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Abstract 
Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly 
associated with drastic alterations in surrounding connective tissue, and changes in the 
extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease 
progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, 
and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM 
because it is a non-invasive, non-linear laser scanning technique with high sensitivity and 
specificity for visualizing fibrillar collagen. 
In this thesis, we are interested in developing imaging techniques to understand how the ECM, 
especially the collagen architecture,   is remodeled in diseases To quantitate remodeling, we 
implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG  
microscopy images of human normal and high grade malignant ovarian tissues. In the learning 
stage, a dictionary of “textons”—frequently occurring texture features that are identified by 
measuring the image response to a filter bank of various shapes, sizes, and orientations—is 
created. By calculating a representative model based on the texton distribution for each tissue 
type using a training set of respective mages, we then perform classification between normal and 
high grade malignant ovarian tissues classification based on the area under receiver operating 
characteristic curves (true positives versus false positives). The local analysis algorithm is a more 
general method to probe rapidly changing fibrillar morphologies than global analyses such as 
FFT. It is also more versatile than other texture approaches as the filter bank can be highly 
tailored to specific applications (e.g., different disease states) by creating customized libraries 
based on common image features. 
 
Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike 
fluorescence microscopy, SHG excites intrinsic characteristics of collagen, bypassing the need 
for additional primary and secondary imaging labels. However, single view image collection 
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from endogenous SHG contrast of collagen molecules is not “a true 3D technique,” because 
collagen fibers oriented along the plane of the lasers used to excite them are invisible to the 
excitation  The loss of information means that researchers cannot resolve the 3D structure of the 
ECM using this technique. We are developing a new, multi-view approach that involves rotation 
of agarose embedded sample in FEP tubing, so that the excitation beam path travels to from 
multiple angles, to reveal new insight in understanding the 3D collagen structure and its role in 
normal and diseased tissue. 
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Chapter 1: Introduction 
Second Harmonic Generation (SHG) microscopy has already emerged as a highly 
sensitive/specific probe of collagen architecture changes in many kinds of diseases, including 
many epithelial cancers, connective tissue disorders, and fibroses. All these diseases can be 
characterized by changes in alterations of collagen density, fibrillar organization, collagen 
isoform distribution or combinations thereof in the extracellular matrix (ECM). In this thesis, we 
will focus on two main aspects of the SHG microscopy imaging technique. First, we are 
interested in developing machine learning and computer vision algorithms to understand how the 
ECM is remodeled in diseases, and further, adopting such algorithms to classify idiopathic 
pulmonary fibrosis (IPF) and ovarian cancer. Second, we are focusing on the development of a 
multi-view 3D SHG microscopy imaging platform to improve the current SHG imaging 
technique for 3D morphology measurement. The current SHG microscopy technique has much 
higher lateral resolution than axial resolution due to its probing focus profile. Also, due to 
dipolar orientations, ECM fiber structures aligned with the laser excitation are unable to be 
visualized. Our multi-view approach involves the rotation of agarose embedded samples in FEP 
tubing so that the excitation and emission beam paths may interrogate the sample from multiple 
angles revealing true 3D collagen structure with high fidelity. In this introduction, we will give a 
brief review of fundamentals of SHG microscopy imaging and explain the current challenges 
which lead to the significance of later chapters. 
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1.1 Second Harmonic Generation Microscopy Overview 

1.1.1Second Harmonic Generation Physics 

Second Harmonic Generation (SHG) is a coherent, non-linear physical process in which two 
photons with the same energy up-convert to one photon with twice the energy as the excitation 
photons (shown in Fig. 1.1). The first application of SHG imaging in the biomedical field was 
discovered by Freund in 1986.  He successfully imaged rat tail tendon with low resolution 
around 50 µm. Campagnola and Mohler further developed a robust SHG imaging platform at 
high resolution for tissue around 2002. Since then SHG has been widely used as a tool for tissue 
imaging.  

 

The complete emission polarization by laser excitation with electric field vector, E, can be 
expressed [1]:  

ࡼ = ߯ (ଵ)ࡱ + χ (ଶ)ࡱଶ + χ (ଷ)ࡱଷ + ⋯                                                                                    (1) 

Where P is the induced polarization, and χ () is the nth order nonlinear susceptibility tensor. In 
equation 1, ߯ (ଵ)ࡱ describes reflection, scattering and absorption; χ (ଶ)ࡱଶ describes SHG, sum-
frequency generation and differency frequency generation; and χ (ଷ)ࡱଷ describes the multiphoton 
absorption, third harmonic generation (THG), stimulated Raman process and coherent anti-
Stokes Raman scattering (CARS).[2] 
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 Figure 1.1, Second Harmonic Generation  

The detailed derivation for the SHG term with different dipole interactions will be further 
discussed in chapter 5. 

 

1.1.2 SHG and Biomedical Imaging of Collagen  

The non-centrosymmetric environment at the size scale of the SHG emission wavelength 
provides effectent SHG production and imaging. The primary proteins that meet this requirement 
are type I and II fibrillar collagen and myosin within actomyosin complexes. Recent research on 
SHG microscopy imaging has been focusing on visualizing collagen fibers in connective tissues 
and internal organs. Collagen type I is the predominate component of ECM with a triple helical 
(~300 kD) structure having three α-chains hydrogen bonded to each other. The individual 
molecules self-assemble into fibrils of 20-250 nm diameters. [3] The bundle of fibrils forms 
individual fibers around 0.5 µm to several micrometers in diameter.  Type I fibrillar collagen has 
now been imaged by SHG in internal organs (e.g., ovary, liver, kidney and lung), connective 
tissues (e.g., skin, bone, tendon), blood vessels and cornea. Other isoforms such as type II 
collagen, found predominantly in cartilage, also efficiently produce SHG emission.[4-6] 
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Figure 1.2. SHG imaging for mouse tail tendon. 

1.1.3 Advantages of SHG Imaging 

 

The SHG microscopy demonstrates multiple advantages over other types of imaging modalities. 
First, like all other multi-photon imaging, it enables intrinsic optical sectioning as only the focus 
of the excitation will generate sufficient emission signal. The emission intensity is largely 
proportional to the second order of the excitation intensity. In confocal microscopy, on the other 
hand, the signal of the emission is proportional to excitation energy therefore introducing 
background noise. Upon signal collection, confocal microscopy implores a pinhole conjugate to 
the focus of the excitation laser to exclude background noise and thus increase sensitivity. On the 
other hand, SHG has intrinsic optical sectioning with high resolution without the use of a 
pinhole. [7] 
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Another advantage of SHG microscopy imaging is that it is a label-free imaging method. The 
non-centrosymmetrical environment of collagen I provide endogenous SHG contrast, and 
collagen I assembling is an important component for ECM structures. However, common linear 
fluorescence imaging or two-photon excitation fluorescence (TPEF) mostly relies on exogenous 
labels to extract structural information through polarization or directional resolved methods.  
THG is also a coherent label-free imaging method, but it is restricted to regions in which a large 
change of refractive index occurs such as interfaces between tissue layers. CARS and stimulated 
Raman scattering (SRS)  probie chemical bonds (primarily C-H stretches) and are useful for 
measuring lipids around collagen [8].  Optical coherence tomography (OCT) is widely used 
clinically for cornea disease and cardiovascular disease and is powerful for measuring optical 
properties of tissue like refractive index, density, and the scattering coefficient. However, OCT 
contrast is not collagen specific and is not sensitive to collagen structure. Also, OCT has a 
relatively low resolution of about 10-20 µm [9, 10]. 

 

1.1.4 Limitations of SHG Imaging 

Several limitations exist regarding SHG microscopy. First, there are only a small number of 
structural proteins that this imaging modality is capable of detecting including type I and II 
collagen and actomyosin complexes within skeletal muscle. [11] Second, the penetration depth 
of SHG imaging is relatively low. Most SHG imaging applies near infrared (IR) excitation 
(700—1000 nm) wavelength. The penetration depth is around 5 to 10 scattering lengths which is 
several hundred microns depending on the tissue under examination. We could tune the 
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excitation wavelength towards 1200 nm, but we would not achieve penetration depth beyond 500 
µm due to the photon scattering and absorption in the tissue. If longer excitation wavelengths go 
beyond that, water absorption will start to dominate the light attenuation, and SHG signal will 
get weaker. Therefore, the in vivo imaging applications would be restricted by the penetration 
depth.[12] It must be noted, for ex vivo imaging, depth of light penetration can be aided by use 
of optical clearing agents to minimize the scattering effect from tissue. Finally, the field of view 
for SHG microscopy imaging is relatively small. For ex vivo imaging we could stitch individual 
image segments together to form a mosaic of a larger field of view. However, for in vivo 
imaging we need to combine SHG imaging with micro-endoscopy or perhaps OCT to be more 
clinical impactful. The scanning speed for large scale imaging might be an issue with photon-
counting PMTs as the choice of detector. However, there are emerging technologies for 
enhancing SHG imaging sensitivity for better signal noise ratio (SNR).  

 

1.2 Second Harmonic Generation Microscopy Experimental Setup 

The schematic of the optical layout of the SHG microscope is given in Fig. 1.3. We used a 
Nd:YVO4 (532 nm; 5–18 W) pumped Ti:sapphire oscillator with tuning range from 700 to 1,000 
nm at repetition rate of 80 MHz, average power of 1–1.5 W and pulse width of ~100 fs, which 
corresponds to a bandwidth of about 10 nm full width at half-maximum (FWHM). We used 890 
nm excitation as a compromise between imaging depth, viability and Ti:sapphire performance. A 
short wave pass (SWP) dichroic mirror following the laser filters the residual pump background at 
532 nm. An optical isolator prevents back reflections from subsequent optics from re-entering the 



7 

 

 

oscillator and potentially disrupting mode locking. The setup provided ~40 dB of isolation, 
rejecting light of all polarization states. We used a combination of lenses to achieve best 
collimation and to properly fill the back aperture of medium-and high-numerical-aperture (NA) 
objectives to yield the best possible resolution. 

 
Figure 1.3.  Schematic of the optical layout of the SHG microscope, showing the optical 
components before the scan head and the detection pathways. L, lens; λ/2 and λ/4 are half- and 
quarter-wave plates, respectively. Reprinted with permission from Nature Protocols. [13] 
 
We used a Glan-laser polarizer (GLP; first set of polarization optics (shown in Fig. 2) as a linear 
polarizer. By changing the voltage of GLP, we can change the polarization angle. The half wave-
plate behaved as a rotator of the polarization. Therefore, due to Malus’s Law, the combination of 
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the GLP and half wave plate could adjust excitation laser power over ~100 fold, which was able 
to control a dynamic range of SHG intensity by about 10000 fold.. This was a relative 
inexpensive way for electro-optic control of excitation laser power. 
 
 
In our experiments, we used circular polarization for SHG imaging as the excitation, and thus 
emission signal, varies with different orientations between collagen fiber and laser polarization. 
The use of circular polarization eliminated the directional dependence of the sample alignment. 
The quarter wave plate converted linear polarization to circular polarization. And another half 
wave plate was applied for compensation of ellipticity introduced by non-45 degree reflections in 
scanning system, birefringence and strain in dichroics and other optics. The distortion was 
calibrated using a specimen of cylindrical symmetry and achieving a ‘ring stain’. 
 
We utilized the Olympus Fluoview 300 laser scanning system and Olympus BX 61 upright 
microscope, which provides high efficiency of throughput for both excitation and emission of the 
SHG process. We further customized the acquisition beam path using two PMTs for forward and 
backward propagating SHG signal. Moreover, this setup allowed the use of long working 
distance water-immersion objectives. Most of the microscope companies now offer dipping 
lenses over a range of 20X to 60X, with reasonable NA (~0.5–0.9) with long working distances 
(e.g., 3 mm for 40X, 0.8 NA), and are optimized for transmission of the near-IR laser excitation. 
These lenses are ideal for imaging tissues of several hundreds of micrometers in thickness at 
good spatial resolution. For example, by using sub-resolution fluorescent beads and TPEF, we 
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have measured the lateral and axial point spread functions at 890 nm of the 0.8-NA lens to be 
about 700 nm and 2.5μm laterally and axially, respectively. The upright setup enabled us to use 
long working distance water-immersion objectives, which is helpful for thick tissue imaging. The 
system was optimized for 40X water immersion long distance 0.8 NA objectives. However, a 
wide selection of objectives is available with NA ranging from 0.25 to 1.0 and magnification 
ranging from 5X to 60X.  

 

We stress that forward SHG detection is not Kohler illumination, and the height of the condenser 
is optimized for the maximum SHG intensity. Further, we employed a 45° long-wave pass (LWP) 
dichroic mirror (~100 nm bandwidth) to re-direct SHG emission onto the photomultiplier and filter 
the excitation laser. A narrow  bandpass  filter (20 nm) was also implemented to optimize the SHG 
emission range of the photon counting PMTs (Hamamatsu, 7421). For counting, PMTs ran in 
saturation mode, and individual pulses were pre-amplified, discriminated and converted into a 
digital signal, where the GaAsP photocathodes have quantum efficiencies of ~40% for blue 
wavelengths (400–500 nm). These devices have fixed gain, amplification and discrimination, and 
output transistor-transistor logic (TTL) pulses (logic level, 0–5 V) that can be plugged directly into 
the Fluoview inputs used normally for regular PMTs (internal or external). Backward SHG 
detection was implemented in an epi-geometry. But this setup differed from confocal detection as 
the desired light did not return along the excitation path, nor was it passed through a pinhole before 
hitting the PMT.  The LWP dichroic for SHG was placed in the infinity space as for conventional 
fluorescence detection. Next, the arc lamp was replaced with the PMT and band-pass filter, where 
these were identical to those used for the forward detection. To minimize stray light, we enclosed 
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the microscope stand and detectors in light-tight boxes. Weak positive lens was placed before the 
detector to direct the light into the detector acquisition window. 
 

1. 3 ECM Morphology Feature Extraction as a Biomarker for Disease 
Diagnosis 

1.3.1 ECM Structure and SHG Microscopy 

The studies revealed that most of the SHG contrast comes from collagen, which consists of non-
symmetrical molecules with triple helical structure.  Collagen is the most abundant protein in the 
body and is a major structural component in most types of tissues, as well as forming the ECM in 
many organs. Although traditional pathology focuses on cellular architecture, many recent 
studies have demonstrated that there is a close correlation between disease initiation/progression 
and remodeling of the ECM in the tissue microenvironment. For example, changes in collagen 
composition and morphology in the ECM have been documented for many cancers, connective 
tissue disorders, and organ fibrosis [13-15] (shown in Table 1.1). Traditional biomedical imaging 
modalities, such as CT, MRI, PET, and ultrasound lack of the sensitivity and specificity for 
detecting ECM variations in a multitude of diseases.  However, SHG imaging microscopy has 
been successful as a collagen specific modality for detecting changes in tissue micro-
environment. (Table 1.1). In this thesis, we will focus our study on imaging and analysis of ECM 
structure for idiopathic pulmonary fibrosis (IPF) and ovarian cancer using SHG microscopy 
imaging.  
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Table 1.1. Representative example applications of SHG 

Application Subspecialty Key observation 
Cancer Breast SHG can delineate cancer of different stages 
 Ovary SHG shows an increase in collagen fibril/fiber 

organization 
 Skin SHG can delineate tumor boundaries in different 

types of skin cancer 
Fibrosis Liver SHG results agree with standard pathology 
 Kidney SHG results agree with pathology 
 Lung SHG morphology can delineate IPF and normal 

tissue 
Connective 
tissues  
and disorders 

Osteogenesis 
Imperfecta 

SHG delineates normal and mutation states  

 Sjogren’s 
syndrome 

SHG shows disorganized collagen in this disease 
SHG 

 Cornea SHG can delineate the stroma from other corneal 
components 

 Skin damage SHG uniquely shows changes in collagen assembly 
upon thermal damage 

Antherosclerosis  SHG shows that collagen plaques intermingle with 
elastin 

Model tissues  Self-assembled fibrillar gels can be imaged by SHG 
 
 

1.3.2 Collagen I and Other Collagen Isoforms 
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The primary component of the ECM is Collagen I, but other isoforms (III, V, VI) are part of the 
normal ECM architecture and their relative abundance can change in the initiation/progression of 
different diseases. Different types of collagen are generally defined as structural molecules in the 
ECM containing a triple-helix domain. The procollagen molecules are covalently linked into 
fibrils with a diameter of ∼20–250 nm, which then self-assemble to form fibers on the order of 
∼500 nm in diameter. The hierarchical structure of the collagen fiber, the structure observed in 
the SHG microscope, aligns well with the size scale of λSHG, allowing both molecular and 
supramolecular information to be encoded within the SHG signal. The morphology changes in 
ECM structure also indicate the variation of different collagen abundance during disease 
initiation/progression. There are researches using SHG microscopy to interrogate the structure of 
mixed ColI/ColV and also ColI/ColII fibrillary gels, which are models for invasive breast 
carcinoma and ovarian carcinoma. The higher Col III and Col V concentration led to shorter and 
more randomly distributed fibers and lower SHG intensity. [27.28]   

 

1.3.3 Extract morphology features as biomarker for disease diagnosis 

In pathology, slides are usually stained with hematoxylin and eosin (H&E), which labels nuclei 
and protein content, respectively, for ready detection of alterations present primarily in cancer 
cells. Pathologists have focused on cell morphology. However, recent studies have demonstrated 
that the ECM composition and structure directly relates to the initiation and progression of a 
number of diseases. The quantitative evaluation of ECM remodeling might have significant 
value for disease diagnosis and prognosis. A number of groups have investigated the potential of 
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SHG microscopy using histology slides or intact tissues from human patients.  SHG imaging has 
demonstrated the ability to distinguish normal and abnormal tissue using both cellular and 
collagen features in many diseases.  A number of image processing techniques were developed 
focusing on morphological variation evaluation of ECM structure between diseased and non-
diseased tissues. Here we will discuss some of the most popular algorithms for ECM structure 
feature extraction. 
 

a. Fourier Transforms 
The Fourier transform is usually applied on a global scale to evaluate the fiber variation and 
alignment, which is effective in analyzing spatial frequencies over different scales. For instance, 
collagen fibers that are randomly distributed would have a circular distribution for the resulting 
transform. However, more aligned fiber assemblies have elliptical distributions. A combination 
with support vector machine (SVM) learning algorithm is adapted with breast and ovarian tissue 
classification.   Principal component analysis (PCA) combined with 2D FFT coefficients were 
used to quantitatively describe the collagen fiber shape within normal, benign, and malignant 
breast cancer tissues.  Similarly, in ovarian cancer tissues, 2D FFT analysis was able to 
differentiate normal stroma from cancer but was unable to differentiate types of ovarian cancer 
(ie, serous, mucinous, endometrioid, and mixed adenocarcinomas). The 2D FFT applied on 
ovarian and breast cancer tissue demonstrate its ability to discern well-organized ECM structure 
from less organized ECM structures. [16-20] 
 

b. Curvelet Transform  
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Recent studies also have shown a relationship between collagen fiber alignment relative to the 
cell boundary and disease progression for many different tissue types, but especially in breast 
cancer. “Tumor-associated collagen signatures” (TACS) was introduced by Provenzano to 
describe the collagen alignment variation with the cell boundary. The collagen density and 
collagen fiber orientation around the breast tumor boundary were carefully evaluated using the 
curvelet transform. Also Conklin et al showed the “tumor-associated collagen signatures” 
(TACS) also retains prognostic value using a three-person-panel time-intensive manual approach 
[21]. This method has been further developed as Matlab software by researchers in LOCI 
combining the fiber identification algorithm (FIRE) [22] and the curvelet transform to provide 
frequency components within segmented areas around the boundary of the tumor.  
 
Other studies adapted slide-based multi-photon emission (MPE) and SHG imaging systems for 
rapidly imaging standard histologically prepared H&E slides, allowing overlapping of classical 
bright-field and MPE/SHG microscopy images. This overlap can identify the cellular boundary 
required for TACS analysis, which is invisible by SHG. The tumor–stromal boundary is readily 
detectable in breast cancer, making TACS a straightforward and powerful assessment; however, 
in ovarian cancer this boundary is often not easily identified. Despite this difficulty, Adur et al, 
with the guidance of an expert pathologist, identified TACS signatures in normal and cancerous 
human ovarian tissues. Normal ovarian tissues demonstrated a TACS-2 cellular–stromal 
interface with long, straight, and parallel fibers, whereas malignant tissues primarily had TACS-
3 fiber alignment. 
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c. Texture Analysis 

The popular algorithms of texture analysis have also been applied for ovarian cancer and breast 
cancer classification. An image texture is a set of metrics calculated in image processing 
designed to quantify the perceived texture of an image. Image texture quantifies perceptual 
qualities (e.g., roughness, smoothness, or orientation of signal gradient) and repetitive patterns as 
a function of the spatial variations in pixel intensities around small individual regions in the 
image. Image features are extracted from regions of interest and such areas are treated equally. 
Comparing to CT-fire, texture analysis is not specific tothe relationship between the region of 
interest (ROI) boundary and collagen fiber alignment.  

 

There are many algorithms for tissue classification using texture analysis. One of the most 
commonly implemented methods is grey-level co-occurrence matrix (GLCM) [23,24], which 
determines the texture via gray levels of pixels in different orientations. The gray level neighbors 
are recorded in matrixes.  The second statistics are derived from these mastics such as entropy, 
homogeneity, energy, and variation which are the extracted image features. Researchers have 
demonstrated that GLCM is sometimes effective for the fiber structure evaluation. Watson et al 
has combined GLCM and 2D FFT to evaluate the ECM structure variation of a mouse ovarian 
cancer model with ~80% sensitivity and specificity. [24] 

 

In chapter 3 and 4, we introduce a more sophisticated texton analysis for ovarian cancer 
classification. The idea was to first develop a set of “hand crafted” filters that would be a good 
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representation of collagen fibers in different size-scales. Then we convolved this set of filters 
with the training images. The filter responses were clustered and extracted as image features or 
represented image patterns. Based on the generated image features, we further model the training 
images with statistical distributions across the entire training image set. Then we employed one 
vs. all multi-class classification and nearest neighbor classification algorithm to differentiate 
different types of ovarian cancer tissues. We achieved 97% accuracy for 2D texton analysis with 
two classes, normal and high grade serious ovarian tissue. [25] We further implemented the 3D 
texton analysis method achieving 83-90% accuracy for 6 different types of ovarian tissues. 

 

1.4 3D SHG Microscopy with High Fidelity 

 

As stated previously, SHG imaging has been established as a powerful modality for visualizing 
the collagen assembly in a wide range of normal and diseased tissue types. Applications for 
imaging structural changes in many pathologic conditions, including cancers, fibroses, and 
connective tissue disorders have received considerable attention, as changes in the collagen rich 
ECM are often revealed by SHG imaging via changes in fibrillar morphology. As we discussed 
earlier, many different morphological image features were introduced as biomarkers for different 
diseases. Later in Chapter 5, we will discuss how 3D textons were generated for ovarian cancer 
classification with six different classifications. At the same time, it is significantly important to 
acquire 3D SHG imaging with high fidelity for data acquisition. However, current 3D SHG 
microscopy techniques are not “true” 3D imaging but constructed with a series of 2D imaging 
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stacking at different depth. With such imaging acquisition, there are three main factors that 
would affect the fidelity of the 3D imaging. First, the excitation laser focus is a probe for the 
collagen structure, but instead of isotropic probe shaping like a soccer, the scanning laser focus 
profile looks more like American football, which has smaller axial size (~0.75 μm) and bigger 
longitudinal size (~2 μm). Therefore, the voxel size differs from x,y and z axis to satisfy the 
Nyquist frequency. In Fig. 1.4 the 3D rendering of ovarian cancer tissue (using Imaris for 
reconstruction) demonstrate the z-axis resolution is much lower than x-y axis.  Secondly, due to 
the electric dipole interaction, excitation of collagen fibers fully aligned parallel to the excitation 
laser is dipole forbidden and will not produce any SHG emission. This phenomenon is not 
commonly seen in fluorescence imaging as probe molecules (either dyes or fluorescent proteins)  

 
(a)                               (b) 

Figure 1.4. Imaris reconstructed 3D ovarian cancer tissue from stacking 2D(a) image stack with 
x-y scanning plan facing up (b) image stack rotated showing x-z axis with lower imaging fidelity 
in z axis. 

typically have rotational freedom and absorb at all angles. Further discussion as well as a 
detailed derivation will be provided in chapter 5. Thirdly, as excitation laser penetrates though 
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tissue, the deep tissue imaging is affected by the photon scattering and absorption. The effect of 
this is significant as the penetration depth is limited to 300-500 μm (shown in Fig. 1.4) 
depending on the type of tissue and its optical properties. 

Considering the above limiting factors, we introduced a 3D SHG imaging modality in chapter 5 
which allows laser illumination and data acquisition from multiple views. The multi-view 
imaging system comparing to old 2D stacking system can be analogous to a CT system and X-
ray system. The system would improve the 3D SHG imaging fidelity and solve some of 3D 
imaging challenges caused by the limiting factors mentioned previously. 

 

At the end of the introduction, a brief review about the layout of the rest of the chapters will be 
provided. A brief introduction about the SHG physics, experimental setup, imaging features as 
biomarkers for classification and a new 3D SHG imaging platform has been discussed. In 
chapter 2, we will discuss in detail about how to use wavelet transform and principle component 
analysis (PCA) to classify idiopathic pulmonary fibrosis (IPF) and normal tissue.[26] While this 
algorithm was successful for differentiating IPF and normal lung tissue, it did not provide good 
enough classification accuracy for high grade serous ovarian cancer tissue (HGS, the most 
common ovarian cancer type) against normal ovarian tissue. Therefore, in Chapter 3, we further 
discuss the development of the texture analysis algorithm for ovarian tissue. By extracting image 
features from a set of 8 maximum response filters, we modeled training and testing images and 
further classified HGS from normal ovarian tissue in which we achieved 97% of recognition 
accuracy. [25] In chapter 4, we further developed 3D texture analysis for ovarian tissue stacks, 
which accomplished clinical impactful classification accuracy from 83%-91% among six 
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different types of ovarian tissues. This method could be of significant diagnostic and prognosis 
value as different types of ovarian cancer would require different treatment. Secondly, the high 
risk tissue from patients with BRCAI/II gene mutations was successfully classified using SHG 
imaging for the first time, a feat other SHG analysis metrics were unable to achieve. In chapter 5, 
we further explore the 3D SHG imaging motivation, proof of concept using reflective micro 
prisms. Then we conceptualize, iterate and optimize the commercially compatible platform for 
deep tissue imaging. Chapter 6 will be the conclusion of the thesis, in which I will discuss about 
the future work and clinic impact of my work. 

1.5 References 
1. R. W. Boyd, Nonlinear Optics (Academic Press, 2008). 
2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984). 
3. H. R. C. Screen, D. L. Bader, D. A. Lee, and J. C. Shelton, "Local Strain Measurement 

within Tendon," Strain 157–163 (2004).  
4. Campagnola, P.J. & Dong, C.Y. Second harmonic generation microscopy: principles and   

applications to disease diagnosis. Laser Photonics Rev. 5, 13–26 (2011). 
5. Campagnola, P.J. & Loew, L.M. Second-harmonic imaging microscopy for visualizing 

biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 
(2003). 

6. Campagnola, P. Second harmonic generation imaging microscopy: applications to 
diseases diagnostics. Anal. Chem. 83, 3224–3231 (2011). 



20 

 

 

7. Zoumi, A., Yeh, A. & Tromberg, B.J. Imaging cells and extracellular matrix in vivo by 
using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. 
Acad. Sci. USA 99, 11014–11019 (2002). 

8. Le, T.T., Langohr, I.M., Locker, M.J., Sturek, M. & Cheng, J.X. Label-free molecular 
imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J. 
Biomed. Opt. 12, 054007 (2007). 

9. Brezinski, M.E. et al. Correlation of collagen organization with polarization sensitive 
imaging of in vitro cartilage: Implications for osteoarthritis. J. Rheumatol. 28, 1311–1318 
(2001). 

10. Liu, B. et al. Characterizing of tissue microstructure with single-detector polarization-
sensitive optical coherence tomography. Appl. Opt. 45, 4464–4479 (2006). 

11. Plotnikov, S.V., Millard, A.C., Campagnola, P.J. & Mohler, W.A. Characterization of the 
myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys. 
J. 90, 693–703 (2006). 

12. LaComb, R., Nadiarnykh, O., Carey, S. & Campagnola, P.J. Quantitative SHG imaging 
and modeling of the optical clearing mechanism in striated muscle and tendon. J. 
Biomed. Opt. 13, 021108 (2008). 

13. X. Chen, O. Nadiarynkh, S. V. Plotnikov, and P. J. Campagnola, "Second harmonic 
1. generation microscopy for quantitative analysis of collagen fibrillar structure," Nat. 

Protoc.7, 654–69 (2012). 
14. Barsky, S.H., et al., Increased content of Type V Collagen in desmoplasia of human 

breast carcinoma. Am J Pathol, 1982. 108(3): p. 276-83. 



21 

 

 

15. Ricciardelli, C. and R.J. Rodgers, Extracellular matrix of ovarian tumors. Semin Reprod 
Med ,2006. 24(4): p. 270-82. 

16. Kirkpatrick ND, Brewer MA, Utzinger U. Endogenous optical biomarkers of ovarian 
cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomarkers Prev. 
2007;16(10):2048–57. 

17. Williams RM, Flesken-Nikitin A, Ellenson LH, et al. Strategies for high resolution 
imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy. Transl Oncol. 
2010;3(3):181–94 

18. Adur J, Pelegati VB, de Thomaz AA, et al. Optical biomarkers of serous and mucinous 
human ovarian tumor assessed with nonlinear optics microscopies. PLoS One. 
2012;7(10):e47007. 

19. Watson JM, Marion SL, Rice PF, et al. In vivo time-serial multi-modality optical imaging 
in a mouse model of ovarian tumorigenesis. Cancer Biol Ther. 2014;15(1):42–60. 

20. Adur J, Pelegati VB, de Thomaz AA, et al. Second harmonic generation micros- copy as 
a powerful diagnostic imaging modality for human ovarian cancer. J Biophotonics. 
2014;7(1–2):37–48. 

21. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen 
reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 
2006;4:38. 

22. Stein AM, Vader DA, Jawerth LM, Weitz DA, Sander LM. An algorithm for extracting 
the network geometry of three-dimensional collagen gels. J Microsc. 2008;232(3):463–75 



22 

 

 

23. Watson JM, Marion SL, Rice PF, et al. In vivo time-serial multi-modality optical imaging 
in a mouse model of ovarian tumorigenesis. Cancer Biol Ther. 2014;15(1):42–60. 

24. Watson JM, Rice PF, Marion SL, et al. Analysis of second-harmonic-generation 
microscopy in a mouse model of ovarian carcinoma. J Biomed Opt. 2012; 17(7):076002. 

25. Wen BL, Brewer MA, Nadiarnykh O, et al. Texture analysis applied to second harmonic 
generation image data for ovarian cancer classification. J Biomed Opt. 
0001;19(9):096007. doi:10.1117/1.JBO.19.9.096007 

26. Karissa Tilbury and others, ‘Second Harmonic Generation Microscopy Analysis of 
Extracellular Matrix Changes in Human Idiopathic Pulmonary Fibrosis.’, Journal of 
Biomedical Optics, 19.8 (2014), 086014 

27. Visar Ajeti and others, ‘Structural Changes in Mixed Col I/Col V Collagen Gels Probed 
by SHG Microscopy: Implications for Probing Stromal Alterations in Human Breast 
Cancer.’, Biomedical Optics Express, 2.8 (2011), 2307–16. 

28. Karissa Tilbury and others, ‘Differentiation of Col I and Col III Isoforms in Stromal 
Models of Ovarian Cancer by Analysis of Second Harmonic Generation Polarization and 
Emission Directionality.’, Biophysical Journal, 106.2 (2014), 354–65. 



23 

 

 

Chapter 2: Wavelet and PCA Texture Analysis Applied to Second 
Harmonic Generation Microscopy Analysis for Idiopathic 

Pulmonary Fibrosis 

2.1   Forward 

This chapter focuses on using nonlinear microscopy techniques to probe the morphological 
alterations of the extracellular matrix (ECM) of idiopathic pulmonary fibrosis (IPF) patients. 
Specficiallym MPE and SHG microscopy techniques, both the elastin and collagen signal are 
simultaneously collected.  Alterations of the ECM were assessed using a ratio of the 
elastin/collagen signal, intensity of the SHG signal, collagen coverage, and morphological 
alterations of the collagen fibers. The elastin/collagen ratios of IPF diseased tissues indicated that 
the tissues were less elastic than normal tissues, consistent with the known mechanical 
consequences of the disease. Morphological collagen fiber alterations were assessed using 
Wavelet transforms, specifically the Daubachies filter family. Using the principal components of 
the wavelet coefficients, a simple K-Nearest Neighbor classifier provided accurate >95% 
classification, far exceeding the classification of simpler metrics based on SHG intensity and 
collagen coverage. This chapter was adapted from the paper entitled Second Harmonic 
Generation microscopy analysis of ECM changes in human idiopathic pulmonary fibrosis in the 
Journal of Biomedical Optics.[1]    
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2.2 Introduction 

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with unknown 
pathological etiology.  It accounts for 34,000 deaths in the U.S. each year and the daily life of 
thousands more are affected by its symptoms including dyspnea, daily cough, limited exercise 
capacity, and fear of shortness of breath. Generally, the prognosis of IPF patients is poor in the 
aggregate with a median survival of 3-4 years post diagnosis, whereas a lower percentage of 
patients (10-15%) live 5 or more years, highlighting the heterogeneity of disease progression.[2, 
3]  Prognosis is poor due to both the lack of effective therapeutic options, and also due to limited 
knowledge of the disease pathology and underlying molecular and temporal changes associated 
with disease progression.  

 

Currently IPF is thought to be due to alveolar injury leading to focal activation and proliferation 
of fibroblasts accompanied with mild inflammation followed by the accumulation of new 
extracellular matrix (ECM) and its subsequent destruction.[4]  Areas of dense collagen 
accumulation (old scar) are juxtaposed with fibroblastic foci (new scar formation). Collagen I 
and other minor isoforms (type III, V) are the primary components of the new abnormal 
matrix,[4-7] where the balance changes during progression. For example, previous studies have 
found that collagen III is characteristic of early IPF, whereas collagen I dominates in late stage 
disease. [5, 8, 9] Changes in elastin also contribute to the ECM remodeling, where the proportion 
of collagen/elastin determines the elastic recoil of the lungs and airway patency.[10, 11] Elastin 
in normal alveolar septa is found as an organized epithelial layer of mature elastin fibers 
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providing the elasticity required for proper lung function, however in early IPF these fibers are 
degraded by MMP-9 and elastase that are released from the inflammatory cells and compromise 
lung patency. As IPF progresses and elastin is degraded, fibroblasts respond through synthesis of 
not only collagen but also elastin, however the new elastin is highly disordered and results in 
poor mechanical properties of the new lung matrix.[10, 11]  

 

High resolution CT (HRCT) scans can be used to diagnose IPF when a classic radiographic 
pattern is present,[12] however, in many cases the appearance may not be sufficient to establish a 
positive diagnosis.  In these cases, the gold-standard for IPF diagnosis still remains surgical 
biopsy followed by pathology.  However, this surgery procedure carries significant morbidity 
due to typical IPF patient characteristics (i.e. older patient population, and often with multiple 
medical ailments (diabetes, heart disease etc.)) along with risk of worsening of the disease in the 
post-operative period.[13, 14] Despite the diagnostic utility of HRCT, the resolution is not 
sufficient to probe the remodeling of collagen and elastin components of the matrix, further 
limiting its ability to understand the disease pathology.   

 

Non-linear microscopy techniques, including Second Harmonic Generation (SHG) and two-
photon excited fluorescence (TPEF) are attractive solutions to this problem as they are able to 
probe the collagen and elastin, respectively of the matrix in a label-free manner.  Here we posit 
that their combined use may contribute to enhanced diagnosis/prognosis of IPF and also further 
the understanding of the disease etiology and progression.  SHG directly probes the structure of 
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collagen and has been used to describe ECM alterations in several diseases such as cancers, 
fibroses, and connective tissue disorders. [15-28] Multiphoton microscopy of elastin has also 
been used for several applications, including imaging skin and cardiovascular tissues, often in 
conjunction with SHG and Coherent anti-Stokes Raman Scattering (CARS).[29-31]  The use of 
SHG and TPEF microscopy has not yet been used extensively for lung tissues and has been 
limited to mouse models.  For example, Abraham[32] and Schanne-Klein[33] both have used 
SHG and TPE to study the remodeling in the lung matrix in COPD and a bleomycin-mouse 
model of IPF respectively.  Both these studies were successful in differentiating diseased-
remodeled lungs from normal lungs using a pixel-based measure of collagen coverage and a 
voxel ratio of the collagen/elastin balance. However additional structural information is encoded 
within the collagen SHG signal that was not utilized. For example, the fiber pattern observed in 
the SHG images in normal and IPF tissues can be used as a machine learning classification 
system, affording the collagen fibrillar pattern to be used as a label-free biomarker of IPF. This is 
important as, surprisingly, the fibrotic changes in the IPF matrix are considerably less 
characterized than the cellular aspects.    

 

In this study, we take a step in this direction by using a combination of the Wavelet transform, 
principle component analysis (PCA), and K-Nearest-Neighbor algorithm (KNN) to more 
specifically probe the alterations of the collagen structure observed by SHG in IPF diseased 
tissues from normal lung ECM architecture. The wavelet/PCA/KNN classifier algorithm is able 
to accurately classify normal from IPF diseased lung tissues, potentially ushering in a non-
invasive clinical technique to probe the remodeling of the ECM in this disease. We also 
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characterized the change in elastin/collagen balance as an additional biomarker and find the 
optical method is consistent with mechanical consequences of IPF on breathing.  Understanding 
the remodeling process may enhance our ability to differentiate patients who will have rapid 
progression from those with slow progression and thus provide patients with a better prognosis.  

2.3 Methods 

2.3.1 Tissues 
All lung tissues were obtained from lung transplant recipients at UW hospital Madison WI under 
a current IRB approved protocol. The normal tissues were from pathologist-defined normal 
adjacent tissue from biopsies of patients without fibrotic lung disease. Tissues were fixed in 
formalin and sectioned using a Vibratome (Leica VT1200) to approximately 150 µm thickness. 
After sectioning the tissues were stored in PBS at 4 ̊C until they were imaged.  During imaging 
they were mounted on glass slides in PBS with #1.5 coverslips and Vaseline to seal the slide 
while imaging. A total of six normal and three IPF independent patient samples were prepared 
and imaged.  

2.3.2 Imaging Parameters 
The imaging system is described in Chapter 1, Figure 1.1.  All imaging (SHG and TPEF) was 
performed with an excitation wavelength of 890 nm with an average power of ~ 20mW at the 
specimen using a water immersion 40x 0.8 NA objective. Circular polarization at the focus was 
used to equally probe all fiber orientations. The SHG wavelength (445 nm) in the forward 
channel and the elastin autofluorescence signal in the epi-fluorescence channel using a 22 nm 
bandpass filter (583 nm; Semrock) were collected simultaneously.  
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2.3.3 Wavelet/PCA/KNN Analysis 
We use a Wavelet transform to obtain texture features with PCA and KNN analysis for our 
classification system.[34-36] The Wavelet transform decomposition provides both spatial and 
frequency domain information, which is intricately related to the scale and orientation of the 
texture we seek to characterize in the image data.  The wavelet function is placed on a specific 
location on the image to determine the correlation coefficients. At that location in the image, the 
shape of the wavelet function is anisotropically scaled in two dimensions, which then captures 
both the width and the orientation of the fibers.   This process is then translated to different 
regions in the image and the local Wavelet coefficients are calculated.  In terms of SHG images, 
these coefficients correspond to the edges of the collagen fibers at different scales and angles. A 
pictorial diagram of the process going from raw single optical sections to wavelet coefficients is 
shown in Figure 5.1. 
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Figure 5.1 Flowchart of wavelet/PCA/KNN algorithm, beginning with the raw 
image data, calculating Wavelet coefficients, and then performing classification 
using KNN analysis of the extracted PCAs.   DWT=discrete wavelet transform 

Since the study size of six IPF and three normal lungs is small, working with the full set of 
Wavelet coefficients (which characterize the input image in terms of the chosen Wavelet basis, 
here the 9 filter Daubachies basis) is problematic. In particular, the number of Wavelet 
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coefficients one chooses directly corresponds to the dimensionality of the statistical inference 
problem that needs to be solved in downstream analysis. If the dimensionality of this space is 
large, one invariably needs to provide the model a larger number of images to make inference 
well-posed.  The solution to this problem is to instead analyze the distribution of the Wavelet 
coefficients in terms of their projections on the principal components (PCs). This corresponds to 
the axes that explain the maximum variance, describing the full set of images with a low-
dimensional representation that is more amenable to traditional statistical analysis.  

 

Once these principal components are obtained (via the covariance matrix of the Wavelet 
coefficient distribution), we setup a machine learning task which constitutes two main steps. 
First, we use a set of “training” images where the class labels of the images are known to learn 
the pattern which best distinguishes one group from the other (in a space defined by treating the 
principal axes as the basis). Second, this pattern is used to classify test images whose class label 
is not known. For classification, we use a simple K-Nearest Neighbor classifier, a non-parametric 
method that works under the assumption that the class of each example is similar to the class of 
its neighbors in the space of PCA axes (see Figure 5.1).  In other words, for each test image, we 
consider the majority of votes of its neighbors which determines the class label of the test image.  

 

The images used in the analysis all came from three IPF and six normal patient samples that 
were available to us. Each patient sample had several imaging locations providing different 
optical stacks. Then 15 individual optical sections were selected from the middle 60% from each 
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optical stack. The middle regions were chosen to avoid any edge effects where the surfaces can 
be uneven, and also to avoid any effects of attenuation on the signal intensity.  As a result of the 
different numbers of normal and diseased patient samples, there were 270 IPF and 495 normal 
available optical sections for a total of 765 images.  For the wavelet/PCA/KNN analysis the 
sample size of the normal and IPF tissues were sized-matched, where 270 of the 495 normal 
images were randomly selected for a total of 540 images (270 IPF, 270 normal). The PCA 
dimensions resulting from the wavelet transform of 540 images were randomized and partitioned 
into 10 subgroups, each with 54 images for KNN classification and cross-validation. Ten KNN 
cross-validation trials were run, in which 9 groups served as the training set and 1 group was the 
testing set, each subgroup served as the test group once, as is common in cross-validation 
experiments.  

2.3 Results 

2.3.1 SHG Imaging of Normal and IPF Large Airway and Parenchymal Tissues 
The ECM structure of normal and IPF lung display significant visual morphology differences in 
both the large airway spaces and parenchymal areas (Figure 5.2). Panels 1(a) and 1(c) are 
representative SHG optical sections of the collagen architecture surrounding large airways of IPF 
and normal lungs, respectively. Panels 2(b) and 2(d) are representative optical sections of the 
collagen architecture of parenchymal areas of IPF and normal lungs respectively. By visual 
inspection, the collagen in the diseased lungs in both the large airway and parenchymal regions is 
packed into denser regions than in the normal tissue.  Images at 10x magnification were also 
acquired and were not visually different than smaller fields of view.   
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For translational purposes we need to develop objective quantitative methods. The simplest  
approach is to apply a threshold, and calculate the average pixel intensity and collagen area 
covered, as has been previously reported.[27] The threshold used to eliminate the background 
signal was determined by measuring the background signal in 15 different locations per image 
stack and finding the average plus the standard deviation. The applied level was specific to each 
optical section within the image stack was determined at each optical section to account for 
signal attenuation at increasing depths.  
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Figure 5.2 Panels are representative single SHG optical sections of a) large 
airway of an IPF lung; b) parenchymal region of IPF lung; c) large airway of 
normal lung and d) parenchymal region of normal lung. Field of view is 180 

µm. 

This approach showed that there were no statistical differences in SHG intensity between either 
normal and IPF parenchyma or large airway. The area covered, was statistically different 
between normal and IPF parenchyma (p=0.008), where the latter was higher, as might be 
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expected for fibrosis. However, there were no differences in coverage between normal and IPF 
large airway.  

2.3.2 Wavelet/PCA/KNN Classification of SHG Normal and IPF Tissues 
The largely insignificant results in the previous section demonstrate the need for more in depth 
quantitative image analysis and classification. The Wavelet transform uses the edges of the 
collagen fibers to provide quantification of the qualitative differences our eyes naturally detect 
providing a robust means independent of human visual biases of classifying tissues. The 
Wavelet/PCA/KNN classifier was developed for this purpose, and reliably differentiates the 
diseased from normal lung tissues.  In this analysis, both large airway and parenchymal regions 
of the lungs were combined for the classification.  Figure 5.3 shows plots of the receiver operator 
characteristic (ROC) curves (true positive vs false positive) for the classification of IPF and 
normal lung tissues for a few combinations of different PCA dimensions and KNN to 
demonstrate the dependence on the PCA and KNN parameters in classification of tissue. An area 
under the curve (AUC) of 1.0 is perfect classification, where 0.5 is a random outcome and 
provides no discrimination.  In practice, values >0.9 suggest excellent test accuracy in clinical 
applications. Table 5.1 lists the area under the ROC curve (AUROCC) for all the combinations of 
PCA dimensions and KNN applied to classify the images. 

 

The optimal classification was obtained using 20 PCA dimensions and 5 nearest neighbors with a 
resulting AUC of 0.998. The accuracy of classification is similar using 5 NN at all PCA 
dimensions. As the number of nearest neighbors is increased the accuracy of classification still 
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remains high even at low PCA dimension, but the accuracy increased as the PCA dimensions are 
increased noting that as more neighbors are included, the slight changes between the higher order 
PCA dimensions allow more accurate classification.  We found that all combinations of PCA 
dimensions and KNN provided excellent classification as the worst obtained accuracy was 94%.  
In general, it is desirable to use as few as possible PCA dimensions and nearest neighbors to 
avoid overfitting errors, and this is enabled here due to the significant change in collagen fibrillar 
morphology.  



36 

 

 

 

Figure 5.3 ROC curves for different combinations of PCA dimensions and 
KNN used to classify the normal and IPF tissues. a) Varying the number of 

PCA dimensions from 5-300 while constraining KNN=5. b) Varying the 
number of PCA dimensions from 5-300 while constraining KNN=25. c) 

Varying the number of KNN from 5-15 while constraining PCA dimensions to 
100. 

 
 

Table 5.1 Area under the receiver operator curves (ROC) for combinations of PCA 
dimensions and nearest neighbors. 
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 Number of nearest neighbors 
Number of 

PCA 
dimensions 5 10 15 20 25 

5 0.977 0.976 0.971 0.96 0.948 
10 0.997 0.986 0.986 0.964 0.962 
20 0.998 0.993 0.984 0.973 0.964 
40 0.998 0.991 0.978 0.966 0.953 

100 0.997 0.993 0.988 0.981 0.972 
200 0.998 0.994 0.987 0.98 0.969 
300 0.997 0.995 0.982 0.976 0.962 

 

2.3.3 Determination of Collagen/Elastin Balance in Normal and IPF Tissues 
Elastic fiber formation is also increased in IPF[11] and the elastin/collagen ratio may be 
impacted during disease progression.[10] Initially in IPF patients there is an increase in the 
collagen deposition but late stage IPF is described as having an increase presence of elastin. This 
balance is important in determining the mechanical properties of the lung matrix, such as ECM 
stiffness and associated elastic recoil forces. We specifically probed both the collagen (SHG) and 
elastin (TPEF), where these contrasts were simultaneously excited at the same wavelength (890 
nm) and spectrally isolated in separate channels. As the elastin contrast is linearly proportional to 
the concentration, and SHG is a merged effect of the square of the collagen concentration and its 
organization, it is not possible to determine their actual molecular ratios. The collected signal of 
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both the collagen and elastin signals is further confounded by the different scattering phenomena 
by imaging relatively thick tissue samples. However, we analyzed the volumetric ratio of elastin 
and collagen using the well-documented method: [EV-CV]/[EV+CV] where EV and CV 
represent elastin and collagen voxel volumes, respectively,[32, 37] where the limiting cases of 
this ratio of +1 and -1 correspond to all elastin or collagen in the pixel, respectively. 

Volume fraction estimates were completed on all imaging stacks taken from the parenchyma of 
three normal and four IPF patient samples. The TPEF spectrum of elastin is broad and overlaps 
with other autofluorescence signals (e.g. cellular); therefore segmentation was required to 
spatially isolate the elastin signal. The intensity of the autofluorescence cellular components was 
much weaker than that of the elastin, which allowing thresholding for successful spatial 
separation as seen in raw (Figure 5.4(a)) and segmented (Figure 5.4(b)) images for normal, and 
raw (Figure 5.4. 4(c)) and segmented (Figure 5.4(d)) images of IPF tissues. The threshold was 
set using the average signal intensity of the cellular components for each stack where all the 
pixels with grey levels above the thresholded value were summed to calculate the volumetric 
fractional coverage of elastin. Similarly, the background signal of the SHG images was 
eliminated allowing all the pixels with signal above the threshold to be summed to calculate the 
volumetric fractional coverage of collagen.  
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Figure 5.4 Panels 3(a) and 3(c) are representative individual TPEF optical sections of a 
normal and IPF diseased lung, respectively. The triangular arrows delineate cells, and the 

arrow indicates mucous which both are removed via thresholding techniques. The 
corresponding resulting segmented elastin images are shown in panels 3(b) and 3(d). 

 
Representative background corrected two color images of the SHG (green) and elastin (blue) 
TPEF for normal and IPF tissues are shown in Figure 5.5(a) and Figure 5.5(b), respectively, 
where the organization of the collagen and the elastin are both dramatically different in these 
cases.  Specifically, the elastin in the normal tissues is organized within the confines of the 
collagen, whereas in the diseased tissue the elastin is disorganized and not exclusively 
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intermingled with the collagen fibers. The elastin/collagen index derived from all parenchymal 
imaging stacks in normal and IPF tissues is shown in Figure 5.5(c), where the resulting ratios 
were -0.48 and -0.63, respectively, where these values were statistically significant at the p=0.07 
level using a student’s paired t-test.  The normal tissues were more elastic relative to collagen 
than the diseased tissues indicative of an altered composition of the matrix. This finding 
determined by optical microscopy is consistent with known mechanical consequences of the 
disease. We note that there was no discrimination of large airways through this method.  

 

Figure 5.5 Single optical sections of a) normal and b) IPF parenchyma, where 
blue and green is the TPE autofluorescence from elastin and SHG from 

collagen, respectively.  Field of view is 180µm. c) Averaged collagen/elastin 
ratio [EV-CV]/[EV+CV] of normal (-0.48) and IPF (-0.63) parenchymal tissues 

where limiting values of +/- 1 are indicative of all elastin and all collagen 
respectively. Normal and IPF parenchyma are statistically different (p=0.07). 
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2.4 Discussion  
The operative pathways in IPF and also the concomitant changes in the ECM are poorly 
understood. However the combination of SHG and TPEF microscopy affords label-free, sub-
micron resolution probes of the ECM changes. Specifically, this approach may provide insights 
into the disease pathology and potentially guide the development of more effective therapeutic 
treatments. Moreover, the methods could ultimately be integrated into a scanning 
microendoscope.[38] 

The application of standard machine learning techniques commonly used in computer vision has 
great potential as image classification algorithms of optical microscopy data. Simple image 
analysis techniques commonly used in optical microscopy, such as FFT, are highly dependent on 
having well-aligned structures within the imaging field of view which is rather infrequent in 
most biological tissues. [39-42]  Moreover, FFTs provide a global, rather than local analysis. As 
a result, they have found their largest use in analyzing SHG images of highly organized 
structures like tendon. Other transforms, such as curvelets have the capability of local analysis 
and alleviate limitations of FFT. For example, Keely and coworkers successfully utilized a 
curvelet transform, a variant of a wavelet transform, in the evaluation of the collagen fiber 
alignment around tumor boundaries in various stages of breast cancer. [43] However, for the 
current case, we are interested in analyzing the overall collagen in the image where there is no 
specific frame of reference such as a tumor boundary.  
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Texture analyses are superior in this regard, as they locally probe slowly statistically, repetitive 
features that are present within the image. The local analysis using the integrated 
Wavelets/PCA/KNN approach affords the development of a tailored classification scheme based 
on recurring patterns in known images (although the PCAs do not correspond to visually 
identifiable features) which then can be used classify unknown images. This approach is 
powerful for the classification of overall sparse, but locally dense collagen fibers found in both 
normal and IPF diseased lung tissues. We could consider other texture features as well. For 
example, a collagen-specific morphological filter could have been designed, but this approach is 
time-intensive and is not flexible in its application, i.e. it must be customized by trial and error 
for each application. For example, we have used an implementation of texture analysis using 
“textons”[44] in other work on ovarian cancer.[45] This requires making an extensive library of 
common features. Still, the textons also do not correlate to specific features. In general, we 
realize that texture approaches have an inherent abstraction, as they look at slowly varying 
statistical patterns, rather than tangible features such as fiber length and alignment. The 
advantage of this approach is that Wavelets are general signal processing tools and are provided 
in the Matlab toolbox, where a great number are standard and can be tested to get the optimal 
results. 

 

While the patient numbers here were low, the classification system had high accuracy (94-99%), 
based on the area under the computed ROC curves. In contrast, simpler metrics of intensity and 
area covered provided insufficient discrimination. The robustness of this classification algorithm 
is preserved across all combinations of PCA dimensions and K-Nearest Neighbors and is a major 
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strength of the approach. In contrast, simpler techniques such as the gray level co-occurrence 
matrix (GLCM) classification[46] uses only brightness of adjacent pixels rather than patterns and 
are not always applicable. Moreover, brightness measurements can be misleading due to 
scattering, change in concentration, and other unknown factors.  

2.5 Conclusions 
Quantifying and classifying images of biological tissues using optical microscopy remains 

challenging. Therefore development of standard computer vision techniques such as the current 
work for nonlinear optical microscopy image classification is highly beneficial to the community 
and will enhance our own research findings. Specifically in this particular study, it has allowed 
excellent classification accuracy (>94%) of normal and IPF diseased tissues, providing the initial 
step toward development of additional studies to probe the disease pathology. Additionally, 
combining the pattern analysis with the collagen/elastin balance yields a more complete picture 
of the alterations in the ECM in IPF. Given the robustness of this classification tool, it may be 
feasible in future studies with larger patient numbers to separate data from large airway and 
parenchymal areas to determine if classification is possible based on the remodeling of large 
airways alone potentially allowing for less-invasive imaging studies and diagnostic tools.  

2.6  References 
1. Tilbury, K., et al., Second harmonic generation microscopy analysis of extracellular 

matrix changes in human idiopathic pulmonary fibrosis. J Biomed Opt, 2014. 19(8): p. 
086014. 



44 

 

 

2. Fernandez Perez, E.R., et al., Incidence, prevalence, and clinical course of idiopathic 
pulmonary fibrosis: a population-based study. Chest, 2010. 137(1): p. 129-37. 

3. Martinez, F.J., et al., The clinical course of patients with idiopathic pulmonary fibrosis. 
Ann Intern Med, 2005. 142(12 Pt 1): p. 963-7. 

4. Selman, M., et al., Concentration, biosynthesis and degradation of collagen in idiopathic 
pulmonary fibrosis. Thorax, 1986. 41(5): p. 355-9. 

5. Raghu, G., et al., Extracellular matrix in normal and fibrotic human lungs. Am Rev 
Respir Dis, 1985. 131(2): p. 281-9. 

6. Kirk, J.M., et al., Biochemical evidence for an increased and progressive deposition of 
collagen in lungs of patients with pulmonary fibrosis. Clin Sci (Lond), 1986. 70(1): p. 39-
45. 

7. Fulmer, J.D., et al., Collagen concentration and rates of synthesis in idiopathic pulmonary 
fibrosis. Am Rev Respir Dis, 1980. 122(2): p. 289-301. 

8. Bateman, E.D., et al., Cryptogenic fibrosing alveolitis: prediction of fibrogenic activity 
from immunohistochemical studies of collagen types in lung biopsy specimens. Thorax, 
1983. 38(2): p. 93-101. 

9. Kirk, J.M., et al., Quantitation of types I and III collagen in biopsy lung samples from 
patients with cryptogenic fibrosing alveolitis. Coll Relat Res, 1984. 4(3): p. 169-82. 

10. Enomoto, N., et al., Amount of elastic fibers predicts prognosis of idiopathic pulmonary 
fibrosis. Respir Med, 2013. 107(10): p. 1608-16. 

11. Rozin, G.F., et al., Collagen and elastic system in the remodelling process of major types 
of idiopathic interstitial pneumonias (IIP). Histopathology, 2005. 46(4): p. 413-21. 



45 

 

 

12. Raghu, G., et al., An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary 
fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care 
Med, 2011. 183(6): p. 788-824. 

13. Utz, J.P., et al., High short-term mortality following lung biopsy for usual interstitial 
pneumonia. Eur Respir J, 2001. 17(2): p. 175-9. 

14. Lettieri, C.J., et al., Outcomes and safety of surgical lung biopsy for interstitial lung 
disease. Chest, 2005. 127(5): p. 1600-5. 

15. Campagnola, P., Second harmonic generation imaging microscopy: applications to 
diseases diagnostics. Anal Chem, 2011. 83(9): p. 3224-31. 

16. Nadiarnykh, O., et al., Alterations of the extracellular matrix in ovarian cancer studied by 
Second Harmonic Generation imaging microscopy. BMC Cancer, 2010. 10: p. 94. 

17. Lacomb, R., O. Nadiarnykh, and P.J. Campagnola, Quantitative SHG imaging of the 
diseased state Osteogenesis Imperfecta: Experiment and Simulation. Biophys J, 2008. 94: 
p. 4504-4514. 

18. Provenzano, P.P., et al., Collagen reorganization at the tumor-stromal interface facilitates 
local invasion. BMC Med, 2006. 4: p. 38. 

19. Kapinas, K., et al., Bone matrix osteonectin limits prostate cancer cell growth and 
survival. Matrix Biol, 2012. 31(5): p. 299-307. 

20. Campagnola, P.J. and C.Y. Dong, Second harmonic generation microscopy: principles 
and applications to disease diagnosis. Lasers and Photonics Reviews, 2011. 5: p. 13-26. 

21. Cicchi, R., et al., Basal cell carcinoma imaging and characterization by multiple 
nonlinear microscopy techniques. Biophysical Journal, 2007: p. 157a-157a. 



46 

 

 

22. Brown, E.B., et al., In vivo measurement of gene expression, angiogenesis and 
physiological function in tumors using multiphoton laser scanning microscopy. Nat Med, 
2001. 7(7): p. 864-8. 

23. Han, X., et al., Second harmonic properties of tumor collagen: determining the structural 
relationship between reactive stroma and healthy stroma. Optics Express, 2008. 16(3): p. 
1846-1859. 

24. Chen, S.Y., et al., In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher 
Harmonic Generation Microscopy. Ieee Journal of Selected Topics in Quantum 
Electronics, 2010. 16(3): p. 478-492. 

25. Lin, S.J., et al., Discrimination of basal cell carcinoma from normal dermal stroma by 
quantitative multiphoton imaging. Opt Lett, 2006. 31(18): p. 2756-8. 

26. Adur, J., et al., Recognition of serous ovarian tumors in human samples by multimodal 
nonlinear optical microscopy. J Biomed Opt, 2011. 16(9): p. 096017. 

27. Strupler, M., et al., Second harmonic imaging and scoring of collagen in fibrotic tissues. 
Optics Express, 2007. 15(7): p. 4054-4065. 

28. Sun, W., et al., Nonlinear optical microscopy: use of second harmonic generation and 
two-photon microscopy for automated quantitative liver fibrosis studies. J Biomed Opt, 
2008. 13(6): p. 064010. 

29. Kwon, G.P., et al., Contribution of macromolecular structure to the retention of low-
density lipoprotein at arterial branch points. Circulation, 2008. 117(22): p. 2919-27. 

30. Le, T.T., et al., Label-free molecular imaging of atherosclerotic lesions using multimodal 
nonlinear optical microscopy. Journal of Biomedical Optics, 2007. 12(5): p. -. 



47 

 

 

31. Lin, S.J., et al., Evaluating cutaneous photoaging by use of multiphoton fluorescence and 
second-harmonic generation microscopy. Optics Letters, 2005. 30(17): p. 2275-2277. 

32. Abraham, T. and J. Hogg, Extracellular matrix remodeling of lung alveolar walls in three 
dimensional space identified using second harmonic generation and multiphoton 
excitation fluorescence. J Struct Biol, 2010. 171(2): p. 189-96. 

33. Pena, A.M., et al., Three-dimensional investigation and scoring of extracellular matrix 
remodeling during lung fibrosis using multiphoton microscopy. Microsc Res Tech, 2007. 
70(2): p. 162-70. 

34. Unser, M., Texture Classification and Segmentation Using Wavelet Frames. Ieee 
Transactions on Image Processing, 1995. 4(11): p. 1549-1560. 

35. Chang, T. and C.C.J. Kuo, Texture analysis and classification with tree-structured 
wavelet transform. Ieee Transactions on Image Processing, 1993. 2(4): p. 429-441. 

36. Kim, W.H., et al., Multi-resolutional shape features via non-Euclidean wavelets: 
Applications to statistical analysis of cortical thickness. Neuroimage, 2014. 93: p. 107-
123. 

37. Koehler, M.J., et al., Morphological skin ageing criteria by multiphoton laser scanning 
tomography: non-invasive in vivo scoring of the dermal fibre network. Exp Dermatol, 
2008. 17(6): p. 519-23. 

38. Wu, Y.C., et al., Scanning all-fiber-optic endomicroscopy system for 3D nonlinear 
optical imaging of biological tissues. Optics Express, 2009. 17(10): p. 7907-7915. 

39. Cicchi, R., et al., Scoring of collagen organization in healthy and diseased human dermis 
by multiphoton microscopy. J Biophotonics, 2010. 3(1-2): p. 34-43. 



48 

 

 

40. Adur, J., et al., Second harmonic generation microscopy as a powerful diagnostic 
imaging modality for human ovarian cancer. J Biophotonics, 2014. 7(1-2): p. 37-48. 

41. Ambekar, R., et al., Quantifying collagen structure in breast biopsies using second-
harmonic generation imaging. Biomed Opt Express, 2012. 3(9): p. 2021-35. 

42. Fung, D.T., et al., Second harmonic generation imaging and Fourier transform spectral 
analysis reveal damage in fatigue-loaded tendons. Ann Biomed Eng, 2010. 38(5): p. 
1741-51. 

43. Conklin, M.W., et al., Aligned collagen is a prognostic signature for survival in human 
breast carcinoma. Am J Pathol, 2011. 178(3): p. 1221-32. 

44. Varma, M. and A. Zisserman, Unifying statistical texture classification frameworks. 
Image and Vision Computing, 2004. 22(14): p. 1175-1183. 

45. Wen, B.L., Texture analysis applied to second harmonic generation image data for 
ovarian cancer classification. J. Biomed Opt, 2014. 19(9). 

46. Zheng, W., et al., Diagnostic value of nonlinear optical signals from collagen matrix in 
the detection of epithelial precancer. Optics Letters, 2011. 36(18): p. 3620-3622. 

 

 

 

 

 

 



49 

 

 

Chapter 3 Texture Analysis Applied to Second Harmonic 
Generation Image Data for Ovarian Cancer Classification 
 

3.1 Forward: 

Remodeling of the extracellular matrix (ECM) has been implicated in ovarian cancer. In this 
chapter we implement a form of texture analysis to delineate the collagen fibrillar morphology 
observed in second harmonic generation microscopy images of human normal and high grade 
malignant ovarian tissues to quantitate the ECM remodeling,. In the learning stage, a dictionary 
of “textons”—frequently occurring texture features that are identified by measuring the image 
response to a filter bank of various shapes, sizes, and orientations—is created. By calculating a 
representative model based on the texton distribution for each tissue type using a training set of 
respective second harmonic generation images, we then perform classification between images 
of normal and high grade malignant ovarian tissues. By optimizing the number of textons and 
nearest neighbors, we achieved classification accuracy up to 97% based on the area under 
receiver operating characteristic curves (true positives versus false positives). The local analysis 
algorithm is a more general method to probe rapidly changing fibrillar morphologies than global 
analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can 
be highly tailored to specific applications (e.g., different disease states) by creating customized 
libraries based on common image features. 
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3.2 Introduction 

According to the American Cancer Society, in 2013 about 22,000 new cases of ovarian cancer 
were diagnosed and about 15,000 women died because of this disease. [1] The survival rate for 
ovarian cancer has not significantly improved over the last two decades. With current screening 
and diagnostic abilities, about 70% of women who are detected with ovarian cancer are 
diagnosed in later stages, [2, 3] leading to a low 5-year survival rate of about 25%. The major 
problem of current diagnostic methods is the lack of reliable screening/imaging tools to detect 
early malignancies in the ovary. CA125 is currently the best serum biomarker, however, the 
sensitivity/specificity are both low. [4] For example, about 20% of women with ovarian cancer 
do not have elevated CA125. [2] The achievable resolution of clinical modalities (computed 
tomography, positron emission tomography, ultrasound, magnetic resonance imaging) is limited 
(only ∼0.5 to 3 mm) and is not sufficient for imaging microscopic disease. This is especially 
important for ovarian cancer as meta- stasis can occur during early stages of tumor growth. [3]  

 

Because of these limitations in detection and the high mortality rate, there is a compelling need 
for new technologies that can image ovarian cancers with better resolution and specificity and 
improve the accuracy of diagnosis and prognosis. Although traditional pathology focuses on 
cellular architecture, many recent studies have demonstrated that there is a close correlation 
between cancer initiation/progression and remodeling of the extracellular matrix (ECM) in the 
tumor microenvironment (TME). [5–9] For example, changes in collagen composition and 
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morphology in the ECM have been documented for many cancers, including those of the ovary, 
breast, and colon. [7, 10–12] It would then be advantageous to further develop collagen specific 
microscopic imaging modalities such as second harmonic generation (SHG) imaging 
microscopy13 for this purpose. 

 

SHG microscopy has already emerged as a highly sensitive/ specific probe of collagen 
architecture changes in several dis- eases, including many cancers,10,11,14–18 connective tissue 
disorders, [19, 20] and fibroses. [21, 22] All these diseases are characterized by changes in 
alterations of collagen density, fibrillar organization, collagen isoform distribution, and 
combinations thereof. We previously utilized three-dimensional (3-D) imaging in combination 
with the measurement of bulk optical properties and Monte Carlo simulations to differentiate 
normal ovarian stroma and high grade serous carcinomas. [10] Collectively, the results indicated 
an increase in organization in the collagen organization at both the fibril (subresolution) and fiber 
levels of assembly. 
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Fig. 3.1 Representative SHG single-optical sections of malignant (a) and normal (b) human 

ovarian tissues. Scale bar = 50 μm. 
 

Although successful in elucidating detailed structural differences, the method is labor intensive 
and requires several independent measurements. It would be desirable to have a quantitative, 
objective measurement that can classify the state (or class) of tissues and is easy to perform. A 
measure based on fibrillar architecture, i.e., fiber size and organization, is attractive in this regard 
in general, and particularly for ovarian cancer. This is because a profound remodeling occurs in 
the stroma. [10, 18] As an example, single-SHG optical sections from ex vivo normal stroma (b) 
and high grade serous cancer (a) tissues are shown in Fig. 3.1, where these are characterized by 
shorter mesh-like and longer curvy fibers, respectively. By inspection, we noted that these 
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respective overall patterns are seen throughout tissues of each type and also between patients in 
each group. [10] This similarity suggests the development of a reliable image analysis approach 
toward a system for automated classification of these images. Still, classification is challenging 
because there are large stochastic variations with no highly defined fiber organization within the 
image. 

 

Several image processing techniques have been employed for quantitative analysis of the 
collagen morphology observed in SHG microscopy. The simplest approach is to use 
segmentation methods. For example, Schanne–Klein used a thresholding process of image 
segmentation of collagen fibers for scoring fibrosis in a mouse model of kidney disease. [23] 
Similarly, Tai et al. [24] applied Otsu’s segmentation to score liver fibrosis in both mouse and 
human tissues. However, segmentation is most sensitive to brightness and the collagen area 
covered in the image and is not as sensitive to fibrillar alignment and organization, which are 
often more important markers of diseased states. To help alleviate this limitation, several 
researchers have explored the use of other signal processing concepts. For example, FFT analysis 
has been used in several studies for analysis of SHG images. [25–28] Although this is simple to 
implement and has been successful in some cases, it is a global approach, analyzing the 
frequency components that are present in the entire image. However, perceptually the 
morphology that often discriminates one type of tissue from another is composed of 
predominately rapidly changing “local” features. Other transforms, such as wavelets and their 
variants, are more powerful for local analysis of the fibrillar morphology within such images. For 
example, we previously used wavelets to examine the length of sarcomeres in normal and 
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optically cleared skeletal muscle and calculated the entropy as a measure of organization.[29] 
More recently, we used two-dimensional (2-D) wavelet transforms to delineate normal lung 
tissue from that diseased with idiopathic pulmonary fibroses. [30] In a different approach, Keely 
et al. used curvelets, which are highly sensitive to edges, [31] to delineate tumor boundaries in 
different stages of breast cancer. [32] Although more applicable than FFT these transforms, in 
their simplest implementation, still lack the ability to analyze more random patterns of collagen 
that are representative of the stroma of most ECM tissues (nor- mal and diseased). For example, 
2-D wavelet transforms were not successful in accurately classifying the ovarian tissues studied 
here (unpublished results).  

 

To solve this problem for ovarian cancer, we utilized a form of texture analysis of SHG images 
as a classification tool. In computer vision, texture is an image property based on repetitive 
patterns with slowly varying local statistical propertues. Texture analysis has the strong 
advantage of being insensitive to intensity and not requiring long range orientation (e.g., tens to 
hundreds of microns). Rather, it probes the environment around small individual regions in the 
image, and using computer vision, extracts common features that are present. Our 
implementation applies the method developed by Varma and Zisserman. [33, 34] Specifically, 
we focused on collagen fiber distribution of the image by convolving filter patches in different 
directions and scales. Instead of extracting visually apparent features like angular distribution, 
fiber length, or area covered, as has been more commonly done, we trained on large sets of 
cancer and normal SHG images by clustering the filter responses within small groups of pixels 
using statistical methods to find common features among each tissue type. This is an important 
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distinction, as in real tissues it is often difficult to discretize all of the individual fibers, which 
leads to a loss of information. 

 

Materials and Methods 

We conducted an institutional review board-approved study of ex vivo ovarian tissues from 5 
normal patients and 5 patients with high-grade serous ovarian cancer from the University of 
Connecticut Health Center. The diagnoses for all tissues were confirmed by pathological analysis 
of biopsied tissues. Tissues were fixed in 4% formalin for 24 h, transferred to phosphate buffered 
saline, and sliced into 100 to 200-μm-thick sections with a vibrating microtome ( Vibratome, 
Buffalo Grove, Illinois). 

 

Tissues were imaged by the SHG microscopy as previously described. [13] The excitation used 
890-nm, 100-fs pulses from a commercial Ti:sapphire oscillator (Mira, Coherent, Santa Clara, 
California). The SHG laser scanning microscope was a modified Fluoview300 (Olympus, Center 
Valley, Pennsylvania) mounted on a fixed stage upright stand (Olympus BX61). All imaging was 
performed with a 40× (0.8 NA) water immersion objective lens with an average power of 20 to 
50mWat the focal plane. To excite all orientations equally, circularly polarized light was used 
throughout. This was achieved at the focal plane using the combination of a quarter wave plate 
and a half wave plate as a compensator. [13] The SHG was collected in the forward direction by 
a 0.9-NA condenser, isolated with a 20-nm band- width 445-nm bandpass filter (Semrock, 
Rochester, New York) and detected by a single photon counting photomultiplier tube module 
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(Hamamatsu 7421, Hamamatsu City, Japan). Images were acquired at three times zoom with a 
field-of-view of 170 μm by 170 μm and a field size of 512 by 512 pixels to sample. 

 

3.3 Texture Analysis Method 

3.3.1 Training Images Selection Machine 

Machine learning is required for the texture analysis method to obtain a statistical distribution of 
repetitive collagen structure patterns. This is acquired from training images of both normal and 
cancer tissues. For the training image set, we randomly chose single-optical sections that had at 
least 60% collagen coverage from each image stack. Altogether, there were 1100 selected 
training images (550 images each from cancer and normal tissues).We normalized the overall 
image intensity of each optical section to the full 12-bit dynamic range to compensate for any 
artifacts arising from depth dependent attenuation introduced by scattering within the tissue slice. 
This also compensates for the increased brightness of the SHG from the tumor specimens 
relative to the normal tissues. [10] 
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Fig. 3.2 Demonstration of the learning stage, (a) the 38 element MR8 filter bank, (b) 

representative training images (here cancer); and (c) K-means clustering center-texton 
demonstration in three dimensional filter response space; and (d) histogram models generated 

from the training images using 40 texton bases. 
 

3.3.2 Filter Selection and Image Model Construction 

In the learning stage, we convolved all training images with the rotationally invariant filter bank 
MR8 [elements are shown in Fig. 3.2(a)]. This bank has 38 filters and consists of Gaussian and a 
Laplacian of Gaussian filters, which are rotationally symmetric. It also includes edge filters and 
bar filters at 3 different scales. Both the edge and bar filters are oriented at 6 orientations at each 
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scale. Measuring the maximum response only across these orientations reduces the number of 
responses from 38 (6 orientations at 3 scales for 2 oriented filters, plus 2 isotropic) to 8 (3 scales 
for 2 filters, plus 2 isotropic). This provides rotation invariant behavior. [34] This is important as 
we do not know the orientation of the tumor relative to its point of removal and thus have no 
fiducial markers for placement on the microscope. Each pixel then generates an eight-
dimensional vector response after convolution with this subset of the MR8 filter bank. We 
randomly chose 10,000 pixel responses from each training image [see e.g., Fig. 3.2(b)] to keep 
the computational cost feasible. These were analyzed in small “patches,” with each composed of 
49 × 49 pixels. The frequency of occurrence of individual patterns in an image (here histogram 
of textons) will then provide a so-called topic model for the image. But since the predominant 
filter responses (i.e., textons) are not known a priori, the standard approach in machine learning 
is to group the responses via a K-means clustering [Fig. 3.2(c)]. These were then used to build an 
overall texton dictionary. Finally, we built the classification model using the texton distribution 
histogram obtained for each training image [as rep- resented in Fig. 3.2(d)]. Through this 
process, we identified representative structural features in normal and malignant tissues based on 
prelearned models of the respective SHG images.  

 

3.3.3 Classification 

In the classification stage, we built a model for testing images [Figs. 3(c) and 3(d)] based on the 
statistical distribution of the histogram of the texton distribution for each, as was performed for 
the training set [Figs. 3(a) and 3(b)]. Then, we adopted a χ2 nearest neighbor (NN) classification 
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to determine the identity of the testing image based on the image model. We applied different 
thresholds for both the cancer and normal images based on the Gaussian weighted [exp(-d2 /2 σ 

2)] distribution of NN distances for each case, where σ is the width of the distribution and d is the 
χ2 distance between training and testing images. We determined ơ from the fitted Gaussian 
distribution of all NN distances from all the training images, which afforded the classification of 
each test image by comparison with the most similar training images around it. We then used 
standard 10-fold cross validation, where we randomly divided the total number of images (550 
cancers and 550 normal) into 10 groups (each group then had 110 images). In the cross 
validation procedure, each group serves as the test set once whereas the remaining nine are the 
training set. This is repeated for each group, i.e., 10 times in all. The summary scores reflect the 
mean over all folds. In this calculation, we held out a group of images to optimize the number of 
NNs and achieved the highest accuracy by applying NN = 10. 
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Fig. 3.3 Demonstration of the classification stage (a) representative training images; (b) the 
resulting histogram model generated from K-means clustering of the training images; (c) 

representative testing image; and (d) the histogram model generated from testing images; (e) 
demonstration of the χ2 nearest neighbor (NN) classification using two textons (x and y axes), 

where we chose six NNs around the testing images presented as yellow circles, where the normal 
and cancer training images are presented as blue squares and red triangles, respectively. 

 

We diagram the classification scheme in Fig. 3(e), where purely for demonstration purposes, we 
assumed that 2 textons were selected to construct the image model. In the demonstration, the 
yellow circle represents the testing image models; the blue squares and red triangles are the 
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normal and cancer image models, respectively; the x and y axes are the count numbers of each of 
the 2 textons in the model. The distances of different image models are evaluated by the χ2 
distance, which reflects the similarity of their respective statistical distributions, i.e., images that 
are more similar to each other will have a smaller χ2 distance. In this particular example, we 
chose six nearest training images away from the testing image. Then, the classification of the 
testing image is decided by the sum of all six weights around it. 

 

3.4 Results of Classification Accuracy 

We use the receiver operating characteristic (ROC) curve formalism [35, 36] of true positives 
versus false positives (or sensitivity versus 1-specificity) to determine the accuracy of the 
classification, where the accuracy is defined as the area under the ROC curve (AUROC).We 
applied the optimized NN = 10 from held out samples (determined in Sec. 3.3), and 
systematically changed the texton number to best represent the features in each tissue type. 
Figure 3.4 shows the resulting ROC curves that were generated using a range of 5 to 400 textons. 
The dis- crimination threshold is crucial for ROC curve generation, and this was chosen by 
summing up the weighting of the 10 NNs around the testing images. Using 40 textons and NN ¼ 
10,we achieved a high accuracy with AUROC = 0.974.We found that if we chose 100 textons, 
the accuracy of classification decreased slightly to 0.963, since the frequency for each base is 
then so low that there were insufficient counts for a sufficient statistical distribution to construct 
the imaging model. As a more extreme example of this result, 400 textons resulted in yet a 
significantly worse discrimination (0.805). On the other hand, when the texton number is lower 
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than 20, the accuracy of classification also decreases due to the lack of features differentiating 
normal and cancer tissues. For example, 5 textons yielded a significantly lower AUROC (0.919) 
than the optimal value of 40. 

 
Fig. 3.4 Receiver operating characteristic curves for classification with five textons (pink 

pentagons) with 91.9% accuracy; 20 textons (turquoise diamonds) with 96.4% accuracy; 40 
textons (black squares) with 97.4% accuracy;100 textons (red circles) with 96.6% accuracy; and 

400 textons (green stars) with 80.5% accuracy. 
 

3.5 Discussion 

The current image analysis methods utilized in SHG microscopy (summarized in Sec. 1) all 
probe the fiber organization either globally or relative to specific features, and are not completely 
general in their applicability. Texture based methods may be superior in this regard. The simplest 
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form of texture, the gray level co-occurrence matrix, compares the brightness of adjacent pixels 
and has been used for SHG image analysis. [25, 37] However, it is also not a general approach as 
it is not as sensitive to morphology. As an alternate and more versatile form of texture analysis, 
Wang et al. [38] applied spectral moments to quantify intervertebral disk damage in a mouse 
model and successfully developed a linear discriminate classifier to differentiate loaded and 
sham-loaded tissues. This approach determines the 2-D frequency response and is independent of 
scale and orientation. As a result, this approach is a fairly general approach used for image 
classification. Textons, on the other hand, may have some advantages as spectral moments may 
be “too general;” for instance, in our application, we expect that having a dependence on 
orientation (as could be probed using the full set of filters in the MR8 filter bank) may actually 
result in an additional discriminatory capability of the statistical model. For example, one may 
want to be able to record the orientation of the maxi- mum response when this is relevant, as 
there is some clear alignment of fibers in the malignant tissues. This will yield higher order co-
occurrence statistics on orientation dependent “topics” within the model and such information 
may be critical in dis- criminating textures that may seem similar in an orientation- independent 
spectral moment analysis. Further, topic models based on textons are known to yield better 
discrimination (at least for photographic images of naturally occurring objects) [34] than those 
based on the formulations where the algorithm trans- forms the data to a 2-D frequency space, 
where the latter loses potentially meaningful orientation information. 

 

The texture analysis algorithm here successfully recognized the repetitive collagen fiber patterns 
by convolution with a standard filter bank composed of many shapes, sizes, and orientation. As a 
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result, this approach also affords the classification and comparison of essentially any 
morphology present in image data, as long as unique features can be assigned to each class. This 
criterion was satisfied with normal and high grade malignant ovarian tissues. By optimizing the 
number of textons and NNs we obtained an excellent classification accuracy of ∼97%. We stress 
that the tumors were all high grade serous malignancies and were not representative of all 
ovarian cancer types. Still, excellent discrimination was achieved with a small sample set 
because of the large change in morphology. We note that our previous analysis using 3-D SHG 
imaging, measurement of optical properties, and Monte Carlo simulations delineated normal 
stroma and high grade malignancies using a small sample size.[10] Although that study provided 
insight into sub-resolution structural changes in the latter, the method requires many 
measurements and simulations. The routine developed here can now be readily implemented on 
the SHG images of new tissues in a straightforward manner, as the dictionaries from training sets 
are already created. Although the result of the feature extraction is sensitive to the original filter 
selection, it is straightforward to change the filter set until common features are located which 
can differentiate the tissues being compared. The drawback for this method is the large number 
of images required for the algorithm to extract the common features in each class. It is also not 
possible to directly visually associate textons with specific visual features such as fiber length 
and alignment. Still, our approach of comparison to a filter bank affords the specific tailoring of 
the feature selection to the desired application. For example, even using limited single-optical 
sections as inputs, the texture analysis employed here showed great potential for ovarian cancer 
classification. 
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3.6 Summary 

We applied a texture analysis algorithm to evaluate the ECM structural changes in normal 
ovarian stroma and high grade ovarian serous cancer observed in SHG images. By optimizing 
the number of textons and NNs, we achieved high accuracy (97%) for classifying high grade 
cancer tissue and normal ovarian tissue using an ROC curve analysis. The classification 
algorithm is a relatively general method based on pre-learned SHG images and is well suited for 
analysis of rapidly changing fibrillar features typical of most tissues. The application here was 
for the discrete case of normal and high grade serous malignancies, but the approach could be 
extended to other cases such as low grade and borderline tumors. 
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Chapter 4: 3-D Texture Analysis For Classification of Second 
Harmonic Generation Images of Human Ovarian Cancer 

4.1 Forward  

To follow up with the texture analysis method in chapter 3 we further developed 3D texture 
analysis algorithm to quantify these alterations remodeling of the extracellular matrix (ECM), 
which has been implicated in ovarian cancer specifically in terms of collagen architecture. In this 
chapter we implemented the technique to delineate the fibrillar morphology observed in 3-D 
second harmonic generation (SHG) microscopy image stacks of normal (1) and high risk (2) 
ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and 
endometrioid tumors (6).  
 
We designed a set of 3-D filters which extract textural features in the 3-D image sets to build (or 
learn) statistical models of each tissue class.  By applying k-nearest neighbor classification using 
these learned models, we achieved 83-91% accuracies for the six classes. The 3-D method 
outperformed the analogous 2-D classification on the same tissues. This classification based on 
ECM structural changes will complement conventional classification based on genetic profiles 
and can serve as an additional biomarker. The texture analysis algorithm is quite general, as it 
does not rely on single morphological metrics such as fiber alignment, length, width, etc. but 
instead relies on combined convolution with a customizable basis. Custom filters could then be 
designed for other cancers and other pathologies which involve collagen alterations. 
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4.2 Introduction 

Ovarian cancer accounts for 5% of cancer deaths among women and is the most deadly 
gynecologic cancer. In 2016, an estimated 22,280 new cases and 14,240 deaths of ovarian cancer 
are expected in the United States. Current screening and imaging techniques are insufficient for 
early detection as the majority of cases (61%) are diagnosed with widespread metastatic disease, 
for which the 5-year survival rate is 27%. [1] CA125 is currently the best serum biomarker, but it 
lacks required sensitivity and specificity.[2,3]  A CA125 screening combined with transvaginal 
ultrasound is provided for women who are at high risk; however, the resulting sensitivity and 
specificity of this combined approach is still insufficient for screening early tumor growth.[4] 
With current diagnostic imaging techniques including computed tomography, positron emission 
tomography, ultrasound, and magnetic resonance imaging, [5-9] only 15% of cases are 
diagnosed while localized to the ovary (stage 1) for which 5-year survival is 92%. [1] With these 
current limitations in screening and imaging modalities,[2,5] there remains a compelling need for 
new technologies that can image early ovarian cancers with better resolution and specificity to 
improve the accuracy of diagnosis and prognosis and provide new insight into the disease 
etiology.   
 
Recent studies have shown that ovarian carcinomas are not homogeneous and can be broadly 
divided into two different types by their respective genetic mutations and epidemiological risk 
factors, delineated as type I and II.[10,11] The former grouping includes low-grade, borderline, 
and endometrioid tumors, whereas the latter refers to high grade serous carcinomas, which are 
the most prevalent (~70%) and have the poorest 5-year survival rates (~27%).1  This dualistic 
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classification is primarily based on genetics, but as most epithelial cancers have associated ECM 
remodeling, it is also important to classify the respective alterations in the tumors as this will 
provide further diagnostic/prognostic information. Probing changes in the ECM, primarily 
cellular characteristics and collagen architecture, requires microscopic resolution not achievable 
by conventional clinical modalities.  Microscopic imaging provides an option for observing early 
tumor initiation and progression.  While H&E histology has been the gold standard for 
pathologic analysis (the low grade and high grade serous micro description is described below in 
table 4.1), it is limited in terms of numbers of sections and, more importantly, is not highly 
sensitive to collagen fiber organization. A more complete classification based on cellular and 
ECM features could improve the current standards of care.  
 

Table 4.1 Micro Description of high grade and low grade serous ovarian cancer tissue [30] 
 Pathology description  
Low Grade Extensively papillary with many psammoma bodies 

May have papillae, glands, cribriform glands, cysts, or 
irregular nests of cells with uniform round to oval nuclei 
with evenly distributed chromatin, variable nucleolus 
Usually 10 mitoses/HPF 
Variable amounts of fibrous stroma 

High Grade Branching papillary fronds, slit-like fenestrations, glandular 
complexity, moderate to marked nuclear atypia with marked 
pleomorphism, prominent nucleoli, stratification, frequent 
mitoses, stromal invasion (irregular or destructive 
infiltration by small glands or sheets of cells) 
Variable psammoma bodies (calcium concretions with 
concentric laminations, may be intracellular due to 
autophagocytosis) 
Stroma may be fibrous, edematous, myxoid, or desmoplastic 



74 

 

 

 
 
 
Enabling a more complete classification is important as recent studies have demonstrated a close 
correlation between cancer stages with remodeling of the ECM, in the tumor microenvironment 
(TME) in several carcinomas.[12-16]  For example, using the collagen specific modality of 
second harmonic generation (SHG) microscopy, Keely and co-workers identified tumor 
associated characteristic signatures (“TACS”) of collagen alignment in breast cancer. [17,18]  
We previously used SHG microscopy to characterize structural aspects in normal and high grade 
ovarian cancer using an integrated approach combining SHG creation physics and optical 
scattering properties. [19] While successful, this approach is both experimentally and 
computationally very intensive. Other reports have analyzed histologic ovarian cancer sections 
using techniques such as whole image Fast Fourier Transforms (FFTs). [20] However, such 
conventional analyses are limited in ovarian cancers. This is because while altered from normal 
tissue, ovarian cancers do not display the easily identifiable TACS observed in breast cancer.  
Moreover, as we will demonstrate here and elsewhere, the modifications are substantially 
different for type I (and within type I group) and type II.  Thus, a general and more versatile 
approach is needed to classify collagen architecture alterations across the spectrum of ovarian 
cancers. For example, our attempts at classification using FFTs or even 2-D wavelet transforms 
did not achieve sufficient accuracy (<70%) in this setting (unpublished results).  
Our approach to the addressing the heterogeneity of this disease is to implement a computer 
vision scheme based on texture analysis by creating so-called “topic models” for each type of 
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ovarian cancers and benign tissues.  In computer vision, texture analysis attempts to quantify 
perceptual qualities (e.g., roughness, smoothness, or orientation of signal gradient) and repetitive 
patterns as a function of the spatial variations in pixel intensities around small individual regions 
in the image. In previous work, we had successfully implemented 2-D texture analysis for SHG 
images from two classes (normal stroma and high grade serous cancer tissue) using textons.[21] 
Textons are repeating features determined by convolution with a filter set that fundamentally 
comprise of a series of edge, bar, Gaussian, and Laplacian filters. [22] Models for training set 
images are created by identifying common responses of the collagen morphology, and test 
images are classified by k-nearest neighbor (K-NN) analysis, a non-parametric classification 
algorithm based on a number of training samples, k, with the shortest χ2 statistical distance from 
testing sample. This was highly successful in classifying high grade serous ovarian cancers and 
normal ovarian stroma (95% accuracy). [21] Importantly, this approach is general as it does not 
rely on direct visuals such as fiber alignment and size.  
 
While successful, we utilized this approach only on a series of 2-D optical sections. As SHG 
imaging has intrinsic 3-D imaging capabilities, and the stroma has 3-D architecture in terms of 
fiber organization, we are likely missing valuable information.  In this paper, we extend the 
texton-based analysis to 3-D and apply the process to different ovarian tissues types.  Although 
3-D texture analysis (e.g., using grey level co-occurrence matrix and wavelet transforms) has 
been successfully adopted in radiomics to extract image features in CT/MRI for classifying 
tumors, to the best of our knowledge, there are no analogous reports using 3-D SHG images of 
tumor ECM.  This is an important goal for classification of ovarian cancer given its 
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heterogeneity.  Here we demonstrate the 3-D texton approach to differentiate six classes of 
ovarian tissues across a spectrum of diseases, and using the one-vs.-rest approach, we found the 
receiver operator characteristic (ROC) with better than 83-91% accuracy.  By comparison, we 
achieved much lower accuracy and unsatisfactory performance using our previous 2-D approach 
when applied to the same six classes. 
 

4. 3 Material & Methods 

(1) Tissue Acquisition 
We conducted an institutional review board-approved study of ex vivo ovarian tissues from 5 
normal patients, 5 patients with high-grade serous (HGS) ovarian cancer, 5 patients with benign 
tumors, 5 high risk patients with BRCAI and/or BRCAII gene mutations, 3 patients with low-
grade serous (LGS) tumors, and 5 patients with endometrioid tumors from the University of 
Connecticut Health Center and University of Wisconsin-Madison. The diagnoses for all tissues 
were confirmed by pathological analysis. For SHG imaging, tissues were fixed in 4% formalin 
for 24 h, transferred to phosphate-buffered saline, and sliced into 100 to 200 μm thick sections 
using a Leica Vibratome 1200S (Leica Biosystems, Buffalo Grove, IL). 
(2) SHG Imaging 
Tissues were imaged by SHG microscopy as previously described. [19, 23] The excitation used 
890 nm, 100 fs pulses from a Ti: sapphire oscillator (Mira, Coherent, Santa Clara, California). 
The SHG laser scanning microscope was a modified Fluoview300 (Olympus, Center Valley, 
Pennsylvania) mounted on a fixed stage upright stand (Olympus BX61). All imaging was 
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performed with a 40× (0.8 NA) water immersion objective lens with an average power of 20 to 
50 mW at the focal plane. To excite all dipole orientations equally, circularly polarized light was 
used throughout. This was achieved at the focal plane using the combination of a quarter wave 
plate and a half wave plate as a compensator. The SHG emission was collected in the forward 
direction by a 0.9 NA condenser, isolated with a 20 nm bandwidth 445 nm bandpass filter 
(Semrock, Rochester, New York), and detected by a single photon counting photomultiplier tube 
module (Hamamatsu 7421, Hamamatsu City, Japan). Images were acquired at two times zoom 
with a field-of-view of 170 μm by 170 μm corresponding to a field size of 512 by 512 pixels to 
sample at the Nyquist frequency. Similarly, axial sectioning was acquired in one micron steps. 
Considering the reduction of the signal with increasing depth into the tissue, we only employed 
the top 30-40 µm of the tissue stack to maintain approximately the same level of contrast 
between images. 3-D image reconstructions were performed in Bitplane Imaris (Bitplane AG, 
Zurich, Switzerland). 
(3) Texture Analysis Method 
We previously applied 2-D texton analysis, utilizing k-means clustering to train 2-D texture 
features and adapted K-NN classification to classify normal and high grade serous ovarian 
cancer tissues. [21] Here we further develop and adapt this algorithm for 3-D texture analysis 
targeting classification with six different types of ovarian tissues.  
           First, we redesigned the texture filter set for 3-D application. The 3-D filter set is a multi-
scale, multi-orientation filter bank with 110 filters. The representative filter bank is demonstrated 
in Figure 4.1. It consists of first (Type I, Fig. 4.1 (a)(b)) and second (Type II, Fig. 4.1 (d)(e)) 
derivatives of 3-D Gaussians at six orientations about x, y, and z-axis in three different scales 
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(2×6×3×3=108), one Laplacian of Gaussian (LOG) filter, and one Gaussian filter. The Gaussian 
(Fig. 4.1 (c)) and Laplacian of Gaussian (Fig. 4.1 (f)) filters were generated with σ =10 pixels; 
the first and second derivatives of 3-D Gaussians were generated at three different scales with 
(σx, σy, σz) = {(1, 1, 3), (2, 2, 6), (4, 4, 12)}. Measuring the maximum response only across 
orientations at each scale about one axis reduced the number of responses from 110 to 20, which 
provided rotationally invariant behavior along each axis. 

 
Figure 4.1. Representative 3-D image filters: 6 type-I filters at mid-scale around z-axis (a), 6 

type-I filters at mid-scale around y-axis (b), 3-D Gaussian filter (c), 6 type-II filters at mid-scale 
around z-axis (d), 6 type-II filters at mid-scale around x-axis (e), 3-D Laplacian filter(f) 
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Secondly, we applied convolution to the 3-D filter bank and the 3-D SHG image data. To satisfy 
Nyquist criterion, the voxel sizes in the acquired data were 1.0 and 0.37 µm in the axial and 
lateral directions, respectively. For the convolution, we interpolated the 3-D image 
reconstruction so that the voxel sizes were equivalent in x, y, and z-axis. Here we employed 
GPU computing within the Matlab parallel computing toolbox to greatly decrease the 
computation time. Further, we randomly chose 12,500 voxels from the original 512 by 512 by 60 
voxels in the interpolated image stack (170 µm by 170 µm by 20 µm) to keep the computational 
cost feasible. The filter responses of chosen voxels were grouped by k-means clustering which 
aims to partition the full set of patch-wise image convolution responses, where each observation 
belonged to the cluster with the nearest mean, serving as a prototype of the cluster or image 
feature.  Here we clustered 20 dimensional filter responses of the 12,500 randomly chosen voxels 
into 40 response centers or textons. Each filter response vector is a corresponding filter 
descriptor for the 3-D stack patch around the chosen voxel. Therefore, the cluster centers would 
be filter descriptors of the 3-D stack patches representing different image features. Similar to the 
2-D analysis, we found that 40 textons gave the highest accuracy. Next, we built a model for 
each training image stack as a histogram of the determined 3-D texton statistical distribution. 
The image training workflow is displayed in Figure 4.2. 
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Figure 4.2. Training stage flowchart (a) 3-D renderings of SHG 3-D images of the six different 
types of ovarian tissues (b) representative 3-D filters (c) K-means clustering (d) histogram 

models generated from the training images using 40 texton bases. 

 
In classification stage, each testing image was also built into a histogram model based on 

the trained 3-D textons. We used the χ2 statistical distance, d, to evaluate differences between the 
statistical distributions of the textons in the training and testing stacks. Then we performed 10-
fold cross validation, where we randomly divided the total number of image stacks into 10 
groups.  In cross validation procedure, each group rotated as the test set with the remaining nine  
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Figure 4.3. Classification stage flowchart showing (a) representative training image models; (b) 

demonstration of the χ2 nearest neighbor (NN) classification with four different classes (circle in 
four different colors); (c) demonstration of one vs. rest classification, where the black circles 

represent a model of the test image stacks, the green circles represent training models of one of 
the tissue classes, and the grey circles represent models of the remainder of the classes; (d) 

Resulting ROC curve. 

 
serving as the training set. This process was then repeated and the accuracy corresponds to the 
average performance of the model over all ten folds. Lastly, we performed one-vs.-rest strategy 
for multiclass classification. Specifically, the one-vs.-rest strategy involves training a single 
classifier per class, with the samples of that class as positive samples and all other image stacks 
as negatives. This strategy requires the base classifiers to produce a real-valued confidence score 
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for its decision, rather than just a class label. In this case, we applied the sum of Gaussian 
weighting q(exp(-d2/σ2)) for all nearest neighbors models relative to the testing 3-D image to 
evaluate thresholds for ROC curve.  We determined σ by fitting a Gaussian distribution with 
variance σ2 for all χ2 distances from each training image pairs. Additionally, we optimized q 
(5~10) as the weighting factor for all the positive cases and we added q = -1 for all the negative 
cases, considering our one-vs.-rest classification is a semi-balanced classification method. Figure 
3 demonstrates the workflow for the classification process. 
 
In this study, we analyzed 75 image stacks for each of the six types of ovarian tissues in order to 
provide a comparison of the new 3-D texture analysis and our previously reported 2-D method 
(now expanded to multiclass classification (6)). For the latter study, we extracted five randomly 
chosen single optical sections from the full volume stacks to serve as training set images.  

4.4. Results 

Our 3-D texture classification algorithm is utilized for analyzing SHG image stacks from six 
different types of ovarian tissues whose class was initially identified by pathology: (1) normal 
ovarian stroma with no evidence of disease; (2) high risk ovarian tissue from patients with 
BRCAI/II gene mutations but without cancer initiation/progression as determined by pathology; 
(3) benign ovarian tumors which lack the ability to invade neighboring tissue or metastasize; (4) 
LGS carcinomas which often have a non-invasive serous borderline component; (5) 
endometrioid tumors of the ovary that closely mimic their uterine counterparts; and (6) HGS 
carcinomas. In the dualistic classification scheme,[10] endometrioid and LGS tumors are 



83 

 

 

classified as type I tumors and HGS are classified as type II, where the latter accounts for 70% of 
ovarian carcinomas and are usually associated with BRCAI/II and p53 gene mutations. 
 
In Fig. 4, we first present a representative single SHG optical section and 3-D rendering from the 
six different types of ovarian tissues, where (a) ex vivo normal stromal tissues are characterized 
by shorter collagen fibers arranged in a mesh-like pattern; (b) high risk tissues are more 
heterogeneous and have a mixture of curvy and straight fibers; (c) benign tumor tissues are  
recognized by thicker, short wavy fibers relative to normal;  (d) HGS tumors have characteristic 
long wavy fibers; (e) endometrioid tumors have a high degree of alignment but have sparser 
fibers than HGS, and (f) LGS tumors appear fibrotic with shorter fibers than HGS.  These overall 
appearances are common in all the respective tissues and form the basis of using machine 
learning for classification. However, because of the different typical morphologies, metrics such 
as fiber size and alignment were not sufficient and we use the 3-D texture analysis described in 
the Methods and the flow charts in Figures 4.2 and 4.3.  
 
To determine the accuracy of classification, we use the receiver operator characteristic (ROC) 
curves of true positives versus false positives (or sensitivity versus 1-specificity) to determine the 
accuracy of the classification, defined as the area under the ROC curve (AUROC). We optimized 
the nearest neighbor number, k, and the texton number systematically in the K-NN classification 
for each tissue type. We found 40 textons and k = 10 to provide the best sensitivity.  Using these 
parameters, we achieved good accuracy with AUROC for the 6 different classes of tissues: 
normal stroma 90.6%, benign tumors 88.3%, high risk stroma 87.5%, HGS tumors 83.0%, LGS 
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tumors 86.3%, and endometrioid tumors 86.8%. Using a similar method for 2-D texture analysis 
as a comparison, we built a 2-D texture imaging library with five single optical sections 
randomly chosen from the 3-D image stack, and found lower accuracies of 89.8% for normal; 
81.0% for benign tumors; 84.6% for high risk tissue; 76.5% for HGS; 82.1% for LGS; and 
76.8% for endometrioid tissue. These values are summarized in Table 1 and the respective 
AUROC curves are shown in Figure 5 and 6. In sum, the 3-D texture analysis performs much 
better than the analogous 2-D approach for multi-class classification.  
 

Table 4.1. The accuracy of classification for 2-D and 3-D texton analysis with 1 (left column) 
and 5 (middle) random optical section(s) from the middle axial region of each stack and the 

corresponding 3-D texton analysis. 

Accuracy 2-D texton 1 section 2-D texton 5 sections 3-D texton 
Normal 87.4% 89.8% 90.6% 
Benign 77.1% 81.0% 88.3% 
High Risk 80.7% 84.6% 87.5% 
High Grade 70.3% 76.5% 83.0% 
Low Grade 75.7% 82.1% 86.3% 
Endometrioid 75.1% 76.8% 86.8% 
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Figure 4.5. Receiver operating characteristic curves for 3-D classification with normal ovarian 
tissue 90.6% accuracy (red squares), benign tumor ovarian tissue 88.3% accuracy (light green 

circles), high risk ovarian tissue 87.5% (blue triangles), high grade ovarian tissue 83.0% 
(turquoise triangles), low grade ovarian tissue 86.3% (pink diamonds) and endometrioid tissue 

86.8% (dark green circles). 
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Figure 4.6. Receiver operating characteristic curves for 2-D classification with normal ovarian 
tissue 89.8% accuracy (red squares), benign tumor ovarian tissue 81.0 % accuracy (light green 

circles), high risk ovarian tissue 84.6% (blue triangles), high grade ovarian tissue 76.5% 
(turquoise triangles), low grade ovarian tissue 82.1% (pink diamonds), and endometrioid tissue 

76.8% (dark green circles). 

4.5. Discussion 

Structural Significance 
The overall relatively poor performance of standard screening/imaging tools [5,24 ] suggests that 
early detection of ovarian cancer demands new technologies that have the resolution and the 
specificity to detect and monitor small lesions.  We have investigated using 3-D texture analysis 
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of SHG images of the ECM across a spectrum of ovarian tissues as a step in this direction. 
Instead of extracting visually apparent features such as angular distribution, fiber length, or area 
covered, as has been more commonly done, we convolved 3-D image filters with 3-D image 
patches.  This is an important distinction, as in real tissues it is often impossible to fully 
discretize all of the individual fibers. Moreover, not all ECM modifications have easily apparent 
changes in fiber architecture, and subtle variations require a sensitive computer vision algorithm 
for feature extraction.  Such analysis can be, however, less sensitive by only considering 2-D 
morphology.  We previously performed an analogous 2-D analysis where we limited the 
application to HGS and normal ovarian tissues, which have the most visually noticeable changes 
in fiber alignment. [21] The task is more difficult for the other tissue classes, where the changes 
are not as pronounced or have more heterogeneity. For example, in the case of high risk tissues, 
there is visible heterogeneity not only between patients, but even within the same tissue 
specimen. By contrast, the respective overall morphologies of HGS tumors and normal stroma 
are conserved between patients.  Comparisons of the 2-D vs. 3-D results are summarized in 
Table 1, where we found significant improvement with increased dimension, especially for the 
high risk patients. From a diagnostic/prognostic perspective, this is the most important class, 
given the high probability of developing HGS cancer in the lifetime of women with BRCA 
mutations. The increase in accuracy with 2-D vs. 3-D texture analysis likely arises from two 
factors. First, the 3-D texture analysis includes 3-D information from the z-axis and provides a 
more complete picture of the ECM structure. Second, the 3-D stack is a combination of tens of 2-
D images. Therefore, the image library itself is much more sensitive and tolerant to diversity and 
heterogeneity of the ECM over the imaged depth profile.   



88 

 

 

 
  

Figure 4.4. Representative SHG single optical sections (left) and 3-D renderings (right) of 
normal (a), high risk (b), benign tumor (c), endometrioid tumor (d), low grade serous (e) and 
high grade serous (f) human ovarian tissues. Scale bar = 30 μm. 

 
We note that the overall accuracies achieved here for 2-D and 3-D are slightly lower than for the 
2-D HGS vs normal in our previous work. This is a natural consequence of increasing the 
number of classes from 2 to 6, and because those tissues displayed the most substantial and 
uniform ECM changes. Still, our classification results are consistent with HGS, LGS and 
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endometrioid carcinomas being essentially distinct diseases based on genetic profiles, growth 
patterns, and chemotherapy responses. However, in the dualistic type I and II ovarian cancer 
classification scheme, LGS and endometrioid tumors are often grouped together,25 whereas our 
classification clearly delineates them.  This is also consistent with work from our lab using SHG 
creation physics and optical scattering to characterize the ECM changes in normal vs. HGS 
tissues. Importantly, none of our other metrics were able to differentiate high risk tissues due to 
the heterogeneity between and within specimens, whereas the 3-D texture analysis demonstrated 
here was successful in this task.  
 
Texture Analysis Considerations 
The 3-D textons used to build the histogram model for each image stack represent image features 
described by the whole filter bank. The number of image features is optimized based on that 
which provides the best representation of the image library. However, as we previously showed, 
using more textons may not provide higher accuracy as this can over-describe the class. [21] In 
other words, the histogram model gave inadequate statistical distributions when applying too 
many features to model the image stacks. On the other hand, too few textons will not provide 
sufficient discrimination.  For these tissues, with our customized filter bank, we have found 40 
textons to be optimal.  Here we randomly selected 12,500 patches out of 512*512*60 voxels 
stack for the analysis so that the computational time is reasonable for image feature clustering.  
Then using 40 textons, 12,500 filter response vectors are needed to construct an effective 
statistical distribution model of the 3-D image set. To avoid artifacts, similar SHG image 
intensities are required in the analysis. As the SHG image intensity rapidly decreases even within 
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100 microns of stromal thickness, we restricted the analysis to the first 40-50 microns. This is not 
limiting as we have shown that stromal modifications mostly occur within the first 100-200 
microns of thickness and are most pronounced near the tissue surface. [19]  
 
 Our distribution with the multi-class classification method is semi-balanced within the training 
set. We use one-vs.-rest multi-class classification, which is a strategy that involves training a 
single classifier per class, with the samples of that class deemed positive, and all other samples 
are negative. This strategy requires the base classifiers to produce a real-valued confidence score 
as a basis for the decision. Although our training set is semi-balanced across all six classes, the 
one-vs.-rest binary classification learning algorithm results in unbalanced distributions because 
the designated set of negative samples is typically much larger than the set of positives. 
Therefore, before decision making, we add a parameter weight and optimize it for each test 
image to acquire the best accuracy. The number of nearest neighbors in the classification 
algorithm was also optimized for the accuracy of the ROC curve. 
 
Diagnostic Potential  
ECM alterations are thought to be a critical step in the intiation and progression of many 
epithelial carcinomas [12, 27-29], and these are increasingly suggested as potential 
biomarkers.[18-20]  In ovarian carcinogenesis and progression,  changes in the reactive stroma 
can occur in the form of increased collagen concentration (i.e., desmoplasia),  more ordered 
alignment of fibers, and changes in collagen isoform expression.[12] We have previously studied 
these changes across different size-scales using 3-D imaging in combination with the 
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measurement of bulk optical properties and Monte-Carlo simulations.[26] These studies revealed 
differences in collagen sub-resolution fibril and fiber architecture and best differentiate HGS 
tumors from the other classes, where the classification was moderately successful. While the 
texture analysis here does not provide the same detailed structural information, it results in equal 
if not better classification. Importantly, the analysis here only requires standard 3-D image data, 
whereas the other studies need directionally resolved SHG data and optical scattering 
measurements. Perhaps most importantly, the required SHG images could be acquired minimally 
invasively in conjunction with a standard ovarian laparoscope, where backward acquired image 
data would be sufficient. While this approach may not currently be feasibly used widely as a 
screening tool, it could be applied periodically to screen high risk patients with known BRCA or 
p53 mutations. Currently, the standard of care is to remove suspicious ovaries but this comes 
with considering the cost of quality of life as well as increased risk factors for other cancers.    
 

4.6. Conclusions 

We applied a new 3-D texture analysis algorithm to evaluate the ECM structural changes in 
normal ovarian stroma, high risk ovarian stroma, benign ovarian tumor, as well as high and low 
grade ovarian serous cancer tissues observed in 3-D SHG imaging stacks. By optimizing the 
number of textons, training image stack weighting, and nearest neighbor number, we achieved 
high accuracies between ~83-91% between classes, which greatly outperformed the analogous 2-
D version.  This successful application demonstrates the power of quantitative computer vision 
evaluation of 3-D SHG image features as a potential biomarker for cancer stage/type evaluation. 
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Importantly, it does not rely on extracting simple fiber characteristics such as size and alignment.  
This classification algorithm is a general method based on pre-trained SHG images and is well 
suited for analysis of rapidly changing fibrillar features for different kinds of tissues. It must be 
noted, the hand crafted filters used here may not necessarily be the best ones for image feature 
extraction for other cancer types or other disease states.  Also, the effectiveness of the algorithm 
depends on the diversity of the acquired image library. With the coming era of big data and 
personalized medicine, this image analysis may assist pathologists in diagnoses as well as 
surgeons and oncologists with treatment decisions.  
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Chapter 5: Multi-view Second Harmonic Generation Imaging 

5.1 Forward 

In this chapter we discussed on the development of a multi-view second-harmonic generation 
imaging system and the computational challenges for the later imaging processing such as 
registration and reconstruction. We first experimentally show that SHG imaging is not sensitive 
to collagen fibers oriented parallel to the direction of laser propagation and, as a consequence, 
can potentially miss important structural information. As an alternative approach, we 
demonstrate the use of reflective micro-prisms to enable multi- view SHG imaging of mouse tail 
tendon by redirecting the focused excitation and collection of subsequent emission. Our 
approach data corroborates the theoretical treatment on vanishing and non-vanishing 
orientations, where fibers along the laser direction are largely transparent by SHG. In strong 
contrast, the two-photon excited fluorescence of dye-labeled collagen fibers is isotropic and is 
not subject to this constraint. We utilized Pearson correlation to quantify differences in 
fluorescent and backward detected SHG images of the tendon fiber structure, where the SHG and 
TPEF were highly statistically correlated (0.6--0.8) for perpendicular excitation but were 
uncorrelated for excitation parallel to the fiber axis. The results suggest that improved imaging of 
3D collagen structure is possible with multi-view SHG microscopy. Further we conceptualized 
and constructed several iterations of a commercial system compatible multi-view SHG imaging 
platform. We acquired detailed structures of mouse tail tendon and ovarian tissues using the 



97 

 

 

multi-view SHG platform. Further we discussed some of the imaging analysis framework for 
data registration and reconstruction. In the end we covered the further challenge and direction for 
future research.    

5.2 Introduction  

Second-harmonic generation (SHG) imaging has emerged as a powerful modality for visualizing 
the collagen assembly in a wide range of normal and diseased tissue types [1, 2]. Applications 
for imaging structural changes in many pathologic conditions, including cancers [3–5], fibroses 
[6,7], and connective tissue disorders [8] have received considerable attention, as changes in the 
collagen rich ECM are often revealed by SHG imaging via changes in fibrillar morphology, 
intensity, and polarization properties. A limiting aspect of SHG imaging is that it is not a true 3D 
technique. Specifically, while 3D data is built up from stacking a series of 2D en face images, 
due to the electric dipole interaction, fully axially oriented fibers (i.e., along the laser direction) 
are transparent. This phenomenon is not commonly seen in fluorescence imaging as probe 
molecules (either dyes or fluorescent proteins) typically have rotational freedom, and absorb at 
all angles. The most notable exception is imaging of membrane staining dyes (e.g., DiI or 
ANEPPS), where a “ring stain” is often observed due to the rotational constraints of the dye 
molecules being bound in the membrane. The endogenous SHG contrast from collagen 
molecules within fibrils has these same constraints. This situation results in a loss of information 
in determining the structure of 3D ECM.  

A solution to this problem is to acquire SHG images from different directions of the excitation 
laser relative to the fixed specimen. We note that this is distinct from probing different structural 
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aspects via performing polarization analysis from the same direction of laser propagation [9]. 
Here we demonstrate SHG microscopy with different iteration of multi-view SHG imaging 
system to image the collagen fiber structure in mouse tail tendon and bio-tissue to tailor true 3D 
visualization of the collagen fibers within a matrix. The micro prisms have previously been used 
for several other microscopy applications [10–13]. Here we utilize the micro-prisms to excite and 
collect the backward directed SHG from different views. Backward detected SHG is comprised 
of a mixture of the emitted signal and subsequent scattering at the SHG wavelength. In tendon, 
the emitted directionality, which we have denoted FSHG∕BSHG, is ∼7∶1 [14, 15], but given the 
strength of the absolute intensity, this is more than sufficient for imaging. 

5.3 Theoretical Calculation 

 
Fig. 5.1. End view (y axis) and side view (x axis) of laser propagation direction relative to the 

fiber axis (y axis). 
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Collagen I fibers consist of a complex hierarchal assembly, as shown in Fig. 5.1. First, individual 
triple helical collagen molecules are covalently linked to into fibrils with diameters ranging from 
20 to 200 nm, depending on the tissue. Fibrils are further organized into fibers, where the latter 
are the quantity visualized in the SHG microscope. Additionally, fibers can crimp, causing the 
components of the bundle to appear offset from the long axis. The induced polarization of a 
medium subjected to an in- tense electromagnetic field can be related in a power series of the 
field strength Ei (i; j; k are Cartesian components) by the expression 

 

ܲ = ܧ߯(ଵ)ߝ  + ܧܧ߯(ଶ)ߝ + ߯(ଷ)ߝ  ା⋯                                         (1)ܧܧܧ

where Pi is the ith component of the induced polarization, and ԑ0 is the vacuum permittivity, χij(n) 
denotes the nth order susceptibility and is a tensor of rank corresponding to the number of 
subscripts. For example, χijk(2) can be expressed by the third-rank d-tensor given by dijk=χijk(2)/2, 
and the effective d-value is written as deff = êd, where ê is a unit vector describing the electric field 
or polarization field of the light wave. The tensor related to SHG, χ(2), reflects the symmetry and 
nonlinear optical properties of the material and is the quantity visualized in the microscope.  

 

For the cylindrical structure of collagen fibrils (C∞ symmetry), the most general vector expression 
for the polarization dependence of second harmonic generation is: [16] 
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where the coordinate system of the laser electric field or the polarization field of the light wave is 
related to the collagen fiber by the unit vectors ê1, ê2 and ê3. 

  

In accordance with previous approaches, collagen is assumed to have C∞mm symmetry (x=z) along 
the fiber axis (the y-axis in Fig. 1). [17,18] Cylindrical symmetry (x=z) implies that d16=d34 and 
d21=d23, and Kleinman symmetry gives d16=d21. There for we can assume d=d16=d34= d21=d23. For 
circular polarization, the electric field of the laser along the collagen fiber can be described by: 

(êଵ,  êଶ, êଷ)  = ,(ݐ߱)݊݅ݏ)  0,  (3)                   ((ݐ߱)ݏܿ

After inserting ê, equation (2) becomes:            

deff = 2d16 sin2(ωt) ê2                                                         (4)  

since here  êଶ = ∅ , deff =∅,it is seen that there will not be any SHG emission in this case. This is 
rigorously true only if all of the collagen molecule dipole moments align along exactly along the 
direction of the fiber axis. However, previous studies suggested that the collagen molecules may 
have a small tilt angle with respect to the fibril axis,[19] where in this more realistic case, the 
SHG will be greatly diminished but not completely extinguished. By contrast, if the excitation 
laser propagates along the z axis as (sin(ω*t), cos(ω*t), 0), the following expression would 
apply: 
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deff = [d22 cos2(ωt) ê2+2d sin2(ωt)] cos(ωt) y                         (5) 

(y here is unit vector in y direction) in which case only y axis polarization components will result 
in non-vanishing SHG emission. 

We can experimentally verify these suppositions and take steps toward 3D imaging by 
imaging mouse tail tendon from different orthogonal views.  Tendon is ideal for this purpose due 
to the regularity of the fibril/fiber structure.  In this experiment, we arrange two 1 mm micro-
prisms (Precision Optical, Costa, Mesa, CA,) at orthogonal vantage points of the tendon. One 
micro-prism is placed facing the end (endview) of the mouse tail tendon and one is placed on the 
side (sideview) as shown in figure 2. The excitation beam path changes direction on the mirrored 
face of the prism and propagates into different sides of the tendon.  Using a 40× 0.8 NA water 
immersion lens (Olympus), we achieved a penetration depth of about 160 um on both the side and 
end views.  Images are collected in the backward SHG geometry. 
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5.4 Multi-View SHG Imaging of Mouse Tail Tendon via Reflective Micro-
Prisms 

 
Fig. 5.2. (a) Experiment setup showing the layout of the micro-prisms in the chamber. (b) 

Straight tendon in bright field with a 10× objec-tive. (c) Bent u-shaped tendon in bright field 
with the same objective. 

 

Correlation analysis was used to statistically evaluate the similarity of TPEF and SHG images on 
a pixel by pixel basis for different views of the tendon fibers. The Pearson coefficient was 
determined over the entire 100-160 μm stacks in 1 μm step sizes of the two imaging modalities for 
both the side and endviews. When the two image stacks are perfectly similar, the Pearson 
coefficient is 1.0 and becomes 0.0 when no correlation exists.  
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The sideview images for the straight tendon remain similar (column c). However, this 
configuration shows highly significant  differences in the SHG (row 2) and TPEF (row 1) endview 
images (column d) Fiber and fiber bundles sticking out of the focus plane and also the tip of the 
tendon where it was initially cut can be clearly observed in the fluorescent images. As  

 
Figure 5.3. Fluorescence image (a1)  SHG image (a2)  and 2D intensity histogram (a3)  for 
fluorescence and SHG image from side view for bent tendon; fluorescence image (b1)  SHG image 
(b2)  and 2D intensity histogram (b3)  for fluorescence and SHG image from the endview for bent 
tendon; fluorescence image (c1)  SHG image (c2)  and 2D intensity histogram (c3)  for 
fluorescence and SHG image from side view for straight mouse tendon; fluorescence image (d1)  
SHG image (d2)  and 2D intensity histogram (d3)  for fluorescence and SHG image from end view 
for straight mouse tendon. The x and y axis for 2D intensity histograms correspond to normalized 
SHG and TPEF image pixel intensities, respectively. The heatmap is normalized from highest 
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pixel frequency to lowest in 256 color bins. Scale bar=40 microns. Predicted by Eq. 4, there is 
essentially no SHG contrast from these fibers as they are aligned parallel to the excitation laser 
beam (see Fig. 5.1) where only the boundary of each fiber bundle can be discerned with much 
lower comparative intensity. Furthermore, when examining axial sections through the fiber, this 
low signal quickly vanishes away from the boundary and may be the result of the cutting process.  
These imaging results qualitatively agree with our theoretical predictions of the diminished SHG 
emission when the collagen fibers align with the propagation direction of the excitation laser. 

 

For the u-shaped mouse tail tendon orientation, the obtained Pearson coefficients (after 
thresholding) for the front and side views were 0.77 and 0.81, respectively and are statistically 
correlated. Note that complete correlation is not expected due to the crimped regions, where 
fluorescence will occur but SHG will be largely extinguished as these fibers will be parallel to the 
laser propagation. For the straight tendon arrangement, the Pearson coefficient is 0.60 from the 
side view but decreased significantly to -0.08 indicating very little correlation between the TPEF 
and SHG image stacks. To view these correlations (and lack thereof) graphically, Row 3 of Figure 
3 shows the overlap of the greyscale intensity histograms of the respective SHG and TPEF 
distributions, where for perfect correlation, all points would fall on the diagonal. The observed 
greatly diminished SHG intensity and lack of correlation with the TPEF for the endview of the 
straight tendon configuration agree with the theoretical prediction that little SHG emission will 
result from collagen fibers that lie parallel to the direction of laser propagation.  

 



105 

 

 

While the emission angles for SHG from tissues are not known as they are not perfectly 
phasematched based on phasematching arguments, little SHG is expected in the orthogonal 
direction to the excitation.[21] Moreover, scattering from the orthogonal direction will be minimal, 
as the high scattering anisotropy of tendon (~0.95) leads to essentially all forward directed 
scatter.[14] Thus the SHG collected in the backward direction from the reflective prims is highly 
similar to that of en face imaging. We note that it is possible in principle to achieve this result 
through tilting the specimen relative to the laser direction, obtaining multiple views through two 
micro-prisms is superior due to design considerations. 

In summary, by comparing fluorescence and SHG images, we demonstrate some of the 
limitations of the SHG method for true 3D imaging of collagen. While we have not presented 
new theory, validation of these visualization constraints of SHG imaging require the appropriate 
arrangement for multi-view imaging. This approach can be implemented for a range of SHG 
investigations. This is important as there is great promise in understanding 3D collagen structure, 
as the multi-view approach here coupled with directional SHG (forward– backward), and 
polarization-resolved measurements could re- veal new insight in the role of collagen in normal 
and diseased biological processes. 

 

5.5 3D Imaging Platform Development 

While the reflective micro prisms demonstrated the ability for imaging bio-tissue in different 
perspective, we further conceptualize a Multiview SHG platform using micro prism for imaging 
bio-tissue from different directions. In the following part, the chapter will go over some of the 
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prototype iterations for Multiview SHG imaging platform and further applications with mouse 
tail tendon and ovarian tissue. The main motivations for the design relative to current imaging 
method are to, firstly, allows anisotropic multi-photon imaging of biological tissues by acquiring 
3D images of the same sample from multiple views.  Further, the advantage for the platform is to 
match the axial resolution with the lateral resolution, since the current imaging technique the 
lateral resolution is much lower than the axial resolution due to laser focus profile. Secondly, 
collagen fibers perfectly aligned with the excitation laser cannot generate any SHG emission 
signal because of the dipole interaction physics in multiphoton imaging. 

 

5.5.1 Device Development  

The development of the 3D imaging platform so far includes three main iterations. The earliest 
version of the Multiview SHG platform is demonstrated in Fig 5.5, in which we applied the 
reflective micro-prisms for imaging tissue from different perspective. The initial idea is that we 
mount the reflective micro-prim on the rotational stage. The excitation laser would be redirected 
by the micro-prim and sent into the tissue. The sample would be mounted in the middle, and the 
reflective micro prim would redirect the excitation laser into tissue from different perspectives. 
Therefore, we could acquire images the ECM structure of biomedical tissue from multiple 
angles. 
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Figure 5.5 Multi-view SHG imaging platform first iteration with rotational stage 

The platform was setup with rotation stage from THORLAB, in which can rotate the micro 
reflective prisms. However, this method will introduce unnecessary motion by hand in the 
measurement, which will be significant in the registration with image stacks of several hundreds 
of microns in size. 

 

Further, we applied the motorized rotational stage to reduce the hand motion from stage in Fig 
5.6. We applied rotational stage for sample mounting and rotated the sample besides the micro-
prism so that we can sequentially image the 3D stack of sample with redirected scanning laser 
from different directions. The whole sample is in a water emersion chamber which is much like 
the sample preparation chamber in Fig 5.2. The whole platform was designed so that it is 
compatible for the PRIOR transitional stage which can provide transitional adjustment.  
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Figure 5.6 Multi-view second harmonic generation imaging platform second iteration 

There are still a couple of issues for this iteration. Firstly, the sample preparation is difficult since 
it would be hard to keep the sample in place on mounting stage. Considering that the size of the 
prism is 1 mm, the preparation for the sample would be limited in a very small range. Also this 
platform would only provide limited numerical aperture and penetration depth with different 
objectives considering the geometry of the prism. We did a detailed analysis with relationship 
between tissue imaging penetration depth of different objectives and Numerical Aperture (N.A.) 
conservation in Table 5.1 in experimental setup from Fig. 5.7. 
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Table 5.1 Working distance, numerical aperture and penetration depth with different objectives 

Lens  
(magnification/ numerical 

aperture/ media) 

Working Distance 
L(μm) 

Penetration Depth 
D(μm) 

Focus Angle 
ϴ(degree) 

10X/0.5/Air 1900 366 30 
20X/0.5/Water 3300 737 22 
40X/0.8/Water 3300 160 37 

 

 
Figure 5.7 Multi-view second harmonic generation imaging platform second iteration 

The limitations of tissue penetration depth and imaging NA make it impossible for acquiring 
high fidelity 3D image of the thick biological tissues. Therefore, we further move on for 
developing a Selective Plan Illumination Microscopy (SPIM) [] inspired 3D imaging platform. 
The normal SPIM system is an open platform microscopy setup and is not very effective for 
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SHG imaging due to its low signal-noise-ratio. We came up with the similar idea and designed a 
SPIM inspired inexpensive and commercially compatible imaging platform system.  As the 
imaging platform setup shown in Fig 5.8, we embed the sample in agarose in the FEP tubing; the 
motor will drive the rotation of FEP tubing with sample mounted; therefore, the scanning system 
would be able to image the sample from different perspectives. We will discuss about the 
detailed calibration and sample preparation later. 

 
(a)                                                                      (b) 

Figure 5.8 Multi-view SHG imaging platform third iteration with the transitional stage (a) and 
without the transitional stage (b) 

5.5.2 Platform Calibration and Sample Preparation 

Calibration: The motor we were using for FEP tubing rotation is the nema8 stepper motor 
controlled by the LEADERSHINE software. Before imaging it is important to calibrate the 
rotation angle to ensure that we are rotating sample with good accuracy for the latter registration. 
After the calibration, the smallest accurate stepping size is 36 degree (0.1 rounds) is. However, 
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the step size set smaller than 36 degrees can cause error more than 5 degrees and the registration 
would be refined by such rotation angle. Further development will require a better motor. Also 
when doing imaging, the center of the sample should be aligned with the objective. 

 

Sample preparation: We prepare the sample in the FEP tubing since the refractive index is the 
same as the water. First we heat the agarose in the water bath and then fill the FEP tubing with 
sample. Also in this imaging application it is better to use water immersion objective since it 
would provide long working distance for thick tissue imaging and refractive index matching.  

 

Since the 3D imaging system will suffer from optical scattering and absorption in tissue; the 
image quality will decrease as the optical path length as the sample thickness increases. 
Therefore, we need to optical clear the sample before imaging. Here we have utilized 50% 
glycerol as clearing agent, as previously done by the Campagnola lab. 

 

Lastly, we must consider the appropriate size of the sample.  The optimal size depends on the 
objective magnification or field of view since we need overlap the different 3D stacks from 
different perspectives to reconstruct as a 3D image.  Therefore different objects should be 
matched with different FEP tubing size. Within the field of view, the more perspective overlap 
with each other for the sample would result in better visualization after construction. 
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Figure 5.9 Multi-view second harmonic generation imaging platform third iteration 

 

5.5.3 Image Registration and Reconstruction 

To realize the full potential of multi-view imaging, it is necessary to reconstruct a single 3D 
image from the individual views to image collagen structure with high fidelity by SHG imaging. 
Although we have not fully completed the development of the algorithm, we will go through 
some of the basics of the image registration and reconstruction. 

Registration:  

Multi-view registration is inspired by work from Stephan Preibisch’s work [22]. Multi-view 
SHG imaging is complicated by degradation of the signal along the illumination axes, limited 
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overlap between the views, different orientations of the optical sections and anisotropic SHG 
signal. We are currently developing a registration method which enables efficient, sample-
independent registration. Our 3D imaging platform has two channels of output. We can switch 
from SHG imaging to multi-photon fluorescence imaging by changing the wavelength filter. 
Fluorescent beads are embedded in rigid mounting medium around the biological tissue, and they 
serve as fiduciary markers multi-photon fluorescence acquisitions mode for SHG imaging. 
Therefore, the registration problem for multi-view SHG imaging is reduced to the matching of 
point clouds. 

 

We first detected the beads using a difference of Gaussian 3D filter. To efficiently identify 
corresponding beads in different views, we utilize a translation and rotation invariant local 
geometric descriptor that identifies each bead by the unique constellation of its neighboring 
beads. This constellation is preserved across views transformed by rotation and translation in 
three dimensions. For efficient matching, we define an orthogonal local coordinate system in 
each descriptor, expressing the 3D constellation of four beads by a vector of six scalar values, 
achieving translation and rotation invariance. Similar descriptors in different views have a small 
Euclidean distance in the six-dimensional descriptor space, and for efficient identification of 
nearest neighbors we presorted the six-dimensional scalar vectors using a hierarchical tree-based 
algorithm to reduce the matching problem to logarithmic complexity. Constellations of four 
beads that accidentally look similar are rejected using the random sample consensus with an 
affine transformation model. [22] 
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Reconstruction: In the final step of the registration framework, we globally minimize the 
displacement of all true correspondences identified in all pairs of views using an iterative 
optimization scheme resulting in an affine transformation model for each view. Typically, we 
will identify thousands of corresponding bead descriptors equally distributed around the imaged 
sample. The global optimization converge within to a final average displacement of a number of 
pixels below threshold. The average bead displacement and the ratio between correspondence 
candidates and true correspondences is a quantitative measure of the reconstruction success.  

 

We combine content-based fusion with nonlinear blending to compensate for brightness 
differences at boundaries between views. The reconstructed multi-view acquisition in contrast to 
the single view would be comparable lateral and axial resolution. In the middle of the specimen, 
the resolution is lower since the scattering of the sample limits light penetration. [23] 

 

There are still work to be done for the 3D imaging in the algorithm considering the polarization 
response and phase-matching for the tissue with different alignment between collagen fiber and 
excitation laser. There is strong correspondence between excitation laser direction and collagen 
fiber alignment. For a better morphology visualization, not only need we understand how is 
whether there is any collagen fiber at the space but also how the contrast is introduced. We will 
discuss more about it in Chapter 6.  
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Chapter 6: Conclusion and Future Directions 
From previous chapters, we discussed how SHG imaging microscopy has great potential for 
imaging ECM morphology structure of biological tissues which can be used for disease 
classification. Moreover we conceptualized and developed 3D multi-view second harmonic 
generation microscopy system to improve the fidelity of current 3D imaging.  

 

6.1 Future Directions for Multiview 3D SHG Platform 

In addition to the morphology study, there are many other applications for the 3D SHG platform. 
Here I will discuss about future research directions for with respect to phase-matching, 
polarization measurement and open source SHG microscopy.  

 

6.1.1 Spatial Phase-Matching 

Researchers have generalized models describing the SHG by highly focused excitation laser 
excitation. The spatial frequency of the sample inhomogeneity is very important for the SHG 
radiation spatial patterns. Most of the work in our lab was has simplified such spatial pattern as 
forward and backward emission.[1,2] However, this is too simplified theory. Recent studies have 
model the thin membrane as double lobe shaping for the emission pattern. We have also used 
pupil plane imaging to acquire the same pattern for emission as demonstrated in Fig. 6.1. 
However, the phase-matching pattern is still unknown for a lot of more complicated biological 
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tissues. The difficulty lies in, first, how to model such physical emission patterns for more 
complicated system; and, second, how to measure 3D spatial emission pattern correctly. The 
rotational tubing setup of the imaging system makes the 3D emission measurement possible by 
excite the tissue sample from different perspective. In another aspect the direction of the detector 
might need also be able to change from different directions, which might further requires open 
platform SHG microscopy with customized configurations.  

 
                  (a)                                         (b)                                            (c) 

Figure 6.1 (a) double lobe structure (b) pupil plane imaging for membrane (c) pupil plane 
imaging for mouse tail tendon 

 

 6.1.2 Polarization Studies 

In another aspect, current assumption for the phase matching studies have focused on mostly 
linear polarized with one direction for the membrane model. As we mentioned in introduction, a 
profound remodeling in ECM structure occurs in many epithelial chancers, and the minor 
isoform of collagen III and V up- or down-regulated during the cancer initiation and progression, 
which also contribute to the morphology alternation in ECM structure.  Colleagues in our lab 
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have used a pixel-based polarization resolved approach to probe the net collagen α-helix pitch 
angle within the gel mixtures, where this based on the previous single axis molecular model also 
developed by our lab.   The pitch angle and polarization anisotropy have sufficient sensitivity to 
differentiate Col I from the Col I/Col III mixtures.  Therefore the polarization probing was 
proved to be an efficient method for measuring collagen isoform distributions in the ECM. [3-5] 
The 3D multi-view SHG imaging platform coupled with polarization analysis would provide a 
more advanced measurement technique to yield a better metric of collagen composition and 
disease progression.   

 

6.1.3 Enhancement of Second-Order Nonlinear-Optical Signals 

One of the biggest challenges for SHG imaging is that the inefficient nonlinear optical emission 
conversion leads to poor signal-to-noise ration especially significant for the 3D thick tissue 
imaging. The photon scattering and absorption even make this situation more demanding for the 
signal acquisition. Such issue raises the limitation for the detection method, time and type of the 
tissue applicable for the SHG imaging. Fortunately, recent researchers have developed ways 
using optical stimulation for the enhancement of SHG signal. Those experiment demonstrated 
stimulated enhancement of SHG and difference frequency generation (DFG) in a configuration 
that is suitable for a wide variety of samples. A quantitatively description was observed for 
power and phase dependences using a coupled-wave formalism and achieve signal amplification 
of >104 in the biologically relevant sample collagen I. Such optical stimulation would be 
extremely advantageous in systems with the biological tissue spontaneous signals. [6] This 
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method can accelerate the current signal acquisition by providing more options for detector and 
enable better imaging qualify for current SHG imaging modality.   

 

6.2 Future Directions for Computer Vision Algorithms Applied for Biological 
Tissue Classification  

Computer vision and machine learning has been establish as a more and more important tool in 
disease diagnosis and prognosis in recent researches and clinical application. In this thesis we 
discussed texton analysis and wavelet transform for IPF and ovarian cancer classification. There 
are many more directions of future work that might be worth exploring for other kinds of 
biological tissues. In our previous chapters, we have analyze the lung fibrosis and also the 
ovarian tissue, in which the tissues are assumed to be homogenous and image features were 
generated without too much consideration of the position of the pixel/voxels. However this 
method has its limitations for the choice of tissues. For example, the breast cancer was diagnosed 
considering the relative relationship between collagen and collection of cells, where the collagen 
alignment related to the cell boundary is extremely important.  In that case, we could further 
develop more sophisticated algorithm for tissue classification with segmentation and recognition 
of relationship between collagen fiber and cell aggregation boundaries. First we can apply the 
segmentation so that we can choose the part with collagen and find out the common image 
feature for the collagen, in which area we are still consider the tissue with collagen is 
homogenous. At the same time, we can also find out what is the alignment distribution between 
collagen fiber and collection of cell boundary using the curvelet transform or CT-fire developed 
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by the colleagues from LOCI [7, 8]. The alignment will also be considered as the new feature in 
the spectral of all image features.  

 

Another important application will be the tissue micro-array analysis where there are not only 
information about types of disease but also the patient information such as age, disease stage, 
body type, prognostic information (how long the patient survived and when they were treated 
with chemotherapy, what kind of the chemo therapy they were treated, how long it takes for the 
cancer reoccurrence. The logistical regression can be a useful algorithm relating the background 
information and the patient personal information. And therefore, the image features and the 
patient background information would be both taken into account for the further diagnosis or 
prognosis purpose. The introduced logistical weighting for different features would indicate 
which information would be more important in the diagnosis and prognosis process.  

 

Another direction worth exploring is called spatial point process, which enable us to study more 
information about cell aggregation. A spatial point process is a random pattern of points in d-
dimensional space. Spatial point processes are useful as statistical models in the analysis of 
observed patterns of points, where the points represent the locations of some object of study. 
Point processes play a special role in stochastic geometry, as the building blocks of more 
complicated random set models (such as the Boolean model), and as instructive simple examples 
of random sets. This method would be extremely helpful for microscopy image processing 
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including the SHG and wild field microscopy imaging, where we focus more about the cell and 
cell nuclear grouping.  

 

At last, the most recent imaging recognition process utilized deep learning algorithms. Deep 
learning [10] (also known as deep structured learning, hierarchical learning or deep machine 
learning) is a branch of machine learning based on a set of algorithms that attempt to model 
high-level abstractions in data by using multiple processing layers, with complex structures or 
otherwise, composed of multiple non-linear transformations. This is a method that is more close 
to artificial intelligence and requires high volume of the data for the analysis. But instead of 
focusing on some supervised features, it is more semi-supervised or non-supervised method that 
could relate the abstract features for prognosis and diagnosis purpose. This method is extremely 
successful for high volume data.  In the coming age of big data and personal medicine where 
picture archiving and communication system (PACS) system is becoming mature and widely 
applied, the machine learning and computer vision is going to play a significant role in diagnosis 
and prognosis. 

 

6.3 SHG Imaging and Clinical Impact 

SHG’s superb ability of probing ECM structure changes promise us a great potential in clinical 
application for disease diagnosis. SHG imaging has already demonstrated its capability in cancer 
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detection during initiation and progression. Such changes have been shown in both ex vivo and 
in vivo with proper experimental setup.   

 

Recently, researchers have demonstrated the integration of SHG imaging with combinations of 
endoscope and laparoscope [11], which provide more clinical standard solution. And in terms of 
ovarian cancer with SHG and texture analysis, the implementation of endoscope and laparoscope 
provides possible screening solution for women who are at high risk of developing ovarian 
cancer due to BRCA1/BRCA2 gene mutations with high sensitivity and specificity. This would 
be huge improvement from current CA125 [12, 13] method since women with BRCA1/BRCA2 
gene mutations have 30-40% probability of developing ovarian cancer or breast cancer during 
their lifetime. The yearly screening and monitor the ECM structure would help them for 
diagnose ovarian cancer at early stages. Our lab has been also developing multi-scale imaging 
modality to combine ultra-sound imaging and more localized SHG imaging and scattering.  In 
this case the imaging modality could cover different imaging scale and first using ultrasound 
detecting suspicious part of the diseased tissue, then zoom into the area and implement SHG 
imaging for ECM structure measure. This is very promising technique for evolving current 
CA125 detection and integrate SHG imaging for clinical practice.  
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