Ultrasound Strain and Photoacoustic Imaging Algorithms for Cardiac

Health Assessment in Murine Models

By
Rashid Al Mukaddim

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the
UNIVERSITY OF WISCONSIN-MADISON
2021

Date of final oral examination: 06/23/2021

The dissertation is approved by the following members of the Final Oral Committee:
Tomy Varghese, Professor, Medical Physics
Carol Mitchell, Associate Professor, Medicine
William Sethares, Professor, Electrical and Computer Engineering

Dan Negrut, Professor, Mechanical Engineering



© Copyright by Rashid Al Mukaddim 2021

All Rights Reserved



Acknowledgments

“My Lord, increase me in knowledge” — (Holy Quran, 20:114)

My PhD journey felt like a marathon with many ups and downs along the way. There were
moments of joy and satisfaction along with moments of despair from failure. However, there were
some people who always had my back throughout my entire journey and helped me make this
dissertation a possibility. I would like to use this section as an opportunity to thank them and

acknowledge their contributions.

I would like to start by thanking my PhD advisor, Prof. Tomy Varghese, for giving me the
opportunity to work with him on ultrasound strain and photoacoustic imaging. He has been a
constant source of encouragement and helped me navigate graduate school coursework and
research. He was always open to have discussions about new research ideas and trusted me to
pursue my own areas of interest. I have highly benefitted from his guidance on technical writing

and research publication.

Next, I am thankful to Dr. Kaisar Alam for introducing to me to the world of ultrasound
imaging and signal processing. He patiently taught me research methodologies and provided me

with invaluable guidance when I was applying to graduate school to pursue doctoral research.

I would also like to thank my PhD thesis committee members Profs. William Sethares, Dan
Negrut, and Carol Mitchell for their valuable inputs and suggestions on this dissertation. I was
fortunate enough to learn basic and advanced concepts of image processing from Prof. William
Sethares which helped me to solve several problems during my PhD. He gave me his valuable time

to discuss my research problems and provide me with his advice. Prof. Dan Negrut taught me GPU



il
programming which has been extensively used throughout this dissertation. Prof. Carol Mitchell
offered clinical insights and helped design the imaging protocol used during this dissertation. Her
attention to details allowed us to acquire high quality data which were instrumental to the success
for our in vivo experiments. Furthermore, her encouraging words acted as a positive momentum
for my work. So, Thank you. I would also like to acknowledge Prof. Tim Hall for serving in my
preliminary examination committee and providing constructive feedback on my initial research
proposal. Additionally, I would like to thank Prof. James A. Zagzebski for teaching me the

ultrasound lab course which substantiated my practical knowledge on ultrasound systems.

An in vivo longitudinal study with mice was designed as a part of this dissertation and
many people played crucial roles for successful execution of it. I want to acknowledge Drs.
Timothy Hacker and Rachel Taylor from Cardiovascular Physiology Research Core for acquiring
the murine models and performing relevant surgical procedures. Specially, I have been benefited
from the deep knowledge of Dr. Timothy Hacker on mice cardiac physiology and want to thank
him for tolerating my naive inquiries about mouse heart. I want to specially mention Ashley
Weichmann for her contribution for in vivo data collection. Our in vivo data collection faced
several hurdles including but not limited to Covid-19 pandemic, broken laser, flooding from roof
pipe leaks, interference from bio-safety cabinet but Ashley helped me tremendously to navigate
all these and successfully finish data collection. I would also like to mention Dr. Melissa Graham,
Thomas Pier, and Joe Hardin for their contribution in histopathological slide preparation and image

interpretation.

Dr. Orhan Unal, Director of Medical Physics IT/IS/Scientific Computing deserves praise
for always being responsive to solve my medical physics server related concerns. He had put

together a GPU cluster during my PhD which had accelerated my data analysis significantly.



iii
I was fortunate enough to have some amazing friends over the past five years. I am grateful
to Dr. Catherine Steffel, Nafisah Islam, Dr. Md Abdul Kader Sagar, Michael Turney, and

XiongMee Vang for being wonderful friends to me and for their constant support regarding my

research work and other matters as well.

I am indebted to the past and present members of Ultrasound research group at UW-
Madison: Dr. Chi Ma, Dr. Atul Ingle, Dr. Kayvan Samimi, Dr. Nirvedh Meshram, Dr. Catherine
Steffel, Dr. Robert Pohlman, Michael Turney, Yurim Lee, Dr. Andrew Paul Santoso, Dr.
Mohammadreza Kari, and Dr. Ivan Rosado-Mendez for their help, support, invaluable research

inputs, and delightful companionship.

I am immensely grateful to my parents: Dr. Md. Nasir Uddin and Keswara Sultana, and
my sister: Dr. Fatema Tuj Zohora for their unconditional love and support. My parents always
prioritized my education over anything else which instilled within me the importance of hard-work
and thus, I have come this far in my life. No matter what I do, I will not be able to repay their
debts. I would also like to thank my father-in-law (Shakhawat Khan), mother-in-law (Afifa Malik)

and sister-in-law (Shifa Khan) for treating me as their son and a brother.

And, most importantly I want to thank my amazing wife, Dr. Samia Khan, for always being
there for me. I am grateful to her for allowing me to prioritize this work over our vacation plans;
for patiently listening to me talk about my research; proofreading my manuscripts; and
encouraging me to be my best self. But, above all, thank you Samia for always loving me and

believing in me. I am very lucky to have you in my life.

— Rashid Al Mukaddim (06/06/2021)



Abstract

Coronary artery disease leading to myocardial infarction (MI) is the number one cause of
mortality worldwide. MI is typically caused by prolonged durations of ischemia. Murine models
of myocardial ischemia and infarction and ischemia-reperfusion (IR) play an instrumental role to
gain mechanistic insights into cardiac remodeling post-MI. However, the success of these models
depends on the availability of accurate and reproducible techniques for measuring cardiac
physiology. The goal of this dissertation is to demonstrate a composite imaging framework
combining two different modalities (cardiac strain and photoacoustic imaging) for in vivo
assessment of functional and perfusion changes in the myocardium associated with MI and IR

murine models non-invasively.

Cardiac strain imaging (CSI) is an ultrasound-based approach to estimate myocardial
relative tissue elasticity by tracking cardiac deformation induced by the natural contraction and
relaxation of the heart. CSI is now used for assessing global and regional myocardial function.
Displacement estimation is an important processing step to ensure accuracy and precision of CSI-
derived strain tensors. To this end, we developed a multi-level block matching algorithm with
Bayesian regularization (BR) which imposes local spatial continuity during displacement
estimation using Bayes theorem. Later, an adaptive BR scheme was developed which utilizes local
input data statistics to perform optimal regularization. A spatiotemporal BR method was also
developed to utilize temporal information for regularization. The results from a pre-clinical
longitudinal study demonstrate the efficacy of the BR methods for estimating cardiac strain

accurately along with correlation to histopathological findings.



There is an unmet clinical need for non-invasive imaging to efficiently study myocardial
blood flow and perfusion. We propose to utilize PAI to generate parametric maps of blood oxygen
saturation (sO2) to quantify cardiac perfusion in murine models. We developed a myocardial sO2
estimation method termed Oxygenation estimation using Physiological signal gating and Motion
Compensation (OPMC). Novel adaptive beamforming and image processing algorithms such as
spatiotemporal coherence weighting, photoacoustic sub-aperture processing and spatiotemporal
singular value decomposition were developed for OPMC. Our results suggest that OPMC had
better spatiotemporal resolution owing to elimination of high persistence and data collection at

higher frame rate compared to a conventional approach.
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Chapter 1

Introduction and Research Question

Coronary heart disease (CHD) including myocardial infarction (MI) is the number one
cause of mortality worldwide according to American Heart Association annual statistical update
2021 [1]. Virani et al. reported that roughly 13% of deaths in USA were caused by CHD with more
than 360,000 deaths annually in 2018 [1]. According to data available from 2013, CHD was one
of the most expensive conditions treated in US hospitals with an annual financial burden of $9.0
billion [1]. MI results from hypoxia in cardiac muscle cells leading to cell death, typically caused
by prolonged duration of ischemia (from a diminished supply of blood) [2]. Myocardium
undergoes a series of morphological changes (e.g., change in mass and geometry, scar formation)
after MI known as cardiac remodeling [3]. Improved management strategies for patients after MI

can be realized with better understanding of these changes [4].

Animal models of ischemia and infarction have been instrumental for gaining better insights
on cardiac remodeling [4, 5]. In particular, murine models of CHD have been routinely utilized in
pre-clinical research due to its similarity to human cardiovascular physiology and ease of genetic
alteration [6]. The greatest advantage of the murine model is the availability of various relevant
transgenic and knockout (KO) strains [7]. It allows us to gain mechanistic insights into
pathogenesis of heart failure and disease progression and detect targets for pharmacological or
molecular therapy [7] which is not feasible in clinical situations [8]. Additionally, these models
are amenable choices to enable translation of novel treatments and therapeutic interventions such
as stem cell therapy from laboratory to the clinic [9]. To understand the anatomical and

physiological changes associated with these models, accurate and reproducible techniques for



measuring cardiac physiology in mice is of utmost importance [9]. In this regard, non-invasive
cardiac imaging plays a pivotal role to meet the technological demand of studying mice cardiac

physiology [6, 7] and is the focus of this dissertation.

1.1 Non-Invasive Imaging Tools to Study Cardiac Mechanics

The heart demonstrates complex left ventricular (L V) motion mechanics during a cardiac cycle
while circulating blood and oxygen to the cardiovascular system consisting of arteries and veins
[10, 11]. The LV demonstrates inward motion associated with myocardial wall thickening, the
base moving towards the apex and ventricular twist due to the apex and base rotating in opposing
directions [11, 12] during ventricular systole with reverse motion mechanics during diastole. In
the event of myocardial ischemia and infarction, normal LV structure and function undergoes rapid
changes such as loss of contractile tissue, bulging of infarcted area, L'V wall dilation, enhanced
myocardial stiffness and hyperkinesia of viable tissue [9, 13]. Assessment of cardiac function
through non-invasive imaging can provide valuable information regarding LV mechanical changes

associated with MI.

Echocardiography has been routinely used to assess myocardial function as it is cost-effective,
fast, portable and provides high temporal resolution for real-time visualization of the heart in a
clinical setting [14, 15]. Qualitative assessment of echocardiographic image sequences over
several cardiac cycles (visual wall motion scoring and wall thickening evaluation) by expert
clinicians have been used to quantify myocardial function [16]. However, the accuracy of these
assessments is dependent on extensive training, expertise [17, 18] and suffers from inter-observer
variability. Myocardial deformation imaging has therefore been utilized to obtain clinically
valuable information based on an objective assessment of regional and global ventricular function

[19]. Deformation imaging methods quantify myocardial function in terms of regional cardiac



displacement and strain, an unitless measure of the degree of deformation with respect to initial
cardiac dimensions [20]. Deformation imaging in mice is typically done by deriving cardiac
motion either using ultrasound echocardiography or by strain mapping via tagged magnetic
resonance imaging (MRI) data such as displacement encoding via-simulated echo (DENSE), and
spatial modulation of magnetization (SPAMM) [6, 9]. Tagged-MRI methods allow direct
measurement of myocardial tissue properties, however, this method suffers from limitations such
as low temporal resolution and not being real-time unlike echocardiography [6, 21]. On the other
hand, cardiac strain imaging (CSI) utilizing two-dimensional (2-D), or three-dimensional (3-D)
echocardiography data, has shown widespread applicability in both clinical and pre-clinical setups
as it can be performed with data collected during a conventional echocardiographic examination
[21-27]. In particular, CSI using ultrasound radiofrequency (RF) data (cardiac or myocardial
elastography) is more sensitive to subtle myocardial motion abnormalities compared to
conventional echocardiography and envelope-based speckle tracking [28-30]. However, accurate
strain estimation in murine models poses unique challenges due their small size and rapid heart
rate [31]. Higher heart rate results in increased RF signal decorrelation and additional out-of-plane
scatterer motion due to complex 3-D cardiac deformation imaged in 2-D thus degrading the quality
of CSI. Therefore, CSI is still being actively researched to address the above-mentioned

challenges.

1.2 Myocardial Microcirculation and Role of Perfusion Imaging

Myocardial blood flow (MBF) is regulated by coronary circulation comprising an extensive
network of arteries and arterioles penetrating the cardiac muscle tissue [32]. Oxygen supply and
nutrient demand of cardiac tissue are met by MBF whose dysfunction leads to cardiac hypoxia and

tissue necrosis [33]. Positron emission tomography (PET), single-photon positron emission



computed tomography (SPECT) and magnetic resonance imaging (MRI) are currently being
employed for imaging MBF in humans with PET being the clinical reference standard [33].
However, the small size and rapid heart rate in the mouse heart poses significant challenges for
myocardial perfusion imaging with these techniques [34, 35]. Application of these tools is difficult
in murine models for financial (e.g., expense of a MR/PET scanner, requirement of cyclotron
facilities to produce radionuclide [33]) and technical reasons (e.g., ionizing dose, poor spatial
resolution of SPECT [33], low temporal resolution, long acquisition time) [34]. For example, blood
oxygen level-dependent (BOLD) MRI imaging and first-pass MRI with intravenous bolus
injection can quantitatively investigate MBF at the expense of relatively longer image acquisition
time and technical challenges associated with bolus injection [9, 33]. Furthermore, these methods
do not operate in real-time. A relatively low cost solution without the use of any ionizing radiation
is myocardial contrast echocardiography (MCE) which has been used to evaluate myocardial
perfusion and identify perfusion defects in ischemia models [36]. MCE involves intravenous
injection of contrast agents (gas filled micro bubbles) to enhance the myocardial ultrasound B-
mode images with higher spatial and temporal resolution than SPECT, PET and MRI [36].
However, performing MCE in a small animal model with a rapidly beating heart is quite
demanding both in terms of surgical procedures and image acquisition with a high resolution
scanner [37]. Therefore, there is an unmet need for a non-invasive imaging method to efficiently
study MBF in murine models. We propose to utilize photoacoustic imaging (PAI) to generate

parametric maps of blood oxygen saturation to assess perfusion of ischemic regions.

1.3 Specific Research Aims

The primary objective of this dissertation was to develop a unified imaging framework to

study mechanical and perfusion changes in the myocardium due to myocardial infarction and



ischemia-reperfusion injury in murine models. Four specific aims were established to achieve the

above-mentioned research objective.

Aim 1: Non-invasive quantification of myocardial oxygen saturation with Photoacoustic
imaging. Non-invasive quantification of myocardial perfusion may be more definitive for
indicating the extent of ischemia. We hypothesized that photoacoustic imaging (PAI) has the
potential to be a non-invasive, non-ionizing and real time monitoring tool for studying perfusion

changes in the myocardium due to ischemia.

Aim 2: Development of a complete strain estimation framework by incorporating Bayesian
regularization-based hierarchical block matching algorithm with Lagrangian motion
description and myocardial polar strain estimation. Cardiac elastography (CE) has been
utilized to perform objective assessment of regional and global myocardial function [23, 27]. We
hypothesized that application of Bayesian regularization techniques in CE will result in a robust

and accurate strain estimation framework to study functional changes associated with ischemia.

Aim 3: Development of an adaptive Bayesian regularization algorithm for robust low and
high strain estimation. Spatial variation of elasticity in the myocardium requires a strain
estimation algorithm to be robust for both low and high strain field estimation. We hypothesized
that adaptively varying the extent of regularization based on the quality of data (e.g., signal

decorrelation) will allow estimation of both low and high strain fields in a robust manner.

Aim 4: Development of spatiotemporal Bayesian regularization-based motion estimation
approach for invoking temporal consistency in cardiac elastography. Dynamically varying
strain rates in the cardiac cine loops due to cardiac pulsation pose a fundamental challenge in CE.

We hypothesized that spatiotemporal regularization-based motion estimation framework will be



more robust to tackle dynamically varying myocardial strain rates resulting in smoothly varying

temporal strain curves.

1.4 Dissertation Outline

Chapter 2 presents a literature review on ultrasound elastography methods and relevant signal

processing techniques for cardiac function assessments using strain imaging.

Chapter 03 introduces photoacoustic imaging (PAI) and provides a detailed literature review on
solving acoustic (beamforming) and optical (oxygen saturation estimation) inverse problem related

to PAIL

Chapter 04 proposes and validates a complete cardiac strain estimation pipeline incorporating
Bayesian regularization-based hierarchical block matching algorithm, Lagrangian description of

motion and myocardial polar strain estimation (4im 2).

Chapter 05 presents an adaptive iterative Bayesian regularization framework based on local signal
decorrelation levels derived from input RF data that adaptively varies the extent of regularization

thus allowing estimation of both low and high strain fields in a robust manner (4im 3).

Chapter 06 extends the Bayesian regularization algorithm into the temporal domain with an
underlying assumption of smooth variation in velocity over a short span of time during tissue

deformation and validates it using simulation and in vivo cardiac datasets (4im 4).

Chapter 07 investigates dynamic frame skip and log compression of the correlation function in

the context of improving Bayesian regularization for ultrasound strain imaging. (4im 2 and 3).

Chapter 08 reports on the utilization of a commercially available dual-wavelength PAI solution

to generate parametric maps of blood oxygen saturation that were overlaid on high resolution high-



frequency ultrasound images of the myocardium. Our results demonstrate that PAI is sensitive to

changes in myocardial oxygenation associated with acute myocardial ischemia (4im 1).

Chapter 09 proposes and validates a photoacoustic beamforming algorithm incorporating
spatiotemporal information to tackle temporally varying incoherent clutter noise seen in cardiac

PAI (4im 1).

Chapter 10 presents photoacoustic image formation based on sub-aperture processing to optimally
recover both coherent and diffuse photoacoustic (PA) signals while suppressing clutter and

sidelobes (4im 1).

Chapter 11 incorporates the developed photoacoustic sub-aperture processing (PSAP) method in
Chapter 10 into a minimum variance (MV) beamformer to address sidelobe corruption while

preserving resolution improvement obtained with MV.

Chapter 12 presents a spatiotemporal singular value decomposition (SVD) processing method to
enhance myocardial signal specificity using ECG and respiratory signal (ECG-R) gating and in

vivo cardiac murine PAI data beamformed with delay-and-sum (DAS) (4im I).

Chapter 13 demonstrates a physiological signal gated PAI technique with motion compensation

to improve the sensitivity and resolution of myocardial oxygen saturation estimation in vivo (4im
I).

Chapter 14 reports on a Lagrangian CSI framework incorporating Adaptive Bayesian
Regularization (ABR-CSI) and investigate the feasibility of this method for longitudinal
monitoring of cardiac remodeling in murine models of myocardial infarction and ischemia-

reperfusion injury in vivo (dims 2 — 3).



Chapter 15 summarizes the contribution of this dissertation and outlines future research

directions.

Supplemental materials are presented in the Appendices.
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Chapter 2

Ultrasound Elastography for Cardiac Health Assessment: A Literature

Review

Objective quantification of myocardial function non-invasively has been a key area of
interest in clinical cardiology [1]. Echocardiography has been routinely used to assess myocardial
function as it is cost-effective, fast, portable and provides high temporal resolution for real-time
visualization of heart in a clinical setting [2, 3]. Qualitative assessment of echocardiographic image
sequences over several cardiac cycles (visual wall motion scoring and wall thickening evaluation)
by expert clinicians have been used to quantify myocardial function [4]. However, the accuracy of
these assessments is dependent on extensive training, expertise [1, 5] and suffers from inter-
observer variability. Quantitative parameters such as left ventricular ejection fraction (LVEF) can
also be derived from echocardiographic images to assess cardiac function. However, LVEF has
been shown to have limited ability for risk prediction in heart failure patients with reports of
preserved LVEF even in the event of heart failure [6]. To address these issues, cardiac deformation
imaging has been developed and utilized to obtain clinically valuable information based on an
objective assessment of regional and global ventricular function [7]. In this chapter, we review
peer-reviewed literature related to technical developments and applications of cardiac deformation

imaging performed based on ultrasound.

2.1 Strain and Strain Rate Imaging with Tissue Doppler Imaging (TDI)

Initial approaches to perform cardiac deformation imaging was based on tissue Doppler

imaging (TDI) for strain rate and strain estimation. Strain rate (SR) measurements were typically
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done based on the spatial velocity gradient by assessing at least two fixed points along the

ultrasound (US) beam as shown below [8-10].

_w(r)—=v(r+Ar)
- Ar

SR (2.1

where, v is the tissue Doppler velocity and Ar is the distance between interrogation points.
Alternatively, SR was also measured using linear regression over multiple velocity estimates over
a fixed distance [11]. Finally, strain was derived though temporal integration of these SR curves.
Even though TDI derived strain measurements have been investigated for clinical applications [8,
12], they suffer from several limitations limiting clinical applicability [13]. First, these
measurements are angle-dependent thus limited to measuring strain and strain rates from
myocardial segments aligned only along the US beam [14-16]. Second, they were highly
susceptible to signal contribution from the left ventricular blood pool and reverberation artifacts
[15]. Third, TDI is intrinsically one-dimensional (1-D) while cardiac deformation is three-
dimensional (3-D) in nature [16, 17]. Therefore, there was shift towards developing non-Doppler

US based cardiac deformation approaches.

2.2 Ultrasound Elastography Approaches for Cardiac Deformation Estimation

2.2.1 Basic Principles of Ultrasound Elastography

Ultrasound elastography (UE) refers to signal processing methods to estimate tissue
elasticity properties using US radiofrequency (RF) data from perturbed tissue [18-21].
Elastography was pioneered by the research group headed by Dr. Jonathan Ophir back in 1991
when they demonstrated the formation of two-dimensional (2-D) images of tissue elasticity (strain)
by estimating inter-frame deformation between two consecutive RF frame under uniaxial

compression [22]. Thirty years later, elastography is a well-researched technology being readily
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available in clinical US machines (e.g., VirtualTouch™ from Siemens [23], LOGIQ E9 from GE).
Based on several innovations driven by researchers around the world, UE has widespread
applications in clinical settings for assessing diagnostic information from organs such as the breast
[24], liver [25], heart [26] and so on. Typically, UE is a three-step process. First, induction of tissue
deformation and collection of RF data at pre- and post-deformation state. Second, tracking of
induced displacements either using 2-D normalized cross-correlation (NCC) based block matching
(BM) [27-29], phase-based estimators [30, 31] or cost function-based optimization methods [32-

34]. Finally, strain estimation as a spatial gradient of tracked displacement [20, 22, 35].

Based on perturbation techniques to induce local tissue deformation, UE can be broadly
categorized into two groups. The first group includes quasi-static elastography where a constant
stress is applied (e.g., freehand compression with the imaging transducer) to induce tissue
deformation [36, 37]. Varghese et al. [37] further classified quasi-static elastography into three
categories based on the mechanical stimulus generating the quasi-static compression namely: (a)
Steady state quasi-static excitation (e.g., known applied deformation) , (b) Steady state quasi-static
low frequency excitation (e.g., free-hand perturbation [38]) and (c) Steady state quasi-static
physiological excitation (e.g., deformation induced from cardiac muscle and cardiovascular
sources [4, 39-41]). Note that, the stress (o) and strain relationship (&) can be described by

Hooke’s law in terms of Young’s modulus (£) as shown below.
oc=E¢ (2.2)

However, in practice, the applied deformation is unknown thus quasi-static elastography provides
a relative measurement of tissue elasticity. For further details, interested readers are referred to the
following seminal review articles [21, 36, 37, 42, 43] and books [19, 44]. The second group of

methods is termed as dynamic elastography, where continuous or transient mechanical vibration
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induces dynamic tissue deformation. Examples include sonoelasticity imaging [45], acoustic
radiation force impulse imaging (ARFI) [46], vibro-acoustography [47], shear wave elasticity
imaging (SWEI) [48]. For further details, interested readers are referred to the following seminal
review articles describing dynamic elastography [36, 49-51] and books [19, 44]. In the following
section, we discuss both quasi-static and dynamic elastography in the context of cardiac elasticity

imaging.

2.2.2 Cardiac Strain Imaging for Cardiac Deformation Quantification

Cardiac strain imaging (CSI) estimates myocardial tissue elasticity by processing US data
corresponding to the natural contraction and relaxation of the myocardium [26, 41]. Widespread
application of cardiac strain imaging in both human and animal studies has been reported in the
literature [7]. Applications in human imaging [15] include detection of patients with coronary heart
disease (CHD) [52], myocardial ischemia [53], monitoring cardiac radiofrequency ablation in
human subjects in vivo [54] and dilated cardiomyopathies [55]. CSI has also been used in detection
of myocardial infarction in murine models [56, 57] and assessment of response to cardiac therapy
[58]. These wide ranges of applications were the driving force behind innovations and
improvements in CSI. Accurately estimating underlying cardiac motion or displacement is critical
for CSI. The myocardium exhibits complex 3-D motion patterns due to torsion, thickening across
and contraction along fibers over a cardiac cycle [59]. This complex 3-D motion causes out-of-
plane motion of scatterers when 2-D imaging is employed for CSI resulting in significant
challenges for accurate strain quantification [60]. Improving the accuracy of cardiac displacement
and strain estimation is one of the main goals of this dissertation. Therefore, related signal

processing approaches to improve CSI have been reviewed in detail separately in Section 2.3.
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2.2.3 Dynamic Elastography for Cardiac Stiffness Quantification

In this section, we summarize literature reports pertaining to the use of ARFI induced
dynamic elastography methods for estimating myocardial stiffness. For a broader review of ARFI

elastography methods, interested readers are referred to following review papers [49, 50].

2.2.3.1 Acoustic Radiation Force Impulse (ARFI) Imaging for Myocardial Stiffness
Measurement

ARFI Imaging is a dynamic elastography technique using a transient excitation mechanism where
internal tissue motion is induced using an impulsive focused acoustic radiation force (ARF) [44,
46, 61]. The magnitude of ARF (F) inducing the localized tissue defamation can be represented as

follows.

_ 2al
c

F (2.3)

where, a, I and c represent acoustic absorption coefficient, local mean temporal intensity of
acoustic beam and speed of sound, respectively. ARFI data acquisition starts by collecting
“reference” data in single lateral location without any ARF excitation. Then, using the same US
transducer, ARF excitation pulse or “pushing” pulse (pushing pulse with longer pulse length
compared to conventional B-mode imaging pulses) is delivered to generate impulsive ARF and
consequently induce localized tissue deformation. Finally, multiple diagnostic US pulses
(“tracking” pulses) are used to collect post deformation data and induced tissue displacements are
tracked typically using correlation-based estimators [30]. Similar pulse sequences are repeated
across a lateral spatial extent to generate 2-D ARFI images which can provide qualitative maps of
local tissue stiffness [44]. Several clinical applications of ARFI imaging are reviewed in the

following papers [44, 62]. In this chapter, we review ARFI imaging in the context of cardiac health
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and dynamics assessment. Fahey et al. [63] first demonstrated the use of ARFI to image
myocardial radiofrequency ablation (RFA) of a beating heart in an open chest experimental setup.
Authors demonstrated that ARFI could be used to visualize cardiac lesions formed in two sheep
hearts by RFA and argued for the potential use of this method to monitor myocardial ischemia and
infarction [63]. ECG-gating was employed to discard frames with motion artifacts resulting in a
single ARFI image per heartbeat. Later, Hsu ef al. [64] extended the technique for monitoring the
dynamic variation of myocardial stiffness over a cardiac cycle using ARFI M-mode imaging.
Experimentation involved imaging exposed canine hearts using linear array transducers and
employed advanced beam sequencing and parallel-receive imaging [65] to collect data at a higher
frame rate (40 Hz for ARFI M-mode imaging). Even though, ARFI induced displacements
demonstrated cyclic variation over the cardiac cycle, fixed ROI placement for ARFI M-mode
imaging could induce uncertainty in the results due to underlying cardiac motion. Recently,
Kakkad et al. [66] investigated the in vivo feasibility of ARFI M-mode imaging using transthoracic
RF data from 12 healthy human volunteers and found that the success rate of the proposed method
in studying dynamic myocardial stiffness was somewhat limited (41 % of total 204 acquisitions).
Authors limited their analysis to the intra-ventricular septum and collected data in both parasternal
long and short axis views. ARFI images were quantitively studied by deriving parameters such as
stiffness ratio, rates of relaxation and contraction and time constants of relaxation and contraction
through analysis of the ARF-induced displacement profiles. These studies highlight potential
challenges for using ARFI for in vivo cardiac imaging which stems from the fundamental physics
behind ARFI imaging. First, ARF-induced displacements are directly related to the intensity of
acoustic excitation pulse which might be absorbed by highly attenuating tissue layers such as

muscle and connective tissue before reaching the myocardium. This is turn in will contribute
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towards unsuccessful ARFI acquisition. Second, the ARFI analysis ROI was fixed in location and
size based on the estimate of focal point of ARF pulse. However, the myocardium continuously
moves and changes shape due to contraction and relaxation of the myocardium thus potentially

leaving the ROI during data acquisition.

2.2.3.2 Shear Wave Elasticity Imaging (SWEI) for Myocardial Stiffness Assessment

Shear Wave Elasticity Imaging (SWEI) is a quantitative dynamic elastography technique
pioneered by Sarvazyan et al. [48] based on shear waves generated by remote excitation using
acoustic radiation force. Assuming linear, isotropic, semi-infinite medium, Sarvazyan
demonstrated that the velocity of shear wave propagation (cr) is related to shear modulus (u) and

medium density (p) in the following form.
¢, = & (2.4)
o,

Myocardial tissue typically violates the required assumption, therefore cr is typically used to
measure myocardial stiffness [67-70]. One of the initial reports on the use of SWEI for myocardial
stiffness assessment was by Bouchard et al. [67] where authors employed ARFI-induced SWEI to
investigate the mechanical properties of left ventricular (LV) free wall at the mid-myocardium
level. Experimentation involved a canine beating heart in an open chest setup with shear wave
speed (cr) measurements done at mid-diastole of cardiac cycle after ECG-gating. They reported
on consistent beat-to-beat shear wave speed measurements (calculated using Lateral Time-To-
Peak algorithm) at a fixed location while the shear wave speed varies both with depth and lateral
tracking beam location. Couade et al. [68] later demonstrated shear wave speed variation over a
cardiac cycle by repeated ARFI pushes with displacement tracking utilizing ultrafast ultrasound

imaging at 12000 frames/sec. Authors employed the SuperSonic Shear Imaging (SSI) method [71]
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to image the epicardium of 10 sheep hearts in an open chest setup. They reported reduction (~25%)
of the systolic shear wave after coronary artery ligation to induce myocardial ischemia. Pernot et
al. [69] applied a similar SWEI method to an ex vivo experiment involving six Langendorff
perfused isolated rat hearts and reported higher shear modulus at systole compared to diastole.
Hollender et al. [70] performed shear wave speed measurements in vivo using intracardiac
echocardiography (ICE) on six healthy pig models and reported cyclic variation of crover a cardiac
cycle like the results reported by Couade et al. [68]. However, their approach was less invasive
than open chest experiments thus moving towards clinical translation. Hollender ef al. [72] also
investigated the potential of intracardiac echocardiography based SWEI for identifying focal
infarction in pigs. However, no clear distinction could be made between healthy and infarcted
hearts based on the reported data. Later, Pernot et al. reported on the differentiation between
stunned and infarcted myocardium using passive myocardial stiffness measured at end-diastole
(ED) by SWEI. Experimentation was done on 10 sheep in an open chest setup. Authors reported a
statistically significant increase in ED SWEI stiffness value in an infarct case when compared to
stunned myocardium. The infarcted group also demonstrated further increment in ED SWEI

stiffness values after re-perfusion while stunned group remained constant.

All the papers reviewed so far involved animal models either in an open-chest setup or
using ICE, however, for clinical application, the preferred imaging mode would be transthoracic
closed chest imaging. Song ef al. [73] measured the myocardial stiffness of LV for the first time
in vivo by performing transthoracic closed chest imaging of seven healthy human volunteers.
Authors utilized pulse inversion harmonic imaging for shear wave tracking. The measurement was
limited to end-diastole phase of the cardiac cycle where heart motion was relatively slow [73].

Song et al. [74] later investigated the feasibility of the technique for end-diastole SWEI in a cohort
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of 20 pediatric volunteers. Recently, Villemain et al. [75] reported the differentiation between
healthy volunteers and hypertrophic cardiomyopathy patients using passive myocardial stiffness
measured at ED by SWEI. Even though these reports are encouraging, there are several technical
challenges that remain with SWEI to assess myocardial stiffness non-invasively. First,
measurements are localized in both space (excitation site) and time (end-diastole), and would
therefore require another imaging modality such as cardiac strain imaging [41] to localize the
disease site. A more suitable SWEI approach should cover a larger field-of-view with dynamic
measurement over the cardiac cycle [44]. Secondly, myocardial anisotropy might be a
complicating factor which has to be addressed before comparing SWEI derived parameters across

patient groups [72]. Further details regarding SWEI for cardiac imaging can be found here [44].

1. Collect 2. Derive 3. Estimate
Ultrasound (US) Data 2-D Displacement Maps Cardiac Strain Maps

(mm)

BL e End-Systole

0
Width (mm)

Captures physiological motion Estimates cardiac motion by Algorithms map motion
over multiple cardiac cycles analyzing collected data information to strain data

Figure 2.1 High level description of a Cardiac Strain Imaging framework.

2.3 Signal Processing Approaches for Cardiac Strain Imaging (CSl)

In this section, we review the literature reports on the signal processing approaches utilized
for CSI. The CSI process can be described as a three-step process on a high level namely — (a) US
data collection over several cardiac cycles, (b) motion estimation and (c¢) cardiac strain derivation

as shown in Figure 2.1 and discussed in detail below. CSI can be performed either using a sequence
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of ultrasound envelope or B-mode images (envelope detected and log compressed signals) or using

radio-frequency (RF) data [76, 77].

2.3.1 Speckle Tracking Echocardiography for Cardiac Strain Estimation

Ultrasound B-mode or envelope-based methods for CSI are commonly termed as speckle
tracking echocardiography (STE). Readers interested to learn about the clinical applications of
STE are referred to following review papers published between 2010 — 2021 [15, 78-81]. This
section focuses more on the technical aspects of STE. A common approach for motion estimation
in STE is to search for similar speckle patterns in a sequence of cardiac B-mode images using
block matching (BM) [16, 82]. In this approach, similarity between matching blocks is quantified
using similarity metrics such as normalized cross-correlation coefficient (NCC), sum of absolute

difference (SAD) or sum of squared difference (SSD).

A second popular approach for motion tracking using B-mode ultrasound images are
optical flow based motion estimation approaches [83, 84] . These methods assume brightness
consistency of a pixel over a short period of time and derive motion by matching pixel intensity
across frames. Optical flow-based motion estimation using RF signals was also reported in the
literature [85, 86]. Finally, a third approach for motion estimation for STE is the utilization of non-
rigid B-mode image registration [87-90]. In these registration methods, cardiac deformation is first
modelled as a weighted sets of basis functions and then weights are adjusted appropriately to
represent the dense cardiac deformation field [44]. These methods aim to find a spatiotemporal
deformation field by iteratively minimizing difference between motion compensated images and
a reference [87]. This task is formulated as a global optimization problem where the optimal
deformation field minimizes a specific cost function. Smooth basis functions such as B-splines or

radial basis functions are typically used to parametrize the myocardial deformation field with



22

additional regularization terms in the cost function to be minimized [87, 90]. Regularization

enforces additional constraints such as smoothness on the derived motion field [87, 88].

Ledesma-Carbayo et al. [87] proposed a spatiotemporal elastic registration framework for
estimating 2-D displacement fields from a sequence of ultrasound B-mode images of the heart. A
parametric model based on B-spline functions was utilized to represent the motion field. They
proposed a regularization-free optimization criterion to derive a globally plausible spatiotemporal
motion field over the entire image sequence with respect to a reference frame (end-diastole). They
then enforced spatial smoothness and temporal coherence on the estimated deformation function
by defining B-spline basis functions for both spatial and temporal direction. Finally, the
registration problem is solved utilizing a multi-resolution optimization strategy. The approach was
validated in a cardiac simulation model revealing the benefit of adding temporal consistency to the
framework. They also reported initial clinical validation by performing analysis on in-vivo
volunteer data from healthy (n=6) and patient (n=6) population. This approach was later extended
to 4D data sets (3-D+t) by Metz ef al. [91] and evaluated on computed tomography (CT) and
ultrasound (US) image sequences. Their additional contribution was to enforce a cyclic motion

constraint to ensure uniqueness of their optimization solution.

Similar image intensity-based non-rigid image registration framework has been applied in
3-D ultrasound image voxels by Elen et al. [88] to derive the cardiac motion field. They also
utilized a B-spline transformation model to parametrize the spatial motion field. Their proposed
cost function included mutual information as a similarity measure term and two spatial smoothness
term as regularizer. The regularization terms enforced spatial smoothness and volume conservation
to prevent non-physical estimations. Frame-to-frame image registration was performed to derive

the inter-frame displacement field. Finally, inter-frame displacements were accumulated to derive
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a Lagrangian representation of the motion field. They showed motion tracking with reasonable
performance and accuracy in a simulation study of healthy and infarcted heart. Initial clinical

validation was done on in-vivo data derived from healthy (n=3) and apical aneurism patient (n=1).

De Craene et al. [92, 93] also proposed a 4D image registration approach (3-D+t) to
estimate motion and strain sequences from 3-D ultrasound volume sequences. The proposed
method referred as Temporal Diffeomorphic Free-Form Deformation (TDFFD) attempted to
enforce temporal consistency by the use of continuous spatiotemporal B-spline kernels to represent
velocity fields. The proposed approach was evaluated using synthetic 3-D US images, in-vivo
healthy volunteers (n=9) and Cardiac Resynchronization Therapy (CRT) treated patients (n=13).
Zhang et al. [94] proposed an elastic image registration framework for 3-D echocardiography
images with spatiotemporal regularization (3-D+t approach). The proposed problem formulation
closely resembles the approach reported in [87, 88] as authors parameterize the deformation field
using tensor product of 1-D cubic B-splines. The approach differs from [87, 88] in terms of
regularization where they propose to use two regularization terms (spatial and temporal). The
spatial regularization term enforces spatial smoothness while temporal regularization terms
enforce smoothness in velocity assuming that any point in myocardium will experience continuous
velocity. The temporal penalty term is determined using three consecutive images. They reported
improved performance in cardiac motion estimation against no temporal regularization. Nora et.
al. proposed spatial and sparse regularization with dictionary learning and reported better motion
estimation accuracy compared to state-of-the-art methods [95]. Later, they extended their approach
to incorporate temporal domain information [96]. Despite regularization being inherently
embedded in these NRIR-based methods, they suffer from reduced sensitivity to small inter-frame

displacements and lower elastographic signal-to-noise ratio (SNR) due to the use of US B-mode



24

or envelope data instead of RF data [97]. To address this issue, Bidisha et al. proposed a NRIR-
based method for RF-based CSI. However, their results did not include analysis on strain

estimation accuracy limiting its effectiveness for CSI.

2.3.2 Cardiac Elastography for Myocardial Strain Estimation

RF echo-signal based speckle tracking technique for CSI is commonly termed as Cardiac
Elastography (CE) [41] or Myocardial Elastography (ME) [26]. Elastography was originally
developed as a technique to estimate local [98] tissue strain via NCC of time-shifted RF signals
under an external compression along the ultrasound beam propagation direction [20, 22]. CE on
the other hand uses the natural contraction and relaxation of myocardium as a mechanical stimulus
for strain estimation [41, 99]. One added advantage of CE is the presence of phase information
with RF signals resulting in accurate deformation estimation when compared to B-mode or
envelope-based methods (e.g., STE) in detecting small deformations [76, 97, 100]. However, the
lack of phase information in the lateral direction (perpendicular to beam direction) makes motion
estimation challenging resulting in noisier lateral strain estimates [60, 101]. Further difficulty in
accurate 2-D motion estimation results from the “out-of-plane” motion artifacts due to imaging 3-
D myocardial deformation using 2-D imaging planes [3, 60, 98, 102]. Therefore, these approaches
typically utilize high lateral interpolation factors (e.g., Langeland et al. interpolated RF data
laterally 30 times with Sinc interpolation [103]) with multi-level tracking and re-correlation
strategies to improve the accuracy and precision of the estimates [4, 39, 60, 104]. To further
improve the quality of strain estimation, several innovative approaches have been implemented
such as displacement regularization [105-107], high frame rate echocardiography [108], spatial

angular compounding [109-111] and transverse oscillation approaches [112-114].
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2.3.2.1 Improving RF-based Displacement Estimation with Regularization

Regularized displacement estimation algorithms for RF-based ultrasound strain imaging
can be broadly categorized into two groups: optimization and BM-based methods. In the first class
of algorithms, displacement estimation is modelled as an optimization problem combining
measures of speckle similarity and motion continuity [44]. The continuity constraint is usually
formulated to penalize large displacement gradients and acts as a regularization term. Pellot-
Barakat et al. [32] utilized SAD as similarity measure [28] and used an iterative conditional mode
algorithm to solve the optimization problem. Brusseau et al. [115] modelled motion estimation as
a minimization problem with NCC as similarity measure and solved the problem using sequential
quadratic programming. Rivaz et al. [116] introduced Dynamic Programming Analytic
Minimization to efficiently resolve sub-sample displacement by solving the optimization problem.
Hashemi et al. proposed Global US Elastography algorithm termed as GLUE where a non-linear
optimization problem is formulated to estimate displacement in all RF A-lines simultaneously by
enforcing a spatial constraint [117]. Majority of these algorithms enforce regularization to produce
spatially smooth displacement fields [33, 117-121]. However, in the context of CSI, temporal
smoothness may be a reasonable assumption supported by NRIR-based reports as discussed in
Section 2.3.1. Rivaz et al. [122] applied the concept of temporal consistency in optimization-based
displacement estimation using multiple RF frames. The proposed method initially estimates
motion between paired images using 2-D analytic minimization (2-D AM) [116]. The initial
estimates were then utilized to derive physics based constrains to construct a likelihood function
to incorporate data from multiple images. Finally, a posterior probability density was constructed
by combining the estimated likelihood function and a spatial smoothening regularization term to
derive final displacement estimates. The proposed method was compared against strain image

averaging and Lagrangian particle tracking [4] and provided improved performance. Recently,
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Ashikuzzaman et al. proposed using the GLUE algorithm in spatial and temporal domain termed
as GUEST to incorporate temporal continuity in the GLUE framework and validated the algorithm
using simulation, phantom and in vivo liver data. The results were however limited to axial strain
images only making it unclear how generalizable it will be for CSI where lateral and shear

components play equally important roles in the derivation of cardiac strain tensors.

Typically, RF-based CSI or CE involves performing BM either with 2-D [4, 123] or 1-D
kernels in a 2-D search region [103, 124-128]. Initially, CE was performed using 1-D cross-
correlation of time-shifted signals along the ultrasound beam propagation direction [26, 41]. As
myocardium undergoes 3-D deformations during a cardiac cycle [1], several approaches of CE
have been proposed to estimate cardiac motion and strain in 2-D [2, 4, 16, 39, 57, 60, 100, 103,
124, 128, 129] and even 3-D [3, 98, 102, 130]. For these BM displacement estimation algorithms,
n-D kernels (n=1,2 or 3) from pre-deformation RF data are matched with post-deformation kernels
in a pre-defined search range using a similarity metric (e.g., NCC, SAD, SSD, mutual information,
phase correlation [30, 131, 132]). In this dissertation, we focus on 2-D NCC based BM algorithms
where the NCC peak location is used to obtain axial and lateral sub-sample shifts to determine the
displacement vector. Regularization can be included in BM algorithms either post estimation or
during estimation. Examples of post estimation regularization include median filtering [39, 103,
124], application of geometric shape constraints on the estimated motion fields [133], Gaussian
smoothening [134]. Examples of regularization during estimation include application of Viterbi
algorithm [34, 118, 135, 136] and Bayesian strain imaging [105-107, 123, 137]. For example, Jiang
et al. [34] used correlation as similarity measure and used Viterbi algorithm for optimization.
Bayesian strain imaging involves the use of prior knowledge to reduce estimation errors using

Bayes theorem [137]. McCormick et al. [107] applied an iterative Bayesian regularization
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algorithm to ultrasound strain imaging with successful application to carotid plaque strain imaging
in human subjects [138]. They reported significant improvement in estimation quality compared
to conventional peak-hopping error filtering approaches such as median filtering. Byram et al.
[105, 106] proposed a Bayesian framework with a scaled likelihood function for improved
discriminant ability and showed higher displacement accuracy compared to NCC approaches using
a generalized-Gaussian-Markov random field prior in their Bayesian framework [137] with 1-D
NCC kernels. However, for applications such as cardiac strain imaging, displacement vector
estimation using 2-D or 3-D kernel is a key requirement to reduce kernel dimensions for improved
spatial resolution and lateral estimation accuracy [139]. However, there are not many reports on
the use of temporal consistency concepts for kernel-based displacement estimation. Jiang et al.
[140] proposed a method of estimating a composite strain image by processing multiple RF frames
rather than pairwise processing. The method starts of by selecting three RF frames based on a
displacement quality metric (DQM) [140]. Two strain images were estimated from these RF data
sets and finally, a composite strain image is obtained by weighted averaging of the pair of strain
images. They reported higher SNR with this method compared to simple strain image averaging
schemes. Bayer et al. [141] explored the idea of temporal continuity based on the assumptions that
motion changes gradually over time and accumulation of smaller strain step-size induced
displacement would be same as estimated displacement induced from the total large strain step-
size. Based on these assumptions and principles, they proposed four algorithms aiming to achieve
a temporally smooth displacement field. The first algorithm was accumulation guidance where
inter-frame displacements were accumulated to reduce peak-hop errors and used as a guidance for
large-step displacement estimation. The second algorithm was named velocity regularization,

where a cost function including a temporal smoothness penalty is solved to derive temporally
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smooth displacement from three consecutive image frames. The regularization resembles the
spatial regularization process described by Jiang and Hall in [136]. The third algorithm named
multi-step regularization involved replacing the temporal smoothness constraint with a step-size
consistency constraint. Finally, spatial and temporal regularization was combined in a space-time
regularization algorithm. Initial investigation in phantom sequences and breast data showed
comparable performance with a spatial regularization algorithm [136] and improvement in some
specific cases. Initial investigation in phantom sequences and breast data showed comparable
performance with the spatial regularization algorithm described by Jiang and Hall [136]. Recently,
Mirzaei et al. proposed the use of 3-D NCC (2-D+time) and reported robustness against noise

corruption for axial strain imaging [142].

2.3.2.2 High Frame Rate Echocardiography (HFRE) for Cardiac Elastography

Several reports on high frame rate echocardiography such as plane/diverging wave imaging
[143, 144], multi-line transmission [145] is described in the literature and reviewed in detail by
Cikes et al. [108]. Grondin et al. [126] reported on the use of coherently compounded diverging
waves for performing cardiac elastography for the first time. Their initial simulation and in vivo
feasibility suggested that reasonable strain estimation can be obtained by compounding multiple
diverging waves with the added benefit of high frame rate imaging. Later on, Sayseng et al. [127]
reported on the optimization of transmit parameters related to coherently compounded diverging
wave imaging to improve the performance of CE. In 2020, Sayseng et al. applied the developed
technique to monitor myocardial infarction in canine hearts [146]. Joos et al. [147] applied speckle
tracking echocardiography on motion-compensated HFRE and reported comparable results

obtained using a clinical scanner. Recently, Orlowska et al. [148] followed the similar strategies
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reported by Grondin et al. [126] who performed detailed algorithm optimization with performance

bench marking against a clinical system.

2.3.3 Strain Estimation and Quantification Approaches

The final stage of a CSI framework is derivation of cardiac strain along with quantification
in a meaningful way to assess myocardial dynamics. Strain estimation can be done by integrating
the estimated displacements over a cardiac cycle either using an Eulerian description (observation
through fixed spatial location) or Lagrangian description (observation through material
coordinates) [4, 15]. For CSI, typically Lagrangian strains are reported as the myocardium deforms
over a cardiac cycle with the end-diastolic frame generally being the original reference point [7].
CSI also allows regional analysis of myocardial abnormalities by dividing the entire heart into
multiple segments based on image acquisition planes [149, 150]. Furthermore, several quantitative
parameters have been derived through analysis of the temporal variation of regional strain curves
for example peak strain, end-systolic strain, peak systolic strain, positive peak systolic strains and
interventricular dyssynchrony through time-peak-analysis [56, 58, 151, 152]. Additionally, layer-
specific (epicardial, mid-myocardial and endocardial) segmental strain analysis has also been
reported to study left ventricular function [153]. Interested readers might find the following review
papers and consensus reports helpful for designing CSI based experimental studies [76, 77, 149,

154].
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Chapter 3

Photoacoustic Image Beamforming and Oxygen Saturation Estimation:

A Literature Review

Photoacoustic imaging (PAI) is a hybrid biomedical imaging modality based on broadband
ultrasound (US) signal generation using short pulsed electromagnetic optical irradiation of tissue
[1,2]. US signal generation in PAI is a result of rapid thermal expansion of tissue due to absorption
of optical energy by either endogenous chromophores (e.g., oxygenated [HbO:] and deoxygenated
hemoglobin [Hb]), or exogenous contrast agents (e.g., nanoparticles, organic dyes) [1, 3] which
can be detected using conventional US transducers [4]. Thus, higher optical contrast at US spatial
resolutions can be achieved in PAI making it an attractive imaging modality in biomedicine with
both clinical (e.g. cancer detection [5, 6], monitoring microcirculation [7], [8], surgical guidance
[9-11], prostate brachytherapy [12]) and preclinical applications (e.g. therapeutic response
monitoring [13], cardiovascular [14]). The clinical and pre-clinical applications of PAI have been
reviewed by several groups [1, 2, 9, 14-18]. In this chapter, we focus our literature review on two
important aspects of PAI — (a) Beamforming methods for PAI reconstruction and (b) Oxygen

saturation estimation methods using PAI.

3.1 The Photoacoustic Effect: Basic Principle of PAI

PAI is based on the photoacoustic effect reported back in 1880 by Alexander Graham Bell
when he observed sound generation from modulated light [19]. PAI can be considered to be a
three-step process — (a) optical irradiation of the tissue region of interest (ROI) and light
absorption, (b) thermal expansion causing acoustic wave generation and (c) detection of these

generated acoustic waves at tissue surface for image formation [20]. Typically, the tissue ROI is
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irradiated with pulsed or time-modulated light [1] from the surface which penetrates the tissue
while undergoing multiple scattering and absorption (by optical absorbers referred to as
chromophores) [2, 21-24]. This optical absorption causes local temperature rise (<0.1 K) through
conversion of optical energy to heat by vibrational and collisional relaxation [1] which in turn
induces a rapid thermal expansion of tissue leading to the generation of broadband acoustic waves
[2,21-24]. There are two main pre-requisites for effective PA signal generation as described below

[20, 23].
1) Thermal confinement — The pulse width (7,) of optical excitation should be less than

thermal relaxation time (7, ). 7, denotes the time needed for the heat generated by optical

absorption to dissipate due to thermal conduction. This indicates that thermal diffusion
during optical illumination should be negligible.

2) Stress confinement — The pulse width (7, ) of optical excitation should be less than stress
relaxation time (7). 7, denotes the time needed for the stress (induced by the PA effect)
to propagate through the heated region. This indicates that there is negligible volume

expansion of absorbers during optical illumination.

If thermal and stress confinement are met (which is typically the case as 7, is on the order

of nanoseconds), the initial pressure rise ( p,) due to thermal expansion can be described as

follows.

pe’

X,A)=
Do(x,4) c

P

4, (DX, A, 4. 11,. ) = TH(x) 3.1
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where, 1 (x)is local absorption coefficient, ®(x, A, x,, . ,g) is the local fluence which is a
function of absorption coefficient, scattering coefficient ( 1, ) and anisotropy factor (g), # denotes

volume thermal expansivity, ¢ is speed of sound, Cp is the specific heat capacity at constant

pe’

pressure, I'is the Gruneisen coefficient (dimensionless) defined as I' = C and H(x) is the
P

absorbed optical energy defined as H(x) = u, (x)D(X, A, 1, 1., g) . Equation (3.1) indicates that
P, varies non-linearly with g, . This process is described as the optical forward problem in Figure
3.1. The optical inverse problem aims to estimate z, using p, which will be discussed in Section
0. After generation of p,, the acoustic wave travels in two opposite directions, being divided into

two waves with equal magnitude [20] and will be impacted by tissue acoustic properties such
frequency dependent acoustic attenuation before reaching the tissue surface [2]. Finally, the
propagating acoustic waves from the initial source are detected at the tissue surface for PA image
generation. This process is indicated as the acoustic forward problem Figure 3.1. Note that the
initial pressure magnitude in PAI (<10 kPa) is generally significantly lower than diagnostic
ultrasound pressure (< 1MPa) [1, 21]. Furthermore, the bandwidth of the PA transient is generally
broadband depending on the optical absorber’s size (e.g., higher frequency content from smaller
optical absorbers). However, the bandwidth of the detected PA signals at tissue surface will be
limited by tissue acoustic attenuation and ultrasound transducer bandwidth [1, 21]. For the acoustic

inverse problem, we aim to reconstruct p, using detected data from the US detector which is

discussed in detail in Section 3.2.
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Figure 3.1 Schematic representation of PA signal generation and detection using bandlimited ultrasound

transducer

3.2 Photoacoustic Beamforming

PAI can be broadly classified into— (a) Photoacoustic tomography (PAT) and (b)

Photoacoustic microscopy (PAM) [1, 25, 26]. This dissertation is focused on PAT specifically on

photoacoustic (PA) integrated US imaging systems where acoustic waves generated by pulsed

optical irradiation are detected by conventional US array transducers [27]. Image reconstruction

or beamforming algorithms use received channel data to form PA images. For its simplicity and

speed, delay-and-sum (DAS) is the most common beamforming algorithm utilized. However, DAS

has several undesirable characteristics such as wider main lobes, higher sidelobe levels and



50

incoherent clutter that reduce image quality [4, 27-29]. DAS is particularly unsuitable for PA due
to absence of a transmit (Tx) focus which increases both sidelobes and induced off-axis clutter.
Therefore, extensive research to translate adaptive beamforming techniques from US to PA image
reconstruction is being pursued. Several adaptive beamforming methods have been reported in the
peer-reviewed literature for the reduction of these artifacts [30-33]. State-of-the-art adaptive
beamforming approaches include data driven adaptive beamforming (e.g., minimum variance
(MV) [33], coherence processing [33-35], delay-multiply-and-sum (DMAS) [36-38], iterative
reconstruction [39-41]) and the use of machine learning (ML) [42-45]. Other post beamforming
approaches to improve PAI quality include signal averaging [46-48], spatial angular compounding
[49], singular value decomposition [50] and synthetic aperture focusing [51, 52]. However, in this
chapter, we have limited our contextual literature review to beamforming methods using raw

channel data and summarized the reviewed papers in Table 3.1.

3.2.1 Minimum variance (MV) beamforming

MYV beamforming calculates optimal aperture weighting using data statistics in the aperture
domain to reduce contributions from off-axis signals [53, 54]. Park et al. adapted MV
beamforming for PAI and demonstrated resolution improvement over DAS [33]. Mozaffarzadeh
et al. combined both MV and eigen-based MV with DMAS to improve the resolution of DMAS
beamforming [30, 31, 55]. In eigen-based MV, the covariance matrix utilizes eigen decomposition
to determine the signal subspace using a subset of eigen vectors to improve the resolution and
sidelobe suppression. Recently, Shamekhi et al. combined eigen based-MV with coherence
processing and applied the algorithm for linear array PAI [56]. Paridar ef al. incorporated a sparse
regularization constraint to the MV optimization problem thereby improving performance [32].

Even though MV improves resolution and reduces sidelobes when compared to DAS, some level
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of sidelobe signals persist. One simple solution is to weight MV images with the coherence factor
[33]. However, this may not be an ideal solution in low signal-to-noise ratio environments resulting

in undesirable PA signal suppression [57].

3.2.2 Delay-Multiply-and-Sum (DMAS) beamforming

In DMAS, time delayed PA signals in the aperture domain are combinatorically coupled
and multiplied before summation. Park et al. [38] proposed a DMAS algorithm [58] where time
delayed PA signals in the aperture domain are combinatorically coupled and multiplied before
summation to enhance signal coherence non-linearly thus gaining higher image contrast.
Mozaffarzadeh et al. [59] introduced a double stage DMAS algorithm where DAS terms in signal
coherence estimation were replaced with DMAS terms. This approach showed improvement in
terms of signal-to-noise ratio (SNR) and image contrast when compared to conventional
approaches. Kirchner et al. demonstrated the applicability of DMAS for multi-spectral PAI by
proposing a signed DMAS method where the sign of DAS beamformer is preserved to ensure
linearity of the reconstructed results [36]. Ma et al. proposed Multiple DAS with Enveloping
algorithm where they demonstrated suppression of sidelobe artifacts by calculating the whole N-
shaped PA signal for each pixel [60]. Several other variations of DMAS beamformers have also

been reported in literature [37, 55, 61, 62].

3.2.3 Coherence based beamforming

Another class of beamforming algorithms utilized to improve PAI quality employ
coherence analysis of received channel data, termed as coherence factor (CF). Wang et al. applied
CF weighting to synthetic aperture focused DAS images and demonstrated improvement in lateral
resolution along with better representation of vascular networks in rat dorsal dermis [63]. Zemp et

al. [29] used CF for PAI of microvasculature with a high-frequency array. Park et al. [33]



52

calculated CF weighting as a ratio of the coherent to incoherent sum of received channel data and
weighted MV beamforming to obtain better performance than DAS for point target and inclusion
phantoms. Robustness of CF calculations was improved by Wang et al. by incorporating local
channel SNR [64]. Several variations in CF calculation such as sign coherence factor for high
frequency annular-array PAI [65], sign coherence factor for eigen-space MV beamforming [56],
CF weighting using DMAS [66] and MV [67] respectively for coherence calculation have also
been reported. Another popular coherence-based beamformer is the short-lag spatial coherence
(SLSC) beamformer where spatial correlation of channel data at short lag values are utilized to
generate PA images [34, 68-70]. SLSC has shown remarkable image quality improvements when
applied to PA-based surgical guidance [9-11, 71, 72]. Recently, Graham et al. [73] theoretically
derived spatial coherence functions for PAI and explored the influence of noise and incident
fluence on the spatial coherence functions. The derived spatial coherence functions can be utilized
to optimize the SLSC application. However, SLSC image contrast stems from spatial correlation
of channel data rather than optical absorption of imaged tissue which is detrimental when multi-
wavelength PAI is used for spectral unmixing to estimate blood oxygenation. To address this,
Mora et al. [74] recently proposed a generalized spatial coherence method combining SLSC and
DMAS to preserve PA signal amplitude. However, from the reported results it was not clear how

the method will perform for multispectral PAI.

3.2.4 Model based iterative reconstruction

Use of model based iterative reconstruction methods employing signal sparsity and low
rankness have also been reported [40, 41, 75-77]. Model based iterative reconstruction methods

performs image reconstruction by minimizing the error between experimentally measured and a
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forward model (analytical or semi analytical) generated PA data. These methods typically

discretize the PA forward problem as follows.
p, =Hp, (3-2)

where, p, € R denote received PA signals by a L-element array each having M-time samples
(raw channel data), p, € RY** is the beamformed initial pressure distribution image and

H e R" " is the model or measurement matrix (forward model) which links p,and p,. But,

equation (3.2) is an ill-posed problem, thus regularization (e.g., total variation) is added to solve it
[39]. Most of these algorithms are in developed PA tomography systems where data collection is
done from multiple angles covering the imaged object [40, 41, 75, 76, 78-80]. However, in this
dissertation, we are restricting our review to the methods developed only for linear array
transducers due to their clinical and pre-clinical relevance. For example, Shang et al. [81] proposed
a sparsity-based image reconstruction with compressed sensing [82] for linear array PAI. Here
authors constructed the forward model by directly measuring the impulse response for each pixel
location of the reconstructed image. Then a sparsity-based optimization problem is built
incorporating the forward model and solved using an iterative shrinkage/thresholding algorithm
[83]. Simulation and phantom validation showed performance improvement over conventional
methods. Recently, Vilov et al. [84] applied a similar method for performing image reconstruction
with data collected from sparse arrays (using only 8 elements out 128 elements available in the
transducer). Instead of measuring the impulse response from each location as Shang et al. [81],
they performed the calculation in a single pixel location and built the model matrix by time
shifting. Paridar et al. [77] also proposed a sparse beamforming algorithm and solved the

optimization problem using a simple iterative algorithm. DAS beamformed data was used to
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initialize the iterative solver. The model matrix was data-independent and specific to the linear
array geometry and imaging system. Liu ef al. [85] incorporated dictionary learning using K-SVD
to define the sparse transform for regularization and reported better image quality over Wavelet
based sparse transforms. All these methods improve image quality by adopting sophisticated data
statistics and models with a high computational burden [42]. Recently, Steinberg et al. [86]
proposed Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) algorithm for
addressing the challenge of real-time implementation. They designed a model matrix considering
propagation medium properties and properties of each element (directivity, sensitivity) of a
concave array. They have reported results from simulation, point target phantom, ex vivo pancreas
tissue and in vivo contrast enhanced (ICG) prostate imaging with 10 patients. For in vivo
experiments, the SPANNER method showed statistically significant PA amplitudes before and

after injection. Results demonstrated the potential of model-based methods clinically.

Table 3.1 Summary of Reviewed Papers on Adaptive PAI Beamforming

Methods Reviewed Papers Application demonstrated
Park et al. [33] Point target and inclusion phantom
Mozaffarzadeh et al. [30] Simulation and phantom wire targets,

single in vivo example of human
antebrachial vein imaging

Mozaftarzadeh et al. [31, Simulation and phantom wire targets
MYV Beamforming 5] - - - - _
Shamekhi ef al. [56] Point target simulation, ex vivo (graphite
rods in chicken breast) and in vivo sentinel
lymph node (skin removed and contrast
agent used)
Paridar et al. [32] Simulation and ex vivo imaging for point
type targets
Park et al. [38] Acoustic resolution photoacoustic
DMAS microscopy

Beamforming Mozaffarzadeh et al. [59] Simulation and phantom wire targets
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DMAS
Beamforming

Kirchner et al. [36]

Phantom with silicone tubes filled with
diluted methylene blue, in vivo sO2 %
estimation for human radial artery

Jeon et al. [62]

Phantom with nylon thread and in vivo
human forearm imaging

Alshaya et al. [61]

Carbon fiber rods in hydrogel phantom

Ma et al. [60]

Simulation and phantom wire targets,
single in vivo example of human finger
joint imaging

Coherence Based
Beamforming

Wang et al. [63]

Point target phantom and one in vivo rat
example

Zemp et al. [29]

High frequency imaging with one in vivo
rat example

Park et al. [33]

Point target and inclusion phantom

Wang et al. [64]

Simulated point target and cyst phantoms,
in vivo breast imaging

Chitnis et al. [65]

Point target phantom and in vivo mouse
embryo microvasculature visualization

Shamekhi et al. [56]

Point target simulation, ex vivo (graphite
rods in chicken breast) and in vivo sentinel
lymph node (skin removed and contrast
agent used)

Mozaffarzadeh et al. [66]

Simulation and phantom point targets, ex
vivo (graphite rods in chicken breast)

Mozaffarzadeh et al. [67]

Simulation and phantom wire targets

Mora et al. [74]

Simulation, phantom and in vivo human
palm imaging

SLSC [9-11, 34, 68-72, 87]

ex vivo and in vivo

interventions

image-guided

Iterative
reconstruction

Shang et al. [81]

Simulated point target and Shepp—Logan
phantom, experimental point target
phantom

Paridar et al. [77]

Point target simulation, ex vivo (graphite
rods in chicken breast) and in vivo sentinel
lymph node (skin removed and contrast
agent used)

Liu et al. [85]

In vivo imaging on human hand and two
rats
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Vilov et al. [84] Phantom experiments with microfluidic
channels
Iterative Steinberg et al. [86] Simulation, point target phantom, ex vivo
reconstruction pancreas tissue, in vivo contrast enhanced
(ICG) prostate imaging with 10 patients

Machine learning Please refer to
Table 3.2 for details

3.2.5 Machine learning based methods

In the past few years, ML based algorithms that achieve image quality improvement while
maintaining low computational burden have gained momentum [42]. ML models have been used
to address PAI issues such as the limited view and use of adaptive beamforming [42, 45, 88-92],
reflection artifact removal [43, 93], expanding penetration depth [44] and contrast enhancement in

low fluence PAI [94]. The journal papers reviewed for this chapter are summarized in

Table 3.2. Waibel et al. [88] proposed the use of U-Net architecture for direct
reconstruction of raw channel data and correction of DAS beamformed data. Their synthetic image
generation incorporated fluence contribution and acoustic propagation using open-source
simulation software packages (mcxyz [95] and k-Wave [96]). The U-Net performed better for DAS
image correction when compared to direct image reconstruction. Authors hypothesized that direct
reconstruction requires the U-Net to learn the required time delays from the raw channel data first
followed by beamforming which might have a detrimental effect. Anas ef al. [92] trained a dense
convolutional neural network (CNN) to perform beamforming from raw channel data. Compared
to the method proposed by Waibel er al. [88], they additionally simulated sound of speed
heterogeneity, to mimic realistic in vivo imaging scenarios. Finally, Kim et al. showed that direct
reconstruction can be improved if a U-Net is trained using 3-D aperture domain data (after time

delay correction) and demonstrated better image quality when compared to training the U-Net on
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the raw 2-D channel data [42]. Realistic ground truth images were generated by convolving
vascular maps derived from oculi drive with the system of impulse responses of their custom
PAUS system. One potential limitation of this method is that their synthetic data generation did
not account for acoustic propagation related issues such as attenuation, reverberation, sound of
speed heterogeneity. In contrast to the method proposed by Kim et al. [42], Lan et al. utilized
information from both raw channel and DAS beamformed data for DL based beamforming [45].
They proposed Y-Net, which is modification of U-Net to handle two individual encoder networks
for channel and DAS beamformed data respectively. Synthetic image generation was done using
the k-Wave MATLAB toolbox [96] and the vascular maps derived from oculi drive. The method
also provided a comparison against basic U-Net [97] with DAS beamformed data as an input

resulting in better image quality.

Vu et al. [89] reported the use of Wasserstein generative adversarial network with gradient
penalty (WGAN-GP) to remove limited view artifacts from DAS beamformed images. Other
reports on DL based limited view correction and adaptive beamforming can be found here [90, 91,
98-100]. Allman et al. [43] trained a CNN to identify point sources and remove reflection artifacts
induced by strong acoustic reflections from hyperechoic objects using pre-beamformed raw
channel data. Their DL model consisted of two modules, where the first module included a deep
CNN of VGG16 architecture [101] and a region proposal network [102] while the second module
included Fast-RCNN [103] (Fast Region-based CNN). Their training data synthesis stage
considered a wide range of imaging scenarios such noise corruption, source point target location,
multiple point targets and impact of bandlimited transducers. Their results showed higher success
rate in point source localization and artifact removal when compared to conventional methods in

simulation and phantom experiments. Significant optical and acoustic scattering hinders
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localization of PA signals from deeper depth. To address this issue, Johnstonbaugh et al. [44]
proposed the use of a encoder-decoder type neural network to localize PA signals in deep-tissue
medium. Their synthetic dataset generation considered both optical and acoustic physics. Superior
performance was demonstrated when compared to DAS beamforming. However, the simulation
and phantom experiments were limited to point like targets making it unclear how it would perform
for the localization of deeper microvasculature in vivo. Finally, Hariri et al. [94] trained a multi-
level wavelet-CNN (MWCNN) [104]to recover high fluence PA images from noisy low fluence
PA images. Their proposed method showed better results for in vivo Methylene blue (MB)
concentration imaging. Even though the results from these ML methods are promising and
encouraging, most reported ML models were trained on synthetic data tuned for specific problems
thus the generalizability of these methods when applied to in vivo imaging requires further
investigation. For further details on this topic, interested readers are referred to review papers

published during 2020 — 2021 [105-109].

Table 3.2 Summary of Reviewed Papers on Machine learning based PAI Beamforming

Problem Paper Deep Training | Testing Application
Statement Learning Sample | Sample
Architecture | Size* Size
Waibel et al. U-Net 2880 720 Simulated vessels in
[88] transverse view
Limited view | Anas et al. Dense CNN | 3500 1500 Simulated vessels in
artifact [92] transverse view,
removal and phantoms with plastic
adaptive tubes and human hair,
beamforming in vivo skin vasculature
Vuetal [89] | WGAN-GP | 11200 2800 Simulated disks and
micro vessel data
Kim et al. [42] | U-Net with | 16000 1000 Simulated
3-D channel microvasculature, wire
data as input
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Limited view

phantom and in vivo
human finger imaging

artifact Lan et al. [45] | Y-Net 4700 400 Simulated
removal and microvasculature,  in
adaptive vitro pencil lead in
beamforming chicken breast and in
vivo  human  palm
imaging
Awasthi et al. | U-Net with | 1000 100 Simulated  phantoms
[90] scaled root | (patch (blood vessels,
mean wise modified Derenzo,
squared loss | training breast and PAT
with phantom), horse-hair
105000 phantom and in vivo rat-
patches) brain data
Allman et al. | Deep CNN of | Sample | Sample | Simulation and
[43] VGG16 size size phantom experiments
architecture | varied varied
[101], a | based on | based
Reflection region scenario | on
artifact proposal (e.g., imaging
removal network baseline | scenario
[102] and | training
Fast-RCNN | sample
[103] size
13872)
Expanding Johnstonbaugh | Combination | 16240 4600 Simulated vessels in
penetration et al. [44] of U-Net and transverse view
depth Res-Net
[110]
Low fluence | Hariri et al. | MWCNN 3442** | 608*** | Simulation, phantom
PAI [94] [104] and in vivo Methylene
blue (MB)

concentration imaging

*Sample is divided 80:20 for training and validation

** Not explicitly mentioned

*#* Test sample size varied based on application




60

3.3 Quantitative Photoacoustic Imaging (qPAl) : Oxygen Saturation Estimation

Several reports on deriving quantitative information from photoacoustic imaging are
described in the literature. For example, Hysi et al. [111] performed spectral analysis of PA radio-
frequency data to study tumor vasculature progression in vivo. Landa et al. [112] applied PAI for
temperature monitoring in photothermal therapy. However, the most prominent and widespread
application of qPAI is to determine the spatial distribution and concentrations of optical
chromophores [26] present in tissue which in turn can provide valuable physiologically relevant
information such as blood oxygen saturation in vivo. This section focuses on relevant papers

discussing blood oxygen saturation estimation techniques.

3.3.1 Linear spectral unmixing and spectral coloring artifact

To discuss blood oxygen saturation estimation using PAI, we assume that the only
chromophores present in the ROI are oxy- and deoxy-hemoglobin ((HbO2 and HbR) respectively
and re-represent equation (3.1) in terms of chromophore concentrations and known molar
extinction coefficient as follows.

Po(X,A) =TQ(X, 4, p1,, 11, 8) D & (A)e, (A) (3.3)

k=1

where, &, and cx denote the molar extinction coefficient and concentration of the k" chromophore.

To estimate the chromophore concentration, PAI data collection is done using multiple

wavelengths and can be represented in a matrix form as shown below.

Po(A) D) - o 0T [ Emo, () g (A) |
. _rl . . y . . o |:ch02 :| (3.4)

: : : Crpr
Po(Ay) 0 - O(4y) | €mo, (Av) € (/IN)_
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Then, inversion of equation (3.4) will result in the concentration of oxy- and deoxy-hemoglobin

present in the tissue as shown in the following equation.

1
_ - .. 0
Emo,(B) £pp () | | @A) Po(A)
|:CHb02 } _ lx . . « . . . y . (3.5)
Cinr I . . . . . .
| Emo, (Ay) Emr(Ay) | 0 1 Po(Ay)
. D4y |

where, T denotes the pseudoinverse. Equation (3.5) shows that to estimate the absolute
concentration of chromophores, we require information regarding the spatially variant wavelength-
dependent fluence distribution @ which is not readily available and must be estimated from the
data which is a challenging problem to solve. Furthermore, it is assumed that the initial pressure
distributions are perfectly reconstructed from the measured data which is not valid in practice (e.g.,
limited view artifacts [113]). However, the most commonly used approach is to assume that @ is
constant over space and wavelength. Then, considering the reconstructed PA image is proportional
to the absorption coefficient, the concentrations of HbO2 and HbR can be calculated using linear
least squares method termed as linear spectral unmixing (LSU) [26]. Additionally, non-negativity
constraints are also used to make sure physiologically relevant concentration values are extracted
[114]. Furthermore, the impact of wavelength on the accuracy of LSU was also investigated and
optimal wavelength selection algorithms have been reported [115, 116]. Finally, blood oxygen
saturation (sO2) can be calculated as follows.

50, (%) = — 1o (3.6)

Crpo, 1 Crinr
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Even though the LSU method provides quick and easy estimates of sO2, it will result in highly
inaccurate results especially deep into tissue as fluence compensation was typically not done [117]
. For example, if we consider a blood vessel deep in tissue, then the PA signal from that vessel will

not only depend on local , but also on the local fluence which is turn is dependent on the z, and
4, of the surrounding medium (nearby blood vessels, scattering tissues, skin, water) resulting in

distortion of the spectrum of the measured PA signals. This distortion of the PA spectrum due to
non-uniform fluence distribution is termed as spectral coloring [26, 117] or spectrum corruption
[118] in the literature. For further details on spectral coloring effect, readers are referred to the
following papers [26, 117]. In the next section, we review approaches reported in the literature to

account for fluence distribution.

3.3.2 Fluence corrected oxygen saturation estimation methods

Several approaches have been reported in the literature to solve the optical inverse problem
by accounting for the non-uniform fluence distribution. Several published review papers have
discussed these methods [26, 119, 120]. In this dissertation, we took the approach of reviewing the
related literature by categorizing the proposed algorithms into five broad categories namely — (a)
analytical fluence models for direct inversion, (b) iterative error minimization methods, (c¢) adjunct

modality assisted methods, (d) data driven methods and (e) machine learning assisted approaches.

3.3.2.1 Analytical Fluence Models for Direct Inversion

Model-based fluence correction approaches utilize analytical expressions or numerical
methods to estimate the local optical fluence distribution using mathematical modelling of light
propagation through tissue [26]. One such method was reported by Kim et al. [114] where a simple

2-D skin-tissue model and Beer’s law was used to estimate local fluence as shown below.
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D(A,r) =D, (A)e N (3.7)

where, ®(A,r) and ®o(A) denote the local fluence at position r and incident tissue-surface fluence
measured using laser power meter respectively, |r| denotes distance between skin and pixel

location (r), uey is the effective attenuation coefficient (wavelength and tissue dependent) =
34, (, + £2)) . This model requires prior information regarding chromophore present in the tissue

to estimate uer. Authors used fluence compensated PA data and a minimum mean square error
estimator with non-negativity constraint to obtain the final estimate of chromophore
concentrations. Recently, Zhou ef al. [121] employed the similar model in a comparative study of
fluence correction algorithms. Guo ef al. also utilized Beer’s law in a frequency domain method
to derive absolute concentration of HbO2 and HBR under assumption of homogenous non
scattering tissue [122]. Under these assumptions, the detected PA signal can be represented using
the following equation.

p(f) — (rq)o(zﬂ’)/ua je—,u(,ct (38)

where, c is the speed of sound. The proposed method calculates the spectral ratio between Fourier

transform of detected PA signals collected at two wavelengths A1 and 42 as shown below.

PG @) q"’(“J (Vi) +¢

[P(4. @) o) \/( 0, w)z —

The system, acoustic attenuation related, and PA efficiency terms get cancelled during the ratio

(3.9)

calculation. Then, curve fitting was used to estimate the unknown terms in equation (3.9) — ua(41),
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Dy (4)

ta(42) and surface fluence ratio (
D, (4,)

). This method was used for optical-resolution

photoacoustic microscopy (OR-PAM) therefore may not be a suitable choice for deep tissue sO2
estimation [119]. In a recent study, Zhou et al. [121] employed the diffusion dipole model to
represent optical transport through tissue and reported improvement over 1-D Beer’s law based
modelling [114]. Monte Carlo (MC) modelling of optical transport through tissue has also been
reported in the literature for fluence distribution estimation [123]. MC methods solve the radiative
transfer equation (RTE) by simulating photon packets undergoing gradual absorption and random
scattering during propagation through a medium based on the local optical properties [26, 124].
Bu et al. reported MC model based fluence compensation for a model based PA tomography
reconstruction method [125]. Recently, Bulsink er al. used MC model and tissue structural
information derived from ultrasound images to perform fluence correction for LED-based sO2
estimation system [126]. Other reports on the use of analytical and MC model for fluence
correction are described in the following papers [121, 127, 128]. All of these methods reported
improvement over conventional linear spectral unmixing without fluence correction however their
accuracy would be dependent on accurate modelling of the tissue geometry and unknown optical

and acoustic properties thus making in vivo applicability challenging [119].

3.3.2.2 Iterative Error Minimization Approaches

Iterative error minimization based methods first formulate a forward image generation
model utilizing prior knowledge of underlying physics and assumed optical properties [26, 129].
Then, modelling parameters (e.g., total hemoglobin concentration, local fluence) are iteratively
adjusted to minimize the discrepancy between the model generated and experimentally collected

PA data. The model parameters minimizing the error are considered as the estimated parameters
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for the experimentally collected image [129]. Laufer et al. reported on a two-step model-based
inversion scheme where time independent diffusion approximation (DA) of the RTE was utilized
to estimate the local fluence distribution [130]. For a specific simulation phantom design (a
capillary bed), a mathematical forward model is used to estimate the expected PA signal using an
acoustic propagation model with the input initial pressure distribution derived using DA-RTE.
Then, an inversion step compares the measured PA and model estimated PA data to derive the
final chromophore concentration. Naser et al. also proposed a similar local fluence correction
method based on finite element methods (FEM) and SNR regularization [131]. The method
assumes spatially-invariant, wavelength reduced scattering coefficient (us") following power law
as below.

. i Y
i (a,b)=a [—500 (nm)j (3.10)

where, regularization was imposed by setting coefficient a and b to be same for all voxels in an
imaging frame. First, a forward model estimates local fluence numerically using diffusion
approximation of RTE with tissue-surface fluence, us” and initial hemoglobin concentrations as an
input [132]. Normalized fluence values for all possible tissue-surface locations were generated by
raster scanning a 1-mm diameter ball placed on the surface of gelatin stand-off to empirically
determine the tissue-surface fluence. The optical inverse problem was solved using a recursive
approach where a /1-norm objective function was evaluated using the measured PA data and model
estimated PA data iteratively for different values of scattering coefficients (a and b). Local fluence
estimates were also updated using forward model during the iteration. Final estimated relative
hemoglobin concentrations correspond to the value of @ and b where the /1-norm objective function

had the global minimum. The optimization region was limited to a SNR mask generated by
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comparing measured PA data to an experimentally determined noise distribution thus achieving

SNR regularization.

In a recent paper, Buchmann et al. proposed a MC model based iterative error minimization
method for 3-D PA tomography [133]. Authors employed the MC model to estimate the local
fluence in their forward model and designed a least squares error functional to compare the model
generated results against experimental data. The proposed method assumed that scattering
coefficient remained constant to ensure the validity of their inversion scheme. However, the
algorithm validation was limited to a tissue phantom. Additional reports on model-based inversion
methods and iterative error minimization for PA fluence correction can be found here [134-137].
These set of algorithms demonstrated encouraging results in simulation experiments however
translation of these methods to in vivo experimental setups still remain challenging for several
reasons. For example, the accuracy of these methods largely depend on the accuracy of the forward
model in formulating real image acquisition pathways which will be particularly difficult to
achieve in an in vivo setup [129]. To address the issue of sensitivity to modelling geometry, a
recent publication (January 2021) from Jeng et al. [113] proposed an interleaved photoacoustic
and ultrasound system with diffusion dipole model based real-time fluence correction. In contrast
to conventional broad-beam illumination, authors proposed a fast-swept scanning approach by
creating partial PA images through illuminating tissue with 20 narrow laser beams by sequentially
firing 20 individual fibers integrated on the US transducer. To perform fluence correction, a
diffusion dipole fluence model [23] for i" fiber, defined in terms of unknown effective attenuation

co-efficient (uer) and reduced scattering coefficient (us”) and denoted as @,(7) with 7 being the
distance from the i fiber to the pixel of interest was used. Note, ®,(7) was calculated for all fibers

(Ny=20) at a particular wavelength. Then, a non-linear optimization function is defined to estimate
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uer and us” by minimizing the error between measured PA signals ®,(7) for each fiber (sampled

from the partial PA images) and model prediction using following equation.

Nf (i) — _q) -
;,e_ff,gg:argm;nz( ,(r)N () (3.11)
Hefy > Hs i=1 f

A brute-force search was used to solve equation (3.11). Authors validated the fluence correction
method in phantom and ex vivo experiments [138] and demonstrated the application of the
developed system in the context of PA based needle guidance. In this method, the working
assumption is that the PA signal variation at a pixel location among partial PA images is due to
the fluence variation only as light has to travel different distances to that location for different fiber
locations. The fast sweep scanning method allowed the use of compact light weight lasers,

potentially opening up the opportunities for successful clinical translation.

3.3.2.3 Adjunct Modality Assisted Approaches

Adjunct modality assisted approaches combine additional independent tissue optical
measurement systems (e.g., diffuse optical tomography (DOT) [139]) with a PAI system to
perform fluence correction. For example, Daoudi et al [140] and Altaf ef al. [141] utilized acousto-
optics to estimate fluence compensated PA signals for absolute blood oxygen saturation
measurement. Acousto-optics (AO) refers to a technique of modulation of optical phase at the
focal point of a focused ultrasound beam [142]. The modulation is caused by local density variation
induced by the focused US wave inside a medium [142]. Daoudi et al [140] and Altaf et al. [141]
proposed a scheme where a point of interest (point 2) located in a turbid medium is illuminated
sequentially from two points (point 1 and 3) on the tissue surface and related the AO measurement

to PA measurements using the following equation.
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A A
(= [P Pal) )’Z;f)( ) (3.12)

where, a2 denotes the local absorption coefficient at point 2, p,, and p,, indicate detected PA

signals originated from point 2 after sequential illumination from point 1 and 3 respectively. The
AO signal is denoted as P;:23 where illumination source was point 1, US beam was focused at
point 2 and measurement was done at point 3. P; 123 was calculated by quantifying speckle contrast
changes [143]. By performing dual-wavelength imaging, simple linear spectral unmixing can be
used to estimate the absolute sO2. The proposed method may be well suited for imaging ex-vivo
samples but may not be applicable in vivo due to its specific requirement of dual-illumination and
US focusing. This method might also increase acquisition times as the US focal point must be
translated sequentially for AO at different depths for achieving deep tissue imaging. DOT
enhanced fluence correction has also been proposed by Bauer et a/ [144]. DOT illuminates tissue
with an array of light sources and utilizes a set of detectors to measure light leaving the tissue
[145]. Then, a model of light propagation is utilized to estimate low resolution 2-D images of
optical and scattering coefficients [145]. Authors utilized a hybrid PA-DOT [146] system and
extracted the fluence information from the DOT system to correct the non-uniform fluence related
errors in raw PA measurements [144]. Other reports on the use of DOT for fluence correction can
be found here [139, 147, 148]. Additional examples of adjunct modality based fluence correction
methods include utilization of multiple illumination sources [149] and use of reference optical
contrast agents [150]. These methods provide better performance compared to raw PA
measurements for oxygen saturation measurement at increased system cost due to additional

hardware requirements [121].
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3.3.2.4 Data driven Approaches

Data driven approaches attempt to reduce or eliminate apriori or assumed knowledge
requirement of analytical or iterative error-minimization methods by performing fluence
correction using derived information from the detected PA signals. For example, Tzoumas et al.
reported eigenspectral multispectral optoacoustic tomography (eMSOT) with a hypothesis that any
unknown fluence distribution can be represented using an affine function of few base spectra
irrespective of depth or distribution of tissue optical properties [118]. To estimate the base spectra,
principal component analysis (PCA) was applied on 1470 simulated optical fluence distributions
considering uniform oxygenation states of hemoglobin. PCA resulted in four significant spectra —
a mean fluence spectrum ®m(A) and three eigen spectra: @1(A), ®2(A) and @3(A) which were used

to define the fluence spectrum of an arbitrary position r using following equation.

D(r, 1) =D, (r, )+ m®, (r, )+ m,®,(r, 1) + m®,(r, 1) (3.13)

where, mi, mz and ms were Eigen fluence scaler parameters. A constrained optimization problem
was formulated to simultaneously estimate hemoglobin concentration and Eigen fluence
parameters requiring data collection for at least 5 wavelengths. eMSOT demonstrated significant
error reduction over linear spectral unmixing without fluence correction. However,
generalizability of the algorithm in vivo would require training data synthesis using more
complicated physiological models and diverse chromophore concentrations. Recently, Olefir et al.

improved the robustness of eMSOT technique to noisy PA data using a Bayesian approach [151].

Dynamic variation of sO2 levels were utilized to account for non-uniform fluence
distributions by Xia et al. [152]. The working assumption was that during single wavelength
imaging under dynamic variation of sO2 levels, fluence does not vary if the sO2 change is small

and localized. Authors have validated this method in simulation, phantom and in vivo experiments
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with controlled variation of oxygenation states. They also reported performance degradation under
large change of sO2. Quantification of sO2 using with this method under tissue motion may also

be challenging.

Fadhel et al. recently proposed a fluence correction method where fluence profiles of
multiwavelength PA images are matched to the fluence at a reference wavelength [153, 154]. The
proposed method first calculates the power spectral ratio between PA data collected at two

different wavelengths as shown below.

E@.2) _ plo)H(@)a@) _ O@,2)u,@,4) G4
E@.4)  po.2)H@a(@)  O@,4)u,(@,4)

where, E(w,A) is the power spectrum at wavelength 4, H(w) and a(w) indicate the impact of

system dependent and attenuation related parameters respectively. Authors observed that fluence
impacts the frequency content of spectral ratio while absorption coefficient impacts the amplitude.
Based on this observation, a frequency filter is designed to perform the fluence matching using the

spectral slope estimated within the bandwidth of the transducer.

3.3.2.5 Machine learning assisted oxygen saturation estimation

Machine learning assisted methods reported in literature utilize synthetic data to train a
generic model to either quantify absolute sO2 % or estimate local optical properties [129]. For
example, classical random forest regression was applied for quantitative PAI by Kirchner et al.
[155]. To circumvent the requirement of a large simulation dataset for training, they proposed the
use of fluence contribution maps (FIC) to generate context images (CI) as input feature vectors for
machine learning model training. For each voxel in an image, CI encodes information about the

input PA signals and local fluence due to a particular scanning geometry derived from the FIC.
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Therefore, a single simulation results in large number of feature vectors thus reducing the necessity
of the simulation of a large number of training images. Their in silico results demonstrated better
performance than conventional linear spectral unmixing. Recently, several groups have reported
on the use of deep learning for performing qPAI. A summary of the methods reviewed in this
chapter is presented in Table 3.3. Cai et al. trained a residual U-net (Res U-net) [97] using 2048
synthetic images generated using a diffusion model of light propagation [156] and tested the model
in a simulation setting. Yang et al. also proposed a variant of an U-Net namely Deep Residual and
Recurrent U-Net (DR2 U-Net) [157] for solving a similar problem [158]. For both methods,
training was done using simulated initial pressure distributions which is a major limitation because
it assumes that the acoustic inverse problem is solved perfectly which is not the case in pre-clinical
and clinical applications. However, the proposed methods provide superior performance when
compared to the conventional LSU method. Chen at al. demonstrated the use of U-Net for
recovering 2-D optical absorption coefficient maps using a single wavelength PA image as input
[159]. Training data was sampled using both simulated and phantom experiments. The results
showed excellent agreement with ground truth however the simplicity of the training and testing
dataset make generalizability of this method unclear. Luke et al. proposed O-Net combining two
U-Nets in parallel to achieve simultaneous vessel segmentation and sO2 % quantification [160].
In contrast to the studies reported above, Yang et al. took the acoustic inverse problem into account
and trained an Encoder, Decoder and Aggregator Neural Network (EDA-Net) using PA images
generated by optical (MC Model) and acoustic simulation (k-Wave [96]). Realistic training
datasets were generated based on 3-D breast phantom. Bench et al. further closed the gap between
simulation and in vivo conditions by generating training 3-D multi-wavelength PA images from

CT images of human lung vessels in a multi-layered skin-tissue model [129]. Acoustic inversion
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for linear array detectors were also incorporated thus training was done with PA image having
limited-view artifacts. An convolutional encoder-decoder network with skip connection (EDS-
Net) was trained for simultaneous vessel segmentation and sO2 % quantification like O-Net [129].
The methods discussed above trained the deep learning models based on spatial information of
fluence from images [108]. In contrast, Grohl ef al. proposed an alternative approach for sO2 %
quantification by training models using multi-spectral data per pixel [161]. The proposed method
was termed Learned Spectral Decoloring where they trained a fully connected feed-forward neural
network using simulated initial pressure distributions. Their work reported the use of deep learning
assisted sO2 % quantification in vivo for the first time. The key idea behind the method was the
generation of training datasets that closely resemble phantom and in vivo situations. Authors made
their data and code open source which can be found here:

https://zenodo.org/record/4304359#.Y1ePhrVKg54. Other reports on machine learning assisted

sO2 % quantification can be found here [162, 163]. Even though results of machine learning
assisted sO2 % quantification is very encouraging in simulation studies, broader validation studies
in vitro or in vivo are still required to understand the generalizability of these methods [113].

Further details can be found in the review articles published during 2020 — 2021 [105-109].
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Table 3.3 Summary of Papers on Deep learning assisted sO2 (%) quantification

Paper Deep Learning Training Testing Application
Architecture | Sample Size | Sample Size
Caietal. Res U-Net 2048 256 In silico sO2% estimation and
[156] contrast agent concentration
quantification
Yang et al. | DR2 U-Net 2560 320 Simulated artery and veins
[158]
Chen et al. | U-Net 2890 361 Simulation and phantom
[159]
Luke et al. | O-Net 3000 1000 In silico sO2% estimation and
[160] vessel segmentation
Yang et al. | EDA-Net 4880 1440 Simulated breast phantom
[164]
Bench et | EDS-Net 500 40 Simulated vessels
al.
[129]
Grohl et al. | Feed-forward 75% of total | 20 % of total | In silico, phantom and in vivo
[161] neural network dataset* dataset (porcine brain and human
forearm data)
*Total dataset size was not explicitly mentioned in the paper
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Chapter 4

Bayesian Regularization for Cardiac Elastography

This chapter! focuses on examining the feasibility of applying Bayesian regularization with
a hierarchical block matching algorithm for cardiac elastography [1-4]. Cardiac elastography (CE)
is an ultrasound radio-frequency (RF) echo-signal based speckle tracking technique for cardiac
strain imaging (CSI). Bayesian regularization has been previously implemented by our group [5]
for a hierarchical block matching algorithm for carotid elastography [6]. Application of the
proposed method provided clinically significant results for in vivo plaque imaging [7-9]. Our group
previously reported the use of a hierarchical block matching algorithm for CE [10-13]. However,

Bayesian regularization was not applied and validated for CE.

This chapter reports on three main contributions. First, a complete strain estimation
pipeline for incorporating Bayesian regularization-based hierarchical block matching algorithm,
Lagrangian description of motion and myocardial polar strain estimation is presented. Second, we
present results with a canine cardiac deformation model [12] and an in vivo healthy murine model
to evaluate the performance of the hierarchical block matching algorithm with and without
Bayesian regularization. Rigorous quantitative analysis demonstrates that Bayesian regularization
improves the quality of strain imaging for CE. Third, we present results from an initial comparison
study of the proposed strain estimation pipeline against a commercially available CSI software to

demonstrate its in vivo applicability.

'R. Al Mukaddim, N. H. Meshram, C. C. Mitchell, and T. Varghese, “Hierarchical Motion Estimation With Bayesian
Regularization in Cardiac Elastography: Simulation and in vivo Validation.” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 66, no. 11, pp. 1708 — 1722 (2019) PMCID: PMC6855404



91

4.1 Cardiac Strain Estimation Framework with Bayesian Regularized Hierarchical
Motion Estimation

4.1.1 Inter-frame Displacement Estimation

In this study, a multi-level block matching algorithm with Bayesian regularization [5] was
used for displacement tracking of both simulation and in vivo RF data. Inter-frame displacement
estimation was performed over a cardiac cycle starting from end-diastolic (ED) phase. We use the
term pre-deformation and post-deformation image to describe the current and the next frame used
for inter-frame displacement estimation, respectively. Initially, both pre-deformation and post-
deformation RF data were up-sampled in the lateral direction (perpendicular to beam propagation
direction) by a factor of two using a windowed Sinc interpolator to improve lateral displacement
estimates [14-16]. Following upsampling, a coarse to fine pyramid with three levels were
constructed for performing an iterative coarse-to-fine motion estimation [5, 11, 13, 17, 18].

Pyramid construction was performed by applying decimation factors presented in Table 4.1 to
original RF data with Gaussian smoothening having a variance of (7’()2 where d, denotes the
decimation factor.

Following pyramid construction, pre and post-deformation data were divided into a
rectangular grid of 2-D kernels. 2-D NCC [18] calculation was performed to compare a kernel
between the pre to post-deformation RF frame. NCC calculation was restricted within an
empirically chosen search region in the post-deformation frame. This process results in a 2-D
similarity metric for each estimation location of the rectangular grid. Parameters employed for 2-
D NCC are shown in Table 4.1. Progressively decreasing block sizes were used to improve spatial

resolution of the estimated displacement vectors.
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Table 4.1 Motion Estimation Algorithm Processing Parameters

Parameter Value

Hierarchical Block-matching parameters

Levels in multi-resolution pyramid 3

Lateral interpolation factor 2

Axial decimation factors [3,2,1]
Kernel overlaps [Axial, Lateral*] [10%, 90%]
Lateral decimation factors [2,1,1]
Axial kernel length (Wavelengths) [8A, 3A, 1A]
Lateral kernel length (A-lines) [15,12,10]
Axial search range (Wavelengths) [3A, 2, 1A]
Lateral search range (A-lines) [5,5,3]
Strain filtering threshold [2.5%, 2.5%]

[axial strain, lateral strain]

Bayesian regularization specific parameters

Axial strain regularization sigma 0.150
Lateral strain regularization sigma 0.075
Number of iterations** 1/3

*Lateral overlap of 90% corresponds to lateral window shift of 3 A-lines
**Number of iterations was chosen empirically based on the application. For FEA simulation
study, one iteration provided good results while in vivo study required three iterations

To improve motion estimation accuracy, each similarity metric was regularized using a
recursive Bayesian regularization algorithm [5, 6]. In brief, the algorithm tries to remove noisy
NCC estimates from a given similarity metric using guidance from left, right, top and bottom
neighbors of the similarity matrices. This is achieved by formulating regularization as a maximum
a posteriori estimation problem in a Bayesian framework. The algorithm requires a parameter
referred to as strain regularization sigma (SRS), which is related to the maximum expected strain
in both axial and lateral directions. SRS parameter values for axial and lateral directions were
chosen empirically and listed in Table 4.1. This process results in regularized similarity metrics,

which were used in the next stage to generate displacement vectors.
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For subsample displacement estimation, parabolic interpolation was used for level 1 to
level 2 while the final level employed Sinc interpolation to achieve unbiased estimation [6, 15].
Subsample estimation using 2-D windowed Sinc interpolation was performed using a multilevel
global peak finder scheme [19]. A central-difference gradient was used to estimate strain from
corresponding displacement vectors for replacing erroneous displacement estimates due to peak-
hopping errors. Inter frame displacement vectors generating strain magnitude > 2.5% were
replaced using linear interpolation from neighboring displacement estimates with strain
magnitudes less than 2.5%. This is done to inhibit the propagation of peak-hopping errors which
present as irrationally high strains [6]. After obtaining displacement vectors and strains at the
current level, signal re-correlation using matching block alignment and local temporal stretching
is performed for the next level. Signal alignment and stretching improves displacement and strain

accuracy by reducing signal decorrelation within the matching block [20-23].

To achieve matching block alignment in our multi-level framework, estimated
displacement vectors at each level are used to translate the center of post-deformation matching
block in the next higher level. Next, in the align and stretch stage a 9 point least squares fit is used
to estimate strain. Using the estimated strain, we stretch the post-deformation block of next level

using a 2-D windowed Sinc interpolation for resampling and using a scale factor: S, =1+e, where
e, denotes the normal strain in that direction. This estimation process is repeated until we reach

the final level, i.e., level three in this study. At the final level, we perform a 2-D median filtering
of estimated displacement vectors with a [5 pixels % 5 pixels] window to remove any outliers. The

displacement estimation procedure is summarized in the flowchart in Figure 4.1.
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Figure 4.1 Flowchart depicting the various steps involved in the multi-level block matching displacement
estimation algorithm with Bayesian regularization. The dotted line indicates that the estimated

displacement and strain from the current level guides the search region initialization in the next level.

4.1.2 Lagrangian Description of Motion for Displacement and Polar Strain
Estimation

To determine cumulative displacements and strains occurring over a cardiac cycle, inter-
frame displacements are integrated over time based on a Lagrangian description of motion. This
accumulation process is not trivial as the myocardium changes its location over the cardiac cycle.
An ED frame is considered to be the reference frame. Location of each pixel in this frame is defined

as the reference state. For every other frame, these locations are updated by translation of axial
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and lateral coordinates of pixel locations using the estimated inter-frame axial and lateral
displacements respectively. Displacement values derived from updated locations are registered
back to reference initial location in the ED frame and accumulated. Pixel registration ensures that
the cumulative displacement represents motion along the same tissue geometry [24]. In this way,
incremental inter-frame displacements are integrated over a cardiac cycle to obtain cumulative
displacement over the cycle. For each individual point, baseline drift is compensated by
performing a linear de-trending of temporal displacement and strain curves with the constraint that

curves should return to zero after a cardiac cycle [25].

We perform cumulated strain estimation using the resulting cumulated displacement maps.

First, the displacement gradient tensor, G is calculated, defined as:

Ou,  Ouy
ox Oy

G = 4.1
ou, Ou, @1
ox Oy

where, ux and uy denotes estimated displacement in lateral and axial direction respectively. G is
obtained by differentiating lateral and axial displacement maps using least squares estimator [26]
with 0.2 mm and 1 mm kernels respectively. To account for the large myocardial deformation
(~30-40%) that occurs from ED to end-systole (ES), an in-plane Lagrangian finite strain tensor, E

[27-29] is used. E is formulated using displacement gradient tensor, G as follows [30]:
1 T T
E=§(G+G +G'G) (4.2)

The diagonal components of E denoted by exx and ey, are the cumulative lateral and axial strains

respectively.
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The strain measure, E is coordinate dependent as it involves spatial derivatives in the
orthogonal coordinate system used for ultrasound imaging [27, 29]. This poses a challenge in
interpretation of these strains in a cardiac coordinate system [31]. In the cardiac coordinate system
for apical and parasternal long axis views, we are interested in strains along radial and longitudinal

directions, which are defined as follows [28, 31]:

e Radial direction is perpendicular to the endocardial border and provides positive radial
strain during contraction. Positive and negative radial strain illustrates thickening and
thinning of myocardial walls respectively [32].

e Longitudinal direction is tangential to the endocardial border and provides negative
longitudinal strain during contraction. Positive and negative longitudinal strain illustrates

lengthening and shortening of the ventricle respectively [32].

To be consistent with the interpretation of strains in the cardiac coordinate system, radial

and longitudinal strains are derived from E using the coordinate transformation [27]:

E’ =MEM’ (4.3)
where, M is a rotation matrix defined as:
cosf sind
M= ) (4.4)
—sind cos@

where, the superscript r/denotes strain in radial and longitudinal direction respectively in the
cardiac coordinate system. The diagonal components of E” denoted by e, and ey are radial and
longitudinal strains respectively. The angle € used in equation (4.4) is calculated locally along a
sampling grid encompassing the entire myocardium. The heart is segmented manually in the ED

frame using the B-mode image. This process results in a binary label image. We generate a mesh
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of points using this binary label image containing 600 points longitudinally (tangentially) and 40
points radially to the myocardial wall resulting into 24,000 points of interest in the entire
myocardium. For a sample point with coordinate value (x», y»), the angle 6 was calculated by
considering a neighborhood of ten sample points around it along the longitudinal direction and
using the following equation for angle of a normal to a line.

o o (uj @5)
yn—S - yn+5

This angle denotes the radial direction for the point located at (xu,yx).

4.2 Experimental Protocol for Validating Proposed CSI Framework

4.2.1 Finite Element Analysis (FEA) Model for Cardiac Elastography

A 3-D FEA model of a healthy canine heart [12] was employed in this study to validate the
performance of the proposed strain estimation framework. The original 3-D deformation model of
canine heart was developed by the Cardiac Mechanics Research Group at the University of
California San Diego (UCSD) [33]. This experimentally validated model allowed simulation of
the complex left ventricular mechanics accurately providing a realistic validation setup for cardiac
motion estimation algorithms [27, 34]. The original model contained movement of 1296 points
located in the canine heart wall acquired at a temporal sampling rate of 250 Hz. Each time point
of these movements will correspond to one frame of RF data in the simulation study. These
positional deformation information were adapted for ultrasound simulation by a reconstructing a
3-D continuous smooth surface of the canine heart model [12]. Finally, to ensure Rayleigh
scattering, over 1 x 10° scatterers were randomly positioned in the myocardium of the cardiac

model. From this 3-D model, a 2-D plane was selected to simulate a parasternal long axis (PLAX)
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ultrasonic imaging view. To obtain independent strain estimation we utilized the stochastic nature

of scatterer generation, generating five independent speckle realizations of the FEA simulation.

A frequency domain ultrasound simulation program [35] was utilized to generate the RF
data that incorporated realistic 3-D ultrasound propagation on FEA generated cardiac deformations
seeded with a randomly generated scatterer distribution. This simulation approach is used due to
its greater flexibility in modelling frequency-dependent ultrasonic imaging properties such as
attenuation, dispersion and backscattering over time domain simulation models. The 1-D linear
array modeled, consisted of 0.2x10 mm elements with a pitch of 0.2 mm. Conventional Delay and
Sum (DAS) beamforming with 128 consecutive elements were utilized to form each A-line. The
incident pulse was modeled to be Gaussian shaped with 8 MHz center frequency and 80%
bandwidth. The speed of sound and attenuation coefficient were set to 1540 m/s and 0.5 dB/cm-
MHz respectively. Each simulated ultrasound image had an 80x100 mm? field of view. The
ultrasound simulation program related parameters are summarized in Table 4.2. Three regions of
interests (ROIs) were placed in anterior, apical and posterior walls of myocardium to quantify the
simulated sonographic signal-to-noise ratio (SNRs). SNRs calculation was performed using a
frequency domain approach described in [36]. The calculated SNRs for over five scatterer
realizations at end-systole frame were 30.38 + 5.026 dB, 29.34 + 5.20 dB and 33.76 dB + 7.64 dB
respectively for anterior, apical and posterior wall. Simulation of electronic noise was not

performed in this study.



Table 4.2 FEA Simulation Program Parameters

99

Parameter

Value

Probe specific parameters

Transducer type

Number of active elements

Single element geometry [width x length]

1-D linear array
128

[0.2 mm % 10 mm]

Pitch 0.2 mm
Aperture size 25.6 mm
Focusing mode Single
Transmit focus location 40 mm
F-number (Dynamic receive focusing) 1
Number of A-lines 500

Parameters for RF signal reconstruction from
scatter frequency response

Incident pulse

Center frequency

Gaussian-shaped
8 MHz

Pulse bandwidth 80%
Attenuation coefficient 0.5 dB/cm-MHz
Assumed speed of sound 1540.0 m/s
Beamforming method Delay and sum
RF Sampling frequency 78.84 MHz
Lateral sampling spacing 0.2 mm

Frame rate of acquisition 250 Hz

4.2.2 In vivo Experimental Protocol and Image Acquisition

To validate in vivo use of the proposed framework, a 12 weeks old male BALB/CJ mouse
obtained from Jackson Labs (ME, USA) was scanned using a Vevo 2100 LAZR imaging system
(FUJIFILM VisualSonics, Inc., Toronto, Canada). All in vivo procedures were approved by the
Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin-Madison.
During the imaging session, the mouse was anesthetized using 1.5% isoflurane with a constant
flow of oxygen. Hair was removed from the chest region using depilatory cream. Mouse was

placed in the supine position on a heated imaging platform with continuous monitoring of
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physiological parameters. High frequency ultrasound imaging was performed using a MS 550D
transducer (broadband frequency range of 22— 55 MHz) operating at a center frequency of 40
MHz. 2-D RF data were collected in parasternal long axis (PLAX) view. The field of view was
11x12.08 mm? with a sampling frequency of 512 MHz resulting into acquisition of 220 A-lines.
Single transmit focusing with the focal depth set at 7 mm from the face of the transducer was used.
Imaging frame rate was 235 Hz. 2-D gain (25dB) and time gain compensation (TGC) were adjusted
carefully to acquire RF data with optimal signal-to-noise ratio (SNR) for CE. We acquired 1000

frames per imaging plane, which was stored for off-line analysis.

6 4 2 0 2 4 6
Width (mm)

Figure 4.2 Definition of cardiac segments for studying regional variation in displacement and strain. Cardiac
segments defined in the PLAX view are: (1) Anterior Base, (2) Anterior Mid, (3) Anterior Apex, (4)

Posterior Apex, (5) Posterior Mid and (6) Posterior Base.

4.2.3 Myocardial Region Definition for Segmental Analysis

In this study, we performed segmental analysis of estimated displacement and strains over
the entire myocardial wall using American Heart Association (AHA) recommended standard six
segment model (employed for global 16-segment model) [37]. Figure 4.2 shows the definition of
segments employed for the PLAX view. Segmental analysis was achieved easily as we have

already warped the cumulative displacement and strain maps for the ED geometry during
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accumulation. Six segments were defined such that all segments have equal length in the ED frame.
All the results reported in this work denote displacement and strain measures averaged over the

entire cardiac walls on a segment basis.

4.2.4 Comparative Performance Analysis

We evaluated the performance of our hierarchical block matching algorithm using NCC
with and without Bayesian regularization. Displacement and strain estimation accuracy using the
FEA simulation model was compared over n=5 randomly generated independent collection of
scatterers. True inter-frame displacement estimates were derived from the FEA canine heart model
and integrated over time to obtain cumulative true displacement and strain. True and estimated
temporal displacement and strain curves for six segments were extracted and compared
qualitatively for both approaches. Radial and longitudinal strains were compared in terms of two
error metrics, namely - strain error (%) at ES and total temporal relative (TTR) strain error (%).
Strain error (%) at ES [38] and total temporal relative strain error (%) were computed using the

following equations:

Strain Error (%) at ES =

P
Z|ES—TS|
= %100 (4.6)

=
> ITS|
i=1

Total Temporal Relative Strain Error (%) =

T

D IES ()-TS ()]
= x100 4.7)

DTS (1)
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where ES and TS denote estimated and true strain respectively, ES (z) and TS (#) denote average
of estimated and true strain values respectively at time ¢, P is the number of points in the segment
of interest and 7 is the number of frames in the cardiac cycle of interest. Strain error (%) at ES
quantified the deviation of estimated from ideal FEA strain image at ES while total temporal
relative strain error (%) quantified the deviation of estimated from ideal temporal strain curve.

Statistical significance was evaluated using paired #-fest with p values less than 0.001.

To demonstrate in vivo feasibility, our proposed approach was compared to a commercially
available strain estimation software, VevoStrain on the Vevo 2100 LAZR imaging system
(FUJIFILM VisualSonics, Inc., Toronto, Canada) for a healthy murine model. Suitable B-mode
cine loop containing a cardiac cycle of deformation was loaded into VevoStrain for analysis based
on clear visualization of myocardial borders and absence of respiratory artifacts. After endocardial
and epicardial borders were delineated in the ED frame, the software automatically tracks
myocardial wall deformations using speckle tracking echocardiography. Manual correction of wall
tracings was performed to improve quality of tracking and obtain segmental strain curves.
VevoStrain reports longitudinal strain curves for epicardial and endocardial wall separately and
radial strain curves for the entire myocardial wall. Therefore, endo and epicardial strain curves
were averaged along the longitudinal direction. Finally, global radial and longitudinal strain curves
were calculated by averaging segmental strain curves for comparison to our approach on the same

cine loop. For the in vivo study, the elastographic SNR (SNRe) at ES was computed as:
SNR, [in decibels] = 20log,, (ﬁj (4.8)
o

where, u and ¢ denote the mean and standard deviation of strain (radial/longitudinal) image

respectively at ES.
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4.3 Findings from FEA Simulation Studies

Axial displacement maps at ES from FEA model, along with those estimated using our
multi-level NCC without and with Bayesian regularization are shown in Figure 4.3 (a) — (¢)
respectively. We refer to the approach without regularization as “NCC” and approach with
regularization as “Bayesian" for simplicity in the rest of this chapter. Positive axial displacements
shown in red color shades indicate motion away from the transducer and negative axial
displacements in blue color shades indicate motion towards the transducer. Figure 4.3 (b) and (c),
we observe good agreement between FEA and estimated axial displacements with both methods.
Note that in the apical region indicated using arrows in Figure 4.3 (b) and (c), we observe a
smoother transition from positive to negative displacement values with regularization when
compared to NCC without regularization. Figure 4.3 (d) — (f) represent lateral displacement maps
at ES for FEA, NCC and Bayesian respectively. Positive lateral displacements in red color indicate
motion to the right and negative lateral displacements in blue color indicate motion to the left. In
the displacement transition regions (shown using arrows in Figure 4.3 (e) and (f)), application of
Bayesian regularization provided smoother transitions when compared to the NCC approach.
Moreover, in the unregularized lateral displacement image (Figure 4.3 (e)), we observe
heterogeneity in estimated lateral displacement vectors in the apical region (seen as white bands
and indicated using an arrow) and not seen in the FEA result in Figure 4.3 (d). These artifacts
were also absent with Bayesian regularization, which provides smooth apical lateral displacement

estimation.

Figure 4.4 summarizes the comparison between ES radial and longitudinal strains between
the FEA model and estimation results. ES radial strain images from FEA, NCC and Bayesian are

shown in Figure 4.4 (a) — (c¢) respectively. Radial thickening of the myocardial wall was observed
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from positive radial strain at ES in the FEA model. NCC provides reliable radial strain estimates
in anterior and posterior walls as shown in Figure 4.4 (b). However erroneous negative radial strain
values were observed in significant portions of the apical region (indicated using arrows). On the
other hand, the radial strain image with Bayesian regularization (Figure 4.4 (d)) provided reliable
strain estimation around the myocardium with significantly lower number of negative radial strain
values in the apical region when compared to NCC. Figure 4.4 (d) — (f) represent longitudinal
strain images for FEA, NCC and Bayesian respectively. Myocardial wall shortening was observed
from negative longitudinal strain values in FEA model. Like radial strain, NCC provides reliable
longitudinal strain estimation in the anterior and posterior walls. However, the method was prone
to errors in the apical region showing positive longitudinal strain values in significant portions of
the apex (indicated using arrows). In Figure 4.4 (f), note the significant improvement in strain
estimation through incorporation of Bayesian regularization in the longitudinal direction. Regions
with highest improvement after regularization are indicated using arrows in Figure 4.4 (d) and (f).
Overall, regularized radial and longitudinal strain images showed better qualitative agreement with

FEA results.

Figure 4.5 (a) presents the segmental and global radial strain error (%) and Figure 4.5 (b)
summarizes the results for longitudinal strain error (%). A logarithmic scale was used for the y-
axes in both figures. Application of Bayesian regularization showed statistically significant error
reduction of 48.88% (p<0.001) globally with highest improvements in anterior and apical regions
(see segments 1-4 in Figure 4.5 (a)). Benefit of Bayesian regularization was also evident in
longitudinal strain error (%) results (Figure 4.5 (b)) with statistically significant global error

reduction of 50.16% (p<0.001). For longitudinal strain, highest reductions in error percentages
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were observed in anterior mid and apical regions (see segments 2-4 in Figure 4.5 (b)). Table 4.3

summarizes quantitative comparison results between NCC and Bayesian at ES.
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Figure 4.3 End-systole accumulated axial displacement maps from (a) FEA model, (b) NCC and (c)

Bayesian. ES accumulated lateral displacement maps from (d) FEA model, (e) NCC and (f)

Bayesian. NCC = no regularization. Bayesian = with regularization.
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Figure 4.4 End-systole radial strain images from (a) FEA model, (b) NCC and (c) Bayesian. End-systole

longitudinal strain images from (d) FEA model, () NCC and (f) Bayesian. NCC = no regularization.

Bayesian = with regularization.
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Figure 4.5 Segmental and global strain errors (%) at end-systole. (a) ES radial strain error (%), (b) ES

longitudinal strain error (%).

Table 4.3 Comparison of End-Systole Strain Error (%) between NCC and Bayesian

Radial Strain Error (%) *

Longitudinal Strain Error (%) **

NCC Bayesian NCC Bayesian
Segment 1 54.63 £3.33 38.51 +£0.86 24.20 +2.09 26.66 +1.76
Segment 2 65.36 = 8.57 28.87 +1.88 55.19 + 15.86 31.22+0.98
Segment 3 217.90+39.97  67.35+5.39 182.53 £38.48  56.18 +3.39
Segment 4 367.03 £28.97  197.45 + 6.63 193.51 £32.16  64.29 £ 6.10
Segment 5 58.40+5.93 48.90 + 8.79 37.96 + 5.88 43.60 + 4.67
Segment 6 39.28 £4.97 36.16 +2.88 24.25+3.53 23.90+3.42
Global 98.57 + 8.50 50.39 + 1.55 77.92 +8.77 38.83 +2.57

*Segments 5 and 6 did not show statistically significant difference with p<0.001.
**Segments 1, 5 and 6 did not show statistically significant difference with p<0.001.

Figure 4.6 and Figure 4.7 summarize results from comparative segmental analysis between

NCC and Bayesian for radial and longitudinal strain estimations respectively. Figure 4.6 (a)-(f)

represent FEA and estimated radial strain curves while Figure 4.7 (a)-(f) represent longitudinal

strain curves for the six segments. FEA radial strain curves (shown in black) demonstrated positive

peak systolic strains in all six segments indicating cumulative radial thickening over a cardiac

cycle. Strain curves estimated using Bayesian regularization (shown in blue) exhibit good
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agreement with FEA results in all six segments with positive peak systolic strains and very small
standard deviations over realizations. On the contrary, unregularized NCC strain curves (shown in
red) showed good agreement with FEA results in the posterior and anterior basal regions (segments
1, 5 and 6) as shown in Figure 4.6 (a), (¢) and (f). But NCC strain curves significantly deviated
from FEA results for the anterior mid and apical regions (segments 2, 3 and 4) with negative peak
systolic strain at segment 4. A similar trend in the estimation performance was observed for the
longitudinal strain curves. Good qualitative agreements between FEA and Bayesian strain curves
were seen in all segments. NCC produced good strain curves in posterior and anterior basal regions
(segments 1, 5 and 6) as shown in Figure 4.7 (a), (e) and (f) but significantly deviated from FEA
results for the anterior mid and apical regions (segments 2, 3 and 4). NCC radial and longitudinal
strain curves also exhibited higher standard deviations over scatterer realizations when compared
to regularized curves. Overall, Bayesian regularization provided better quality strain curves in all
six segments and showed very good qualitative agreement with FEA results when compared to the

unregularized strain curves utilizing only NCC processing.

Figure 4.8 (a) presents the segmental and global TTR radial strain error (%) results and
Figure 4.8 (b) summarizes the TTR longitudinal strain error (%). Statistically significant TTR
radial strain error reduction of 78.38 % (p<0.001) globally was observed with highest
improvements in anterior mid and apical regions (see segments 2-4 in Figure 4.8 (a)) after
incorporating Bayesian regularization. Benefits of Bayesian regularization was also clearly evident
in TTR longitudinal strain error (%) results (Figure 4.8 (b)) with statistically significant global
error reduction of 86.67 % (p<0.00I). For longitudinal strain, highest reductions in error
percentages were observed in the apical region (see segments 3 and 4). Although, we observe a

2.17 x increased error for the anterior basal segment (segment 1) with Bayesian regularization,
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this reduction of performance was negligible when compared to improvements in the apical region
where NCC has 15.44 and 12.36 x TTR longitudinal strain error (%) in the anterior apical and
posterior apical segments respectively. Table 4.4 summarizes the quantitative comparison results

between NCC and Bayesian estimated strain curves.
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Figure 4.6 Regional radial strain curves from (a) Anterior Base, (b) Anterior Mid, (c) Anterior Apex, (d)
Posterior Apex, (e) Posterior Mid and (f) Posterior Base segments respectively. These segments

are referred as segments 1-6 respectively in the discussion.
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Figure 4.7 Regional longitudinal strain curves from (a) Anterior Base, (b) Anterior Mid, (c) Anterior Apex,

(d) Posterior Apex, (e) Posterior Mid and (f) Posterior Base segments respectively.
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Figure 4.8 Segmental and global TTR strain error (%) results. (a) Temporal radial strain error (%), (b)

Temporal longitudinal strain error (%).

Table 4.4 Comparison of Total temporal relative error (TTR %) between NCC and Bayesian

TTR Radial Strain Error (%) * TTR Longitudinal Strain Error (%) **

NCC Bayesian NCC Bayesian
Segment 1 17.40 £4.97 11.81 +1.63 579 +1.22 12.62 +1.87
Segment 2 19.48 £ 5.69 6.09 +£2.85 13.72 £ 8.02 19.28 £ 3.69
Segment 3 199.06 + 63.33 37.23+7.07 325.05+ 153.76 21.05 £5.17
Segment 4 376.90 + 156.96 55.68 £20.35 545.35+144.52 44.11 + 15.80
Segment 5 10.16 £9.02 11.74 £ 3.32 9.81+2.71 10.45 +1.05
Segment 6 21.33+14.03 29.62 £3.41 16.47 £0.72 14.58 £ 0.88
Global 107.39 +19.08 25.36 +£5.93 152.70 +29.69 20.35 +£3.77

*Segments 5 and 6 did not show statistically significant difference with p<0.001.
**Segments 2,5 and 6 did not show statistically significant difference with p<0.001.

4.4 Experimental Findings from the in vivo Murine Model

Figure 4.9 summarizes the displacement estimation results over a cardiac cycle. Figure 4.9
(a) - (c) show axial displacement maps of the entire myocardium at ES estimated using NCC, and
for one iteration and three iterations of Bayesian regularization respectively. A visual analysis of

the results shows that the estimated axial displacement vectors were consistent with the expected
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inward motion of myocardium during contraction. No qualitative difference in estimated axial
displacement maps was observed for NCC and Bayesian regularized images. Figure 4.9 (d) - (f)
illustrate lateral displacement maps at ES estimated using NCC, one iteration and three iterations
of Bayesian respectively. All approaches provided displacement estimations consistent with the
inward myocardial deformation during systole. However, application of Bayesian regularization
(both one and three iterations) resulted in higher lateral motion estimation at the posterior wall

(Figure 4.9 (e) and (f)) when compared to NCC.

In Figure 4.10, we present strain estimation results for the same mouse over a cardiac cycle.
Figure 4.10 (a) - (c) show radial strain images of the entire myocardium at ES estimated using
NCC, and one and three iterations of Bayesian regularization respectively. Radial wall thickening
was observed in the estimated radial strain results with all the methods. But the NCC strain image
exhibited some erroneous negative strain values in the basal segment of the posterior wall. Both
one and three iterations of Bayesian regularization were able to correct these erroneous radial strain
estimates shown using arrows in Figure 4.10 (b) and (c). In general, better quality radial strain
images were obtained using both one and three iterations of regularization (SNRe = 6.89 and 4.76

dB respectively) compared to the NCC only strain image (SNRe = 3.83 dB).

Figure 4.10 (d) - (f) show longitudinal strain images of the entire myocardium at ES
estimated using NCC without regularization, along with one iteration and three iterations of
Bayesian regularization respectively. Longitudinal strain images exhibit ventricular shortening at
ES based on negative strain values. NCC provided incorrect positive longitudinal strain values in
significant portions of anterior wall and basal segment of posterior wall indicated with yellow
arrows in Figure 4.10 (c). With one iteration of Bayesian regularization, improvements in the

posterior and apical walls were observed but the anterior wall still suffered from erroneous positive
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strain values (shown with yellow arrows) as seen in Figure 4.10 (e). Significant improvement of
longitudinal strain estimation was achieved with three iterations of Bayesian regularization (Figure
4.10 (f)). Positive strain estimates in the anterior wall observed with only NCC and one iteration
of regularization were corrected using three iterations of regularization. Notable improvement was
also seen in the basal segment of the posterior wall with more uniform negative strain values.
Highest ES SNRe was achieved with three iterations (SNRe = 4.58 dB) compared to one iteration
and no regularization (SNRe = 1.62 dB and 2.29 dB respectively). A small portion of apical wall
shown in red arrows in Figure 4.10 (e) and (f) indicated positive strain values in the regularized
strain images when compared to the NCC image shown in Figure 4.10 (c). However, this effect

was negligible when compared to the improvement achieved by utilizing Bayesian regularization.

Figure 4.11 presents the results for temporal segmental radial and longitudinal strain curves
estimated with and without regularization. Radial strain curves are shown in Figure 4.11 (a) and
(c). Both approaches were able to resolve radial myocardial wall thickening by exhibiting peak
positive radial strains at ES. But regularized radial strain curves in the posterior apical and basal
segments (segments 4 and 6 respectively) were smoother compared to unregularized curves
indicated using arrows in Figure 4.11 (c). Figure 4.11 (b) and (d) show estimated longitudinal
strain curves. The regularized strain curves showed negative peak systolic longitudinal strain
indicating ventricular shortening during systole. We observed smooth temporal variation of strain
in all six segments over the cardiac cycle as expected from a healthy murine model. But we
observed deterioration of performance without regularization as shown in Figure 4.11 (d). All six
segments resulted in noisier strain curves when compared to the regularized cases. Erroneous
positive longitudinal strain values in segments 2 and 4 as high as 10% was observed towards the

end of the cardiac cycle as indicated using arrows Figure 4.11 (d). Higher variations in peak
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systolic strain values were also observed in Figure 4.11 (d) compared to Bayesian regularized
strain curves in Figure 4.11 (b). Overall, the benefit of Bayesian regularization for estimating

regional longitudinal strain curves is clearly visualized from Figure 4.11 (b) and (d).
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Figure 4.9 ES in vivo axial displacement images (a) without regularization, with (b) one iteration and, (c)
three iterations of Bayesian regularization respectively. Lateral displacement images (d) without

regularization, with (e) one iteration and, (f) three iterations of Bayesian regularization respectively.
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Figure 4.10 ES in vivo radial strain images (a) without regularization, with (b) one iteration and, (c) three
iterations of Bayesian regularization respectively. Longitudinal strain images (d) without

regularization, with (e) one iteration and, (f) three iterations of Bayesian regularization respectively.
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Figure 4.11 In vivo segmental radial and longitudinal strain curves. (a) Radial and (b) Longitudinal strain
curves with Bayesian regularization, (c) Radial and (d) Longitudinal strain curves with no

regularization.

In Figure 4.12, we present comparison results between global strain estimation using regular
NCC, Bayesian regularized NCC and speckle tracking echocardiography using VevoStrain. Figure
4.12 (a) shows radial strain results while Figure 4.12 (b) shows longitudinal strain results. In Figure
4.12 (a), all three methods provided positive peak systole strain magnitudes with close resemblance
in the overall shape indicating radial wall thickening. For longitudinal strain results in Figure 4.12
(b), negative peaks systolic strain values were observed in estimation from all three methods
indicating ventricular shortening at end systole. However, variations of the strain magnitude

among CSI and CE approaches were observed.
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Figure 4.12 Comparison between cardiac strain estimation between cardiac elastography and speckle
tracking echocardiography using VevoStrain (FUJIFILM VisualSonics). (a) Radial strain results and

(b) Longitudinal strain results.

4.5 Computational Complexity Comparison

The algorithm was implemented in MATLAB (Mathworks Inc., MA) using a standard
gateway interface (MEX) in conjunction with C++ and CUDA for cross-platform acceleration.
GPU acceleration of computationally intense sections such as Bayesian Regularization and Sinc
subsample estimation was achieved by writing a mex wrapper for the original CUDA
implementation reported in [19]. All tests were performed on an Intel(R) Xeon(R) CPU E5-2640
v4 at 2.40 GHz, while the CUDA C++ code was run on a Tesla K40c GPU belonging to the Kepler
architecture with compute capability 3.5. In the simulation study with RF data dimensions of
8192x500 samples, the proposed algorithm with and without regularization takes 128.63 and 66.67
secs respectively (mean value) to calculate the displacement map between two consecutive frames
with parameters presented in Table 4.1. In the in vivo study with final RF data dimension of
6016x440 samples, inter-frame displacement estimation execution time with and without

regularization was 91.83 and 55.10 secs respectively.
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4.6 Discussion on the Results from Simulation and in vivo Validation Studies

4.6.1 FEA Simulation Study

In this chapter, we investigated the feasibility of using a multi-level motion estimation

framework using NCC coupled with Bayesian regularization for CE. The primary findings of the

FEA simulation study can be summarized as follows.

1)

2)

3)

4)

Cumulative axial and lateral displacements at ES estimated using both NCC and Bayesian
showed good qualitative agreement with FEA results. But Bayesian regularization provided
smoother displacement estimates (Figure 4.3).

Bayesian regularization improved radial and longitudinal strain images estimated at ES when
compared to NCC alone (Figure 4.4). Highest improvements were observed in apical segments
(segments 3 and 4). Regularized images had fewer negative radial and positive longitudinal
strain values respectively.

Quantitative analysis of ES strain images revealed that ES radial strain error (%) decreases
from 98.57 £ 8.50% without regularization to 50.39 + 1.55 % with regularization (Figure 4.5).
Similarly, the ES longitudinal error reduces from 77.92 + 8.77 % without regularization to
38.83 + 2.57 % with regularization. In both cases, Bayesian regularization resulted in
statistically significant error reduction (p<0.001) globally (Table 4.3).

Bayesian regularization improved the quality of radial and longitudinal temporal strain curves
when compared to NCC (Figure 4.6 and Figure 4.7). In anterior and posterior walls, both
approaches provided strain curves of comparable quality (segments 1,2,5 and 6). NCC alone
fails to estimate strain for apical segments (segments 4 and 5) with higher deviation from FEA

results. Use of Bayesian regularization significantly improved NCC results. Bayesian



119

regularization also provided consistent estimation with lower standard deviation (see error bars
in Figure 4.6 and Figure 4.7).

5) Temporal radial strain error (%) decreased from 107.39 + 19.08 % without regularization to
25.36 £ 5.93 % with regularization (Figure 4.8). Similarly, the temporal longitudinal error
reduces from 152.70 + 29.69 % without regularization to 20.35 + 3.77 % with regularization.
In both cases, Bayesian regularization provided statistically significant error reduction
(»<0.001) globally (Table 4.4).

Bayesian regularization resulted in smoother displacement vectors when compared to
utilizing only NCC (arrows in Figure 4.3). The Bayesian inference process utilizing a regularized
similarity metric (from NCC map) incorporates information from neighboring location as a
likelihood function significantly reduces errors by not allowing for any abrupt changes resulting
in a smooth deformation field. NCC alone can result in some incorrect displacement discontinuities
amplified into noisier strain images by the gradient operation. In addition, the lower spatial
resolution and lack of phase information in lateral direction pose significant difficulty in lateral
motion tracking with NCC [22]. However, within this limitation Bayesian regularization provided

reasonable lateral motion estimation.

We observed the highest improvement in strain estimation from Bayesian regularization
for the apical segments (segments 3 and 4). In these segments radial and longitudinal strains had
significant contributions from shearing components of E and we hypothesize that the smoothly
varying deformation field with regularization contributed to better estimation of these components.
Although we obtained significant improvements some of these errors were not fully corrected
using our approach. Several factors might contribute to this. First, the FEA model used in this

study contains all deformation information (compression, translation, and torsion) derived
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experimentally from a canine heart resulting in a realistic complex 3-D deformation model [12,
33, 34]. Imaging this 3-D deformation using 2-D image planes result in significant “out-of-plane”
motion [39, 40]. This issue can be resolved by extending the proposed approach to 3-D image
planes using 2-D matrix transducers. Secondly, there exists spatial variations in the elasticity of
the myocardial wall (see Figure 4.4 (a) and (d)). Our proposed algorithm attempts to remove noisy
NCC estimates from a given similarity metric using guidance from neighboring values. However,
in some regions most of the initial similarity metric estimates may be noisy resulting in a noisy
final estimate even after regularization. Finally, as mentioned in the discussion on lateral
displacement estimation, lower spatial resolution and lack of phase information also introduces
errors in lateral displacement estimation. Strain estimation is performed on the cumulated
displacement. Any small error in inter-frame displacement estimates is propagated through the
accumulation process. Strain estimation through the gradient operation also has a tendency for
amplification of displacement estimation noise [26]. Thus, any small error in lateral displacement
estimates will cause significantly noisier lateral strain estimates. These issues indicate that motion

estimation in lateral direction requires additional improvement.

In the proposed framework, regularization is performed in an iterative manner and the
performance of the algorithm is dependent on correctly chosen number of iterations. For the FEA
study, we found that a single iteration was sufficient to improve image quality. The number of
iterations should be increased with caution as over-regularization might adversely affect the image
quality resulting into “banding” artifacts due to over smoothening. Figure 4.13 illustrates the effect
of over-regularization on a longitudinal strain image at ES with three iterations of Bayesian

regularization.
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Figure 4.13 Effect of overregularization in strain estimation. End-systole longitudinal images with (a) one
iteration and (b) three iterations of Bayesian regularization. Overregularization resulted into

“banding” artifacts in the estimated strain image.

4.6.2 In vivo Healthy Murine Model

Myocardial contraction in vivo during systole was clearly visible in axial displacement
maps (Figure 4.9 (a) — (¢)), with anterior wall moving away from the transducer (red shades) and
posterior wall moving towards the transducer (blue shades). Estimated lateral displacement maps
from all three methods were consistent with the healthy myocardial contraction during systole
(Figure 4.9 (d) — (f)). Both one and three iterations of Bayesian regularization provided smoother
lateral motion estimations in the apical region. This contributed to improved radial and
longitudinal strains. Physiologically inaccurate radial and longitudinal strain values incurred using
NCC alone were corrected using Bayesian regularization. Optimal estimation performance
required three iterations for the in vivo murine model. This emphasizes the importance of correctly
choosing the number of iterations for Bayesian regularization. In clinical practice, quantitative
estimates of the SNRe could be utilized to determine the optimal number of iterations. In future
work, we will look into maximization of the conditional expected value of the SNRe [10, 41] to

determine the optimal number of iterations.
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In addition, we were able to resolve to clinically relevant details [28] from longitudinal
strain curves such as peak positive strain, ES strain and post-systole strain (see segment 1 and 6 in
Figure 4.11 (b)) with Bayesian regularization. These details were suppressed by noise in the NCC
only longitudinal strain curves (Figure 4.11 (d)). In Figure 4.11 (d), we observed that strain curves
from segments 2 and 3 were noisier. One potential reason for this finding in the apical region of
this mouse is that an acoustic shadowing artifact (most likely from a rib or the sternum) is present
in the image. As reported in literature [42], acoustic shadowing may result in underestimation of
strain and/or the appearance of a regional wall motion abnormality. This made tracking more

challenging in those segments and consequently lower quality strain curves.

Comparison of estimated strain curves using CE (NCC and Bayesian) and VevoStrain
showed an overall shape agreement but variation in strain magnitudes. Strain estimation in
VevoStrain is based on speckle tracking echocardiography, which calculates strain by motion
tracking from ultrasound B-mode imaging sequences. In contrast, our proposed method uses
ultrasound radio-frequency (RF) signals, which contains additional phase information when
compared to B-mode images. A previous study from our group reported that RF signals results
into more accurate strain estimates when compared to envelope/B-mode signals [10]. This could
explain the magnitude variation between the two methods. Overall, comparable performance of

the proposed method against a commercial system shows its potential for in vivo CSI.

Some of the previously reported regularization approaches for elastography used
assumption of continuous and smooth displacement fields, enforcing an explicit smoothness
constraint as a regularizer [43-49]. This assumption limits the application of these approaches to
CE where discontinuous deformation is expected (opposing movement of anterior and posterior

wall). Incorporation of Bayesian regularization in our multi-level framework provides a balance
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between discontinuous motion estimation and error correction. This enables successful application

of our framework for CE as shown in FEA simulation and in vivo study.

In vivo imaging for murine models was performed with a frame rate of 235 Hz which is
comparatively lower than the literature reported values for CE in murine models with 1D tracking
or plane wave imaging approaches [50-52]. Our group has previously demonstrated that a frame
rate ten times the heart rate provides high SNRe and reliable strain estimation using RF signals in
a phantom study [53]. The murine model in this study had a heart rate of 5 beats per second and
was imaged with a frame rate of 235 Hz, leading to 47 frames in a cardiac cycle. Our 2-D
hierarchical multi-level NCC approach provides deformation tracking for reliably estimating
maximum strains up-to 5% axial and 2.5% lateral strain between consecutive RF frames [5, 6],
whereas 1-D NCC kernels with 2-D search approaches fail due to increased signal decorrelation
in this applied strain range. Using our multi-level approach with 2-D kernels, we are able to reduce
kernel dimensions to accurately track these high strains. Reliable strain estimation in human RF
data sets with comparatively lower frame rates was previously reported by our group [10, 11, 13,
54] using this multi-level approach without regularization. Our approach with Bayesian
regularization in this chapter provides reliable polar strain estimation for the in vivo murine model.
However, with higher frame rates, we anticipate additional improvement in strain estimation using

the proposed approach.

One limitation of our study is the discrepancy between the transducer center frequency of
simulation and in vivo experiments. The simulation study was performed based on the 3-D
deformation model of a canine heart developed by the Cardiac Mechanics Research Group at the
University of California San Diego (UCSD) [33]. The imaging field of view was 80 mm x 100

mm. In the ultrasound imaging simulation, we also modelled an attenuation coefficient of 0.5
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dB/cm-MHz. If simulation was performed with 40 MHz center frequency, we will not be able to

image the posterior part of heart due to depth-dependent attenuation co-efficient. Thus, the imaging

simulation was performed using 8 MHz rather than the 40 MHz center frequency in the in vivo

study. If we are able to obtain 3-D deformation models for a mouse heart, we would be able to

extend the simulation to utilize a 40 MHz center frequency.
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Chapter 5

Adaptive Bayesian Regularization with Local Optimization for

Ultrasound Strain Imaging

In this chapter’, we propose an adaptive iterative Bayesian regularization framework
(AIBRF) based on local signal decorrelation levels derived from input radiofrequency (RF) data.
The Bayesian regularization algorithm proposed by McCormick et al. [1] has been successfully
applied for both carotid [2] and cardiac strain imaging (Chapter 04) [3]. This regularization
scheme was formulated to reduce large displacement or peak-hop errors due to high signal
decorrelation of RF signals and was applied in an iterative manner to improve the quality of
estimated displacements. However, incorrect choice in the number of iterations can lead to over-
regularization and negatively impact the quality of displacement estimates especially in the lateral
direction [3]. Previously, the desired number of iterations were determined heuristically based on
the clinical application [1, 3, 4]. In addition, the number of required iterations was also shown to
be dependent on the strain distribution present in an imaged region [1]. Furthermore, we
hypothesize that due to spatial and temporal strain heterogeneities expected with in vivo imaging,
the number of iterations should be varied locally rather than as a global application of a fixed
number of iterations to each displacement estimation location. To address these issues, we utilize
local correlation between RF signals to guide the Bayesian regularization based on the underlying

strain distribution thus inhibiting the possibility of over-regularization. Furthermore, correlation

2 Rashid Al Mukaddim, Nirvedh H. Meshram, and Tomy Varghese, “Locally optimized correlation-guided Bayesian
adaptive regularization for ultrasound strain imaging.” Physics in Medicine and Biology, vol. 68, no. 3, 065008 (2020)
PMCID: PMC7682728
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guidance will automatically determine the optimal number of iterations in local regions eliminating

the need for a fixed heuristic determination of the number of iterations.

5.1 Theory Behind Adaptive Bayesian Regularization

5.1.1 Basic Principle of Bayesian Regularization

Assume /; and /> are two ultrasound RF frames of size i Xj acquired as the pre- and post-
deformation frames respectively. In block matching algorithms, /; and > are divided into a
rectangular grid of 1-D or 2-D matching blocks with ¥ and X number of grid locations along axial
and lateral directions respectively. To compare a matching block between /; and 12, we perform 2-

D NCC calculations over a set of possible displacements defined as
Q={u,:-D,<u <D jx{u,:-D,<u, <D} (5.1)

where Dy and Dx are maximum possible axial and lateral displacement estimates respectively in a
user defined search grid. This process results in a similarity metric image for each grid location
with size of MxK. These similarity metric images can be treated as probability density (PDF)
images, through application of a basic transformation [1] and regularized using Bayes’ theorem to

improve motion estimation accuracy.
The regularization estimator calculates the posterior probability density (PPD),
Pr(u,|u, ) for a possible displacement estimate, u, :[uma,,u,mem,] of the matching block

located at grid location, X = [Xaxial, Xiateral] given observed displacements at neighboring matching

blocks, u,, in a Bayesian framework

Pr (u, |u,)Pr (u,)
Pr(u, )

Pr(u,|uy )= (5.2)
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where, u is the set of displacements at neighboring matching blocks, Pr(u,)is the prior
probability density obtained by mapping the similarity metric image to a probability density image
and Pr(uy [u,) is the likelihood function. In the original implementation, four immediate
neighbors (left, right, top and bottom) were considered for u ;. In conventional ultrasound motion
tracking, the estimated displacement vector maximizes Pr(u, )[5]. This estimate will be

considered as the NCC estimate in this chapter. However, in the Bayesian framework, information

from neighboring matching blocks modifies the prior PDF, Pr (u )resulting in a regularized

motion tracking framework.

Assuming the neighbors are independent, the likelihood function Pr (u [u,) is defined

as follows.

Pr(u, [u)=[]Pr(u, u) (5.3)

x'eN,

where, Pr(u, |u,) isthe probability that a neighboring block at x" has a displacement u_, given
displacement u_ at x. The independence assumption can be invalid due to expected correlation

among neighboring matching blocks but is necessary to simplify mathematical modelling for
Bayesian regularization. Application of Bayesian regularization for medical image registration [4,
6] have also made a similar independence assumption for modelling the likelihood function. In the
case of ultrasound strain estimation, some degree of independence can be achieved by utilizing no
kernel overlaps in both axial and lateral directions along with a iterative application of the

algorithm [1]. Pr (u_ |u, ) term is modelled as follows.
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vy -uy I
Pr(u, |u ) max Pr (VX,)xexp[ 2% ] (5.4)

where v is the displacement at x’, A, is a set of possible displacements evaluated in a

neighborhood where u

X

is evaluated and oy is the variance of a Gaussian weighting term. To

evaluate equation (5.4), we need to consider all the possible displacements defined by the domain,

Q in equation (5.1) at the neighboring matching block location x'e N . For each possible

displacement, we consider a subset of local displacements around it, v, € N, and weight them

with a Gaussian term. The Gaussian term is modelled such that

v.—u | <e with € being a
constant. In an approximate sense, a Gaussian model of spatial displacement variation is imposed
by equation (5.4). The maximum among these Gaussian weighted displacements is utilized in
equation (5.4). The variance o. controls the type of displacements allowed by the model.
McCormick et al. coupled o, with the maximum expected strain in an image by introducing a
parameter called strain regularization sigma (SRS), o: [1]. PPD is then estimated by multiplying

likelihood function with the prior PDF. Finally, regularized displacement estimate is determined

using a maximum a posteriori (MAP) principle shown in eq. (5.5).

u,,, =argmax Pr(u, ]uN ) (5.5

Uy

Integer displacements are derived by determining the axial and lateral shift corresponding
to the maximum value of PPD. Subsample precision of the displacement is obtained using

interpolation of PPD.
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Algorithm 1: Adaptive refinement using Bayesian Regularization

-1 Pre and Post-RF Data

!

Initial NCC Estimates

u,, < argmax, Pr(u,)

v

RF Similarity Metric SNR

Bayesian Regularization

u; < argmax, Pr(uy|uy )

!

Refined Estimates

!

LS Strain Estimates

(a)

Input

t upycc : NCC displacement vector
SNR;NCC) : NCC signal-to-noise ratio
7 : Decorrelation threshold
L nax: Maximum number of iterations

¢ : Improvement tolerance

TOL: Iteration tolerance

F“P) . Upper regularization ratio

Ao - Lower regularization ratio

Output: u,,, : Regularized displacement vector

1 Uy < Uyce
2 SNRY « SNRINVCO
3 MAP, <0

4 forl < 1to!l

5

e o =2 &

18

max do
u; < argmax, Pr(u,lu, )
pf,l,)c « Estimate pg,l,)c for u,
if / = 1 then
if (SNRY < 7) then

‘ MAPA++
ureg < w
else

| Uy <1y
else
. ) 1-1
if (o — Pine ) > ¢ then
MAP++
L -

ureg
if (MAP,— MAP,_,| < TOL and M AP/ < r“P)) or
(M AP[™ < o)) then
L break

(b)

Figure 5.1 (a) Flowchart describing AIBRF. (b) Proposed algorithm for adaptive refinement of NCC

displacement estimates using Bayesian regularization.

5.1.2 Adaptive Application of Bayesian Regularization

Equation (5.4) can be applied iteratively to regularize the initial NCC similarity metric

image. At each iteration, influence from neighboring matching blocks beyond the adjacent blocks

get incorporated into the regularization process. Thus, we expect that based on the degree of signal

decorrelation between pre- and post-deformation RF echo signal data, the number of required

iterations will vary locally within the displacement estimated. Based on this observation, we

propose the AIBRF framework for a locally optimized correlation-guided adaptive iterative
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Bayesian regularization framework for ultrasound strain imaging. The key steps of the proposed
framework are summarized in Figure 5.1 (a). Axial and lateral displacement estimates obtained
using 2-D NCC are used as an input to the AIBRF. In the original implementation, these estimates
were refined using a fixed number of iterations. In the proposed framework, we provide RF data
as an additional input to the BRF to locally control the number of iterations. Finally, refined axial
and lateral displacement estimates are passed through a least squares spatial gradient operator to

derive underlying tissue strain [7].

5.1.2.1 Quality metrics for optimizing Bayesian regularization

We consider two quality metrics for determining local signal de-correlation during the
regularization process. Firstly, we derive a quality metric for the un-regularized similarity metric
by converting peak cross-correlation estimate of the NCC function into a signal-to-noise ratio [8,

9] measure defined as follows.

SNR = —Pmax (5.6)
p l_pmax

where pmax 1s the peak cross-correlation coefficient.

Secondly, we evaluate the quality of estimated displacements after each iteration by
performing 2-D NCC calculation between RF data /; and /, after motion compensation. We term
this metric as motion compensated SNR and denote using p!” for iteration /. To derive p."
between /7and 1, , we consider a kernel, Wi of size r xc from /1 around the point (x,, y,) . A post-

deformation kernel, > of same size is extracted from the corresponding point (x,,y,) in the

image /, by re-sampling post-RF data with linear interpolation using the following equation [10,

11].
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x,=(1+&)x +u,

(5.7)
= (1_5}7) ntu,

where, £ andé¢, are the estimated axial and lateral strains derived by applying a central-difference

gradient operator on the estimated axial (uy) and lateral (ux) displacements respectively. Linear

interpolation was chosen due to its simplicity and lower computational load compared to other

approaches (e.g., bicubic/Sinc).

5.1.2.2 Algorithm for Adaptive Bayesian Regularization

The algorithm for adaptive refinement of NCC estimates using Bayesian regularization is

presented in Figure 5.1 (b). The key steps of the proposed algorithm are follows.

().

(ii).

(iii).
(1v).

(vi).

Initialize the algorithm by estimating NCC displacement, u,,. and SNR/(JNCC) . SNR/(JNCC) is

estimated using equation (5.6) and considered as a de-correlation measure of the
unregularized similarity metric.

Set iteration, /=1 and regularization location counter MAF, = 0. The parameter MAP, keeps
track of the number of grid locations requesting regularization in the next iteration, /+/.
Estimate Bayesian regularized displacement, u, using equation (5.5).

O

mc *

Using u,, estimate motion compensated SNR, p
For iteration equal to one, if SNR;N ) is less than decorrelation threshold, 7 then refined
displacement estimate, u,,, is updated using current regularized estimate,u, and MAF, is
incremented otherwise . is assigned to u,,, .

If iteration is greater than 1 then
a. If there is an improvement in motion compensated SNR with current estimate

compared to estimate from previous iteration i.e. ( Pl — pth

)> ¢ where, {'is an
improvement tolerance then u,,, is updated using current regularized estimate, u,

and MAPF, is incremented.
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b. Ifthere is no improvement, then retain previous iteration’s estimate.
(vii). Repeat step (iii) — (vi) for all grid locations (grid dimension of XxY).

(viii). Estimate percentage of locations requiring regularization using following equation.

MAPratia _ MAB
!

o (5.8)

(ix). To adaptively stop regularization after an optimal number of iterations, we have defined

two stopping criteria based on MAP'“" . We stop regularization if either of the following

conditions get satisfied

a. The number of locations requiring regularization between consecutive iterations is
within a tolerance, TOL and MAP*” is less than the upper regularization ratio,
r(up)

b.  MAP™™ is less than the lower regularization ratio, ‘"

(x). If none of the conditions stated in step (ix) are met and /+/ is less than the maximum

number of iterations, / _ then continue to step (iii).

Note that the grid locations where MAPF is incremented are marked for regularization in the next

iteration while the remaining locations will not be regularized. Thus, the number of required
iterations will vary for different local locations in contrast to the same number of iterations for all
locations in the original implementation. The parameters decorrelation threshold, t and
improvement tolerance, { are used to inhibit under-regularization and over-regularization
respectively. Parameter TOL is designed to stop regularization when the number of locations
requesting regularization between consecutive iterations does not vary significantly indicating that
additional regularization is unlikely to provide any additional benefit. At very high applied

deformations, it might be the case that MAP between initial iterations are within 7OL thus

stopping regularization even though it requires further refinement. Upper regularization ratio, #“)

is used to impede this. Additionally, to prevent the algorithm from stalling by trying to improve
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the grid locations near edges (especially in the simulation study), we break the regularization loop

if MAP™ falls below the lower regularization ratio /"), This rule is used to improve

computational efficiency and our initial experiments demonstrate that the performance of the

proposed approach was not compromised.

5.1.3 Algorithm Implementation

We incorporate the adaptive Bayesian regularization framework into our multi-level 2-D
BM algorithm for strain estimation. We denote displacement estimation methods without
regularization, with fixed number of iterations and adaptive regularization as NCC, MAP-Iter and
MAP-Adapt respectively. A coarse-to-fine pyramid with three levels was constructed by applying

the decimation factors reported in Table 5.1 to the up sampled RF data with Gaussian smoothening.
2
Smoothening was performed using a discrete Gaussian function with variance of (% ) where f

denotes the decimation factor. This approach combines the robustness of envelope tracking at
higher strains with precision of RF data at lower strains [12-14]. B-mode data used for coarse
motion tracking at the first level ensures global estimation of displacement reducing errors incurred
with larger deformations, while the rest of the levels use RF data for precise displacement and
strain estimation. To improve spatial resolution of the estimated displacements, the coarse-to-fine
search strategy with progressively decreasing kernel size was utilized (Table 5.1). The processing
kernel overlap was 10% and 90% in the axial and lateral directions respectively. The final
processing kernel size was 1 wavelength by 10 A-lines. Parabolic interpolation was used for levels
1 and 2 while the final level used 2-D windowed Sinc interpolation [15-17] for unbiased subsample

displacement estimation. Signal alignment and stretching was used at each level to improve

displacement estimation accuracy [2, 11, 18]. To compute the SNR/()NCC) term for MAP-Adapt, 2-
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D windowed Sinc interpolation with a window radius of 8 points was used to precisely locate the

peak of the NCC function. This was necessary due to the non-linear relationship between SNR,

and peak NCC coeftficient p_, . 2-D displacement estimation and regularization related parameters

are summarized in Table 5.1.

Table 5.1 Displacement Estimation Algorithm Processing Parameters

Parameter Value
Multi-level Block-matching parameters

Levels in multi-resolution pyramid 3

Lateral interpolation factor 2

Axial decimation factors [3,2,1]
Kernel overlaps [Axial, Lateral] [10%, 90%]
Lateral decimation factors [2,1,1]
Axial kernel length (Wavelengths) [81,324,14]
Lateral kernel length (A-lines) [15, 12, 10]
Axial search range (Wavelengths) * 34,24, 141]
Lateral search range (A-lines) * [5, 5, 3]
Bayesian regularization specific parameters

Axial strain regularization sigma 0.150
Lateral strain regularization sigma 0.075
Number of iterations [1,5]

Adaptive Bayesian regularization specific parameters

Maximum number of iterations, lnax 10
Decorrelation threshold, t 90
Improvement tolerance, 0.01
Iteration tolerance, TOL (pixels) 100
Lower regularization ratio, /) 0.15
Upper regularization ratio, 7" 0.80

*Search range reported for cardiac strain imaging applications (simulation and in vivo)
Updated appropriately for quasi-static elastography applications (simulation)
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5.2 Validation Experiments for Adaptive Bayesian Regularization

5.2.1 Numerical Quasi-static Elastography Simulation Study

Two experiments using numerical phantom simulations were used to evaluate the
performance of the MAP-Adapt algorithm. First, a uniform tissue mimicking phantom with
background modulus of 2 kPa was simulated to test algorithm performance for tracking
displacements in a homogeneous medium. Second, an inclusion phantom with a stiffer inclusion
in soft background was simulated to characterize algorithm performance for lesion visualization.
Finite-element analysis (FEA) model generated displacement fields were applied on the top
surface of each phantom axially to produce nominal strain of 0.5 %, 1.0 %, 3.0 %, 5.0 %, 7.0 %,
9.0 % and 11.0 %. For each applied deformation, ten independent scatterer distributions were
generated to obtain statistically significant results. Details about the FEA can be found in [1]. RF
data were generated using a frequency domain ultrasound simulation program developed in our
laboratory [19]. A 1-D linear array with 128 elements and a kerf of 0.2 mm was modeled. Each
individual element had a height of 10 mm and width of 0.15 mm. The linear array was operating
at a center of frequency of 8.0 MHz and RF data was sampled at a frequency of 78.84 MHz. A
single transmit focus was set at a depth of 20 mm. Conventional Delay and Sum (DAS)
beamforming with 128 consecutive elements were used to form each A-line. The speed of sound

and attenuation coefficient were set to 1540 m/s and 0.5 dB/cm-MHz respectively.

To reduce the effects of boundaries, a 20x25 mm? region of interest (ROI) around the
transducer’s focus was considered for quantitative evaluation. Estimation accuracy was evaluated
using displacement mean absolute error (MAE), jitter error [20] and normalized strain error (%),

Ag .



141

ue_ut|
MAE =+ — (5.9)
n
Jjitter = var(u, —u,) (5.10)
Erqe — &
Ag:MXIOO (5.11)

Z|‘9TS|

In equations (5.9) and (5.10), u,and u, denote estimated and FEA displacements respectively. In
equation (5.11), ¢,,and ¢, denote estimated and FEA strains respectively. Experimental strain

filters [21] were generated for each method by calculating elastographic signal-to-noise ratio

(SNR.) [22] :

SNR, [dB] = 20><log(mej (5.12)
S

e

where, m, and s, denote the mean and standard deviation of estimated strain respectively.

Detectability in inclusion phantom strain images were quantified by calculating Contrast

to Noise ratio (CNR.) [23, 24] :

_ 2
CNRE[dB]:20><logL 2(”’";—’”2} (5.13)
Ub +Gz

where, m, and m, are spatial strain average of background (ws) and target (wr) window

respectively, o, and o] denote spatial variance of ws and w: respectively. A rectangular ROI of

size 3.35%3.35 mm? was placed inside the lesion as w:. Two rectangular ROIs were placed at same

depth as the target ROI (wr) but offset 9.25 and 9.73 mm laterally to the left and right respectively
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from the center of the inclusion were used as background ROIs. Area of each background ROI was

half the area of wr.

5.2.2 Finite Element Analysis (FEA) Model for Canine Cardiac Simulation

A 3-D FEA model of a healthy canine heart [25, 26] was employed to compare the
performance of NCC, MAP-Adapt and MAP-Iter approaches in the presence of complex cardiac
deformation. Over 1x10% scatterers were randomly positioned in the myocardium of the 3-D
model to ensure Rayleigh scattering statistics. A 2-D parasternal long axis (PLAX) ultrasonic
imaging view from this 3-D model was used. The description of the RF data simulation is the same
as that presented for quasi-static elastography simulation above. RF data were collected at a 78.84

MHz sampling frequency. Each simulated ultrasound image had an 80x100 mm? field of view.

5.2.3 In vivo Cardiac Imaging of Murine Model

To demonstrate in vivo feasibility, cardiac strain estimation was done in a healthy murine
model (10-12 weeks old male athymic nude mouse acquired from Jackson Labs, ME, USA). All
in-vivo procedures were approved by the Institutional Animal Care and Use Committee (IACUC)
at the University of Wisconsin-Madison. The mouse was anesthetized using 1.5% isoflurane and
placed in the supine position on a heated imaging platform with a constant flow of oxygen. A
representative image of in vivo cardiac image acquisition experimental setup is shown in Figure
5.2. A Vevo 2100 LAZR imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada) was
employed for collecting ultrasound RF data. High frequency ultrasound imaging was performed
using a MS 550D transducer operating at a center frequency of 40 MHz. 2-D conventional focused
ultrasound RF data at a 512 MHz sampling frequency along the PLAX and parasternal short axis
(PSAX) views were acquired. We acquired 1000 frames per imaging plane, which was stored for

off-line analysis. During image acquisition, electrocardiogram (ECG) and respiratory signals were
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continuously monitored and acquired. A single cardiac cycle was chosen for strain estimation

gated to ECG and respiratory signal. Image acquisition related parameters are summarized in Table

5.2.

Imaging
Transducer

Figure 5.2 Representative image of in vivo cardiac image acquisition experimental setup.

Table 5.2 In vivo Image Acquisition Parameters

Parameter PLAX PSAX
Transducer MS550D

Center frequency (MHz) 40

Field of view (mm? 11 x12.08 10 x 8.08
Number of A-lines 220 148
Imaging Framerate (Hz) 235 347
Sensitivity Standard

2-D Gain (dB) 25
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5.2.4 Adaptive Bayesian Regularization for Cardiac Strain Imaging

A cardiac strain estimation pipeline [27] described in detail in Chapter 4 was employed to
estimate myocardial strain from FEA canine cardiac simulation and in vivo murine model data.
Incremental axial and lateral displacements were estimated using approaches reported in Section
0. These incremental displacements were integrated over time based on a Lagrangian description
of motion from end-diastole (ED) to end-systole (ES). In plane Lagrangian finite strain tensors
were then derived from the accumulated displacements using a least squares (LS) strain estimator
[7] with 0.2 mm and 1 mm kernels in axial and lateral directions respectively. Cartesian to cardiac
coordinate transformation was utilized to calculate myocardial strain for ease of interpretation.
Radial and longitudinal strain curves were derived from PLAX view while the PSAX view was
used to derive radial and circumferential strain curves. ES strain images and segmental strain
curves from both FEA and in vivo models were compared for NCC, MAP-Adapt and MAP-Iter

approaches. FEA model results were quantitatively compared using eqn. (5.11).

5.3 Findings from Numerical Quasi-static Elastography Simulation Study

5.3.1 Uniform Phantom Simulation Results

Displacement and strain estimation accuracy for MAP-Adapt as a function of applied
deformation is compared against NCC and MAP-Iter with 1 and 5 iterations. Our previous studies
showed that in some cases a single iteration of Bayesian regularization was sufficient while others
required three or larger number of iterations [27]. Therefore, we investigated cases with both low
and high number of iterations for MAP-Iter in this study. MAP-Iter with 1 and 5 iterations will be
termed as MAP-Iter=1 and MAP-Iter=5 respectively. Strain errors are strongly influenced by the
choice of LS kernel length and amount of smoothening [14]. Thus, we decided to use a small

kernel length (3.2 mm for both axial and lateral direction) for LS and perform no spatial filtering
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(e.g., median filtering) so that any noise in the estimated displacement fields gets amplified in the
strain images. Ground truth strain images were derived by applying the same LS strain estimator
on the FEA displacement fields. Error bars denote twice the standard error computed over ten
independent simulations at each applied deformation. Statistical analysis was performed using the

paired t-test with the aforementioned ten independent simulation instances.

Representative results from a uniform phantom simulation study at low (3 %) and high (7
%) applied deformations are presented in Figure 5.3 and Figure 5.4 respectively for qualitative
comparison between NCC, MAP-Iter=1, MAP-Iter=5 and MAP-Adapt methods. Qualitatively all
methods provide fairly similar axial displacement and strain results. In the case of axial strain,
MAP-Iter=5 strain image (Figure 5.3 (i) [g]) was smoother when compared to MAP-Iter=1 (Figure
5.3 (1) [f]) and MAP-Adapt images (Figure 5.3 (i) [h]). Note that for lateral displacement and strain
images, Map-Iter=1 and MAP-Adapt displacement results were smoother (Figure 5.3 (ii) [b] and
[d] respectively) when compared to NCC (Figure 5.3 (ii) [a]). Subsequently, lateral strain images
estimated by MAP-Iter=1 (Figure 5.3 (ii) [f]) and MAP-Adapt (Figure 5.3 (ii) [h]) had higher
uniformity when compared to NCC (Figure 5.3 (ii) [e]). On the other hand, observe the severe
deterioration in the displacement and strain image quality with MAP-Iter=5 (Figure 5.3 (ii) [c] and
[g]). Impact of over-regularization appears as “vertical banding” artifacts in these lateral strain

images.

Figure 5.4 summarizes the estimation results at 7 % applied deformation. Visual inspection
shows that Bayesian methods provide higher quality axial displacement (Figure 5.4 (i) [b —d]) and
strain images (Figure 5.4 (i) [f—h]) when compared to NCC (presence of peak-hop errors in Figure
5.4 (1) [a] and [e]). Lateral displacement and strain images at 7 % applied deformation indicate that

higher quality results were obtained using MAP-Iter=1 (Figure 5.4 (ii) [b] and [f]) and MAP-Adapt
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(Figure 5.4 (i1) [d] and [h]) when compared to NCC (observe presence of peak-hop errors in Figure

5.4 (ii) [a] and [e]) or MAP-Iter=5 (vertical bands in Figure 5.4 (ii) [c] and [g]).

3% Applied Deformation

(i) Axial Estimation Results
NCC MAP-Iter = 1 MAP-Iter = 5 MAP-Adapt (I =2)

Axial Displacement
Depth (mm)
Depth (mm)
. & &
Depth (mm)
Depth (mm)

Axial Strain
Depth (mm)
Depth (mm)
Depth (mm)

-10 0 10 0 10 0 10 0 10
Width (mm) Width (mm) Width (mm) Width (mm)
(e) () (9) (h)
(ii) Lateral Estimation Results
NCC MAP-Iter = 1 MAP-Iter = 5 MAP-Adapt (I = 2) ..,
k= 1 s 3 E 15 :
[ 0.2
1S = 1 - B -10 -
aé g s g g s o
T& - 10 : 10 :
o 0.2
s - 15
- (c) (d)
_ (%)2

ES = ——

Lateral Strain
Depth (mm)
Depth (mm) N

10 -10

0 0 0
Width (mm) Width (mm) Width (mm)

0
Width (mm)

(e ) (9 (h)

Figure 5.3 Representative axial (i) and lateral (ii) estimation results from uniform phantom simulation at 3
% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-Iter=1, (c) MAP-lter=5
and (d) MAP-Adapt along with corresponding strain images estimated by (e) NCC, (f) MAP-Iter=1,

(9) MAP-Iter=5 and (h) MAP-Adapt respectively. / = maximum required iterations by MAP-Adapt.
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7% Applied Deformation

(i) Axial Estimation Results
NCC MAP-Iter = 1 MAP-Iter = 5 MAP-Adapt (I = 3)
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(ii) Lateral Estimation Results
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Figure 5.4 Representative axial (i) and lateral (ii) estimation results from uniform phantom simulation at 7
% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-lter=1, (c) MAP-Iter=5
and (d) MAP-Adapt and corresponding strain images estimated by (e) NCC, (f) MAP-Iter=1, (g)

MAP-Iter=5 and (h) MAP-Adapt respectively. | = maximum required iterations by MAP-Adapt.

Figure 5.5 (a) - (c) demonstrate the results for axial displacement MAE (d,"*), jitter error

(d ;’”’ ) and normalized axial strain error (A¢,,, ) respectively. Figure 5.5 (a) shows that all methods

had similar axial displacement MAEs at low and moderate strains (up to 5 % strain). At higher
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strains, MAP-Adapt and MAP-Iter=5 provided lower d,"* values compared to NCC and MAP-

Iter=1. At 11 % strain, due to significant decorrelation, all methods fail to provide any reliable
estimate. Figure 5.5 (b) shows that MAP-Iter=5 had the least amount of jitter errors compared to
other methods. MAP-Adapt had slightly higher jitter errors compared to MAP-Iter=5 but retained
improved performance compared to NCC and MAP-Iter=1. Similar trend was observed in axial

strain error results presented in Figure 5.5 (c). Best performance in terms of Ag¢,,, was achieved

with MAP-Iter = 5. However, improvements were on par with MAP-Adapt as it had slightly higher

axial strain error (A& =1.51 %) compared to MAP-Iter=5 (A¢ =1.29 %). These results

axial | 5% axial | 5%

indicate that strain estimation performance in the axial direction was dominated by jitter errors.

Figure 5.5 (d) — (f) present the results for lateral displacement MAE (d "), jitter error (") and
normalized lateral strain error (Ag,,,,,,) respectively. Figure 5.5 (d) shows that MAP-Iter=5 had

higher lateral displacement MAEs when compared to MAP-Adapt and MAP-Iter=1. This result
demonstrates the impact of over regularization on lateral displacement estimates. At 4.5 % strain,

MAP-Adapt demonstrated superior performance (p <0.001) with lower lateral displacement MAE

(d¥*=23.73 um) when compared to MAP-Iter=1 (d**= 114.16 um). NCC has higher MAEs

when compared to MAP-Adapt showing the benefit of regularization. Similar trends were
observed in lateral jitter error results presented in Figure 5.5 (). MAP-Adapt had the least amount

of jitter errors up to 3.5 % strain. However, there was performance degradation of MAP-Adapt (

d’"=1.74 um?) compared to MAP-Iter=5 (d.” = 0.79 um?) at 4.5 % strain. Figure 5.5 (f) shows

that most accurate lateral strain estimation was achieved with MAP-Adapt except for the 4.5 %

strain. For instance, at 1.5 % lateral strain, MAP-Iter=5’s lateral strain error (A&, 5, = 104.49

%) was significantly reduced using MAP-Adapt approach (Ag,,.. ;. = 27.51 %) with p-value
lateral |1.5%
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less than 0.001. At 4.5 % strain, MAP-Iter with 5 iterations showed improved performance. Note
that maximum required number of iterations vary as a function of applied deformation as shown

in Figure 5.5 (g).

Figure 5.6 (a) and (b) represent experimental axial and lateral strain filter results
respectively. NCC axial strain filter showed comparable performance with Bayesian regularization
methods for low strains (0.5 % to 3 %). Note that SNR. values drastically reduce at higher applied
deformations (5.0% to 9.0%). MAP-Iter=5 had the highest axial SNR. values at all applied
deformations and MAP-Iter=1 had the worst axial estimation performance among Bayesian
regularization approaches. MAP-Adapt had comparable performance with MAP-Iter=5 up to 7 %
strain. For instance, at 7 % strain, MAP Adapt and MAP-Iter=5 had SNR. of 35.10 dB and 36.40
dB respectively. However, MAP-Iter=5 performed significantly better (p < 0.01) than MAP-Adapt
at 9 % strain (SNR.= 34.22 dB and 28.11 dB respectively). Our findings from error analysis in
Figure 5.5 (a) — (c¢) corroborate these results. For lateral strain, NCC had the lowest SNR. values
for all applied deformations. MAP-Adapt and MAP-Iter=1 performed significantly better than
NCC and MAP-Iter=5 up to 3.5 % strain. For instance, at 1.5 % strain, MAP Adapt and MAP-
Iter=5 had SNR. of 9.18 dB and -0.39 dB respectively (p < 0.001). Although MAP-Iter=5 had
slightly higher SNR. value at 0.25 % strain, it severally underestimated the underlying strain
(median estimated ¢, =0.0012% ). A distinct peak was observed in the strain filter of MAP-
Iter=>5 at 4.5 % strain showing improved performance with higher iterations at high strain. Overall,

MAP-Adapt approach achieved a balance between axial and lateral displacement and strain

estimation accuracy without the over-regularization seen with MAP-Iter=5.
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Figure 5.5 Uniform phantom simulation error analysis as a function of the applied deformation. (a) Axial
displacement MAE (um), (b) axial displacement jitter error (um?), (c) axial normalized strain error
(%), (d) lateral displacement MAE (um), (e) lateral displacement jitter error (um?), (f) lateral
normalized strain error (%) and (g) Maximum required number of iterations as a function of applied

deformation for MAP-Adapt.
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Figure 5.6 Comparison of experimental strain filters estimated using NCC, adaptive Bayesian and Bayesian

with fixed iterations. (a) Axial strain filter and (b) lateral strain filter.

5.3.2 Inclusion Phantom Simulation Results

In this section, we present representative results from the inclusion phantom study at low
(3 %) and high (7 %) applied deformation for a qualitative comparison. Figure 5.7 summarizes the
estimation results at 3 % applied deformation. Axial displacement and strain images are shown in
Figure 5.7 (1). Qualitatively all methods provide similar axial displacement results (Figure 5.7 (i)
[a—d]). In case of axial strain, NCC had some erroneous strain values near the bottom right of the
lesion (Figure 5.7 (i) [e]) which were corrected by all Bayesian regularization methods (Figure 5.7
(1) [f—h]). Lateral displacement and strain images at 3 % applied deformation are shown in Figure
5.7 (ii). Note that Map-Iter=1 and MAP-Adapt methods provide smoother displacement images
(Figure 5.7 (ii) [b] and [d] respectively) compared to NCC (Figure 5.7 (ii) [a]). Subsequently,
lateral strain images estimated by MAP-Iter=1 (Figure 5.7 (ii) [f]) and MAP-Adapt (Figure 5.7 (ii)
[h]) had higher quality with clearer lesion boundary and smoother background compared to NCC

(Figure 5.7 (i1) [e]). Severe deterioration of displacement and strain image quality was observed
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with MAP-Iter=5 (Figure 5.7 (i) [c] and [g]). Impact of over-regularization appears as “vertical

banding” artifacts in these results.

Figure 5.8 summarizes the estimation results at 7 % applied deformation. Figure 5.8 (i)
shows the axial displacement and axial strain images estimated using the methods previously
described. Visual inspection shows that MAP-Adapt and MAP-Iter=5 provide higher quality
displacement (Figure 5.8 (i) [c — d]) and strain images (Figure 5.8 (i) [g — h]). Axial displacement
images estimated by NCC and MAP-Iter=1 (Figure 5.8 (i) [a — b]) suffer from peak-hop errors
causing significant reduction of corresponding strain image quality (Figure 5.8 (i) [e — f]). Lateral
displacement and strain images at 7 % applied deformation are shown in Figure 5.8 (ii). MAP-
Adapt provided the best displacement (Figure 5.8 (ii) [d]) and strain (Figure 5.8 (ii) [h]) images
showing the improvement obtained with adaptive Bayesian regularization. NCC (Figure 5.8 (ii)
[a] and [e]) and MAP-Iter=1 (Figure 5.8 (ii) [b] and [f]) suffer from peak-hop errors while the

vertical banding artifact due to over-regularization was seen in MAP-Iter=5 results (Figure 5.8 (ii)

[c] and [g]).

Figure 5.9 (a) — (c) demonstrate the results for axial displacement MAE (d fAE ), jitter error

(d;”) and normalized axial strain error (Ag,,,) respectively from the inclusion phantom

simulation study. In case of axial displacement and strain estimation, both MAP-Adapt and MAP-
Iter=5 provided improved performance compared to NCC and MAP-Iter=1 over the entire range
of applied deformations. NCC and MAP-Iter=1 suffered from performance degradation at

moderate and higher strains (5% or higher) due to under-regularization. Figure 5.9 (d) — (f) present

MAE
dx

the results for lateral displacement MAE ( ), jitter error (d.") and normalized lateral strain

error (Ag,,,,.,) respectively. These results demonstrate the superiority of MAP-Adapt over MAP-
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Iter=5 with significantly lower d**, d'” and Aeg,, , up to 3.5 % strain (p < 0.001). At 4.5 %
strain, MAP-Iter=5 showed the best performance. Overall, a balance between under-regularization

and over-regularization was achieved using MAP-Adapt approach.
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Figure 5.7 Representative axial (i) and lateral (ii) estimation results from inclusion phantom simulation at 3
% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-Iter=1, (c) MAP-Iter=5
and (d) MAP-Adapt and corresponding strain images estimated by (e) NCC, (f) MAP-lter=1, (g)

MAP-Iter=5 and (h) MAP-Adapt respectively. | = maximum required iterations by MAP-Adapt.
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Figure 5.8 Representative axial (i) and lateral (ii) estimation results from inclusion phantom simulation at 7
% applied deformation. Displacement images estimated by (a) NCC, (b) MAP-lter=1, (c) MAP-Iter=5

and (d) MAP-Adapt along with corresponding strain images estimated by (e) NCC, (f) MAP-Iter=1,

(9) MAP-Iter=5 and (h) MAP-Adapt respectively. | represents the maximum required iterations for

the MAP-Adapt algorithm.
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Figure 5.9 Inclusion phantom simulation error analysis as a function of the applied deformation. (a) Axial

displacement MAE (um), (b) axial displacement jitter error (um?), (c) axial normalized strain error

(%), (d) lateral displacement MAE (um), (e) lateral displacement jitter error (um?), and (f) lateral

normalized strain error (%).

To compare the methods quantitatively, CNR. as a function of applied deformation is

compared in Figure 5.10. Figure 5.10 (a) — (b) show the axial and lateral CNR. results respectively.

The MAP-Adapt approach had higher axial CNR. values compared to other methods. For lateral

strain, MAP-Adapt retained its improved performance at all deformations expect 0.25 % lateral

strain. However, strain error analysis shows that MAP-Adapt had lower lateral strain error (
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A& orarionsn = 91.15 %) compared to MAP-Iter=5 (A&,,,,u11025 = 99-39 %). Overall, qualitative

and quantitative analysis demonstrate that MAP-Adapt method provides improved image quality

at both low and high applied deformations.

40 T T T T T T T 30 T T
—F—NCC
~—F— MAP-Adapt
30 20 MAP-Iter=1
. —F— MAP-Iter=5
ey as]
= 20 = 10f
x s
% 10} S of
2 E
5 ot % -10F 7
——ncC =
-10 F|—F—MAP-Adapt 20+
MAP-Iter=1
—f— MAP-lter=5
20 : : \ , , \ \ 30 . L L . \ \ \
0.5 1 3 5 7 9 11 0.25 0.5 1.5 2.5 3.5 4.5 5.5
Strain Magnitude (%) Strain Magnitude (%)
(a) (b)

Figure 5.10 CNR. analysis of strain images estimated using NCC, adaptive Bayesian and Bayesian with

fixed iterations. (a) Axial CNRe results and (b) Lateral CNRe results.

Adaptive variation in the required iterations against applied deformation for the MAP-
Adapt method is presented in Figure 5.11. Figure 5.11 (a) shows that at low and moderate strains,
two iterations were sufficient for regularization while increased number of iterations were required
at higher strains. We also quantified the number of displacement image pixels (MAP:) refined after
each iteration (Figure 5.11 (b)). Figure 5.11 (b) shows that MAP; exponentially decreases with the
number of iterations. This result demonstrates that after the initial iteration, MAP;does not change
significantly, and algorithm stops the regularization process when the conditions stated in step (ix)
of algorithm description is reached. Hence, the number of iterations is varied locally (per grid
locations) rather than globally setting the number of iterations, in the proposed MAP-Adapt
approach illustrating the adaptive and optimal nature of the regularization scheme. Here we do not

over-regularize displacement estimates that do not require correction.
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Figure 5.11 Adaptive variation of number of iterations against applied deformation. (a) Number of required

iterations. (b) Number of pixels refined at each iteration.

5.3.3 Performance evaluation as a function of MAP-Adapt parameters

Strain estimation accuracy of MAP-Adapt as a function of different choices of
decorrelation threshold (7), improvement tolerance ({) and iteration tolerance (TOL) are presented
in Figure 5.12. Uniform phantom simulations at applied deformations of 3% and 7% were utilized.
Figure 5.12 (a) — (c) show the impact of { on axial strain error, lateral strain error and number of
required iterations respectively. At higher strain, smaller value of { will perform better. However,
choosing too small a value for { has a detrimental impact on lateral strain estimation accuracy at 3
% strain [Figure 5.12 (b)]. Optimal performance was achieved at {= 0.005 resulting in a balance
between strain estimation accuracy and the number of required iterations. Figure 5.12 (d) — (f)
show the variation of axial strain error, lateral strain error and number of required iterations
respectively as a function of decorrelation threshold (7). Axial and lateral error for both low and
high strain reaches a plateau at 7 = 65 with no significant impact on the number of iterations.
Impact of TOL on estimation performance is summarized in Figure 5.12 (g) — (i). No variation

among estimation accuracy was observed [Figure 5.12 (g) — (h)]. However, lower TOL required
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larger number of iterations prior to stopping regularization. Note that, for this particular instance,
#o") threshold was not utilized. Thus, these results also demonstrate that improvement of
computational efficiency was achieved with the use of #‘* threshold without comprising

estimation performance.

5.3.4 FEA Canine Cardiac Simulation Results

ES myocardial stain images are presented in Figure 5.13 for comparison among NCC,
MAP-Iter=3 and MAP-Adapt methods. Figure 5.13 (a) — (d) show ES radial strain images for FEA,
NCC, MAP-Iter=3 and MAP-Adapt respectively. Apical and some portion of anterior region of
myocardial wall had erroneous negative radial strain values in NCC result (indicated with arrows
in Figure 5.13 (b)). These errors were resolved using Bayesian regularization approaches (Figure
5.13 (c) — (d)) resulting in close similarity with FEA result (Figure 5.13 (a)). However, MAP-
Iter=3 result presents with the “banding artifact” as shown with an arrow in Figure 5.13 (¢). Figure
5.13 (e) — (d) show ES longitudinal strain images for FEA, NCC, MAP-Iter=3 and MAP-Adapt
respectively. MAP-Adapt provided the best longitudinal strain image (Figure 5.13 (f)) having
excellent agreement with FEA result (Figure 5.13 (e)). NCC image had some erroneous positive
strain values near apex as indicated with an arrow in Figure 5.13 (f). MAP-Iter=3 result severely
underestimated the underlying strain as several regions with almost zero strains (arrows in Figure

5.13 (g)) were observed around the myocardium. Axial strain error (Aeg, ., %), lateral strain error

axial

(A& 7o), radial strain error (Ag,,,,, %) and longitudinal strain error (Ag,,,, %) were quantified

radial
for ES myocardial strain images are presented in Table 5.3. Quantitative results confirm our

qualitative observations with best performance obtained with the MAP-Adapt method.
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Figure 5.12 Variation of (a) axial strain error (%), (b) lateral strain error (%) and (c) number of iterations as

a function of improvement tolerance ({). Variation of (d) axial strain error (%), (e) lateral strain error

(%) and (f) number of iterations as a function of decorrelation threshold (t). Variation of (g) axial

strain error (%), (h) lateral strain error (%) and (i) number of iterations as a function of iteration

tolerance (TOL).
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Figure 5.13 ES radial strain images for (a) FEA, (b) NCC, (c) MAP-lter=3 and (d) MAP-Adapt respectively.
ES longitudinal strain images for (e) FEA, (f) NCC, (g) MAP-Iter=3 and (h) MAP-Adapt respectively.

| = required iterations by MAP-Adapt.

Table 5.3 Comparison of ES estimation errors

Methods A& (%) A& era (%) A&, i (%) Aglong (%)
NCC 47.22 49.81 54.44 33.22
MAP-Adapt 28.23 26.46 28.10 18.05
MAP-Iter=1 28.62 26.55 29.00 18.24
MAP-Iter=2 29.34 37.93 29.44 25.24
MAP-Iter=3 32.41 58.10 32.86 41.08

Figure 5.14 shows the results for performance evaluation of NCC, MAP-Adapt and MAP-
Iter as a function of the number of iterations. Median error computed over 125 frames from one

cardiac cycle of FEA simulation is used comparison. Figure 5.14 (a) — (d) show results for A¢__,
s A porar » DE oy a0d Ag,,, tespectively. In all cases, NCC presented with the largest errors. Best

performance was achieved with the MAP-Adapt method. For MAP-Iter approaches, as the number

of iterations increased Ag,,,.., A&, and Ag,,  also increased drastically when compared to

MAP-Adapt.
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Figure 5.14 Performance evaluation of NCC, MAP-Adapt and MAP-Iter as a function of the number
iterations. Figs. 14 (a) — (d) show axial strain error (%), lateral strain error (%), radial strain error

(%) and longitudinal strain error (%) respectively.

5.3.5 Computational Cost

The algorithm was run in MATLAB (Mathworks Inc., MA) with a standard gateway
interface (C++ MEX) and CUDA for cross-platform acceleration. All experiments were done on
an Intel(R) Xeon(R) CPU E5-2640 v4 at 2.40 GHz, while the CUDA C++ code was run on a Tesla
K40c GPU belonging to the Kepler architecture with compute capability 3.5. Computational cost
is expected to vary depending on the input RF data dimension and algorithm processing parameters
as presented in Table 5.1. Therefore, we present the execution timing analysis from the uniform

phantom study in Table 5.4. The final RF data dimension was 8192x400 and mean execution time
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for ten independent simulations is reported. With higher number of iterations for Bayesian

regularization, the computational load is increased resulting in longer execution times (Table 5.4).

Table 5.4 Execution Timing Analysis (n=10)

Methods Time (secs)
NCC 64.40
MAP-Adapt [Minimum, Maximum] * [134.80, 261.34]
MAP-Iter=1 80.88
MAP-Iter=5 230.21

* MAP-Adapt execution times varied based on signal decorrelation. Lowest and highest execution times
were recorded at 0.5 % and 9 % applied deformation.

5.4 In vivo Example of Adaptive Bayesian Regularization for Cardiac Strain Imaging

Figure 5.15 summarizes in vivo estimation results from the murine model in parasternal
long axis view. PLAX B-mode image at end-diastole with segmentation scheme is presented in
Figure 5.15 (i). Figure 5.15 (ii) and (iii) present radial and longitudinal strain estimation results
respectively. For healthy myocardial function, radial and longitudinal strain images should exhibit
uniformly positive and negative strain values respectively throughout the myocardium. Figure 5.15
(i1) [a] and [c] show ES in vivo radial strain images estimated with NCC and MAP-Adapt
respectively. Radial wall thickening (positive strain magnitudes) at ES was observed in all
estimated results. However, the NCC strain image showed some erroneous negative strain values
in the anterior region (segments 1 and 2) indicating presence of ischemia in a healthy mouse. These
errors were corrected with MAP-Adapt. Figure 5.15 (iii) [a] and [c] show ES in vivo longitudinal
strain images estimated with NCC and MAP-Adapt respectively. Ventricular shortening (negative
strain magnitudes) at ES was observed in all estimated results. The NCC longitudinal strain image
exhibited some erroneous positive strain values in significant portions of myocardial wall. Higher

quality longitudinal strain image was realized with the MAP-Adapt approach.
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Figure 5.15 (ii) [b] and [d] show segmental radial strain curves estimated using NCC and
MAP-Adapt approach respectively. All approaches resolve radial myocardial wall thickening by
exhibiting peak positive radial strains at ES. Bayesian regularized radial strain curves in the
anterior basal and mid segments (segments 1 and 2 respectively) were smoother compared to
unregularized curves. Furthermore, regularized strain curves achieved improved homogeneity in
temporal variation across six segments compared to NCC results. Figure 5.15 (iii1) [b] and [d] show
estimated segmental longitudinal strain curves. All approaches were able to resolve ventricular
shortening during systole by exhibiting peak negative longitudinal strains at ES. Smooth temporal
variation of strain in all six segments near end of the cardiac cycle was observed in regularized
strain curves (Figure 5.15 (ii1) [d]) compared to NCC (Figure 5.15 (iii) [b]). Overall, higher quality
ES strain images and segmental strain curves were achieved with MAP-Adapt approach. Note that
the median value of the required iterations by MAP-Adapt for estimating the results presented in

Figure 5.15 were four.
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Figure 5.15 (i) PLAX B-mode image at end-diastole with segmentation scheme. (ii) Radial strain estimation
results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt respectively. In vivo
segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. (iii) Longitudinal strain
estimation results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt
respectively. In vivo segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. | =

median maximum required iterations by MAP-Adapt.

Figure 5.16 summarizes in vivo estimation results from the murine model in parasternal
short axis view. Figure 5.16 (i1) and (ii1) present radial and circumferential strain estimation results

respectively. For normal cardiac function, the radial and circumferential strain images should
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exhibit uniformly positive and negative strain values respectively throughout the myocardium.
Figure 5.16 (i) [a] and [c] show ES in vivo radial strain images estimated with NCC and MAP-
Adapt respectively. Radial wall thickening (positive strain magnitudes) at ES was observed in all
estimated results. No significant difference was observed between NCC and MAP-Adapt
estimates. Figure 5.16 (iii) [a] and [c] show ES in vivo circumferential strain images estimated
with NCC and MAP-Adapt respectively. Circumferential strain estimated by NCC is less
homogeneously negative (segments 1, 2, 3 and 6) compared to MAP-Adapt result. Although
improvement was achieved with MAP-Adapt method (Figure 5.16 (iii) [c]), presence of erroneous

positive circumferential strain values was still observed in the posterior segments (segments 2, 3

and 4).

Figure 5.16 (iii) [b] and [d] show segmental radial strain curves with NCC and MAP-Adapt
respectively. Circumferential strain curves with NCC and MAP-Adapt methods are presented in
Figure 5.16 (iii) [b] and [d] respectively. Radial estimation results indicate smooth temporal
variation as expected from a healthy murine model without any significant difference between
NCC and MAP-Adapt approach. Improved performance with MAP-Adapt was noted in
circumferential strain curves. Regularized strain curves (Figure 5.16 (iii) [d]) achieved better
homogeneity and smoothness (segments 2 and 4) in temporal variation across six segments
compared to NCC results (Figure 5.16 (iii) [c]). Note that the median value of the required

iterations by MAP-Adapt for estimating these results were three.
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Figure 5.16 (i) PSAX B-mode image at end-diastole with segmentation scheme. (ii) Radial strain estimation

results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt respectively. In vivo

segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. (iii) Circumferential strain

estimation results. ES in vivo myocardial strain images with (a) NCC and (c) MAP-Adapt

respectively. In vivo segmental strain curves with (b) NCC and (d) MAP-Adapt respectively. | =

median maximum required iterations by MAP-Adapt.
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5.5 Adaptive Bayesian Regularization Achieves Optimal Performance in
Simulation and in vivo Experiments

5.5.1 Numerical Phantom Simulation Studies

The results from uniform phantom simulation study show that Bayesian based methods
outperform conventional NCC approach both in terms of motion estimation accuracy and
elastographic signal-to-noise ratio. These findings corroborate those previously reported in
literature [1, 28]. The key finding from the uniform phantom error analysis study demonstrates
that the MAP-Adapt approach achieved concurrent estimation quality improvements in both axial
and lateral directions. With higher fixed number of iterations (e.g. MAP-Iter=5), we achieve
similar improvements in only the axial displacement and strain estimation accuracy when
compared to MAP-Adapt [observe that performance of MAP-Adapt is close to that of MAP-Iter=5
in Figure 5.5 (a) — (c) and Figure 5.6 (a)]. However, this improvement was achieved at the expense
of severe performance degradation in the lateral direction [Figure 5.5 (d) — (f) and Figure 5.6 (b)].
Bayesian regularization [1] and other optimization based motion estimation approaches [10, 29-
34] were designed to limit the occurrence of large displacement errors or peak-hopping errors by
imposing a motion continuity constraint as a regularization term. Estimation bias introduced
through the regularization term have been shown to reduce estimation variance significantly.
However, for Bayesian regularization, over-regularization tends to have a negative impact on
lateral estimation resulting in higher bias and variance as shown in this paper. To gain further
insight into the mechanism of over-regularization, posterior pdfs after each iteration of Bayesian
regularization was carefully studied. After each iteration, as information from neighboring blocks
further away from adjacent blocks gets incorporated into the posterior pdf through the likelihood
function presented in equation (5.4). This process leads to peak-hop error filtering by attenuating

false correlation peaks while enhancing the peak closest to the dominant peak of the neighboring
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matching blocks. With additional iterations, the probabilities get concentrated more around the
dominant correlation peak. Therefore, after an optimal number of iterations, the posterior pdf from

Bayesian regularization is expected to resolve into a 2-D unimodal Gaussian distribution.

However, if the number of iterations is set beyond the optimal operating point, the lateral
projection of the posterior pdf becomes a delta function due to the lower lateral sampling frequency
of RF data. Thus, when sub-sample displacement estimation is performed through interpolation
(parabolic/Sinc), estimation error incurred, as displacements are not resolved with the necessary
sub-sample precision. These errors appear as vertical bands in lateral displacement maps (Figure
5.3 and Figure 5.4 (ii) [c]) and as regions with very high and low strains in lateral strain maps
(Figure 5.3 and Figure 5.4 (ii) [g]). The impact of over-regularization on lateral displacement and
strain is more pronounced at lower strains than higher strains (compare Figure 5.3 (ii) [c] to Figure
5.4 (ii) [c]). Probable reasons are due to the diffuse nature of initial pdf at higher strains that require
larger number of iterations to converge to an optimal unimodal pdf and the requirement of higher
subsample precision at lower strains. Keeping this principle in mind, in our proposed approach we
limit the number of unnecessary regularizations by locally determining the optimal iteration
requirement based on RF signal decorrelation. RF signal decorrelation was evaluated by assessing
the correlation information between pre-RF and motion-compensated post-RF data after each
iteration. This correlation information had been previously used as a framework for performance
evaluation of strain imaging algorithms [35]. In this work, we use it to optimize Bayesian
regularization. Regions with higher signal decorrelation utilize larger number of iterations when
compared to regions with lower signal decorrelation. Thus, possibilities of over-regularization
were reduced, and improved motion estimation accuracy was achieved in the lateral direction as

shown in Figure 5.5 (d) — (f) and Figure 5.6 (b) while maintaining comparable estimation accuracy
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in the axial direction. Axial and lateral strain filters estimated with MAP-Adapt corroborates trends
previously reported in literature [21, 36, 37]. However, note that the bandpass nature of the lateral
strain filter was not observed for MAP-Iter=5 as a result of over-regularization. Based on these
results, we claim that a trade-off exists between axial and lateral strain estimation accuracy, which

was achieved with our proposed MAP-Adapt method.

The results from our inclusion phantom study further substantiates our claim. Higher
number of iterations might an attractive approach for MAP-Iter method to estimate axial strain
images (Figure 5.7 (i) and Figure 5.8 (1)). However, this results in negative impact on lateral strain
images with “vertical banding” artifacts seen in Figure 5.7 (ii) and Figure 5.8 (ii). Further
understanding of the proposed method can be attained by closely analyzing Figure 5.8 and Figure
5.11. Figure 5.8 (1) [f] and Figure 5.8 (ii) [f] show that MAP-Iter=1 was able to refine most of the
peak-hopping errors present in the NCC results. MAP-Adapt approach identifies locations, which

were not corrected with initial iterations by using p'” and increases iterations for those specific

locations (Figure 5.11 (b)). As a result, peak-hopping errors were corrected and at same time sub-
sample precision was maintained in the lateral direction, achieving a balance between under-
regularization and over-regularization. Quantitative results presented in Figure 5.9 corroborate the
aforementioned qualitative observations. The results from CNR. study also show the superior
performance of MAP-Adapt methods over other approaches (Figure 5.10). Although MAP-Iter=5,
produces higher lateral CNR. value at very small deformations (0.25 % strain), visual inspection
reveals that the inclusion was not discerned in the estimated strain image. At such low deformation,
strain estimation performance is limited by electronic and quantization noise [21]. In our study,
we utilized a lateral interpolation factor of two. The resultant lateral sampling frequency together

with absence of phase information and resolution limitations of ultrasound imaging systems further
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impede reliable tracking of small lateral deformations [14, 38, 39]. Therefore, all methods incurred
very high lateral strain estimation errors up to 0.5 % lateral strain. The quality of MAP-Adapt
lateral strain images can be improved further with the application of median filtering. However,
for the comparative study, we followed an approach similar to [40], which did not use any median

filtering for numerical simulation study.

Impact of parameter selection on the performance of MAP-Adapt approach was
investigated using uniform phantom simulation. Proper choice of improvement tolerance and
decorrelation threshold provide a balance between under-regularization and over-regularization.
Smaller value of ¢ will drive the algorithm towards higher regularization as evident from the
improvement in axial strain estimation accuracy [Figure 5.12 (a)]. However, this improvement will
be at a cost of performance degradation in the lateral direction at low strain and corresponding
increased number of iterations [Figure 5.12 (b) — (c)] resulting in over-regularization. Optimal
choice of { will impede over-regularization with concurrent axial and lateral strain estimation
quality at a reasonable computational load. Figure 5.12 (d) — (f) show that smaller value of
decorrelation threshold results in higher strain estimation error with performance approaching that
obtained with NCC. These results suggest that t should be chosen high enough to inhibit any
instances of under-regularization. With t and { fixed, no variation in strain estimation quality was
observed with the range of iteration tolerance evaluated in this work. However, Figure 5.12 (i)
suggests that proper choice of TOL will result in computationally efficient implementation with

improved estimation quality.

5.5.2 FEA Canine Simulation Study

Accurate lateral displacement estimation is crucial for cardiac elastography or strain

imaging applications [41]. Myocardial polar strains (radial, longitudinal and circumferential) are
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derived using axial, lateral and shear strain components. Thus, estimation error in any of these
strain tensors directly impacts the quality of myocardial strain images [42]. The results from this
study show that MAP-Adapt achieves optimal regularization thus producing the best radial and
longitudinal strain images at ES (Figure 5.13 and Table 5.3). The data presented in Figure 5.14
show that over-regularization severely deteriorates the lateral estimation quality. This result
corroborates with our findings from numerical phantom simulation study. The degradation of
lateral estimation quality severely impacted the longitudinal strain estimation with a 65% increase
in median error compared to MAP-Adapt method. The quality degradation for radial strain
estimation is not as severe as the longitudinal case because the axial component has more

contributions to radial strain than lateral strain [27].

5.5.3 In vivo Cardiac Strain Imaging Study

In this study, in vivo feasibility of MAP-Adapt method has been shown. End-systolic strain
is a recommended parameter to investigate cardiac dynamics [43]. Physiologically inaccurate
radial and longitudinal strain values from NCC were corrected by MAP-Adapt method (Figure
5.15). For PSAX view, higher improvement was observed in circumferential strain image quality
when compared to radial strain result with MAP-Adapt (Figure 5.16). However, some erroneous
positive strain values were still retained in the posterior segments (segments 2, 3 and 4). These
errors can be attributed to lateral strain estimation quality as it contributes more to circumferential
strain estimation [44]. Segmental analysis was done for in vivo estimated strains and segmental
temporal strain curves were presented for PLAX and PSAX views respectively. Overall, both NCC
and MAP-Adapt resolved clinically relevant details [43] such as peak positive strain, ES strain,
and post systole strain reliably. However, smoother temporal variation was achieved using the

Bayesian approach when compared to NCC which corroborates our previous findings [27].
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Adaptive behavior of the proposed method was also observed in these in vivo examples.
Imaging frame rates for PLAX and PSAX data acquisition were 235 Hz and 347 Hz respectively.
As the median heart rate of the mouse under anesthesia was 340 bpm, it was expected that higher
signal decorrelation will be observed while performing inter-frame motion estimation with PLAX
data compared to PSAX data. Accordingly, MAP-Adapt required higher number of iterations
(four) for PLAX data motion estimation compared to PSAX case (three). We anticipate that this
adaptive nature will be crucial when the proposed Bayesian regularization will be used in clinical

cardiac imaging as optimal performance will be automatically achieved based on input RF data.

One other important finding is that better lateral estimation with MAP-Adapt was observed
in PLAX view compared to PSAX view (errors in the circumferential strain image). Moreover, we
did not observe significant difference in estimation quality in PSAX view between NCC and MAP-
Adapt for radial strain tensors. These findings might be attributed to lower incurred inter-frame
lateral motion due to higher imaging frame rate [42, 45, 46]. One possible solution might be the
use of dynamic frame skip [2], by using a short frame skip when strain rate is high and a long

frame skip when strain rate is low.
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Chapter 6

Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging

In Chapter 04 of this dissertation, we demonstrated the use of Bayesian regularization in
the context of a multi-level block matching-based (BM) cardiac strain imaging (CSI) and reported
significant performance improvement over conventional 2-D normalized cross-correlation
coefficient (NCC) based method without regularization. The proposed algorithm incorporated
information from a local spatial neighborhood to regularize 2-D NCC matrices. In this chapter?,
we extend the Bayesian regularization algorithm into the temporal domain with an underlying
assumption of smooth variation in velocity over a short span of time during tissue deformation [1]
and validate it using simulation and in vivo cardiac dataset. Note that all previous reports on

Bayesian strain imaging utilized information only from its spatial neighbors [1-9].

This chapter reports on two main contributions. First, two schemes for incorporating
temporal domain information into our Bayesian regularization algorithm is proposed and
implemented into a Lagrangian cardiac strain estimation framework [10]. Second, we report results
from a comparative study involving conventional NCC, spatial and spatiotemporal Bayesian
regularization using data from finite-element-analysis (FEA) canine cardiac simulations and ten

healthy murine hearts collected in vivo.

SRashid Al Mukaddim, Nirvedh H. Meshram, Ashley M. Weichmann, Carol C. Mitchell and Tomy Varghese,
“Spatiotemporal Bayesian Regularization For Cardiac Strain Imaging: Simulation and in vivo Results.” IEEE Open
Journal of Ultrasonics, Ferroelectrics, and Frequency Control, under review (2021)
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6.1 Basic Principle of Spatiotemporal Bayesian Regularization (STBR)

For mathematical details on conventional spatial Bayesian regularization (SBR), please
refer to Chapter 05 of this dissertation. In this section, we present the basic principles utilized to
extend SBR into the temporal domain. For STBR, we consider a set of four consecutive RF frames
for displacement estimation. First, inter-frame 2-D NCC estimation is performed, resulting in three
similarity metric images (SMI) for each BM location. Specifically, for a BM location x, we have
past, present and future temporal unregularized SMIs denoted by SMI(z-1,x), SMI(z,x) and
SMI(#+1,x) respectively with SMI(¢,x) being regularized by the proposed STBR method as shown
in Figure 6.1. To enforce temporal continuity assuming smooth variation of velocity over time,
we propose two schemes for incorporating temporal information into Bayesian regularization as

described below.

Legends
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Figure 6.1 Neighborhood definition for spatial and spatiotemporal Bayesian regularization. The SMI being
regularized is denoted by the blue circle while its spatial and temporal neighbors are indicated by

red and green circles, respectively. Each rectangle represents a SMI.

6.1.1 Spatial then Temporal Bayesian (STBR-1)

In this scheme, first one iteration of SBR is applied on all SMIs independently resulting in

spatially regularized SMI for each BM location. Then, temporal regularization is done by
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considering these regularized SMI as the prior with a likelihood function incorporating information

from its past and future temporal neighbors using following equation.

Pr(u, |u, )ocPr(uy [u)xPr(u |u,) (6.1)

where, Pr(u |u, )is the posterior PDF after temporal regularization, u, is the set of
displacement vectors from a temporal neighborhood, NV, defined with two adjacent neighbors (past
and future) and Pr (u, [u, )is PPD after one iteration of SBR. To define the temporal likelihood
function [ Pr (u,, |u,)], models like those reported in Chapter 05 are utilized and a 2-D temporal

Gaussian term with a width vector o is defined. Finally, the regularized displacement estimator

determines the integer displacement vector as the point where Pr (u, |u,, ) maximizes is obtained

using sub-sample precision through interpolation. We term this method as the STBR-1

displacement estimator.

6.1.2 Simultaneous Spatiotemporal Bayesian Regularization (STBR-2)

In the second scheme, STBR is done simultaneously on the present unregularized SMI

using following equation.

Pr(u, [u, )ocPr(u, |u)xPr(u,) (6.2)

where, Pr(u, |u, )is the posterior PDF after spatiotemporal regularization, u,, is the set of

displacement vectors from a spatiotemporal neighborhood, N, defined with two adjacent

temporal neighbors (past and future) and four adjacent spatial neighbors for the present SMI (left,

right, top and bottom). To define the spatiotemporal likelihood function [Pr (u,. |u,) ], models

like those reported in Chapter 05 are utilized with appropriate use of Gaussian terms for
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modulation depending on either spatial or temporal neighbors. Finally, maximum a posteriori

(MAP) principle was applied on Pr (u, |u, ) to determine integer displacement with sub-sample

precision obtained through interpolation. This approach is termed as the STBR-2 displacement

estimator in this chapter.

6.2 Experimental Protocols to Validate STBR for Cardiac Strain Imaging

6.2.1 Cardiac Finite-Element Analysis Simulation Study

To evaluate the performance of STBR for CSI, a simulation study was performed using a
3-D FEA model of a healthy canine heart [11, 12] containing complex cardiac deformation over
a cardiac cycle. A detailed description of FEA analysis, scatterer generation and simulation was
previously described in Chapter 04 and 05. Cardiac cycle RF data (125 frames) in 2-D parasternal
long axis (PLAX) US imaging view extracted from the 3-D model was generated using a frequency
domain US simulation program [13]. Five independent scatterer realizations were simulated for
statistical analysis. For each scatterer realization, two sets of RF datasets were generated by
superimposing additive, white Gaussian noise (AWGN) on the simulated noise-less RF signals to
achieve sonographic signal-to-noise (SNRs) of 30 dB and 0 dB respectively [5]. AWGN profiles
were generated relative to the noiseless RF signal derived from a 2-D region of interest (ROI)

placed on the anterior wall.

6.2.2 In vivo Murine Cardiac Imaging

In vivo feasibility study was done by collecting cardiac RF data from 10 BALB/CJ mice (7
male, 3 female, median age = 10 weeks, acquired from Jackson Labs, Bar Harbor, ME, USA) using
a Vevo 2100 LAZR imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada). All in-vivo

procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the
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University of Wisconsin-Madison. High frequency US imaging was performed using a MS 550D
transducer (center frequency = 40 MHz). We acquired 1000 frames in PLAX view, which were
stored in inphase/quadrature (IQ) format for off-line CSI. Electrocardiogram (ECG) and
respiratory signals were continuously monitored and simultaneously acquired during RF data
collection. Finally, one cardiac cycle of RF data (sampling frequency = 512 MHz) was extracted
from the collected 1000 frames by applying ECG and respiratory gating and used for CSI. Further

details regarding data collection can be found here [10].

6.2.3 STBR Algorithm Implementation

The STBR algorithm is incorporated into a multi-level BM algorithm [14] and
implemented using MATLAB and CUDA to run on a GPU (NVIDIA Tesla K80) for cross-
platform acceleration. Figure 6.2 presents pseudocode for the STBR algorithm where RFData and
SearchParameters are structures containing four consecutive RF frames and displacement

estimation parameters, respectively. The algorithm is as follows.

1) For all input frames, RF data are up-sampled using a 2-D windowed Sinc interpolator [15,
16] and a multi-level pyramid are formed by data decimation.

2) At each level, inter-frame 2-D-NCC are estimated for all frames and stored in a 3-D SMI
store array.

3) A First-in-First-out (FIFO) buffer and a 3-D Bayesian store array are initialized on GPU and
CPU memory respectively for Bayesian regularization.

4) STBR is applied iteratively for all SMI using either equation 4 or 5. Perform Scaling in
Figure 2 denotes the normalization applied on SMIs to generate the PDFs. In this chapter, we
have limited STBR to a single iteration thus requiring only past and future neighbors for PPD

calculation. However, to integrate information beyond adjacent temporal neighbors, we need
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more than four RF frames as an input to the algorithm resulting in higher memory
requirement on the GPU. To avoid illegal memory access on GPU, the FIFO buffer holds
required SMI data on GPU device memory for a specific time, t while results after performing
regularization on GPU are copied back to the CPU Bayesian store array.

5) Finally, subsample motion estimation [15] with 2-D Sinc interpolation is done and RF data
prepared (by aligning and stretching [17]) for the next level.

6) Repeat steps (1) — (5) for the given number of levels.

Algorithm 1 Spatiotemporal Bayesian Regularization

1: procedure SPATIOTEMPORALBAYES(RFData, SearchParamters)

2 Perform up-sampling using Sinc Interpolation

3 Multi-level pyramid formation by data decimation

4 for level = 0 to TotallLevels do

5 Initialize 3D SMI Store Array
6: Time Loop for inter-frame 2D-NCC
7
8
9

Initialize First-in-First-out (FIFO) Buffer
Initialize Bayesian Store Array

: for iteration = 0 to max do
10: Perform Scaling
11: for time,t = 0 to totaltime do
12: Update FIFO Buffer
13: Perform Spatiotemporal Regularization
14: Bayesian Store Array < PPD
15: end for
16: end for
17: Time Loop for SubSample Motion Estimation
18: Aligning and stretching for next level
19: end for

20: end procedure

Figure 6.2 Algorithm for STBR incorporated into a multi-level block matching displacement estimator. SMI

= Similarity metric image, PPD = Posterior Probability Density.

6.2.4 Lagrangian Cardiac Strain Imaging

Lagrangian radial and longitudinal strain tensors were derived using a cardiac strain
estimation framework proposed in Chapter 04. Inter-frame displacement estimation was
performed with the multi-level BM algorithm [14] with and without regularization (SBR, STBR-

1 and STBR-2). The displacement estimation parameters used for FEA simulation and in vivo
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studies are summarized in Table 6.1. For STBR, width vector o was set empirically. Default axial
and lateral direction o¢ values for FEA simulation and in vivo study were [0.01,0.01] and [0.1,0.1]
respectively. A mesh of 24000 points covering the entire myocardium was generated by utilizing
user-defined segmentation of epicardial and endocardial walls of the heart at end-diastole (ED) of
a cardiac cycle (R-Wave of ECG) [10, 18]. The cardiac mesh was then used to integrate the inter-
frame incremental displacements over time based on a Lagrangian description of motion starting
from ED [2, 9, 10]. Before accumulation, 2-D median filtering was performed to remove any
outliers from the estimated displacement vectors. The Lagrangian strain tensor (E) was derived by
applying a least squares (LS) strain estimator on the accumulated displacement vectors to estimate
axial, lateral and shear strain components [10, 19]. Axial and lateral LS strain estimator kernel
dimensions were 0.5 mm and 1 mm respectively. Finally, radial (e) and longitudinal (e;) strains
were derived by applying a coordinate transformation on E. Further details regarding strain
estimation and coordinate transformation can be found here [10]. End-systole (ES) strain images
and segmental strain curves from both FEA simulation and in vivo mice data were investigated to

qualitatively compare NCC, SBR, STBR-1 and STBR-2.

Table 6.1 Displacement Estimation Parameters for FEA Simulation and in vivo Studies

Value Unit
Number of levels 3 -
RF data sampling factor [Axial: Lateral] 1:2 -
Axial decimation factors [3,2,1] -
Lateral decimation factors [2,1,1] -
Axial kernel length [84, 54, 1] Wavelengths
Lateral kernel length [15,12,10] A-lines
Kernel overlaps [Axial, Lateral] [10*,90] %
Median filter kernel [Axial, Lateral] [5** x 5] pixels
Subsample estimation 2-D Sinc -

* In vivo axial kernel overlap was 50 %
** In vivo median filter axial kernel dimension was 7 pixels
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6.2.5 Quantitative Performance Analysis

Theoretical strain tensors were derived from the 3-D cardiac FEA simulation and used to
compare the strain estimation accuracy among NCC, SBR, STBR-1 and STBR-2 respectively.
Quantitative performance analysis was done by evaluating the strain bias (%), normalized strain

error (%) or A_ (%) and total temporal relative error (TTR) as follows.

Strain bias (%) = E[¢,,, — € (6.3)

estimated ]

P
Z | 8[!‘14(3 - 8estimated

A, (%)= = x 100 (6.4)

P
i=1

8[}"”6

T
Z |€U‘u€ (t) o gestimated (t)|
TTR (%) == x 100 (6.5)

T
D | @)
t=1

where, & and ¢

” uimaea denOte estimated and theoretical strain while ¢, () and ¢, .. (?)
denote the estimated and true strain value, respectively, P is the number of points in the cardiac

mesh (24000 points) and T is the total number of frames in a cardiac cycle (125 frames). We

computed strain bias and A, for each method at all time points and for all scatterer realizations and

concatenated the results in 1-D arrays for statistical analysis resulting in a sample size of 620 [20].
TTR quantified the resemblance between the true and estimated strain curves per scatterer
realizations resulting in a sample of size of 5 [10]. One-way analysis of variance (ANOVA) with
the Bonferroni multiple comparison test was done to determine statistical significance among
NCC, SBR, STBR-1 and STBR-2. Statistical analysis was performed using MATLAB Statistics

and Machine Learning Toolbox Version 11.4 (R2018Db).
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To compare the algorithm performance in vivo, strain filters [21] were derived for the
accumulated radial and longitudinal strains at all time points for each method by performing
stochastic precision analysis [21-23]. First, the local elastographic signal-to-noise (SNR.) was

computed as follows.

SNR, = £ (6.6)
(o2

where, 4 and ¢ the mean and standard deviation of strain values within a 5 pixel x 9 pixel ROI
centered at each cardiac mesh point. The window was translated over the entire cardiac mesh and
calculation was repeated for all time points within a cardiac cycle resulting into strain-SNRe pairs

which were used to generate a 2-D histogram representing the SNRe PDF, f(SNR_,¢) anda 1-D
histogram representing the strain PDF, f(g). Then, f(SNR,, &) was normalized by f(g)
resulting into the conditional PDF, f(SNR_,¢). Finally, the strain filter or the conditional

expected value of the SNR. was derived using the follow equation.

E(SNR,|¢) = IO“’ SNR, x f(SNR _|¢) dSNR 6.7)

To perform comparative analysis among NCC, SBR, STBR-1 and STBR-2, we qualitatively

compared the corresponding strain filters. Additionally, E(SNR,|¢) values for radial and

longitudinal strains at 46 % and -17.69 % strains were compared using ANOVA with the

Bonferroni multiple comparison test following an approach reported in [24].

6.3 STBR Performance Assessment using Cardiac FEA Simulation Study

Figure 6.3 (a) — (¢) show end-systole (ES) radial strain images obtained using FEA model,

NCC, SBR, STBR-1 and STBR-2, respectively. Input RF data for this example had SNRs value of
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0 dB. Radial thickening of myocardium at ES was observed in the FEA result with positive strain
values. The myocardium was divided into six equal segments denoted as segments 1 — 6
respectively in Figure 6.3 (a). Segments 1 — 6 denote anterior base, anterior mid, anterior apex,
posterior apex, posterior mid and posterior base segments respectively. NCC had noisy estimates
in apical and posterior segments (3 — 6) with spuriously elevated positive and negative strain
values. Regularization (SBR, STBR-1 and STBR-2) reduced strain noise when compared to NCC

in segments 3 — 6. STBR-1 suffered from under-estimation in anterior base (segment 1).

Segmental radial strain curves corresponding to Figure 6.3 are summarized in Figure 6.4.
Figure 6.4 (a) — (f) compare the segmental radial strain curves estimated using NCC, SBR, STBR-
1 and STBR-2 for anterior base, anterior mid, anterior apex, posterior apex, posterior mid and
posterior base segments respectively against FEA results. NCC results had higher deviation from
the FEA in apical and posterior segments (Figure 6.4 (c) — (f)). Significant improvement in strain
estimation quality was achieved with SBR, STBR-1 and STBR-2 methods. Note that STBR
improved the quality further in posterior mid and posterior base segments compared to SBR
(observe the STBR-2 results in Figure 6.4 (¢)). However, STBR-2 underestimated radial strain in

anterior base segment corroborating the finding from Figure 6.3.

Figure 6.5 (a) — (e¢) show ES longitudinal strain images obtained using FEA, NCC, SBR,
STBR-1 and STBR-2, respectively. Longitudinal shortening of myocardium at ES was observed
in the FEA result with uniform negative strain values. NCC provides noisy estimates in apical and
posterior segments (3 — 6) indicated spurious high positive negative strain values. All
regularization methods (SBR, STBR-1 and STBR-2) reduced strain noise compared to NCC in
segments 3 — 6 with better qualitative agreement with FEA result. No significant qualitative

difference was observed among SBR, STBR-1 and STBR-2 results.
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Figure 6.3 Qualitative comparison of ES radial strain estimation for FEA simulation. (a) — (e) denote FEA,
NCC, SBR, STBR-1 and STBR-2 results, respectively. SBR = Spatial Bayesian regularization,

STBR-1 = Spatial then temporal Bayesian regularization and STBR-2 = Simultaneous STBR.

Comparison of segmental longitudinal strain curves shown in Figure 6.5 are summarized
in Figure 6.6. Figure 6.6 (a) — (f) compare the segmental longitudinal strain curves estimated using
NCC, SBR, STBR-1 and STBR-2 for the 6 segments versus FEA results. NCC results had higher
deviation from the FEA in apical and posterior segments (Figure 6.6 (c¢) — (f)). Significant
improvement in strain estimation quality was achieved with SBR, STBR-1 and STBR-2 methods

when compared to NCC with significant difference among each other.
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Figure 6.4 Qualitative comparison of radial strain curves for FEA simulation. Radial strain curves
comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, (c)

anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments respectively.
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Figure 6.5 Qualitative comparison of ES longitudinal strain estimation for FEA simulation. (a)— (e) denote

FEA, NCC, SBR, STBR-1 and STBR-2 results, respectively. SBR = Spatial Bayesian regularization,

STBR-1 = Spatial then temporal Bayesian regularization and STBR-2 = Simultaneous STBR.
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Figure 6.6 Qualitative comparison of longitudinal strain curves for FEA simulation. Longitudinal strain

curves comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid,

(c) anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments respectively.

Figure 6.7 summarizes the comparison results for strain estimation bias. Figure 6.7 (a) —

(b) show radial strain estimation bias for input RF data with SNRs= 30 dB and 0 dB respectively.

Both spatial and STBR methods had lower radial strain estimation bias with statistical significance
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(p<0.001). For 30 dB data, STBR-2 had the lowest mean estimation bias (0.16%) but was not
significantly different than SBR (0.17%). For 0 dB data, SBR had the lowest mean estimation bias
with statistical significance with all other methods (p<0.01). Figure 6.7 (¢) — (d) show longitudinal
strain estimation bias for input RF data with SNRs = 30 dB and 0 dB respectively. All
regularization methods had lower longitudinal strain estimation bias with statistical significance
(p<0.001) compared to NCC with no statistically significant difference among each other. For
example, for 30 dB data, mean e estimation bias for NCC, SBR, STBR-1 and STBR-2 were 1.01

%, 0.18%, 0.15% and 0.18% respectively.
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Figure 6.7 Strain estimation bias comparison (n = 620). (a) — (b) Radial strain estimation bias for input RF
data with SNRs = 30 dB and 0 dB respectively. (c) — (d) Longitudinal strain estimation bias for input
RF data with SNRs = 30 dB and 0 dB respectively. Red line and black square in the box-whisker

plot denote median and mean statistics, respectively.
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Figure 6.8 summarizes the comparison results for normalized strain error or A, (%). Figure
6.8 (a) — (b) show radial strain A_ (%) for input RF data with SNRs= 30 dB and 0 dB respectively

while Figure 6.8 (¢) — (d) show longitudinal strain A_ (%) for input RF data with SNRs= 30 dB

and 0 dB respectively. All regularization methods performed significantly better than NCC

(p<0.001) with no statistically significant differences among each other.

Figure 6.9 (a) — (b) show radial TTR for input RF data with SNRs= 30 dB and 0 dB
respectively while Figure 6.9 (¢) — (d) show longitudinal TTR for input RF data with SNRs= 30
dB and 0 dB respectively. All regularization methods performed significantly better than NCC.
For 30 dB data, SBR had the lowest TTR for radial and longitudinal strains. For 0 dB data, STBR-
2 and SBR had the lowest TTR for radial and longitudinal strains, respectively. However, the
values did not differ significantly (For SNRs = 0 dB, mean e: TTR for NCC, SBR, STBR-1 and

STBR-2 were 169.44%, 32.07%, 30.04% and 27.70% respectively).

Figure 6.10 shows the variation of strain estimation bias as a function of the width vector
ot for both STBR-1 and STBR-2 algorithms. Figure 6.10 (a) — (b) show the variation of radial
strain estimation bias as a function of o¢ for STBR-1 and STBR-2 respectively while Figure 6.10
(c) — (d) show the variation of longitudinal strain estimation bias. Width vector = [0.01, 0.01] had

the lowest bias for all cases therefore used as a default parameter in FEA study.
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Figure 6.8 Normalized strain error or A_(%) comparison (n = 620). (a) — (b) Radial A,(%) for input RF data
with SNRs = 30 dB and 0 dB respectively. (c) — (d) Longitudinal A,(%) for input RF data with SNRs

=30 dB and 0 dB respectively.
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Figure 6.9 Total temporal relative (TTR) error comparison (n = 5). (a) — (b) Radial TTR for input RF data

with SNRs = 30 dB and 0 dB respectively. (c) — (d) Longitudinal TTR for input RF data with SNRs =

30 dB and 0 dB respectively.
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Figure 6.10 Variation of strain estimation bias as a function of g: (n = 125). (a) — (b) Variation of radial
strain estimation bias as a function of o: for STBR-1 and STBR-2 respectively. (b) Variation of

longitudinal strain estimation bias as a function of o: for STBR-1 and STBR-2 respectively.

6.4 In vivo Murine Cardiac Strain Imaging for STBR Validation

Figure 6.11 (a) — (d) show ES radial strain images obtained using NCC, SBR, STBR-1 and
STBR-2, respectively for a healthy mouse heart. Radial thickening of myocardium at ES was
observed in all results. However, NCC depicts patches of spuriously high non-physiological
negative strain values throughout the entire myocardium. All regularization methods significantly
reduced these erroneous strain values providing performance improvement. The best strain
distribution was achieved with STBR-2 in vivo (observed regions indicated with arrows)

correlating with the physiological expectation from a healthy mouse heart.
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Figure 6.11 /n vivo end-systole radial strain image comparison. (a) — (d) Radial strain images estimated
with NCC, SBR, STBR-1 and STBR-2 respectively. Segments 1-6 shown in Fig. 11 (a) denote
anterior base, anterior mid, anterior apex, posterior apex, posterior mid and posterior base

segments respectively.

Figure 6.12 (a) — (f) compare segmental radial strain curves estimated using NCC, SBR,
STBR-1 and STBR-2 for the 6 segments respectively. NCC without regularization resulted in
noisy radial strain curves. For example, observe the peak shift and temporal jitter noise in anterior
mid and posterior apex segments respectively. Significantly better radial strain curves were
obtained using Bayesian regularization (both spatial and spatiotemporal). STBR-2 had the best
quality curves quantified in terms of physiological relevant strain variation and temporal

smoothness thus corroborating the ES strain image quality observation from Figure 6.11.
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Figure 6.12 In vivo qualitative strain comparison of radial curves. Radial strain curves comparison among

NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, (c) anterior apex, (d)

posterior apex, (e) posterior mid and (f) posterior base segments respectively.

Figure 6.13 (a) — (d) show ES longitudinal strain images obtained using NCC, SBR, STBR-

1 and STBR-2, respectively for a healthy mouse heart. Longitudinal shortening of myocardium at

ES was observed in all results. However, NCC result had patches of spuriously high
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unphysiological positive strain values throughout the entire myocardium with higher concentration
in the apical and posterior base segments. All regularization methods significantly reduced those
erroneous strain values providing performance improvement. The most homogeneous strain
distribution was achieved with STBR-2 in vivo with significant improvement in the apical regions

(observed regions indicated with arrows).
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Figure 6.13 /In vivo end-systole longitudinal strain image comparison. (a) — (d) Longitudinal strain images

estimated with NCC, SBR, STBR-1 and STBR-2 respectively.

Figure 6.14 (a) — (f) qualitatively compare segmental radial strain estimated using NCC,
SBR, STBR-1 and STBR-2 for anterior base, anterior mid, anterior apex, posterior apex, posterior
mid and posterior base segments respectively. NCC resulted in noisy longitudinal strain curves in
the apical [Figure 6.14 (c)] and posterior base [Figure 6.14 (f)] segments. SBR provided significant
performance improvement in all segments except anterior apex [Figure 6.14 (c¢)] with reduced ES

longitudinal strain value. STBR-2 had the best quality curves quantified in terms of physiological
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relevant strain variation and temporal smoothness thus corroborating the ES strain image quality

observation from Figure 6.13.
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Figure 6.14 In vivo qualitative comparison of longitudinal strain curves. Longitudinal strain curves

comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, (c)

anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments respectively.
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Figure 6.15 summarizes the results for in vivo stochastic precision analysis performed using
ten healthy mice for radial (Figure 6.15 (a)) and longitudinal (Figure 6.15 (b)) strain filter
comparisons, respectively. The strain filter presented in Figure 6.15 denote the mean of strain
filters estimated individually for ten mice. Strain filter comparsion illustrate performance
improvement with Bayesian regularization for both radial and longitudinal strain when compared
to NCC. SBR and STBR-1, where the strain filters were coincident with each other indicating no

performance improvement with STBR-1. However, STBR-2 produced the strain filters with higher

E(SNR,

g) values for both e, and e; strains. Figure 6.15 (c) — (d) illustrate the comparison of

E(SNR,

€) values for each method at 46 % accumulated radial strain and -17.69 % accumulated

longitudinal strain, respectively. All regularization methods performed significantly better than

NCC (p<.0.05). Note that STBR-2 had the higher E(SNR,

g) values both for radial and

longitudinal strains even though it was not statistically significant when compared to SBR and

STBR-1. The mean E(SNR, |g) values at 46% accumulated radial strain for NCC, SBR, STBR-1

and STBR-2 were 5.03, 9.43, 9.42 and 10.58, respectively. The mean E(SNR, |g) values at -

17.69% accumulated longitudinal strain for NCC, SBR, STBR-1 and STBR-2 were 7.24, 11.68,

12.06 and 13.62, respectively.

Figure 6.16 (a) — (b) show the variation of in vivo radial strain and longitudinal estimation
performance as a function of ot. For both STBR-1 and STBR-2, we have generated strain filters

with o¢ = [0.01,0.01] and [0.1,0.1] respectively. Figure 6.16 show that o¢ = [0.1,0.1] provided

higher E(SNR,

£) values for both methods with best performance achieved with STBR-2 when

assessed for radial and longitudinal strain results.
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Figure 6.16 Variation of in vivo strain estimation performance as a function of ot. (a) — (b) Radial and

longitudinal strain estimation performance as a function of ot.

Table 6.2 presents computational times for NCC, SBR, STBR-1 and STBR-2 for inter-
frame displacement estimation. The results are measured in seconds and evaluated for a mouse RF
dataset. The final RF data dimension was 6016x440 and mean execution time for 49 frames

covering a complete cardiac cycle is reported. Bayesian methods required more computational

time than NCC with highest time required by STBR-1.

Table 6.2 Summary of Computational Time (Seconds)

NCC SB STB-1 STB-2
73.20 114.30 316.15 156.86

6.5 Discussion on the Findings from STBR Validation Studies

In this chapter, we evaluated two STBR approaches (STBR-1 and STBR-2) and compared
them against conventional NCC and spatial Bayesian regularization (SBR) using FEA and in vivo
small animal studies both qualitatively and quantitatively. The key findings from these studies are

summarized as follows.
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a) Both spatial and spatiotemporal regularization methods performed significantly better than
NCC for both FEA simulation and in vivo studies.

b) For the FEA simulation study, STBR-1 and STBR-2 performed as good as SBR in most of
the cases. Few cases resulted in lower estimation errors with STBR however without any
statistical significance.

c) Incorporation of temporal domain information resulted in better ES strain images and
smoother strain curves in vivo.

d) STBR-2 is the preferred spatiotemporal regularization scheme because of lower errors in

FEA simulation and higher SNRe in vivo.

Qualitative comparison of ES radial strain images and temporal strain curves derived from
RF data with SNRs = 0 dB showed the robustness of Bayesian regularization to handle significant
noise corruption when compared to NCC. Posterior segments had higher noise compared to
anterior segments in the FEA simulation because of the modelled frequency dependent acoustic
attenuation and noise profile calculation with data derived from anterior segments. However, better
qualitative agreement with FEA results in posterior segments (apex, mid and base) with STBR-1
and STBR-2 were seen compared to NCC and SBR indicating benefit of using temporal
regularization for low SNR regions [Figure 6.3 (c) — (d) and Figure 6.4 (d) — (f)]. No statistically
significant difference between SBR and STBR methods for SNRs = 30 dB data was observed.
These results suggest that for high SNR input data, additional regularization with temporal
information may not be necessary. Additionally, spatial then temporal regularization (STBR-1)
resulted in under-estimation of radial strain in apical anterior base segment (Figure 6.3 (d) and 1.4
(a)) suggesting iterative application of Bayesian regularization with only temporal information

might result in undesirable bias due to “over-regularization [2]”. SBR, STBR-1 and STBR-2
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longitudinal results demonstrated good agreement with FEA results compared to NCC with no
clear distinction between them [Figure 6.5 and Figure 6.6]. These results might be attributed to the
simulated higher lateral sampling frequency (500 A-lines) and lateral Sinc interpolation used
before displacement estimation [16]. These qualitative findings correlate well with the quantitative
evaluation of strain bias, normalized strain error and total temporal relative error. Note that, higher
TTRs with STBR-1 compared to SBR and STBR-2 resulted from underestimation with only
temporal regularization. Overall, these results suggest that STBR-2 regularization is preferred over
STBR-1 when performing STBR for CSI. Additionally, adaptive application of either SBR or
STBR-2 might be a preferred approach for Bayesian regularization depending on local signal

decorrelation and input RF data for future studies.

In vivo qualitative results suggest benefits from using temporal information for CSI
observed with uniform strain distribution and strain curves with smooth temporal variation and
physiological relevance (Figure 6.11 — Figure 6.14). Quantitative stochastic analysis results
(Figure 6.15) corroborate the qualitative findings with STBR-2 demonstrating the best

performance in terms of E(SNR

¢) . Even though STBR-2 had higher radial and longitudinal
E(SNR, |g) values compared to all other methods, the results were not statistically significant

possibly due to small sample size (n = 10) and the choice of a conservative post-hoc test
(Bonferroni) for multiple comparisons after ANOVA for four algorithms. Additionally, the best
performance with STBR-2 correlates with our conclusion from FEA simulation study where

STBR-2 is preferred over STBR-1 due to lower errors.

We also demonstrated performance variation with the choice of ¢ (temporal Gaussian

width vector) in FEA simulation and in vivo experiments [Figure 6.10 and Figure 6.16] with
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optimal o¢ being 0.01 and 0.1, respectively. One interesting observation from these results is the
dependence of 6 to image acquisition frame rate (simulation = 250 Hz for canine heart and in vivo
= 213 Hz mouse heart) suggesting lower o¢ for data collected at higher frame rate. Our previous in
vivo STBR for carotid strain imaging also corroborates the finding (optimal 6¢ = 0.005 for carotid
artery with imaging frame rate = 538 Hz). o can be considered as a tuning parameter controlling
the type of displacements allowed by the model [note that likelihood function construction]. Lower
o enforce higher temporal continuity and vice versa. Thus, it is reasonable to expect the optimal
choice to be tissue and imaging frame rate specific. In this dissertation, we set 6¢ empirically, a
potential drawback which must be addressed before employing STBR for future in vivo studies.
Possible solutions include dynamic variation of o based on local signal decorrelation [2, 25, 26]
or designing tissue-specific presets for displacement estimation parameters as suggested by

Ashikuzzaman et al. [27].

Computational timing analysis showed that STBR methods require more time to execute
when compared to NCC or SBR (Table 6.2). Additional timing requirement stems from the
referred time loops shown in Figure 6.2 [Algorithm 1]. There are several methods to improve
computation efficiency. For example, currently NCC calculation is done within a temporal for loop
which calls a NCC computation CUDA kernel having 2-D blocks of threads. The temporal loop
can be replaced with 3-D blocks of threads achieving better parallelization. However, higher

memory requirement will be a potential challenge while adopting this approach.

Several state-of-art US imaging techniques with plane or diverging wave imaging have
also been implemented for cardiac and vascular strain imaging applications [28-30]. These

techniques achieve significantly higher frame rates compared to focused line-by-line image
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acquisition approaches. We anticipate more robust Bayesian regularization for these applications

using both spatial and temporal domain information simultaneously.

One limitation of the current study is the use of data only from healthy models for both
FEA and in vivo studies. To better understand the robustness and efficacy of the STBR, diseased
heart models [20] (e.g., ischemia, dyssynchrony) should also be considered in future studies.
Another limitation is the algorithm implementation for linear arrays as opposed to phased array
transducers. This must be addressed before possible application of STBR to in vivo human studies.
Finally, our analysis was limited to a single iteration of temporal regularization thus sampling
information only from its immediate past and future neighbors. Iterative application will be

investigated in future studies to better understand the effect of neighborhood size for STBR.
List of References

[1] R. Al Mukaddim, A. M. Weichmann, C. C. Mitchell, and T. Varghese, "Ultrasound strain
imaging using spatiotemporal Bayesian regularized multi-level block matching method,"
in Medical Imaging 2021: Ultrasonic Imaging and Tomography, 2021, p. 116020R.

[2] R. Al Mukaddim, N. H. Meshram, and T. Varghese, "Locally optimized correlation-guided
Bayesian adaptive regularization for ultrasound strain imaging," Physics in Medicine &
Biology, vol. 65, p. 065008, 2020.

[3] B. Byram, G. E. Trahey, and M. Palmeri, "Bayesian speckle tracking. Part I. An
implementable perturbation to the likelihood function for ultrasound displacement

estimation," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.
60, pp. 132-143, 2012.

[4] B. Byram, G. E. Trahey, and M. Palmeri, "Bayesian speckle tracking. Part II: biased
ultrasound displacement estimation," /EEE transactions on ultrasonics, ferroelectrics, and
frequency control, vol. 60, pp. 144-157, 2012.

[5] D. M. Dumont and B. C. Byram, "Robust tracking of small displacements with a Bayesian
estimator," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.
63, pp. 20-34, 2015.



[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

208

M. McCormick, N. Rubert, and T. Varghese, "Bayesian regularization applied to
ultrasound strain imaging," IEEE Transactions on Biomedical Engineering, vol. 58, pp.
1612-1620, 2011.

C. C. Mitchell, R. Al Mukaddim, A. M. Weichmann, K. W. Eliceiri, M. E. Graham, and T.
Varghese, "Carotid Strain Imaging with a Locally Optimized Adaptive Bayesian
Regularized Motion Tracking Algorithm," in 2020 IEEE International Ultrasonics
Symposium (IUS), 2020, pp. 1-4.

R. Al Mukaddim and T. Varghese, "Improving Ultrasound Lateral Strain Estimation
Accuracy using Log Compression of Regularized Correlation Function," 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2020.

R. Al Mukaddim and T. Varghese, "Cardiac Strain Imaging with Dynamically Skipped
Frames: A Simulation Study," in 2020 [EEE International Ultrasonics Symposium (IUS),
2020, pp. 1-4.

R. Al Mukaddim, N. H. Meshram, C. C. Mitchell, and T. Varghese, "Hierarchical Motion
Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo
Validation," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.

66, pp. 1708-1722, 2019.

H. Chen and T. Varghese, "Three-dimensional canine heart model for cardiac
elastography," Medical physics, vol. 37, pp. 5876-5886, 2010.

A. D. McCulloch and R. Mazhari, "Regional myocardial mechanics: integrative
computational models of flow-function relations," Journal of Nuclear Cardiology, vol. 8,
pp. 506-519, 2001.

Y. LiandJ. A. Zagzebski, "A frequency domain model for generating B-mode images with
array transducers," IEEFE transactions on ultrasonics, ferroelectrics, and frequency control,

vol. 46, pp. 690-699, 1999.

H. Shi and T. Varghese, "Two-dimensional multi-level strain estimation for discontinuous
tissue," Physics in Medicine & Biology, vol. 52, p. 389, 2007.

N. H. Meshram and T. Varghese, "GPU accelerated multilevel Lagrangian carotid strain
imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 65,
pp. 1370-1379, 2018.



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

209

M. M. McCormick and T. Varghese, "An approach to unbiased subsample interpolation
for motion tracking," Ultrasonic imaging, vol. 35, pp. 76-89, 2013.

R. G. Lopata, M. M. Nillesen, H. H. Hansen, 1. H. Gerrits, J. M. Thijssen, and C. L. De
Korte, "Performance evaluation of methods for two-dimensional displacement and strain

estimation using ultrasound radio frequency data," Ultrasound in medicine & biology, vol.
35, pp. 796-812, 2009.

C. Ma and T. Varghese, "Lagrangian displacement tracking using a polar grid between
endocardial and epicardial contours for cardiac strain imaging," Medical physics, vol. 39,
pp. 1779-1792, 2012.

I. Zervantonakis, S. Fung-Kee-Fung, W. Lee, and E. Konofagou, "A novel, view-
independent method for strain mapping in myocardial elastography: eliminating angle and
centroid dependence," Physics in Medicine & Biology, vol. 52, p. 4063, 2007.

M. De Craene, S. Marchesseau, B. Heyde, H. Gao, M. Alessandrini, O. Bernard, ef al., "3D
strain assessment in ultrasound (straus): A synthetic comparison of five tracking
methodologies," IEEE transactions on medical imaging, vol. 32, pp. 1632-1646, 2013.

T. Varghese and J. Ophir, "A theoretical framework for performance characterization of
elastography: The strain filter," IEEE transactions on ultrasonics, ferroelectrics, and
frequency control, vol. 44, pp. 164-172, 1997.

E. A. Bunting, J. Provost, and E. E. Konofagou, "Stochastic precision analysis of 2D
cardiac strain estimation in vivo," Physics in Medicine & Biology, vol. 59, p. 6841, 2014.

C. Ma and T. Varghese, "Analysis of 2-d ultrasound cardiac strain imaging using joint
probability density functions," Ultrasound in medicine & biology, vol. 40, pp. 1118-1132,
2014.

V. Sayseng, J. Grondin, and E. E. Konofagou, "Optimization of transmit parameters in
cardiac strain imaging with full and partial aperture coherent compounding," [EEE

transactions on ultrasonics, ferroelectrics, and frequency control, vol. 65, pp. 684-696,
2018.

B. H. Friemel, L. N. Bohs, K. R. Nightingale, and G. E. Trahey, "Speckle decorrelation
due to two-dimensional flow gradients," IEEE transactions on ultrasonics, ferroelectrics,
and frequency control, vol. 45, pp. 317-327, 1998.



210

[26] M. Omidyeganeh, Y. Xiao, M. O. Ahmad, and H. Rivaz, "Estimation of strain elastography
from ultrasound radio-frequency data by utilizing analytic gradient of the similarity
metric," IEEE transactions on medical imaging, vol. 36, pp. 1347-1358, 2017.

[27] M. Ashikuzzaman, C. J. Gauthier, and H. Rivaz, "Global Ultrasound Elastography in
Spatial and Temporal Domains," IEEE transactions on ultrasonics, ferroelectrics, and
frequency control, vol. 66, pp. 876-887, 2019.

[28] M. Cikes, L. Tong, G. R. Sutherland, and J. D’hooge, "Ultrafast cardiac ultrasound
imaging: technical principles, applications, and clinical benefits," JACC: Cardiovascular
Imaging, vol. 7, pp. 812-823, 2014.

[29] S. Korukonda, R. Nayak, N. Carson, G. Schifitto, V. Dogra, and M. M. Doyley,
"Noninvasive vascular elastography using plane-wave and sparse-array imaging," /[EEE

transactions on ultrasonics, ferroelectrics, and frequency control, vol. 60, pp. 332-342,
2013.

[30] J. Grondin, V. Sayseng, and E. E. Konofagou, "Cardiac strain imaging with coherent
compounding of diverging waves," IEEE transactions on ultrasonics, ferroelectrics, and
frequency control, vol. 64, pp. 1212-1222, 2017.



211

Chapter 7

Dynamic Frame Skip and Log Compressed Correlation Function for

Ultrasound Strain Imaging

This chapter focuses on two signal processing approaches: (a) dynamic frame skip (DFS)
and (b) log compression of the correlation function in the context of improving Bayesian
regularization for ultrasound strain imaging. In Section 7.1%, we investigate if the DFS algorithm
can provide improved estimation of cardiac strain tensor components (radial and longitudinal
strain) when compared to a conventional inter frame tracking approach. In Section 7.2°, we
investigative the utility of log compression of the regularized correlation function to tackle over-
regularization artifacts seen with Bayesian regularization (refer to Chapters 04 and 05 for more

details).

7.1 Dynamic Frame Skip (DFS) for Cardiac Strain Imaging

In Chapter 04, we proposed and validated a cardiac strain imaging framework with
Bayesian regularization using simulation and in vivo data. In this sub-section, we are primarily
focused on investigating the feasibility of using dynamic frame skip (DFS) to further improve
cardiac strain imaging accuracy. Optimal frame selection to improve strain estimation quality has
been investigated by several groups. Jiang et al. [1] proposed to select optimal frames by assessing

a displacement quality metric [2]. Xia et al. [3] used a one-predication-one-correction method for

4 Rashid Al Mukaddim, and Tomy Varghese, “Cardiac Strain Imaging with Dynamically Skipped Frames: A
Simulation Study.” IEEE International Ultrasonics Symposium Proceedings, 2020.

5 Rashid Al Mukaddim, and Tomy Varghese, “Improving Ultrasound Lateral Strain Estimation Accuracy using Log
Compression of Regularized Correlation Function.” 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), IEEE, 2020.
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dynamic frame pairing in quasi-static elastography. Zayed et al. [4] utilized principal component
analysis and a multi-layer perceptron classifier to choose suitable frame pairs. In this chapter, we
extend the DFS approach reported by Daniels and Varghese [5], and previously used by
McCormick et al. [6] for carotid strain imaging to cardiac strain imaging. Dynamic frame skip
relies on automatically selecting pre- and post-deformation frames with sufficient deformation to
ensure reliable 2-D tracking of both axial and lateral displacement vectors. McCormick et al. [7]
applied DFS for carotid strain imaging by determining frame skip (FS) criterion based on absolute
axial strain in a rectangular region of interest (ROI) of the image. The ROl was chosen by
discarding top and bottom portions of the image such that it only contained the arterial wall [7].
For cardiac applications, we are interested in optimizing the strain estimation accuracy within the
myocardial wall. Thus, three ROIs were placed at anterior, apical, and posterior segments of
myocardium at end-diastole (ED) to automatically determine DFS criterion. FS was determined
from the two axial strain criteria defined as follows. The first criterion was to increase skip until

mean absolute ROI strain (ROIMAA) exceeds a threshold, mmax. Second, a limit was imposed on the

percentage of ROI pixels, ROler greater than zmax. The maximum allowed FS was 5 frames. After
tracking was done with an optimal FS, estimated axial and lateral displacements were used to
update the positions of anterior, apical and posterior DFS ROIs to evaluate skip criteria for
following frame pairs. The algorithm initially utilizes the previous FS which was increased if it
satisfied all the above-mentioned criteria. Otherwise, FS was decreased until all criteria were
satisfied. The DFS algorithm is summarized in Figure 7.1. In this chapter, tmax and ROl values

were empirically chosen to be 1.5 % and 10 % respectively.
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7.1.1 Simulation Study to Investigate Feasibility of DFS
7.1.1.1 Cardiac Strain Imaging with Bayesian Regularization

DFS was integrated into our cardiac strain imaging pipeline with Bayesian regularization-
based hierarchical block-matching algorithm for displacement estimation reported in Chapter 04.
Default setup for displacement estimation was three levels of tracking, one iteration of Bayesian
regularization with no lateral interpolation. Axial kernel dimensions for three levels were 8A, 6A,
and 5A respectively while lateral kernel dimensions were 15, 13 and 11 A-lines respectively.
Kernels had an overlap of 10 % and 50 % in axial and lateral directions respectively. 2-D
windowed Sinc interpolation [8] was used to determine sub-sample displacement estimates.
Lagrangian strain estimation was performed after delineating the myocardium and integrating
incremental displacement estimates over a cardiac cycle [9]. A modified Akima piecewise cubic
Hermite interpolation was used to interpolate estimates for skipped frames. Strain estimation was
also done with skip = 0, termed as continuous frame skip (CFS) to compare with DFS. For ease of
interpretation of results in the cardiac coordinate system, the cardiac strain tensor was derived
using Lagrangian strain tensor through coordinate transformation. Further details regarding the
CSI framework can be found in Chapter 04. Additionally, the impact of the maximum iteration

number for Bayesian regularization on DFS performance was also investigated.

7.1.1.2 Canine Cardiac Deformation Simulation Study

A 3-D finite element analysis (FEA) canine cardiac deformation model [10] was used for
the simulation study. Here 125 frames of radiofrequency (RF) data in parasternal long axis view
covering one cardiac cycle of deformation were simulated. A 128-element linear array was
simulated using a frequency domain ultrasound imaging program [11] and used to collect 500 A-

lines at a sampling frequency of 78.8 MHz for each frame. A Gaussian-shaped transmit pulse with



215

8 MHz center frequency and 80% fractional bandwidth was used. To quantitatively compare

performance between CFS and DFS, total temporal relative (TTR) error (%) was computed using:

T

D | ES()-TS()|
TTR (%) == %100 (7.1)

Z| TS(t)|

where estimated and ground-truth strain were denoted by ES and TS respectively, ¢ is the time

index. Further details regarding the simulation framework can be found in Chapter 04.

7.1.2 Experimental Findings from the DFS Feasibility Study

Regional analysis was performed by dividing the myocardial wall into six segments based
on American Heart Association (AHA) classification to evaluate the performance of DFS.
Segments 1 — 6 represent anterior base, anterior mid, anterior apex, posterior apex, posterior mid
and posterior base segments, respectively. Figure 7.2 shows the comparison between DFS and
CFS for estimation of regional axial displacement temporal curves. No apparent performance
difference was observed between DFS and CFS. The comparison results between DFS and CFS
for estimation of regional lateral displacement temporal curves are shown in Figure 7.3. Note that
DFS showed improved qualitative agreement with ground truth when compared to CFS.
Quantitative analysis shows that DFS reduced axial and lateral displacement TTR of CFS by 24.89
% and 46.07 % respectively. Figure 7.4 shows the comparison between DFS and CFS for
estimation of regional temporal radial strain. No apparent performance difference was observed,
expect for segment 4 where DFS results were comparatively better than CFS. Figure 7.5 presents
comparison between DFS and CFS for estimation of regional temporal longitudinal strain. In
segment 1 and 4, DFS had comparatively better agreement with true strain results when compared

to CFS. TTRs comparison between DFS and CFS as a function of the maximum regularization
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iteration value is presented Table 7.1. DFS with a single iteration provided the best performance
in terms of strain TTRs (shown in bold font in Table 7.1). With increased number of iterations,
both DFS and CFS resulted in higher TTRs attributed to the over-regularization artifact previously
discussed in Chapter 05. However, DFS still maintained lower errors than CFS. One solution to

tackle over regularization would be employing adaptive Bayesian regularization as reported in

Chapter 05. One additional solution is also presented in Section 7.2 of this chapter.
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Figure 7.2 Regional axial displacement estimation performance comparison between DFS and CFS.
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Figure 7.5 Regional longitudinal strain estimation performance comparison between DFS and CFS.

Table 7.1 TTR Comparison Between DFS and CFS: No Lateral Interpolation

Iteration 1 Iteration 2 Iteration 3
DFS CFS DFS CFS DFS CFS
Axial 18.37 22.39 26.42 21.89 22.19 25.00
Lateral 29.92 30.89 26.87 50.19 33.09 61.71
Radial 17.32 22.35 23.56 26.25 22.17 30.6
Longitudinal 14.52 15.87 22.26 22.83 26.61 31.77
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7.1.3 Discussion on the use of the DFS Algorithm for CSI

In section 7.1, we have investigated the impact of using DFS for cardiac strain imaging
using a realistic 3-D deformation model of the canine heart. DFS and CFS performed similarly in
estimating axial displacement due to phase information and higher sampling frequency of RF data
along the axial or beam direction. Performance improvement was more evident in lateral
displacement estimation results which could be for following three reasons. First, magnitude
dependence of strain estimation quality as shown by Varghese ef al. [12] using strain filter. Second,
tracking small deformations using envelope signals results in strain quality degradation [13].
Third, Bayesian regularization performs better under higher deformation (between 1% to 5%) [14].
Improved displacement quality resulted in accurate axial and lateral strain estimates [Table 7.1].
Consequently, components of cardiac strain tensor (radial and longitudinal strain) had fewer
estimation errors when compared to CFS [Table 7.1]. Note that the performance improvements in
apical segments (segments 3 — 4) shown in Figure 7.4 and Figure 7.5, is attributed to improved
lateral-shear strain estimation with the DFS method. These results suggest that DFS can be
potentially utilized to enhance cardiac strain imaging quality. However, these are preliminary
results and several other factors such as kernel dimension optimization, performance in the case
of noise corrupted RF data, lateral interpolation factor and simulation models of diseased hearts
(e.g., ischemic) should be investigated to decide conclusively if there are clear benefits of using
DFS over CFS for cardiac strain imaging. For example, higher lateral interpolation might be
sufficient to reduce some of the errors seen with CFS. In future studies, DFS will be applied for in

vivo murine cardiac strain imaging.
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7.2 Log Compression of the Regularized Correlation Function

Bayesian regularization for ultrasound strain imaging proposed by McCormick et al. [15]
can be iteratively applied to improve the quality of displacement estimation. At each iteration, new
data from kernels located further from the current grid location are incorporated into the likelihood
function resulting in attenuation of the magnitude of any secondary random peak. After the desired
number of iterations, the probability values get concentrated around the peak that is similar to the
dominant peaks of neighboring kernels. Thus, the PPD converges to a 2-D unimodal Gaussian
distribution as shown in Figure 7.6 (a). Though significant improvement can be achieved in the
axial direction, we observed that the PPD shown in Figure 7.6 (a) incurs lateral estimation errors
in the estimation of subsample lateral displacements through interpolation (e.g.,
parabolic/cosine/Sinc) due to the delta like profile along the lateral direction [blue curve in Figure
7.6 (c)]. This behavior is due to over-regularization, where the lateral displacement subsample
resolution gets bounded by the sub-line resolution of up-sampled RF data. One computationally
intensive solution would be to interpolate RF data with a high interpolation factor [16] in the lateral
direction. For instance, Byram et al. [17] used RF data with sampling frequency of 10 GHz to
avoid using any subsample estimators. Another robust approach is to adaptively vary desired
iteration as discussed in Chapter 05. Here, we propose a logarithmic transformation of PPD
[Figure 7.6 (b)] as a low-cost alternative to recover the lateral displacements with improved
subsample resolution. As shown in Figure 7.6 (c), Log(PPD) does not shift the mode of PPD but

enables a more manageable data presentation using interpolation.
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Figure 7.6 (a) PPD after Bayesian regularization. (b) Log of the PPD. (c) Lateral profiles of PPD along the

integer axial shift location corresponding the peak.

7.2.1 Experimental Protocol to Investigate the Feasibility of Log Compressed
Regularized Correlation Function

7.2.1.1 Displacement and Strain Estimation

Three levels of tracking using a hierarchical 2-D BM algorithm with Bayesian
regularization is used in this study [9, 18, 19]. RF data were up sampled by a factor of 2 in both
axial and lateral directions. Final level used a spatial kernel dimension of 1 wavelength by 10 A-
lines. Axial and lateral kernel overlaps were 10% and 90% respectively. At each level, three
iterations of Bayesian regularization were performed. Subsample estimation was performed with
parabolic interpolation using both PPD and Log(PPD) for comparison. These approaches will be

termed as “parabolic” and “log+parabolic” in this chapter. No additional filtering was performed
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on the estimated displacements. A linear least squares with kernel dimension of 3.2x3.2 mm was

then used for strain estimation [20].

7.2.1.2 Numerical Simulation Study

Numerical finite-element analysis (FEA) models of uniform and inclusion phantoms under
3% and 7% uniaxial deformation were used for our comparative study. Ultrasound imaging was
performed using a 128 element 1-D linear array (element dimension = 10x0.15 mm?) operating at
a center frequency of 8.0 MHz. The array was modelled using a frequency-domain ultrasound
simulation program [11]. Delay-and-sum beamforming was used to generate each A-line of RF
data. Ten independent scatterer distributions were utilized for statistical analysis with a paired z-
test used to compute significance. Displacement bias, variance and normalized strain error, Ac were

calculated in a ROI around the focus of the transducer (20 mm) using the following equations.

bias(um) =E||r, - 7,[] (7.2)
variance(um’) = var(r, — ,) (7.3)
Ae = (ep5 —&15)" |2 &1 ) ¥ 100 (7.4)

where, 7. and 7 denote estimated and FEA displacement respectively. In equation (7.4), ¢,,and
& denote estimated and FEA strain respectively. Additionally, signal-to-noise ratio (SNR) and

contrast-to-noise ratio (CNR) were calculated in the uniform and inclusion phantom respectively

7.2.2 Results from the Simulation Comparative Study

Due to the low lateral sampling frequency, the impact of over-regularization is more readily
observed in lateral estimation results. We present qualitative results in Figure 7.7 and Figure 7.8

showing lateral estimation results for 3% and 7% deformation respectively. “Vertical banding”
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artifacts are clearly visible in displacement and strain images obtained with parabolic interpolation
[Figure 7.7 (a) and (c)]. Improvement in image quality with reduction in banding artifacts were
achieved with log+parabolic processing [Figure 7.7 (b) and (d)]. Log+parabolic displacement
image [Figure 7.8 (a)] showed smoother transitions from low to high values compared to parabolic
alone [Figure 7.8 (b)]. Thus, the log+parabolic strain image Figure 7.8 (d)] achieved improved
homogeneity than the parabolic strain image [Figure 7.8 (c)]. Table 7.2 summarizes the
quantitative analysis results. No significant difference was observed in the axial estimation
accuracy. However, log+parabolic had significantly lower lateral displacement bias, variance and
strain errors when compared to parabolic (p < 0.001) for both the low and high deformation. SNR
results are summarized in Table 7.3. Significant improvement in lateral SNR were achieved with

the log+parabolic approach (p < 0.001).
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Figure 7.7 Uniform phantom at 3% deformation. Panels (a) and (b) show lateral displacement images with

parabolic interpolation before and after log compression. Panels (c) and (d) show corresponding

strain images.

Table 7.2 Comparison of Estimation Accuracy Before and After Log Compression of PPD

Uniform Phantom Results (rn = 10)

3% Applied Deformation

7% Applied Deformation

Parabolic Log+Parabolic  Parabolic Log+Parabolic

Bias (um) 2.43+£0.04 2.40 +£0.04 5.33+0.08 5.28 +£0.08
Axial

Jitter (um?) 0.002£9.11x10°  0.003£9.11x10”° 0.01£3.09x10*  0.01£3.15x10*
Estimates*

Straingmor (%)  1.62 +0.03 1.58 +£0.03 1.28 £0.02 1.27 £0.02

Bias (um) 1291 +0.11 5.86 + 0.18 12.86 £ 0.31 10.78 + 0.36
Lateral

Jitter (um?) 0.22 £ 0.005 0.05 + 0.003 0.25+0.01 0.17 £ 0.01
Estimates

Straingror (%)  56.33 £0.49 15.17 £ 0.48 13.94+0.26 10.37 £ 0.42

*No difference along axial directions



Depth (mm)l

Depth (mm)

-15

-10

10

15

Parabolic

Log+Parabolic

(mm)

L (TR

L

ST

1AL

il i

Iff

i

I

llm

(il

111k

Wi

k "nqnln-". 1 e

L PR,

i
o 4 s

i

T

"”'.IP“.L.;

. 1l

-15

-10

415

10

|H i

| |
i {1 (1 VTN
[

i

Ll

-10

0 10
Width (mm)

-10A 0 10
Width (mm)

0.5

226

Figure 7.8 Uniform phantom at 7% deformation. Panels (a) and (b) show lateral displacement images with

parabolic interpolation before and after log compression, while (c) and (d) show corresponding strain

images.
Table 7.3 SNRs* Before and After Log Compression of PPD
3% Deformation 7% Deformation
Methods Axial Lateral Axial
Parabolic 33.76+0.18 4.51+0.08 35.98+0.15 14.83+0.17
Log+Parabolic 33.92+0.18 14.61+0.27 36.04+0.15 17.61+0.36

*SNR results are in decibels (dB)

Figure 7.9 (a) — (b) show 3% axial strain images using parabolic and log+parabolic

estimation respectively, while Figure 7.9 (c) — (d) show the corresponding images for 7% axial

strain. No difference was observed among these results due to presence of phase information and

high sampling frequency in the axial direction. CNR values in Table 7.4 corroborate this

observation. Figure 7.10 and Figure 7.11 show lateral estimation results for the 3% and 7%
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deformation, respectively. Note that the inclusion appearance is distorted due to the banding
artifacts in the parabolic results [Figure 7.10 (a) and (c)]. Improved lateral strain images with
clearer inclusion boundary delineation was achieved with log and parabolic processing [Figure
7.10 (b) and (d)]. Observe that the 7% lateral strain image with parabolic interpolation had banding
artifacts both in background and inside the inclusion [Figure 7.11 (a) and (c)]. These issues were
resolved with log+parabolic processing [Figure 7.11 (b) and (d)]. Significant improvement in

lateral CNR was achieved with log and parabolic (p < 0.001).
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Figure 7.9 Axial strain images from an inclusion phantom. Panels (a) and (b) show 3% axial strain, while
(c) and (d) show 7% axial strain with parabolic interpolation before and after log compression. Green

ROI = target, Red ROI = background.
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Table 7.4 CNRs* Before and After Log Compression of PPD

3% Deformation 7% Deformation
Methods Axial Lateral Axial Lateral
Parabolic 15.21+0.83 1.31+0.13 17.41£1.63 3.13+0.22
Log+Parabolic 15.28+0.83 3.12+0.28 17.49+1.63 4.79+0.41

*CNR results are in decibels (dB)
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Figure 7.10 Inclusion phantom at 3% deformation. Panels (a) and (b) show lateral displacement images

with parabolic interpolation before and after log compression. Panels (c) and (d) show

corresponding strain images.

In this section, the use of log compressed regularized NCC to reduce banding artifacts due
to over-regularization was investigated. Peaks similar to a Delta function in the lateral projection
of PPD cannot be represented with conventional interpolation schemes. Our results demonstrate
that log compression enables improved subsample estimation with significant reduction of lateral

banding errors without additional computational burden or bias. As sub-sample displacement
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estimation is more critical at lower when compared to higher deformations, the benefit of our
proposed approach is therefore more evident at lower strains. Future work will focus on using
cosine and Sinc interpolation [8] and in vivo validation. Furthermore, this approach will be
compared against adaptive Bayesian regularization to benchmark its performance against more

sophisticated algorithms developed to tackle over-regularization.
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Figure 7.11 Inclusion phantom at 7% deformation. Panels (a) and (b) show lateral displacement images
with parabolic interpolation before and after log compression, while (c) and (d) show corresponding

strain images.
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Chapter 8

Real-Time in vivo Photoacoustic Imaging of Myocardial Ischemia

In recent years, efforts have concentrated on in-vivo quantitative imaging by capitalizing
on the absorption spectra of endogenous contrast agents such as hemoglobin [1, 2], leading to the
use of dual-wavelength photoacoustic imaging (PAI) to estimate blood oxygen saturation (% sO2).
Differing absorption spectra of oxyhemoglobin (HbO2) and deoxyhemoglobin (HHb) enables
quantification of blood oxygenation with this approach [3]. Real-time PAI and its sensitivity to
blood oxygenation levels coupled with the recent development of PA integrated micro-ultrasound
systems [4] make it suitable for diagnosis and monitoring of myocardial ischemia in-vivo. This
chapter® focuses on the use of such a commercially available PA imaging system (Vevo 2100
LAZR, FUJIFILM VisualSonics, Inc., Toronto, Canada) for the diagnosis and monitoring of
myocardial ischemia in murine models.

Initial reports of PAI for murine cardiovascular dynamics was reported in [5]. They utilized
a 30-MHz linear array to image the beating heart of athymic nude mice at ~50 frames per second.
Li et al. (2011) tried to establish a correlation between the extent of myocardial ischemia and
variation of PA signal intensity in rats submerged in water under tracheal intubation, on a section
of the left ventricular wall. They used a wavelength of 532 nm and a single element transducer
with center frequency of 3.5 MHz for reception [6]. They reported an exponential decay in the PA
signal intensity with time after left anterior descending (LAD) artery occlusion. In this chapter, we
report on the utilization of a commercially available dual-wavelength PAI solution to generate

parametric maps of blood oxygen saturation, % sOz that were overlaid on high resolution high-

6 Rashid Al Mukaddim, Allison Rodgers, Timothy A. Hacker, Andrew Heinmiller and Tomy Varghese, “Real-time in
vivo photoacoustic imaging in the assessment of myocardial dynamics in murine model of myocardial ischemia.”
Ultrasound in Medicine and Biology, vol. 44, no. 10, pp. 2155-2164 (2018) PMCID: PMC6135705
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frequency ultrasound images of the myocardium and show that PAI is sensitive to changes in

myocardial oxygenation associated with acute myocardial ischemia.

8.1 Murine Models and Photoacoustic Data Analysis

8.1.1 Murine model of Myocardial Ischemia

Ten 10-12 weeks old male BALB/CJ mice obtained from Jackson Labs (ME, USA) were
studied using PAI and high frequency ultrasound (HFUS) imaging. Myocardial ischemia was
established in each murine model using the procedure described below. All in vivo procedures

were performed under an approved protocol by the Institutional Animal Care and Use Committee

(IACUC) at the University of Wisconsin-Madison.

Following induction of isoflurane anesthesia (3%), the mouse was intubated with an 18-gauge
catheter and placed on a ventilator at 120-130 breaths per minute with a stroke volume of 150 pL
and maintained on 2% isoflurane. A left lateral incision through the fourth intercostal space was
made to expose the heart. After visualizing the left coronary artery, a 7-0 clear prolene suture was
placed through the myocardium in the anterolateral wall and secured [7, 8]. Coronary artery
entrapment was confirmed by observing blanching of the distal circulation (ventricular apex) and
ECG changes indicative of myocardial ischemia. The lungs were over inflated, and the ribs and
muscle layers were closed by absorbable sutures. The skin was closed by additional suturing using

6-0 clear nylon or silk sutures. The mouse was then recovered from anesthesia and extubated.

8.1.2 Photoacoustic (PA) and High-frequency Ultrasound Imaging

Longitudinal variations of perfusion and cardiac function of the heart after ischemia, was
evaluated using PA and HFUS. Imaging sessions were performed before LAD ligation (baseline)

and at 30 minutes, 80 minutes, 120 minutes and 24 hours after LAD ligation. The objective of
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imaging after LAD ligation (from 30 minutes to 24 hours) was to study the ability of PAI in the
early detection of ischemia in the ventricular wall. All imaging was performed using a Vevo LAZR
imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada). During imaging sessions, mice
were anesthetized using 1.5 % isoflurane and a constant flow of oxygen was maintained. Hair was
removed from the chest region using depilatory cream to ensure better transmission of optical
energy. Mice were placed supine on a heated imaging platform for imaging with continuous

monitoring of physiological parameters.

2-D PAI was performed in “Oxy-Hemo” mode to obtain parametric maps of oxygen
saturation (% sO2) and hemoglobin (Hbt) concentration in the anterior myocardium. In this mode,
an automated imaging sequence is used to perform dual-wavelength PAI at 750 and 850 nm.
Parametric maps of % sO2 and Hbt are then generated using the algorithm reported in [4, 9, 10],
implemented on the system. Mice hearts were imaged in a parasternal long axis (PLAX) view
using a LZ 400 transducer (FUJIFILM VisualSonics, Inc., Toronto, Canada) with broadband
frequency range from 18 — 38 MHz and operating at a center frequency of 30 MHz. The imaging

parameters used for PAI are presented in Table 8.1.

Table 8.1 PAI Presets

Imaging Parameter Set Value
PA Gain 52dB
2-D Gain 27 dB
Image Width 10.36 mm
Image Depth 15.00 mm
Image Depth Offset 2.00 mm
Focus Depth 10.00 mm
Persistence 10
Correct Energy On

Threshold Hbt 20 %
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A large amount of centrifuged acoustic gel was applied on the chest and in the transducer
cavity to ensure that no air bubbles were present in the imaging plane. This precaution was taken
to avoid reverberation artifacts which can interfere with PA images. Special attention was also
paid to keeping the heart in the imaging plane such that the anterior myocardium or interventricular
septum or anterior wall LV lies within a depth of 9-11 mm where laser energy is focused. The
transducer was also placed horizontally keeping the skin surface at a depth of 7.5 mm or higher to
avoid any reverberation artifacts from the skin whenever possible. Manual time gain compensation
(TGC) was applied to improve the signal to noise ratio at this depth setting and to compensate for
the attenuation of light as its energy drops with depth in the tissue. The imaging parameters were
optimized by experimenting on two mice models in the group and then saved as a preset in the
scanner for the remainder of the animal models. Figure 8.1 presents a representative Oxy-Hemo
PA image of the mouse heart using the above-mentioned preset. Note that our study focused only
on the anterior myocardium, since most of the light energy is absorbed here leaving very little
energy for posterior myocardium to generate any reasonable PA estimates which is also evident
from Figure 8.1. 3-D PAI was then performed using the acquisition motor with a scanning range
of 6 mm and step size of 0.16 mm resulting in 37 2-D slices/volume. Persistence (frame averaging)
of 10 was also maintained during 3-D PA acquisition. Figure 8.2 illustrates a representative case

of 3-D Oxy-Hemo PA image.
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Figure 8.1 Representative Oxy-Hemo PA Image of Mice Heart at baseline (before LAD ligation). Left panel
shows the ultrasound image while right panel shows the corresponding Oxy-Hemo PA image. The
region outlined in pink represents the region of interest (ROI). The anterior myocardium is placed
within a depth range of 9-11 mm with the skin surface at 7 mm maintained parallel to the transducer
face. The reverberation artifact (indicated by green arrows) is seen at a depth of 13-14 mm caused
due to the PA signal being reflected between the skin layer and transducer face. High oxygen
saturation (% sOz2) (in red) is visible in the anterior myocardium within the ROI. No estimates are

obtained in posterior myocardium (black region in the Oxy-Hemo Image).

HFUS was performed using two transducers - MS 550D (broadband frequency range of 22
— 55 MHz) operating at center frequency of 40 MHz and LZ 400 transducer (broadband frequency
range of 18 — 38 MHz) operating at center frequency of 30 MHz. 2-D B-mode images were
collected in both PLAX and short axis (PSAX) views using MS 550D while LZ 400 was used to
collect only PSAX views. Image width, depth, gain and TGC were adjusted carefully to optimize
image quality by maximizing the signal-to-noise ratio and adjusting for the attenuation of light
with depth. A 235 Hz frame rate was maintained over all ultrasound only imaging sessions. This

frame rate ensured optimal temporal resolution and captured the motion of the rapidly beating
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mouse heart without distortion which is critical in performing 2-D echocardiographic
measurements. Cine loops containing 1000 frames per imaging plane were stored digitally for

further analysis.

3-D imaging was performed along the parasternal long axis view using the acquisition
motor by translating the transducer perpendicular to the long axis imaging orientation. For all mice,
scanning range of 5 mm with step size of 0.14 mm was maintained resulting in 36 2-D

slices/volume.

Figure 8.2 Representative 3-D Oxy-Hemo PA Image of Mice Heart at baseline (before LAD ligation). Left
panel shows the cube-view representation of sO2 average €stimates overlaid on ultrasound images

while the right panel presents an orthogonal representation of the same heart.

8.1.3 Photoacoustic (PA) Image Analysis
Quantitative analysis of Oxy-Hemo PA images were performed offline using VevoLab
Software commercially available with Vevo LAZR imaging system. For each imaging session, an

average of 20 frames per cine loop of Oxy-Hemo data were collected and digitally stored. Given
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that frame averaging was used while acquiring OxyHemo images (average of 10 frames per
wavelength), each frame represents an average of % sO2 values throughout multiple cardiac cycles.
The system is therefore not sensitive enough to detect variation of % sOz over one cardiac cycle.
However, in this work, our main focus was to detect the general trend in the variation of % sO2
after induction of LAD ligation which is still measurable using the frame averaging scheme. Even
with persistence of 10, we experienced signal dropouts in some of the collected frames. Therefore,
a single frame with reasonable amount of % sO:z estimate was chosen for analysis. A ROI was
delineated manually in the anterior myocardium based on the anatomical ultrasound images.
Delineated ROI encompassed the entire myocardium and sometimes a thin portion of ventricular
chamber adjacent to endocardium. Both the OxyZated™ and HemoMeaZure™ tool were utilized
to quantify oxygen saturation (% sO2) and total hemoglobin (Hbt) respectively within the ROI.
The software reports two measures of oxygen saturation, namely % sO2 Average and % sO2 Total.
Values of % sO2 Total calculates the average oxygen saturation in all pixels including those with a
zero/void estimate within the ROI while % sOz average calculates the average oxygen saturation
within the ROI after excluding the zero/void estimates [11]. After LAD ligation we sometimes
observe loss of PA signal in the ROI due to presence of a suture in the path of light transmission.
This also resulted in higher numbers of zero/void estimates within ROI than for the baseline case
which could introduce a small bias in the longitudinal study. To avoid this issue, % sO2 Average Was
chosen as the measure of oxygen saturation in our study. The percent change of oxygen saturation
(% sO2 average) between baseline and post- LAD ligation cases were calculated using the following

formula:

02 Post SO

VSOZ (%) — S 2 Baseline XlOO (81)

2 Baseline
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Quantitative results from VevoLab software were exported to excel files for statistical analysis

using MATLAB (The MathWorks, Inc., Natick, MA, USA).

8.1.4 Two-Dimensional Echocardiographic Measurements

Conventional echocardiographic measurements were derived from both grayscale B-mode
and M-mode images acquired along the PLAX views. PLAX cardiac measurement protocol for
VevoLab software was utilized for performing the measurement of left ventricular (LV) ejection

fraction (% EF), fractional shortening (% FS) and stroke volume (SV uL).

EF and SV were derived from PLAX B-mode images obtained using LZ550D transducer. For
performing the measurements, endocardial wall was delineated at end diastole (ED) and end
systole (ES) of a cardiac cycle. Software then automatically traces out the intermediate frames and

calculates the left ventricle volume at ED (LVvord) and left ventricle volume at ES (LVvols).

Lv _.—LV .
Finally, EF (%) was calculated as EF (%) = —2 s %100 while SV (uL) was calculated

vol;d

as SV (uL)=LV,,,~LV,

vol;s *

M-mode PLAX images were used to derive the measure of FS using LZ400 transducer. A
section of the cine loop without breathing motion artifacts was chosen for analysis. LV trace tool
was used to delineate the left ventricular anterior wall (LVAW) and posterior wall (LVPW). Based
on the delineation, the software automatically calculates the ED diameter (LVebp) and ES diameter

VED B LVESD %100

L
(LVEsp). Finally, FS (%) was calculated as £S (%) =

EDD
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These measurements provide anatomical information about the heart after induction of
myocardial ischemia. Quantitative results from VevoLab software were exported to excel files for

statistical analysis using MATLAB.

8.1.5 Statistical Analysis

All data are represented as mean =+ standard deviation. One-way analysis of variance
(ANOVA) with Tukey-Kramer post hoc test was performed for the five observation time points
(Baseline, 30 minutes, 80 minutes, 120 minutes and 24 hours) to determine the statistical difference
between observations. A p <0.05 was considered statistically significant. Correlation obtained
using linear regression and Pearson correlation coefficient (r-value) was reported. All statistical
analysis was performed using MATLAB (Statistics and Machine Learning Toolbox Release

2017b, The MathWorks, Inc., Natick, Massachusetts, United States).

8.2 Quantification of oxygen saturation levels post LAD ligation

The main results of the reported study are visualization and quantification of alterations in
oxygen saturation levels post LAD ligation using dual-wavelength PA imaging. The variation in
the % sO2 average also exhibits a positive linear relationship with conventional echocardiographic

measurements.

8.2.1 Detection of alterations in oxygenation level in anterior myocardium after LAD
ligation

Representative PA images of myocardial ischemia are presented in Figure 8.3. Figure 8.3
(a) shows baseline PA image with very high oxygen saturation (dark red) in the anterior
myocardium indicating high perfusion. Figure 8.3 (b) — (e) illustrates the oxygen saturation levels
at 30 minutes, 80 minutes, 120 minutes and 24 hours after LAD ligation. Qualitative observations

indicate a reduction of % sO:z level shown in blue in the PA-US co-registered images. We also
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observed a decrease in the total colored area in post-surgery cases when compared to the baseline

indicating lower % sOz2 level in the anterior myocardium.

Time after LAD Ligation

Baseline

mins

Figure 8.3 Dual-wavelength in-vivo PA monitoring of acute myocardial ischemia. Representative Oxy-

Hemo PA images at (a) baseline, (b) 30 minutes, (c) 80 minutes, (d) 120 minutes and (e) 24 hours
after LAD ligation. The heat map represents % sO:zlevels ranging from 0% (dark blue) to 100% (dark
red). ROl in the anterior myocardium is shown in green. Figure (b) and (d) represents images where
a thin sliver of the ventricular chamber could have been included in chosen ROI for analysis (red

line right against the inside of the anterior myocardium).

To obtain statistically significant results, the experiment was repeated over seven
additional mice. All mice experienced similar rapid decreases in blood oxygen saturation (% sO2)
starting at 30 minutes after LAD ligation with p <0.001. One-way ANOVA with Tukey-Kramer
post hoc test indicate statistical difference of blood oxygen saturation (% sO2) at baseline
compared to post ligation time points (p <0.001). There was no statistically significant difference
of % sO2 level among post ligation observations compared to each other. Figure 8.4 shows the
box-and-whisker plots of blood oxygen saturation (% sO2) at five time points of observation. The

plot illustrates that % sO: level at 30, 80, 120 minutes and 24 hours are close to each other and
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lower than baseline % sOz level. One outlier is observed at 120 minute’s which can be attributed
to the physiological variability among the mice. Highest variability is observed at 24 hours which
might be caused by the variation in response to ischemia among mice. Even then, the oxygenation
level after 24 hours remained significantly lower than the baseline (p <0.001) showing the effect
of permanent ligation on anterior myocardium of LV. In general, LAD ligation was associated
with significant decrease (p <0.001) in blood oxygen saturation (% sO2) post-LAD ligation (30
min: 33.05% = 6.80; 80 min: 36.59% + 5.22; 120 min: 36.70% + 9.46; 24 h: 40.55% + 13.04)
when compared to baseline (87.83% + 5.73). This reduction of oxygenation level is a clear

suggestion of ischemia revealing the sensitivity of PAI for real time monitoring.
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Figure 8.4 Variation in blood oxygen saturation levels (% sOz2) over time. Box-and-whisker plots of blood
oxygen saturation (% sO3) at five time points of observation (at baseline, 30 minutes, 80 minutes,
120 minutes and 24 hours). Box-and-whisker plot present min and max values (whiskers), and the
25M and 75" percentile (box), finite outlier (red plus) and median % sOz level. The trend indicates

rapid fall from baseline to 30 minutes with a 62.97% reduction.
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8.2.2 Relationship between variation of % sO:2 average and echocardiographic
measurements

To obtain a relationship between cardiac perfusion and cardiac structural changes, PA in
vivo oxygen saturation measurements were correlated with % EF, % FS and SV pL derived from
2-D echocardiographic measurements. It has been reported previously that myocardial infarction
in mice models were associated with declines in EF, FS and SV with time after ligation [12-16].
Our results corroborate these previous reports revealing declines in % EF, % FS and SV pL over
time. Table 8.2 summarizes results obtained from echocardiographic measurements. Statistically

significant difference was observed in post-ligation cases compared to baseline (p<0.001).

Table 8.2 Conventional echocardiographic measurements over monitoring period

Measurement  Baseline 30 min 80 min 120 min 24 Hours P<
% EF 48.05+6.47 26.04+11.16 28.76+9.45 23.95+8.88 28.15+14.92 0.001
% FS 29.05+4.98  15.65+7.39  14.53+6.55 13.24+6.91 16.95+10.55 0.001

SV (uL) 33.73+£6.81 15994592 19.79+£5.05 17.52+£7.18 19.1248.04  0.001

Correlation analysis of % sO2 was performed with EF, FS and SV to understand the
relationship between functional and perfusion changes associated with myocardial ischemia. Our
analysis reveals a positive linear (p <0.001) relationship of blood oxygen saturation with each of
the conventional echocardiographic measurements as shown in Figure 8.5. In Table 8.3, we present
the Pearson correlation coefficient () along with the corresponding p-values for blood oxygen

saturation with EF, FS and SV respectively for all mice.
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Table 8.3 Correlation of blood oxygen saturation with EF, FS and SV.

Parameters Baseline — Day 1

r value p value <
Ejection Fraction (%) 0.66 0.001
Fractional Shortening (%) 0.67 0.001
Stroke Volume (uL) 0.77 0.001
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Figure 8.5 Linear regression of blood oxygenation, % sOz against parameters from 2-D echocardiography
measurements. Positive correlation of blood oxygenation (% sOz2) with (a) Ejection Fraction (r=0.66),

(b) Fractional Shortening (r=0.67) and (c) Stroke Volume (r=0.77) was found. All relationships have

a p value less than 0.001.
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8.3 Discussion of utility of a Commercial dual-wavelength system for % sO:2
mapping

Our results indicate that cardiac dysfunction associated with myocardial ischemia in a
murine model can be detected using PAIL In Figure 4, we show that blood oxygen saturation
decreases over time when compared to baseline measurements (p <0.001). We consider this
alteration of % sO2 being indicative of myocardial ischemia. PAI contrast is “absorption-based”
because the PA signal can be considered to be proportional to optical absorption properties of
tissue [3]. In dual-wavelength PAI, the absorption spectral difference between oxyhemoglobin
(HbO2) and deoxyhemoglobin (HHb) is utilized to generate estimates of relative blood oxygen
saturation, % sOz. In particular, equation (2) is utilized in the Vevo 2100 LAZR imaging system
to estimate blood oxygen saturation of blood [4].

_ [HbO, ] _ A& ~ A
> [HbO,+HHb] A,As?, —A, Ash,

(8.2)

Where [HbO:] and [HHb] are the molar concentrations of oxyhemoglobin and deoxyhemoglobin

respectively, Aﬂ is the PA signal intensity at wavelength A, &y, and &, are molar extinction

coefficient of deoxyhemoglobin and oxyhemoglobin respectively, A&y, =& o, ~ €ppp - In cardiac

muscle, PAI contrast can be attributed to oxygenated hemoglobin present in blood perfused into
the anterior myocardium. At baseline, the continuous flow of arterial blood contributed to the PAI
contrast with high oxygen saturation values in the PA image. In our experimental setup, a
permanent LAD ligation was performed to restrict the flow of arterial blood into the myocardium.
We then observed a significant decline in % sO2 from baseline measurements after ligation at the
30 minutes time step. The decline in % sO2 can be caused either by a decrease in arterial blood

with rich oxygenation affecting the [HbO:] term or by possible pooling of venous blood affecting
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the [HHb] term in equation (2). In the current setup, it is difficult to state with specificity the exact
contributing factor to the % sO2 decline. We hypothesize that the major contributor is reduced

arterial blood flow as LAD ligation was performed in these mice.

In this study, we present observations from baseline to 24 hours post-LAD ligation to image
changes in perfusion of the heart at possible initial stages of myocardial infarction. Acute ischemic
insult of heart shortly following the beginning of MI is well reported in literature [17-19]. Our
results indicate that PAI can track a rapid fall in the oxygenation due to LAD ligation which could
lead to an MI. The accuracy of measuring real tissue oxygen saturation has been previously
reported in phantom studies [20, 21]. These studies support the use of PAI for detection of oxygen
saturation changes associated with acute myocardial ischemia with LAD ligation. At 30 minutes
post ligation, a 62.37% decrease in % sO2 was observed when compared to baseline measurements.
This preliminary study provides us with possible future directions to assess chronic changes

associated with MI using PAI.

A persistence of 10 (frame averaging) was utilized to generate reasonable % sO:z estimates
as the estimation of % sO2 using multi-wavelength imaging is very prone to system noise. This
persistence setting generates the % sO2 estimate in one frame by taking average of 10 frames per
wavelength (in this case 750 nm and 850 nm). Thus, each acquired frame represents an average of
% sO2 values throughout multiple cardiac cycles. This results in reduced sensitivity in detecting
subtle variation of % sO:2 over a single cardiac cycle and limits us to detect less severe ischemic
events. However, in this work, our main focus was to detect the general trend in the variation of
% sOz after induction of permanent LAD ligation which is still measurable using the frame

averaging scheme. One possible solution is to have an ECG gated method for acquiring PA images.
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This would greatly improve accuracy and precision of the measurements and potentially make this

much more sensitive to assessing less severe ischemic events.

Change of % EF, % FS and SV (uL) are indicative of left ventricular dysfunction after M1.
We have shown statistically significant positive linear correlation (p <0.001) of tissue oxygenation
with EF, FS and SV in this study. This linear relationship substantiates our claim that dual-
wavelength PAI has potential to be a real-time monitoring tool for myocardial ischemia. While
performing PAI, we were cautious to ensure that no bubbles are present in the images to avoid
bubble related artifacts. Presence of bubbles causes unreliable tissue oxygenation estimates and in
some case may corrupt information inside the ROI where analysis is performed. We recommend
application of large amount of centrifuged gel to overcome these artifacts. Another key challenge
in PAI imaging are reverberation artifacts appearing at a depth twice that of the skin surface.
General recommendation is to use higher standoff to push the artifact out of the field of view. In
our work, the skin surface was placed at depth of around 7.5 mm to avoid reverberation artifacts.
Even after using clear sutures in our study, we sometimes observe a significant loss of PA signal.
Although light propagated though the suture without interference, we suspect that the suture was
blocking the light induced ultrasound signal. Therefore, care should be taken to avoid possible

suture locations while imaging the myocardium which can be quite challenging.

Limitations with use of PAI for studying myocardial dynamics include the following; First,
the VisualSonics system performs Oxy-Hemo imaging with a frame rate of 5 Hz resulting in lower
temporal resolution when compared to conventional echocardiography. Thus, it may not be
possible to accurately time-register PA signals with ECG events in the heart. Secondly, in our

study we focused on the anterior myocardium as most of light energy is absorbed in this region.
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This imposed a fundamental limit on the penetration depth achievable using PAI. Resolving these

issues will further enhance the potential of PAI for routine cardiovascular assessment.
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Chapter 9

Spatiotemporal Coherence Weighting for Photoacoustic Image

Beamforming

This chapter focuses on the use of a high frequency linear array photoacoustic (PA)
imaging system to assess myocardial health in a murine model. We are interested in deriving
blood-dominated cardiac pathological information in myocardial wall to complement functional
information derived from ultrasound (US) imaging. However, when a rapidly moving murine heart
is imaged with photoacoustic imaging (PAI), reliable localization of PA signal from the
myocardial wall becomes challenging due to signals picked up by the wide-band high frequency
transducer from surrounding muscle and blood circulating inside left ventricular (LV) chamber.
Consequently, reconstructed PA images with conventional delay-and-sum (DAS) beamforming
have temporally varying noise which causes reduced myocardial PA signal specificity thus making
image interpretation difficult. In this chapter’, we address noise suppression utilizing signal
processing of received raw channel photoacoustic radiofrequency (PA-RF) data. We demonstrate
that dominant PA signals from the myocardial wall can be differentiated from background noise
signals utilizing spatiotemporal coherence in the aperture domain. We propose to use both spatial
and temporal information in the aperture domain during beamforming to calculate a coherence
factor (CF) termed spatiotemporal coherence factor (STCF) to weight DAS and MV beamformed

PA images. Under low SNR, the benefit of using temporal information across a transmit pulse

7 Rashid Al Mukaddim, and Tomy Varghese, “Spatiotemporal Coherence Weighting for in vivo Cardiac Photoacoustic
Image Beamformation.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 3,
pp. 586 — 598 (2021) PMCID: PMC8011040
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length for CF-type methods has been previously demonstrated for US imaging [1]. Here, assuming
dominant PA signals are sustained over adjacent time frames after laser irradiation, temporal

information is added to STCF for improved suppression of linear array PAI noise artifacts.

Three main contributions are reported in this chapter. First, STCF is proposed and
extensive simulation studies by varying inherent contrast between dominant absorbers and
backgrounds, acoustic absorption levels, non-uniform optical fluence distribution and channel
SNR is presented. Second, in vivo feasibility is demonstrated by using the proposed method to
reconstruct PA M-mode image for ECG and respiratory signal gated murine cardiac imaging
without temporal averaging. Third, the use of coherence based beamformers (CF and STCF) for
single wavelength cardiac PAI is compared against conventional [DAS and minimum variance

(MV)] methods in an objective manner.

9.1 Conventional and Proposed Beamforming Approaches for PAl Reconstruction

9.1.1 Delay-and-sum and Coherence Factor Beamforming

Consider a linear array with M equally spaced transducer elements that receive PA signals
at time . DAS beamforming can be used to reconstruct the PA image from the detected signals

using the following equation:
< H
Vs (=2 w, (O)xx,(t=7,) =W (1) X (1) -1
m=1

In equation (9.1), y,,(¢) is the beamformed image, w, (¢) is the aperture weight for an element
m, x, (¢) is the received signal by m"” element, 7, is the time delay applied to element m to focus

at a specific point in the image, W(#) and X (¢) are M-element vectors containing the aperture

weights and the time delayed versions of the detected signals respectively, and (+)” denotes a
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conjugate transpose operation. For DAS, W(¢) is a vector of ones. DAS with uniform aperture
weighting, however, suffers from reduced off axis interference signal rejection thus degrading

image quality [2].

Improved off-axis signal rejection can be achieved with MV beamforming [2-4], that
adaptively calculates aperture weights to maximize the signal-to-interference-plus-noise ratio [3].
Optimal MV aperture weights, W, (¢) are given by:

R(H)'a

a”R(t)a ©-2)

WMV (0=

where R(t) is the covariance matrix expressed as R(¢f)=FE [X X" } and a is the steering

vector. Before calculating minimum variance optimal weights, received PA signals are pre-steered
with appropriate delays to implement dynamic receive focusing. Thus, the steering vector become
an array of ones [5]. To achieve good estimation of the covariance matrix, sub-array averaging has

been proposed [3]. Sub-array averaged estimated covariance matrix is given by:

1 M-S+1

> X OX,0)" 93)

R, (t)=———
() M-S+1 5

where S is the number of subarray elements and Xs(?) is the subarray signal vector. Finally, output

of MV beamformer is:

M-=S+1

! ,
PO =3 =577 & Warsi®" X0 (9.4)

To achieve additional contrast enhancement and sidelobe reduction for both DAS and MV

beamformed images, CF weighting has been proposed [2, 3, 6, 7]. CF adaptively considers aperture
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signal coherence by calculating the ratio of coherent and incoherent sums of detected PA signals

[3]. CF is defined as:

M 2
z x (t—1,)
m=1

M

MY |x, ¢~z
m=1

CF(f) =

DAS and MV beamformers with CF weighting (DAS-CF and MV-CF) are given by:

Vpus-cr () = CF() % y,,5(1)

Yy—cr (&) =CF()x y,,, (1)

9.1.2 Spatiotemporal Coherence Factor (STCF) Weighting

(9.5)

(9.6)

(9.7)

Conventional CF weighting considers the spatial spectrum of aperture data for a single

frame. In this chapter, we extend CF to the temporal domain by considering multiple adjacent

image acquisitions for beamforming. To perform beamforming with STCF, we consider of set of

th
K (odd) adjacent PAI frames with (K —%+ 1) frame being the frame of interest, Kc. DAS and

MYV beamformed images are produced using equation (1) and (4) for frame, Kc. To calculate STCF,

we consider a 2-D spatiotemporal matrix, X, (¢£,k) with dimensions M*K. Each column of

X, (t,k) contains an M-element array of time-delayed received PA signal for the k” frame. Thus,

X, (t,k) has the following form:
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( K—l) ( K—l) |
X | t—7,—— .. Xt —
2 2
K-1 K-1
Xy, Z‘—TM,—T A oy t—rM,T

X, (1)) =

Using X, (t,k), STCF is calculated by following equation:

i ixm(t—rm,k)

STCF(t,K,) = 2 (9.8)
KM x ZZ: f|x (t-7,.k)

K-1 m=1

2

Finally, STCF weighting is incorporated into DAS and MV beamformers (DAS-STCF and MV-

STCF) using:

Vpus-srer (6K ) =STCF(t,K )Xy, (2) 9.9

yMV—STCF(t:Kc):STCF(t:Kc)XyMV(t) (9.10)

9.2 Simulation and in vivo Validation Studies and Quantitative Analysis

9.2.1 Numerical Simulation Studies

k-Wave Matlab toolbox was used to perform all numerical simulation experiments reported
in the paper [8]. Numerical phantoms were designed by placing four 0.1 mm radius spherical
absorbers as point targets in a scattering background simulated by randomly distributing 10,000
independent 0.1 mm scatterers. Scattering background was simulated assuming that in vivo tissue

comprises of both optical absorbers (hemoglobin, lipid or water) and scatterers (fibrous tissue,
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collagen) [9]. Point targets were positioned along the vertical axis separated by 4 mm with the first
point target located 8 mm from the transducer surface. A linear array with 128 elements, 72 um
element width, 18 um kerf and 84 MHz sampling frequency operating at 21 MHz central frequency
and 55% fractional bandwidth was utilized as the sensor in k-Wave to detect PA signals. These
parameters modeled a commercial PA LZ 250 transducer (FUJIFILM VisualSonics, Inc., Toronto,
Canada) [10, 11]. The speed of sound was assumed to be 1540 m/s. Imaging field of view (FOV)
was 25 x 11.5 mm?. k-Wave computational grid with a node spacing of 15 um covered the entire

FOV. For statistical analysis, all simulations were repeated using 30 independent realizations.

9.2.1.1 Simulating Inherent Tissue Contrast

Optical absorbers are expected to have higher PAI contrast compared to scattering from
background tissue. Furthermore, absorption induced contrast is dependent on the concentration of
chromophores present in tissue [12]. To simulate this contrast, we varied initial pressure

distribution, p,(r)of point targets relative to the maximum initial pressure amplitude of the

background. Background initial pressure amplitudes were sampled from a zero mean normal

distribution. Lower and higher inherent contrasts were simulated by setting point targets, p,(r)to

be 6 and 10 times the maximum initial pressure amplitude of the background respectively. These
initial pressure distributions were input to the k-Wave toolbox [8] to solve for acoustic wave

propagation within a 2-D loss-less homogenous propagation medium governed by:

ou 1 op )
—=——Vp,—=-—p V-u,p=c 9.11
I A M .11
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where, uis the acoustic particle velocity, p, and p denote ambient and acoustic density, c is the

speed of sound and p is the acoustic pressure. Temporally varying noise backgrounds were

produced by generating 30 independent background scattering distributions (rn = 30).

9.2.1.2 Simulating Acoustic Absorption

The effect of acoustic absorption on beamforming performance was investigated by
simulating different power law absorption exponent values [8]. The attenuation coefficient was set
to o= 0.3 dB MHz” cm™' [13] where y is the power law exponent. p,(r) of point targets were set
to 10 times maximum initial pressure amplitude of the background and k-Wave was used to

generate acoustic RF data.

9.2.1.3 Optical Fluence Distribution

Initial pressure, p, of an absorber located at r after absorbing optical energy can be
modeled using [14]: p,(r) =I'x A(4,r), where, I' is the dimensionless Grueneisen parameter and

A(Z,r) is the absorbed energy density which is dependent on spatially variant optical fluence

distribution and optical absorption co-efficient, u (A4,r). To evaluate performance under varying

optical fluence distributions, a hybrid simulation approach is adopted using MCmatlab [15] and k-
Wave toolbox [8] for optical and acoustic simulations respectively. MCmatlab calculated 4(4,7)
through Monte Carlo simulation of light propagation in a 3-D voxel space using the optical
simulation parameters listed in Table 9.1. Setting I" to be 0.129 [16], point targets, p,(r) were
calculated for k-Wave to generate acoustic RF signals. Finally, Gaussian random noise was added

to have a channel signal-to-noise (SNRchanner) ratio of -3 dB. A schematic diagram summarizing

key steps of our hybrid photoacoustic imaging simulation is presented in Figure 9.1.
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9.2.1.4 Noise Corrupted Photoacoustic Channel Data
To model noise floors present in real imaging systems, zero-mean Gaussian random noise
with standard deviation, oneise Was added to channel data to achieve desired channel SNR, SNR channel

in dB. Noise standard deviation is given by:

S (m
) =) ©.12)
10{ 20 ]

where, Sims(m) is the root-mean squared amplitude for the m* channel.
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Figure 9.1 Schematic diagram with key steps of the hybrid photoacoustic imaging simulation. Optical

fluence distribution estimated using MCMatlab is used to generate the initial pressure distribution
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for k-Wave acoustic simulation. Finally, a beamforming algorithm is utilized to reconstruct PA images

from the received channel data.

Table 9.1 Optical Simulation Parameters

Parameter Value Unit
Simulation cuboid 2x1.5x1.5  cm’
Vessel absorption (1) 5.21 cm!
Vessel scattering (us) 58.82 cm™!
Vessel oxygen saturation 75.0 %
Background absorption (ua) 0.01 cm™!
Background scattering (us) [10,15,112] cm’
Optical Wavelength 850 nm
Collimated top-hat beam radius 0.5 cm

9.2.2 In vivo Murine Cardiac Photoacoustic Imaging

To demonstrate in vivo feasibility, cardiac PAI in parasternal long axis (PLAX) view was
performed with four healthy murine models (10-12 months old BALB/CJ mouse acquired from
Jackson Labs, ME, USA). All in-vivo procedures were approved by the Institutional Animal Care
and Use Committee (IACUC) at the University of Wisconsin-Madison. Imaging was done by
placing the mouse in supine position on a heated platform under 1.5% isoflurane and constant flow
of oxygen. A Vevo 2100 LAZR imaging system (FUJIFILM VisualSonics, Inc., Toronto, Canada)
was used for collecting PAI data. 1000 frames of pre-beamformed PA RF channel data at 850 nm
wavelength were acquired using a LZ 250 transducer (256-element array) operating at a nominal
frequency of 21 MHz. Four sequential laser pulses are required to cover maximum FOV for LZ
250 with 64-element parallel acquisition per pulse. This reduces the imaging frame rate to one
fourth the laser repetition rate [17]. Therefore, FOV was adjusted [green rectangles in Fig. 14 (a)
and 15 (a)] to limit acquisition with only 64-elements to achieve maximum possible PAI frame
rate (20 Hz) on Vevo LAZR. Simultaneous ECG and respiratory signals were collected using the

dedicated physiological monitoring system. A custom MATLAB script (MathWorks, Inc., Natick,
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MA, USA) acquired from VisualSonics was utilized to reconstruct a single cardiac cycle of PA
data by temporally rearranging collected frames using image time stamp information, along with
ECG and respiratory signals. Finally, beamforming was performed on the rearranged frames to
reconstruct cardiac PAI cine loops. End-diastolic (ED) and end-systolic (ES) PAI frames were

selected using reconstructed PAI M-mode image.

9.2.3 Quantitative Parameters for Performance Evaluation

For simulation studies, quantitative evaluations were done by calculating the SNR as [4]:

SNR = 20xlog,, (S’g"“l j (9.13)

Noise

where, Signal denotes the difference between maximum and minimum signal amplitude of a 2x1
mm? rectangular region-of-interest (ROI) including the point target [green rectangle in Figure 9.2
(a)] and Noise represents the standard deviation of two noise regions [red dotted rectangles in
Figure 9.2 (a)] within the original ROI. 1-D lateral curves through the center of each point target
were used to calculate Full-width-at-half-maximum (FWHM) at -6 dB quantifying the lateral point
spread function (PSF). FWHM was determined as the lateral distance in mm between the curve

points at the peak half maximum level.

In in vivo cardiac PAI, optical absorbers present in muscle tissue between skin and
myocardium, the myocardial wall and circulating blood in LV chamber act as initial pressure
sources. In the context of myocardial ischemia detection, we are interested in differentiating PA
signals that arise only from the myocardial wall [18]. Thus, a beamformer with improved contrast
between myocardial wall and surrounding background structures (either muscle or LV chamber

blood) is ideal. Quantitative analysis to assess in vivo cardiac PAI quality at ED and ES phase was
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done using SNR, contrast ratio (CR) and generalized contrast ratio (gCNR) as defined below [19,

20].

SNR =20xlog, (mi] (9.14)
Oy
m
CR =20xlog,, (ﬂ) (9.15)
m,
N-1
gCNR =1-Y min{h,,, (x,).h,(x,)} (9.16)
k=0

In equations (9.14) and (9.15), mmy, and m» denote the mean signal amplitudes within myocardial

wall and background ROIs (either surrounding muscle or LV chamber blood), respectively and o

denote the standard deviation of signal amplitudes within the rectangular ROI placed in the gel

region. Equation (9.16) is a histogram-based discrete expression [19] equivalent to the original

probability density-based definition of gCNR [20] where, /Amyo and /» represent myocardial wall

and background histograms derived with 100 bins over the signal dynamic range with bin centers

denominated by k. The white, blue, black and green dotted ROIs shown in DAS images in Figure

9.14 and Figure 9.15 represent ROIs for gel noise, muscle, myocardium and LV chamber blood,

respectively. All metrics were evaluated using envelope detected PA data.

9.3 Findings from Simulation and in vivo Validation Studies

We compare the performance of our proposed DAS-STCF and MV-STCF against DAS,

DAS-CF, MV and MV-CF beamformers. A 64-clement (M = 64) aperture was utilized to perform

DAS beamforming. For the MV beamformer, we set the sub-array length, S = 16 and use diagonal

loading with A =1/(100x s) to estimate the covariance matrix. Diagonal loading ensures stability
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of the covariance matrix [3]. For STCF, the default ensemble length was 5. Envelope detected
normalized log compressed images with dynamic range of 65 dB are presented for qualitative
comparison. Plots are presented as mean =+ standard error computed over thirty independent

simulation instances.

9.3.1 Results from Numerical Simulation Studies
9.3.1.1 Inherent Tissue Contrast

Figure 9.2 shows beamforming results for point targets positioned in a high contrast
background. Figure 9.2 (a) — (f) show the output of DAS, DAS-CF, DAS-STCF, MV, MV-CF and
MV-STCEF, respectively. Visually point targets can be detected in DAS and MV results but higher
levels of background signals were seen. CF shows improvement in background signal rejection
compared to only DAS and MV beamformers. Figure 9.2 (c) and (f) show that STCF provides
significant noise reduction with the best quality reconstructed images. Figure 9.3 (a) — (b) present
lateral PSF results from low contrast background at depths of 8 and 20 mm, respectively. Figure
9.3 (c) — (d) show PSF results from high contrast background at depths of 8 and 20 mm,
respectively. Table 9.2 summarizes the -6 dB FWHM values for both low and high contrast
background simulation. With STCF weighting, -6 dB FWHM values were same as CF but sidelobe

levels were comparatively lower.
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Figure 9.2 Beamformed images of simulated point targets in a high contrast background. (a) DAS, (b) DAS-
CF, (c) DAS-STCEF, (d) MV, (e) MV-CF and (f) MV-STCF. Display dynamic range is 65 dB. Green
and red (dotted) rectangles denote signal and noise ROls, respectively. STCF weighted images had

the lowest level of background signal or noise.
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Figure 9.3 Lateral profiles of PSF of at depth of (a) 8 mm and (b) 20 mm for low contrast, (c) 8 mm and (d)
20 mm for high contrast background. Profiles around center of the point targets are zoomed in and
displayed in the insets. Both CF and STCF weighting had similar FWHM values with improvement

over DAS and MV beamformer alone.

Table 9.2 -6 dB FWHM (mm) Values with Inherent Contrast Variation

Depth =8 mm Depth =20 mm
Methods Low High Low High
DAS 0.14 0.14 0.37 0.37
DAS-CF 0.10 0.10 0.28 0.29
DAS-STCF 0.10 0.10 0.28 0.29
MV 0.15 0.14 0.43 0.39
MV-CF 0.10 0.10 0.30 0.29

MV-STCF 0.10 0.10 0.29 0.29
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Figure 9.4 (a) — (b) show results of SNR variation as a function of low and high inherent
contrast of point targets at a depth of 8 and 20 mm, respectively. Significant SNR improvement
with STCF is seen. For instance, consider the depth of 20 mm for low contrast case where mean
SNR (dB) of DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-STCF were 29.62, 44.57, 62.39,
29.25, 44.58 and 63.06, respectively. Overall, both qualitative and quantitative results from these

experiments show superior performance of beamforming with STCF.

80 _ Depth = 8 mm — - 80 . Depth = 20 mm .

o 60f

°

o 40

zZ

N20f

O -
Low High Low High
Contrast Level Contrast Level

IDAS BIDAS-CF [ IDAS-STCF IDAS BIDAS-CF [ IDAS-STCF
vV EMV-CF EEMV-STCF VY EMV-CF EEMV-STCF

(a) (b)
Figure 9.4 Variation of SNR for the simulated point targets with contrast variation at a depth of (a) 8 mm
and (b) 20 mm, respectively. STCF weighting had higher SNR values attributed to better

background signal suppression.

9.3.1.2 Acoustic Absorption

Figure 9.5 shows beamformed images of simulated point targets with power law exponent,
y=1.5. Figure 9.5 (a) — (f) show the output of DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-
STCEF, respectively. CF shows improvement in background signal rejection compared to DAS and
MYV beamformers. With STCF, point targets were resolved with lowest amount of background
noise signal. Figure 9.6 (a) — (b) present PSF results at depths of 8 and 20 mm, respectively. STCF

weighted results had comparatively lower sidelobe levels. Table 9.3 summarizes the -6 dB FWHM
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values for y = 1.5. Both CF and STCF weighting had similar FWHM values with improvement

over DAS and MV beamformers.

_DAS - CF DAS - STCF

Width (mm) Width (mm)

_MV - CF MV - STCF

Width (mm) Width (mm) Width (mm)

Figure 9.5 Beamformed images of simulated point targets under acoustic absorption with power law
exponent, y = 1.5. (a) DAS, (b) DAS-CF, (c) DAS-STCF, (d) MV, (e) MV-CF and (f) MV-STCF.

Display dynamic range is 65 dB.



267

Table 9.3 -6 DB FWHM (mm) values with acoustic absorption (y = 1.5)

Methods Depth =8 mm Depth =20 mm
DAS 0.23 0.65
DAS-CF 0.16 0.51
DAS-STCF 0.16 0.51
MV 0.24 0.72
MV-CF 0.16 0.52
MC-STCF 0.16 0.52
Depth = 8 mm Depth = 20 mm
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Figure 9.6 Lateral profiles of the PSF at depth of (a) 8 mm and (b) 20 mm for acoustic absorption simulation
with y = 1.5. Impact of acoustic attenuation and resultant depth dependent blurring effect is apparent

in 20 mm results.

Figure 9.7 (a) — (b) show the variation of SNR as a function of y at a depth of 8§ mm and 20
mm, respectively. Beamforming with STCF resulted in higher SNR values compared to other
methods. At a depth of 20 mm and y = 1.5, mean SNR (dB) of DAS, DAS-CF, DAS-STCF, MV,

MV-CF and MV-STCF were 29.89, 42.09, 55.08, 29.92, 42.41 and 57.70, respectively. At very

high attenuation (y=2), STCF and CF had similar performance in terms of SNR.
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Figure 9.7 Variation of SNR with power law absorption exponent at a depth of (a) 8 mm and (b) 20 mm,

respectively.

9.3.1.3 Optical Fluence Distribution

Figure 9.8 shows beamforming results for point targets positioned in a background with

optical scattering, us value of 15 cm™. Figure 9.8 (a) — (f) show the output of DAS, DAS-CF, DAS-

STCF, MV, MV-CF and MV-STCF. respectively. Point targets beyond 15 mm were not

discernable with DAS and MV. Use of CF reduced background noise but significant improvement

in noise rejection with better target detectability was achieved with STCF. Peak amplitudes of the

point targets were attenuated over depth.
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Figure 9.8 Beamformed images of simulated point targets under optical absorption and scattering (us = 15
cm™). (a) DAS, (b) DAS-CF, (c) DAS-STCF, (d) MV, (e) MV-CF and (f) MV-STCF. Display dynamic
range is 65 dB.

Figure 9.9 (a) — (b) show variation of SNR as a function of us at depths of 8 mm and 20

mm, respectively. Beamforming with STCF resulted in higher SNR values compared to other

methods. At a depth of 20 mm and s = 15 cm™!, mean SNR (dB) of DAS, DAS-CF, DAS-STCF,

MV, MV-CF and MV-STCF were 19.19, 29.02, 44.68, 18.38, 28.65 and 44.30 respectively. Figure

9.10 shows DAS-STCF beamformer point target detectability with increased background optical
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scattering. With higher us, deeper point targets became difficult to detect resulting in reduced SNR

[Figure 9.10 (b)].
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Figure 9.9 Variation of SNR with background scattering (us) at a depth of (a) 8 mm and (b) 20 mm,

respectively.
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Figure 9.10 Variation of DAS-STCF beamformer point target discernibility with background scattering of

(@) us =10 cm™, (b) us = 15 cm™and (c) us = 112 cm™'respectively. Display dynamic range is 65 dB.

9.3.1.4 Noise Corrupted Channel Data

Figure 9.11 (a) — (b) show the variation of SNR with SNRchanner at depths of 8 mm and 20

mm, respectively. Note that beamforming with STCF had the highest SNRs for all channel noise
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levels and methods. For instance, for a depth of 20 mm and SNRchannei= -9 dB, mean SNR (dB) of
DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-STCF were 25.25, 43.21, 59.15, 24.65, 43.09
and 58.82, respectively. These results show robustness of STCF under noise corruption of channel

data.
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Figure 9.11 Variation of SNR with channel data SNR at a depth of (a) 8 mm and (b) 20 mm, respectively.
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Figure 9.12 Variation of STCF beamformer SNR with ensemble length under (a) no acoustic and optical

absorption, (b) acoustic absorption and (c) optical scattering, respectively.

9.3.1.5 Sensitivity to Ensemble Length

Figure 9.12 shows STCF beamformer performance sensitivity with ensemble length using
channel data with (a) no acoustic or optical absorption (inherent contrast experiment data), (b)
acoustic absorption with power law exponent of 2 and (c) background optical scattering co-
efficient of 10 cm™!, respectively. Note that all channel data were corrupted with Gaussian random
noise for a resultant channel SNR of 5 dB. For each experiment, we evaluated performance for
shallow (8 mm) and deep (20 mm) targets. With increased ensemble length, steady improvement
in SNR was observed in all cases expect for shallow target under optical scattering [Brown and

blue curves in Figure 9.12 (¢)].
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9.3.2 Results from in vivo Murine Cardiac PAI

PAI M-mode results are summarized in Figure 9.13, where Figure 9.13 (a) — (f) show the
output of DAS, DAS-CF, DAS-STCF, MV, MV-CF and MV-STCF, respectively. Movement of
anterior myocardium is clearly visible in all results. However, STCF methods result in significant
reduction of temporally varying noise signals from LV chamber and gel region. Figure 9.14 shows
corresponding in vivo cardiac PA images at ED. US B-mode image with PA imaging FOV [green
rectangle] is shown in Figure 9.14 (a). Beamformed image from Vevo LAZR system is shown in
Figure 9.14 (b). Figure 9.14 (c) — (h) show the results of DAS, DAS-CF, DAS-STCF, MV, MV-
CF and MV-STCF, respectively. Improved myocardial signal specificity and higher signal
rejection in LV chamber and acoustic gel region is observed with STCF. Similarly, Figure 9.15
shows in vivo cardiac PA images at ES, where the beamformed image from Vevo LAZR system
is presented in Figure 9.15 (b). Figure 9.15 (¢) — (h) show images with DAS, DAS-CF, DAS-
STCF, MV, MV-CF and MV-STCF beamforming, respectively. Finally, quantitative results for
ED and ES PAI are summarized in Figure 9.16. Plots are presented as mean + standard error
computed over four independent mice datasets. Figure 9.16 (a) shows that STCF weighting
resulted in higher SNR values both at ED and ES. CR and gCNR results between myocardium and
surrounding muscle tissue are presented in Figure 9.16 (b) and (d). Note that CF and STCF
weighting performed equally well with clear improvement over using DAS and MV beamformers
alone. CR and gCNR results between myocardium and LV chamber blood are presented in Figure
9.16 (c) and (e). STCF weighted images had higher CR and gCNR values compared to CF
weighted and conventional (DAS and MV) beamformed images. Figure 9.17 shows the sensitivity
of in vivo STCF beamforming performance with ensemble length. Figure 9.17 (a) shows that SNR
improvement with ensemble length up to 7 following which the curves plateau. Figure 9.17 (b)

and (d) indicate no variation in CR and gCNR between myocardium and muscle with ensemble
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length. Figure 9.17 (c) and (e) show that CR and gCNR values between myocardium and LV
chamber blood increased with ensemble length increments until K = 7, after which the curves

plateau.
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Figure 9.13 Cardiac PAI M-mode image reconstructed using (a) DAS, (b) DAS-CF, (c) DAS-STCF, (d) MV,

(e) MV-CF and (f) MV-STCF. Display dynamic range is 65 dB.
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Figure 9.14 In vivo cardiac photoacoustic images at ED. (a) US B-mode, (b) System PA image, (c) DAS,

(d) DAS-CF, (e) DAS -STCF, (f) MV, (g) MV-CF and (h) MV-STCF. Arrows in Fig. 14 (b) indicate

signals impeding contrast between myocardium and surrounding muscle. ROI definitions in Fig. 14

(c): Green = LV chamber blood, black = myocardial wall, blue = muscle and white = noise. STCF

weighting better suppressed signals from gel region and LV chamber.
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Figure 9.15 In vivo cardiac photoacoustic images at ES. (a) US B-mode, (b) System PA image, (c) DAS,
(d) DAS-CF, (e) DAS -STCF, (f) MV, (g) MV-CF and (h) MV-STCF. Arrows in Fig. 15 (b) indicate
signals impeding contrast between myocardium and surrounding muscle. ROI definitions in Fig. 15
(c): Green = LV chamber blood, black = myocardial wall, blue = muscle and white = noise. STCF

weighting better suppressed signals from gel region and LV chamber.
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Figure 9.16 (a) In vivo SNR comparison. (b) and (d) show CR and gCNR comparison between myocardial
wall and muscle, respectively. (c) and (e) show CR and gCNR comparison between myocardial wall

and LV chamber blood, respectively.
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Figure 9.17 (a) SNR variation with ensemble length (K). (b) and (d) show CR and gCNR variation between

myocardial wall and muscle, respectively. (c) and (e) show CR and gCNR variation between

myocardial wall and LV chamber blood, respectively.
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9.4 Discussion on Findings from Simulation and in vivo Experiments

9.4.1 Numerical STCF Simulation Studies

In the numerical simulation studies, we have investigated the impact of inherent contrast,
acoustic absorption, optical attenuation and channel SNR on the performance of conventional and
coherence-based beamformers. The primary findings of our simulation studies can be summarized

as follows.

Experiments with inherent contrast variation were performed to model SNR variation in
PA channel data with optical energy used for acoustic excitation. Lower optical fluence results in
low SNR data reducing contrast between optical absorber and tissue scattering [21]. Under low
contrast conditions, PA pressure waves are difficult to distinguish from background scattering.
Using STCF, temporal coherence in PA pressure waves was exploited resulting in improved
separation of point target PA signals from background scattering signals, lower sidelobe levels and

higher SNR values [Figure 9.2 — Figure 9.4].

Acoustic signal loss due to absorption in soft biological tissues is a well-known
phenomenon [22, 23]. Resultant attenuation shows a power law frequency dependence. Due to its
broadband nature, PA signals are affected by frequency dependent attenuation [24] resulting in
depth dependent blurring of features and magnitude errors [25]. Furthermore, in vivo pre-clinical
cardiac PAI data was obtained using a high frequency linear array (fc = 21 MHz) necessitating
studying acoustic attenuation in simulations at various levels of acoustic absorption. Results show
DAS-STCF and MV-STCF provide higher SNR values when compared to other methods at all
depths for attenuation power law exponent values less than 2, showing the robustness of STCF
[Fig. 7]. However, at very high attenuation (y = 2), SNR values for STCF weighted beamformers

converge to the performance of CF-based beamformer because acoustic attenuation becomes the
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primary performance limiting factor rather than background noise, indicating that additional signal
processing is necessary to improve image quality. Attenuation correction approaches can be

applied post beamforming to address this issue [26, 27].

To account for the impact of the non-uniform optical fluence distribution due to photon
scattering in biological tissues on PA beamforming, a hybrid simulation approach was adopted in
this work [Figure 9.1]. In our tissue model, all point targets were treated as 0.1 mm radius blood
vessels imaged transversely with 75 % oxygen saturation. Since they are placed along the same
lateral coordinate with axial location variation, A(4,7) of the point targets appear to have an
exponential decay over depth. Therefore, at increased depths, low intensity PA signal wavefronts
get buried under noise (SNRchannet = -3 dB) which are not resolved with conventional and CF-based
beamformers. However, utilizing temporal coherence, low intensity wavefronts are separated from
the noise background resulting in better target detectability at 20 mm with subsequent
improvement in SNR [Figure 9.8 and Figure 9.9]. We further evaluated beamforming performance
background scattering coefficient values of soft and fibrous breast tissues reported in the literature
[28-30]. We found that with a drastic drop in A(4,7)=20mm due to high level of optical scattering
(us= 112 cm™), both signal and noise wavefronts had similar spatiotemporal coherence resulting
in target signal suppression with STCF. Thus, with low energy optical fluence, STCF may fail to
resolve deeper PAI targets [Figure 9.10]. A proposed deep learning method [29] can be coupled

with STCF to address this issue.

Ensemble length, K is a key algometric parameter for STCF weighting and was carefully
investigated in our simulations with the results summarized in Figure 9.12. In the presence of
inherent contrast with no acoustic and optical attenuation, both shallow and deep targets

demonstrate steady SNR improvement (> 8 dB) with increment of K from 3 to 9 [Figure 9.12 (a)].
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This is an expected outcome since only temporally varying background signals contribute to the
noise floor, which are suppressed during temporal coherence calculations. Similar trend was
observed for experiments incorporating acoustic absorption [Figure 9.12 (b)]. However, shallow
targets had higher SNR than deeper targets due to the depth-dependent nature of acoustic
attenuation. For experiments with background optical scattering coefficient = 10 cm™, no
significant performance improvement was seen by increasing K for the target at 8 mm depth
[Figure 9.12 (c)]. However, SNR of MV-STCF was 18 dB higher than MV-CF SNR with K =7
indicating that even for shallow targets with high optical absorption, STCF provides significant
improvement. For 20 mm target, more than 10 dB performance gain was obtained with increasing
K from 3 to 9. At deeper depths, the low intensity PA wavefront becomes increasingly difficult to
separate from the noise background, where increasing K had an evident impact [Figure 9.12 (c)].
Taking all these factors together, for ensemble lengths greater than 5, STCF always perform better

or same as CF methods.

Typically experimental and in vivo channel data get corrupted by background noise,
comprised of electronic and thermal noise [31, 32]. Optical scattering of tissues further contribute
to the noise floor [32] resulting in low SNR channel data. Thus, performance evaluation was done
by varying the SNR of channel data. Qualitative observation of channel data revealed that beyond
SNR channet = -9 dB, PA pressure wavefronts were difficult to discern. Consequently, added noise
contributed to significant destructive interference [33] during DAS and MV beamforming resulting
in images with non-resolvable optical absorbers. Superiority of the proposed STCF was
demonstrated as significantly higher SNR values were seen even with low SNR channel data

[Figure 9.11].
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One limitation of our simulation studies was that no relative motion was modelled for the
dominant optical absorber’s location over time. This was done under the assumption that little, or
no motion will be encountered within short ensemble periods. However, if large relative motion
occurs, realignment of dominant PA wave fronts by performing motion estimation in the aperture
domain can be performed before STCF calculation. Overall, the performance of STCF weighting
was robust for different contrast, acoustic absorption, optical scattering and channel SNR levels.
STCF weighted DAS and MV beamformers produced higher quality PA images compared to other
methods (DAS and MV with and without CF). This quality enhancement is attributed to improved
suppression of background noise and spatiotemporally incoherent signals. Subsequently, STCF
images exhibit a greater dynamic range than conventional and CF PA images enabling better

visualization of low intensity PA signals.

9.4.2 In vivo Cardiac STCF PAI Beamforming

In vivo feasibility of STCF beamformers was demonstrated by performing PA imaging of
the healthy murine heart. Our group has previously demonstrated the use of oxygen saturation
(sO2) as a measure to differentiate between healthy and infarcted hearts [18]. To obtain a reliable
estimate of sO2 in a rapidly beating organ such as the mouse heart (typical heart rate of 400-500
bpm), high persistence (frame averaging) is essential. This resulted in significantly reduced
temporal resolution [34], and thereby sensitivity for detecting subtle variations in sO2 over a single
cardiac cycle and in the detection of less severe ischemic events. To address these concerns,
imaging was done using the maximum possible PAI frame rate (20 Hz) on the Vevo LAZR without
any frame averaging. Offline processing was employed to reconstruct a single cardiac cycle of PA
data. This process led to ECG and respiratory signal gated “pseudo-high frame rate” cardiac PA

imaging. However, contrast between myocardial wall and surrounding background structure was
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impeded in the scanner reconstructed and conventional beamformed PA images due to spuriously
high amplitude PA signals from muscle [indicated by arrows in Figure 9.14 (b) and Figure 9.15

(b)] and LV chamber.

Benefits of coherence-based beamforming over DAS has been reported previously for
cardiac US [35, 36]. In this paper, we explore CF beamforming for in vivo cardiac PAI to enhance
PA signals only from the myocardium by suppressing other noise artifacts. With the use of CF
weighting, random noise signals from the gel region were suppressed to lie below the display
dynamic range. This resulted in improved contrast between skin and gel region and better
correspondence between US and PA images [Figure 9.14 and Figure 9.15]. In addition, due to the
temporal variation of these random noise signals, STCF weighting produced higher SNR values
when compared to other methods [Figure 9.16 (a)], thus corroborating our findings from numerical
simulation studies [Figure 9.4]. PA signals from muscle and myocardium have lower temporal
variation compared to signals from LV chamber blood [Figure 9.13 (a) and (d)]. Thus, comparable
contrast (CR) and lesion detectability (gCNR) were observed using CF and STCF in contrast to
conventional beamforming results between myocardial wall and muscle [Figure 9.16 (b) and (d)].
This is an expected outcome based on our results from simulation studies where similar FWHM

values for non-temporally varying point targets were obtained with CF and STCF.

Our results demonstrate that contrast degradation between myocardium and LV chamber
blood, was not suppressed using only CF. Due to pseudo-high frame rate of the reconstructed cine
loop, we observed that PA wave fronts from myocardium had both spatial and temporal coherence
over a short span of time with higher amplitude. On the other hand, PA wave fronts from LV
chamber blood had low STCF with amplitudes at the same level as noise signals from gel region.

This variation could be primarily due to the following two reasons. First, highly absorbing blood
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inside the coronary artery (murine arterial oxygen saturation ~ 90 — 95% [18, 37]) and scattering

tissues (with reduced scattering coefficients ( x/) of heart wall, whole blood, skin and soft tissue

are 6.84 cm™ |, 5.88 cm!, 17.06 cm™ and 9.55 cm™! respectively [28] at 850 nm) causes significant
light attenuation before it reaches LV chamber, thus creating a strong bias towards the myocardium
surface [38]. Second, PA transients from the large volume of high velocity circulating blood (in
early filling, E wave and late or atrial filling phase, A wave during diastole) inside the LV generates
mainly destructive interference, while low velocity blood flow (diastolic coronary flow velocity ~
20 cm/sec [39]) in the coronary artery on the myocardial surface generates constructive
interference resulting in PA amplitude differences between myocardium and LV chamber [33].
The E and A wave velocity [40] of mitral valve flow during diastole were roughly 54.2 cm/sec and
43.8 cm/sec respectively [41]. Therefore, no viable signal can be retrieved from the LV chamber
except temporally varying noise which reduces contrast between myocardium and LV chamber
[Figure 9.14 (b) and Figure 9.15 (b)]. This also corroborates our numerical simulation findings
where low fluence and noisy channel data was correlated with point target depth. Observe that the
PA signal level and background noise were similar at a 20 mm depth [Figure 9.10]. Furthermore,
previous studies on murine myocardial ischemia and PAI were focused on the anterior
myocardium due to penetration depth limitations [18, 37, 42]. Under these circumstances the
benefit of using STCF becomes more evident as it results in higher CR and gCNR between
myocardium and LV chamber when compared to other methods [Figure 9.16 (c) and Figure 9.16

(e)] by suppressing non-viable LV chamber PA signals.

Ensemble length analysis also indicates that gains in SNR, CR and gCNR are obtained with
higher ensemble length with high temporally varying noise [Figure 9.17 (a), (c) and (e)] with no

evident impact in the presence of slow or no temporal variation in PA signals [Figure 9.17 (b) and
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(d)]. Note also that reverberation artifacts (at depth > 14 mm) persist for CF beamformers [Figure

9.14 — Figure 9.15 (h)].

Results from simulation studies show that increasing ultrasound absorption and optical
attenuation reduces channel SNR, negatively impacting the SNR of STCF beamformed images.
For in vivo data sets, the quality of received channel data depends on a complex interplay of inter-
frame laser energy, depth-dependent fluence distribution, cardiac motion, positioning of the animal
in imaging FOV and ultrasound attenuation of generated PA signals (e.g. normalized signal loss
of freshly excised heart at 40 MHz = 36 dB/cm [43]) . Thus, SNR and CR obtained with STCF in
vivo was lower than simulation results. One interesting finding is that DAS-STCF had slightly
higher SNR, CR and gCNR when compared to MV-STCF in vivo. One implication of this finding
is that with STCF improved performance is obtained with a less computationally intensive

beamformer.

PAI has been used to monitor radiofrequency ablation lesion formation in the passively
beating ex-vivo left atrium [44] where Savitzky—Golay smoothing was employed to reduce SNR
degradation from cardiac motion. Results from this chapter suggests that CF and STCF
beamformers can be used to reduce SNR degradation. Recently, use of PAI to guide cardiac
catheter interventions have been demonstrated in vivo where DAS beamformed images were used
to localize the catheter tip inside the right atrium [45]. We anticipate that STCF weighting can be
potentially applied to visualize the tip at higher dynamic ranges. In future work, we will apply this
technique to perform cardiac PAI for infarcted murine hearts by estimating in vivo oxygen
saturation (sO2). Poor SNR in single wavelength PA data for estimating sO2 was shown to have a
significant noise bias [46]. We anticipate that with STCF weighting, noise signals can be separated

out, enabling improved sOz estimation with SNR-regularization [46].
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Finally, results in this work show that better adaptive beamforming can be obtained using
temporal information in context of cardiac PAI. We anticipate similar idea can be extended to
other variants of adaptive beamformers such as DMAS [4, 47-51], high resolution CF [52],
modified-CF [7], SNR-dependent CF [21] and SLSC [34, 53, 54] to further improve resultant

image quality.
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Chapter 10

Adaptive Photoacoustic Beamforming with Sub-Aperture Processing

We previously extended coherence factor (CF) calculations into the spatiotemporal domain
(STCF) and showed improved image quality over delay-and-sum (DAS) and minimum variance
(MV) beamforming for in vivo cardiac photoacoustic imaging in Chapter 09 [1, 2]. However,
further in vivo investigation revealed that CF and STCF weighting may also lead to undesirable
signal suppression from the myocardial wall along with sidelobe suppression. Furthermore, most
of the reported adaptive methods (e.g., coherence-based methods) [1-7] have shown performance
improvement for coherent targets when compared to DAS. However, for diffuse scattering arising
from constructive or destructive interference of spatially randomly distributed optical absorbers

[8], they tend to suppress the signal of interest.

Optimal image reconstruction should recover both coherent and diffuse photoacoustic (PA)
signals while suppressing clutter and sidelobes. To this end, in this chapter®, we propose image
formation based on sub-aperture processing to preserve DAS amplitude levels for myocardial wall
PA signals while achieving sidelobe and clutter suppression like CF based beamformers. Here, the
received channel data are first split into two non-overlapping sub-apertures as in dual apodization
with normalized cross-correlation (DAX) [9] and acoustic sub-aperture processing (ASAP) [10]
developed for B-mode and contrast enhanced ultrasound (CEUS) imaging respectively. A pair of
sub-aperture PA images were then reconstructed using the DAS algorithm. Amplitude and phase

correlation of the sub-aperture PA images were utilized to generate a weighting matrix to suppress

8 Rashid Al Mukaddim, Rifat Ahmed, and Tomy Varghese, “Sub-aperture Processing Based Adaptive Beamforming
for Photoacoustic Imaging.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Early Access
(2021) PMCID: Pending
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sidelobe and clutter signals. Finally, the full-aperture DAS image was weighted using the
weighting matrix to generate a PA sub-aperture (PSAP) image. In [11], ASAP was coupled with
spatiotemporal filtering and temporal correlation estimation to improve contrast-enhanced PAIL. A
limited ex vivo study was performed using DAX on contrast-based PAI [12]. In PSAP, we utilize
the spatial correlation function derived from sub-aperture beamformed images to enhance non-

contrast PAI where optical contrast is attributed to endogenous chromophores in vivo.

10.1 Basic Principles of Photoacoustic Sub-aperture Processing (PSAP)

10.1.1 Beamforming using Sub-apertures

Let X(#) = [x1(t — tm), ...., xm (¢ — wm)] represent the received time-delayed PA channel data
from an M-element linear array with the time delay of element m denoted by . For PSAP, using
the received time-delayed PA channel data X(¢), two set of images, S1(7) and Sz(¢) are reconstructed
using two non-overlapping sub-apertures with no common elements, denoted by the vectors Wi(¢)
and Wa(7) [9, 10, 13-19]. Sub-aperture reconstructed images are represented using the following
equations.

S,(H) =W, (0" X(®)

(10.1)
S,(0) =W, ()" X(1)

To construct W(¢) and W2(¢) we follow an approach reported in [9]. Wi(#) is made of ones
and zeros with an alternating pattern of N elements on and N elements off. W2(7) is complementary
to Wi(?) and uses the opposite alternating pattern of N elements on and N elements off. An example
of sub-apertures Wi(¢) and Wa(#) formed with 4-4 alternating element pattern is shown in Figure
10.1. Here, we assume that any signal from on-axis main lobe will be highly correlated between

S1(¢) and Sa(r) while off-axis interfering signals such as sidelobe and incoherent clutter will be
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decorrelated [9, 13]. Therefore, quantifying the similarity between Si(f) and S»(f) will enable
determination of a weighting matrix for DAS PA to suppress sidelobe and incoherent clutter. A
schematic diagram for PSAP is presented in Figure 10.2. Seo et al. [9] used a similar approach for
ultrasound B-mode images and Stanziola et al. [10] later extended the approach for CEUS. Here,

we demonstrate that this approach results in significant clutter reduction in PA.

MO
B R T

Element Number

Figure 10.1 Sub-aperture W1(f) and W2(t) formed with 4-4 alternating element pattern.
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Figure 10.2 Schematic diagram presenting the PSAP method.

10.1.2 Weighting Matrix Generation for PSAP

Two approaches are reported in this chapter to generate the weighting matrix. The first
approach is based on using 2-D normalized cross-correlation (NCC) termed as PSAPncc and
second approach utilizes phase differences between sub-aperture beamformed images termed as

P SAPPhase .
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10.1.2.1 PSAPncc Weighting Matrix

Our first approach follows DAX weighting reported by Shin et al. [15] where the pixel-

wise 2-D NCC coefficient, p(i, j) at zero lag was computed between S; and S; to quantify the

degree of similarity:

i+K  j+H

> 2 (Si(k)=5)(8,(k, ) -5,)
,0(1,])= i+K k;;IK — i+K j+H (102)
\/Z 2 (St =5) % 30 3 (S,(k 1) -5, )

where, i and j denote i sample of /™ A-line with a kernel dimension of 2K+1 samples by 2H+1

A-lines, s, and &, are the mean values over the 2-D kernel. Using p(i, j), the weighting matrix

NCCw(i,j) was computed as follows [9]:
NCCW(iJj):maX(p(iaj)ag) (103)

where, ¢ is a minimum NCC threshold value chosen to be 0.001 in this work. Here, signals with
correlation values less than ¢ were considered as sidelobe and incoherent clutter and subsequently
suppressed using the weighting matrix. In both sidelobe and incoherent clutter regions, typical
NCC values are low ranging from -1 to -0.8. Thus, weighting DAS-beamformed RF data directly
with the NCC matrix introduces a sign reversal rather than artifact suppression. Therefore, a max
operator was used in equation (3) to ensure that the resultant weighting matrix has positive weights
ranging from ¢ (0.001) to 1 resulting in 20log10(0.001) = 60 dB amplitude reduction applied to
clutter signals [15]. Furthermore, NCCw calculation was robust to noise due the use of 2-D kernel
and data up-sampling using linear interpolation, therefore no additional filtering (e.g., 2-D median
filter) was necessary [15]. Finally, the DAS beamformed data was multiplied by the weighting

matrix to generate a PSAPncc image as shown:
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PSAP,..(i, j) = NCC, (i, j)x DAS(i, j) (10.4)

10.1.2.2 PSAPphase Weighting Matrix

Since main lobe signals are highly correlated between sub-aperture beamformed images,
they result in zero or small phase differences, whereas interfering signals will be out-of-phase
resulting in an increased phase difference. Therefore, in our second approach, we utilized phase
information derived from the complex cross-correlation between the sub-aperture beamformed
images to determine the weighting matrix [10, 13]. For S1 and Sz, corresponding complex valued
IQ signals s1 and s; were derived using Hilbert transformation. The complex cross-correlation

function, R was calculated as follows:
R, j) =s,(i, /)%, (i, J) (10.5)

The weighting matrix was determined using the phase angle of R to suppress any off-axis signals
following an approach reported by Stanziola et al. [10] as shown below:

2
Phase,, (i, j) :exp[—%j (10.6)
0

where k& denotes the phase angle of R(i,j) and ko is an empirically determined phase factor to
attenuate out-of-phase signals. Phasew estimation is a point wise calculation (no kernel), thus the
resultant weighting matrix was more sensitive to noise when compared to NCCw. Therefore, 2-D
median filtering was applied to the weighting matrix for reducing noise. Finally, the DAS

beamformed data is multiplied by the weighting matrix to generate PSAPphase images as shown:

PSAP,

Phase

(i, j) = Phase,, (i, j)x DAS(, j) (10.7)
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10.2 Description of Simulation and in vivo Validation Experiments

10.2.1 Numerical Simulations

All simulations were performed using the k-Wave MATLAB toolbox [20]. To detect PA
channel data, a 128-element linear array transducer with 72-um element width, 18-um kerf and
84-MHz sampling frequency operating at a center frequency of 21-MHz, and 100% fractional
bandwidth was modelled in k-Wave. For all simulations, the imaging field-of-view (FOV) was
divided into a 2-D k-Wave grid having a node spacing of 15-um in both axial and lateral directions.
The speed of sound and medium density was assumed to be 1540 m/s and 1000 kg/m?, respectively.

For all quantitative evaluations, envelope detected PA beamformed data were used.

10.2.1.1 Point Target Simulation

Four 100-um diameter spherical absorbers were placed in a homogenous background with
zero optical absorption to model a point target numerical phantom. They were positioned along
the vertical axis with an inter-point target separation of 4 mm starting from a depth of 8 mm from
the transducer surface. Imaging FOV was 22 x 11.5 mm?. Each point target had an initial pressure
value of 3 Pa. Optical and acoustic attenuation was not simulated. For quantitative evaluation, the

main-lobe-to-sidelobe (MLSL) ratio was computed [21]:

n

MLSL =20xlog,, (Mj (10.8)
O

where, gmax and gmin denote the maximum and minimum signal amplitude within a 2x5 mm?
rectangular region-of-interest (ROI) centered on each point target and ox represents the standard

deviation of signal amplitudes from two 2x2 mm? ROIs within the signal ROI. The full-width-at-
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half-maximum (FWHM) at -6 dB was also calculated using 1-D lateral plots through the point

targets, quantifying the distance in millimeters between points at the peak half maximum level.

10.2.1.2 Diffuse Inclusion Simulation

To understand how well PSAP preserves signals from diffuse targets, we performed
simulations with inclusions having randomly distributed optical absorbers. A hybrid simulation
approach using MCMatlab [22] and k-Wave [20] software packages was used [1]. Two 3 mm-
diameter circular targets were placed along the vertical axis of a 16x11.5 mm? phantom at a depth
of 7 mm and 13 mm, respectively. Each circular target contained randomly distributed optical
absorbers with a spatial density of 299 absorbers/mm? [23, 24]. Ten independent optical absorber
realizations were generated for statistical analysis. First, spatially variant (» = optical absorber
spatial location) and wavelength (1) dependent absorbed optical energy density [A(4,7)] was
calculated using MCMatlab with the simulation parameters listed in Table 10.1. Then, A(4,7) was
utilized to determine the initial pressure distribution (po) for the acoustic simulation as follows

[25]:
py(A,r)=T'xA4(4,r) (10.9)

where, T is the dimensionless Grueneisen parameter set to be 0.129 in this work [26]. To evaluate
the performance of PSAP under varying level of channel noise, white noise was also added to the

simulated channel data resulting in SNRs (SNR¢) ranging from -25 to 25 dB.

Quantitative analysis was done using contrast ratio (CR) and generalized contrast-to-ratio

(gCNR) [23, 27] as described in Chapter 09.
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Table 10.1 Diffuse Inclusion Optical Simulation Parameters

Parameter Value Unit
Simulation cuboid 1.6x1.2x0.5 cm?
Water coupling layer 1 mm
Vessel absorption (uq at 7mm, 13 mm) (4.43,5.60) cm’!
Vessel scattering (us at 7mm, 13 mm) (58.82,58.82) cm!
Vessel oxygen saturation (7 mm, 13 mm) (35.0,95.0) %
Background absorption (u«) 0.01 cm’!
Background scattering (us) 10 cm’!
Optical Wavelength 850 nm
Collimated top-hat beam radius 0.5 cm
Incident laser energy 30 mJ

10.2.1.3 Microvasculature Simulation

To understand how well PSAP preserves signals of interest in anatomically relevant
heterogeneous media, we performed simulations mimicking typical in vivo microvasculature
networks using 40 reference vascular images collected from the fundus oculi drive [28, 29].
Database contained binary images of blood vessels manually extracted from digital color images
of the retina with white pixels denoting vessel segmentation. We use these binary images in our
hybrid simulation framework to simulate raw channel data. First, optical absorbers were randomly
distributed inside the blood vessels with a spatial density of 299 absorbers/mm?. Then, MCMatlab
[22] was used to derive the absorbed optical energy density [A(4,7)] with parameters listed in Table
10.2. Finally, equation 12 was used to generate the initial pressure distribution and acoustic
simulation was done using k-Wave [20]. CR and gCNR were computed for quantitative
comparison. Rectangular ROIs containing vessel signals were defined randomly using ground
truth images as target ROIs. The same ROIs were shifted to adjacent background locations and

denoted as background ROIs.
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Table 10.2 Microvasculature Optical Simulation Parameters

Parameter Value Unit
Simulation cuboid 1.6x1.2x0.5 cm?
Water coupling layer 3 mm
Vessel absorption (ua) 5.6 cm’!
Vessel scattering (us) 58.82 cm!
Vessel oxygen saturation 75 %
Background absorption (u«) 0.01 cm’!
Background scattering (us) 10 cm’!
Optical Wavelength 850 nm
Collimated top-hat beam radius 0.5 cm
Incident laser energy 30 mJ

10.2.2 In vivo Cardiac PAI Experiments

In vivo cardiac PAI data from five healthy murine models were collected using an
experimental protocol approved by the Institutional Animal Care and Use Committee (IACUC) at
the University of Wisconsin-Madison and described in detail in Chapter 09 [1]. Data collection
was done in PA RF mode to access raw channel data. Typical total acquisition time for in vivo data
collection was 50 seconds. End-diastolic (ED) and end-systolic (ES) PAI frames were selected
using reconstructed PAI M-mode images to perform quantitative analysis using CR and gCNR.
Target ROIs were manually drawn on the epicardium and endocardium to locate myocardial wall
PA signals. Then, the target ROIs were shifted to the left ventricular (LV) chamber and denoted
as background ROIs. For delay-and-sum (DAS) PAI images, we have consistently observed
dominant PA signals concentrated in the endocardial and epicardial walls corroborating findings
from literature [30]. To ensure, that our quantitative analysis is not biased by PA signals that may
appear as temporally varying noise between the endocardial and epicardial wall during cardiac

motion, ROIs were limited only to the epicardial and endocardial walls. Therefore, the target ROI



301

was the summation of these two ROIs. Furthermore, shifting the target ROIs in the LV chamber

ensured that both target and background ROIs had equal area during CR and gCNR evaluation.

10.2.3 Algorithm Implementation and Data Processing

All beamforming algorithms were implemented to run on a GPU in MATLAB (Mathworks
Inc., MA) for cross-platform acceleration. DAS and DAScr (DAS with coherence factor
weighting) beamforming were included in a comparative study and described in detail in Chapter
09. DAS and DAScr beamforming were performed using a 64-element, dynamic apodization
having a constant f-number of 1 and uniform aperture weighting. With the 64-element aperture,
apodization was constant after 5.76 mm. For both PSAPncc and PSAPphase, sub-aperture data were
upsampled by a factor of 2 both axially and laterally using linear interpolation before calculating
the weighting matrix [31, 32]. Upsampling was done to improve robustness of NCC and phase
estimation. Default parameter settings for PSAP~xcc and PSAPphase are summarized in Table 10.3
and Table 10.4, respectively. Choice of these parameters are justified in Sections 1.3 and 1.4 where
simulation and experimental results are discussed. One-way analysis of variance (ANOVA) with
the Bonferroni multiple comparison test was used to determine statistical significance among DAS,
DAScr, PSAPNcc and PSAPphase. Statistical analysis was performed using SPSS Version 23 (IBM

SPSS Statistics for Windows, Version 23.0, IBM Corp., Armonk, NY, USA).

Table 10.3 PSAP~cc Parameters

Experiment Parameter Value
Point Target Sub-aperture alternating elements (N) 8-8

2-D NCC Kernel (Wavelength, A-lines) (4.50,3)
Diffuse Inclusion Sub-aperture alternating elements (N) 2-2
Mi lat
. 1:;:)Ovascu e 2-D NCC Kernel (Wavelength, A-lines) (1.51,3)
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Table 10.4 PSAPphase Parameters

Experiment Parameter Value
Sub-aperture alternating elements (N) 8-8
Point Target Phase factor (ko) %
Median filter kernel (pixels, pixels) (11,11)
Diffuse Inclusion Sub-aperture alternating elements (N) 2-2
Microvasculature Phase factor (ko) %_5
Invivo Median filter kernel (pixels, pixels) (5,5)

10.3 Findings from Numerical Simulation Studies

10.3.1 Point Target Simulation

Figure 10.3 (a) — (d) show beamformed images obtained using DAS, DAScr, PSAP~cc and
PSAPrhase, respectively. Significant sidelobes are apparent in the DAS image, that are suppressed

by both CF weighting and PSAP. Qualitatively, DAScr provided the best reconstructed image.

Figure 10.4 (a) — (b) show the lateral profiles of the point spread function (PSF) at depths
of 8 and 20 mm respectively. Both CF and PSAP significantly reduced sidelobe levels when
compared to DAS but DAScr had better lateral resolution. Table 10.5 summarizes MLSL and
FWHM at -6 dB. The best and worst values of MLSL and FWHM were denoted with blue and red
colors respectively in Table 10.5. Results show that both CF and PSAP provide better image
quality than DAS. They also have the lowest MLSL and highest FWHM values at all depths

coorborating our qualitiave observations from Figure 10.3 — Figure 10.4.

The variation in MLSL and FWHM as a function of alternating element numbers is shown
in Figure 10.5. Note the trade-off between MLSL [Figure 10.5 (a) — (b)] and resolution [Figure
10.5 (c) — (d)] when selecting the alternating element numbers. We observed reduction in MLSL

for all point targets (red, blue and green curves) except at 20 mm depth with the 16-16 alternating
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pattern when compared to 8-8 for PSAPncc. For PSAPphase, a MLSL peak was achieved for all
targets using the 8-8 alternating pattern except the one at 8 mm which shows a slight reduction
from its peak. These observations suggest that selecting alternating element numbers with an 8-8
pattern achieves a balance for both PSAPncc and PSAPphase. The results also suggest that lower N
is preferred for shallower depth [red curves in Figure 10.5 (a) — (b)] and vice versa [black curves

in Figure 10.5 (a) — (b)].
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Figure 10.3 Beamformed images of simulated point targets (a) DAS, (b) DAScr, (c) PSAPncc (8-8) and (d)
PSAPPhase (8-8). Display dynamic range is 55 dB. Green and blue rectangles denote signal and

noise ROls, respectively. For PSAPncc and PSAPehase, axial kernel length and phase factor (ko)

were 4.5\ and % respectively.
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Figure 10.4 Lateral profiles of PSF of at depth of (a) 8 mm and (b) 20 mm for all methods. Both CF and

PSAP significantly reduced sidelobe level of DAS.

Table 10.5 Comparison of MLSL (dB) and FWHM at -6 dB Values*

MLSL (dB) FWHM at -6 dB (mm)

Depth | DAS  DAScr PSAPncc PSAPphase | DAS  DASck  PSAPncc  PSAPphase
(mm)

8 4115 75.7 70.5 80.3 021  0.17 0.21 0.20
12 38.16  70.4 71.2 57.8 032 024 0.30 0.29
16 3591  66.0 60.4 59.1 041 033 0.40 0.36
20 33.81  61.8 46.5 80.7 0.53 041 0.50 0.38

*The best and worst values are in blue and red colors, respectively.
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Figure 10.5 Variation of MLSL with alternating element number for (a) PSAPncc and (b) PSAPphase
respectively. Variation of FWHM at -6 dB with alternating element number for (a) PSAPncc and (b)

PSAPehase respectively. For PSAPnce and PSAPenase, axial kernel length and phase factor (ko) were

2.5\ and % respectively.

The performance of PSAPncc as a function of axial kernel length are shown in Figure 10.6.
With higher axial kernel lengths, a steady improvement in MLSL was seen for shallower targets
when compared to deeper targets with no signifcant variation at 20 mm as shown in Figure 10.6
(a) — (e). Higher axial kernel lengths did not impact FWHM except for the 20 mm target [Figure

10.6 (f)]. A 8-8 alternating pattern was used.

Figure 10.7 shows PSAPphasse performance as a function of phase factor (ko). Better
sidelobe suppression was achieved with lower phase factors resulting in higher MLSL values as

seen in Figure 10.7 (a) — (e). Furthermore, reduction of FWHM values at depth was observed with
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lower ko [Figure 10.7 (f)]. A 8-8 alternating pattern was used. These results indicate that the phase

factor can be adjusted to adatively control the level of sidelobe suppression of coherent targets.
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Figure 10.6 Variation of PSAPncc performance with axial kernel length. Point target at 8 mm depth
beamformed using an axial kernel length of (a) 0.54, (b) 2.54, (c) 3.54 and (d) 4.51 respectively.

Variation of MLSL and FWHM at -6 dB are shown in (e) and (f) respectively.
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Figure 10.7 Variation in PSAPphase performance with phase factor. Point target at 8 mm depth beamformed

using a phase factor of (a) m, (b) ™/3, (c) ™/5 and (d) ™/q respectively. Variation of MLSL and

FWHM at -6 dB are shown in (e) and (f) respectively.

10.3.2 Diffuse Inclusion Simulation

Representative qualitative results with diffuse inclusions are shown in Figure 10.8. Figure
10.8 (a) — (e) show the ground truth initial pressure disribution, along with the reconstrcuted
images using DAS, DAScr, PSAPNcc and PSAPrhase, respectively. Strong sidelobes are seen in the
DAS image [Figure 10.8 (b)]. CF reduced sidelobes seen with DAS along with the undesirable
supression of PA signals inside the inclusion [Figure 10.8 (c)]. On the other hand, PSAPncc and

PASPrhase produced higher quality images with reduced sidelobe and better PA signal preservation
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inside the inclusion that more closely resembled ground truth image [Figure 10.8 (d) — (e)].
However, strong sidelobes near the border of the shallow target in Figure 10.8 (b) causes positive
correlation between sub-aperture images with the chosen parameters. This resulted in additional

noise in the border regions of the PSAP images [Figure 10.8 (d) — (e)].
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Figure 10.8 Beamformed images of simulated 3-mm diameter diffuse targets. (a) ground truth initial
pressure distribution, (b) DAS, (¢) DAScr, (d) PSAPnce (2-2) and (e) PSAPPhase. (2-2). Display

dynamic range is 55 dB. Green and white ROIs denote signal and noise ROls, respectively.
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Figure 10.9 (a) — (c) present the CF, NCCw and Phasew weighting matrices used to obtain
the corresponding DAScr, PSAP~ncc and PSAPphase images shown in Figure 10.8. A linear scale
ranging from 0 to 1 was used to display the results. Observe that the CF weighting matrix had
unusable lower weight values inside both lesions. However, NCCw and Phasew both robustly
estimated higher weighting values insde the lesions and lower weighting values inside sidelobe
and clutter regions, thus hindering the undesirable signal suppression observed in the DAScr result

(Figure 10.9 (¢)).

CF atrix

Figure 10.9 Weighting matrix comparison between CF and PSAP processing in diffuse inclusion simulation.

(a) — (c) show CF, NCCw and Phasew weighting matrix respectively in a linear scale from 0 to 1.

Figure 10.10 summarizes statistical analysis, where both CF and PSAP show statistically

significant differences in CR when compared to DAS with PSAP methods achieving the highest
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values [Figure 10.10 (a) — (b)]. PSAP significantly improved inclusion detectability when
compared to both DAS and DAScr as shown in Figure 10.10 (c) — (d) where PSAPncc and

PSAPprhase had higher gCNR values (p<0.001) with no significant differences between each other.

The choice of sub-aperture patterns was also investigated for diffuse inclusions. Figure
10.11 (a) and (b) show that peak CRs for inclusions located at shallower and deeper depth were
achieved with 2-2 and 4-4 alternating patterns respectively for both PSAPncc and PSAPphase. But
gCNR results [Figure 10.11 (c) — (d)] show peaks with 2-2 alternating pattern indicating an ideal
choice for diffuse inclusion detection. Thus, the 2-2 alternating pattern was chosen for subsequent

analysis of microvasculature simulations and in vivo data.
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Figure 10.10 Statistical analysis for performance comparison among DAS, DAS-CF and PSAP (n = 10).

Comparison of CR for lesions located at a depth of (a) 7 mm and (b) 13 mm respectively.
Comparison of gCNR for lesions located at a depth of (a) 7 mm and (b) 13 mm respectively. Here,

*** js p<0.001.
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Figure 10.11 Impact of sub-aperture size on lesion contrast and detectability. CR variation with the choice
of sub-aperture for (a) PSAPncc and (b) PSAPehase respectively. gCNR variation with the choice of

sub-aperture for (c) PSAPncec and (d) PSAPPhase respectively.

Variations in CR and gCNR as a function of channel SNR (SNR¢) is presented in Figure
10.12. Figure 10.12 (a) — (b) show CR variations at depths of 7 and 13 mm, respectively. For the
7 mm deep inclusion, DAScr, PSAPNcc and PSAPphase present with higher CR than DAS for all
SNR. levels. PSAPncc and PSAPphase showed higher CR values than DAScr for SNRe < -15 dB
(Figure 10.12 (a)). At the deeper depth (13 mm), DAScr, PSAPnce and PSAPphase had higher CR
than DAS for SNRc < -15 dB after which the inclusion is not visualized due to high noise levels.
Figure 10.12 (c) — (d) show gCNR variation at depths of 7 and 13 mm, respectively. Figure 10.12
(c) shows that PSAP results had higher gCNR than DAS and DAScr for the shallow target at all
SNRG levels. For the deeper target, PSAP results had higher gCNR for low levels of noise (SNRc
> 5 dB) after which the results converge to the results obtained with DAScr. DAScr, PSAPnce
and PSAPprhase had higher gCNR than DAS for SNRc < -15 dB after which the inclusion was not

distinguished from the background.
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Figure 10.12 Diffuse inclusion simulation CR and gCNR analysis as function of channel SNR. (a) — (b) CR
variation at a depth of 7 and 13 mm, respectively. (c) — (d) gCNR variation at a depth of 7 and 13

mm, respectively.
Table 10.6 provides computational times computed over ten simulation instances of the diffuse
inclusion simulation. Note that, PSAP requires more computational time due to additional sub-

aperture beamforming and weighting matrix calculation.

Table 10.6 Summary of Computational Times (Secs)

DAS & DAScr
Diffuse Inclusion* 0.14

* Average time over 10 simulation realizations

PSAPNCC
0.33

PSAPPhase
1.85

Experiment
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10.3.3 Microvasculature Simulation Results

A representative result from the microvasculature simulation is shown in Figure 10.13 (a)
— (e) with ground truth initial pressure disribution, reconstructed images with DAScr, PSAPNcc
and PSAPrhase, respectively. Representative target and background ROI definitions for quantitative
analysis are shown in Figure 10.13. DAS image show severe clutter artifacts due to high sidelobe
levels. With CF, clutter was reduced but the PA signal amplitude inside blood vessels were also
undesirably suppressed thus negatively impacting deeper vessel detectability. PSAPncc and
PSAPphase produced significantly better images when compared to DAS and DAScr achieving both
clutter supression and blood vessel PA signal preservation. Figure 10.13 (f) shows the axial
profiles across the blue line ROI shown in Figure 10.13 (a). Note that PSAP preserves DAS

amplitude levels in the blood vessels and at the same time reduces clutter compared to DAScr.

Figure 10.14 demonstrates that statistically significant improvements in CR and gCNR
were achieved with PSAP when compared to DAS and DAScr. Figure 10.14 also demonstrate that
CF weighting stretches the dynamic range resulting in higher CR without improving the target
detectability (no significant difference between DAS and DAScr gCNR values). With PSAP,
improvements both in contrast and target detectability was achieved. The choice of sub-aperture
was also investigated for microvasculature simulations as shown in Figure 10.15. Peak CR and
gCNR values were obtained with the 2-2 alternating pattern for both PSAPncc and PSAPphase.
Figure 10.15 also shows that performance can be severely impacted if larger number of alternating

elements are chosen.
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Figure 10.13 Beamformed images of simulated microvasculature. (a) ground truth initial pressure

distribution, (b) DAS, (c) DAScF, (d) PSAPNcc (2-2) and (e) PSAPPhase. (2-2). Signal variation across

an axial line ROI shown in (f). Display dynamic range is 55 dB. Green and red rectangles in (a)

denote signal and clutter ROls, respectively. Blue line in (a) denotes axial profile ROI.
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Figure 10.14 Statistical analysis for performance comparison among DAS, DAScr and PSAP (n = 40).

Comparison of (a) CR and (b) gCNR for microvasculature simulation data. Here, *** is p<0.001.
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Figure 10.15 Impact of sub-aperture size on microvasculature contrast and detectability. CR variation with

the choice of subaperture for (a) PSAPncc and (b) PSAPehase respectively. gCNR variation with the

choice of subaperture for (c) PSAPncc and (d) PSAPehase respectively.
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10.4 Experimental Findings from in vivo Cardiac PAIl Study

Figure 10.16 (b) — (e) shows in vivo cardiac PA images at ED reconstructed using DAS,
DAScr, PSAPNnce and PSAPphase, respectively. Corresponding US B-mode image with PAI
aquisition ROI and relevant anatomical locations is shown in Figure 10.16 (a). Myocardial wall
PA signals and background clutter signals are shown in blue and white ROIs in the DAS image.
Note that DAScr reduced clutter signals with simualtanous supression of myocardial wall PA
signals. On the other hand, PSAPncc and PSAPphase showed improved myocardial wall signal
specificity and reduced clutter in the LV chamber and thus provided higher quality image when
compared to DAS and DAScr. In vivo cardiac PA images at ES are shown in Figure 10.17, we
observe similar findings as in ED images. Figure 10.18 shows that PSAPncc and PSAPphase had

higher CR and gCNR values compared to DAS and DAScr.
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Figure 10.16 /n vivo cardiac photoacoustic images at ED. (a) US B-mode, (b) (b) DAS, (c) DAScr, (d)

PSAPnNcc (2-2) and (€) PSAPPhase. (2-2). Green rectangle denotes PAI ROI. Blue and white ROls

indicate myocardial wall and clutter signals respectively.
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Figure 10.17 In vivo cardiac photoacoustic images at ES. (a) US B-mode, (b) (b) DAS, (c) DAScr, (d)

PSAPnNcc (2-2) and (e) PSAPPhase. Green rectangle denotes PAI ROI. Blue and white ROls indicate

myocardial wall and clutter signals respectively.
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Figure 10.18 /n vivo statistical analysis for performance comparison among DAS, DAScr and PSAP (n =

5). (a) and (b) show CR and gCNR. n = 5 corresponds to the number of animal models.

10.5 Discussion on the implication of using PSAP algorithms for PAl beamforming

In this chapter, we presented our PSAP algorithms, validated using numerical simulations
and in vivo animal studies both qualitatively and quantitatively. The key findings from these
studies can be summarized as follows.

a) PSAP reduces PA clutter seen in DAS PA images utilizing similarity information between
sub-aperture beamformed images.
b) PSAP improves PA target detectability at all depths by preserving DAS signal amplitude

inside the target while achieving CF like clutter suppression in the background.

c) Optimal PSAP performance is parameter dependent and varies with application.

The variation in DAS image quality with f-number was evaluated using both point target
and diffuse inclusion simulations. A f-number of 1 was chosen as it provided higher MLSL for
point targets and higher CR and gCNR for inclusions (Appendix A: DAS and DAScr
Performance Optimization for PSAP Comparison Study). For coherent targets, PSAP reduces
DAS sidelobe levels when compared to DAScr while maintaining DAS resolution [Figure 10.3
and Figure 10.4]. But DAScr provided the best quality images in terms of MLSL and FWHM with

comparable performance with PSAP [Table 10.5]. For PSAPncc and PSAPphase, choice of the



320

alternating sub-aperture element number (N) showed a depth-dependent variation in MLSL [
Figure 10.5]. Varying the alternating pattern affects the PSF shape generated by each sub-aperture
which in turn changes the correlation of sidelobe signals [10]. Furthermore, from the DAS image
[Figure 10.3 (a)], we observe depth-dependent variation of full aperture PSF due to variation in
scattering intensity over depth [10]. Thus, larger number of alternating elements provide better

MLSL deeper in tissue with 8-8 achieving a balance.

Two key algorithmic parameters — axial kernel length for PSAP-NCC and phase factor for
PSAP-Phase were also investigated. Figure 10.6 (a) — (d) and Figure 10.7 (a) — (d) show that lower
axial kernel length and higher phase factor introduces positive correlation between sub-aperture
beamformed images in sidelobe regions resulting in point-like artifacts in the images. These
artifacts were seen in point target simulations due to the strong sidelobes in the original DAS
image. Increasing axial kernel length steadily improved MLSL for shallower targets [8 and 12
mm shown by red and blue curves in Figure 10.6 (e)] as they had wider sidelobes when compared
to deeper targets [ 16 and 20 mm shown by green and black curves in Figure 10.6 (e)]. On the other
hand, we observed steady improvement in performance (MLSL and FWHM) when lower phase
factor values were chosen for PSAPphase [Figure 10.7]. Therefore, these results suggest that both
axial kernel length and phase factor values should be adjusted based on the application to achieve
desired sidelobe suppression. Overall, the results from point target simulations suggest that larger
alternating element number (8-8), higher axial kernel length and lower phase factor is preferred

when using PSAP for coherent target PAI [10].

Several groups including ours have reported on CF weighting for sidelobe lobe suppression
[1, 3,5, 33, 34]. However, analysis in this chapter shows that although CF weighting suppresses

clutter signals, it also leads to undesirable target PA signal suppression specifically at depths where
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the target signal is weaker due to optical attenuation [Figure 10.8 and Figure 10.13]. CF was
originally developed for US imaging to tackle phase aberration [35] and utilizes very strict
measures of coherence. This causes weak PA signals at depth to have lower coherence values thus
suppressing them at the level of clutter signals. On the other hand, our PSAP approaches separate
target PA signals from clutter using correlation (amplitude and phase) between sub-aperture
beamformed images. Here, target PA signals were highly correlated both at shallower and deeper
depths when compared to clutter signals due to the use of non-overlapping sub-apertures [9, 10,
13, 15]. Therefore, weaker PA signals at depth were better preserved with PSAP when compared
to CF. Quantitative results show that DAScr, PSAPncc and PSAPphase provide higher CR values
than DAS. However, we are also interested in improving signal detectability which is better
quantified using gCNR [27]. Adaptive methods often nonlinearly alter the image dynamic range
and histogram to which gCNR is invariant [23, 27]. gCNR analysis reveals that significant
improvement is achieved using PSAP when compared to DAScr [Figure 10.10 and Figure 10.14].
Figure 10.11 and Figure 10.15 also indicate that lower N is preferred for maintaining a balance
between main lobe signal preservation and clutter signal suppression. With higher N, target PA
signals start to get negatively correlated and suppressed through the PSAP weighting matrix. This
results in lower CR and PA signal detectability (gCNR). Furthermore, lower axial kernel length
and higher phase factor values were chosen to inhibit any undesirable suppression of target PA
signal [Table 10.3 and Table 10.4]. Overall, the results for diffuse and microvasculature
simulations suggest that lower alternating element number (2-2), lower axial kernel length and

higher phase factor is preferred when using PSAP for diffuse target PAI.

PSAP and CF also showed similar CR trends as a function of SNR¢ with better performance

than DAS [Figure 10.12 (a) — (b)]. However, PSAP processing provides improved target
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detectability (gCNR values) when compared to DAS and DAScr under low noise levels for both
target depths. Additionally, PSAP processing had larger SNRc operating regions for shallower
versus deeper targets, observed by the left shift of the gCNR curve indicated by an arrow in Figure
Figure 10.12 (d). For lower SNRc¢ channel data with simulated optical attenuation, main lobe
strength in the sub-aperture beamformed images degrades severely for deeper targets resulting in
decorrelation during NCC and phase estimation. These results indicate that for PA imaging targets
severely corrupted by incoherent clutter noise, PSAP processing is unable to distinguish between

signal and noise providing similar performance as DAScr.

We also observed few erroneous vertical lines in DAScr images in Figure 10.8 (c) and
Figure 10.13 (d) respectively, probably due to the Hilbert transformation of CF weighted
beamformed PA RF data for envelope detection. CF weighting may have extended the signal
bandwidth resulting in violation of the bandlimited signal assumption required with the Hilbert
transform. This may happen in any weighting-based beamforming algorithm, however in DAScr
results, we observed it within our imaging dynamic range. However, it did not impact the
quantitative analysis, because the vertical line artifacts were outside our chosen ROI locations.
Approaches to reduce the vertical line artifact include determining the envelope of beamformed
PAI RF data first then weighting using the CF matrix or beamforming in the IQ domain by taking
Hilbert transform of channel data or bandpass filtering of the RF data prior to Hilbert envelope
detection. Additionally, we have investigated a filtered version of CF weighting by applying a
spatial averaging filter with a kernel of size [1.5A x 3 A-lines] on the CF map and observed that
the filtered version of DAScr provides vertical line artifact reduction and minor improvements in
the CR and gCNR when compared to the classical CF algorithm. Please refer to Appendix A:

DAS and DAScr Performance Optimization for PSAP Comparison Study for further details.
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PSAP however does require additional computational time and memory for sub-aperture
processing and weighting matrix generation. For real-time processing, parallel processing with
GPUs can be harnessed by beamforming DAS and sub-aperture images in parallel from collected

raw channel data.

A limitation of our simulations was that frequency dependent acoustic attenuation was not
modelled. Typically, broadband PA signals are impacted by acoustic attenuation [36] especially
when high frequency transducers are used for imaging resulting in depth dependent blurring of
features and signal loss [37]. Future work will incorporate acoustic attenuation into the simulation
model. Another limitation was the use of a planar phantom and performing simulations in 2-D. In
the future, simulations with 3-D phantoms will be performed as the dimensions of the US beam is
not negligible in the elevational direction. Finally, another limitation of the proposed technique is
the use of the fixed alternating pattern number for sub-aperture generation. As the PSF with PAI
varies over depth, we anticipate further performance improvement using depth-dependent dynamic

sub-aperture generation by varying the alternating pattern number [14].

Benefits of PSAP are clear in the presented ED and ES images in Figure 10.16 and Figure
10.17. Note that PA signals in the LV chamber appear as temporally varying random noise in the
DAS cine loop. This makes interpretation of myocardial PA signals difficult especially during the
systolic phase. This random variation can be attributed to higher blood flow velocities inside the
LV chamber and strong optical absorption in the coronary artery [1, 38, 39]. This leads to a strong
bias of PA signals towards the myocardial (endocardium and epicardium) walls and results in non-
viable PA signals from the LV chamber [1, 30]. These random noise signals can be suppressed
using CF as shown in Figure 10.16 — Figure 10.17 (c¢). However, CF also undesirably suppresses

myocardial wall PA signals further corroborating our findings from simulation studies. One
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implication of undesirable myocardial wall PA signal suppression is that it can lead to inaccurate
diagnosis of ischemia [1, 40, 41] as only healthy murine hearts were imaged in this study. In
contrast to CF, PSAP enables suppression of non-viable LV chamber PA signals while preserving
DAS amplitude levels in the myocardial wall. This is a critical advantage over CF because DAS
amplitude preservation is desired when multi-wavelength PAI is employed for oxygen saturation
quantification [42]. Quantitative analysis shows that DAScr, provides higher CR values but
reduced wall PA signal detectability as also indicated by the gCNR reduction when compared to
DAS in Figure 10.18. In contrast, PSAPncc and PSAPphase provided improvements in both CR and
gCNR when compared to DAS demonstrating the in vivo feasibility of PSAP. Future in vivo
validation studies will focus on application of PSAP for murine ischemia-reperfusion detection

using single- and multi-wavelength cardiac PAI.

In this chapter, we have focused on imaging the murine heart wall using linear array PAI.
Researchers have also illustrated use of PAI to guide in vivo cardiac catheter interventions [43].
Furthermore, PAI has been used for imaging prostate brachytherapy seeds [44, 45], percutaneous
radiofrequency ablation needle detection [46] and surgical guidance [47]. One recurring challenge
in these applications is the PA image quality [47], and novel beamforming approaches have been
proposed to tackle this challenge [7, 44, 48, 49]. Simulation and in vivo results presented in this
chapter suggest that PSAP can potentially improve image quality for the above-mentioned
applications by clutter reduction while maintaining target detectability thus contributing towards
solving the image quality challenge. PSAP also be combined with adaptive beamforming methods

such as minimum variance, DMAS beamforming [6, 7, 21, 50] for further image improvements.
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Chapter 11

Improving Minimum Variance Beamforming with Sub-Aperture

Processing for Photoacoustic Imaging

Minimum variance (MV) beamforming improves resolution and reduces sidelobes when
compared to delay-and-sum (DAS) beamforming for photoacoustic imaging (PAI). However,
some level of sidelobe signal and incoherent clutter persist degrading MV PAI quality. One simple
solution is to weight MV images with coherence factor [1-4]. However, this may not be an ideal
solution in low signal-to-noise ratio environments resulting in undesirable PA signal suppression
as demonstrated in Chapters 09 and 10 [5]. In this chapter, we propose to utilize our developed
photoacoustic sub-aperture processing (PSAP) method [5] with MV to address the sidelobe

corruption problem while preserving resolution improvement obtained with MV.

11.1 Principles of Photoacoustic Sub-aperture Processing (PSAP) for Minimum
Variance (MV) Beamforming

We first generate two MV beamformed images, MVi(t) and MV2(t) using two non-
overlapping sub-apertures having no common elements [5-7]. Details regarding MV beamforming
and sub-aperture generation is described in Chapters 09 and 10 respectively. Then, 2-D
normalized cross-correlation (NCC) between MV 1(t) and MVz(t) is performed to separate on-axis
main-lobe signals and interfering side-lobe signals. NCC(#) is used to estimate a dynamic

weighting matrix, PSAPw(?) using following equation:

PSAP,, (1) = max(NCC(¢), ) (11.1)

where, ¢is a minimum NCC threshold value to estimate a weighting matrix having a range of [ ¢

, 1]. Finally, PSAPw(?) is multiplied with MV (?) [MV beamformed image with the full-aperture]
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resulting in a PSAP MV beamformed image denoted as MVpsar(?). Here, we design the first sub-
aperture with ones and zeros with an alternating pattern of N elements on and N elements off, with

the second sub-aperture is complementary to the first one. Further details on PSAP is presented in

[5].

11.2 Simulation Validation Studies and Quantitative Analysis

The proposed method was validated using numerical simulations with point targets, diffuse
inclusion and microvasculature networks. A similar simulation methodology as reported in
Chapter 10 has been adopted for this chapter and described in detail in Chapter 10. For point
target simulations, we computed the main-lobe-to-sidelobe (MLSL) ratio (dB) and full-width-at-
half-maximum (FWHM) at -6 dB values. Diffuse inclusion and microvasculature simulations were

quantified using contrast ratio (CR) and generalized contrast-to-ratio (gCNR) [8, 9].

A comparative study was designed with DAS, MV and MVpsap beamforming. DAS was
performed with a 64-element aperture, uniform apodization and f-number of 1. MV beamforming

used sub-arrays with length S = 24 and diagonal loading A =1/(100xS) to estimate Rsa(?). MVpsap

parameters used are listed in Table 11.1 MVPSAP Parameters. Parameter choices were chosen
based on parametric studies reported in [5]. Algorithms were run on a GPU and MATLAB Parallel

Computing toolbox for accelerated computation.

Table 11.1 MVpsap Parameters

Experiment Parameter Value
. Alternating elements (N) 16-16
Point Target
ot Latge NCC Kernel (Wavelength, A-lines) (4.50,3)
Diffuse Inclusion Micro- Alternating elements (N) 1-1
lat
vaseutature NCC Kernel (Wavelength, A-lines) (1A,3)
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11.3 MVpesar Improves Conventional MV Performance

Figure 11.1 (a) — (c) show point target beamformed images with DAS, MV and MVpsar,
respectively. Note the presence of strong sidelobe signals with DAS. MV reduces sidelobes seen
with DAS but does not suppress it completely. Incorporation of PSAP with MV provided the best
beamformed image with significant performance improvement over DAS and MV. Figure 11.2 (a)
— (b) show the point spread function (PSF) at a depth of 8 mm and 20 mm, respectively. MVpsap
had the narrowest PSF with lowest sidelobe level. Table 11.2 and Table 11.3 summarize the results
for MLSL and FWHM comparison. Improvement in lateral resolution (lowest FWHM) and

sidelobe reduction (highest MLSL) was achieved using MVpsap.

-5 0 5 -5 0 5
X (mm) X (mm)

Figure 11.1 Beamformed images from point target simulations. (a) DAS, (b) MV and (c) MVpsap. Display

dynamic range 55 dB.
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Figure 11.2 Lateral PSF at depths of (a) 8 and (b) 20 mm, respectively. MVpsap has the narrowest PSF

with lowest sidelobe level.

Table 11.2 MLSL (dB) Results

Depth DAS MV MVpsap
8 mm 41.15 50.84 84.63
12 mm 38.16 47.40 107.85
16 mm 3591 46.89 100.12
20 mm 33.82 42.26 95.05
Table 11.3 -6dB FWHM (mm) Values

DAS MV MVpsar
8 mm 0.22 0.21 0.19
12 mm 0.32 0.17 0.16
16 mm 0.41 0.22 0.21
20 mm 0.53 0.26 0.25

Beamformed images for the diffuse inclusion simulation using DAS, MV and MVpsap are

shown in Figure 11.3 (b) — (d). The ground truth initial pressure distribution with target (green

circle) and background (white half-circles) ROIs is presented in Figure 11.3 (a). For DAS, we

observe high sidelobe signal levels specially near the borders for shallow targets as indicated by
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arrows (Figure 11.3 (b)). MV results show significant image quality improvements with
suppression of the strong border region clutter signals. Further, performance enhancement with

increased sidelobe suppression was achieved with MVpsap.

CR and gCNR comparison results for diffuse inclusion simulation are shown in Figure 11.4
(a) — (b) respectively. MVpsap had the highest CR and gCNR among the three methods. For
example, mean gCNR values (n = 10) for the inclusion at 8 mm, for DAS = 0.84, MV = 0.89 and
MVpsar = 0.99, demonstrate that improvement in both contrast and target detectability is achieved

using PSAP for MV.

Figure 11.5 (b) — (d) show microvasculature beamformed images with DAS, MV and
MVpsap, respectively. The ground truth initial pressure distribution is presented in Figure 11.5 (a).
Note that DAS image suffer from high level of sidelobe signals specially near the borders for
shallower vessels (white arrows in Figure 11.5 (b)). Results using MV show suppression of the
strong sidelobe signals, but unexpected background clutter persist. Best quality image was
achieved with MVpsap (Figure 11.5 (d)) showing a close resemblance with the ground truth image.
CR and gCNR were computed by placing small rectangular ROIs covering the shallowest vessels
as target ROIs and then translating them into the sidelobe regions as background ROIs. MVpsap
had the highest CR and gCNR values (Mean CR [dB] for DAS = 15.38, MV = 22.42, MVpsap =

46.32 and mean gCNR for DAS = 0.71, MV = 0.81, MVpsapr = 0.82).
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Figure 11.3 Diffuse inclusion beamforming results. (a) Ground truth initial pressure distribution, (a) DAS,

(b) MV and (c) MVpsap. Display dynamic range 55 dB.
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Figure 11.4 (a) CR and (b) gCNR comparison for diffuse inclusion.
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Figure 11.5 Simulated microvasculature beamformed images. (a) Ground truth initial pressure distribution,

(a) DAS, (b) MV and (c) MVpsar. Display dynamic range 55 dB.

The results presented in this chapter show that the proposed hybrid beamforming algorithm
coupled with better resolution from MV along with sidelobe signal suppression from PSAP. The
resulting MVpsar images demonstrated higher contrast and improved target detectability. Future
work will involve validation in more complicated simulation environments (e.g., addition of

channel noise, acoustic attenuation), phantom experiments and in vivo applications.
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Chapter 12

Spatiotemporal Singular Value Decomposition for in vivo Cardiac

Photoacoustic Imaging

In this chapter’, we present a spatiotemporal singular value decomposition (SVD)
processing method using ECG and respiratory signal (ECG-R) gating with in vivo cardiac murine
photoacoustic imaging (PAI) data beamformed with delay-and-sum (DAS) [1]. SVD has been
previously used for artifact and clutter reduction in ultrasound (US) imaging [2], power Doppler
[3, 4] and ultrafast functional US imaging [4-6] demonstrating remarkable improvement in
sensitivity. Spatiotemporal SVD allows for signal separation between tissue, blood, and random
noise components by decomposing raw data into spatiotemporal singular vectors, enabling
selection of singular vectors with relevant spatiotemporal fluctuations [4]. SVD to improve image
reconstruction performance for photoacoustic computed tomography systems (PACT) has also
been reported [7, 8]. For example, Wang et al. proposed a fast spatiotemporal image reconstruction
algorithm with SVD for dynamic PACT and reported accuracy improvement over conventional
approaches [8]. In this chapter, however, we focus on improving the quality of photoacoustic
images collected using linear array US transducers. For linear array PAI, SVD has been used for
identification and reduction of laser-induced noise using the spatial singular value spectrum [9].
Spatiotemporal clutter filtering with SVD has also been applied for contrast enhanced PAI in a
phantom study [10]. The novelty of our approach is to utilize the natural deformation of myocardial

tissue to achieve PA image enhancement using spatiotemporal SVD processing. The purpose of

® Rashid Al Mukaddim, Ashley M. Weichmann, Carol C. Mitchell and Tomy Varghese, “Enhancement of in vivo
Cardiac Photoacoustic Signal Specificity using Spatiotemporal Singular Value Decomposition.” Journal of
Biomedical Optics, vol. 26, no. 4, 046001 (2021) PMCID: Pending
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this study is to demonstrate PA signal enhancement in myocardial tissue when compared to

surrounding muscle tissue and blood within the LV chamber.

Briefly, a custom ECG-R gating algorithm along with a DAS and minimum variance (MV)
beamformer are used to reconstruct a cardiac cycle of PAI data. We hypothesize that blood signals
from the LV chamber will have low spatiotemporal coherence when compared to signals from the
myocardial wall and surrounding tissue region appearing as random temporally incoherent clutter
signals. Moreover, as the myocardium contracts and relaxes during a cardiac cycle, myocardial
echo signals will have lower spatiotemporal coherence when compared to quasi-static surrounding
tissue and any diffuse quasi-static clutter. Based on the aforementioned hypotheses, spatiotemporal

SVD processing was applied to enhance the contribution from myocardial tissue.

12.1 Principles behind Spatiotemporal SVD for in vivo cardiac PAI

Figure 12.1 presents a schematic diagram describing the spatiotemporal SVD algorithm for

ECG-R gated in vivo cardiac PAI which is described in detail below.

12.1.1 In vivo murine cardiac PAl data acquisition

Eight healthy BALB/CJ mice (median age of 10 weeks, five males, three females) acquired
from The Jackson Laboratory (Bar Harbor, ME USA) were used to perform an in vivo validation
study for the proposed SVD processing framework. All in vivo experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin-Madison.
A Vevo 2100-LAZR photoacoustic-ultrasonic imaging system (FUJIFILM VisualSonics, Inc.,
Toronto, Canada) was utilized for collecting PAI data. After removing chest hair with depilatory
cream, Nair (Church & Dwight Co., Ewing, NJ), mice were placed in the supine position on a

heated platform under anesthesia (1.5-3.5% isoflurane) and continuous flow of oxygen (1-2 L/min)
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via a nose cone. ECG and respiratory signals were collected using dedicated physiological
monitoring system with the Vevo 2100-LAZR. Spectra 360 electrode gel (Parker Labs, Fairfield,
NJ) was applied on the physiological signal monitoring system electrodes to ensure optimal contact
with each paw ensuring high-quality ECG and respiratory signal acquisition. The supply of
isoflurane and oxygen flow rate was titrated to maintain a consistent heart rate between 310-340

beats per minute (bpm) as best as possible during imaging.

A LZ 250 transducer (256-element linear array) having a pitch of 90 um, center frequency
of 21 MHz and bandwidth from 13 MHz to 24 MHz was used for data collection [11]. LithoClear,
(Next Medical Products, Branchburg, NJ) a high viscosity acoustic gel was applied within the cup
of the transducer along with a liberal amount to the animals’ chest to ensure optimal acoustic
coupling between the transducer and mice, while also allowing for a gel offset to reduce
reverberation artifacts. Acoustic gel was centrifuged prior to imaging to remove air bubbles that
would cause artifacts in PAI. Parasternal long axis (PLAX) imaging view was used with US B-
mode imaging. B-mode images had a depth of 16 mm and width of 11.04 mm with a depth offset
of 5 mm and focus at 11 mm. The skin surface of the mice was placed at an approximate depth of
8 mm whenever possible to avoid reverberation artifacts from the skin [12, 13]. A cine loop of US
B-mode was collected to confirm normal cardiac function for each mouse. Then, 1000 frames of
co-registered beamformed US and pre-beamformed PA channel data were acquired using an
optical wavelength of 850 nm where oxygenated hemoglobin has dominant absorption [14] with
simultaneous acquisition of ECG and respiratory signals. With the LZ 250, two sequential laser
pulses are required to cover the chosen US imaging width [11.04 mm] with 64-element parallel
acquisition per pulse resulting in a PAI frame rate of one half the laser repetition rate [15]. To

perform PAI at the maximum laser repetition rate of the system dedicated Nd:YAG laser [20 Hz],
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PA imaging width was adjusted to be approximately half of the US imaging width resulting in an
acquisition with only 64-elements [green rectangle in Figure 12.1] [16, 17]. No frame or A-line
averaging was performed during PA data collection. PA gain (40 dB) and time gain compensation
(TGC) were kept constant throughout the experiment to allow inter-animal comparison. Finally,

in-phase and quadrature (IQ) sampled PA channel data were exported for offline beamforming and

SVD processing.
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Figure 12.1 Schematic diagram illustrating the spatiotemporal Singular Value Decomposition (SVD)
processing algorithm for ECG and Respiratory (ECG-R) gated in vivo cardiac photoacoustic

imaging.

12.1.2 Cardiac Cycle Reconstruction using ECG-R Gating and Beamforming

A cardiac cycle of PA channel data was reconstructed by performing respiratory signal
gating to discard frames and avoid motion artifacts, followed by re-ordering of gated frames using
ECG signals and individual frame time stamps. To ensure accurate respiratory signal gating, a

publicly available open source respiratory signal processing toolbox named BreathMetrics
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(https://github.com/zelanolab/breathmetrics) was used [18]. Respiratory signal was analyzed to

determine all inhalation peak time points with corresponding inhalation onsets and exhalation
pause onsets. Then, gating was done per inhalation peak with gate start and end time corresponding
to the inhalation onset and exhalation pause onset times, respectively as shown in Figure 12.2. Any
PA and US frames within the gated region were discarded from subsequent analysis. Finally, the
remaining usable frames were re-ordered by calculating the delay between the image time stamps
and nearest ECG R-waves reconstructing a cardiac cycle of US and PA channel data. Additionally,
an ECG curve for the gated cardiac cycle PA data was reconstructed using the image time stamps
of the re-ordered frames after ECG-R gating and the original ECG timing information. To
reconstruct the gated ECG curve, we sampled the original ECG signal by finding time indices

closest to the image time stamps of the re-ordered usable frames after performing ECG-R gating.

PA complex radio-frequency IQ data were reconstructed from PA channel data using DAS
beamforming with 64-element aperture, uniform aperture weighting and dynamic apodization with
f-number of 1. For details regarding DAS beamforming please refer to Chapter 09. Dynamic
receive focusing was performed by calculating one-way US signal propagation delay assuming the
speed of sound to be 1540 ms™'. Beamforming process was accelerated by implementation using
CUDA to run on a GPU in MATLAB (Mathworks Inc., MA). All beamforming was done on an
Intel(R) Xeon(R) CPU E5-2640 v4 at 2.40 GHz and a Tesla K40c GPU (compute capability 3.5).
This resulted into a three-dimensional (3-D) complex valued matrix P used for SVD processing

with dimensions Nx = 64 A-lines, Nz =296 samples along depth and Nt ~ 300 — 400 frames.

Additionally, time delayed PA channel data were also beamformed using a minimum
variance (MV) beamforming algorithm [19]. For MV, the optimal aperture apodization function

was determined by minimizing the variance of beamformed data using the following equation:
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(12.1)

where, Wwmv(t) is the minimum variance aperture weighting vector, a (the steering vector) is a unit
vector in our case due to dynamic receive focusing, Rsa(t) is the co-variance matrix estimated by
dividing the full array into overlapping sub-arrays having a length of Ns = 16 and ¢ is the time-of-

arrival of PA acoustic waves. MV beamforming was accelerated using the Parallel Computing

Toolbox in MATLAB.
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Figure 12.2 Respiration gating using BreathMetrics for performing ECG-R gated in vivo cardiac PAI

12.1.3 Spatiotemporal Singular Value Decomposition (SVD) Processing

Theoretical background on spatiotemporal SVD processing is presented in this section. For
SVD processing, a 3-D complex valued matrix P is constructed using stacks of ECG-R gated DAS
beamformed PAI cardiac cycle data. The matrix P has two dimensions in space denoted by Nx
and Nz corresponding to the number of transducer elements and number of samples along the depth

axis respectively and one dimension in time (Nt) corresponding to the number of frames in the
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ECG-R gated cardiac cycle data. A spatiotemporal reorganization was applied on the matrix P to
construct a two-dimensional (2-D) Casorati matrix, S with dimensions of (Nx XNz) by Nt [4]. Each
column vector of S represents a PA image. Then, SVD is performed on S which can be represented

as follows.

S =UAV" (12.2)

where Ais a diagonal matrix with dimensions [min(Nx XNz, Nt) by min(Nx XNz, Nt)] containing
the singular values in the diagonal and two unitary matrices U with dimensions [(Nx XNz) by
min(Nx XNz, Ni)] and V dimensions [Nt by min(Nx XNz, Nt)] containing the spatial and temporal

singular vectors corresponding to each singular value, respectively.

For cardiac PAI, we are interested in enhancing signals from myocardial tissue depicting
natural contraction and relaxation over a cardiac cycle. The key assumption here is that myocardial
tissue should have lower spatiotemporal coherence compared to PA signals from diffuse quasi-
static clutter and surrounding muscle regions and higher spatiotemporal coherence compared to
fast moving blood volumes inside the LV chamber. The assumed spatiotemporal PA signal
fluctuation will be characterized by matrix V containing the temporal singular vectors. Therefore,
to enhance myocardial PA signals, singular values and vectors associated with myocardial tissue
displacements were preserved by filtering both lower and higher order singular values of the
singular value spectrum (SVS). The low-order cutoff used to separate myocardial PA signal from
quasi-static clutter and surrounding muscle was manually selected and denoted as rst here and in
the rest of the chapter. After application of ECG-R gating, we observed that high amplitude PA
signals from the surrounding muscle regions was depicted as quasi-static clutter while myocardial
PA signals had deformation characteristics associated with natural contraction and relaxation of

the heart over a cardiac cycle. Spatiotemporal SVD thereby decomposed the raw PA data into



346

spatiotemporal singular vectors. The singular vectors from quasi-static clutter and surrounding
muscle had the lowest spatiotemporal fluctuations thereby contributing to lower order singular
values. On the other hand, myocardial tissue had higher spatiotemporal fluctuations, therefore
utilizing a lower-order cut-off enhanced the myocardial PA signals over quasi-static clutter and
surrounding muscle. The high-order cut-off used to suppress random PA noise was calculated
using the gradient of SVS and selected at the singular value order where gradient becomes less

than 20 and denoted by 1. The filtered SVS can be presented using a truncated diagonal matrix

A%" as shown below.
AT = AXTT (12.3)

where 1¥ is a diagonal matrix to filter A. For I*", diagonal elements between rs: and 1+ were set

to one and rest were set to zeros. A typical SVS derived from our cardiac PAI data with chosen

low- and high-order cutoff is shown in Figure 12.3. A filtered Casorati matrix, S*" through inverse

SVD calculation was derived using the following equation.
S =UAYV” (12.4)

Finally, a 3-D matrix of SVD processed cardiac PAI data, PST was reconstructed by applying a

spatiotemporal reorganization on S*' .
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Figure 12.3 Singular value spectrum derived from SVD of in vivo cardiac PAl murine data. Green and red

dots show the low and high-order cutoff respectively for SVD filtering.

12.1.4 Quantitative Analysis

To perform quantitative analysis, three cardiac time points (during systole, at end-systole
and during diastole) were identified using US M-Mode image derived from the reconstructed
ECG-R gated cardiac cycle of the co-registered US B-mode cine-loop (Figure 12.4 (a)). We define
systole as the cardiac phase when the LV chamber begins to contract until just before it reaches its
smallest dimension, end-systole as the cardiac time point at which LV chamber is at the smallest
dimension and diastole as the cardiac phase when the LV chamber begins to expand until it reaches
its largest dimension. Note that imaging field of view (FOV) was set to focus on the
interventricular septum while maintaining enough offset between the skin and transducer face to
avoid reverberation artifacts during photoacoustic imaging. Then, corresponding B-mode images
were used to manually draw target and background regions of interest (ROI) as shown with blue
and red polygons respectively in Figure 12.4 (b). Both target and background ROI were
constructed to have equal areas. Finally, the corresponding DAS, MV and SVD processed PA
images were evaluated by calculating the contrast ratio (CR) [16, 17], generalized contrast-to-

noise ratio (gCNR) [20, 21] and signal-to-noise ratio (SNR) [22] as defined in Chapter 09.
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For statistical analysis, a one-way analysis of variance (ANOVA) with the Bonferroni
multiple comparison test was used to compare among DAS, MV and SVD-4. Note that SVD-4
denotes spatiotemporal SVD processed image with rst = 4. Statistical analysis and graphing were

done with Origin, Version 2020 (OriginLab Corporation, Northampton, MA, USA).
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Figure 12.4 Ultrasound guided statistical analysis of in vivo PAI. (a) US M-mode image derived from the
reconstructed cardiac cycle after ECG-R gating. Chosen cardiac phases are shown with blue
dashed line on the M-mode image. (b) Representative target (blue polygon) and background (red

polygon) ROIs overlayed on PAI co-registered US image.

12.2 Spatiotemporal SVD enhances myocardial specificity and reduces clutter
noise

Figure 12.5 (a) — (c) show representative examples of DAS, MV and SVD processed
images during systole, at end systole (ES) and during diastole of a cardiac cycle, respectively. US
B-mode and PA images reconstructed with DAS, MV, SVD-0, and SVD-4 are presented from left
to right chronologically for each sub-figure. PA signal strength from the myocardium in DAS and
MYV images were low making myocardial signal localization difficult. With SVD-0, no significant

qualitative difference was observed in the myocardial wall region. However, significant
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myocardial PA signal enhancement was achieved with SVD-4. Specifically, we observe ES radial
wall thickening in the SVD-4 image, which was not clearly visualized in the DAS, MV and SVD-
0 results [Figure 12.5 (b)]. Radial wall thickening was also confirmed with the corresponding US

B-mode image [Figure 12.5 (b) left most image].

Figure 12.6 (a) — (c) show another set of representative examples of DAS, MV and SVD
processed images during systole, at end systole (ES) and during diastole of a cardiac cycle,
respectively. US B-mode and PA images reconstructed with DAS, MV, SVD-0, and SVD-4 are
presented from left to right chronologically for each sub-figure. In DAS and MV results, spurious
high amplitude PA clutter (diffuse quasi-static) signals are observed in the surrounding muscle and
background regions (indicated using black arrows in Figure 12.6 DAS images). Although some
level of clutter reduction was observed with SVD-0, high amplitude PA signals persist in the
regions indicated with arrows in DAS results. Finally, with SVD-4 significant PAI diffuse quasi-
static clutter reduction was achieved when compared to DAS, MV and SVD-0 thus enhancing

signal specificity and detectability of myocardial PA signals.

Findings from a parametric study to investigate the performance of the proposed algorithm
as a function of lower order singular value cut-off (rst) are summarized in Figure 12.7 and Figure
12.8. Representative end-systole spatiotemporal SVD processed images for different rst values are
presented in Figure 12.7. Results with rst = 0, 1, 2, 4 and 6 are presented from left to right
chronologically. The impact of the rst cutoff is evident in these results in terms of myocardial signal
enhancement and background signal suppression, with the best quality image obtained at rst = 4.
However, choosing too high a value for rst may suppress signals from myocardial tissue as seen in
Figure 12.7 for rst = 6. Figure 12.8 (a) — (¢) show the variation of CR, gCNR and SNR as a function

of rst for systolic, end-systolic and diastolic phase SVD processed PA images, respectively. We
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observe peak CR, gCNR and SNR were achieved with rst = 4 after which the curves plateau.
Therefore, SVD processed image with rs« = 4 was used in the quantitative comparative study

against DAS and MV beamforming.
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Figure 12.5 Representative SVD processed images at three different cardiac time points demonstrating

improved PAI signal specificity after processing. (a) — (c) show results at systolic, end-systolic, and
diastolic phase of a cardiac cycle, respectively. US B-mode and PA images for DAS, MV, SVD-0,
and SVD-4 are presented from left to right chronologically for each sub-figure. SVD-0 and SVD-4

denote spatiotemporal SVD processed images with rst = 0 and 4, respectively.
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Figure 12.6 Representative SVD processed images at three different cardiac time points demonstrating
PAI diffuse and quasi-static clutter reduction after processing. (a) — (c) show results at systolic, end-
systolic, and diastolic phase of a cardiac cycle, respectively. US B-mode and PA images for DAS,
MV, SVD-0, and SVD-4 are presented from left to right chronologically for each sub-figure. SVD-0

and SVD-4 denote spatiotemporal SVD processed images with rst = 0 and 4, respectively.



352

Depth (mm)

5 -4 -3 -2 -
Width (mm)

Figure 12.7 End-systole spatiotemporal SVD processed images as a function of lower singular valuer order

cut-off threshold (rst). Results with rst = 0, 1, 2, 4 and 6 are presented from left to right chronologically.
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Figure 12.8 Variation of (a) CR, (b) gCNR and (c) SNR as a function of rst for spatiotemporal SVD processed

images evaluated at systolic (blue), end-systolic (black) and diastolic (red) phase of a cardiac cycle.

Quantitative comparison results using CR, gCNR and SNR are summarized in Figure 12.9
— Figure 12.11, respectively. Results are presented using box-whisker plots with raw data plotted

on the right side. Mean of each distribution is denoted by the black diamond symbol.

Figure 12.9 (a) — (c) show the CR results during systolic, at end-systolic, and during the
diastolic phase of a cardiac cycle, respectively. SVD-4 had higher CR values compared to DAS
and MV with statistical significance for all cases. No statistically significant differences were
observed between DAS and MV. For example, at ES, mean CR values for DAS, MV and SVD-4

were 4.20, 5.28 and 14.49 dB, respectively.
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Figure 12.9 Statistical analysis for contrast ratio (CR) comparison among DAS, MV and SVD-4 (n = 8). (a)
— (c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively. SVD-

4 presents with statistically higher CR values when compared to DAS and MV.

Figure 12.10 (a) — (c) show the gCNR results during systolic, end-systolic, and during the
diastolic phase of a cardiac cycle, respectively. SVD-4 had higher gCNR values when compared
to DAS and MV with statistical significance for all cases. No statistically significant difference
was observed between DAS and MV. Larger differences were observed in the ES phase when
compared to systolic and diastolic phases. For example, at ES, mean gCNR values for SVD-4 was

115.15 % higher than DAS while at systolic phase, it was 56.52 % higher.
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Figure 12.10 Statistical analysis for gCNR comparison among DAS, MV and SVD-4 (n = 8). (a) — (c) show

CN

0.2

results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively. SVD-4 shows

statistically higher gCNR values when compared to DAS and MV.
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Figure 12.11 (a) — (c) show the SNR results during systolic, at end-systolic, and during the
diastolic phase of a cardiac cycle, respectively. For all three phases, SVD-4 had statistically higher
SNR than DAS. When compared to MV, SVD-4 had statistically higher SNR at ES and systole
with no statistically significant difference during the diastolic phase. However, highest mean SNR
values were achieved in all three phases using SVD-4. For example, mean SNR of DAS, MV and

SVD-4 were 8.84, 10.41 and 14.69 dB for the diastolic phase results.
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Figure 12.11 Statistical analysis for SNR comparison among DAS, MV and SVD-4 (n = 8). (a) — (c) show
results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively. SVD-4 had

statistically higher SNR values than DAS.

Table 12.1 summarizes the computation times required to reconstruct a PA cardiac cycle
using DAS, MV and spatiotemporal SVD processing for two mice. For example, DAS requires
45.81 secs to reconstruct a complete 3-D cardiac cycle having a dimension of 296x64x300 samples
while MV requires significantly more time (446.58 secs). Note that enhanced PAI with
spatiotemporal SVD can be achieved with a very low additional computation burden (1.71 secs).
Similar performance trends were observed for mouse 2 with computational time scaled by Nt (461

frames).
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Table 12.1 Summary of Computational Times (Seconds)

DAS MV SVD*
Total (per frame) Total (per frame)
Mouse 1 45.81 (0.12) 446.58 (1.16) 1.71
Mouse 2 54.40 (0.12) 506.61 (1.10) 2.45

Mouse I, N; = 300 frames, Mouse 2, N; = 461 frames
*Additional time needed to process entire cardiac cycle using spatiotemporal SVD after DAS.
DAS = Delay-and-sum, MV= Minimum Variance, SVD = Singular Value Decomposition

12.3 Discussion on the experimental findings to validate Spatiotemporal SVD
processing

In this chapter, a spatiotemporal SVD algorithm with ECG and Respiratory (ECG-R)
gating for in vivo cardiac PAI has been proposed and validated. /n vivo feasibility with eight
healthy mice demonstrated significantly improved performance with SVD-4 processing over
conventional DAS and MV beamformed images. The proposed SVD processing is a data driven
approach where spatiotemporal characteristics of cardiac PAI are utilized to enhance signal
contribution from myocardial tissue under the following assumptions based on literature findings
and experimental observations. First, highly absorbing blood inside the coronary artery (murine
arterial oxygen saturation ~ 90 — 95% [12, 23]) having low blood flow velocity (diastolic coronary
flow velocity =20 cm/sec [24]) should contribute to the PA signals from myocardial tissue at 850
nm. Second, highly scattering mice skin and muscle due to the presence of connective tissues and
anisotropic layers of collagen [25] having lower optical absorption coefficients at 850 nm (for
example, male BALB/CJ mice skin optical absorption coefficient at 850nm ~ 1 cm™ [25])
compared to oxygenated blood should result in low amplitude PA signals compared to myocardial
tissue. During data collection, we observed the presence of spurious high amplitude PA clutter
signals from surrounding muscle which were quasi-static in nature. Third, PA transients from the

large volume of high velocity circulating blood (in early filling, E wave and late or atrial filling
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phase, A wave during diastole) inside the LV generates mainly destructive interference during
DAS beamforming, resulting in non-viable PA signals with random spatiotemporal fluctuations.
Note that, the E and A wave velocity [26] of mitral valve flow during diastole have previously
been reported to be approximately 54.2 cm/sec and 43.8 cm/sec respectively [27]. Furthermore,
short duration pulses provided to the flash lamp within the laser source may also contribute to
random PA noise [9]. Therefore, in the proposed method, singular values and vectors
corresponding to cardiac tissue displacements associated with the natural contraction and
relaxation of the heart over a cardiac cycle were preserved by discarding the first few singular
values for the low-order SVD cutoff to suppress spurious high amplitude quasi-static clutter and
by suppressing random PA signal fluctuations using high-order SVD cut-off (Figure 12.3). To
ensure that a suitable dataset is generated for SVD processing, a custom ECG-R gating algorithm

was developed using an open-source Matlab toolbox (Figure 12.2).

Qualitative results presented in Figure 12.5 — Figure 12.6 show that significant
improvement in myocardial signal specificity is achieved with rst = 4 which was also validated by
quantitative analysis. Note that, no additional temporal smoothing was applied to preserve the
original spatial and temporal resolution demonstrating a significant improvement over prior
approaches using higher persistence [12, 13]. With SVD processing, significant enhancement of
myocardial signal was demonstrated with improved contrast between the myocardium and
background as demonstrated by CR comparison results (Figure 12.9). Additionally, gCNR
comparison was done to confirm that this contrast enhancement was not due to mere dynamic
range alternations, but due to improvement in target detectability. gCNR results presented in
Figure 12.10 show that myocardial signal detectability is significantly improved using

spatiotemporal SVD processing when compared to conventional DAS or MV results. Higher
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gCNR improvement observed at ES compared to either systolic or diastolic phases can be
attributed to the high strain rate at ES with the thickest wall dimension [28]. SNR results
demonstrate statistically significant improvement with SVD-4 over DAS for all cardiac phases
(Figure 12.11). We observed an exception in the diastolic phase where MV and SVD-4 had non-
significant differences. In contrast to CR and gCNR (both measure target detectability), SNR
additionally considers the smoothness of the background regions. To understand the SNR trend,
we also evaluated the mean PA amplitude of the target region and standard deviation of
background region individually and found that SVD-4 had higher mean PA amplitudes
demonstrating improved myocardial signal enhancement in all phases corroborating the
improvement in CR and gCNR. However, reduction in background standard deviation in the
diastolic phase was not as significant as in the end-systole and systolic phase resulting in non-
significant SNR improvement statistically between MV and SVD images even though SVD-4 had
higher mean SNR value. Overall, qualitative and quantitative results demonstrate that

spatiotemporal SVD processing can potentially improve in vivo cardiac PAI quality.

Note that myocardial tissue identified in SVD processed PA images showed similar
anatomical variation as a function of time as observed in B-mode images. For example, in Figure
12.5 (b), thickening and shortening of anterior wall is evident from the B-mode image at ES.
Observe thickening and shortening of the anterior wall from SVD-4 images [myocardial
boundaries indicated with arrows in Figure 12.5 (b)] with clear visualized contrast when compared
to the background. Binary maps were generated by applying a threshold on the SVD-4 images
(from Figure 12.5) at the systolic, end-systolic and diastolic phases which are shown in Figure
12.12. Anatomical variation at the different cardiac phases is clearly observed in Figure 12.12,

demonstrating that both spatial and temporal localization of myocardial PA signals is achieved
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using spatiotemporal SVD processing. One common approach in PA-based oxygen saturation (%
sO2) estimation is to use a quality control ROI [14, 29]. In the future, we will utilize SVD
processed images to define our quality control ROI utilizing improved target detectability and
perform multispectral imaging to evaluate the myocardial % sO2 as a function of time over a

cardiac cycle.

Systole End-Systole Diastole

(a)

Figure 12.12 (a) — (c) Binary maps of the myocardial wall generated by applying a threshold on SVD-4

images at systolic, end-systolic and diastolic phases of cardiac cycle, respectively.

The performance of SVD processing depends on the choice of the lower singular value
order cut-off threshold (rst) which was chosen empirically by evaluating a range of rst values
[Figure 12.7 and Figure 12.8]. However, this is not an optimal solution when the proposed
algorithm must be applied to larger datasets. In future work, we will investigate the feasibility for
automated determination of the low order cut-off threshold by estimating the mean frequency of

each temporal singular vectors contained in the matrix V [5].

In this chapter, the focus was on in vivo murine cardiac PAI where the myocardial signals
are diffuse in nature. PAI has also been used for imaging prostate brachytherapy seeds [30, 31],
percutaneous radiofrequency ablation needle detection [32] and surgical guidance [33] where the

signals of interest are more coherent. We anticipate that our proposed spatiotemporal SVD
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processing can be applied for those applications with appropriate adjustment of singular value
thresholds. Adaptive beamforming methods such as MV, DMAS beamforming [34] can be also be
coupled with SVD processing to improve murine cardiac PAI quality if channel data is accessible.
However, researchers must be mindful of any non-linearity introduced by these adaptive

beamforming algorithms.

Despite the presented encouraging results, this study still has some limitations. First, SVD
processing was considered as decomposing the matrix S into weighted, ordered sum of separable
matrices as hypothesized for ultrafast functional US imaging [4, 5]. However, from our study we
observed some overlap between the myocardial and background signal subspace even after
applying SVS thresholding. Therefore, to account for the background signal, additional signal
processing approaches may be necessary. One potential approach might be the use of
photoacoustic sub-aperture processing (PSAP) developed in our lab to suppress incoherent clutter
for DAS PA images [35]. An example using PSAP processing to suppress background signals in
the SVD processed images is presented in Appendix B: Background suppression using PSAP.
Second, the low and higher order singular value cut-offs were chosen empirically and were fixed
for all mice that were imaged. However, it is anticipated that adaptive methods [5, 6] for selecting
the singular value cutoff may further improve performance by accounting for physiological
variation (for example, heart rate under anesthesia) that occur with different mice. Third, any
singular value below the low order and above the high order singular value cutoff was set to zero
in our implementation. However, adaptive weighting functions based on the singular values [2]
can be designed to weight the SVS to further enhance myocardial PA signals. Fourth, only healthy

murine models were considered in this study. However, efficacy should be evaluated for murine
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cardiovascular disease models such ischemia-reperfusion [36] for further validation which will be

performed in future studies.
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Chapter 13

In vivo Estimation of Myocardial Oxygenation with Physiological Signal

Gating and Motion Compensation

Photoacoustic Imaging (PAI) with high persistence (multiple frame averaging) has been
reported in Chapter 08 of this dissertation to quantify murine myocardial relative oxygen
saturation (sOz) in vivo. But the proposed method may not be suitable to identify subtle sO2
variation associated with ischemia and suffer from lower spatiotemporal resolution due to
averaging. In this chapter, we propose a physiological signal gated PAI technique with motion
compensation that addresses these issues and term this method as OPMC (Oxygenation estimation
with Physiological signal gating and Motion Compensation). Image and signal processing
methods developed and reported in Chapters 04, 09 — 12 in this dissertation are employed in this
chapter to implement an improved in vivo myocardial relative oxygen saturation (sO2) estimation

framework. OPMC

13.1 Proposed Workflow to Estimate Myocardial Oxygenation

Figure 13.1 shows a schematic diagram summarizing key steps of the proposed framework

to estimate murine myocardial relative oxygen saturation in vivo.

13.1.1 In vivo murine cardiac single wavelength PAI data acquisition

Raw photoacoustic (PA) channel data at 710, 734, 760, 800 and 850 nm were collected
from three BALB/CJ mice (male, 10 weeks old, Jackson Lab) using a Vevo 2100 LAZR imaging
system in PA RF mode. Data collection was done with an LZ 250 transducer (fc =21 MHz) with

a field-of-view covering the anterior myocardium resulting in 64-element parallel receive and
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simultaneous acquisition of physiological signals (ECG and respiratory). For further details,

interested readers are referred to Chapter 12 as the same data acquisition protocol is employed in

this chapter.
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Figure 13.1 Proposed Framework to estimate murine myocardial relative oxygen saturation in vivo. s-PA

= single wavelength PA data.
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13.1.2 Physiological Signal Gating and DAS Beamforming

For each PA wavelength, physiological signal gating was applied to reconstruct a cardiac
cycle of channel data following an approach reported in Chapter 12 and beamforming using
delay-and-sum (DAS) and photoacoustic sub-aperture processing (PSAP) [Chapter 10 and 11]
was done. Parameters used for beamforming are the same as that reported in Chapters 10 and 12.
At the same time, co-registered ultrasound B-mode images were also beamformed using DAS for
each wavelength. Temporal linear interpolation was applied on beamformed data (DAS PA, PSAP

and DAS B-mode) to ensure at least 100 frames per cardiac cycle per wavelength.

13.1.3 Inter-wavelength Motion Compensation

For multi-wavelength PAI to estimate sOz, same tissue must be probed using optical pulses
at multiple wavelengths to produce a PAI spectrum as a function of the optical wavelength.
However, presence of physiological motion will corrupt the derived PAI spectrum thus resulting
in inaccurate sOz estimation [1]. To ensure stable spectral decomposition, imaging was done with
5 optical wavelengths in this work [1, 2]. This process introduced unique challenges associated
with periodic myocardial motion. First, due to system limitations, imaging was done sequentially
requiring 50 seconds per wavelength of data collection with additional time required to switch
from one wavelength to another. Second, during this relatively long data acquisition period, there
was variability in heart rate (e.g., around 20-30 beats per minutes) among single wavelength PA
(s-PA) data. In order to address these challenges, we first applied physiological signal gating and
temporal interpolation to temporally align s-PA data. However, due to the heart rate variability
mentioned above, the data were still not aligned perfectly. To address this issue, we utilized co-
registered ultrasound B-mode data to register s-PA data collected at 710, 734, 760, 800 nm to the

850 nm dataset [1]. Inter-wavelength axial and lateral displacements were estimated by applying



367

a three-level displacement tracking algorithm on the co-registered ultrasound B-mode images to
perform motion compensation [3]. During motion estimation, 710, 734, 760, 800 nm data were
considered as motion corrupted while 850 nm data was considered as the reference frame. Table
13.1 summarizes the motion estimation parameters used in this study. Motion compensation is
repeated for all the frames over the reconstructed cardiac cycle (100 frames) as discussed in

Section 13.1.2).

Table 13.1 Inter-wavelength Displacement Estimation Parameters

Parameters Values Units

Axial Kernel 8,5, 1 Wavelengths (1)
Lateral Kernel 31,21, 21 Interpolated A-lines
Interpolation Factor (axial: lateral) 2:2 -

Kernel Overlap (axial, lateral) (10,75) %

Median Filtering Kernel 5x5 pixel

13.1.4 Myocardial Oxygenation Estimation Linear Spectral Unmixing

Using motion compensated multi-wavelength PAI data, linear spectral unmixing (LSU)
was applied to extract chromophore concentration of oxy- and deoxy-hemoglobin (HbO:2 and
HbR). Linear spectral unmixing was described in detail in “Chapter 03 Section 3.3.1: Linear
spectral unmixing and spectral coloring artifact” of this dissertation. Note that, fluence
compensation was not implemented for this study thus resulting in a relative estimate of

myocardial sOx.
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13.1.5 Dynamic Myocardial Region of Interest Generation and Correction of
Inaccurate LSU Estimates

To quantitatively analyze myocardial sO2 estimates over a cardiac cycle, dynamic regions
of interest (ROIs) were generated by applying a binary thresholding filter on the spatiotemporal
singular value decomposition (ST-SVD) processed PSAP images at 850 nm. For methodological
details and related parameters regarding ST-SVD processing and PSAP processing, please refer to
Chapters 10 — 12. The LSU estimated sO2 parametric maps were first masked out using the
dynamic ROIs. We term these results as LSU+M in the rest of this chapter. Then, the non-
physiological sOz estimates (sO2 < 0 % or sO2 > 100 %) detected within the ROIs were replaced
using a constrained sO2 estimation approach with a non-negativity constraint proposed by Kim et

al. [4]. Briefly, the method describes the expected local absorption spectrum () (A,r)) using

following equation.

(A1) = C[HPO, | (1), (A) + C[ HDR]|(1)& 1 (1) (13.1)

where, C[HbOz] and C [HbR] are the concentrations of oxy- and deoxy-hemoglobin (HbO2 and
HbR) respectively at a pixel location, r and ¢ denotes the known molar extinction coefficient.
Imposing two constraints (non-negativity of chromophore concentrations) such that C [Hb02]+

C[HPR] =1 and 0 < C[HbO,], C[HbR] < 1, all possible local absorption spectra were

reconstructed. Then, C[HbO,| and C[HbR] values were determined by minimizing the least

squared error between normalized local PA spectrum (extracted from motion compensated multi-

spectral PAI data) and expected local absorption spectra as follows.

C[HbO,| ,C[HBR] = argmin E[(p*(/i,r)—y;(ﬂ,r))z] (13.2)

C[HbO, ], C[HDR]
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where, p’(A,r)is the normalized local PA spectrum estimated from experimental data. Equation
(13.2) was solved numerically to estimate C [HbOz] and C [HbR]. Finally, the relative oxygen

saturation was estimated as follows.

C[HbO,]
C[HbO,] +C[HbR]

5O, (%) = (13.3)

This approach is termed as CLSU+M in this chapter. Temporal progression of myocardial sO2
over a cardiac cycle was extracted by averaging all the estimates within the dynamic ROIs.
Additionally, to derive the temporal trend and noise suppression, a 7-point temporal moving

average filter was applied on the raw temporal progression curves.

13.1.6 Comparative Analysis

Myocardial sO2 (%) estimated using the proposed method was compared against the sO2
(%) values estimated using a high persistence dual-wavelength PAI method reported in Chapter
08. Additionally, healthy cardiac function was also confirmed by estimating cardiac strain tensors

using the cardiac strain imaging approaches reported in Chapters 04 — 05.

13.2 Proposed Method Improves Temporal Sensitivity of Myocardial Oxygenation
Estimation

This section presents preliminary results on myocardial oxygen saturation estimation from

three healthy mice using the proposed method.



370

Systole

End-Systole Diastole ’
6
0.95
8
0.9
10 ' 0.85
12 ' 08
14 : 0.75
0.7
]

5 -4 3 2 -

Figure 13.2 (a) — (c) Myocardial sOzimages estimated during systole, end-systole and diastole phase of a
cardiac cycle respectively. ROIs were generated automatically using PSAP and spatiotemporal SVD

processing.

Figure 13.2 (a) — (c) show myocardial sO2 maps estimated during systole, end-systole and
diastole phase of a cardiac cycle respectively for Mouse 1. We observed higher oxygenation at the
beginning of systole (more red pixels) which reduced at ES (more blue pixels) and finally
recovering to higher oxygenation at diastole (uniformly red). Note that ROIs were generated

automatically using PSAP and spatiotemporal SVD processing as described in Section 13.1.5.

A representative example of the temporal progression of myocardial sO2 over a cardiac
cycle for the same mouse is presented in Figure 13.3. Figure 13.3 (a) shows raw sO2 using LSU
(blue), LSU+M (brown) and CLSU+M (yellow) without moving average filtering. Motion
compensation provided higher estimates compared to LSU without any motion correction.
CLSU+M followed the similar trend as LSU+M but resulted in higher sO: attributed to the
replacement operation. Figure 13.3 (b) presents the result of myocardial sO2 estimated with dual-
wavelength OxyHemo mode commercially available in Vevo 2100 imaging system and high
persistence. Note that the results are presented for 20 frames, each of them produced by incoherent

averaging over 10 consecutive frames. Therefore, image acquisition frame rate was only 5 Hz and
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estimates cannot be temporally synchronized to different phases of a cardiac cycle such as end-
systole. Figure 13.3 (d) shows final sO: estimates using LSU (blue), LSU+M (brown) and
CLSU+M (yellow) after moving average filtering while Figure 13.3 (c) show the corresponding
PAI M-mode image. We observed higher sO2 values at end-diastole (=80%) which gradually
reduced during systole (=72%) and finally recovering to higher oxygenation at diastole (=80%).
This observation correlates with the myocardial motion seen in PAI M-mode image. The turning
point for CLSU+M (marked with an arrow on the yellow curve in Figure 13.3 (d)) matches with
the turning point of left ventricular (LV) chamber towards increased volume after end-systole
(observe the endocardial border marked with an arrow in Figure 13.3 (d)). Additionally, these
results show that the proposed method will allow us to temporally synchronize myocardial sO2
estimates to different phases of a cardiac cycle thus providing higher temporal sensitivity when

compared to the reported commercial method in Chapter 08.
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Figure 13.3 A representative example of temporal progression of myocardial sO2 over a cardiac cycle. (a)
Raw sO2 obtained using the proposed method without a moving average filter, (b) sO2 estimation
using OxyHemo mode in Vevo 2100 imaging system and high persistence, (c) PAl M-mode image
and (d) Final sO2 estimate using the proposed method after application of a moving average filter.
LSU = Linear spectral unmixing, LSU+M = Linear spectral unmixing with inter-wavelength motion
compensation and CLSU+M = Replacement with constrained linear spectral unmixing with inter-

wavelength motion compensation.
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Figure 13.4 Panels (a) — (c) show PAlI M-mode, sO2 estimation with proposed method and commercial

solution with high persistence for Mouse 02. (d) — (f) show the same results for Mouse 03.
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Results from a comparative study using two more mice are represented in Figure 13.4.
Figure 13.4 (a) — (c) show PAI M-mode, sO2 estimation with proposed method and commercial
solution with high persistence respectively for Mouse 02 while (d) — (f) show the same results for
Mouse 03. We observe similar trends in temporal progression of myocardial sO2 in Mouse 02 —
03 like Mouse 01 with higher sO2 values at end-diastole, gradual reduction during systole and final
recovery to higher oxygenation during diastole [Figure 13.4 (b) and (e)]. The PAI M-mode images
corroborate our findings [Figure 13.4 (a) and (b)]. Even though, estimates using commercial
software with high persistence provided high sO2 values [Figure 13.4 (c) and (f)] as expected from
healthy mice hearts, they lacked the temporal sensitivity demonstrated by our proposed

framework.

13.3 Discussion on Experimental Findings and Future Directions

In this chapter, we proposed a multi-wavelength PAI approach to estimate murine
myocardial relative oxygen saturation in vivo with physiological signal gating and inter-
wavelength motion compensation. Methods developed in Chapters 10 — 12 (Photoacoustic Sub-
aperture Processing and Spatiotemporal Singular Value Decompaction) enabled dynamic ROI
generation to quantify myocardial sO2 signals with coherent averaging (moving average filter) to
extract temporal progression of sO2 values over a cardiac cycle. Proposed method resulted in
temporal synchronization of estimated sOz values to different phases of a cardiac cycle such as
systole, end-systole, diastole and end-diastole. We observed higher myocardial sO2 values at
diastolic phase compared to systolic phase of a cardiac cycle. We hypothesize that this finding
correlates with the left coronary artery flow variation between diastole and systole observed in
both human [5, 6] and mice [7, 8] studies with increased blood flow in diastole. For example, for

normal human heart, the coronary arteries accessed through transthoracic Doppler ultrasound
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demonstrated higher velocity blood flow in diastole when the heart muscle is relaxed [5]. Similar
results were reported by Hartley et al. [8] by performing Doppler ultrasound examination of
coronary arteries of wild-type and ApoE”" mice. Even though results presented in this chapter are
quite encouraging and interesting, several important factors require further investigation to
understand the robustness of the proposed workflow which are listed below. First, fluence
compensation was not incorporated in this work therefore these estimates might suffer from
spectral coloring as distance between skin and epicardial layer exceeds 1 mm [9, 10]. To address
this issue, we will utilize the fluence correction approach proposed by Fadhel ef al. where fluence
profiles of multi-wavelength PA images are matched to the fluence at a reference wavelength [11,
12]. Second, our results in this chapter were limited to only three mice. However, further
experiments with a larger cohort are necessary to understand the strengths and weakness of the
proposed method. Third, robustness should be evaluated using more complicated murine models
such myocardial infarction and ischemia-reperfusion injury in vivo. Finally, further simulation
studies are required to adapt the fluence matching algorithm from Fadhel ef al. [11, 12] with
motion compensation and the constrained linear spectral unmixing method used in this chapter [4].
Even under the stated limitations, our initial results are very promising and demonstrate that our

proposed method is sensitive to subtle variations in myocardial oxygenation in vivo.
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Chapter 14

In vivo Murine Cardiac Strain Imaging with Adaptive Bayesian

Regularization

Murine models of cardiovascular disease (e.g., myocardial infarction and ischemia-
reperfusion injury) focus on providing mechanistic insights into disease progression and
translation of pre-clinical therapies into the clinic [1]. For accurate investigation of these models,
non-invasive cardiovascular imaging plays a critical role [2]. In particular, ultrasound-based
cardiac strain imaging (CSI) has demonstrated higher sensitivity when compared to conventional
echocardiography for assessing these models [3]. CSI is an ultrasound radio-frequency (RF)
signal-based approach for estimation of myocardial tissue elasticity by utilizing the natural
contraction and relaxation of the myocardium [4-11]. However, accurate strain estimation in
murine models poses unique challenges due their small size and rapid heart rate [12]. Higher heart
rates result in increased RF signal decorrelation and additional out-of-plane motion thus degrading
the quality of CSI. To address these issues, we have previously developed a multi-level block
matching (BM) algorithm with Bayesian regularization for CSI (Chapter 04) [13-16]. Later, we
developed an adaptive scheme which utilizes local RF data statistics to further optimize Bayesian
regularization (Chapter 05). In this chapter, we report on a Lagrangian CSI framework
incorporating Adaptive Bayesian Regularization (ABR-CSI) [17] into a multi-level BM algorithm
and investigate the feasibility of this method for longitudinal monitoring of cardiac remodeling in

murine models of myocardial infarction and ischemia-reperfusion injury in vivo.
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14.1 In vivo Validation Study Design for ABR-CSI

Figure 14.1 summarizes the key steps involved in the in vivo longitudinal study designed

to validate the ABR-CSI.

Left Anterior Descending
Artery (LAD) Ligation

Ml and IR Euthanize Histopatholo
Surgery mice P 9y
> Pre-surgery Day1 Day2 Day7  Day 14 Cardiac Strain

Imaging

Collect RF Data in vivo

High frequency ultrasound system

Figure 14.1 Schematic diagram illustrating the in vivo validation study for ABR-CSI

14.1.1 Murine Model and in vivo RF Data Collection

Three male BALB/CJ 10 weeks old mice acquired from The Jackson Laboratory, Bar
Harbor, ME USA were imaged pre-surgery (BL) and 1,2,7 and 14 days post-surgery. RF data
collection was done using a MS 550D transducer (center frequency, fc =40 MHz) at 235 fps in the
parasternal long axis view (Vevo 2100, Fujifilm Visualsonics). For details regarding RF data
collection, please refer to Chapters 04 and 12 of this dissertation. Mice were randomly assigned
to 1 of 3 surgery groups: sham, myocardial infarction (MI) and ischemia reperfusion (IR). The
sham mouse underwent thoracotomy with no manipulation of the heart. For the MI mouse,
myocardial infarction was induced by permanent ligation of the left anterior descending coronary

artery (LAD) via thoracotomy. For the IR mouse, myocardial ischemia was first induced by
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ligating the LAD and then blood flow was restored by releasing the tie after 45 minutes for
reperfusion. All in vivo experimental protocols were approved by the University of Wisconsin

School of Medicine and Public Health Institutional Animal Care and Use Committee.

14.1.2 Lagrangian CSI framework incorporating Adaptive Bayesian Regularization

ECG and respiratory gating were applied offline to extract one cardiac cycle of RF data for
CSI. To estimate interframe axial and lateral displacements, a three-level normalized cross-
correlation (NCC) based BM algorithm [13, 18, 19] with locally optimized correlation based
adaptive Bayesian regularization was utilized [ 17]. Bayesian regularization improves displacement
estimation by enforcing spatial continuity in a local BM neighborhood through iterative
application of Bayes theorem [20]. ABR was developed to dynamically determine the optimal
iteration for Bayesian regularization per BM location by taking spatial and temporal strain
heterogeneities that are expected in vivo into consideration. ABR evaluates a local optimality
criterion based on NCC signal-to-noise ratio and motion compensation between pre- and post-
deformation RF frames to achieve dynamic regularization [17, 21]. For further details on ABR,
please refer to Chapter 05 of this dissertation. For motion estimation, RF data were first
interpolated laterally by a factor of 2 and then tracked with 2-D kernels with final dimensions of
[1A, 11 A-lines] and [50%, 95%] overlap in the axial and lateral direction, respectively. Maximum
allowed Bayesian iterations for ABR was 10. For accurate sub-sample estimation, 2-D windowed
Sinc interpolation was utilized [22, 23]. Finally, 2-D median filtering in a 5 pixel x 5 pixel

neighborhood was applied to remove any outliers.

For cardiac strain estimation, myocardial walls were manually segmented at end-diastole
(R-Wave of ECG) to generate a mesh of 24000 points covering the entire myocardium, and used

for accumulating interframe displacements over a cardiac cycle [24, 25]. The Lagrangian strain
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tensor, E was derived by estimating axial, lateral and shear strain components using a least squares
strain estimator. Finally, radial (er) and longitudinal (e;) strains were derived by applying
coordinate transformation using a rotation matrix, M shown below.

cosd sind
M :[ j (14.1)

—sind cosd

where, angle 6 denotes the radial direction calculated for each cardiac mesh point. For further
details on Lagrangian strain estimation, please refer to Chapter 04 of this dissertation. End-systole
(ES) radial and longitudinal strain images were derived to qualitatively evaluate mouse cardiac
function. Segmental radial and longitudinal strain curves over a cardiac cycle were also derived
by dividing the myocardium into six segments (anterior base, anterior mid, anterior apex, posterior
apex, posterior mid and posterior base denoted as segments 1 — 6) [26] and temporal progression
of segmental ES and peak strain values were compared among sham, MI and IR mice.
Additionally, intraventricular dyssynchrony was quantified by calculating the standard deviation
of segmental time-to-peak strains normalized to cardiac cycle length (R-R interval in ECG) [12,

27].

14.1.3 Histopathological Analysis

After the 14" day post-surgery imaging session, the mice were euthanized, hearts were
harvested and fixed in 10% formalin for histopathological analysis. Harvested myocardial tissues
were embedded in paraffin highlighting the aortic outflow tract to achieve an orientation roughly
approximating the ultrasonographic PLAX plane. To confirm the heart orientation, small stripes
of histology tissue inks were placed on the anterior surface of the heart following the convention
shown in Figure 14.2. Anterior stripe (shown in green in Figure 14.2) through apex and aortic

outflow tract approximated the plane through the aortic outflow tract to match a whole slide image
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(WSI) section with the in vivo PLAX ultrasound data. Short plane stripe (shown in blue in Figure
14.2) was used to aid in alignment of multiple sections for 3-D reconstruction. After inking, 5 um-
thick sections were taken at 100 um intervals through the entire heart in the long axis orientation
and stained with Masson’s trichome (MT) for quantification of fibrosis. The stained slides were
digitized using a 20x uScopeHXII digital microscope (Microscopes International, Dallas, TX
75208-1953). To automatically classify regions of fibrosis in the digital WSI, a 3-class Random
Tree pixel classifier was designed using QuPath [28] (an open-source software for digital
pathology image analysis accessed through: https://qupath.github.io/) by manually delineating
collagen, non-collagen and background regions in a representative WSI. Note that, collagen and
non-collagen regions were stained as blue and dark purple in the MT stained WSIs. Finally,
classified images from QuPath [28] were loaded into MATLAB to quantify percentage of fibrosis
in the infarct and viable regions. First, infarct and viable regions were manually delineated using
the MT-stained WSI. Then, collagen content was expressed as a percentage with respect to total

area of the affected region using the classification from QuPath [28]

Heart seen from the top

Aortic outflow tract

/

-_—
Cassette/plane of sectioning

Figure 14.2 Inking convention for matching histopathology WSils to in vivo ultrasound PLAX view. Image
courtesy: Dr. Melissa Graham, Director, Comparative Pathology Laboratory, Research Animal

Resources and Compliance (RARC), UW-Madison
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Figure 14.3 ES accumulated radial strain images over time for (a) sham, (b) MI and (c) IR mice,
respectively. Strain display dynamic range is from -30% to +30%. Positive strain value (red) =
myocardial wall thickening, negative strain value (blue) = myocardial wall thinning and zero strain

value (light green) = no wall motion.

14.2 Temporal Progression of Cardiac Strain differentiates among Sham, Ml and IR
mice

Figure 14.3 (a) — (c) show the progression of ES radial strain images over time for sham,
MI and IR mice, respectively. For normal LV function, thickening of myocardial wall is expected
during systole with reverse changes during diastole [3, 29]. This would be reflected as positive
radial strain values mapped as red in the chosen colormap in Figure 14.3. At baseline (pre-surgery),
all three mice demonstrated normal LV function with uniformly red strain maps at ES indicating
myocardial thickening. The sham mouse preserved normal cardiac function in the radial strain
images resulting in uniformly red strain maps at ES for all post-surgery imaging sessions [Figure

14.3 (a)]. The post-surgery ES strain images for the MI mouse showed a marked reduction or sign
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reversal of strain magnitudes (light green or blue) in the apical segments when compared to
baseline as indicated with the black arrows in Figure 14.3 (b). Furthermore, infarct, border and
viable regions can be clearly identified in the MI radial strain images having predominantly blue,
mixture of yellow + light blue + red, and red colors, respectively. The IR mouse also demonstrated
motion abnormalities post-surgery with marked reduction or sign reversal of strain magnitudes
(light green or blue) in anterior mid (segment 2) and anterior apical (segment 3) segments

(infarcted region marked with arrows).
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Figure 14.4 Temporal progression of segmental radial strain curves over a cardiac cycle for (a) sham, (b)
Ml and (c) IR mice, respectively. Anterior base, anterior mid, anterior apex, posterior apex, posterior

mid and posterior base regions are denoted as segments 1 — 6 in these curves.

Figure 14.4 (a) — (c) compare the temporal progression of segmental radial strain curves
over a cardiac cycle for sham, MI and IR mice, respectively. At baseline, all three mice had peak

positive radial strain values in all segments with synchronicity among the segments (observe the
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low intraventricular dyssynchrony at baseline in Table 14.1). Sham mouse maintained the similar
trends in the segmental radial strain curves post-surgery cases indicating normal cardiac function
(e.g., intraventricular dyssynchrony at Day 14 was 0.02 [Table 14.1]). Note that an apical infarct
can be clearly identified in the MI mouse with subsequent reduction of peak radial and strain values
in apical segments (segments 3 — 4 shown in yellow and violet colors in Figure 14.4) with late
time-to-peak strain values compared to viable regions (segments 1, 5 — 6) resulting in higher
intraventricular dyssynchrony values (e.g., intraventricular dyssynchrony at Day 14 was 0.13
[Table 14.1]). Anterior mid segment (segment 2 plotted using brown color in Figure 14.4) showed
progressive deterioration over time indicating the ability for cardiac remodeling monitoring with
ABR-CSI. Infarcted and viable regions can also be separated in the IR mouse with a clear decline
in peak positive strain values observed in anterior mid and anterior apical segments (segments 2 —
3 in Figure 14.4). We also observed slight reduction in peak radial strain value in posterior apical
segment thus demarcating it as border region between infarct and viable regions. Furthermore, the
late time-to-peak strain values in segments 2 — 3 contributed to higher intraventricular
dyssynchrony values post-surgery (e.g., intraventricular dyssynchrony at Day 14 was 0.11 [Table

14.1]).

Figure 14.5 compares the ES (Figure 14.5 (a)) and peak (Figure 14.5 (b)) segmental radial
strain values over time among sham, MI and IR mice respectively. Sham mouse had both positive
ES and peak strain values over time corroborating qualitative observations seen in Figure 14.3 and
Figure 14.4. For example, ES e, values for anterior base at baseline = 46.88%, D1 = 45.05%, D2
=44.22%, D7 =47.40% and D14 = 39.94%. Based on Figure 14.5, MI mouse had an apical infarct
with anterior mid being a border region. For example, ES e values for anterior apex at baseline =

17.30%, D1 = -2.88%, D2 = -2.06%, D7 = -0.31% and D14 = -1.31% while for posterior mid at
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baseline =33.01%, D1 =15.87%, D2 =25.55%, D7 = 13.20% and D14 =22.44%. For the IR case,
a clear separation in strain values between infarct and viable regions were observed with infarct
being localized to the anterior mid and anterior apical segments (segments 2 — 3) and posterior
apex being a border region. The infarcted regions showed steady decline in e strain values post-
surgery while viable regions showed similar or higher peak strain values when compared to
baseline. For example, peak er values for anterior apex at baseline = 40.12%, D1 = 3.81%, D2 =
3.98%, D7 = 12.64% and D14 = 13.80% while for posterior mid at baseline = 52.43%, DI =

54.63%, D2 = 39.68%, D7 =49.61% and D14 = 74.46%.
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Figure 14.5 Comparison of segmental strains at (a) ES and (b) peak radial strain values over time among
sham, Ml and IR mice respectively. For each sub-figure, sham, Ml and IR results are presented from

left to right.

Table 14.1 Intraventricular Dyssynchrony Quantified using Radial Time-to-peak Strain

Baseline Day 1 Day 2 Day 7 Day 14
Sham 0.02 0.02 0.07 0.06 0.02
MI 0.01 0.20 0.13 0.21 0.13

IR 0.05 0.08 0.13 0.08 0.11
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Temporal progression of strain at ES in the longitudinal strain images for sham, MI and IR
mice are summarized in Figure 14.6 (a) — (c) respectively. For normal LV function, shortening of
myocardial wall is expected during systole with reverse changes during diastole [3, 29]. This
would be reflected as negative longitudinal strain values mapped as blue in the chosen colormap
in Figure 14.6. All three mice demonstrated normal LV function along longitudinal direction at
the pre-surgery time point with predominantly blue strain maps at ES indicating myocardial wall
shortening. Sham mouse preserved this normal cardiac function longitudinally resulting in
predominantly blue strain maps at ES for all post-surgery imaging sessions [Figure 14.6. (a)].
There were few small patches of zero or positive longitudinal strain values in sham strain images
indicated by the red arrows. In the post-surgery ES strain images for the MI mouse, there was a
marked reduction or sign reversal of strain magnitudes (light green or red) in the apical segments
when compared to baseline as indicated by the black arrows in Figure 14.6 (b). At Day 14, infarct
and viable regions can be clearly identified in the MI longitudinal strain image depicting
predominantly a mixture of yellow + light blue + red, and uniformly blue colors, respectively. The
IR mice also demonstrated motion abnormalities post-surgery with a marked reduction or sign
reversal of strain magnitudes (light green or red) in anterior mid (segment 2) and anterior apical
(segment 3) segments (infarcted region marked with black arrows in Figure 14.6 (c)). In the IR ES
longitudinal strain images, a small patch within the posterior mid segment (segment 5) showed
positive strain values starting from baseline up to Day 14 indicated with red arrows. Additionally,
few erroneous positive strain values were also observed in anterior base segment (segment 1)
indicated with red arrows in Figure 14.6 (c). These errors were attributed to the quasi-static clutter

signals due to reverberation signals from the chest wall, ribs or sternum thus blocking the
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myocardial motion in those segments. Several approaches have been reported in peer-reviewed
literature to address this issue [30] (e.g., singular value filtering by Mauldin ef al. [31]).

Baseline _ Day1 Day2 Day 7 ] Day 14

Depth (mm)

(c) Ischemia Reperfusion

Figure 14.6 ES accumulated longitudinal strain images over time for (a) sham, (b) Ml and (c) IR mice,
respectively. Strain display dynamic range is from -20% to +20%. Negative strain value (blue) =
myocardial wall shortening, positive strain value (red) = myocardial wall elongation and zero strain

value (light green) = no wall motion.

The temporal progression of segmental longitudinal strain curves over a cardiac cycle for
sham, MI and IR mice were compared in Figure 14.7. At baseline, all three mice had peak negative
longitudinal strain values in all segments with synchronicity among the segments (observe low
intraventricular dyssynchrony at baseline in Table 14.2) thus denoting normal cardiac function
[Figure 14.7 (a) — (c¢)]. Sham mouse maintained a similar trend in segmental longitudinal strain
curves [Figure 14.7 (a)] in post-surgery imaging time points with consistently low standard

deviation of time-to-peak strain values (e.g., intraventricular dyssynchrony values at Baseline and



388

Day 14 were 0.07 and 0.04 [Table 14.2]. For the MI mouse, impact of permanent ligation can be
observed mostly in the apical segments (segments 3 and 4) based on the reduction and sign reversal
of longitudinal strain curves post-surgery [Figure 14.7 (b)]. At day 1, segments 3 and 5 were
dyskinetic [32, 33] characterized by early systolic lengthening, followed by late and post-systolic
shortening with reduced strain in posterior apical segment (segment 4). At day 14, segments 4 and
5 recovered longitudinal motion while segments 3 became more dyskinetic. However, no
significant variation in intraventricular dyssynchrony was observed from baseline for the MI
mouse except Day 1 [Table 14.2]. Similar trends were observed for the IR mouse with infarct
being localized in anterior mid and anterior apex segments (brown and yellow curves in Figure
14.7 (c)). We also observed ventricular dyskinesis in segment 3 as early as day 1 with significant
impairment at day 14. Furthermore, segments 2 and 6 were hypokinetic (less systolic shortening
together with marked post-systolic shortening [32]) starting from day 2 with a significant increase
in severity at day 14 indicating the impact of IR surgery on the LV function. But we did not observe
any significant increase in intraventricular dyssynchrony when compared to the baseline imaging

time point for the IR mouse [Table 14.2].

Table 14.2 Intraventricular Dyssynchrony Quantified using Longitudinal Time-to-Peak Strain

Baseline Day 1 Day 2 Day 7 Day 14
Sham 0.07 0.09 0.06 0.07 0.04
MI 0.05 0.17 0.05 0.08 0.06
IR 0.03 0.07 0.09 0.08 0.04

Figure 14.8 compares the ES (Figure 14.8 (a)) and peak (Figure 14.8 (b)) segmental
longitudinal strain values over time among sham, MI and IR mice respectively. Sham mouse
demonstrated consistent negative ES and peak strain values over time. For example, ES e; values

for anterior base at baseline = -12.89%, D1 =-11.05%, D2 = -8.49%, D7 = -11.46% and D14 = -
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13.00%. ES and peak longitudinal strain values for the anterior apical segment was significantly
impaired for the MI mouse whereas basal segments (both anterior and posterior) maintained the
values observed at baseline indicating viable tissue regions. For example, ES e; values for anterior
apex at baseline = -4.18%, D1 = 1.87%, D2 = 2.33%, D7 = 2.18% and D14 = 0.58%. Other
segments demonstrated reduction or sign reversal at Day 1 with steady recovery till Day 14 [Figure
14.8 (b)]. For the IR case, segments 2 — 3 and 6 showed impaired longitudinal strain values when
compared to baseline with reduction or sign reversal of ES and peak e; values [Figure 14.8 (c)]
corroborating our observation of dyskinesia and hypokinesia based on Figure 14.7. For example,
ES er values for anterior apex at baseline = -14.68%, D1 = 1.87%, D2 = 1.00%, D7 = -0.94% and

D14 =4.21%.
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Figure 14.7 Temporal progression of segmental longitudinal strain curves over a cardiac cycle for (a) sham,

(b) Ml and (c) IR mice, respectively.
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Figure 14.8 Comparison of segmental (a) ES and (b) peak longitudinal strain values over time among
sham, Ml and IR mice respectively. For each sub-figure, sham, Ml and IR results are presented from

left to right.

14.3 Cardiac Strain Images Identifies Region of Fibrosis and Correlates with
Masson’s Trichrome (MT) Stained Digital Histopathology Images

Comparison of day 14™ ES radial and longitudinal strain images against MT-stained digital
WSIs are shown in Figure 14.9 — Figure 14.11 for sham, MI and IR mice respectively. For each
figure, sub-figures (a) — (b) are the ES radial and longitudinal strain images respectively and (c) —
(d) denote MT-stained digital WSI, a magnified tissue region marked using a blue rectangular
region-of-interest (ROI) in the sub figure (c) and classified WSI using QuPath [28] respectively.
For the classified WSI, pink, yellow and gray colors indicated non-collagen tissue, collagen tissue
and background regions respectively. Table 14.3 summarizes the comparison between day 14" ES

cardiac strain values and collagen content quantified using the MT-strained WSI.
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Figure 14.9 Comparison of day 14™ in vivo cardiac strain images against MT-stained WSI for the sham
mouse. (a) radial strain image, (b) longitudinal strain image, (c) digital WSI, (d) a magnified ROI
denoted with a blue rectangle in sub-figure (d) and (e) classified WSI with QuPath. WSI = Whole

slide image.

Figure 14.9 shows that for the sham mouse, we observed uniform wall thickness with
myocardial tissue appearing uniformly dark purple in the classified WSI [Figure 14.9 (e)] being
predominantly pink indicating absence of fibrosis [observe the magnified region in Figure 14.9
(d)]. This corroborates the in vivo strain images at day 14 [Figure 14.9 (a) — (b)], where uniform
wall thickness was observed with high radial and longitudinal strain values represented as
uniformly red and blue colors, respectively. This is quantitatively confirmed with only 6.98 %
collagen content around the myocardium attributed to the collagen tissue around the blood vessels

with ES e, = 35.09% and e; = -12.60% [Table 14.3].



392

Depth (mm)
Depth (mm)
o ro

N

(@)

(d)

Figure 14.10 Comparison of day 14" in vivo cardiac strain images against MT-stained WSI for the
myocardial infarction (MI) mouse. (a) radial strain image, (b) longitudinal strain image, (c) digital
WS, (d) a magnified ROI denoted with a blue rectangle in sub-figure (d) and (e) classified WSI with
QuPath. WSI = Whole slide image.

For the MI mouse, the presence of an apical infarct is clearly identified by observing wall
thinning with infarcted regions [Figure 14.10 (c)] appearing as dark blue [observe the magnified
region in Figure 14.10 (d)] and viable regions as dark purple. Consequently, the QuPath machine
learning model identified a region of fibrosis in the apical segment represented with yellow in
Figure 14.10 (e). ES radial strain image showed excellent agreement in localizing infarcted region
[marked with arrows in Figure 14.10 (a)] when compared to classified WSI. Longitudinal strain
demonstrated overestimation in infarcted area [marked with arrows in Figure 14.10 (b)] when
compared to radial strain image. Quantitative analysis showed higher collagen content in infracted

regions with lower ES erand e; strain values [Table 14.3].
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Figure 14.11 Comparison of day 14" in vivo cardiac strain images against MT-stained WS for the ischemia-
reperfusion (IR) mouse. (a) radial strain image, (b) longitudinal strain image, (c) digital WSI, (d) a
magnified ROI denoted with a blue rectangle in sub-figure (d) and (e) classified WSI with QuPath.

WSI = Whole slide image.

Figure 14.11 summarizes the results for comparing CSI findings with MT-stained WSI.
Histopathological image analysis results in Figure 14.11 (c¢) — (d) showed a small region of fibrosis
in the apical mid and anterior apex segments. Both in vivo radial and longitudinal strain images
demonstrated reduced strain values in those segments [Figure 14.11 (a) — (b)] thus showing
excellent agreement with the histopathology imaging results. Table 14.3 also reported increase in
collagen content in the infarcted regions (76.22%) with corresponding reduction in ES e and e:
strain values. Note that, posterior basal segment showed hypokinesis in the longitudinal strain
image [Figure 14.11 (b)] even though classified WSI indicate healthy myocardial tissue [Figure
14.11 (e)]. Overall, the results presented in Figure 14.9 — Figure 14.11 and Table 14.3 demonstrate

that ABR-CSI was able to detect areas with cardiac fibrosis in vivo non-invasively.
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ES Radial Strain (%) ES Longitudinal Strain (%) Collagen Content (%)
Mouse Infarct Viable Infarct Viable Infarct Viable
Sham X 35.09 X -12.60 X 6.98
MI -3.23 32.91 -2.09 -8.89 77.37 5.61
IR 4.48 42.39 1.16 -8.09 76.22 4.96

*Infarct and viable regions identified using MT-Stained WSI

14.4 Discussion on the Experimental Findings and Future Research

In this chapter, we have demonstrated the feasibility of an adaptive Bayesian regularized
strain imaging framework for assessment of murine cardiac function in vivo. The proposed
framework was able to differentiate between cardiac remodeling associated with ischemia-
reperfusion injury, myocardial infraction and normal cardiac function in the sham mouse
longitudinally over time. Furthermore, the strain variation observed in vivo corroborated our
findings from ex vivo histopathological analysis. Future work will focus on validating the method
in a larger cohort of mice and comparison against commercially available speckle tracking

echocardiography solutions.

List of References

[1] M. L. Lindsey, R. Bolli, J. M. Canty Jr, X.-J. Du, N. G. Frangogiannis, S. Frantz, et al.,
"Guidelines for experimental models of myocardial ischemia and infarction," American
Journal of Physiology-Heart and Circulatory Physiology, vol. 314, pp. H812-H838, 2018.

[2] C. K. Phoon and D. H. Turnbull, "Cardiovascular imaging in mice," Current protocols in
mouse biology, vol. 6, pp. 15-38, 2016.



[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

395

M. Bauer, S. Cheng, M. Jain, S. Ngoy, C. Theodoropoulos, A. Trujillo, et al.,
"Echocardiographic Speckle-Tracking—Based Strain Imaging for Rapid Cardiovascular
Phenotyping in Mice," Circulation research, p. CIRCRESAHA. 110.239574, 2011.

E. E. Konofagou, J. D’hooge, and J. Ophir, "Myocardial elastography—A feasibility study
in vivo," Ultrasound in medicine & biology, vol. 28, pp. 475-482, 2002.

T. Varghese, J. Zagzebski, P. Rahko, and C. Breburda, "Ultrasonic imaging of myocardial
strain using cardiac elastography," Ultrasonic imaging, vol. 25, pp. 1-16, 2003.

W.-N. Lee, "Myocardial elastography: a strain imaging technique for the reliable detection
and localization of myocardial ischemia in vivo," COLUMBIA UNIVERSITY, 2010.

J. Luo, K. Fujikura, S. Homma, and E. E. Konofagou, "Myocardial elastography at both
high temporal and spatial resolution for the detection of infarcts," Ultrasound in medicine
& biology, vol. 33, pp. 1206-1223, 2007.

J. Luo and E. E. Konofagou, "High-frame rate, full-view myocardial elastography with
automated contour tracking in murine left ventricles in vivo," IEEE transactions on
ultrasonics, ferroelectrics, and frequency control, vol. 55, pp. 240-248, 2008.

B. Chakraborty, Z. Liu, B. Heyde, J. Luo, and J. D’hooge, "2-D Myocardial Deformation
Imaging Based on RF-Based Nonrigid Image Registration," [EEE transactions on
ultrasonics, ferroelectrics, and frequency control, vol. 65, pp. 1037-1047, 2018.

J. D'hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, ef al., "Regional
strain and strain rate measurements by cardiac ultrasound: principles, implementation and
limitations," European Journal of Echocardiography, vol. 1, pp. 154-170, 2000.

S. Langeland, J. D'hooge, T. Claessens, P. Claus, P. Verdonck, P. Suetens, ef al., "RF-
based two-dimensional cardiac strain estimation: a validation study in a tissue-mimicking

phantom," IEEFE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51,
pp. 1537-1546, 2004.

A. Bhan, A. Sirker, J. Zhang, A. Protti, N. Catibog, W. Driver, et al., "High-frequency
speckle tracking echocardiography in the assessment of left ventricular function and
remodeling after murine myocardial infarction," American Journal of Physiology-Heart

and Circulatory Physiology, vol. 306, pp. H1371-H1383, 2014.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

396

R. Al Mukaddim, N. H. Meshram, C. C. Mitchell, and T. Varghese, "Hierarchical Motion
Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and $ In~

Vivo $§ Validation," [EEE transactions on ultrasonics, ferroelectrics, and frequency
control, vol. 66, pp. 1708-1722, 2019.

R. Al Mukaddim and T. Varghese, "Improving Ultrasound Lateral Strain Estimation
Accuracy using Log Compression of Regularized Correlation Function," 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2020.

R. Al Mukaddim, K. Samimi, A. Rodgers, T. A. Hacker, and T. Varghese, "Comparison of
cardiac displacements in a murine model of myocardial ischemia using Cardiac
Elastography and speckle tracking echocardiography," in 2017 IEEE International
Ultrasonics Symposium (IUS), 2017, pp. 1-4.

R. Al Mukaddim and T. Varghese, "Cardiac Strain Imaging with Dynamically Skipped
Frames: A Simulation Study," in 2020 IEEE International Ultrasonics Symposium (IUS),
2020, pp. 1-4.

R. Al Mukaddim, N. H. Meshram, and T. Varghese, "Locally optimized correlation-guided
Bayesian adaptive regularization for ultrasound strain imaging," Physics in Medicine &
Biology, vol. 65, p. 065008, 2020.

H. Shi and T. Varghese, "Two-dimensional multi-level strain estimation for discontinuous
tissue," Physics in medicine and biology, vol. 52, p. 389, 2007.

H. Chen, H. Shi, and T. Varghese, "Improvement of elastographic displacement estimation
using a two-step cross-correlation method," Ultrasound in medicine & biology, vol. 33, pp.
48-56, 2007.

M. McCormick, N. Rubert, and T. Varghese, "Bayesian regularization applied to
ultrasound strain imaging," I[EEE Transactions on Biomedical Engineering, vol. 58, pp.
1612-1620, 2011.

C. C. Mitchell, R. Al Mukaddim, A. M. Weichmann, K. W. Eliceiri, M. E. Graham, and T.
Varghese, "Carotid Strain Imaging with a Locally Optimized Adaptive Bayesian
Regularized Motion Tracking Algorithm," in 2020 IEEE International Ultrasonics
Symposium (1US), 2020, pp. 1-4.



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

397

N. H. Meshram and T. Varghese, "GPU accelerated multilevel Lagrangian carotid strain
imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 65,
pp. 1370-1379, 2018.

M. M. McCormick and T. Varghese, "An approach to unbiased subsample interpolation
for motion tracking," Ultrasonic imaging, vol. 35, pp. 76-89, 2013.

R. Al Mukaddim, N. H. Meshram, C. C. Mitchell, and T. Varghese, "Hierarchical Motion
Estimation with Bayesian Regularization in Cardiac Elastography: Simulation and in-vivo
Validation," IEEFE transactions on ultrasonics, ferroelectrics, and frequency control, 2019.

C. Ma and T. Varghese, "Lagrangian displacement tracking using a polar grid between
endocardial and epicardial contours for cardiac strain imaging," Medical physics, vol. 39,
pp. 1779-1792, 2012.

M. L. Lindsey, Z. Kassiri, J. A. Virag, L. E. de Castro Bras, and M. Scherrer-Crosbie,
"Guidelines for measuring cardiac physiology in mice," American Journal of Physiology-
Heart and Circulatory Physiology, vol. 314, pp. H733-H752, 2018.

C. M. Yu, J. Gorcesan, 3rd, G. B. Bleeker, Q. Zhang, M. J. Schalij, M. S. Suffoletto, et al.,
"Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left
ventricular reverse remodeling response after cardiac resynchronization therapy," Am J
Cardiol, vol. 100, pp. 1263-70, Oct 15 2007.

P. Bankhead, M. B. Loughrey, J. A. Fernandez, Y. Dombrowski, D. G. McArt, P. D.
Dunne, et al., "QuPath: Open source software for digital pathology image analysis," Sci
Rep, vol. 7, p. 16878, Dec 4 2017.

P. P. Sengupta, V. K. Krishnamoorthy, J. Korinek, J. Narula, M. A. Vannan, S. J. Lester,
et al., "Left ventricular form and function revisited: applied translational science to
cardiovascular ultrasound imaging," J Am Soc Echocardiogr, vol. 20, pp. 539-51, May
2007.

S. G. Sathyanarayana, S. T. Acton, and J. A. Hossack, "Closed loop low rank
echocardiographic artifact removal," IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 2020.

F. W. Mauldin, D. Lin, and J. A. Hossack, "The singular value filter: A general filter design
strategy for PCA-based signal separation in medical ultrasound imaging," [EEE
transactions on medical imaging, vol. 30, pp. 1951-1964, 2011.



[32]

[33]

398

O. A. Smiseth, H. Torp, A. Opdahl, K. H. Haugaa, and S. Urheim, "Myocardial strain

imaging: how useful is it in clinical decision making?," Eur Heart J, vol. 37, pp. 1196-207,
Apr 14 2016.

Y. Li, C.D. Garson, Y. Xu, P. A. Helm, J. A. Hossack, and B. A. French, "Serial ultrasound
evaluation of intramyocardial strain after reperfused myocardial infarction reveals that

remote zone dyssynchrony develops in concert with left ventricular remodeling,"
Ultrasound Med Biol, vol. 37, pp. 1073-86, Jul 2011.



399

Chapter 15

Conclusion and Future Work

15.1 Summary of Contributions

During the course of this dissertation, several image and signal processing algorithms were
developed to demonstrate a composite imaging framework for in vivo assessment of murine
myocardial health non-invasively. The composite imaging framework required experimental
design, data collection, and algorithm development for two different imaging modalities — (a)
cardiac strain imaging (CSI) using diagnostic ultrasound extracting mechanical properties of
cardiac tissue and (b) photoacoustic imaging (PAI) deriving molecular information such as
myocardial oxygen saturation. The first part of the dissertation (Chapters 4 — 7) reported on the
developed and implemented algorithms for cardiac strain imaging while the second part (Chapters
8 — 13) presented the algorithms and methods developed and implemented for myocardial
oxygenation estimation using cardiac PAI. Preliminary results from an in vivo longitudinal study

focusing on murine models of cardiac ischemia has been summarized in Chapter 14.

A Lagrangian cardiac strain imaging approach with iterative Bayesian regularization was
proposed and validated in Chapter 04. Our group previously reported Lagrangian CSI using a
multi-level block matching (BM) algorithm for displacement estimation [1, 2]. However, the
results were limited to parasternal short axis view data with a requirement of semiautomatic
myocardial contour generation for the entire cardiac cycles of interest. In this dissertation, we
aimed to develop a more general CSI framework as reported in Chapter 04 which can be adapted
for any cardiac imaging view routinely used in clinical and pre-clinical situations. The results from

experiments using finite-element-analysis (FEA) model of canine heart deformation and in vivo
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mouse heart demonstrated significant performance improvement over conventional multi-level
BM algorithm previously used. Performance improvement was attributed to error reduction in FEA
experiments and resolving physiologically relevant in vivo murine cardiac strain images. One
caveat of Bayesian CSI (see chapter 04) was that algorithm performance varied as a function of
maximum iteration number of Bayesian regularization with a possibility of over-regularization due
to incorrect estimate choice resulting in performance degradation. This observation led to the
development of an adaptive Bayesian regularization (ABR) algorithm as reported in Chapter 05.
The novelty of the ABR approach was the incorporation of information derived from input radio-
frequency ultrasound signals into the Bayesian regularization framework to dynamically control
regularization. This approach achieved optimal regularization by determining required the
maximum iteration number locally per BM location automatically with concurrent estimation
quality improvement for both axial and lateral strain tensors, making Bayesian regularization
robust for clinical and pre-clinical applications. Additionally, we validated ABR for CSI using
both parasternal long axis and short axis view datasets in vivo by comparing it against conventional
method without regularization thus demonstrating the generalizability of the CSI framework

reported in Chapter 04.

We proposed a spatiotemporal Bayesian regularization (STBR) algorithm for CSI in
chapter 07 by extending the Bayesian regularization from Chapter 04 into the temporal domain
with an underlying assumption of smooth variation in velocity over a short span of time during
tissue deformation. Unlike all previous reports on Bayesian strain imaging which utilized
information only from its spatial neighbors [3-11], the novelty of STBR algorithm was performing
regularization using information from a three-dimensional neighborhood (2-D in space and 1D in

time). Two different STBR schemes were investigated using cardiac simulation and in vivo data
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sets and the results suggested that STBR with simultaneous use of spatiotemporal information
(refer to STBR-2 in Chapter 07) provided the best results. Even though no statistical significantly
improvement was observed in simulation results with STBR, in vivo results demonstrated better
performance than spatial Bayesian regularization attributed to smoother strain curves,

physiologically accurate end-systole cardiac strain images and higher expected signal-to-noise (

E(SNR,

€)) quantified by performing stochastic precision analysis [12]. One caveat was that the

temporal regularization parameter was set empirically, a potential drawback which must be
addressed before employing STBR for future in vivo studies. Furthermore, ABR should be
incorporated into STBR to safeguard the algorithm from over-regularization artifact (please refer

to Chapter 05 more details).

Dynamic frame skip (DFS) for cardiac strain imaging was investigated in chapter 07. Even
though DFS has been routinely used by our group for carotid plaque strain imaging, it has not been
formally studied in the context of CSI which motivated this preliminary investigation. Our results
from limited initial experiments suggest that DFS can be potentially utilized to enhance cardiac
strain imaging quality. However, these results should be interpreted with caution as more detailed
parametric studies involving kernel dimension optimization, lateral interpolation factor, iteration
number of Bayesian regularization should be done to decide conclusively if there are clear benefits
of using DFS over the conventional inter-frame tracking approach for CSI. Additionally, we
investigated the use of log compression of regularized correlation function as a simple solution to
tackle the over-regularization artifact seen with Bayesian regularization due to incorrect estimate
choice for the maximum iteration number in Chapter 07. The results suggest that log compression

enabled improved subsample estimation with significant reduction of lateral banding errors due to
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over-regularization. However, the experiments were limited to simulated uniform and inclusion

phantoms which warrants further analysis using cardiac simulation phantoms and in vivo datasets.

As a part of this dissertation, we designed a longitudinal murine study in collaboration with
Cardiovascular Physiology Core Facility, Small Animal Imaging and Radiotherapy Facility and
Comparative Pathology Lab to validate the developed CSI approaches in vivo by collecting high
frequency ultrasound radiofrequency (RF) data using Visualsonics Vevo 2100 Imaging system.
Based on the experiments done in Chapters 04 — 07, adaptive Bayesian regularized CSI (ABR-
CSI) was chosen as the optimal algorithm for the longitudinal study. Some preliminary results
from the study were presented in Chapter 14 which demonstrated excellent agreement between in
vivo findings using CSI and ex vivo histopathological image analysis. Note that data collection was
done using 47 mice for the entire study which was interrupted and delayed several times due to

Covid-19 global pandemic and ultrasound system related issues.

For myocardial perfusion quantification, we first investigated the feasibility of using a
commercially available PAI system to study murine myocardial acute ischemia in a longitudinal
study involving eight mice. This was one of the earliest comprehensive studies on the use of PAI
for ischemia monitoring and detection in murine models. We observed statistically significant
reduction in myocardial oxygen saturation (% sO2) post-ischemia with correlation of findings with
echocardiographic measurements quantifying global cardiac function. Even though the findings
from Chapter 08 were promising, the employed method suffered from reduced sensitivity in
detecting subtle variations of % sO:2 due to the use of high persistence (incoherent averaging of 10
consecutive frames) necessary to generate reasonable % sO2 estimates to reduce system noise on
the Vevo system. For cardiac PAI in vivo, this implies the possibility of averaging PA signals from

multiple sources (myocardial wall, blood in left ventricular chamber and static tissue) thus
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corrupting %sO2 quantification. This limitation led to the subsequent development of adaptive

image processing algorithms reported in Chapters 09 — 13.

In Chapter 09, an adaptive beamforming algorithm termed spatiotemporal coherence factor
(STCF) weighted PAI was proposed and validated for suppression of temporally varying
incoherent clutter noise seen in cardiac PAI. We used both spatial and temporal information in the
aperture domain during beamforming to calculate STCF for weighting delay-and-sum (DAS) and
minimum variance (MV) beamformed PA images. The presented results demonstrated noise
reduction quantified using contrast ratio (CR), generalized contrast-to-noise ratio (gCNR) and
signal-to-noise ratio (SNR) both in simulation and in vivo experiments. However, further in vivo
investigation revealed that STCF weighting may also lead to undesirable signal suppression from
the myocardial wall along with sidelobe suppression which motivated to us explore alternative
beamforming approaches for PAI leading to the development of photoacoustic sub-aperture
processing (PSAP) reported in Chapter 10. Results presented in Chapter 10 showed that PSAP PAI
was able to preserve DAS amplitude levels for myocardial wall PA signals and improve target
detectability while achieving sidelobe and clutter suppression like coherence based beamformers
(e.g., STCF beamformer in Chapter 10). Furthermore, a high resolution PAI beamforming

algorithm was presented by combining PSAP with MV in chapter 11.

A spatiotemporal singular value decomposition (ST-SVD) algorithm to enhance cardiac
PA signal specificity was presented in Chapter 12. In ST-SVD, basis functions contributing to
static tissue, quasi-static clutter and temporal noise artifacts were significantly reduced thereby
enhancing low intensity myocardial PAI signals. The novelty of our approach was to utilize the

natural deformation of myocardial tissue to achieve PA image enhancement using ST-SVD
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processing with automatic myocardial region-of-interest (ROI) generation for quantifying

estimated % sO2 values.

Finally, in Chapter 13, we integrated the methods developed in Chapters 09 — 12 to propose
a myocardial oxygen saturation method termed as Oxygenation estimation using Physiological
signal gating and Motion Compensation (OPMC). The novelty of OPMC included significant
improvement in the spatiotemporal resolution owing to elimination of high persistence and data
collection at higher frame rate. Unlike the commercial method investigated in chapter 08, OPMC
allowed temporal synchronization of estimated % sOz values to different phases of a cardiac cycle
such as systole, end-systole, diastole and end-diastole thus enabling studying the temporal

progression of myocardial oxygen saturation over a cardiac cycle.

15.2 Future Directions for Cardiac Strain Imaging

Several interesting future avenues can be explored based on the methods developed in this
dissertation. One natural future direction is to translate the proposed ABR-CSI from two-
dimensional (2-D) ultrasound echocardiography to its three-dimensional (3-D) counterpart
resulting in 4-D cardiac strain imaging. One approach for performing 3-D ultrasound echo is to
collect several 2-D short axis planes of RF data by translating the ultrasound probe over the entire
heart starting from base to apex using a stepper motor with simultaneous acquisition of ECG and
respiratory signals. Then, the collected RF data can be spatiotemporally aligned [13] to reconstruct
4D datasets for performing ABR-CSI with 3-D kernels. During this dissertation, an automated 3-
D RF data collection protocol as described above was developed for murine cardiac imaging and
employed for data collection in a longitudinal study of cardiac disease (myocardial infarction and
ischemia-reperfusion injury) involving 15 mice. The collected dataset has laid the foundation for

validating the proposed 4-D ABR-CSI algorithm in vivo. Alternative approaches for 3-D
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ultrasound imaging will be to use a 2-D matrix probe [14] for collecting volumetric ultrasound RF
data. This approach might require our lab to acquire a new imaging system capable of data

collection with matrix array probes such as the Vantage 256 system (Verasonics, Kirkland, USA).

Machine learning approaches particularly deep learning has become ubiquitous in the field
of biomedical imaging with ultrasound imaging being no exception. Deep learning algorithms such
as U-Net [15, 16] should be applied and investigated to perform segmentation of cardiac wall at
end-diastole (required for displacement accumulation) thus replacing the manual segmentation
reported in this dissertation. In addition to the dataset collected during this dissertation, publicly
available dataset (e.g., Cardiac Acquisitions for Multi-structure Ultrasound Segmentation

(CAMUS) https://www.creatis.insa-lyon.fr/Challenge/camus/ ) should also be considered for

training DL models. Deep learning has also been used for ultrasound elastography in recent years.
For example, Tehrani et al. [17] demonstrated the use of a pyramidal convolutional neural network
for ultrasound strain imaging. However, the reported results were limited to only axial strain
images which are typically less noisy due to the presence of phase information in RF data
compared to lateral and shear strain imaging results. Similar approaches can be adopted for our
CSI framework with proper attention to achieve concurrent improvement in axial, lateral and shear
strain tensors. Furthermore, a deep learning model for performing Bayesian regularization

optimally can also be developed in future using ABR-CSI results for training.

High frame rate imaging approaches (e.g., diverging wave imaging [18, 19]) should be
considered in conjunction with the proposed spatiotemporal Bayesian regularization method to
improve the temporal resolution of cardiac strain curves. In our current protocol, anesthesia was
titrated to maintain a heart rate of 310 — 340 beats per minutes (bpm) during in vivo imaging.

However, the limitation of this method is the possibility of suppressing LV systolic function due
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to heart rates less than 400 bpm [20]. High frame rate imaging would allow us to address this issue.
Finally, ABR-CSI should also be translated into human clinical studies of cardiac ischemia and
infarction. This would require adapting the current algorithm to handle RF data collected using

phased array transducers.

15.3 Future Directions for Cardiac Photoacoustic Imaging (PAIl)

In the immediate future, a fluence compensation technique must be integrated into the
proposed OPMC method in chapter 13 and the method should be evaluated in vivo for myocardial
oxygen saturation estimation in murine models of myocardial infraction and ischemia-reperfusion.
We anticipate that the spatiotemporal characteristics of estimates derived with fluence
compensated OPMC approach will lead development of novel biomarkers in the investigation of

myocardial perfusion using PAI.

In the longer term, several interesting future avenues can be explored based on the
beamforming algorithms developed in this dissertation. First, the optimal set of sub-apertures for
PSAP PAI was set empirically in this dissertation. However, empirical results suggest that the
optimal sub-aperture choice varied with depth which would be a confounding factor for deep tissue
imaging with PSAP-PAI. Therefore, an adaptive beamformer with depth-dependent sub-aperture
selection should be explored. Second, one caveat of PSAP-PALI is that it may suffer “black region
artifact [21]” surrounding a high optically absorbing object. The implication of this artifact is the
undesirable suppression of weak PA signals generated from relatively less optically absorbing
objects (e.g., vein) if they spatially overlap the sidelobe region of a high optically absorbing object
(e.g., artery). Therefore, future research should focus on theoretical understanding of the origins
of this artifact which will lead to better approaches to address this issue. Additionally, the sub-

aperture selection problem can also be posed as a minimum variance problem following an
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approach reported by Stanziola et al. [21] and can be investigated in the context of black region

artifacts and PSAP-PAI.

Deep learning approaches, such as that proposed by Grohl et a/. using training models from
multi-spectral data per pixel [22] should also be investigated for the OPMC method. This Learned
Spectral Decoloring method where a fully connected feed-forward neural network is trained using
simulated initial pressure distributions, used deep learning assisted sO2% quantification in vivo for
the first time. Key idea was the generation of training datasets that closely resemble phantom and
in vivo situations. Other reports on sO2% quantification with DL include the following published
work [23, 24]. Even though machine learning assisted sO2% quantification is very encouraging in
simulations, broader validation studies in vitro and in vivo are required to understand the
generalizability of these methods [25]. Therefore, in the context of cardiac PAI, cardiac anatomy
derived and co-registered US data and hybrid PAI simulation [26] framework incorporating both
relevant optical and acoustic properties (varying probe center frequency, skin layer positions,
positioning of vessels, acoustic attenuation, noise corruption) should be used to synthesize
application specific training datasets for training a DL model for fluence compensation and

myocardial oxygenation.

Even though the image reconstruction and quantification algorithms focused on cardiac
PAI as an application, we anticipate these methods can be generalized for other PAI applications
such as brachytherapy seed imaging [27, 28], percutaneous radiofrequency ablation needle
detection [29] and surgical guidance [30]. Finally, future research should focus on translating these
methods from pre-clinical imaging to the clinic on human subjects. Translation of these techniques
for clinical imaging would require deep tissue PAI which imposes significant challenge due to

optical scattering and attenuation observed in vivo. One possible solution would be to utilize a
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catheter based light delivery system to provide more localized tissue illumination with detection

of generated acoustic waves using an externally placed transducer on the skin surface [31, 32].
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Appendix A

DAS and DAScF Performance Optimization for PSAP Comparison

This appendix reports on the parametric studies performed to optimize the performance of DAS
and DAScr algorithms for PSAP comparison reported in Chapter 10. Numerical simulations with
point targets, diffuse inclusion and microvasculature networks were performed, which are
described in detail in Chapter 10. For point target simulations, we computed the main-lobe-to-
sidelobe (MLSL) ratio (dB) values while diffuse inclusion and microvasculature simulations were

quantified using contrast ratio (CR) and generalized contrast-to-ratio (gCNR) [1, 2].
A.1 Experimental findings from DAS beamforming parametric studies

A.1.1 Impact of f-number selection

Figure A.1 , Figure A.2 and Figure A.3 summarize the results for point target, inclusion
and microvasculature simulations as a function of f-number. Figure A.1 (a) shows that strong
sidelobes still persist even with the choice of a higher f-number. Furthermore, no significant
variation of main lobe to side lobe (MLSL) ratio was seen for deeper targets due to aperture
saturation [black and green curves in Figure A.1 (b)]. For shallower targets, we observe MLSL
degradation [red and blue curves Figure A.1 (b)]. Figure A.2 (a) shows similar trends in the
inclusion phantom simulation results where no significant qualitative difference was observed for
different f-number results except for the slight reduction in sidelobe spread with f-number 2 or
higher. Impact of the f-number is more evident at shallow depths due to aperture saturation.
Quantitative CR and gCNR evaluation results over 10 independent simulation instances are shown

in Figure A.2 (b) — (c). Highest CR and gCNR were achieved with f-number = 1. Similarly, for
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microvasculature simulations, only qualitative differences were observed is the slight reduction in
sidelobe spread with f-number 2 or higher at shallower depth [observe around 5 mm in Figure A.3
(a)]. Moreover, with f-number = 3 and 4, we observed blurring of structures at shallower depth.
Quantitative CR and gCNR evaluation results shown in Figure A.3 (b) — (c) suggest that there
might be a slight improvement in CR and gCNR compared to the f-number =1 result. However,
the improvement in the results was not sufficient to outperform the results obtained with the PSAP
method. Considering results from all three experiments, a f-number = 1 was chosen as default

parameter for the PSAP comparison study.
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Figure A.1 Point target simulation comparison to obtain a f-number choice. (a) Qualitative results, (b) MLSL

variation with f-number.
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Figure A.2 Diffuse inclusion comparison to obtain f-number value. (a) Qualitative results, (b) and (c) show

CR and gCNR variation with f-number, respectively.
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Figure A.3 Microvasculature simulation comparison for the f-number choice. (a) Qualitative results, (b) and

(c) show CR and gCNR variation with f-number, respectively.

A.1.2 Impact of Apodization function

Four apodization functions were investigated in this section namely a uniform, Hamming,
Blackman and Hann windowing functions respectively. A f-number = 1 was chosen based on the
findings from Section A.l.1. Representative DAS beamformed images for the diffuse inclusion
simulation phantom as a function of apodization function are shown in Figure A.4. Using
Hamming, Blackman and Hann functions, we observed reduction in sidelobe levels when
compared to uniform aperture weighting with no significant qualitative differences between each
of these methods. Higher CR and gCNR values obtained with Hamming, Blackman and Hann

functions when compared to the uniform weighting function corroborates the qualitative



416

observation [Figure A.5 (a) — (b)]. However, these improvements were not sufficient to outperform
the CR and gCNR values obtained using the PSAPncc (2-2) method as shown in Figure A.5 (¢) —
(d). Similarly, for the microvasculature simulations, we observed reduction in sidelobe spread and
levels with Hamming, Blackman and Hann functions when compared to uniform aperture
weighting [Figure A.6 (a)]. Quantitative evaluation results shown in Figure A.6 (a) — (b) also
indicate that the improvement in CR and gCNR. However, PSAPncc (2-2) method results shown
in Figure A.6 (c¢) — (d) had higher CR and gCNR values. The results presented in this section
demonstrate that PSAPnce will perform better than DAS regardless the choice of apodization

function.
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Figure A.4 DAS beamformed images for the diffuse inclusion simulation phantom for different apodization

functions.
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Figure A.5 (a) — (b) CR and gCNR results as a function of apodization function for DAS beamforming. (c)

— (d) CR and gCNR results as a function of apodization function for PSAPncc (2-2) beamforming.
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Figure A.6 Microvasculature simulation comparison for the different apodization functions. (a) Qualitative

results, (b) and (c) show CR and gCNR variation with apodization function choice, respectively.

A.2 Vertical line artifact reduction for DAScr beamforming

In Chapter 10, we observed few erroneous vertical lines in DAScr images. To address
this issue, a filtered version of coherence factor (F-CF) weighting was investigated in this
dissertation. Specifically, we have computed coherence factor (CF) maps using channel data and
then, filtered the CF map with a mean kernel of size [1.5A % 3 A-lines]. The filtered CF map was
used to weight the DAS image, denoted as DASFileered cF. Figure A.7 summarizes the comparison
results for the diffuse inclusion simulation. Figure A.7 (a) — (d) show DAScrimage, DASFiitered CF,
CR comparison and gCNR comparison results. A f-number of 1 was used during beamforming.

Figure A.7 (a) — (b) show that no significant qualitative difference exists between DAScr and
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DASFiitered cr. Furthermore, even with the filtered CF map, we observed significant signal loss
within the inclusion, an issue that was resolved with our proposed sub aperture processing scheme
(Chapter 10). Quantitative evaluation with CR and gCNR [Figure A.7 (¢) — (d)] also demonstrate
that no significant differences exist between DAScr and DASFiitered cr. However, with DA SFrittered
cr, we did not observe the vertical line artifact after the Hilbert transform which was present in the

DAScr image.
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Figure A.7 Diffuse inclusion simulation comparison between conventional CF and filtered CF. (a) DAScr

image, (b) DASkitered cF, (¢) CR and (d) gCNR.

Figure A.8 summarizes the comparison results for the microvasculature simulation. Like,
the inclusion simulation, we did not observe any significant qualitative differences between DAScr

and DA Sriltered cF €xcept elimination of the vertical line artifact. Quantitative evaluation with CR
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and gCNR [Figure A.8 (c) — (d)] demonstrate that DASFittered cF had higher CR and gCNR than
DAScr and DASFittered cr. However, even with the filtered CF map, we observed significant vessel

signal loss at depth, an issue that was resolved with our proposed PSAP method (Chapter 10).
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Figure A.8 Microvasculature simulation comparison between conventional CF and filtered CF. (a) DAScr

image, (b) DASkitered cF, () CR and (d) gCNR.
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Appendix B

This appendix reports on a coupled sub-aperture (PSAP) and spatiotemporal singular value
decomposition (SVD) processing method to suppress background signals for the results reported
in Chapter 12. Figure B.1 presents a schematic diagram demonstrating coupled PSAP and SVD
processing for background suppression in the DAS SVD processed images. In addition to DAS
beamforming with full aperture, beamforming was also done with two non-overlapping sub-
apertures having no common elements defined using binary weighting vectors. Here, sub-aperture
1 (S1) weighting vector was constructed of ones and zeros with an alternating pattern of two
elements and sub-aperture 2 (S2) weighting vector was complimentary of sub-aperture 1. Further
details on PSAP can be found here [1]. Both cardiac cycle data reconstructed with Siand Sz were
filtered with the proposed spatiotemporal SVD method reported in Chapter 12. Then, 3-D (2-D
space + 1-D time) weighting matrix (Wpsar) was determined by calculating zero lag normalized
cross-correlation (NCC) between each frame of S1and Sz reconstructed cardiac cycle. During NCC
calculation, incoherent clutter signals from background have low similarity while myocardial PA
signal have high similarity [1]. Therefore, DAS SVD processed images were multiplied with

Wesap to suppress background signals. The resultant images are denoted as PSAP-SVD.
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— —-> — >
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% »
SVD
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Figure B.1 Schematic diagram demonstrating coupled PSAP and SVD processing
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Background Suppression at Systolic Phase
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Figure B.2 Representative background suppression results from coupled PSAP and SVD processing. (a)

— (c) show results at systolic, end-systolic, and diastolic phase of a cardiac cycle, respectively.
Results with DAS, DAS-SVD (rst = 2), and PSAP-SVD (rst = 2) are presented from left to right
chronologically for each sub-figure. rst denotes the lower singular value order chosen for

thresholding.
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Figure B.2 shows representative background suppression results from coupled PSAP and
SVD processing. Figure B.2 (a) — (¢) show results at systolic, end-systolic, and diastolic phase of
a cardiac cycle, respectively. Results with DAS, DAS-SVD (rst = 2), and PSAP-SVD (rst = 2) are
presented from left to right chronologically for each sub-figure. We observe that coupled PSAP
and SVD processing achieved simultaneous suppression of background signal and enhancement

of myocardial PA signal for all three cases.
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