted results had comparatively lower sidelobe levels. Table 9.3 summarizes the -6 dB FWHM 
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values for y = 1.5. Both CF and STCF weighting had similar FWHM values with improvement 

over DAS and MV beamformers.  

 

Figure 9.5 Beamformed images of simulated point targets under acoustic absorption with power law 

exponent, y = 1.5. (a) DAS, (b) DAS-CF, (c) DAS-STCF, (d) MV, (e) MV-CF and (f) MV-STCF.  

Display dynamic range is 65 dB. 
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Table 9.3 -6 DB FWHM (mm) values with acoustic absorption (y = 1.5) 

Methods Depth = 8 mm Depth = 20 mm 

DAS 0.23 0.65 

DAS-CF 0.16 0.51 

DAS-STCF 0.16 0.51 

MV 0.24 0.72 

MV-CF 0.16 0.52 

MC-STCF 0.16 0.52 

 

 

Figure 9.6 Lateral profiles of the PSF at depth of (a) 8 mm and (b) 20 mm for acoustic absorption simulation 

with y = 1.5. Impact of acoustic attenuation and resultant depth dependent blurring effect is apparent 

in 20 mm results. 

 Figure 9.7 (a) – (b) show the variation of SNR as a function of y at a depth of 8 mm and 20 

mm, respectively. Beamforming with STCF resulted in higher SNR values compared to other 

methods. At a depth of 20 mm and y = 1.5, mean SNR (dB) of DAS, DAS-CF, DAS-STCF, MV, 

MV-CF and MV-STCF were 29.89, 42.09, 55.08, 29.92, 42.41 and 57.70, respectively. At very 

high attenuation (y=2), STCF and CF had similar performance in terms of SNR. 
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Figure 9.7 Variation of SNR with power law absorption exponent at a depth of (a) 8 mm and (b) 20 mm, 

respectively.    

9.3.1.3 Optical Fluence Distribution 

 Figure 9.8 shows beamforming results for point targets positioned in a background with 

optical scattering, µs value of 15 cm-1. Figure 9.8 (a) – (f) show the output of DAS, DAS-CF, DAS-

STCF, MV, MV-CF and MV-STCF. respectively. Point targets beyond 15 mm were not 

discernable with DAS and MV. Use of CF reduced background noise but significant improvement 

in noise rejection with better target detectability was achieved with STCF. Peak amplitudes of the 

point targets were attenuated over depth.  
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Figure 9.8 Beamformed images of simulated point targets under optical absorption and scattering (µs = 15 

cm-1). (a) DAS, (b) DAS-CF, (c) DAS-STCF, (d) MV, (e) MV-CF and (f) MV-STCF.  Display dynamic 

range is 65 dB. 

 Figure 9.9 (a) – (b) show variation of SNR as a function of µs at depths of 8 mm and 20 

mm, respectively. Beamforming with STCF resulted in higher SNR values compared to other 

methods. At a depth of 20 mm and µs = 15 cm-1, mean SNR (dB) of DAS, DAS-CF, DAS-STCF, 

MV, MV-CF and MV-STCF were 19.19, 29.02, 44.68, 18.38, 28.65 and 44.30 respectively. Figure 

9.10 shows DAS-STCF beamformer point target detectability with increased background optical 
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scattering. With higher µs, deeper point targets became difficult to detect resulting in reduced SNR 

[Figure 9.10 (b)]. 

 

Figure 9.9 Variation of SNR with background scattering (µs) at a depth of (a) 8 mm and (b) 20 mm, 

respectively.    

 

Figure 9.10 Variation of DAS-STCF beamformer point target discernibility with background scattering of 

(a) µs = 10 cm-1, (b) µs = 15 cm-1and (c) µs = 112 cm-1respectively. Display dynamic range is 65 dB. 

9.3.1.4 Noise Corrupted Channel Data 

 Figure 9.11 (a) – (b) show the variation of SNR with SNRchannel at depths of 8 mm and 20 

mm, respectively. Note that beamforming with STCF had the highest SNRs for all channel noise 
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levels and methods. For instance, for a depth of 20 mm and SNRchannel = -9 dB, mean SNR (dB) of 

DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-STCF were 25.25, 43.21, 59.15, 24.65, 43.09 

and 58.82, respectively. These results show robustness of STCF under noise corruption of channel 

data.  

 

 

Figure 9.11 Variation of SNR with channel data SNR at a depth of (a) 8 mm and (b) 20 mm, respectively.   
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Figure 9.12 Variation of STCF beamformer SNR with ensemble length under (a) no acoustic and optical 

absorption, (b) acoustic absorption and (c) optical scattering, respectively.    

9.3.1.5 Sensitivity to Ensemble Length 

 Figure 9.12 shows STCF beamformer performance sensitivity with ensemble length using 

channel data with (a) no acoustic or optical absorption (inherent contrast experiment data), (b) 

acoustic absorption with power law exponent of 2 and (c) background optical scattering co-

efficient of 10 cm-1, respectively. Note that all channel data were corrupted with Gaussian random 

noise for a resultant channel SNR of 5 dB. For each experiment, we evaluated performance for 

shallow (8 mm) and deep (20 mm) targets. With increased ensemble length, steady improvement 

in SNR was observed in all cases expect for shallow target under optical scattering [Brown and 

blue curves in Figure 9.12 (c)]. 
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9.3.2 Results from in vivo Murine Cardiac PAI  

 PAI M-mode results are summarized in Figure 9.13, where Figure 9.13 (a) – (f) show the 

output of DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-STCF, respectively. Movement of 

anterior myocardium is clearly visible in all results. However, STCF methods result in significant 

reduction of temporally varying noise signals from LV chamber and gel region. Figure 9.14 shows 

corresponding in vivo cardiac PA images at ED. US B-mode image with PA imaging FOV [green 

rectangle] is shown in Figure 9.14 (a). Beamformed image from Vevo LAZR system is shown in 

Figure 9.14 (b). Figure 9.14 (c) – (h) show the results of DAS, DAS-CF, DAS-STCF, MV, MV-

CF and MV-STCF, respectively. Improved myocardial signal specificity and higher signal 

rejection in LV chamber and acoustic gel region is observed with STCF. Similarly, Figure 9.15 

shows in vivo cardiac PA images at ES, where the beamformed image from Vevo LAZR system 

is presented in Figure 9.15 (b). Figure 9.15 (c) – (h) show images with DAS, DAS-CF, DAS-

STCF, MV, MV-CF and MV-STCF beamforming, respectively. Finally, quantitative results for 

ED and ES PAI are summarized in Figure 9.16. Plots are presented as mean ± standard error 

computed over four independent mice datasets. Figure 9.16 (a) shows that STCF weighting 

resulted in higher SNR values both at ED and ES. CR and gCNR results between myocardium and 

surrounding muscle tissue are presented in Figure 9.16 (b) and (d). Note that CF and STCF 

weighting performed equally well with clear improvement over using DAS and MV beamformers 

alone. CR and gCNR results between myocardium and LV chamber blood are presented in Figure 

9.16 (c) and (e). STCF weighted images had higher CR and gCNR values compared to CF 

weighted and conventional (DAS and MV) beamformed images. Figure 9.17 shows the sensitivity 

of in vivo STCF beamforming performance with ensemble length. Figure 9.17 (a) shows that SNR 

improvement with ensemble length up to 7 following which the curves plateau. Figure 9.17 (b) 

and (d) indicate no variation in CR and gCNR between myocardium and muscle with ensemble 
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length. Figure 9.17 (c) and (e) show that CR and gCNR values between myocardium and LV 

chamber blood increased with ensemble length increments until K = 7, after which the curves 

plateau. 

 

 

 

Figure 9.13 Cardiac PAI M-mode image reconstructed using (a) DAS, (b) DAS-CF, (c) DAS-STCF, (d) MV, 

(e) MV-CF and (f) MV-STCF.  Display dynamic range is 65 dB.  
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Figure 9.14 In vivo cardiac photoacoustic images at ED. (a) US B-mode, (b) System PA image, (c) DAS, 

(d) DAS-CF, (e) DAS -STCF, (f) MV, (g) MV-CF and (h) MV-STCF. Arrows in Fig. 14 (b) indicate 

signals impeding contrast between myocardium and surrounding muscle. ROI definitions in Fig. 14 

(c): Green = LV chamber blood, black = myocardial wall, blue = muscle and white = noise. STCF 

weighting better suppressed signals from gel region and LV chamber.  
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Figure 9.15 In vivo cardiac photoacoustic images at ES. (a) US B-mode, (b) System PA image, (c) DAS, 

(d) DAS-CF, (e) DAS -STCF, (f) MV, (g) MV-CF and (h) MV-STCF. Arrows in Fig. 15 (b) indicate 

signals impeding contrast between myocardium and surrounding muscle. ROI definitions in Fig. 15 

(c): Green = LV chamber blood, black = myocardial wall, blue = muscle and white = noise. STCF 

weighting better suppressed signals from gel region and LV chamber. 
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Figure 9.16 (a) In vivo SNR comparison. (b) and (d) show CR and gCNR comparison between myocardial 

wall and muscle, respectively. (c) and (e) show CR and gCNR comparison between myocardial wall 

and LV chamber blood, respectively. 
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Figure 9.17 (a) SNR variation with ensemble length (K). (b) and (d) show CR and gCNR variation between 

myocardial wall and muscle, respectively. (c) and (e) show CR and gCNR variation between 

myocardial wall and LV chamber blood, respectively. 
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9.4 Discussion on Findings from Simulation and in vivo Experiments 

9.4.1 Numerical STCF Simulation Studies 

 In the numerical simulation studies, we have investigated the impact of inherent contrast, 

acoustic absorption, optical attenuation and channel SNR on the performance of conventional and 

coherence-based beamformers. The primary findings of our simulation studies can be summarized 

as follows. 

 Experiments with inherent contrast variation were performed to model SNR variation in 

PA channel data with optical energy used for acoustic excitation. Lower optical fluence results in 

low SNR data reducing contrast between optical absorber and tissue scattering [21]. Under low 

contrast conditions, PA pressure waves are difficult to distinguish from background scattering. 

Using STCF, temporal coherence in PA pressure waves was exploited resulting in improved 

separation of point target PA signals from background scattering signals, lower sidelobe levels and 

higher SNR values [Figure 9.2 – Figure 9.4]. 

 Acoustic signal loss due to absorption in soft biological tissues is a well-known 

phenomenon [22, 23]. Resultant attenuation shows a power law frequency dependence. Due to its 

broadband nature, PA signals are affected by frequency dependent attenuation [24] resulting in 

depth dependent blurring of features and magnitude errors [25]. Furthermore, in vivo pre-clinical 

cardiac PAI data was obtained using a high frequency linear array (fc = 21 MHz) necessitating 

studying acoustic attenuation in simulations at various levels of acoustic absorption. Results show 

DAS-STCF and MV-STCF provide higher SNR values when compared to other methods at all 

depths for attenuation power law exponent values less than 2, showing the robustness of STCF 

[Fig. 7]. However, at very high attenuation (y = 2), SNR values for STCF weighted beamformers 

converge to the performance of CF-based beamformer because acoustic attenuation becomes the 
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primary performance limiting factor rather than background noise, indicating that additional signal 

processing is necessary to improve image quality. Attenuation correction approaches can be 

applied post beamforming to address this issue [26, 27].  

 To account for the impact of the non-uniform optical fluence distribution due to photon 

scattering in biological tissues on PA beamforming, a hybrid simulation approach was adopted in 

this work [Figure 9.1]. In our tissue model, all point targets were treated as 0.1 mm radius blood 

vessels imaged transversely with 75 % oxygen saturation. Since they are placed along the same 

lateral coordinate with axial location variation, A(λ,r) of the point targets appear to have an 

exponential decay over depth. Therefore, at increased depths, low intensity PA signal wavefronts 

get buried under noise (SNRchannel = -3 dB) which are not resolved with conventional and CF-based 

beamformers. However, utilizing temporal coherence, low intensity wavefronts are separated from 

the noise background resulting in better target detectability at 20 mm with subsequent 

improvement in SNR [Figure 9.8 and Figure 9.9]. We further evaluated beamforming performance 

background scattering coefficient values of soft and fibrous breast tissues reported in the literature 

[28-30]. We found that with a drastic drop in A(λ,r)|r=20mm due to high level of optical scattering 

(µs= 112 cm-1), both signal and noise wavefronts had similar spatiotemporal coherence resulting 

in target signal suppression with STCF. Thus, with low energy optical fluence, STCF may fail to 

resolve deeper PAI targets [Figure 9.10]. A proposed deep learning method [29] can be coupled 

with STCF to address this issue.  

 Ensemble length, K is a key algometric parameter for STCF weighting and was carefully 

investigated in our simulations with the results summarized in Figure 9.12. In the presence of 

inherent contrast with no acoustic and optical attenuation, both shallow and deep targets 

demonstrate steady SNR improvement (> 8 dB) with increment of K from 3 to 9 [Figure 9.12 (a)]. 
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This is an expected outcome since only temporally varying background signals contribute to the 

noise floor, which are suppressed during temporal coherence calculations. Similar trend was 

observed for experiments incorporating acoustic absorption [Figure 9.12 (b)]. However, shallow 

targets had higher SNR than deeper targets due to the depth-dependent nature of acoustic 

attenuation. For experiments with background optical scattering coefficient = 10 cm-1, no 

significant performance improvement was seen by increasing K for the target at 8 mm depth 

[Figure 9.12 (c)]. However, SNR of MV-STCF was 18 dB higher than MV-CF SNR with K = 7 

indicating that even for shallow targets with high optical absorption, STCF provides significant 

improvement. For 20 mm target, more than 10 dB performance gain was obtained with increasing 

K from 3 to 9. At deeper depths, the low intensity PA wavefront becomes increasingly difficult to 

separate from the noise background, where increasing K had an evident impact [Figure 9.12 (c)]. 

Taking all these factors together, for ensemble lengths greater than 5, STCF always perform better 

or same as CF methods. 

 Typically experimental and in vivo channel data get corrupted by background noise, 

comprised of electronic and thermal noise [31, 32]. Optical scattering of tissues further contribute 

to the noise floor [32] resulting in low SNR channel data. Thus, performance evaluation was done 

by varying the SNR of channel data. Qualitative observation of channel data revealed that beyond 

SNRchannel = -9 dB, PA pressure wavefronts were difficult to discern. Consequently, added noise 

contributed to significant destructive interference [33] during DAS and MV beamforming resulting 

in images with non-resolvable optical absorbers. Superiority of the proposed STCF was 

demonstrated as significantly higher SNR values were seen even with low SNR channel data 

[Figure 9.11]. 
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 One limitation of our simulation studies was that no relative motion was modelled for the 

dominant optical absorber’s location over time. This was done under the assumption that little, or 

no motion will be encountered within short ensemble periods. However, if large relative motion 

occurs, realignment of dominant PA wave fronts by performing motion estimation in the aperture 

domain can be performed before STCF calculation. Overall, the performance of STCF weighting 

was robust for different contrast, acoustic absorption, optical scattering and channel SNR levels. 

STCF weighted DAS and MV beamformers produced higher quality PA images compared to other 

methods (DAS and MV with and without CF). This quality enhancement is attributed to improved 

suppression of background noise and spatiotemporally incoherent signals. Subsequently, STCF 

images exhibit a greater dynamic range than conventional and CF PA images enabling better 

visualization of low intensity PA signals.  

9.4.2 In vivo Cardiac STCF PAI Beamforming 

 In vivo feasibility of STCF beamformers was demonstrated by performing PA imaging of 

the healthy murine heart. Our group has previously demonstrated the use of oxygen saturation 

(sO2) as a measure to differentiate between healthy and infarcted hearts [18]. To obtain a reliable 

estimate of sO2 in a rapidly beating organ such as the mouse heart (typical heart rate of 400-500 

bpm), high persistence (frame averaging) is essential. This resulted in significantly reduced 

temporal resolution [34], and thereby sensitivity for detecting subtle variations in sO2 over a single 

cardiac cycle and in the detection of less severe ischemic events. To address these concerns, 

imaging was done using the maximum possible PAI frame rate (20 Hz) on the Vevo LAZR without 

any frame averaging. Offline processing was employed to reconstruct a single cardiac cycle of PA 

data. This process led to ECG and respiratory signal gated “pseudo-high frame rate” cardiac PA 

imaging. However, contrast between myocardial wall and surrounding background structure was 
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impeded in the scanner reconstructed and conventional beamformed PA images due to spuriously 

high amplitude PA signals from muscle [indicated by arrows in Figure 9.14 (b) and Figure 9.15 

(b)] and LV chamber.  

 Benefits of coherence-based beamforming over DAS has been reported previously for 

cardiac US [35, 36]. In this paper, we explore CF beamforming for in vivo cardiac PAI to enhance 

PA signals only from the myocardium by suppressing other noise artifacts. With the use of CF 

weighting, random noise signals from the gel region were suppressed to lie below the display 

dynamic range. This resulted in improved contrast between skin and gel region and better 

correspondence between US and PA images [Figure 9.14 and Figure 9.15]. In addition, due to the 

temporal variation of these random noise signals, STCF weighting produced higher SNR values 

when compared to other methods [Figure 9.16 (a)], thus corroborating our findings from numerical 

simulation studies [Figure 9.4]. PA signals from muscle and myocardium have lower temporal 

variation compared to signals from LV chamber blood [Figure 9.13 (a) and (d)]. Thus, comparable 

contrast (CR) and lesion detectability (gCNR) were observed using CF and STCF in contrast to 

conventional beamforming results between myocardial wall and muscle [Figure 9.16 (b) and (d)]. 

This is an expected outcome based on our results from simulation studies where similar FWHM 

values for non-temporally varying point targets were obtained with CF and STCF.  

 Our results demonstrate that contrast degradation between myocardium and LV chamber 

blood, was not suppressed using only CF. Due to pseudo-high frame rate of the reconstructed cine 

loop, we observed that PA wave fronts from myocardium had both spatial and temporal coherence 

over a short span of time with higher amplitude. On the other hand, PA wave fronts from LV 

chamber blood had low STCF with amplitudes at the same level as noise signals from gel region. 

This variation could be primarily due to the following two reasons. First, highly absorbing blood 
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inside the coronary artery (murine arterial oxygen saturation   90 – 95% [18, 37]) and scattering 

tissues (with reduced scattering coefficients ( s  ) of heart wall, whole blood, skin and soft tissue 

are 6.84 cm-1 , 5.88 cm-1, 17.06 cm-1 and 9.55 cm-1 respectively [28] at 850 nm) causes significant 

light attenuation before it reaches LV chamber, thus creating a strong bias towards the myocardium 

surface [38]. Second, PA transients from the large volume of high velocity circulating blood (in 

early filling, E wave and late or atrial filling phase, A wave during diastole) inside the LV generates 

mainly destructive interference, while low velocity blood flow (diastolic coronary flow velocity 

20 cm/sec [39]) in the coronary artery on the myocardial surface generates constructive 

interference resulting in PA amplitude differences between myocardium and LV chamber [33]. 

The E and A wave velocity [40] of mitral valve flow during diastole were roughly 54.2 cm/sec and 

43.8 cm/sec respectively [41]. Therefore, no viable signal can be retrieved from the LV chamber 

except temporally varying noise which reduces contrast between myocardium and LV chamber 

[Figure 9.14 (b) and Figure 9.15 (b)]. This also corroborates our numerical simulation findings 

where low fluence and noisy channel data was correlated with point target depth. Observe that the 

PA signal level and background noise were similar at a 20 mm depth [Figure 9.10]. Furthermore, 

previous studies on murine myocardial ischemia and PAI were focused on the anterior 

myocardium due to penetration depth limitations [18, 37, 42]. Under these circumstances the 

benefit of using STCF becomes more evident as it results in higher CR and gCNR between 

myocardium and LV chamber when compared to other methods [Figure 9.16 (c) and Figure 9.16 

(e)] by suppressing non-viable LV chamber PA signals. 

 Ensemble length analysis also indicates that gains in SNR, CR and gCNR are obtained with 

higher ensemble length with high temporally varying noise [Figure 9.17 (a), (c) and (e)] with no 

evident impact in the presence of slow or no temporal variation in PA signals [Figure 9.17 (b) and 
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(d)]. Note also that reverberation artifacts (at depth > 14 mm) persist for CF beamformers [Figure 

9.14 – Figure 9.15 (h)].  

 Results from simulation studies show that increasing ultrasound absorption and optical 

attenuation reduces channel SNR, negatively impacting the SNR of STCF beamformed images. 

For in vivo data sets, the quality of received channel data depends on a complex interplay of inter-

frame laser energy, depth-dependent fluence distribution, cardiac motion, positioning of the animal 

in imaging FOV and ultrasound attenuation of generated PA signals (e.g. normalized signal loss 

of freshly excised heart at 40 MHz = 36 dB/cm [43]) . Thus, SNR and CR obtained with STCF in 

vivo was lower than simulation results. One interesting finding is that DAS-STCF had slightly 

higher SNR, CR and gCNR when compared to MV-STCF in vivo. One implication of this finding 

is that with STCF improved performance is obtained with a less computationally intensive 

beamformer.  

 PAI has been used to monitor radiofrequency ablation lesion formation in the passively 

beating ex-vivo left atrium [44] where Savitzky–Golay smoothing was employed to reduce SNR 

degradation from cardiac motion. Results from this chapter suggests that CF and STCF 

beamformers can be used to reduce SNR degradation. Recently, use of PAI to guide cardiac 

catheter interventions have been demonstrated in vivo where DAS beamformed images were used 

to localize the catheter tip inside the right atrium [45]. We anticipate that STCF weighting can be 

potentially applied to visualize the tip at higher dynamic ranges. In future work, we will apply this 

technique to perform cardiac PAI for infarcted murine hearts by estimating in vivo oxygen 

saturation (sO2). Poor SNR in single wavelength PA data for estimating sO2 was shown to have a 

significant noise bias [46]. We anticipate that with STCF weighting, noise signals can be separated 

out, enabling improved sO2 estimation with SNR-regularization [46]. 
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 Finally, results in this work show that better adaptive beamforming can be obtained using 

temporal information in context of cardiac PAI. We anticipate similar idea can be extended to 

other variants of adaptive beamformers such as DMAS [4, 47-51], high resolution CF [52], 

modified-CF [7], SNR-dependent CF [21] and SLSC [34, 53, 54] to further improve resultant 

image quality.  
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Chapter 10 

Adaptive Photoacoustic Beamforming with Sub-Aperture Processing 

 We previously extended coherence factor (CF) calculations into the spatiotemporal domain 

(STCF) and showed improved image quality over delay-and-sum (DAS) and minimum variance 

(MV) beamforming for in vivo cardiac photoacoustic imaging in Chapter 09 [1, 2]. However, 

further in vivo investigation revealed that CF and STCF weighting may also lead to undesirable 

signal suppression from the myocardial wall along with sidelobe suppression. Furthermore, most 

of the reported adaptive methods (e.g., coherence-based methods) [1-7] have shown performance 

improvement for coherent targets when compared to DAS. However, for diffuse scattering  arising 

from constructive or destructive interference of spatially randomly distributed optical absorbers 

[8], they tend to suppress the signal of interest.  

 Optimal image reconstruction should recover both coherent and diffuse photoacoustic (PA) 

signals while suppressing clutter and sidelobes. To this end, in this chapter8, we propose image 

formation based on sub-aperture processing to preserve DAS amplitude levels for myocardial wall 

PA signals while achieving sidelobe and clutter suppression like CF based beamformers. Here, the 

received channel data are first split into two non-overlapping sub-apertures as in dual apodization 

with normalized cross-correlation (DAX) [9] and acoustic sub-aperture processing (ASAP) [10] 

developed for B-mode and contrast enhanced ultrasound (CEUS) imaging respectively. A pair of 

sub-aperture PA images were then reconstructed using the DAS algorithm. Amplitude and phase 

correlation of the sub-aperture PA images were utilized to generate a weighting matrix to suppress 

 
8 Rashid Al Mukaddim, Rifat Ahmed, and Tomy Varghese, “Sub-aperture Processing Based Adaptive Beamforming 
for Photoacoustic Imaging.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Early Access 
(2021) PMCID: Pending 
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sidelobe and clutter signals. Finally, the full-aperture DAS image was weighted using the 

weighting matrix to generate a PA sub-aperture (PSAP) image. In [11], ASAP was coupled with 

spatiotemporal filtering and temporal correlation estimation to improve contrast-enhanced PAI. A 

limited ex vivo study was performed using DAX on contrast-based PAI [12]. In PSAP, we utilize 

the spatial correlation function derived from sub-aperture beamformed images to enhance non-

contrast PAI where optical contrast is attributed to endogenous chromophores in vivo.  

10.1  Basic Principles of Photoacoustic Sub-aperture Processing (PSAP)  

10.1.1 Beamforming using Sub-apertures  

 Let X(t) = [x1 (t – τm); ….; xM (t – τM)] represent the received time-delayed PA channel data 

from an M-element linear array with the time delay of element m denoted by τm. For PSAP, using 

the received time-delayed PA channel data X(t), two set of images, S1(t) and S2(t) are reconstructed 

using two non-overlapping sub-apertures with no common elements, denoted by the vectors W1(t) 

and W2(t) [9, 10, 13-19]. Sub-aperture reconstructed images are represented using the following 

equations. 

 
( ) ( ) ( )

( ) ( ) ( )





H

H

t t t

t t t

1 1

2 2

S W X

S W X
  (10.1) 

 To construct W1(t) and W2(t) we follow an approach reported in [9]. W1(t) is made of ones 

and zeros with an alternating pattern of N elements on and N elements off. W2(t) is complementary 

to W1(t) and uses the opposite alternating pattern of N elements on and N elements off. An example 

of sub-apertures W1(t) and W2(t) formed with 4-4 alternating element pattern is shown in Figure 

10.1. Here, we assume that any signal from on-axis main lobe will be highly correlated between 

S1(t) and S2(t) while off-axis interfering signals such as sidelobe and incoherent clutter will be 
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decorrelated [9, 13]. Therefore, quantifying the similarity between S1(t) and S2(t) will enable 

determination of a weighting matrix for DAS PA to suppress sidelobe and incoherent clutter. A 

schematic diagram for PSAP is presented in Figure 10.2. Seo et al. [9] used a similar approach for 

ultrasound B-mode images and Stanziola et al. [10] later extended the approach for CEUS. Here, 

we demonstrate that this approach results in significant clutter reduction in PA. 

 

Figure 10.1 Sub-aperture W1(t) and W2(t) formed with 4-4 alternating element pattern. 

 

Figure 10.2 Schematic diagram presenting the PSAP method. 

10.1.2 Weighting Matrix Generation for PSAP 

 Two approaches are reported in this chapter to generate the weighting matrix. The first 

approach is based on using 2-D normalized cross-correlation (NCC) termed as PSAPNCC and 

second approach utilizes phase differences between sub-aperture beamformed images termed as 

PSAPPhase. 
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10.1.2.1 PSAPNCC Weighting Matrix  

 Our first approach follows DAX weighting reported by Shin et al. [15] where the pixel-

wise 2-D NCC coefficient, ( , ) i j  at zero lag was computed between S1 and S2 to quantify the 

degree of similarity: 
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  (10.2) 

where, i and j denote ith sample of jth A-line with a kernel dimension of 2K+1 samples by 2H+1 

A-lines, 1s and 2s  are the mean values over the 2-D kernel. Using ( , ) i j , the weighting matrix 

NCCW(i,j) was computed as follows [9]:  

  ( , ) max ( , ), WNCC i j i j   (10.3) 

where, ε is a minimum NCC threshold value chosen to be 0.001 in this work. Here, signals with 

correlation values less than ε were considered as sidelobe and incoherent clutter and subsequently 

suppressed using the weighting matrix. In both sidelobe and incoherent clutter regions, typical 

NCC values are low ranging from -1 to -0.8. Thus, weighting DAS-beamformed RF data directly 

with the NCC matrix introduces a sign reversal rather than artifact suppression. Therefore, a max 

operator was used in equation (3) to ensure that the resultant weighting matrix has positive weights 

ranging from ε (0.001)  to 1 resulting in 20log10(0.001) = 60 dB amplitude reduction applied to 

clutter signals [15]. Furthermore, NCCW calculation was robust to noise due the use of 2-D kernel 

and data up-sampling using linear interpolation, therefore no additional filtering (e.g., 2-D median 

filter) was necessary [15]. Finally, the DAS beamformed data was multiplied by the weighting 

matrix to generate a PSAPNCC image as shown: 
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 ( , ) ( , ) ( , ) NCC WPSAP i j NCC i j DAS i j   (10.4) 

10.1.2.2 PSAPPhase Weighting Matrix  

 Since main lobe signals are highly correlated between sub-aperture beamformed images, 

they result in zero or small phase differences, whereas interfering signals will be out-of-phase 

resulting in an increased phase difference. Therefore, in our second approach, we utilized phase 

information derived from the complex cross-correlation between the sub-aperture beamformed 

images to determine the weighting matrix [10, 13]. For S1 and S2, corresponding complex valued 

IQ signals s1 and s2 were derived using Hilbert transformation. The complex cross-correlation 

function, R was calculated as follows: 

 ( , ) ( , ) ( , ) R i j i j i j*
1 2s s   (10.5) 

The weighting matrix was determined using the phase angle of R to suppress any off-axis signals 

following an approach reported by Stanziola et al. [10] as shown below: 
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k
  (10.6) 

where k denotes the phase angle of R(i,j) and k0 is an empirically determined phase factor to 

attenuate out-of-phase signals. PhaseW estimation is a point wise calculation (no kernel), thus the 

resultant weighting matrix was more sensitive to noise when compared to NCCW. Therefore, 2-D 

median filtering was applied to the weighting matrix for reducing noise. Finally, the DAS 

beamformed data is multiplied by the weighting matrix to generate PSAPPhase images as shown: 

 ( , ) ( , ) ( , ) Phase WPSAP i j Phase i j DAS i j   (10.7) 
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10.2 Description of Simulation and in vivo Validation Experiments 

10.2.1 Numerical Simulations 

 All simulations were performed using the k-Wave MATLAB toolbox [20]. To detect PA 

channel data, a 128-element linear array transducer with 72-µm element width, 18-µm kerf and 

84-MHz sampling frequency operating at a center frequency of 21-MHz, and 100% fractional 

bandwidth was modelled in k-Wave. For all simulations, the imaging field-of-view (FOV) was 

divided into a 2-D k-Wave grid having a node spacing of 15-µm in both axial and lateral directions. 

The speed of sound and medium density was assumed to be 1540 m/s and 1000 kg/m3, respectively. 

For all quantitative evaluations, envelope detected PA beamformed data were used.  

10.2.1.1 Point Target Simulation 

 Four 100-µm diameter spherical absorbers were placed in a homogenous background with 

zero optical absorption to model a point target numerical phantom. They were positioned along 

the vertical axis with an inter-point target separation of 4 mm starting from a depth of 8 mm from 

the transducer surface. Imaging FOV was 22 × 11.5 mm2. Each point target had an initial pressure 

value of 3 Pa. Optical and acoustic attenuation was not simulated. For quantitative evaluation, the 

main-lobe-to-sidelobe (MLSL) ratio was computed [21]: 

 max min
1020 log

 



 
   

 n

MLSL   (10.8) 

where, μmax and μmin denote the maximum and minimum signal amplitude within a 2×5 mm2 

rectangular region-of-interest (ROI) centered on each point target and σn represents the standard 

deviation of signal amplitudes from two 2×2 mm2 ROIs within the signal ROI. The full-width-at-
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half-maximum (FWHM) at -6 dB was also calculated using 1-D lateral plots through the point 

targets, quantifying the distance in millimeters between points at the peak half maximum level.  

10.2.1.2 Diffuse Inclusion Simulation 

 To understand how well PSAP preserves signals from diffuse targets, we performed 

simulations with inclusions having randomly distributed optical absorbers. A hybrid simulation 

approach using MCMatlab [22] and k-Wave [20] software packages was used [1]. Two 3 mm-

diameter circular targets were placed along the vertical axis of a 16×11.5 mm2 phantom at a depth 

of 7 mm and 13 mm, respectively. Each circular target contained randomly distributed optical 

absorbers with a spatial density of 299 absorbers/mm2  [23, 24]. Ten independent optical absorber 

realizations were generated for statistical analysis. First, spatially variant (r = optical absorber 

spatial location) and wavelength (λ) dependent absorbed optical energy density [A(λ,r)] was 

calculated using MCMatlab with the simulation parameters listed in Table 10.1. Then, A(λ,r) was 

utilized to determine the initial pressure distribution (p0) for the acoustic simulation as follows 

[25]: 

 0 ( , ) ( , )  p r A r   (10.9) 

where,   is the dimensionless Grueneisen parameter set to be 0.129 in this work [26]. To evaluate 

the performance of PSAP under varying level of channel noise, white noise was also added to the 

simulated channel data resulting in SNRs (SNRc) ranging from -25 to 25 dB. 

 Quantitative analysis was done using contrast ratio (CR) and generalized contrast-to-ratio 

(gCNR) [23, 27]  as described in Chapter 09. 
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Table 10.1 Diffuse Inclusion Optical Simulation Parameters 

Parameter Value Unit 

Simulation cuboid 1.6×1.2×0.5 cm3 

Water coupling layer 1 mm 

Vessel absorption (µa at 7mm, 13 mm) (4.43,5.60) cm-1 

Vessel scattering (µs at 7mm, 13 mm) (58.82,58.82) cm-1 

Vessel oxygen saturation (7 mm, 13 mm) (35.0,95.0) % 

Background absorption (µa) 0.01 cm-1 

Background scattering (µs) 10 cm-1 

Optical Wavelength 850 nm 

Collimated top-hat beam radius 0.5 cm 

Incident laser energy 30 mJ 

10.2.1.3 Microvasculature Simulation  

 To understand how well PSAP preserves signals of interest in anatomically relevant 

heterogeneous media, we performed simulations mimicking typical in vivo microvasculature 

networks using 40 reference vascular images collected from the fundus oculi drive [28, 29]. 

Database contained binary images of blood vessels manually extracted from digital color images 

of the retina with white pixels denoting vessel segmentation. We use these binary images in our 

hybrid simulation framework to simulate raw channel data. First, optical absorbers were randomly 

distributed inside the blood vessels with a spatial density of 299 absorbers/mm2. Then, MCMatlab 

[22] was used to derive the absorbed optical energy density [A(λ,r)] with parameters listed in Table 

10.2. Finally, equation 12 was used to generate the initial pressure distribution and acoustic 

simulation was done using k-Wave [20]. CR and gCNR were computed for quantitative 

comparison. Rectangular ROIs containing vessel signals were defined randomly using ground 

truth images as target ROIs. The same ROIs were shifted to adjacent background locations and 

denoted as background ROIs.  
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Table 10.2 Microvasculature Optical Simulation Parameters 

Parameter Value Unit 

Simulation cuboid 1.6×1.2×0.5 cm3 

Water coupling layer 3 mm 

Vessel absorption (µa) 5.6 cm-1 

Vessel scattering (µs) 58.82 cm-1 

Vessel oxygen saturation  75 % 

Background absorption (µa) 0.01 cm-1 

Background scattering (µs) 10 cm-1 

Optical Wavelength 850 nm 

Collimated top-hat beam radius 0.5 cm 

Incident laser energy 30 mJ 

 

10.2.2 In vivo Cardiac PAI Experiments 

 In vivo cardiac PAI data from five healthy murine models were collected using an 

experimental protocol approved by the Institutional Animal Care and Use Committee (IACUC) at 

the University of Wisconsin-Madison and described in detail in Chapter 09 [1]. Data collection 

was done in PA RF mode to access raw channel data. Typical total acquisition time for in vivo data 

collection was 50 seconds. End-diastolic (ED) and end-systolic (ES) PAI frames were selected 

using reconstructed PAI M-mode images to perform quantitative analysis using CR and gCNR. 

Target ROIs were manually drawn on the epicardium and endocardium to locate myocardial wall 

PA signals. Then, the target ROIs were shifted to the left ventricular (LV) chamber and denoted 

as background ROIs. For delay-and-sum (DAS) PAI images, we have consistently observed 

dominant PA signals concentrated in the endocardial and epicardial walls corroborating findings 

from literature [30]. To ensure, that our quantitative analysis is not biased by PA signals that may 

appear as temporally varying noise between the endocardial and epicardial wall during cardiac 

motion, ROIs were limited only to the epicardial and endocardial walls. Therefore, the target ROI 
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was the summation of these two ROIs. Furthermore, shifting the target ROIs in the LV chamber 

ensured that both target and background ROIs had equal area during CR and gCNR evaluation. 

10.2.3 Algorithm Implementation and Data Processing 

 All beamforming algorithms were implemented to run on a GPU in MATLAB (Mathworks 

Inc., MA) for cross-platform acceleration. DAS and DASCF (DAS with coherence factor 

weighting) beamforming were included in a comparative study and described in detail in Chapter 

09. DAS and DASCF beamforming were performed using a 64-element, dynamic apodization 

having a constant f-number of 1 and uniform aperture weighting. With the 64-element aperture, 

apodization was constant after 5.76 mm. For both PSAPNCC and PSAPPhase, sub-aperture data were 

upsampled by a factor of 2 both axially and laterally using linear interpolation before calculating 

the weighting matrix [31, 32]. Upsampling was done to improve robustness of NCC and phase 

estimation. Default parameter settings for PSAPNCC and PSAPPhase are summarized in Table 10.3 

and Table 10.4, respectively. Choice of these parameters are justified in Sections 1.3 and 1.4 where 

simulation and experimental results are discussed. One-way analysis of variance (ANOVA) with 

the Bonferroni multiple comparison test was used to determine statistical significance among DAS, 

DASCF, PSAPNCC and PSAPPhase. Statistical analysis was performed using SPSS Version 23 (IBM 

SPSS Statistics for Windows, Version 23.0, IBM Corp., Armonk, NY, USA). 

Table 10.3 PSAPNCC Parameters 

Experiment Parameter Value 

Point Target 
Sub-aperture alternating elements (N) 8-8 

2-D NCC Kernel (Wavelength, A-lines) (4.5λ,3) 

Diffuse Inclusion 

Microvasculature 

In vivo  

Sub-aperture alternating elements (N) 2-2 

2-D NCC Kernel (Wavelength, A-lines) (1.5λ,3) 
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Table 10.4 PSAPPhase Parameters 

Experiment Parameter Value 

Point Target 

Sub-aperture alternating elements (N) 8-8 

Phase factor (k0) 9
   

Median filter kernel (pixels, pixels) (11,11) 

Diffuse Inclusion 

Microvasculature  

In vivo  

Sub-aperture alternating elements (N) 2-2 

Phase factor (k0) 3.5
   

Median filter kernel (pixels, pixels) (5,5) 

10.3 Findings from Numerical Simulation Studies 

10.3.1 Point Target Simulation 

 Figure 10.3 (a) – (d) show beamformed images obtained using DAS, DASCF, PSAPNCC and 

PSAPPhase, respectively. Significant sidelobes are apparent in the DAS image, that are suppressed 

by both CF weighting and PSAP. Qualitatively, DASCF provided the best reconstructed image. 

 Figure 10.4 (a) – (b) show the lateral profiles of the point spread function (PSF) at depths 

of 8 and 20 mm respectively. Both CF and PSAP significantly reduced sidelobe levels when 

compared to DAS but DASCF had better lateral resolution. Table 10.5 summarizes MLSL and 

FWHM at -6 dB. The best and worst values of MLSL and FWHM were denoted with blue and red 

colors respectively in Table 10.5. Results show that both CF and PSAP provide better image 

quality than DAS. They also have the lowest MLSL and highest FWHM values at all depths 

coorborating our qualitiave observations from Figure 10.3 – Figure 10.4.  

 The variation in MLSL and FWHM as a function of alternating element numbers is shown 

in Figure 10.5. Note the trade-off between MLSL [Figure 10.5 (a) – (b)] and resolution [Figure 

10.5 (c) – (d)] when selecting the alternating element numbers. We observed reduction in MLSL 

for all point targets (red, blue and green curves) except at 20 mm depth with the 16-16 alternating 
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pattern when compared to 8-8 for PSAPNCC. For PSAPPhase, a MLSL peak was achieved for all 

targets using the 8-8 alternating pattern except the one at 8 mm which shows a slight reduction 

from its peak. These observations suggest that selecting alternating element numbers with an 8-8 

pattern achieves a balance for both PSAPNCC and PSAPPhase. The results also suggest that lower N 

is preferred for shallower depth [red curves in Figure 10.5 (a) – (b)] and vice versa [black curves 

in Figure 10.5 (a) – (b)]. 

 

Figure 10.3 Beamformed images of simulated point targets (a) DAS, (b) DASCF, (c) PSAPNCC (8-8) and (d) 

PSAPPhase (8-8). Display dynamic range is 55 dB. Green and blue rectangles denote signal and 

noise ROIs, respectively. For PSAPNCC and PSAPPhase, axial kernel length and phase factor (k0) 

were 4.5λ and 9
 respectively.   
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Figure 10.4 Lateral profiles of PSF of at depth of (a) 8 mm and (b) 20 mm for all methods. Both CF and 

PSAP significantly reduced sidelobe level of DAS. 

Table 10.5 Comparison of MLSL (dB) and FWHM at -6 dB Values* 

 MLSL (dB) FWHM at -6 dB (mm) 

Depth 

(mm) 

DAS DASCF PSAPNCC PSAPPhase DAS DASCF PSAPNCC PSAPPhase 

8 41.15 75.7 70.5 80.3 0.21 0.17 0.21 0.20 

12 38.16 70.4 71.2 57.8 0.32 0.24 0.30 0.29 

16 35.91 66.0 60.4 59.1 0.41 0.33 0.40 0.36 

20 33.81 61.8 46.5 80.7 0.53 0.41 0.50 0.38 

*The best and worst values are in blue and red colors, respectively. 
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Figure 10.5 Variation of MLSL with alternating element number for (a) PSAPNCC and (b) PSAPPhase 

respectively. Variation of FWHM at -6 dB with alternating element number for (a) PSAPNCC and (b) 

PSAPPhase respectively. For PSAPNCC and PSAPPhase, axial kernel length and phase factor (k0) were 

2.5λ and 3
 respectively.   

 The performance of PSAPNCC as a function of axial kernel length are shown in Figure 10.6. 

With higher axial kernel lengths, a steady improvement in MLSL was seen for shallower targets 

when compared to deeper targets with no signifcant variation at 20 mm as shown in Figure 10.6 

(a) – (e). Higher axial kernel lengths did not impact FWHM except for the 20 mm target [Figure 

10.6 (f)]. A 8-8 alternating pattern was used. 

 Figure 10.7 shows PSAPPhase performance  as a function of phase factor (k0). Better 

sidelobe suppression was achieved with lower phase factors resulting in higher MLSL values as 

seen in Figure 10.7 (a) – (e). Furthermore, reduction of FWHM values at depth was observed with 
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lower k0 [Figure 10.7 (f)]. A 8-8 alternating pattern was used. These results indicate that the phase 

factor can be adjusted to adatively control the level of sidelobe suppression of coherent targets. 

 

 

Figure 10.6 Variation of PSAPNCC performance with axial kernel length. Point target at 8 mm depth 

beamformed using an axial kernel length of (a) 0.5�, (b) 2.5�, (c) 3.5� and (d) 4.5� respectively. 

Variation of MLSL and FWHM at -6 dB are shown in (e) and (f) respectively. 
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Figure 10.7 Variation in PSAPPhase performance with phase factor. Point target at 8 mm depth beamformed 

using a phase factor of (a) �, (b)  � 3� , (c)  � 5�  and (d)  � 9�  respectively. Variation of MLSL and 

FWHM at -6 dB are shown in (e) and (f) respectively. 

10.3.2 Diffuse Inclusion Simulation 

 Representative qualitative results with diffuse inclusions are shown in Figure 10.8. Figure 

10.8 (a) – (e) show the ground truth initial pressure disribution, along with the reconstrcuted 

images using DAS, DASCF, PSAPNCC and PSAPPhase, respectively. Strong sidelobes are seen in the 

DAS image [Figure 10.8 (b)]. CF reduced sidelobes seen with DAS along with the undesirable 

supression of PA signals inside the inclusion [Figure 10.8 (c)]. On the other hand, PSAPNCC and 

PASPPhase produced higher quality images with reduced sidelobe and better PA signal preservation 
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inside the inclusion that more closely resembled ground truth image [Figure 10.8 (d) – (e)]. 

However, strong sidelobes near the border of the shallow target in Figure 10.8 (b) causes positive 

correlation between sub-aperture images with the chosen parameters. This resulted in additional 

noise in the border regions of the PSAP images [Figure 10.8 (d) – (e)]. 

 

Figure 10.8 Beamformed images of simulated 3-mm diameter diffuse targets.  (a) ground truth initial 

pressure distribution, (b) DAS, (c) DASCF, (d) PSAPNCC (2-2) and (e) PSAPPhase. (2-2). Display 

dynamic range is 55 dB. Green and white ROIs denote signal and noise ROIs, respectively. 
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 Figure 10.9 (a) – (c) present the CF, NCCW and PhaseW weighting matrices used to obtain 

the corresponding DASCF, PSAPNCC and PSAPPhase images shown in Figure 10.8. A linear scale 

ranging from 0 to 1 was used to display the results. Observe that the CF weighting matrix had 

unusable lower weight values inside both lesions. However, NCCW and PhaseW both robustly 

estimated higher weighting values insde the lesions and lower weighting values inside sidelobe 

and clutter regions, thus hindering the undesirable signal suppression observed in the DASCF result 

(Figure 10.9 (c)). 

 

Figure 10.9 Weighting matrix comparison between CF and PSAP processing in diffuse inclusion simulation. 

(a) – (c) show CF, NCCW and PhaseW weighting matrix respectively in a linear scale from 0 to 1. 

 Figure 10.10 summarizes statistical analysis, where both CF and PSAP show statistically 

significant differences in CR when compared to DAS with PSAP methods achieving the highest 
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values [Figure 10.10 (a) – (b)]. PSAP significantly improved inclusion detectability when 

compared to both DAS and DASCF as shown in Figure 10.10 (c) – (d) where PSAPNCC and 

PSAPPhase had higher gCNR values (p<0.001) with no significant differences between each other. 

 The choice of sub-aperture patterns was also investigated for diffuse inclusions. Figure 

10.11 (a) and (b) show that peak CRs for inclusions located at shallower and deeper depth were 

achieved with 2-2 and 4-4 alternating patterns respectively for both PSAPNCC and PSAPPhase. But 

gCNR results [Figure 10.11 (c) – (d)] show peaks with 2-2 alternating pattern indicating an ideal 

choice for diffuse inclusion detection. Thus, the 2-2 alternating pattern was chosen for subsequent 

analysis of microvasculature simulations and in vivo data. 

 

Figure 10.10 Statistical analysis for performance comparison among DAS, DAS-CF and PSAP (n = 10). 

Comparison of CR for lesions located at a depth of (a) 7 mm and (b) 13 mm respectively. 

Comparison of gCNR for lesions located at a depth of (a) 7 mm and (b) 13 mm respectively. Here, 

*** is p<0.001. 
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Figure 10.11 Impact of sub-aperture size on lesion contrast and detectability. CR variation with the choice 

of sub-aperture for (a) PSAPNCC and (b) PSAPPhase respectively. gCNR variation with the choice of 

sub-aperture for (c) PSAPNCC and (d) PSAPPhase respectively.    

 Variations in CR and gCNR as a function of channel SNR (SNRc) is presented in Figure 

10.12. Figure 10.12 (a) – (b) show CR variations at depths of 7 and 13 mm, respectively. For the 

7 mm deep inclusion, DASCF, PSAPNCC and PSAPPhase present with higher CR than DAS for all 

SNRc levels. PSAPNCC and PSAPPhase showed higher CR values than DASCF for SNRc < -15 dB 

(Figure 10.12 (a)). At the deeper depth (13 mm), DASCF, PSAPNCC and PSAPPhase had higher CR 

than DAS for SNRc < -15 dB after which the inclusion is not visualized due to high noise levels. 

Figure 10.12 (c) – (d) show gCNR variation at depths of 7 and 13 mm, respectively. Figure 10.12 

(c) shows that PSAP results had higher gCNR than DAS and DASCF for the shallow target at all 

SNRc levels. For the deeper target, PSAP results had higher gCNR for low levels of noise (SNRc 

> 5 dB) after which the results converge to the results obtained with DASCF.  DASCF, PSAPNCC 

and PSAPPhase had higher gCNR than DAS for SNRc < -15 dB after which the inclusion was not 

distinguished from the background. 



312 
 

 

 

Figure 10.12 Diffuse inclusion simulation CR and gCNR analysis as function of channel SNR. (a) – (b) CR 

variation at a depth of 7 and 13 mm, respectively. (c) – (d) gCNR variation at a depth of 7 and 13 

mm, respectively. 

Table 10.6 provides computational times computed over ten simulation instances of the diffuse 

inclusion simulation. Note that, PSAP requires more computational time due to additional sub-

aperture beamforming and weighting matrix calculation. 

Table 10.6 Summary of Computational Times (Secs) 

Experiment DAS & DASCF PSAPNCC PSAPPhase 

Diffuse Inclusion* 0.14 0.33 1.85 

 * Average time over 10 simulation realizations 
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10.3.3 Microvasculature Simulation Results 

 A representative result from the microvasculature simulation is shown in Figure 10.13 (a) 

– (e) with ground truth initial pressure disribution, reconstructed images with DASCF, PSAPNCC 

and PSAPPhase, respectively. Representative target and background ROI definitions for quantitative 

analysis are shown in Figure 10.13. DAS image show severe clutter artifacts due to high sidelobe 

levels. With CF, clutter was reduced but the PA signal amplitude inside blood vessels were also 

undesirably suppressed thus negatively impacting deeper vessel detectability. PSAPNCC and 

PSAPPhase produced significantly better images when compared to DAS and DASCF achieving both 

clutter supression and blood vessel PA signal preservation. Figure 10.13 (f) shows the axial 

profiles across the blue line ROI shown in Figure 10.13 (a). Note that PSAP preserves DAS 

amplitude levels in the blood vessels and at the same time reduces clutter compared to DASCF.  

 Figure 10.14 demonstrates that statistically significant improvements in CR and gCNR 

were achieved with PSAP when compared to DAS and DASCF. Figure 10.14 also demonstrate that 

CF weighting stretches the dynamic range resulting in higher CR without improving the target 

detectability (no significant difference between DAS and DASCF gCNR values). With PSAP, 

improvements both in contrast and target detectability was achieved. The choice of sub-aperture 

was also investigated for microvasculature simulations as shown in Figure 10.15. Peak CR and 

gCNR values were obtained with the 2-2 alternating pattern for both PSAPNCC and PSAPPhase. 

Figure 10.15 also shows that performance can be severely impacted if larger number of alternating 

elements are chosen.  
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Figure 10.13 Beamformed images of simulated microvasculature.  (a) ground truth initial pressure 

distribution, (b) DAS, (c) DASCF, (d) PSAPNCC (2-2) and (e) PSAPPhase. (2-2). Signal variation across 

an axial line ROI shown in (f). Display dynamic range is 55 dB. Green and red rectangles in (a) 

denote signal and clutter ROIs, respectively. Blue line in (a) denotes axial profile ROI. 
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Figure 10.14 Statistical analysis for performance comparison among DAS, DASCF and PSAP (n = 40). 

Comparison of (a) CR and (b) gCNR for microvasculature simulation data.  Here, *** is p<0.001. 

 

 

Figure 10.15 Impact of sub-aperture size on microvasculature contrast and detectability. CR variation with 

the choice of subaperture for (a) PSAPNCC and (b) PSAPPhase respectively. gCNR variation with the 

choice of subaperture for (c) PSAPNCC and (d) PSAPPhase respectively.    
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10.4 Experimental Findings from in vivo Cardiac PAI Study 

 Figure 10.16 (b) – (e) shows in vivo cardiac PA images at ED reconstructed using DAS, 

DASCF, PSAPNCC and PSAPPhase, respectively. Corresponding US B-mode image with PAI 

aquisition ROI and relevant anatomical locations is shown in Figure 10.16 (a). Myocardial wall 

PA signals and background clutter signals are shown in blue and white ROIs in the DAS image. 

Note that DASCF reduced clutter signals with simualtanous supression of myocardial wall PA 

signals. On the other hand, PSAPNCC and PSAPPhase showed improved myocardial wall signal 

specificity and reduced clutter in the LV chamber and thus provided higher quality image when 

compared to DAS and DASCF. In vivo cardiac PA images at ES are shown in Figure 10.17, we 

observe similar findings as in ED images. Figure 10.18 shows that PSAPNCC and PSAPPhase had 

higher CR and gCNR values compared to DAS and DASCF. 
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Figure 10.16 In vivo cardiac photoacoustic images at ED. (a) US B-mode, (b) (b) DAS, (c) DASCF, (d) 

PSAPNCC (2-2) and (e) PSAPPhase. (2-2). Green rectangle denotes PAI ROI. Blue and white ROIs 

indicate myocardial wall and clutter signals respectively. 
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Figure 10.17 In vivo cardiac photoacoustic images at ES. (a) US B-mode, (b) (b) DAS, (c) DASCF, (d) 

PSAPNCC (2-2) and (e) PSAPPhase. Green rectangle denotes PAI ROI. Blue and white ROIs indicate 

myocardial wall and clutter signals respectively. 
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Figure 10.18 In vivo statistical analysis for performance comparison among DAS, DASCF and PSAP (n = 

5). (a) and (b) show CR and gCNR. n = 5 corresponds to the number of animal models. 

10.5 Discussion on the implication of using PSAP algorithms for PAI beamforming 

 In this chapter, we presented our PSAP algorithms, validated using numerical simulations 

and in vivo animal studies both qualitatively and quantitatively. The key findings from these 

studies can be summarized as follows. 

a) PSAP reduces PA clutter seen in DAS PA images utilizing similarity information between 

sub-aperture beamformed images. 

b) PSAP improves PA target detectability at all depths by preserving DAS signal amplitude 

inside the target while achieving CF like clutter suppression in the background. 

c) Optimal PSAP performance is parameter dependent and varies with application. 

 The variation in DAS image quality with f-number was evaluated using both point target 

and diffuse inclusion simulations. A f-number of 1 was chosen as it provided higher MLSL for 

point targets and higher CR and gCNR for inclusions (Appendix A: DAS and DASCF 

Performance Optimization for PSAP Comparison Study). For coherent targets, PSAP reduces 

DAS sidelobe levels when compared to DASCF while maintaining DAS resolution [Figure 10.3 

and Figure 10.4]. But DASCF provided the best quality images in terms of MLSL and FWHM with 

comparable performance with PSAP [Table 10.5]. For PSAPNCC and PSAPPhase, choice of the 
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alternating sub-aperture element number (N) showed a depth-dependent variation in MLSL [ 

Figure 10.5]. Varying the alternating pattern affects the PSF shape  generated by each sub-aperture 

which in turn changes the correlation of sidelobe signals [10]. Furthermore, from the DAS image 

[Figure 10.3 (a)], we observe depth-dependent variation of full aperture PSF due to variation in 

scattering intensity over depth [10]. Thus, larger number of alternating elements provide better 

MLSL deeper in tissue with 8-8 achieving a balance.  

 Two key algorithmic parameters – axial kernel length for PSAP-NCC and phase factor for 

PSAP-Phase were also investigated. Figure 10.6 (a) – (d) and Figure 10.7 (a) – (d) show that lower 

axial kernel length and higher phase factor introduces positive correlation between sub-aperture 

beamformed images in sidelobe regions resulting in point-like artifacts in the images. These 

artifacts were seen in point target simulations due to the strong sidelobes in the original DAS 

image.  Increasing axial kernel length steadily improved MLSL for shallower targets [8 and 12 

mm shown by red and blue curves in Figure 10.6 (e)] as they had wider sidelobes when compared 

to deeper targets [16 and 20 mm shown by green and black curves in Figure 10.6 (e)]. On the other 

hand, we observed steady improvement in performance (MLSL and FWHM) when lower phase 

factor values were chosen for PSAPPhase [Figure 10.7]. Therefore, these results suggest that both 

axial kernel length and phase factor values should be adjusted based on the application to achieve 

desired sidelobe suppression. Overall, the results from point target simulations suggest that larger 

alternating element number (8-8), higher axial kernel length and lower phase factor is preferred 

when using PSAP for coherent target PAI [10].  

 Several groups including ours have reported on CF weighting for sidelobe lobe suppression 

[1, 3, 5, 33, 34]. However, analysis in this chapter shows that although CF weighting suppresses 

clutter signals, it also leads to undesirable target PA signal suppression specifically at depths where 
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the target signal is weaker due to optical attenuation [Figure 10.8 and Figure 10.13]. CF was 

originally developed for US imaging to tackle phase aberration [35] and utilizes very strict 

measures of coherence. This causes weak PA signals at depth to have lower coherence values thus 

suppressing them at the level of clutter signals. On the other hand, our PSAP approaches separate 

target PA signals from clutter using correlation (amplitude and phase) between sub-aperture 

beamformed images. Here, target PA signals were highly correlated both at shallower and deeper 

depths when compared to clutter signals due to the use of non-overlapping sub-apertures [9, 10, 

13, 15]. Therefore, weaker PA signals at depth were better preserved with PSAP when compared 

to CF. Quantitative results show that DASCF, PSAPNCC and PSAPPhase provide higher CR values 

than DAS. However, we are also interested in improving signal detectability which is better 

quantified using gCNR [27]. Adaptive methods often nonlinearly alter the image dynamic range 

and histogram to which gCNR is invariant [23, 27]. gCNR analysis reveals that significant 

improvement is achieved using PSAP when compared to DASCF [Figure 10.10 and Figure 10.14]. 

Figure 10.11 and Figure 10.15 also indicate that lower N is preferred for maintaining a balance 

between main lobe signal preservation and clutter signal suppression. With higher N, target PA 

signals start to get negatively correlated and suppressed through the PSAP weighting matrix. This 

results in lower CR and PA signal detectability (gCNR). Furthermore, lower axial kernel length 

and higher phase factor values were chosen to inhibit any undesirable suppression of target PA 

signal [Table 10.3 and Table 10.4]. Overall, the results for diffuse and microvasculature 

simulations suggest that lower alternating element number (2-2), lower axial kernel length and 

higher phase factor is preferred when using PSAP for diffuse target PAI. 

 PSAP and CF also showed similar CR trends as a function of SNRc with better performance 

than DAS [Figure 10.12 (a) – (b)]. However, PSAP processing provides improved target 
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detectability (gCNR values) when compared to DAS and DASCF under low noise levels for both 

target depths. Additionally, PSAP processing had larger SNRc operating regions for shallower 

versus deeper targets, observed by the left shift of the gCNR curve indicated by an arrow in Figure 

Figure 10.12 (d). For lower SNRc channel data with simulated optical attenuation, main lobe 

strength in the sub-aperture beamformed images degrades severely for deeper targets resulting in 

decorrelation during NCC and phase estimation. These results indicate that for PA imaging targets 

severely corrupted by incoherent clutter noise, PSAP processing is unable to distinguish between 

signal and noise providing similar performance as DASCF. 

 We also observed few erroneous vertical lines in DASCF images in Figure 10.8 (c) and 

Figure 10.13 (d) respectively, probably due to the Hilbert transformation of CF weighted 

beamformed PA RF data for envelope detection. CF weighting may have extended the signal 

bandwidth resulting in violation of the bandlimited signal assumption required with the Hilbert 

transform. This may happen in any weighting-based beamforming algorithm, however in DASCF 

results, we observed it within our imaging dynamic range. However, it did not impact the 

quantitative analysis, because the vertical line artifacts were outside our chosen ROI locations. 

Approaches to reduce the vertical line artifact include determining the envelope of beamformed 

PAI RF data first then weighting using the CF matrix or beamforming in the IQ domain by taking 

Hilbert transform of channel data or bandpass filtering of the RF data prior to Hilbert envelope 

detection. Additionally, we have investigated a filtered version of CF weighting by applying a 

spatial averaging filter with a kernel of size [1.5λ × 3 A-lines] on the CF map and observed that 

the filtered version of DASCF provides vertical line artifact reduction and minor improvements in 

the CR and gCNR when compared to the classical CF algorithm. Please refer to Appendix A: 

DAS and DASCF Performance Optimization for PSAP Comparison Study for further details.  
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 PSAP however does require additional computational time and memory for sub-aperture 

processing and weighting matrix generation. For real-time processing, parallel processing with 

GPUs can be harnessed by beamforming DAS and sub-aperture images in parallel from collected 

raw channel data. 

 A limitation of our simulations was that frequency dependent acoustic attenuation was not 

modelled. Typically, broadband PA signals are impacted by acoustic attenuation [36] especially 

when high frequency transducers are used for imaging resulting in depth dependent blurring of 

features and signal loss [37]. Future work will incorporate acoustic attenuation into the simulation 

model. Another limitation was the use of a planar phantom and performing simulations in 2-D. In 

the future, simulations with 3-D phantoms will be performed as the dimensions of the US beam is 

not negligible in the elevational direction. Finally, another limitation of the proposed technique is 

the use of the fixed alternating pattern number for sub-aperture generation. As the PSF with PAI 

varies over depth, we anticipate further performance improvement using depth-dependent dynamic 

sub-aperture generation by varying the alternating pattern number [14].  

 Benefits of PSAP are clear in the presented ED and ES images in Figure 10.16 and Figure 

10.17. Note that PA signals in the LV chamber appear as temporally varying random noise in the 

DAS cine loop. This makes interpretation of myocardial PA signals difficult especially during the 

systolic phase. This random variation can be attributed to higher blood flow velocities inside the 

LV chamber and strong optical absorption in the coronary artery [1, 38, 39]. This leads to a strong 

bias of PA signals towards the myocardial (endocardium and epicardium) walls and results in non-

viable PA signals from the LV chamber [1, 30]. These random noise signals can be suppressed 

using CF as shown in Figure 10.16 – Figure 10.17 (c). However, CF also undesirably suppresses 

myocardial wall PA signals further corroborating our findings from simulation studies. One 
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implication of undesirable myocardial wall PA signal suppression is that it can lead to inaccurate 

diagnosis of ischemia [1, 40, 41] as only healthy murine hearts were imaged in this study. In 

contrast to CF, PSAP enables suppression of non-viable LV chamber PA signals while preserving 

DAS amplitude levels in the myocardial wall. This is a critical advantage over CF because DAS 

amplitude preservation is desired when multi-wavelength PAI is employed for oxygen saturation 

quantification [42]. Quantitative analysis shows that DASCF, provides higher CR values but 

reduced wall PA signal detectability as also indicated by the gCNR reduction when compared to 

DAS in Figure 10.18. In contrast, PSAPNCC and PSAPPhase provided improvements in both CR and 

gCNR when compared to DAS demonstrating the in vivo feasibility of PSAP. Future in vivo 

validation studies will focus on application of PSAP for murine ischemia-reperfusion detection 

using single- and multi-wavelength cardiac PAI. 

 In this chapter, we have focused on imaging the murine heart wall using linear array PAI. 

Researchers have also illustrated use of PAI to guide in vivo cardiac catheter interventions [43]. 

Furthermore, PAI has been used for imaging prostate brachytherapy seeds [44, 45], percutaneous 

radiofrequency ablation needle detection [46] and surgical guidance [47]. One recurring challenge 

in these applications is the PA image quality [47], and novel beamforming approaches have been 

proposed to tackle this challenge [7, 44, 48, 49]. Simulation and in vivo results presented in this 

chapter suggest that PSAP can potentially improve image quality for the above-mentioned 

applications by clutter reduction while maintaining target detectability thus contributing towards 

solving the image quality challenge. PSAP also be combined with adaptive beamforming methods 

such as minimum variance, DMAS beamforming [6, 7, 21, 50] for further image improvements. 
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Chapter 11 

Improving Minimum Variance Beamforming with Sub-Aperture 

Processing for Photoacoustic Imaging 

 Minimum variance (MV) beamforming improves resolution and reduces sidelobes when 

compared to delay-and-sum (DAS) beamforming for photoacoustic imaging (PAI). However, 

some level of sidelobe signal and incoherent clutter persist degrading MV PAI quality. One simple 

solution is to weight MV images with coherence factor [1-4]. However, this may not be an ideal 

solution in low signal-to-noise ratio environments resulting in undesirable PA signal suppression 

as demonstrated in Chapters 09 and 10 [5]. In this chapter, we propose to utilize our developed 

photoacoustic sub-aperture processing (PSAP) method [5] with MV to address the sidelobe 

corruption problem while preserving resolution improvement obtained with MV.  

11.1  Principles of Photoacoustic Sub-aperture Processing (PSAP) for Minimum 
Variance (MV) Beamforming 

 We first generate two MV beamformed images, MV1(t) and MV2(t) using two non-

overlapping sub-apertures having no common elements [5-7]. Details regarding MV beamforming 

and sub-aperture generation is described in Chapters 09 and 10 respectively.  Then, 2-D 

normalized cross-correlation (NCC) between MV1(t) and MV2(t) is performed to separate on-axis 

main-lobe signals and interfering side-lobe signals. NCC(t) is used to estimate a dynamic 

weighting matrix, PSAPW(t) using following equation: 

 ( ) max( ( ), )t tWPSAP NCC   (11.1) 

where,  is a minimum NCC threshold value to estimate a weighting matrix having a range of [ 

, 1]. Finally, PSAPW(t) is multiplied with MV(t) [MV beamformed image with the full-aperture] 
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resulting in a PSAP MV beamformed image denoted as MVPSAP(t). Here, we design the first sub-

aperture with ones and zeros with an alternating pattern of N elements on and N elements off, with 

the second sub-aperture is complementary to the first one. Further details on PSAP is presented in 

[5]. 

11.2 Simulation Validation Studies and Quantitative Analysis 

 The proposed method was validated using numerical simulations with point targets, diffuse 

inclusion and microvasculature networks. A similar simulation methodology as reported in 

Chapter 10 has been adopted for this chapter and described in detail in Chapter 10. For point 

target simulations, we computed the main-lobe-to-sidelobe (MLSL) ratio (dB) and full-width-at-

half-maximum (FWHM) at -6 dB values. Diffuse inclusion and microvasculature simulations were 

quantified using contrast ratio (CR) and generalized contrast-to-ratio (gCNR) [8, 9]. 

 A comparative study was designed with DAS, MV and MVPSAP beamforming. DAS was 

performed with a 64-element aperture, uniform apodization and f-number of 1. MV beamforming 

used sub-arrays with length S = 24 and diagonal loading  1 100  S  to estimate RSA(t). MVPSAP 

parameters used are listed in Table 11.1 MVPSAP Parameters. Parameter choices were chosen 

based on parametric studies reported in [5]. Algorithms were run on a GPU and MATLAB Parallel 

Computing toolbox for accelerated computation.  

Table 11.1 MVPSAP Parameters 

Experiment Parameter Value 

Point Target 
Alternating elements (N) 16-16 

 NCC Kernel (Wavelength, A-lines) (4.5λ,3) 

Diffuse Inclusion Micro-

vasculature 

 

Alternating elements (N) 1-1 

NCC Kernel (Wavelength, A-lines) (1λ,3) 
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11.3 MVPSAP Improves Conventional MV Performance  

 Figure 11.1 (a) – (c) show point target beamformed images with DAS, MV and MVPSAP, 

respectively. Note the presence of strong sidelobe signals with DAS. MV reduces sidelobes seen 

with DAS but does not suppress it completely. Incorporation of PSAP with MV provided the best 

beamformed image with significant performance improvement over DAS and MV. Figure 11.2 (a) 

– (b) show the point spread function (PSF) at a depth of 8 mm and 20 mm, respectively. MVPSAP 

had the narrowest PSF with lowest sidelobe level. Table 11.2 and Table 11.3 summarize the results 

for MLSL and FWHM comparison. Improvement in lateral resolution (lowest FWHM) and 

sidelobe reduction (highest MLSL) was achieved using MVPSAP. 

 

Figure 11.1 Beamformed images from point target simulations. (a) DAS, (b) MV and (c) MVPSAP. Display 

dynamic range 55 dB.  
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Figure 11.2 Lateral PSF at depths of (a) 8 and (b) 20 mm, respectively.  MVPSAP has the narrowest PSF 

with lowest sidelobe level. 

Table 11.2 MLSL (dB) Results 

Depth DAS MV MVPSAP 

8 mm 41.15 50.84 84.63 

12 mm 38.16 47.40 107.85 

16 mm 35.91 46.89 100.12 

20 mm 33.82 42.26 95.05 

   

Table 11.3 –6dB FWHM (mm) Values 

 DAS MV MVPSAP 

8 mm 0.22 0.21 0.19 

12 mm 0.32 0.17 0.16 

16 mm 0.41 0.22 0.21 

20 mm 0.53 0.26 0.25 

 

 Beamformed images for the diffuse inclusion simulation using DAS, MV and MVPSAP are 

shown in Figure 11.3 (b) – (d). The ground truth initial pressure distribution with target (green 

circle) and background (white half-circles) ROIs is presented in Figure 11.3 (a). For DAS, we 

observe high sidelobe signal levels specially near the borders for shallow targets as indicated by 
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arrows (Figure 11.3 (b)). MV results show significant image quality improvements with 

suppression of the strong border region clutter signals. Further, performance enhancement with 

increased sidelobe suppression was achieved with MVPSAP.  

 CR and gCNR comparison results for diffuse inclusion simulation are shown in Figure 11.4 

(a) – (b) respectively. MVPSAP had the highest CR and gCNR among the three methods. For 

example, mean gCNR values (n = 10) for the inclusion at 8 mm, for DAS = 0.84, MV = 0.89 and 

MVPSAP = 0.99, demonstrate that improvement in both contrast and target detectability is achieved 

using PSAP for MV. 

 Figure 11.5 (b) – (d) show microvasculature beamformed images with DAS, MV and 

MVPSAP, respectively. The ground truth initial pressure distribution is presented in Figure 11.5 (a). 

Note that DAS image suffer from high level of sidelobe signals specially near the borders for 

shallower vessels (white arrows in Figure 11.5 (b)). Results using MV show suppression of the 

strong sidelobe signals, but unexpected background clutter persist. Best quality image was 

achieved with MVPSAP (Figure 11.5 (d)) showing a close resemblance with the ground truth image. 

CR and gCNR were computed by placing small rectangular ROIs covering the shallowest vessels 

as target ROIs and then translating them into the sidelobe regions as background ROIs. MVPSAP 

had the highest CR and gCNR values (Mean CR [dB] for DAS = 15.38, MV = 22.42, MVPSAP = 

46.32 and mean gCNR for DAS = 0.71, MV = 0.81, MVPSAP = 0.82).  
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Figure 11.3 Diffuse inclusion beamforming results. (a) Ground truth initial pressure distribution, (a) DAS, 

(b) MV and (c) MVPSAP. Display dynamic range 55 dB. 

 

Figure 11.4 (a) CR and (b) gCNR comparison for diffuse inclusion. 
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Figure 11.5 Simulated microvasculature beamformed images. (a) Ground truth initial pressure distribution, 

(a) DAS, (b) MV and (c) MVPSAP. Display dynamic range 55 dB. 

 The results presented in this chapter show that the proposed hybrid beamforming algorithm 

coupled with better resolution from MV along with sidelobe signal suppression from PSAP. The 

resulting MVPSAP images demonstrated higher contrast and improved target detectability. Future 

work will involve validation in more complicated simulation environments (e.g., addition of 

channel noise, acoustic attenuation), phantom experiments and in vivo applications. 
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Chapter 12 

Spatiotemporal Singular Value Decomposition for in vivo Cardiac 

Photoacoustic Imaging 

 In this chapter9, we present a spatiotemporal singular value decomposition (SVD) 

processing method using ECG and respiratory signal (ECG-R) gating with in vivo cardiac murine 

photoacoustic imaging (PAI) data beamformed with delay-and-sum (DAS)  [1]. SVD has been 

previously used for artifact and clutter reduction in ultrasound (US) imaging [2], power Doppler 

[3, 4] and ultrafast functional US imaging [4-6] demonstrating remarkable improvement in 

sensitivity. Spatiotemporal SVD allows for signal separation between tissue, blood, and random 

noise components by decomposing raw data into spatiotemporal singular vectors, enabling 

selection of singular vectors with relevant spatiotemporal fluctuations [4]. SVD to improve image 

reconstruction performance for photoacoustic computed tomography systems (PACT) has also 

been reported [7, 8]. For example, Wang et al. proposed a fast spatiotemporal image reconstruction 

algorithm with SVD for dynamic PACT and reported accuracy improvement over conventional 

approaches [8]. In this chapter, however, we focus on improving the quality of photoacoustic 

images collected using linear array US transducers. For linear array PAI, SVD has been used for 

identification and reduction of laser-induced noise using the spatial singular value spectrum [9]. 

Spatiotemporal clutter filtering with SVD has also been applied for contrast enhanced PAI in a 

phantom study [10]. The novelty of our approach is to utilize the natural deformation of myocardial 

tissue to achieve PA image enhancement using spatiotemporal SVD processing. The purpose of 

 
9 Rashid Al Mukaddim, Ashley M. Weichmann, Carol C. Mitchell and Tomy Varghese, “Enhancement of in vivo 
Cardiac Photoacoustic Signal Specificity using Spatiotemporal Singular Value Decomposition.” Journal of 
Biomedical Optics, vol. 26, no. 4, 046001 (2021) PMCID: Pending 
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this study is to demonstrate PA signal enhancement in myocardial tissue when compared to 

surrounding muscle tissue and blood within the LV chamber. 

 Briefly, a custom ECG-R gating algorithm along with a DAS and minimum variance (MV) 

beamformer are used to reconstruct a cardiac cycle of PAI data. We hypothesize that blood signals 

from the LV chamber will have low spatiotemporal coherence when compared to signals from the 

myocardial wall and surrounding tissue region appearing as random temporally incoherent clutter 

signals. Moreover, as the myocardium contracts and relaxes during a cardiac cycle, myocardial 

echo signals will have lower spatiotemporal coherence when compared to quasi-static surrounding 

tissue and any diffuse quasi-static clutter. Based on the aforementioned hypotheses, spatiotemporal 

SVD processing was applied to enhance the contribution from myocardial tissue. 

12.1  Principles behind Spatiotemporal SVD for in vivo cardiac PAI 

 Figure 12.1 presents a schematic diagram describing the spatiotemporal SVD algorithm for 

ECG-R gated in vivo cardiac PAI which is described in detail below. 

12.1.1 In vivo murine cardiac PAI data acquisition 

 Eight healthy BALB/CJ mice (median age of 10 weeks, five males, three females) acquired 

from The Jackson Laboratory (Bar Harbor, ME USA) were used to perform an in vivo validation 

study for the proposed SVD processing framework. All in vivo experiments were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin-Madison. 

A Vevo 2100-LAZR photoacoustic-ultrasonic imaging system (FUJIFILM VisualSonics, Inc., 

Toronto, Canada) was utilized for collecting PAI data. After removing chest hair with depilatory 

cream, Nair (Church & Dwight Co., Ewing, NJ), mice were placed in the supine position on a 

heated platform under anesthesia (1.5-3.5% isoflurane) and continuous flow of oxygen (1-2 L/min) 
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via a nose cone. ECG and respiratory signals were collected using dedicated physiological 

monitoring system with the Vevo 2100-LAZR. Spectra 360 electrode gel (Parker Labs, Fairfield, 

NJ) was applied on the physiological signal monitoring system electrodes to ensure optimal contact 

with each paw ensuring high-quality ECG and respiratory signal acquisition. The supply of 

isoflurane and oxygen flow rate was titrated to maintain a consistent heart rate between 310-340 

beats per minute (bpm) as best as possible during imaging. 

 A LZ 250 transducer (256-element linear array) having a pitch of 90 µm, center frequency 

of 21 MHz and bandwidth from 13 MHz to 24 MHz was used for data collection [11]. LithoClear, 

(Next Medical Products, Branchburg, NJ) a high viscosity acoustic gel was applied within the cup 

of the transducer along with a liberal amount to the animals’ chest to ensure optimal acoustic 

coupling between the transducer and mice, while also allowing for a gel offset to reduce 

reverberation artifacts. Acoustic gel was centrifuged prior to imaging to remove air bubbles that 

would cause artifacts in PAI. Parasternal long axis (PLAX) imaging view was used with US B-

mode imaging. B-mode images had a depth of 16 mm and width of 11.04 mm with a depth offset 

of 5 mm and focus at 11 mm. The skin surface of the mice was placed at an approximate depth of 

8 mm whenever possible to avoid reverberation artifacts from the skin [12, 13]. A cine loop of US 

B-mode was collected to confirm normal cardiac function for each mouse. Then, 1000 frames of 

co-registered beamformed US and pre-beamformed PA channel data were acquired using an 

optical wavelength of 850 nm where oxygenated hemoglobin has dominant absorption [14] with 

simultaneous acquisition of ECG and respiratory signals. With the LZ 250, two sequential laser 

pulses are required to cover the chosen US imaging width [11.04 mm] with 64-element parallel 

acquisition per pulse resulting in a PAI frame rate of one half the laser repetition rate [15].  To 

perform PAI at the maximum laser repetition rate of the system dedicated Nd:YAG laser [20 Hz], 
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PA imaging width was adjusted to be approximately half of the US imaging width resulting in an 

acquisition with only 64-elements [green rectangle in Figure 12.1] [16, 17]. No frame or A-line 

averaging was performed during PA data collection. PA gain (40 dB) and time gain compensation 

(TGC) were kept constant throughout the experiment to allow inter-animal comparison. Finally, 

in-phase and quadrature (IQ) sampled PA channel data were exported for offline beamforming and 

SVD processing. 

  

 

Figure 12.1 Schematic diagram illustrating the spatiotemporal Singular Value Decomposition (SVD) 

processing algorithm for ECG and Respiratory (ECG-R) gated in vivo cardiac photoacoustic 

imaging. 

12.1.2 Cardiac Cycle Reconstruction using ECG-R Gating and Beamforming 

 A cardiac cycle of PA channel data was reconstructed by performing respiratory signal 

gating to discard frames and avoid motion artifacts, followed by re-ordering of gated frames using 

ECG signals and individual frame time stamps. To ensure accurate respiratory signal gating, a 

publicly available open source respiratory signal processing toolbox named BreathMetrics 
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(https://github.com/zelanolab/breathmetrics) was used [18]. Respiratory signal was analyzed to 

determine all inhalation peak time points with corresponding inhalation onsets and exhalation 

pause onsets. Then, gating was done per inhalation peak with gate start and end time corresponding 

to the inhalation onset and exhalation pause onset times, respectively as shown in Figure 12.2. Any 

PA and US frames within the gated region were discarded from subsequent analysis. Finally, the 

remaining usable frames were re-ordered by calculating the delay between the image time stamps 

and nearest ECG R-waves reconstructing a cardiac cycle of US and PA channel data. Additionally, 

an ECG curve for the gated cardiac cycle PA data was reconstructed using the image time stamps 

of the re-ordered frames after ECG-R gating and the original ECG timing information. To 

reconstruct the gated ECG curve, we sampled the original ECG signal by finding time indices 

closest to the image time stamps of the re-ordered usable frames after performing ECG-R gating.  

 PA complex radio-frequency IQ data were reconstructed from PA channel data using DAS 

beamforming with 64-element aperture, uniform aperture weighting and dynamic apodization with 

f-number of 1. For details regarding DAS beamforming please refer to Chapter 09. Dynamic 

receive focusing was performed by calculating one-way US signal propagation delay assuming the 

speed of sound to be 1540 ms-1. Beamforming process was accelerated by implementation using 

CUDA to run on a GPU in MATLAB (Mathworks Inc., MA). All beamforming was done on an 

Intel(R) Xeon(R) CPU E5-2640 v4 at 2.40 GHz and a Tesla K40c GPU (compute capability 3.5). 

This resulted into a three-dimensional (3-D) complex valued matrix P used for SVD processing 

with dimensions Nx = 64 A-lines, Nz =296 samples along depth and Nt   300 – 400 frames.  

 Additionally, time delayed PA channel data were also beamformed using a minimum 

variance (MV) beamforming algorithm [19]. For MV, the optimal aperture apodization function 

was determined by minimizing the variance of beamformed data using the following equation: 
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where, WMV(t) is the minimum variance aperture weighting vector, a (the steering vector) is a unit 

vector in our case due to dynamic receive focusing, RSA(t) is the co-variance matrix estimated by 

dividing the full array into overlapping sub-arrays having a length of Ns = 16 and t is the time-of-

arrival of PA acoustic waves. MV beamforming was accelerated using the Parallel Computing 

Toolbox in MATLAB. 

 

Figure 12.2 Respiration gating using BreathMetrics for performing ECG-R gated in vivo cardiac PAI 

12.1.3 Spatiotemporal Singular Value Decomposition (SVD) Processing 

 Theoretical background on spatiotemporal SVD processing is presented in this section. For 

SVD processing, a 3-D complex valued matrix P is constructed using stacks of ECG-R gated DAS 

beamformed PAI cardiac cycle data.  The matrix P has two dimensions in space denoted by Nx 

and Nz corresponding to the number of transducer elements and number of samples along the depth 

axis respectively and one dimension in time (Nt) corresponding to the number of frames in the 
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ECG-R gated cardiac cycle data. A spatiotemporal reorganization was applied on the matrix P to 

construct a two-dimensional (2-D) Casorati matrix, S with dimensions of (Nx ×Nz) by Nt  [4]. Each 

column vector of S represents a PA image. Then, SVD is performed on S which can be represented 

as follows.  

      S UΔV       (12.2) 

where Δ is a diagonal matrix with dimensions [min(Nx ×Nz , Nt) by min(Nx ×Nz , Nt)] containing 

the singular values in the diagonal and two unitary matrices U with dimensions [(Nx ×Nz) by 

min(Nx ×Nz , Nt)] and V dimensions [Nt by min(Nx ×Nz , Nt)] containing the spatial and temporal 

singular vectors corresponding to each singular value, respectively.  

 For cardiac PAI, we are interested in enhancing signals from myocardial tissue depicting 

natural contraction and relaxation over a cardiac cycle. The key assumption here is that myocardial 

tissue should have lower spatiotemporal coherence compared to PA signals from diffuse quasi-

static clutter and surrounding muscle regions and higher spatiotemporal coherence compared to 

fast moving blood volumes inside the LV chamber. The assumed spatiotemporal PA signal 

fluctuation will be characterized by matrix V containing the temporal singular vectors. Therefore, 

to enhance myocardial PA signals, singular values and vectors associated with myocardial tissue 

displacements were preserved by filtering both lower and higher order singular values of the 

singular value spectrum (SVS).  The low-order cutoff used to separate myocardial PA signal from 

quasi-static clutter and surrounding muscle was manually selected and denoted as rst here and in 

the rest of the chapter. After application of ECG-R gating, we observed that high amplitude PA 

signals from the surrounding muscle regions was depicted as quasi-static clutter while myocardial 

PA signals had deformation characteristics associated with natural contraction and relaxation of 

the heart over a cardiac cycle. Spatiotemporal SVD thereby decomposed the raw PA data into 
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spatiotemporal singular vectors. The singular vectors from quasi-static clutter and surrounding 

muscle had the lowest spatiotemporal fluctuations thereby contributing to lower order singular 

values. On the other hand, myocardial tissue had higher spatiotemporal fluctuations, therefore 

utilizing a lower-order cut-off enhanced the myocardial PA signals over quasi-static clutter and 

surrounding muscle. The high-order cut-off used to suppress random PA noise was calculated 

using the gradient of SVS and selected at the singular value order where gradient becomes less 

than 20 and denoted by rrt. The filtered SVS can be presented using a truncated diagonal matrix 

STΔ   as shown below. 

       ST STΔ Δ I       (12.3) 

where STI  is a diagonal matrix to filter Δ . For STI , diagonal elements between rst and rrt were set 

to one and rest were set to zeros. A typical SVS derived from our cardiac PAI data with chosen 

low- and high-order cutoff is shown in Figure 12.3. A filtered Casorati matrix, STS  through inverse 

SVD calculation was derived using the following equation. 

      *ST STS UΔ V      (12.4) 

Finally, a 3-D matrix of SVD processed cardiac PAI data, PST was reconstructed by applying a 

spatiotemporal reorganization on STS . 
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Figure 12.3 Singular value spectrum derived from SVD of in vivo cardiac PAI murine data. Green and red 

dots show the low and high-order cutoff respectively for SVD filtering. 

12.1.4 Quantitative Analysis 

 To perform quantitative analysis, three cardiac time points (during systole, at end-systole 

and during diastole) were identified using US M-Mode image derived from the reconstructed 

ECG-R gated cardiac cycle of the co-registered US B-mode cine-loop (Figure 12.4 (a)). We define 

systole as the cardiac phase when the LV chamber begins to contract until just before it reaches its 

smallest dimension, end-systole as the cardiac time point at which LV chamber is at the smallest 

dimension and diastole as the cardiac phase when the LV chamber begins to expand until it reaches 

its largest dimension. Note that imaging field of view (FOV) was set to focus on the 

interventricular septum while maintaining enough offset between the skin and transducer face to 

avoid reverberation artifacts during photoacoustic imaging. Then, corresponding B-mode images 

were used to manually draw target and background regions of interest (ROI) as shown with blue 

and red polygons respectively in Figure 12.4 (b). Both target and background ROI were 

constructed to have equal areas.  Finally, the corresponding DAS, MV and SVD processed PA 

images were evaluated by calculating the contrast ratio (CR) [16, 17], generalized contrast-to-

noise ratio (gCNR) [20, 21] and signal-to-noise ratio (SNR) [22] as defined in Chapter 09. 
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 For statistical analysis, a one-way analysis of variance (ANOVA) with the Bonferroni 

multiple comparison test was used to compare among DAS, MV and SVD-4. Note that SVD-4 

denotes spatiotemporal SVD processed image with rst = 4. Statistical analysis and graphing were 

done with Origin, Version 2020 (OriginLab Corporation, Northampton, MA, USA). 

 

 

Figure 12.4 Ultrasound guided statistical analysis of in vivo PAI. (a) US M-mode image derived from the 

reconstructed cardiac cycle after ECG-R gating. Chosen cardiac phases are shown with blue 

dashed line on the M-mode image. (b) Representative target (blue polygon) and background (red 

polygon) ROIs overlayed on PAI co-registered US image.   

12.2 Spatiotemporal SVD enhances myocardial specificity and reduces clutter 
noise 

 Figure 12.5 (a) – (c) show representative examples of DAS, MV and SVD processed 

images during systole, at end systole (ES) and during diastole of a cardiac cycle, respectively. US 

B-mode and PA images reconstructed with DAS, MV, SVD-0, and SVD-4 are presented from left 

to right chronologically for each sub-figure. PA signal strength from the myocardium in DAS and 

MV images were low making myocardial signal localization difficult. With SVD-0, no significant 

qualitative difference was observed in the myocardial wall region. However, significant 
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myocardial PA signal enhancement was achieved with SVD-4.  Specifically, we observe ES radial 

wall thickening in the SVD-4 image, which was not clearly visualized in the DAS, MV and SVD-

0 results [Figure 12.5 (b)]. Radial wall thickening was also confirmed with the corresponding US 

B-mode image [Figure 12.5 (b) left most image]. 

 Figure 12.6 (a) – (c) show another set of representative examples of DAS, MV and SVD 

processed images during systole, at end systole (ES) and during diastole of a cardiac cycle, 

respectively. US B-mode and PA images reconstructed with DAS, MV, SVD-0, and SVD-4 are 

presented from left to right chronologically for each sub-figure. In DAS and MV results, spurious 

high amplitude PA clutter (diffuse quasi-static) signals are observed in the surrounding muscle and 

background regions (indicated using black arrows in Figure 12.6 DAS images). Although some 

level of clutter reduction was observed with SVD-0, high amplitude PA signals persist in the 

regions indicated with arrows in DAS results. Finally, with SVD-4 significant PAI diffuse quasi-

static clutter reduction was achieved when compared to DAS, MV and SVD-0 thus enhancing 

signal specificity and detectability of myocardial PA signals.  

 Findings from a parametric study to investigate the performance of the proposed algorithm 

as a function of lower order singular value cut-off (rst) are summarized in Figure 12.7 and Figure 

12.8. Representative end-systole spatiotemporal SVD processed images for different rst values are 

presented in Figure 12.7. Results with rst = 0, 1, 2, 4 and 6 are presented from left to right 

chronologically. The impact of the rst cutoff is evident in these results in terms of myocardial signal 

enhancement and background signal suppression, with the best quality image obtained at rst = 4. 

However, choosing too high a value for rst may suppress signals from myocardial tissue as seen in 

Figure 12.7 for rst = 6. Figure 12.8 (a) – (c) show the variation of CR, gCNR and SNR as a function 

of rst for systolic, end-systolic and diastolic phase SVD processed PA images, respectively. We 
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observe peak CR, gCNR and SNR were achieved with rst = 4 after which the curves plateau. 

Therefore, SVD processed image with rst = 4 was used in the quantitative comparative study 

against DAS and MV beamforming. 

 

Figure 12.5 Representative SVD processed images at three different cardiac time points demonstrating 

improved PAI signal specificity after processing. (a) – (c) show results at systolic, end-systolic, and 

diastolic phase of a cardiac cycle, respectively. US B-mode and PA images for DAS, MV, SVD-0, 

and SVD-4 are presented from left to right chronologically for each sub-figure. SVD-0 and SVD-4 

denote spatiotemporal SVD processed images with rst = 0 and 4, respectively.  
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Figure 12.6 Representative SVD processed images at three different cardiac time points demonstrating 

PAI diffuse and quasi-static clutter reduction after processing. (a) – (c) show results at systolic, end-

systolic, and diastolic phase of a cardiac cycle, respectively. US B-mode and PA images for DAS, 

MV, SVD-0, and SVD-4 are presented from left to right chronologically for each sub-figure. SVD-0 

and SVD-4 denote spatiotemporal SVD processed images with rst = 0 and 4, respectively. 
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Figure 12.7 End-systole spatiotemporal SVD processed images as a function of lower singular valuer order 

cut-off threshold (rst). Results with rst = 0, 1, 2, 4 and 6 are presented from left to right chronologically. 

 

Figure 12.8 Variation of (a) CR, (b) gCNR and (c) SNR as a function of rst for spatiotemporal SVD processed 

images evaluated at systolic (blue), end-systolic (black) and diastolic (red) phase of a cardiac cycle.  

 Quantitative comparison results using CR, gCNR and SNR are summarized in Figure 12.9 

– Figure 12.11, respectively. Results are presented using box-whisker plots with raw data plotted 

on the right side. Mean of each distribution is denoted by the black diamond symbol.  

 Figure 12.9 (a) – (c) show the CR results during systolic, at end-systolic, and during the 

diastolic phase of a cardiac cycle, respectively. SVD-4 had higher CR values compared to DAS 

and MV with statistical significance for all cases. No statistically significant differences were 

observed between DAS and MV. For example, at ES, mean CR values for DAS, MV and SVD-4 

were 4.20, 5.28 and 14.49 dB, respectively.  
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Figure 12.9 Statistical analysis for contrast ratio (CR) comparison among DAS, MV and SVD-4 (n = 8). (a) 

– (c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively. SVD-

4 presents with statistically higher CR values when compared to DAS and MV. 

 Figure 12.10 (a) – (c) show the gCNR results during systolic, end-systolic, and during the 

diastolic phase of a cardiac cycle, respectively. SVD-4 had higher gCNR values when compared 

to DAS and MV with statistical significance for all cases. No statistically significant difference 

was observed between DAS and MV. Larger differences were observed in the ES phase when 

compared to systolic and diastolic phases. For example, at ES, mean gCNR values for SVD-4 was 

115.15 % higher than DAS while at systolic phase, it was 56.52 % higher.  

 

Figure 12.10 Statistical analysis for gCNR comparison among DAS, MV and SVD-4 (n = 8). (a) – (c) show 

results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively. SVD-4 shows 

statistically higher gCNR values when compared to DAS and MV. 
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 Figure 12.11 (a) – (c) show the SNR results during systolic, at end-systolic, and during the 

diastolic phase of a cardiac cycle, respectively. For all three phases, SVD-4 had statistically higher 

SNR than DAS. When compared to MV, SVD-4 had statistically higher SNR at ES and systole 

with no statistically significant difference during the diastolic phase. However, highest mean SNR 

values were achieved in all three phases using SVD-4. For example, mean SNR of DAS, MV and 

SVD-4 were 8.84, 10.41 and 14.69 dB for the diastolic phase results. 

 

 

Figure 12.11 Statistical analysis for SNR comparison among DAS, MV and SVD-4 (n = 8). (a) – (c) show 

results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively. SVD-4 had 

statistically higher SNR values than DAS. 

 Table 12.1 summarizes the computation times required to reconstruct a PA cardiac cycle 

using DAS, MV and spatiotemporal SVD processing for two mice. For example, DAS requires 

45.81 secs to reconstruct a complete 3-D cardiac cycle having a dimension of 296×64×300 samples 

while MV requires significantly more time (446.58 secs). Note that enhanced PAI with 

spatiotemporal SVD can be achieved with a very low additional computation burden (1.71 secs). 

Similar performance trends were observed for mouse 2 with computational time scaled by Nt (461 

frames). 
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Table 12.1 Summary of Computational Times (Seconds) 

 DAS 

Total (per frame) 

MV 

Total (per frame) 

SVD* 

Mouse 1 45.81 (0.12) 446.58 (1.16) 1.71 

Mouse 2 54.40 (0.12) 506.61 (1.10) 2.45 

Mouse 1, Nt = 300 frames, Mouse 2, Nt = 461 frames 

*Additional time needed to process entire cardiac cycle using spatiotemporal SVD after DAS. 

DAS = Delay-and-sum, MV= Minimum Variance, SVD = Singular Value Decomposition 

 

12.3  Discussion on the experimental findings to validate Spatiotemporal SVD 
processing 

 In this chapter, a spatiotemporal SVD algorithm with ECG and Respiratory (ECG-R) 

gating for in vivo cardiac PAI has been proposed and validated. In vivo feasibility with eight 

healthy mice demonstrated significantly improved performance with SVD-4 processing over 

conventional DAS and MV beamformed images. The proposed SVD processing is a data driven 

approach where spatiotemporal characteristics of cardiac PAI are utilized to enhance signal 

contribution from myocardial tissue under the following assumptions based on literature findings 

and experimental observations. First, highly absorbing blood inside the coronary artery (murine 

arterial oxygen saturation   90 – 95% [12, 23]) having low blood flow velocity (diastolic coronary 

flow velocity 20 cm/sec [24]) should contribute to the PA signals from myocardial tissue at 850 

nm. Second, highly scattering mice skin and muscle due to the presence of connective tissues and 

anisotropic layers of collagen [25] having lower optical absorption coefficients at 850 nm (for 

example, male BALB/CJ mice skin optical absorption coefficient at 850nm   1 cm-1 [25]) 

compared to oxygenated blood should result in low amplitude PA signals compared to myocardial 

tissue. During data collection, we observed the presence of spurious high amplitude PA clutter 

signals from surrounding muscle which were quasi-static in nature. Third, PA transients from the 

large volume of high velocity circulating blood (in early filling, E wave and late or atrial filling 
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phase, A wave during diastole) inside the LV generates mainly destructive interference during 

DAS beamforming, resulting in non-viable PA signals with random spatiotemporal fluctuations. 

Note that, the E and A wave velocity [26] of mitral valve flow during diastole have previously 

been reported to be approximately 54.2 cm/sec and 43.8 cm/sec respectively [27]. Furthermore,  

short duration pulses provided to the flash lamp within the laser source may also contribute to 

random PA noise [9]. Therefore, in the proposed method, singular values and vectors 

corresponding to cardiac tissue displacements associated with the natural contraction and 

relaxation of the heart over a cardiac cycle were preserved by discarding the first few singular 

values for the low-order SVD cutoff to suppress spurious high amplitude quasi-static clutter and 

by suppressing random PA signal fluctuations using high-order SVD cut-off (Figure 12.3). To 

ensure that a suitable dataset is generated for SVD processing, a custom ECG-R gating algorithm 

was developed using an open-source Matlab toolbox (Figure 12.2).  

 Qualitative results presented in Figure 12.5 – Figure 12.6 show that significant 

improvement in myocardial signal specificity is achieved with rst = 4 which was also validated by 

quantitative analysis. Note that, no additional temporal smoothing was applied to preserve the 

original spatial and temporal resolution demonstrating a significant improvement over prior 

approaches using higher persistence [12, 13]. With SVD processing, significant enhancement of 

myocardial signal was demonstrated with improved contrast between the myocardium and 

background as demonstrated by CR comparison results (Figure 12.9). Additionally, gCNR 

comparison was done to confirm that this contrast enhancement was not due to mere dynamic 

range alternations, but due to improvement in target detectability. gCNR results presented in 

Figure 12.10 show that myocardial signal detectability is significantly improved using 

spatiotemporal SVD processing when compared to conventional DAS or MV results. Higher 
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gCNR improvement observed at ES compared to either systolic or diastolic phases can be 

attributed to the high strain rate at ES with the thickest wall dimension [28]. SNR results 

demonstrate statistically significant improvement with SVD-4 over DAS for all cardiac phases 

(Figure 12.11). We observed an exception in the diastolic phase where MV and SVD-4 had non-

significant differences. In contrast to CR and gCNR (both measure target detectability), SNR 

additionally considers the smoothness of the background regions.  To understand the SNR trend, 

we also evaluated the mean PA amplitude of the target region and standard deviation of 

background region individually and found that SVD-4 had higher mean PA amplitudes 

demonstrating improved myocardial signal enhancement in all phases corroborating the 

improvement in CR and gCNR. However, reduction in background standard deviation in the 

diastolic phase was not as significant as in the end-systole and systolic phase resulting in non-

significant SNR improvement statistically between MV and SVD images even though SVD-4 had 

higher mean SNR value. Overall, qualitative and quantitative results demonstrate that 

spatiotemporal SVD processing can potentially improve in vivo cardiac PAI quality. 

 Note that myocardial tissue identified in SVD processed PA images showed similar 

anatomical variation as a function of time as observed in B-mode images. For example, in Figure 

12.5 (b), thickening and shortening of anterior wall is evident from the B-mode image at ES. 

Observe thickening and shortening of the anterior wall from SVD-4 images [myocardial 

boundaries indicated with arrows in Figure 12.5 (b)] with clear visualized contrast when compared 

to the background. Binary maps were generated by applying a threshold on the SVD-4 images 

(from Figure 12.5) at the systolic, end-systolic and diastolic phases which are shown in Figure 

12.12.  Anatomical variation at the different cardiac phases is clearly observed in Figure 12.12, 

demonstrating that both spatial and temporal localization of myocardial PA signals is achieved 
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using spatiotemporal SVD processing. One common approach in PA-based oxygen saturation (% 

sO2)  estimation is to use a quality control ROI [14, 29]. In the future, we will utilize SVD 

processed images to define our quality control ROI utilizing improved target detectability and 

perform multispectral imaging to evaluate the myocardial % sO2 as a function of time over a 

cardiac cycle. 

 

Figure 12.12 (a) – (c) Binary maps of the myocardial wall generated by applying a threshold on SVD-4 

images at systolic, end-systolic and diastolic phases of cardiac cycle, respectively.  

 The performance of SVD processing depends on the choice of the lower singular value 

order cut-off threshold (rst) which was chosen empirically by evaluating a range of rst values 

[Figure 12.7 and Figure 12.8]. However, this is not an optimal solution when the proposed 

algorithm must be applied to larger datasets. In future work, we will investigate the feasibility for 

automated determination of the low order cut-off threshold by estimating the mean frequency of 

each temporal singular vectors contained in the matrix V [5]. 

 In this chapter, the focus was on in vivo murine cardiac PAI where the myocardial signals 

are diffuse in nature. PAI has also been used for imaging prostate brachytherapy seeds [30, 31], 

percutaneous radiofrequency ablation needle detection [32] and surgical guidance [33] where the 

signals of interest are more coherent. We anticipate that our proposed spatiotemporal SVD 
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processing can be applied for those applications with appropriate adjustment of singular value 

thresholds. Adaptive beamforming methods such as MV, DMAS beamforming [34] can be also be 

coupled with SVD processing to improve murine cardiac PAI quality if channel data is accessible. 

However, researchers must be mindful of any non-linearity introduced by these adaptive 

beamforming algorithms.  

 Despite the presented encouraging results, this study still has some limitations. First, SVD 

processing was considered as decomposing the matrix S into weighted, ordered sum of separable 

matrices as hypothesized for ultrafast functional US imaging [4, 5]. However, from our study we 

observed some overlap between the myocardial and background signal subspace even after 

applying SVS thresholding. Therefore, to account for the background signal, additional signal 

processing approaches may be necessary. One potential approach might be the use of 

photoacoustic sub-aperture processing (PSAP) developed in our lab to suppress incoherent clutter 

for DAS PA images [35]. An example using PSAP processing to suppress background signals in 

the SVD processed images is presented in Appendix B: Background suppression using PSAP. 

Second, the low and higher order singular value cut-offs were chosen empirically and were fixed 

for all mice that were imaged. However, it is anticipated that adaptive methods [5, 6] for selecting 

the singular value cutoff may further improve performance by accounting for physiological 

variation (for example, heart rate under anesthesia) that occur with different mice. Third, any 

singular value below the low order and above the high order singular value cutoff was set to zero 

in our implementation. However, adaptive weighting functions based on the singular values [2] 

can be designed to weight the SVS to further enhance myocardial PA signals. Fourth, only healthy 

murine models were considered in this study. However, efficacy should be evaluated for murine 
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cardiovascular disease models such ischemia-reperfusion [36] for further validation which will be 

performed in future studies. 
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Chapter 13 

In vivo Estimation of Myocardial Oxygenation with Physiological Signal 

Gating and Motion Compensation 

 Photoacoustic Imaging (PAI) with high persistence (multiple frame averaging) has been 

reported in Chapter 08 of this dissertation to quantify murine myocardial relative oxygen 

saturation (sO2) in vivo. But the proposed method may not be suitable to identify subtle sO2 

variation associated with ischemia and suffer from lower spatiotemporal resolution due to 

averaging. In this chapter, we propose a physiological signal gated PAI technique with motion 

compensation that addresses these issues and term this method as OPMC (Oxygenation estimation 

with Physiological signal gating and Motion Compensation). Image and signal processing 

methods developed and reported in Chapters 04, 09 – 12 in this dissertation are employed in this 

chapter to implement an improved in vivo myocardial relative oxygen saturation (sO2) estimation 

framework. OPMC 

13.1  Proposed Workflow to Estimate Myocardial Oxygenation 

 Figure 13.1 shows a schematic diagram summarizing key steps of the proposed framework 

to estimate murine myocardial relative oxygen saturation in vivo. 

13.1.1 In vivo murine cardiac single wavelength PAI data acquisition 

 Raw photoacoustic (PA) channel data at 710, 734, 760, 800 and 850 nm were collected 

from three BALB/CJ mice (male, 10 weeks old, Jackson Lab) using a Vevo 2100 LAZR imaging 

system in PA RF mode. Data collection was done with an LZ 250 transducer (fc = 21 MHz) with 

a field-of-view covering the anterior myocardium resulting in 64-element parallel receive and 
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simultaneous acquisition of physiological signals (ECG and respiratory). For further details, 

interested readers are referred to Chapter 12 as the same data acquisition protocol is employed in 

this chapter. 

 

Figure 13.1 Proposed Framework to estimate murine myocardial relative oxygen saturation in vivo. s-PA 

= single wavelength PA data. 
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13.1.2 Physiological Signal Gating and DAS Beamforming 

 For each PA wavelength, physiological signal gating was applied to reconstruct a cardiac 

cycle of channel data following an approach reported in Chapter 12 and beamforming using 

delay-and-sum (DAS) and photoacoustic sub-aperture processing (PSAP) [Chapter 10 and 11] 

was done. Parameters used for beamforming are the same as that reported in Chapters 10 and 12. 

At the same time, co-registered ultrasound B-mode images were also beamformed using DAS for 

each wavelength. Temporal linear interpolation was applied on beamformed data (DAS PA, PSAP 

and DAS B-mode) to ensure at least 100 frames per cardiac cycle per wavelength. 

13.1.3 Inter-wavelength Motion Compensation 

 For multi-wavelength PAI to estimate sO2, same tissue must be probed using optical pulses 

at multiple wavelengths to produce a PAI spectrum as a function of the optical wavelength. 

However, presence of physiological motion will corrupt the derived PAI spectrum thus resulting 

in inaccurate sO2 estimation [1]. To ensure stable spectral decomposition, imaging was done with 

5 optical wavelengths in this work [1, 2]. This process introduced unique challenges associated 

with periodic myocardial motion. First, due to system limitations, imaging was done sequentially 

requiring 50 seconds per wavelength of data collection with additional time required to switch 

from one wavelength to another. Second, during this relatively long data acquisition period, there 

was variability in heart rate (e.g., around 20-30 beats per minutes) among single wavelength PA 

(s-PA) data. In order to address these challenges, we first applied physiological signal gating and 

temporal interpolation to temporally align s-PA data. However, due to the heart rate variability 

mentioned above, the data were still not aligned perfectly. To address this issue, we utilized co-

registered ultrasound B-mode data to register s-PA data collected at 710, 734, 760, 800 nm to the 

850 nm dataset [1]. Inter-wavelength axial and lateral displacements were estimated by applying 
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a three-level displacement tracking algorithm on the co-registered ultrasound B-mode images to 

perform motion compensation [3]. During motion estimation, 710, 734, 760, 800 nm data were 

considered as motion corrupted while 850 nm data was considered as the reference frame. Table 

13.1 summarizes the motion estimation parameters used in this study. Motion compensation is 

repeated for all the frames over the reconstructed cardiac cycle (100 frames) as discussed in 

Section 13.1.2). 

Table 13.1 Inter-wavelength Displacement Estimation Parameters 

Parameters Values Units 

Axial Kernel 8, 5, 1 Wavelengths (λ) 

Lateral Kernel 31, 21, 21 Interpolated A-lines 

Interpolation Factor (axial:  lateral) 2: 2 - 

Kernel Overlap (axial, lateral) (10, 75) % 

Median Filtering Kernel 5 × 5 pixel 

 

13.1.4 Myocardial Oxygenation Estimation Linear Spectral Unmixing 

 Using motion compensated multi-wavelength PAI data, linear spectral unmixing (LSU) 

was applied to extract chromophore concentration of oxy- and deoxy-hemoglobin (HbO2 and 

HbR). Linear spectral unmixing was described in detail in “Chapter 03 Section 3.3.1: Linear 

spectral unmixing and spectral coloring artifact” of this dissertation. Note that, fluence 

compensation was not implemented for this study thus resulting in a relative estimate of 

myocardial sO2.  
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13.1.5 Dynamic Myocardial Region of Interest Generation and Correction of 
Inaccurate LSU Estimates 

 To quantitatively analyze myocardial sO2 estimates over a cardiac cycle, dynamic regions 

of interest (ROIs) were generated by applying a binary thresholding filter on the spatiotemporal 

singular value decomposition (ST-SVD) processed PSAP images at 850 nm. For methodological 

details and related parameters regarding ST-SVD processing and PSAP processing, please refer to 

Chapters 10 – 12. The LSU estimated sO2 parametric maps were first masked out using the 

dynamic ROIs. We term these results as LSU+M in the rest of this chapter. Then, the non-

physiological sO2 estimates (sO2 < 0 % or sO2 > 100 %) detected within the ROIs were replaced 

using a constrained sO2 estimation approach with a non-negativity constraint proposed by Kim et 

al. [4]. Briefly, the method describes the expected local absorption spectrum ( ( , ) a r ) using 

following equation. 

    
22( , ) ( ) ( ) ( ) ( )       a HbO HbRC HbO C HbRr r r   (13.1) 

where,  2C HbO  and  C HbR  are the concentrations of oxy- and deoxy-hemoglobin (HbO2 and 

HbR) respectively at a pixel location, r and ε denotes the known molar extinction coefficient. 

Imposing two constraints (non-negativity of chromophore concentrations) such that   2C HbO +

 C HbR  = 1 and 0 <  2C HbO ,  C HbR  < 1, all possible local absorption spectra were 

reconstructed. Then,  2C HbO  and  C HbR  values were determined by minimizing the least 

squared error between normalized local PA spectrum (extracted from motion compensated multi-

spectral PAI data) and expected local absorption spectra as follows. 

    
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where, *( , )p r is the normalized local PA spectrum estimated from experimental data. Equation 

(13.2) was solved numerically to estimate  2C HbO  and  C HbR . Finally, the relative oxygen 

saturation was estimated as follows. 

 
 

   

*

2

2 * *

2

(%) 


C HbO
sO

C HbO C HbR
  (13.3) 

This approach is termed as CLSU+M in this chapter. Temporal progression of myocardial sO2 

over a cardiac cycle was extracted by averaging all the estimates within the dynamic ROIs. 

Additionally, to derive the temporal trend and noise suppression, a 7-point temporal moving 

average filter was applied on the raw temporal progression curves.  

13.1.6 Comparative Analysis 

 Myocardial sO2 (%) estimated using the proposed method was compared against the sO2 

(%) values estimated using a high persistence dual-wavelength PAI method reported in Chapter 

08. Additionally, healthy cardiac function was also confirmed by estimating cardiac strain tensors 

using the cardiac strain imaging approaches reported in Chapters 04 – 05. 

13.2  Proposed Method Improves Temporal Sensitivity of Myocardial Oxygenation 
Estimation 

 This section presents preliminary results on myocardial oxygen saturation estimation from 

three healthy mice using the proposed method. 
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Figure 13.2 (a) – (c) Myocardial sO2 images estimated during systole, end-systole and diastole phase of a 

cardiac cycle respectively. ROIs were generated automatically using PSAP and spatiotemporal SVD 

processing. 

 Figure 13.2 (a) – (c) show myocardial sO2 maps estimated during systole, end-systole and 

diastole phase of a cardiac cycle respectively for Mouse 1. We observed higher oxygenation at the 

beginning of systole (more red pixels) which reduced at ES (more blue pixels) and finally 

recovering to higher oxygenation at diastole (uniformly red). Note that ROIs were generated 

automatically using PSAP and spatiotemporal SVD processing as described in Section 13.1.5. 

 A representative example of the temporal progression of myocardial sO2 over a cardiac 

cycle for the same mouse is presented in Figure 13.3. Figure 13.3 (a) shows raw sO2 using LSU 

(blue), LSU+M (brown) and CLSU+M (yellow) without moving average filtering. Motion 

compensation provided higher estimates compared to LSU without any motion correction. 

CLSU+M followed the similar trend as LSU+M but resulted in higher sO2 attributed to the 

replacement operation. Figure 13.3 (b) presents the result of myocardial sO2 estimated with dual-

wavelength OxyHemo mode commercially available in Vevo 2100 imaging system and high 

persistence. Note that the results are presented for 20 frames, each of them produced by incoherent 

averaging over 10 consecutive frames. Therefore, image acquisition frame rate was only 5 Hz and 
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estimates cannot be temporally synchronized to different phases of a cardiac cycle such as end-

systole.  Figure 13.3 (d) shows final sO2 estimates using LSU (blue), LSU+M (brown) and 

CLSU+M (yellow) after moving average filtering while Figure 13.3 (c) show the corresponding 

PAI M-mode image. We observed higher sO2 values at end-diastole (≈80%) which gradually 

reduced during systole (≈72%) and finally recovering to higher oxygenation at diastole (≈80%). 

This observation correlates with the myocardial motion seen in PAI M-mode image. The turning 

point for CLSU+M (marked with an arrow on the yellow curve in Figure 13.3 (d)) matches with 

the turning point of left ventricular (LV) chamber towards increased volume after end-systole 

(observe the endocardial border marked with an arrow in Figure 13.3 (d)). Additionally, these 

results show that the proposed method will allow us to temporally synchronize myocardial sO2 

estimates to different phases of a cardiac cycle thus providing higher temporal sensitivity when 

compared to the reported commercial method in Chapter 08. 
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Figure 13.3 A representative example of temporal progression of myocardial sO2 over a cardiac cycle. (a) 

Raw sO2 obtained using the proposed method without a moving average filter, (b) sO2 estimation 

using OxyHemo mode in Vevo 2100 imaging system and high persistence, (c) PAI M-mode image 

and (d) Final sO2 estimate using the proposed method after application of a moving average filter. 

LSU = Linear spectral unmixing, LSU+M = Linear spectral unmixing with inter-wavelength motion 

compensation and CLSU+M = Replacement with constrained linear spectral unmixing with inter-

wavelength motion compensation. 
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Figure 13.4 Panels (a) – (c) show PAI M-mode, sO2 estimation with proposed method and commercial 

solution with high persistence for Mouse 02. (d) – (f) show the same results for Mouse 03. 
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 Results from a comparative study using two more mice are represented in Figure 13.4. 

Figure 13.4 (a) – (c) show PAI M-mode, sO2 estimation with proposed method and commercial 

solution with high persistence respectively for Mouse 02 while (d) – (f) show the same results for 

Mouse 03. We observe similar trends in temporal progression of myocardial sO2 in Mouse 02 – 

03 like Mouse 01 with higher sO2 values at end-diastole, gradual reduction during systole and final 

recovery to higher oxygenation during diastole [Figure 13.4 (b) and (e)]. The PAI M-mode images 

corroborate our findings [Figure 13.4 (a) and (b)]. Even though, estimates using commercial 

software with high persistence provided high sO2 values [Figure 13.4 (c) and (f)] as expected from 

healthy mice hearts, they lacked the temporal sensitivity demonstrated by our proposed 

framework. 

13.3  Discussion on Experimental Findings and Future Directions 

 In this chapter, we proposed a multi-wavelength PAI approach to estimate murine 

myocardial relative oxygen saturation in vivo with physiological signal gating and inter-

wavelength motion compensation. Methods developed in Chapters 10 – 12 (Photoacoustic Sub-

aperture Processing and Spatiotemporal Singular Value Decompaction) enabled dynamic ROI 

generation to quantify myocardial sO2 signals with coherent averaging (moving average filter) to 

extract temporal progression of sO2 values over a cardiac cycle. Proposed method resulted in 

temporal synchronization of estimated sO2 values to different phases of a cardiac cycle such as 

systole, end-systole, diastole and end-diastole. We observed higher myocardial sO2 values at 

diastolic phase compared to systolic phase of a cardiac cycle. We hypothesize that this finding 

correlates with the left coronary artery flow variation between diastole and systole observed in 

both human [5, 6]  and mice [7, 8] studies with increased blood flow in diastole. For example, for 

normal human heart, the coronary arteries accessed through transthoracic Doppler ultrasound 
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demonstrated higher velocity blood flow in diastole when the heart muscle is relaxed [5]. Similar 

results were reported by Hartley et al. [8] by performing Doppler ultrasound examination of 

coronary arteries of wild-type and ApoE-/- mice. Even though results presented in this chapter are 

quite encouraging and interesting, several important factors require further investigation to 

understand the robustness of the proposed workflow which are listed below. First, fluence 

compensation was not incorporated in this work therefore these estimates might suffer from 

spectral coloring as distance between skin and epicardial layer exceeds 1 mm [9, 10]. To address 

this issue, we will utilize the fluence correction approach proposed by Fadhel et al. where fluence 

profiles of multi-wavelength PA images are matched to the fluence at a reference wavelength [11, 

12]. Second, our results in this chapter were limited to only three mice. However, further 

experiments with a larger cohort are necessary to understand the strengths and weakness of the 

proposed method. Third, robustness should be evaluated using more complicated murine models 

such myocardial infarction and ischemia-reperfusion injury in vivo. Finally, further simulation 

studies are required to adapt the fluence matching algorithm from Fadhel et al.  [11, 12] with 

motion compensation and the constrained linear spectral unmixing method used in this chapter [4]. 

Even under the stated limitations, our initial results are very promising and demonstrate that our 

proposed method is sensitive to subtle variations in myocardial oxygenation in vivo. 
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Chapter 14 

In vivo Murine Cardiac Strain Imaging with Adaptive Bayesian 

Regularization 

 Murine models of cardiovascular disease (e.g., myocardial infarction and ischemia-

reperfusion injury) focus on providing mechanistic insights into disease progression and 

translation of pre-clinical therapies into the clinic [1]. For accurate investigation of these models, 

non-invasive cardiovascular imaging plays a critical role [2]. In particular, ultrasound-based 

cardiac strain imaging (CSI) has demonstrated higher sensitivity when compared to conventional 

echocardiography for assessing these models [3]. CSI is an ultrasound radio-frequency (RF) 

signal-based approach for estimation of myocardial tissue elasticity by utilizing the natural 

contraction and relaxation of the myocardium [4-11].  However, accurate strain estimation in 

murine models poses unique challenges due their small size and rapid heart rate [12]. Higher heart 

rates result in increased RF signal decorrelation and additional out-of-plane motion thus degrading 

the quality of CSI. To address these issues, we have previously developed a multi-level block 

matching (BM) algorithm with Bayesian regularization for CSI (Chapter 04) [13-16]. Later, we 

developed an adaptive scheme which utilizes local RF data statistics to further optimize Bayesian 

regularization (Chapter 05). In this chapter, we report on a Lagrangian CSI framework 

incorporating Adaptive Bayesian Regularization (ABR-CSI) [17] into a multi-level BM algorithm 

and  investigate the feasibility of this method for longitudinal monitoring of cardiac remodeling in 

murine models of  myocardial infarction and ischemia-reperfusion injury in vivo.  
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14.1  In vivo Validation Study Design for ABR-CSI 

 Figure 14.1 summarizes the key steps involved in the in vivo longitudinal study designed 

to validate the ABR-CSI. 

 

Figure 14.1 Schematic diagram illustrating the in vivo validation study for ABR-CSI 

14.1.1 Murine Model and in vivo RF Data Collection 

 Three male BALB/CJ 10 weeks old mice acquired from The Jackson Laboratory, Bar 

Harbor, ME USA were imaged pre-surgery (BL) and 1,2,7 and 14 days post-surgery. RF data 

collection was done using a MS 550D transducer (center frequency, fc = 40 MHz) at 235 fps in the 

parasternal long axis view (Vevo 2100, Fujifilm Visualsonics). For details regarding RF data 

collection, please refer to Chapters 04 and 12 of this dissertation. Mice were randomly assigned 

to 1 of 3 surgery groups:  sham, myocardial infarction (MI) and ischemia reperfusion (IR).  The 

sham mouse underwent thoracotomy with no manipulation of the heart. For the MI mouse, 

myocardial infarction was induced by permanent ligation of the left anterior descending coronary 

artery (LAD) via thoracotomy. For the IR mouse, myocardial ischemia was first induced by 
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ligating the LAD and then blood flow was restored by releasing the tie after 45 minutes for 

reperfusion. All in vivo experimental protocols were approved by the University of Wisconsin 

School of Medicine and Public Health Institutional Animal Care and Use Committee.  

14.1.2 Lagrangian CSI framework incorporating Adaptive Bayesian Regularization 

 ECG and respiratory gating were applied offline to extract one cardiac cycle of RF data for 

CSI. To estimate interframe axial and lateral displacements, a three-level normalized cross-

correlation (NCC) based BM algorithm [13, 18, 19] with locally optimized correlation based 

adaptive Bayesian regularization was utilized [17]. Bayesian regularization improves displacement 

estimation by enforcing spatial continuity in a local BM neighborhood through iterative 

application of Bayes theorem [20]. ABR was developed to dynamically determine the optimal 

iteration for Bayesian regularization per BM location by taking spatial and temporal strain 

heterogeneities that are expected in vivo into consideration. ABR evaluates a local optimality 

criterion based on NCC signal-to-noise ratio and motion compensation between pre- and post-

deformation RF frames to achieve dynamic regularization [17, 21]. For further details on ABR, 

please refer to Chapter 05 of this dissertation. For motion estimation, RF data were first 

interpolated laterally by a factor of 2 and then tracked with 2-D kernels with final dimensions of 

[1λ, 11 A-lines] and [50%, 95%] overlap in the axial and lateral direction, respectively. Maximum 

allowed Bayesian iterations for ABR was 10. For accurate sub-sample estimation, 2-D windowed 

Sinc interpolation was utilized [22, 23]. Finally, 2-D median filtering in a 5 pixel × 5 pixel 

neighborhood was applied to remove any outliers.   

 For cardiac strain estimation, myocardial walls were manually segmented at end-diastole 

(R-Wave of ECG) to generate a mesh of 24000 points covering the entire myocardium, and used 

for accumulating interframe displacements over a cardiac cycle [24, 25]. The Lagrangian strain 
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tensor, E was derived by estimating axial, lateral and shear strain components using a least squares 

strain estimator. Finally, radial (er) and longitudinal (el) strains were derived by applying 

coordinate transformation using a rotation matrix, M shown below. 

 
cos sin

sin cos

 

 

 
  
 

Μ   (14.1) 

where, angle  denotes the radial direction calculated for each cardiac mesh point. For further 

details on Lagrangian strain estimation, please refer to Chapter 04 of this dissertation. End-systole 

(ES) radial and longitudinal strain images were derived to qualitatively evaluate mouse cardiac 

function. Segmental radial and longitudinal strain curves over a cardiac cycle were also derived 

by dividing the myocardium into six segments (anterior base, anterior mid, anterior apex, posterior 

apex, posterior mid and posterior base denoted as segments 1 – 6) [26] and temporal progression 

of segmental ES and peak strain values were compared among sham, MI and IR mice. 

Additionally, intraventricular dyssynchrony was quantified by calculating the standard deviation 

of segmental time-to-peak strains normalized to cardiac cycle length (R-R interval in ECG) [12, 

27].  

14.1.3 Histopathological Analysis 

 After the 14th day post-surgery imaging session, the mice were euthanized, hearts were 

harvested and fixed in 10% formalin for histopathological analysis. Harvested myocardial tissues 

were embedded in paraffin highlighting the aortic outflow tract to achieve an orientation roughly 

approximating the ultrasonographic PLAX plane. To confirm the heart orientation, small stripes 

of histology tissue inks were placed on the anterior surface of the heart following the convention 

shown in Figure 14.2. Anterior stripe (shown in green in Figure 14.2) through apex and aortic 

outflow tract approximated the plane through the aortic outflow tract to match a whole slide image 
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(WSI) section with the in vivo PLAX ultrasound data. Short plane stripe (shown in blue in Figure 

14.2) was used to aid in alignment of multiple sections for 3-D reconstruction. After inking, 5 µm-

thick sections were taken at 100 µm intervals through the entire heart in the long axis orientation 

and stained with Masson’s trichome (MT) for quantification of fibrosis. The stained slides were 

digitized using a 20× uScopeHXII digital microscope (Microscopes International, Dallas, TX 

75208-1953). To automatically classify regions of fibrosis in the digital WSI, a 3-class Random 

Tree pixel classifier was designed using QuPath [28] (an open-source software for digital 

pathology image analysis accessed through: https://qupath.github.io/) by manually delineating 

collagen, non-collagen and background regions in a representative WSI. Note that, collagen and 

non-collagen regions were stained as blue and dark purple in the MT stained WSIs. Finally, 

classified images from QuPath [28] were loaded into MATLAB to quantify percentage of fibrosis 

in the infarct and viable regions. First, infarct and viable regions were manually delineated using 

the MT-stained WSI. Then, collagen content was expressed as a percentage with respect to total 

area of the affected region using the classification from QuPath [28] 

 

Figure 14.2 Inking convention for matching histopathology WSIs to in vivo ultrasound PLAX view. Image 

courtesy: Dr. Melissa Graham, Director, Comparative Pathology Laboratory, Research Animal 

Resources and Compliance (RARC), UW-Madison  
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Figure 14.3 ES accumulated radial strain images over time for (a) sham, (b) MI and (c) IR mice, 

respectively. Strain display dynamic range is from -30% to +30%. Positive strain value (red) = 

myocardial wall thickening, negative strain value (blue) = myocardial wall thinning and zero strain 

value (light green) = no wall motion. 

14.2  Temporal Progression of Cardiac Strain differentiates among Sham, MI and IR 
mice 

 Figure 14.3 (a) – (c) show the progression of ES radial strain images over time for sham, 

MI and IR mice, respectively. For normal LV function, thickening of myocardial wall is expected 

during systole with reverse changes during diastole [3, 29]. This would be reflected as positive 

radial strain values mapped as red in the chosen colormap in Figure 14.3. At baseline (pre-surgery), 

all three mice demonstrated normal LV function with uniformly red strain maps at ES indicating 

myocardial thickening.  The sham mouse preserved normal cardiac function in the radial strain 

images resulting in uniformly red strain maps at ES for all post-surgery imaging sessions [Figure 

14.3 (a)]. The post-surgery ES strain images for the MI mouse showed a marked reduction or sign 
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reversal of strain magnitudes (light green or blue) in the apical segments when compared to 

baseline as indicated with the black arrows in Figure 14.3 (b). Furthermore, infarct, border and 

viable regions can be clearly identified in the MI radial strain images having predominantly blue, 

mixture of yellow + light blue + red, and red colors, respectively. The IR mouse also demonstrated 

motion abnormalities post-surgery with marked reduction or sign reversal of strain magnitudes 

(light green or blue) in anterior mid (segment 2) and anterior apical (segment 3) segments 

(infarcted region marked with arrows). 

 

Figure 14.4 Temporal progression of segmental radial strain curves over a cardiac cycle for (a) sham, (b) 

MI and (c) IR mice, respectively. Anterior base, anterior mid, anterior apex, posterior apex, posterior 

mid and posterior base regions are denoted as segments 1 – 6 in these curves.  

 Figure 14.4 (a) – (c) compare the temporal progression of segmental radial strain curves 

over a cardiac cycle for sham, MI and IR mice, respectively. At baseline, all three mice had peak 

positive radial strain values in all segments with synchronicity among the segments (observe the 
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low intraventricular dyssynchrony at baseline in Table 14.1). Sham mouse maintained the similar 

trends in the segmental radial strain curves post-surgery cases indicating normal cardiac function 

(e.g., intraventricular dyssynchrony at Day 14 was 0.02 [Table 14.1]). Note that an apical infarct 

can be clearly identified in the MI mouse with subsequent reduction of peak radial and strain values 

in apical segments (segments 3 – 4 shown in yellow and violet colors in Figure 14.4) with late 

time-to-peak strain values compared to viable regions (segments 1, 5 – 6) resulting in higher 

intraventricular dyssynchrony values (e.g., intraventricular dyssynchrony at Day 14 was 0.13 

[Table 14.1]).  Anterior mid segment (segment 2 plotted using brown color in Figure 14.4) showed 

progressive deterioration over time indicating the ability for cardiac remodeling monitoring with 

ABR-CSI. Infarcted and viable regions can also be separated in the IR mouse with a clear decline 

in peak positive strain values observed in anterior mid and anterior apical segments (segments 2 – 

3 in Figure 14.4). We also observed slight reduction in peak radial strain value in posterior apical 

segment thus demarcating it as border region between infarct and viable regions. Furthermore, the 

late time-to-peak strain values in segments 2 – 3 contributed to higher intraventricular 

dyssynchrony values post-surgery (e.g., intraventricular dyssynchrony at Day 14 was 0.11 [Table 

14.1]).  

Figure 14.5 compares the ES (Figure 14.5 (a)) and peak (Figure 14.5 (b)) segmental radial 

strain values over time among sham, MI and IR mice respectively. Sham mouse had both positive 

ES and peak strain values over time corroborating qualitative observations seen in Figure 14.3 and 

Figure 14.4. For example, ES er values for anterior base at baseline = 46.88%, D1 = 45.05%, D2 

= 44.22%, D7 = 47.40% and D14 = 39.94%. Based on Figure 14.5, MI mouse had an apical infarct 

with anterior mid being a border region. For example, ES er values for anterior apex at baseline = 

17.30%, D1 = -2.88%, D2 = -2.06%, D7 = -0.31% and D14 = -1.31% while for posterior mid at 
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baseline = 33.01%, D1 = 15.87%, D2 = 25.55%, D7 = 13.20% and D14 = 22.44%. For the IR case, 

a clear separation in strain values between infarct and viable regions were observed with infarct 

being localized to the anterior mid and anterior apical segments (segments 2 – 3) and posterior 

apex being a border region. The infarcted regions showed steady decline in er strain values post-

surgery while viable regions showed similar or higher peak strain values when compared to 

baseline. For example, peak er values for anterior apex at baseline = 40.12%, D1 = 3.81%, D2 = 

3.98%, D7 = 12.64% and D14 = 13.80% while for posterior mid at baseline = 52.43%, D1 = 

54.63%, D2 = 39.68%, D7 = 49.61% and D14 = 74.46%.  

 

Figure 14.5 Comparison of segmental strains at (a) ES and (b) peak radial strain values over time among 

sham, MI and IR mice respectively. For each sub-figure, sham, MI and IR results are presented from 

left to right. 

Table 14.1  Intraventricular Dyssynchrony Quantified using Radial Time-to-peak Strain 

 Baseline Day 1 Day 2 Day 7 Day 14 

Sham 0.02 0.02 0.07 0.06 0.02 

MI 0.01 0.20 0.13 0.21 0.13 

IR 0.05 0.08 0.13 0.08 0.11 
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 Temporal progression of strain at ES in the longitudinal strain images for sham, MI and IR 

mice are summarized in Figure 14.6 (a) – (c) respectively. For normal LV function, shortening of 

myocardial wall is expected during systole with reverse changes during diastole [3, 29]. This 

would be reflected as negative longitudinal strain values mapped as blue in the chosen colormap 

in Figure 14.6. All three mice demonstrated normal LV function along longitudinal direction at 

the pre-surgery time point with predominantly blue strain maps at ES indicating myocardial wall 

shortening.  Sham mouse preserved this normal cardiac function longitudinally resulting in 

predominantly blue strain maps at ES for all post-surgery imaging sessions [Figure 14.6. (a)]. 

There were few small patches of zero or positive longitudinal strain values in sham strain images 

indicated by the red arrows. In the post-surgery ES strain images for the MI mouse, there was a 

marked reduction or sign reversal of strain magnitudes (light green or red) in the apical segments 

when compared to baseline as indicated by the black arrows in Figure 14.6 (b). At Day 14, infarct 

and viable regions can be clearly identified in the MI longitudinal strain image depicting 

predominantly a mixture of yellow + light blue + red, and uniformly blue colors, respectively. The 

IR mice also demonstrated motion abnormalities post-surgery with a marked reduction or sign 

reversal of strain magnitudes (light green or red) in anterior mid (segment 2) and anterior apical 

(segment 3) segments (infarcted region marked with black arrows in Figure 14.6 (c)). In the IR ES 

longitudinal strain images, a small patch within the posterior mid segment (segment 5) showed 

positive strain values starting from baseline up to Day 14 indicated with red arrows. Additionally, 

few erroneous positive strain values were also observed in anterior base segment (segment 1) 

indicated with red arrows in Figure 14.6 (c). These errors were attributed to the quasi-static clutter 

signals due to reverberation signals from the chest wall, ribs or sternum thus blocking the 
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myocardial motion in those segments. Several approaches have been reported in peer-reviewed 

literature to address this issue [30] (e.g., singular value filtering by Mauldin et al. [31]).  

 

Figure 14.6 ES accumulated longitudinal strain images over time for (a) sham, (b) MI and (c) IR mice, 

respectively. Strain display dynamic range is from -20% to +20%. Negative strain value (blue) = 

myocardial wall shortening, positive strain value (red) = myocardial wall elongation and zero strain 

value (light green) = no wall motion. 

 The temporal progression of segmental longitudinal strain curves over a cardiac cycle for 

sham, MI and IR mice were compared in  Figure 14.7. At baseline, all three mice had peak negative 

longitudinal strain values in all segments with synchronicity among the segments (observe low 

intraventricular dyssynchrony at baseline in Table 14.2) thus denoting normal cardiac function 

[Figure 14.7 (a) – (c)]. Sham mouse maintained a similar trend in segmental longitudinal strain 

curves [Figure 14.7 (a)] in post-surgery imaging time points with consistently low standard 

deviation of time-to-peak strain values (e.g., intraventricular dyssynchrony values at Baseline and 
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Day 14 were 0.07 and 0.04 [Table 14.2]. For the MI mouse, impact of permanent ligation can be 

observed mostly in the apical segments (segments 3 and 4) based on the reduction and sign reversal 

of longitudinal strain curves post-surgery [Figure 14.7 (b)]. At day 1, segments 3 and 5 were 

dyskinetic [32, 33] characterized by early systolic lengthening, followed by late and post-systolic 

shortening with reduced strain in posterior apical segment (segment 4). At day 14, segments 4 and 

5 recovered longitudinal motion while segments 3 became more dyskinetic. However, no 

significant variation in intraventricular dyssynchrony was observed from baseline for the MI 

mouse except Day 1 [Table 14.2]. Similar trends were observed for the IR mouse with infarct 

being localized in anterior mid and anterior apex segments (brown and yellow curves in Figure 

14.7 (c)). We also observed ventricular dyskinesis in segment 3 as early as day 1 with significant 

impairment at day 14. Furthermore, segments 2 and 6 were hypokinetic (less systolic shortening 

together with marked post-systolic shortening [32]) starting from day 2 with a significant increase 

in severity at day 14 indicating the impact of IR surgery on the LV function. But we did not observe 

any significant increase in intraventricular dyssynchrony when compared to the baseline imaging 

time point for the IR mouse [Table 14.2]. 

Table 14.2 Intraventricular Dyssynchrony Quantified using Longitudinal Time-to-Peak Strain 

 Baseline Day 1 Day 2 Day 7 Day 14 

Sham 0.07 0.09 0.06 0.07 0.04 

MI 0.05 0.17 0.05 0.08 0.06 

IR 0.03 0.07 0.09 0.08 0.04 

 

 Figure 14.8 compares the ES (Figure 14.8 (a)) and peak (Figure 14.8 (b)) segmental 

longitudinal strain values over time among sham, MI and IR mice respectively. Sham mouse 

demonstrated consistent negative ES and peak strain values over time. For example, ES el values 

for anterior base at baseline = -12.89%, D1 = -11.05%, D2 = -8.49%, D7 = -11.46% and D14 = -
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13.00%. ES and peak longitudinal strain values for the anterior apical segment was significantly 

impaired for the MI mouse whereas basal segments (both anterior and posterior) maintained the 

values observed at baseline indicating viable tissue regions. For example, ES el values for anterior 

apex at baseline = -4.18%, D1 = 1.87%, D2 = 2.33%, D7 = 2.18% and D14 = 0.58%. Other 

segments demonstrated reduction or sign reversal at Day 1 with steady recovery till Day 14 [Figure 

14.8 (b)]. For the IR case, segments 2 – 3 and 6 showed impaired longitudinal strain values when 

compared to baseline with reduction or sign reversal of ES and peak el values [Figure 14.8 (c)] 

corroborating our observation of dyskinesia and hypokinesia based on Figure 14.7.  For example, 

ES el values for anterior apex at baseline = -14.68%, D1 = 1.87%, D2 = 1.00%, D7 = -0.94% and 

D14 = 4.21%. 

 

 

Figure 14.7 Temporal progression of segmental longitudinal strain curves over a cardiac cycle for (a) sham, 

(b) MI and (c) IR mice, respectively.  
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Figure 14.8 Comparison of segmental (a) ES and (b) peak longitudinal strain values over time among 

sham, MI and IR mice respectively. For each sub-figure, sham, MI and IR results are presented from 

left to right.  

14.3  Cardiac Strain Images Identifies Region of Fibrosis and Correlates with 
Masson’s Trichrome (MT) Stained Digital Histopathology Images 

 Comparison of day 14th ES radial and longitudinal strain images against MT-stained digital 

WSIs are shown in Figure 14.9  –  Figure 14.11 for sham, MI and IR mice respectively. For each 

figure, sub-figures (a) – (b) are the ES radial and longitudinal strain images respectively and (c) – 

(d) denote MT-stained digital WSI, a magnified tissue region marked using a blue rectangular 

region-of-interest (ROI) in the sub figure (c) and classified WSI using QuPath [28] respectively. 

For the classified WSI, pink, yellow and gray colors indicated non-collagen tissue, collagen tissue 

and background regions respectively. Table 14.3 summarizes the comparison between day 14th ES 

cardiac strain values and collagen content quantified using the MT-strained WSI.  
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Figure 14.9 Comparison of day 14th in vivo cardiac strain images against MT-stained WSI for the sham 

mouse. (a) radial strain image, (b) longitudinal strain image, (c) digital WSI, (d) a magnified ROI 

denoted with a blue rectangle in sub-figure (d) and (e) classified WSI with QuPath. WSI = Whole 

slide image. 

 Figure 14.9 shows that for the sham mouse, we observed uniform wall thickness with 

myocardial tissue appearing uniformly dark purple in the classified WSI [Figure 14.9 (e)] being 

predominantly pink indicating absence of fibrosis [observe the magnified region in Figure 14.9 

(d)]. This corroborates the in vivo strain images at day 14 [Figure 14.9 (a) – (b)], where uniform 

wall thickness was observed with high radial and longitudinal strain values represented as 

uniformly red and blue colors, respectively. This is quantitatively confirmed with only 6.98 % 

collagen content around the myocardium attributed to the collagen tissue around the blood vessels 

with ES er = 35.09% and el = -12.60% [Table 14.3]. 
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Figure 14.10 Comparison of day 14th in vivo cardiac strain images against MT-stained WSI for the 

myocardial infarction (MI) mouse. (a) radial strain image, (b) longitudinal strain image, (c) digital 

WSI, (d) a magnified ROI denoted with a blue rectangle in sub-figure (d) and (e) classified WSI with 

QuPath. WSI = Whole slide image. 

 For the MI mouse, the presence of an apical infarct is clearly identified by observing wall 

thinning with infarcted regions [Figure 14.10 (c)] appearing as dark blue [observe the magnified 

region in Figure 14.10 (d)] and viable regions as dark purple. Consequently, the QuPath machine 

learning model identified a region of fibrosis in the apical segment represented with yellow in 

Figure 14.10 (e). ES radial strain image showed excellent agreement in localizing infarcted region 

[marked with arrows in Figure 14.10 (a)] when compared to classified WSI. Longitudinal strain 

demonstrated overestimation in infarcted area [marked with arrows in Figure 14.10 (b)] when 

compared to radial strain image. Quantitative analysis showed higher collagen content in infracted 

regions with lower ES er and el strain values [Table 14.3].  
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Figure 14.11 Comparison of day 14th in vivo cardiac strain images against MT-stained WSI for the ischemia-

reperfusion (IR) mouse. (a) radial strain image, (b) longitudinal strain image, (c) digital WSI, (d) a 

magnified ROI denoted with a blue rectangle in sub-figure (d) and (e) classified WSI with QuPath. 

WSI = Whole slide image. 

 Figure 14.11 summarizes the results for comparing CSI findings with MT-stained WSI. 

Histopathological image analysis results in Figure 14.11 (c) – (d) showed a small region of fibrosis 

in the apical mid and anterior apex segments. Both in vivo radial and longitudinal strain images 

demonstrated reduced strain values in those segments [Figure 14.11 (a) – (b)] thus showing 

excellent agreement with the histopathology imaging results. Table 14.3 also reported increase in 

collagen content in the infarcted regions (76.22%) with corresponding reduction in ES er and el 

strain values. Note that, posterior basal segment showed hypokinesis in the longitudinal strain 

image [Figure 14.11 (b)] even though classified WSI indicate healthy myocardial tissue [Figure 

14.11 (e)]. Overall, the results presented in Figure 14.9 – Figure 14.11 and Table 14.3 demonstrate 

that ABR-CSI was able to detect areas with cardiac fibrosis in vivo non-invasively.     
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Table 14.3 Day 14th ES Strain Values and Collagen Content Comparison* 

Mouse  

ES Radial Strain (%) ES Longitudinal Strain (%) Collagen Content (%) 

Infarct Viable Infarct Viable Infarct Viable 

Sham × 35.09 × -12.60 × 6.98 

MI -3.23 32.91 -2.09 -8.89 77.37 5.61 

IR 4.48 42.39 1.16 -8.09 76.22 4.96 

*Infarct and viable regions identified using MT-Stained WSI 

14.4 Discussion on the Experimental Findings and Future Research 

 In this chapter, we have demonstrated the feasibility of an adaptive Bayesian regularized 

strain imaging framework for assessment of murine cardiac function in vivo. The proposed 

framework was able to differentiate between cardiac remodeling associated with ischemia-

reperfusion injury, myocardial infraction and normal cardiac function in the sham mouse 

longitudinally over time. Furthermore, the strain variation observed in vivo corroborated our 

findings from ex vivo histopathological analysis. Future work will focus on validating the method 

in a larger cohort of mice and comparison against commercially available speckle tracking 

echocardiography solutions. 
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Chapter 15 

Conclusion and Future Work 

15.1 Summary of Contributions 

 During the course of this dissertation, several image and signal processing algorithms were 

developed to demonstrate a composite imaging framework for in vivo assessment of murine 

myocardial health non-invasively. The composite imaging framework required experimental 

design, data collection, and algorithm development for two different imaging modalities – (a) 

cardiac strain imaging (CSI) using diagnostic ultrasound extracting mechanical properties of 

cardiac tissue and (b) photoacoustic imaging (PAI) deriving molecular information such as 

myocardial oxygen saturation. The first part of the dissertation (Chapters 4 – 7) reported on the 

developed and implemented algorithms for cardiac strain imaging while the second part (Chapters 

8 – 13) presented the algorithms and methods developed and implemented for myocardial 

oxygenation estimation using cardiac PAI. Preliminary results from an in vivo longitudinal study 

focusing on murine models of cardiac ischemia has been summarized in Chapter 14. 

 A Lagrangian cardiac strain imaging approach with iterative Bayesian regularization was 

proposed and validated in Chapter 04. Our group previously reported Lagrangian CSI using a 

multi-level block matching (BM) algorithm for displacement estimation [1, 2]. However, the 

results were limited to parasternal short axis view data with a requirement of semiautomatic 

myocardial contour generation for the entire cardiac cycles of interest. In this dissertation, we 

aimed to develop a more general CSI framework as reported in Chapter 04 which can be adapted 

for any cardiac imaging view routinely used in clinical and pre-clinical situations. The results from 

experiments using finite-element-analysis (FEA) model of canine heart deformation and in vivo 
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mouse heart demonstrated significant performance improvement over conventional multi-level 

BM algorithm previously used. Performance improvement was attributed to error reduction in FEA 

experiments and resolving physiologically relevant in vivo murine cardiac strain images. One 

caveat of Bayesian CSI (see chapter 04) was that algorithm performance varied as a function of 

maximum iteration number of Bayesian regularization with a possibility of over-regularization due 

to incorrect estimate choice resulting in performance degradation. This observation led to the 

development of an adaptive Bayesian regularization (ABR) algorithm as reported in Chapter 05. 

The novelty of the ABR approach was the incorporation of information derived from input radio-

frequency ultrasound signals into the Bayesian regularization framework to dynamically control 

regularization. This approach achieved optimal regularization by determining required the 

maximum iteration number locally per BM location automatically with concurrent estimation 

quality improvement for both axial and lateral strain tensors, making Bayesian regularization 

robust for clinical and pre-clinical applications. Additionally, we validated ABR for CSI using 

both parasternal long axis and short axis view datasets in vivo by comparing it against conventional 

method without regularization thus demonstrating the generalizability of the CSI framework 

reported in Chapter 04.  

 We proposed a spatiotemporal Bayesian regularization (STBR) algorithm for CSI in 

chapter 07 by extending the Bayesian regularization from Chapter 04 into the temporal domain 

with an underlying assumption of smooth variation in velocity over a short span of time during 

tissue deformation. Unlike all previous reports on Bayesian strain imaging which utilized 

information only from its spatial neighbors [3-11], the novelty of STBR algorithm was performing 

regularization using information from a three-dimensional neighborhood (2-D in space and 1D in 

time). Two different STBR schemes were investigated using cardiac simulation and in vivo data 



401 
 

sets and the results suggested that STBR with simultaneous use of spatiotemporal information 

(refer to STBR-2 in Chapter 07) provided the best results. Even though no statistical significantly 

improvement was observed in simulation results with STBR, in vivo results demonstrated better 

performance than spatial Bayesian regularization attributed to smoother strain curves, 

physiologically accurate end-systole cardiac strain images and higher expected signal-to-noise (

e(SNR )E  ) quantified by performing stochastic precision analysis [12]. One caveat was that the 

temporal regularization parameter was set empirically, a potential drawback which must be 

addressed before employing STBR for future in vivo studies. Furthermore, ABR should be 

incorporated into STBR to safeguard the algorithm from over-regularization artifact (please refer 

to Chapter 05 more details).  

 Dynamic frame skip (DFS) for cardiac strain imaging was investigated in chapter 07. Even 

though DFS has been routinely used by our group for carotid plaque strain imaging, it has not been 

formally studied in the context of CSI which motivated this preliminary investigation. Our results 

from limited initial experiments suggest that DFS can be potentially utilized to enhance cardiac 

strain imaging quality. However, these results should be interpreted with caution as more detailed 

parametric studies involving kernel dimension optimization, lateral interpolation factor, iteration 

number of Bayesian regularization should be done to decide conclusively if there are clear benefits 

of using DFS over the conventional inter-frame tracking approach for CSI. Additionally, we 

investigated the use of log compression of regularized correlation function as a simple solution to 

tackle the over-regularization artifact seen with Bayesian regularization due to incorrect estimate 

choice for the maximum iteration number in Chapter 07. The results suggest that log compression 

enabled improved subsample estimation with significant reduction of lateral banding errors due to 
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over-regularization. However, the experiments were limited to simulated uniform and inclusion 

phantoms which warrants further analysis using cardiac simulation phantoms and in vivo datasets.  

 As a part of this dissertation, we designed a longitudinal murine study in collaboration with 

Cardiovascular Physiology Core Facility, Small Animal Imaging and Radiotherapy Facility and 

Comparative Pathology Lab to validate the developed CSI approaches in vivo by collecting high 

frequency ultrasound radiofrequency (RF) data using Visualsonics Vevo 2100 Imaging system. 

Based on the experiments done in Chapters 04 – 07, adaptive Bayesian regularized CSI (ABR-

CSI) was chosen as the optimal algorithm for the longitudinal study. Some preliminary results 

from the study were presented in Chapter 14 which demonstrated excellent agreement between in 

vivo findings using CSI and ex vivo histopathological image analysis. Note that data collection was 

done using 47 mice for the entire study which was interrupted and delayed several times due to 

Covid-19 global pandemic and ultrasound system related issues.  

 For myocardial perfusion quantification, we first investigated the feasibility of using a 

commercially available PAI system to study murine myocardial acute ischemia in a longitudinal 

study involving eight mice. This was one of the earliest comprehensive studies on the use of PAI 

for ischemia monitoring and detection in murine models. We observed statistically significant 

reduction in myocardial oxygen saturation (% sO2) post-ischemia with correlation of findings with 

echocardiographic measurements quantifying global cardiac function. Even though the findings 

from Chapter 08 were promising, the employed method suffered from reduced sensitivity in 

detecting subtle variations of % sO2 due to the use of high persistence (incoherent averaging of 10 

consecutive frames) necessary to generate reasonable % sO2 estimates to reduce system noise on 

the Vevo system. For cardiac PAI in vivo, this implies the possibility of averaging PA signals from 

multiple sources (myocardial wall, blood in left ventricular chamber and static tissue) thus 
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corrupting %sO2 quantification. This limitation led to the subsequent development of adaptive 

image processing algorithms reported in Chapters 09 – 13. 

 In Chapter 09, an adaptive beamforming algorithm termed spatiotemporal coherence factor 

(STCF) weighted PAI was proposed and validated for suppression of temporally varying 

incoherent clutter noise seen in cardiac PAI. We used both spatial and temporal information in the 

aperture domain during beamforming to calculate STCF for weighting delay-and-sum (DAS) and 

minimum variance (MV) beamformed PA images. The presented results demonstrated noise 

reduction quantified using contrast ratio (CR), generalized contrast-to-noise ratio (gCNR) and 

signal-to-noise ratio (SNR) both in simulation and in vivo experiments. However, further in vivo 

investigation revealed that STCF weighting may also lead to undesirable signal suppression from 

the myocardial wall along with sidelobe suppression which motivated to us explore alternative 

beamforming approaches for PAI leading to the development of photoacoustic sub-aperture 

processing (PSAP) reported in Chapter 10. Results presented in Chapter 10 showed that PSAP PAI 

was able to preserve DAS amplitude levels for myocardial wall PA signals and improve target 

detectability while achieving sidelobe and clutter suppression like coherence based beamformers 

(e.g., STCF beamformer in Chapter 10). Furthermore, a high resolution PAI beamforming 

algorithm was presented by combining PSAP with MV in chapter 11.  

 A spatiotemporal singular value decomposition (ST-SVD) algorithm to enhance cardiac 

PA signal specificity was presented in Chapter 12. In ST-SVD, basis functions contributing to 

static tissue, quasi-static clutter and temporal noise artifacts were significantly reduced thereby 

enhancing low intensity myocardial PAI signals. The novelty of our approach was to utilize the 

natural deformation of myocardial tissue to achieve PA image enhancement using ST-SVD 
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processing with automatic myocardial region-of-interest (ROI) generation for quantifying 

estimated % sO2 values. 

 Finally, in Chapter 13, we integrated the methods developed in Chapters 09 – 12 to propose 

a myocardial oxygen saturation method termed as Oxygenation estimation using Physiological 

signal gating and Motion Compensation (OPMC). The novelty of OPMC included significant 

improvement in the spatiotemporal resolution owing to elimination of high persistence and data 

collection at higher frame rate. Unlike the commercial method investigated in chapter 08, OPMC 

allowed temporal synchronization of estimated % sO2 values to different phases of a cardiac cycle 

such as systole, end-systole, diastole and end-diastole thus enabling studying the temporal 

progression of myocardial oxygen saturation over a cardiac cycle. 

15.2 Future Directions for Cardiac Strain Imaging 

 Several interesting future avenues can be explored based on the methods developed in this 

dissertation. One natural future direction is to translate the proposed ABR-CSI from two-

dimensional (2-D) ultrasound echocardiography to its three-dimensional (3-D) counterpart 

resulting in 4-D cardiac strain imaging. One approach for performing 3-D ultrasound echo is to 

collect several 2-D short axis planes of RF data by translating the ultrasound probe over the entire 

heart starting from base to apex using a stepper motor with simultaneous acquisition of ECG and 

respiratory signals. Then, the collected RF data can be spatiotemporally aligned [13] to reconstruct 

4D datasets for performing ABR-CSI with 3-D kernels. During this dissertation, an automated 3-

D RF data collection protocol as described above was developed for murine cardiac imaging and 

employed for data collection in a longitudinal study of cardiac disease (myocardial infarction and 

ischemia-reperfusion injury) involving 15 mice. The collected dataset has laid the foundation for 

validating the proposed 4-D ABR-CSI algorithm in vivo. Alternative approaches for 3-D 
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ultrasound imaging will be to use a 2-D matrix probe [14] for collecting volumetric ultrasound RF 

data. This approach might require our lab to acquire a new imaging system capable of data 

collection with matrix array probes such as the Vantage 256 system (Verasonics, Kirkland, USA).  

 Machine learning approaches particularly deep learning has become ubiquitous in the field 

of biomedical imaging with ultrasound imaging being no exception. Deep learning algorithms such 

as U-Net [15, 16] should be applied and investigated to perform segmentation of cardiac wall at 

end-diastole (required for displacement accumulation) thus replacing the manual segmentation 

reported in this dissertation. In addition to the dataset collected during this dissertation, publicly 

available dataset (e.g., Cardiac Acquisitions for Multi-structure Ultrasound Segmentation 

(CAMUS) https://www.creatis.insa-lyon.fr/Challenge/camus/ ) should also be considered for 

training DL models. Deep learning has also been used for ultrasound elastography in recent years. 

For example, Tehrani et al. [17] demonstrated the use of a pyramidal convolutional neural network 

for ultrasound strain imaging. However, the reported results were limited to only axial strain 

images which are typically less noisy due to the presence of phase information in RF data 

compared to lateral and shear strain imaging results. Similar approaches can be adopted for our 

CSI framework with proper attention to achieve concurrent improvement in axial, lateral and shear 

strain tensors. Furthermore, a deep learning model for performing Bayesian regularization 

optimally can also be developed in future using ABR-CSI results for training.  

 High frame rate imaging approaches (e.g., diverging wave imaging [18, 19]) should be 

considered in conjunction with the proposed spatiotemporal Bayesian regularization method to 

improve the temporal resolution of cardiac strain curves. In our current protocol, anesthesia was 

titrated to maintain a heart rate of 310 – 340 beats per minutes (bpm) during in vivo imaging. 

However, the limitation of this method is the possibility of suppressing LV systolic function due 
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to heart rates less than 400 bpm [20]. High frame rate imaging would allow us to address this issue. 

Finally, ABR-CSI should also be translated into human clinical studies of cardiac ischemia and 

infarction. This would require adapting the current algorithm to handle RF data collected using 

phased array transducers. 

15.3 Future Directions for Cardiac Photoacoustic Imaging (PAI) 

 In the immediate future, a fluence compensation technique must be integrated into the 

proposed OPMC method in chapter 13 and the method should be evaluated in vivo for myocardial 

oxygen saturation estimation in murine models of myocardial infraction and ischemia-reperfusion. 

We anticipate that the spatiotemporal characteristics of estimates derived with fluence 

compensated OPMC approach will lead development of novel biomarkers in the investigation of 

myocardial perfusion using PAI. 

 In the longer term, several interesting future avenues can be explored based on the 

beamforming algorithms developed in this dissertation. First, the optimal set of sub-apertures for 

PSAP PAI was set empirically in this dissertation. However, empirical results suggest that the 

optimal sub-aperture choice varied with depth which would be a confounding factor for deep tissue 

imaging with PSAP-PAI. Therefore, an adaptive beamformer with depth-dependent sub-aperture 

selection should be explored. Second, one caveat of PSAP-PAI is that it may suffer “black region 

artifact [21]” surrounding a high optically absorbing object. The implication of this artifact is the 

undesirable suppression of weak PA signals generated from relatively less optically absorbing 

objects (e.g., vein) if they spatially overlap the sidelobe region of a high optically absorbing object 

(e.g., artery). Therefore, future research should focus on theoretical understanding of the origins 

of this artifact which will lead to better approaches to address this issue. Additionally, the sub-

aperture selection problem can also be posed as a minimum variance problem following an 
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approach reported by Stanziola et al. [21] and can be investigated in the context of black region 

artifacts and PSAP-PAI.  

 Deep learning approaches, such as that proposed by Grohl et al. using training models from 

multi-spectral data per pixel [22] should also be investigated for the OPMC method. This Learned 

Spectral Decoloring method where a fully connected feed-forward neural network is trained using 

simulated initial pressure distributions, used deep learning assisted sO2% quantification in vivo for 

the first time. Key idea was the generation of training datasets that closely resemble phantom and 

in vivo situations. Other reports on sO2% quantification with DL include the following published 

work [23, 24]. Even though machine learning assisted sO2% quantification is very encouraging in 

simulations, broader validation studies in vitro and in vivo are required to understand the 

generalizability of these methods [25]. Therefore, in the context of cardiac PAI, cardiac anatomy 

derived and co-registered US data and hybrid PAI simulation [26] framework incorporating both 

relevant optical and acoustic properties (varying probe center frequency, skin layer positions, 

positioning of vessels, acoustic attenuation, noise corruption) should be used to synthesize 

application specific training datasets for training a DL model for fluence compensation and 

myocardial oxygenation.  

 Even though the image reconstruction and quantification algorithms focused on cardiac 

PAI as an application, we anticipate these methods can be generalized for other PAI applications 

such as brachytherapy seed imaging [27, 28], percutaneous radiofrequency ablation needle 

detection [29] and surgical guidance [30]. Finally, future research should focus on translating these 

methods from pre-clinical imaging to the clinic on human subjects. Translation of these techniques 

for clinical imaging would require deep tissue PAI which imposes significant challenge due to 

optical scattering and attenuation observed in vivo. One possible solution would be to utilize a 
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catheter based light delivery system to provide more localized tissue illumination with detection 

of generated acoustic waves using an externally placed transducer on the skin surface [31, 32]. 
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Appendix A   

DAS and DASCF Performance Optimization for PSAP Comparison  

This appendix reports on the parametric studies performed to optimize the performance of DAS 

and DASCF algorithms for PSAP comparison reported in Chapter 10. Numerical simulations with 

point targets, diffuse inclusion and microvasculature networks were performed, which are 

described in detail in Chapter 10. For point target simulations, we computed the main-lobe-to-

sidelobe (MLSL) ratio (dB) values while diffuse inclusion and microvasculature simulations were 

quantified using contrast ratio (CR) and generalized contrast-to-ratio (gCNR) [1, 2]. 

A.1 Experimental findings from DAS beamforming parametric studies  

A.1.1 Impact of f-number selection 

 Figure A.1 , Figure A.2 and Figure A.3 summarize the results for point target, inclusion 

and microvasculature simulations as a function of f-number. Figure A.1 (a) shows that strong 

sidelobes still persist even with the choice of a higher f-number. Furthermore, no significant 

variation of main lobe to side lobe (MLSL) ratio was seen for deeper targets due to aperture 

saturation [black and green curves in Figure A.1 (b)]. For shallower targets, we observe MLSL 

degradation [red and blue curves Figure A.1 (b)]. Figure A.2 (a) shows similar trends in the 

inclusion phantom simulation results where no significant qualitative difference was observed for 

different f-number results except for the slight reduction in sidelobe spread with f-number 2 or 

higher. Impact of the f-number is more evident at shallow depths due to aperture saturation. 

Quantitative CR and gCNR evaluation results over 10 independent simulation instances are shown 

in Figure A.2 (b) – (c). Highest CR and gCNR were achieved with f-number = 1. Similarly, for 
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microvasculature simulations, only qualitative differences were observed is the slight reduction in 

sidelobe spread with f-number 2 or higher at shallower depth [observe around 5 mm in Figure A.3 

(a)]. Moreover, with f-number = 3 and 4, we observed blurring of structures at shallower depth.  

Quantitative CR and gCNR evaluation results shown in Figure A.3 (b) – (c) suggest that there 

might be a slight improvement in CR and gCNR compared to the f-number =1 result. However, 

the improvement in the results was not sufficient to outperform the results obtained with the PSAP 

method. Considering results from all three experiments, a f-number = 1 was chosen as default 

parameter for the PSAP comparison study. 

 

Figure A.1 Point target simulation comparison to obtain a f-number choice. (a) Qualitative results, (b) MLSL 

variation with f-number. 
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Figure A.2 Diffuse inclusion comparison to obtain f-number value. (a) Qualitative results, (b) and (c) show 

CR and gCNR variation with f-number, respectively. 
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Figure A.3 Microvasculature simulation comparison for the f-number choice. (a) Qualitative results, (b) and 

(c) show CR and gCNR variation with f-number, respectively. 

A.1.2 Impact of Apodization function 

 Four apodization functions were investigated in this section namely a uniform, Hamming, 

Blackman and Hann windowing functions respectively. A f-number = 1 was chosen based on the 

findings from Section A.1.1. Representative DAS beamformed images for the diffuse inclusion 

simulation phantom as a function of apodization function are shown in Figure A.4. Using 

Hamming, Blackman and Hann functions, we observed reduction in sidelobe levels when 

compared to uniform aperture weighting with no significant qualitative differences between each 

of these methods. Higher CR and gCNR values obtained with Hamming, Blackman and Hann 

functions when compared to the uniform weighting function corroborates the qualitative 
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observation [Figure A.5 (a) – (b)]. However, these improvements were not sufficient to outperform 

the CR and gCNR values obtained using the PSAPNCC (2-2) method as shown in Figure A.5 (c) – 

(d). Similarly, for the microvasculature simulations, we observed reduction in sidelobe spread and 

levels with Hamming, Blackman and Hann functions when compared to uniform aperture 

weighting [Figure A.6 (a)].  Quantitative evaluation results shown in Figure A.6 (a) – (b) also 

indicate that the improvement in CR and gCNR. However, PSAPNCC (2-2) method results shown 

in Figure A.6 (c) – (d) had higher CR and gCNR values. The results presented in this section 

demonstrate that PSAPNCC will perform better than DAS regardless the choice of apodization 

function.    

 

Figure A.4 DAS beamformed images for the diffuse inclusion simulation phantom for different apodization 

functions. 
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Figure A.5 (a) – (b) CR and gCNR results as a function of apodization function for DAS beamforming. (c) 

– (d) CR and gCNR results as a function of apodization function for PSAPNCC (2-2) beamforming. 
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Figure A.6 Microvasculature simulation comparison for the different apodization functions. (a) Qualitative 

results, (b) and (c) show CR and gCNR variation with apodization function choice, respectively. 

A.2 Vertical line artifact reduction for DASCF beamforming 

 In Chapter 10, we observed few erroneous vertical lines in DASCF images . To address 

this issue, a filtered version of coherence factor (F-CF) weighting was investigated in this 

dissertation. Specifically, we have computed coherence factor (CF) maps using channel data and 

then, filtered the CF map with a mean kernel of size [1.5λ × 3 A-lines]. The filtered CF map was 

used to weight the DAS image, denoted as DASFiltered CF. Figure A.7 summarizes the comparison 

results for the diffuse inclusion simulation.  Figure A.7 (a) – (d) show DASCF image, DASFiltered CF, 

CR comparison and gCNR comparison results. A f-number of 1 was used during beamforming. 

Figure A.7 (a) – (b) show that no significant qualitative difference exists between DASCF and 
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DASFiltered CF. Furthermore, even with the filtered CF map, we observed significant signal loss 

within the inclusion, an issue that was resolved with our proposed sub aperture processing scheme 

(Chapter 10). Quantitative evaluation with CR and gCNR [Figure A.7 (c) – (d)] also demonstrate 

that no significant differences exist between DASCF and DASFiltered CF. However, with DASFiltered 

CF, we did not observe the vertical line artifact after the Hilbert transform which was present in the 

DASCF image. 

 

Figure A.7 Diffuse inclusion simulation comparison between conventional CF and filtered CF. (a) DASCF 

image, (b) DASFiltered CF, (c) CR and (d) gCNR. 

 Figure A.8 summarizes the comparison results for the microvasculature simulation. Like, 

the inclusion simulation, we did not observe any significant qualitative differences between DASCF 

and DASFiltered CF except elimination of the vertical line artifact. Quantitative evaluation with CR 
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and gCNR [Figure A.8 (c) – (d)] demonstrate that DASFiltered CF had higher CR and gCNR than 

DASCF and DASFiltered CF. However, even with the filtered CF map, we observed significant vessel 

signal loss at depth, an issue that was resolved with our proposed PSAP method (Chapter 10). 

 

Figure A.8 Microvasculature simulation comparison between conventional CF and filtered CF. (a) DASCF 

image, (b) DASFiltered CF, (c) CR and (d) gCNR. 
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Appendix B  

 This appendix reports on a coupled sub-aperture (PSAP) and spatiotemporal singular value 

decomposition (SVD) processing method to suppress background signals for the results reported 

in Chapter 12. Figure B.1 presents a schematic diagram demonstrating coupled PSAP and SVD 

processing for background suppression in the DAS SVD processed images. In addition to DAS 

beamforming with full aperture, beamforming was also done with two non-overlapping sub-

apertures having no common elements defined using binary weighting vectors. Here, sub-aperture 

1 (S1) weighting vector was constructed of ones and zeros with an alternating pattern of two 

elements and sub-aperture 2 (S2) weighting vector was complimentary of sub-aperture 1. Further 

details on PSAP can be found here [1]. Both cardiac cycle data reconstructed with S1 and S2 were 

filtered with the proposed spatiotemporal SVD method reported in Chapter 12. Then, 3-D (2-D 

space + 1-D time) weighting matrix (WPSAP) was determined by calculating zero lag normalized 

cross-correlation (NCC) between each frame of S1 and S2 reconstructed cardiac cycle. During NCC 

calculation, incoherent clutter signals from background  have low similarity while myocardial PA 

signal have high similarity [1]. Therefore, DAS SVD processed images were multiplied with 

WPSAP to suppress background signals. The resultant images are denoted as PSAP-SVD.   

 

Figure B.1 Schematic diagram demonstrating coupled PSAP and SVD processing 
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Figure B.2 Representative background suppression results from coupled PSAP and SVD processing. (a) 

– (c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively. 

Results with DAS, DAS-SVD (rst = 2), and PSAP-SVD (rst = 2) are presented from left to right 

chronologically for each sub-figure. rst denotes the lower singular value order chosen for 

thresholding.  
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 Figure B.2 shows representative background suppression results from coupled PSAP and 

SVD processing. Figure B.2 (a) – (c) show results at systolic, end-systolic, and diastolic phase of 

a cardiac cycle, respectively. Results with DAS, DAS-SVD (rst = 2), and PSAP-SVD (rst = 2) are 

presented from left to right chronologically for each sub-figure. We observe that coupled PSAP 

and SVD processing achieved simultaneous suppression of background signal and enhancement 

of myocardial PA signal for all three cases. 
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