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Chapter 1

Introduction

One of the ultimate goals of biology is to understand how genes, proteins, metabolites and other

molecules regulate each other to maintain, activate or inhibit biological processes. With the de-

velopment of various types of high-throughput experiments and the accumulation of experimental

data, different types of evidence for regulations and interactions could be collected on a large-

scale. The large-scale collection could yield us a balanced viewpoint on how they are regulating

each other and could be used to reconstruct large-scale networks.

We can classify the inferred networks from collection of data largely into two classes. One

class is a physical network, which is produced by experiments designed to detect the very physical

relations such as transcription factor binding, protein-protein interaction and chemical reactions.

The other class is a statistical model for biological networks, which is statistically estimated from

mostly gene expression data to connotatively reveal the connections among genes. Since gene

expression is the most frequently available data so far, it is often assumed to represent the activity of

the corresponding gene and protein and statistical methods are applied to identify the relationships.

This is why the connections are connotative. For example, a high correlation of gene expression

in a coexpression network does not necessarily mean that they are related, however, it suggests

that they could be related and generates hypotheses on whether they are regulated by common

regulators and which gene is a candidate master regulator. Besides coexpression networks, causal

networks can be statistically inferred based on Bayesian network models. The causal networks are

more meaningful than coexpression networks because they infer causal relationships, which are

the main interest to understand biological processes. In this dissertation, I focus on causal gene

network inference, which can generate compelling hypotheses on gene regulations. Before fully
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developing causal networks and the system of experiments that I consider to infer causal gene

networks, I will briefly go over several biological networks mentioned above in Section 1.1.

1.1 Biological networks

Biological networks can be classified into two groups by whether the network is constructed

with physical relationships or not. Physical networks include protein-protein interaction networks,

metabolic networks and transcription networks. The other class of networks, statistical networks,

include coexpression networks and causal networks.

A protein-protein interaction network shows the direct physical contact between proteins

[De Las Rivas and Fontanillo, 2010, Stelzl et al., 2005, Rual et al., 2005]. Two types of inter-

action data are often produced — one is pairwise direct interaction from yeast two hybrid (Y2H)

experiments [Suter et al., 2008, Stelzl et al., 2005] and the other is direct or indirect interaction by

being in the same protein complex from tandem affinity purification with mass spectrometry (TAP-

MS) [Bauer and Kuster, 2003, Gavin et al., 2011]. The latter type of interactions is processed to

distinguish direct interactions from indirect interactions by using methods such as spoke model

and matrix model [Gavin et al., 2011]. The evidence of interactions is reposited in databases such

as BioGRID (thebiogrid.org), MIPS (mips.helmholtz-muenchen.de/proj/ppi/), BIND [Bader et al.,

2003] and DIP (dip.doe-mbi.ucla.edu/dip).

A metabolic network consists of metabolites and its biochemical reactions catalyzed by en-

zymes [Junker and Schreiber, 2008]. Enzymes mostly made of proteins take substrates and accel-

erate the conversion into products by lowering activation energy of the reaction. The reactions cat-

alyzed by enzymes are stored in the reaction databases such as Brenda (www.brenda-enzymes.org),

ENZYME (expasy.org/enzyme) and LIGAND (www.genome.jp/ligand). With the sequencing of

a genome, a metabolic network of a specific species can be reconstructed [Francke et al., 2005].

A gene can be annotated with predicted molecular functions by finding genes in other organ-

isms with similar sequences. The catalytic function of the gene represented by enzyme number

can then be searched for its reactions in the reaction databases. These procedures reconstruct an

automated metabolic network of a species and it is further curated for better accuracy. KEGG
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(www.genome.ad.jp/kegg) and BioCyc (www.biocyc.org) are examples of databases of metabolic

networks.

A transcription network is a network of transcription factors, its targets and targets of target

transcription factors [Lee et al., 2002, Neph et al., 2012]. Transcription factors have a special

property that it binds to a specific DNA sequence. Chromatin-immunoprecipitation (ChIP) exper-

iments can identify the pair of transcription factor and its target genes by sequencing the DNA

regions bound by a transcription factor where the complex of DNA and transcription factor is

captured by the antibodies to the transcription factor. Lee et al. [2002] constructed a transcrip-

tional regulatory network by assembling transcription factor binding configurations in addition to

coexpression of genes. DNase I footprinting provides information about the accessibility of chro-

matins, and most transcription factors can bind to a DNA when the chromatin is open (accessible).

DNAse I footprinting and motif of transcription factors can be used to construct a transcription

factor network [Neph et al., 2012].

As a statistical model for biological networks, a coexpression network shows co-expressed

genes in expression data and identifies module structures and hub genes [Ruan et al., 2010, Allen

et al., 2012, Segal et al., 2003]. Genes in the same module could also share functional similarities,

such as gene ontology terms. Hub genes are genes that are connected to many other genes and

might be master regulators. Thus, the lack of a properly functioning hub gene may have a signifi-

cant effect on the system. The connections in a coexpression network can be inferred from pairwise

correlations or mutual information [Stuart et al., 2003, Zhang and Horvath, 2005], or partial cor-

relations to distinguish direct and indirect connections [Schäfer and Strimmer, 2005, Meinshausen

and B̈uhlmann, 2006, Peng et al., 2009].

Another statistical model for biological networks is a causal network. A causal network infers

the causal relations, often using Bayesian networks. Bayesian networks consist of nodes and di-

rected edges without directed cycles, and the directed edges could imply causal relations. Gene

expression data at a steady state is used to infer the structure of a Bayesian network [Friedman

et al., 2000, Pe’er et al., 2001, Hartemink et al., 2001]. Time-series gene expression measurements

can easily infer directed cycles such as feedback loops in biological pathways because time moves
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in one direction. It is often modeled by dynamic Bayesian networks [Murphy and Mian, 1999,

Friedman et al., 1998, Husmeier, 2003, Geier et al., 2007, Grzegorczyk and Husmeier, 2011] or

ordinary differential equations [de Jong, 2002, Gardner et al., 2003, Bansal et al., 2006]. Logsdon

and Mezey [2010] proposed a method to infer directed cyclic networks with pre-defined cis-acting

genotypes.

The physical networks and statistical networks described above would not necessarily share

common features between each other because each network characterizes different gene activities

– physical interactions and statistical associations — and gene products are in different states —

proteins and mRNAs [Penfold and Wild, 2011]. For example, mRNA levels are not necessarily

correlated with protein levels or activities [Rogers et al., 2008] even though the mRNA level tells

a lot about the biology and could be assumed to represent protein levels. By integrating various

evidence of physical interactions with statistical networks, a more comprehensive network could

be reconstructed.

In the next Section 1.2, I will now elucidate causal networks, which are the main interest of the

dissertation.

1.2 Causal networks

When we think of an underlying genetic mechanism that probably would be composed of acti-

vations and inhibitions of gene activities, it is natural to think that the relationships between genes

are generated by causal relations, not associations. In statistics, it is regarded that a causal effect

can be figured out only when in an experiment there is a manipulation or a temporal ordering, or

the experiment is a randomized design such that individuals are assigned to treatments randomly

[Pearl, 2000]. Correlations between variables or coefficients in a linear regression generally show

associations, not causal relations. However, Pearl [2000] presented that some causal relations can

be identified by examining the patterns of conditional independencies. For example,X andZ are

dependent,Y andZ are dependent, andX andY are independent. Then, the possible causal struc-

ture is thatX → Z ← Y where→ means a causal relation. Therefore, by examining conditional

independencies, we can find the causal structure that explains how the data is generated. Most
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importantly, finding the causal structure is more meaningful and closer to the scientific goals than

figuring out associations.

One popular class of graphs to represent causal structures is a directed acyclic graph (DAG),

which consists of nodes and at most one directed edge between two nodes and contains no directed

cycles. The corresponding probabilistic model for a DAG is called a Bayesian network. A directed

edge in a DAG could practically mean a causal relation. What a DAG actually represents is a set

of conditional independence relations between nodes. A characteristic Markov property of a DAG

regarding conditional independencies is that conditional on parent nodes, a node is independent of

other nodes except for descendants. By this Markov property, the joint distribution of a Bayesian

network can be factored by probabilities on parent and child relationships. For example in Figure

1.1, letYi represent the gene expression level of genei. Then, the joint distribution can be written

to be

P(Y1,Y2,Y3,Y4) = P(Y4|Y3)P(Y3|Y1,Y2)P(Y2)P(Y1).

Figure 1.1: An example DAG

If the joint distribution is assumed to be Gaussian, each factored probability can be modeled by

a linear regression and hence, the joint distribution can be represented by a set of linear regressions.
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In the example, it can be written to be

Y4 = µ4 + β43Y3 + ε4, ε4 ∼ N(0, σ2
4)

Y3 = µ3 + β31Y1 + β32Y2 + ε3, ε3 ∼ N(0, σ2
3)

Y2 = µ2 + ε2, ε2 ∼ N(0, σ2
2)

Y1 = µ1 + ε1, ε1 ∼ N(0, σ2
1),

whereβtv is a causal effect ofYv onYt.

There are three approaches to learn a Bayesian network — examining conditional indepen-

dence relations [Spirtes et al., 2000], scoring structures [Cooper and Herskovits, 1992], or hy-

bridizing the two methods [Tsamardinos et al., 2006]. The first approach tests the independence

between two variables conditional on a subset of the remaining variables, removes the edge if they

are independent, and configures the orientation from the set of conditional independence relations

[Spirtes et al., 2000]. The second approach searches the space of networks, scores the networks,

and finds the network of the maximum score [Cooper and Herskovits, 1992]. The third approach

learns the skeleton of the network by conditional independence relations and scores the network

by restricting a set of parents to be connected to the variable [Tsamardinos et al., 2006].

More details of Bayesian networks will be further explained in Section 2.2.1. The system I

consider to reconstruct a causal gene network is from an experimental cross study with genotypes

and gene expression data. Genotypes on gene expression have a special feature that is advantageous

to infer causal relations. First of all, I will describe an experimental cross study and classical

analysis to associate genotypes and expression of a single gene in the next Section 1.3. Later in

Section 1.4 I will expand to the case when there are multiple genes in experimental cross study and

present the model of a causal gene network of genotypes and gene expressions.

1.3 Experimental cross study

An experimental cross study is conducted to identify the association between genotypes and

phenotypes. A population of experimental cross is generated by a series of crosses, beginning

from two inbred lines, diagramed in Figure 1.2. An inbred line of an experimental organism such



7

as mice, rat, Arabidopsis and maize, is a sub-population of a specific species that is genetically

identical to each other. The inbred line is made by many generations of inbreedings so that every

pair of homologous chromosomes is homogeneous. Hence, every gamete it produces has exactly

the same genetic backgrounds. Let’s denote that the inbred lineA has a homozygous genotypeAA.

If we cross lineA and lineB, the offspring will have genotypesAB whereA lies on only one of

homologous chromosomes, coming from the gamete of lineA, andB lies on the other. Individuals

in this F1 population have identical genetic backgrounds to each other. We can cross F1 individuals

to get an F2 population. When an F1 population produces a gamete during meiosis, recombinations

occur between homologous chromosomes by aligning homologous chromosomes together and

crossing over them. Hence, a gamete can be a mosaic ofA andB along a chromosome. By mating

these gametes generated in the F1 population, the F2 population can have every combination of

genotypesAA,AB, BB along the homologous chromosomes in the ratio of 1:2:1. Hence, the F2

population individuals have diverse genetic backgrounds. Another type of experimental cross is a

backcross, which crosses F1 population with one of parental inbred lines. In a backcross, genotypes

AA andABoccur in the ratio of 1:1.

Genetic variations can be inspected through restriction fragment length polymorphisms

(RFLPs), repeat variations and single nucleotide polymorphisms (SNPs) [Schlötterer, 2004, Sil-

ver, 1995]. Restriction enzymes detect a specific DNA sequence and cleave the sequence. If there

is a difference in the DNA sequence, there are differences in the length and number of fragmented

sequences, and hence it is called a restriction fragment length polymorphism (RFLP). Repeat varia-

tions are the variations in the number of repeats of a short sequence. Microsatellites are the repeats

of 1-10 base pairs (bp) and minisatellites are the repeats of 10-60 bp [Olson et al., 1989]. A SNP

is a DNA location which is found to have a different nucleotide between individuals of the same

species [Syv̈anen, 2001] and it is deposited in dbSNP [Sherry et al., 2001]. A SNP microarray is

designed with probes in the array and the probes hybridize to fragments of DNA sequences dif-

ferently according to SNP genotypes. Since a SNP has only one nucleotide difference, multiple

probes are designed for each SNP and differential hybridization is used for calling a SNP genotype

[Yang et al., 2009]. As of 2012, there are approximately 4 SNPs per 1Kbp, 4 RFLPs per 1Mbp, and
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0.6 microsatellites per 1Mbp retrieved from the Mouse Genome Database (MGD), Mouse Genome

Informatics, The Jackson Laboratory, Bar Harbor, Maine (www.informatics.jax.org) on Oct. 20,

2012 [Eppig et al., 2012]. A next generation sequencing is another good tool to identify SNP since

it can read along a sequence for hundreds of bases by current techniques [Quail et al., 2012].

Gene expression can be measured in terms of mRNA levels by DNA microarrays or next gener-

ation sequencing techniques such as RNA-seq. Microarrays measure mRNA levels by hybridizing

the mRNA sample to probes like cDNAs in a cDNA array, matched and mismatched probe sets

of 25-mer oligonucleotides in an Affymetrix geneChip, or 60-mer oligonucleotides in an Agilent

array. A sample of mRNAs is prepared by attaching fluorescent dyes to mRNAs and the sample

is hybridized to the microarray. Then, the intensity of the fluorescence is measured and brighter

signal means there is a higher level of mRNA targeted for the probe. The intensity data of microar-

ray undergoes the normalization procedure to take care of dye labeling efficiency, background

adjustment, scanning sensitivity, and so on [Irizarry et al., 2003, Zahurak et al., 2007]. RNA-seq

can measure mRNA expression levels by the count of short mRNA fragments by high-throughout

sequencing techniques [Wang et al., 2009, Mardis, 2008].

A quantitative trait loci (QTLs) mapping identifies genomic loci that influence phenotypes. A

significant genomic location for a phenotype is called a QTL. The simplest model of QTL mapping

is a linear model of a phenotype (Y) in respect to a single genetic marker at the locationk, (Xk):

Y = µ + θkXk + ε, (1.1)

whereXk is a coding variable for genotype at locusk in the genome,θk is the genetic effect of the

genotype at locusk. In an intercross, there are three genotypes at a locus —AA,Aa,aa — and in

a BC, there are two genotypes —AA,Aa. The effect of the change froma to A, called an additive

effect, can be obtained as a coefficient in the model 1.1 after coding the genotype by the number

of capitalA. Then,AA is coded into 2,Aa is 1 andaa is 0. When the phenotype value ofAa is not

the intermediate ofAA andaa, there is a dominance effect that is the amount of deviation ofAa

from the intermediate ofAA andaa. In the case of complete dominance,Aa andAA would have

the same phenotype values and we interpret that possession of oneA is enough for the increases.

Genotypes can be coded for dominance effects, in addition to coding variables for additive effects,
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by Aa to be 1/2 andAA andaa to be−1/2. The significance of the genotype on a phenotype is

often noted by LOD (logarithm of the odds favoring linkage) score [Broman, 2001]. The LOD

score is the logarithm of the likelihood ratio of model with QTL versus model without QTL.

A genomic region with sparse genetic markers can be enhanced with pseudomarkers to refine

QTL locations. A genotype at a pseudomarker can be inferred from two flanking markers. Suppose

a pseudomarkerp is between marker 1 and 2. Let the distance between pseudomarkerp and

marker 1 bed1 cM and between pseudomarkerp and marker 2 bed2 cM. One centimorgan (cM) is

defined such that the expected average number of crossovers is 0.01. We observe two markers are

recombined when there is an odd number of crossovers. Haldane map corresponds the centimorgan

distance (d) and recombination frequency (r) in a form ofr =
1−exp(−2d/100)

2 [Zhao and Speed, 1996].

Or, approximately,r = d/100 for smalld. Let the recombination frequency corresponding tod1

andd2 to ber1 andr2, respectively. On a gamete, the probability of a genotype at a pseudomarker

p is calculated for each combination of genotypes at marker 1 and marker 2 in Table 1.1.

Table 1.1: Configuration of genotypes of pseudomarkerp on a gamete conditional on markers 1

and 2. Letr = r1 + r2 − 2r1r2.

marker 1 marker 2 pseudomarkerp: A pseudomarkerp: a

A A (1− r1)(1− r2)/(1− r) r1r2/(1− r)

A a (1− r1)r2/(1− r) r1(1− r2)/(1− r)

a A r1(1− r2)/(1− r) (1− r1)r2/(1− r)

a a r1r2/(1− r) (1− r1)(1− r2)/(1− r)

In a backcross, the genotypes at a pseudomarkerp on a pair of homologous chromosomes

whether it isAAor Aa is just the conditional probability in Table 1.1 because the other chromosome

is only one type likeA with a probability 1. In an intercross, genotypes at pseudomarkerp among

AA,Aa,aacan be obtained by multiplying conditional probabilities.

With the calculated probabilities for pseudomarker’s genotypes, LOD score can be calculated.

Lander and Botstein [1989] presents that the likelihood of a model with a QTL at a pseudomarker
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is

L(QT L) =
∏

i

[p(AA)Li(AA) + p(Aa)Li(Aa) + p(aa)Li(aa)],

whereLi(g) is the likelihood when the genotype at the pseudomarker isg for an individuali, and

p(g) is the probability that the genotype isg inferred from flanking markers. The maximum likeli-

hood can be obtained by expectation-maximization (EM) algorithm [Lander and Botstein, 1989].

Haley and Knott [1992] simplified the maximization of likelihood such that the QTL is located be-

tween two markers and the expected value of phenotype for each configuration of flanking markers

will be the mean of theoretical values (2∗additivefor AA, additive+dominancefor Aaand 0 foraa,

assuming QTL at the pseudomarker ) weighted by the frequency of the pseudomarker’s genotype.

The expected value will be expressed in terms of additive and dominance variables and recombina-

tion frequency, and additive and dominance effects can be obtained by fitting against the observed

phenotype values. Sen and Churchill [2001] proposed a method for getting maximized likelihood

through imputing genotypes at the pseudomarker. These various methods to get LOD is available

at the R package QTL [Broman et al., 2003].

To identify a significant QTL, a p-value of LOD score can be used. A p-value can be obtained

by permuting phenotype values and getting the distribution of LOD scores. Since multiple genomic

locations are tested in QTL mapping, a p-value is adjusted by multiple testings. This is done by

permuting phenotype value and obtaining the distribution of maximum LOD score across loci. 5%

cutoff is often used to declare significant QTLs.

For better detection of QTLs influencing a phenotype, eqn 1.1 can be extended with multiple

QTLs and epistasis (interaction of QTLs),

Y = µ +

K∑

k=1

θkXk +
∑

k=1

∑

l,k

θkl vec(Xk ⊗ Xl) + ε

= µ + θX + ε, (1.2)

whereXk is a column vector of coding variables for additive and dominance andθk is a row vector

of each effects. The termvec(Xk ⊗ Xl) is a set of coding variables for epistasis andθkl is a set

of corresponding effects. The operator⊗ is an outer product, which multiplies all combinations
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of each coding variable and is defined to be thatXk ⊗ Xl = XkX′l , where′ is the transpose. The

operatorvec(·) makes the matrix into a column vector by stacking columns. Simply, in eqn (1.2),X

represents the design matrix of every genotype with all the coding variables for additive, dominance

and interactions, andθ represents the corresponding effects. Model selection criteria for multiple

QTL have been proposed — simultaneous two QTLs in a model [Jansen and Stam, 1994], BIC

score [Broman and Speed, 2002] and Bayesian approach [Yi, 2004]. Epistasis have been taken

care of in these papers : Manichaikul et al. [2009], Yi et al. [2007].

The identified QTLs by QTL mapping methods described above affect the phenotype directly

or indirectly. Indirect effects can happen when a QTL influences phenotype 1 and phenotype 1

influence phenotype 2. In this situation, the QTL of phenotype 1 could be identified as QTL of

phenotype 2.

1.4 A causal gene network on experimental cross study

As genome-wide gene expression (phenotypes) can be measured in an experimental cross

study, we want to know how genotypes regulate gene products and how gene products regulate

each other. In this perspective, the reconstruction of a causal network of genotypes and pheno-

types is desirable to elucidate how genetic variations can affect the cascade of phenotypes and, in

the end, trigger some disease. An experimental cross study has a special feature which helps to in-

fer more causal relations compared to expression data alone. Since a genotype affects phenotypes,

not the other way around, we can restrict the directionality to be from genotype to phenotype.

Also, since genetic recombination occurs randomly and experimental cross study is conducted in a

controlled condition, the design of experimental cross is a randomized design. As a result, we can

get a causal effect of a genotype to phenotypes without any confounding effects or biases.

If we know the causal network among phenotypes, we can distinguish whether the identified

QTLs by QTL mapping has a direct effect on a phenotype or an indirect effect via other phenotypes.

I will call QTLs directly affecting a phenotype as “causal QTLs”. As in the example mentioned

in the last Section 1.3, let the true underlying pathway be thatQ1 is a causal QTL for phenotype

1 (Y1) and phenotype 1 causally affects phenotype 2 (Y2), that is,Q1 → Y2 → Y2. Suppose we
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know the causal relations between phenotypes,Y1 → Y2. By QTL mapping,Q1 will be identified

to be a QTL for bothY1 andY2. Taking in the causal relations on phenotypes (Y1 → Y2), the QTL

mapping onY2 after taking into accountY1 will not identify Q1 as a QTL forY2. Hence, the causal

network among phenotypes can distinguish between direct causal QTL and indirect QTLs.

On the other hand, if we know causal QTLs, we could distinguish causal networks among

phenotypes. For instance,Q1 is known to be a causal QTL forY1 andY2 andY2 are correlated. It

is possible that the causal relation on phenotypes is eitherY1 → Y2 or Y1 ← Y2. By incorporating

causal QTL, the whole network is eitherQ1 → Y1 → Y2 or Q1 → Y1 ← Y2. The first network

(Q1 → Y1 → Y2) will have this conditional independence relation:Q1 andY2 are independent

conditional onY1. The second network (Q1 → Y1 ← Y2) will have the relation:Q1 andY2 are

dependent conditional onY1. Hence, causal QTLQ1 helps to distinguish two network structures

on phenotypes.

Therefore, the joint inference of casual network among phenotypes (GY) and causal QTLs

(GQ→Y) will be the main interest to decode the regulatory network of genotypes and phenotypes.

As in Figure 1.3, I will denote the joint network of genotypes and phenotypes to beG andG is taken

apart into a phenotype network (GY, causal network among phenotypes) and causal QTLs (GQ→Y).

The joint inference of phenotype network (GY) and causal QTLs (GQ→Y) have been researched in

an experimental cross study in these papers: gene network via structural equation modeling [Li

et al., 2006], the joint inference of causal network on phenotypes and QTLs [Chaibub Neto et al.,

2010a, Hageman et al., 2011].

The model of a casual network (G) of genotypes and phenotypes can be written by a set of

linear equations. Each phenotype (t = 1, . . . ,T) can be modeled as follows [Chaibub Neto et al.,

2010a]:

Yt = µt + θtX +
∑

v∈pa(t) in GY

Yvβtv + εt, (1.3)

whereθtX is the causal QTL effect inGQ→Y and
∑

v∈pa(t) in GY
Yvβtv is the parental phenotype effect

in a phenotype networkGY.
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Figure 1.3: Causal gene network decompositions
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A genome wide association study (GWAS) for human has a similar data structure to an exper-

imental cross study. It has genotype and phenotype data. However, there are challenges for the

inference of causal network on GWAS data. First, because GWAS data is collected in uncontrolled

conditions, there are unobserved non-genetic factors such as environments and they make other

estimates to be confounded and biased. Second, as in association testing in GWAS, the population

structure should be stratified for unbiased estimation.

1.5 Motivation of my work

An experimental cross study creates genotypes (X) and phenotypes (Y) data. QTL mapping

introduced in Section 1.3 associates genotypes (X) and a phenotype (Y). With the availability of

multiple phenotypes, a causal gene network in Section 1.4 finds causal relations among phenotypes

in addition to causal QTLs for phenotypes. Table 1.2 conceptually compares these two models and

two other models that I am going to develop in Chapters 2 and 3. In an effort to construct a

more comprehensive regulatory network, I incorporate biological knowledge through a prior on

phenotype networks on top of the causal gene network in Chapter 2. In Chapter 3, I consider the

case when there are unmeasured variables and the causal network is extended to take account into

the possibility of latent variables.

1. QTL mapping Yt = µt + θtX + εt.

A significantQ is called a QTL.

2. Causal network Yt = µt + θtX +
∑

v∈pa(t) in GY
Yvβtv + εt.

3. Prior by knowledge P(GY) - Biological knowledge sets a prior

on phenotype network structures (GY).

4. Causal network embedded ε ∼ N(0,Ω)

with latent variables Structured covariance ofε due to

latent variables

Table 1.2: Development of models using genotypes and phenotypes in an experimental cross study
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In Chapter 2 we incorporate biological knowledge when a causal network of genotypes and

phenotypes is estimated. Since a causal network of genotypes and phenotypes is a statistical net-

work, it may not reflect biological knowledge. At present there is huge amount of biological

evidence in various aspects 1.1 and the incorporation of biological knowledge on a causal network

reconstruction would get us a comprehensive biological network. We propose to integrate biologi-

cal knowledge such as transcription factor binding and gene ontology to the inference of a causal

gene network of genotypes and phenotypes from an experimental cross study. Biological knowl-

edge sets a prior on phenotype networks (GY) with a scale parameterW to control the contribution

of prior biological knowledge on the causal network construction. We introduce the ways to en-

code biological knowledge into a numeric matrix to be plugged in the prior probability (P(GY)).

A Markov chain Monte Carlo is developed to find a causal gene network that fits genotype and

phenotype data and biological knowledge well.

In Chapter 3 we consider the case when there are unmeasured variables in constructing causal

networks. One reason for considering latent variables is that we often take a subset of variables to

build a network due to the computational complexity for a large network. Another reason is that we

are not certain that the data includes all the variables in an underlying network. It has been shown

that if a Bayesian network is an underlying network but some variables are not measured, there

may not exist a Bayesian network that properly represents the relations on the observed variables.

Hence, we consider an extended version of Bayesian networks, ancestral graphs [Richardson and

Spirtes, 2002], as a gene network. We model a gene network with genotypes in the framework of

ancestral graphs and prove the graphical and statistical properties of our model. A Markov chain

Monte Carlo is developed to search over directed ancestral graphs.

1.6 Contribution of this dissertation

Integration of various types of biological knowledge with experimental data is attracting lots of

attention as biological knowledge gets accumulated. In the Bayesian perspective, the accumulation

of biological knowledge should benefit us. At present, there is no standard method to integrate

biological knowledge with experimental data. However, as we model the integration method in
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diverse ways and keep comparing them, we anticipate to learn better integration methods and as a

result, the accumulated knowledge could be fully utilized.

One of key motivation to study biology comes from variations — people are different to each

other, species are different, environments are different, and time points are different. The associ-

ation between variations and experimental data such as gene expressions could answer some bio-

logical questions. What is more interesting is to decipher causal relations between variations and

gene expressions and causal relations among gene expressions simultaneously, which is a causal

gene network.

In this dissertation, we integrate biological knowledge with gene expressions and genetic varia-

tions to infer a causal gene network. We learn the advantages and disadvantages of our integration

model when inferring a causal network and learn the key points for improvements in future re-

search.

When inferring a causal gene network with genetic variations, consideration of latent variables

has not be attempted yet and this dissertation lays out a rigorous modeling with latent variables.

Despite the computational challenge, it could give us as much information as the data have.
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Chapter 2

Bayesian causal phenotype network incorporating genetic varia-
tion and biological knowledge1

2.1 Introduction

A key interest in molecular biology is to understand how DNA, RNA, proteins and metabolic

products regulate each other. In this regard, people have considered to construct the regulatory net-

works composed of candidate regulatory relationships from microarray expression data with time-

series measurements or transcriptional perturbations [Friedman et al., 2000, Gardner et al., 2003].

A regulatory network can also be constructed in a segregating population where genotypes perturb

the gene expression, protein and metabolite levels. The genetic variation information can decipher

genetic effects on traits and help discover causal regulatory relationships between phenotypes. In

addition, knowledge of regulatory relationships is available in various biological databases, which

can improve the reconstruction of causal networks. This chapter focuses on combining genetic

variations in a segregating population and biological knowledge to improve the inference of causal

networks.

Given the quantitative nature of a gene expression phenotype, one can perform quantitative

trait loci (QTL) mapping to detect the genomic locations affecting the phenotype [Jansen and

Nap, 2001]. The genotypes at a location are often coded asAA, Aa, or aa, where alleleA and

a are distinct variant forms of a genetic locus. A quantitative phenotype/trait is any observable

physical or biochemical quantitative feature of an organism such as weight, blood pressure, gene

1This chapter is under review for publication: Moon, J.-Y., Chaibub Neto, E., Deng, X., Yandell, B. S. (2011)
Bayesian causal phenotype network incorporating genetic variation and biological knowledge. InProbabilistic Graph-
ical Models Dedicated to Applications in Genetics
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expression, or protein levels. The basic idea of QTL mapping is to detect genomic regions, or

QTLs, where variation in genotype is associated with quantitative variation in phenotype. For

example, tall parents tend to have tall children while short parents tend to have short children.

Then, it appears that there are genetic factors to be associated with the height and the genetic

factors can be identified by QTL mapping. In an experimental population, where genotypes are

randomly assigned, the genetic variation at QTLs can be interpreted as causing later changes in the

phenotype of interest.

In a segregating population, QTL mapping can identify QTLs with a causal effect on a pheno-

type. The causal effect can be direct from QTL to phenotype, or indirect via other intermediate

phenotypes. We only label the direct QTLs as “causal QTLs”, recognizing that they have a more

proximal effect on a phenotype than indirect QTLs. We also acknowledge that there may be many

other molecular factors in a pathway between the QTL and the phenotype that were not measured in

a particular study. Indirect and direct QTLs can be used to help determine the direction of the edges

in a causal phenotype network (i.e., a directed graph composed of phenotype nodes, whose edges

represent causal relations). Several approaches in the literature take advantage of QTLs identified

by QTL mapping to determine causal relations among phenotypes including: structural equation

modeling [Li et al., 2006, Liu et al., 2008, Aten et al., 2008]; score-based methods for Bayesian

networks [Zhu et al., 2004, 2008, Winrow et al., 2009]; causal algorithms for Bayesian networks

based on independence tests [Chaibub Neto et al., 2008, Valente et al., 2010]; and causality tests on

pairs of phenotypes [Schadt et al., 2005, Kulp and Jagalur, 2006, Chen et al., 2007, Millstein et al.,

2009, Chaibub Neto et al., 2010b]. A common feature of the above approaches is that QTL map-

ping and phenotype network reconstruction are conducted separately. The QTL mapping without

consideration of a phenotype network may find indirect QTLs. As pointed out by Chaibub Neto

et al. [2010a], incorrect or indirect QTLs may compromise the inference of causal relationships

among phenotypes. To address this issue, several researchers [Chaibub Neto et al., 2010a, Hage-

man et al., 2011] proposed to jointly infer causal phenotype networks and causal QTLs.

Various sources of biological knowledge have been incorporated with gene expression in the

reconstruction of phenotype networks because it is difficult to determine the causal direction of
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gene regulation using expression data only. Transcription factor binding information was leveraged

by [Tamada et al., 2003], whereas [Nariai et al., 2004] used protein-protein interaction knowledge

to construct phenotype networks. Methods integrating multiple sorts of biological knowledge were

proposed by [Imoto et al., 2004], [Werhli and Husmeier, 2007], and [Christley et al., 2009].

In this chapter, we propose a Bayesian approach to jointly inferring a causal phenotype network

and causal QTLs with a prior distribution on phenotype network structures adjusted by biological

knowledge. The joint network of causal phenotype relationships and causal QTLs is modeled as

a Bayesian network1 adopted from Chaibub Neto et al. [2010a], QTLnet. Causal QTLs can be

inferred by QTL mapping conditional on the phenotype network. Since the phenotype network

is unknown, QTLnet traverses the space of phenotype networks and updates causal QTLs using

Markov Chain Monte Carlo (MCMC). We extend the framework of QTLnet by incorporating bio-

logical knowledge into the prior distribution on phenotype network structures. The incorporation

of biological knowledge is expected to increase the accuracy of the model, enhancing the predictive

power of the network [Zhu et al., 2008]. The prior probability on phenotype network structures is

based on the Gibbs distribution to integrate different sources of biological information allowing for

flexible tuning of the analyst’s confidence on this knowledge [Werhli and Husmeier, 2007]. The

consideration of reliability of biological knowledge is necessary since biological knowledge can

be incomplete and inaccurate. While Zhu et al. [2008] proposed a method to incorporate genetic

variation and biological knowledge to phenotype networks, their method does not consider the re-

liability of biological knowledge. Our proposed approach (QTLnet-prior) can integrate phenotype

data, genetic variation and several sources of biological knowledge (protein-protein interaction,

1Note that Bayesian networks can be inferred in a Bayesian framework or a frequentist framework. Here, we take

a Bayesian approach to infer a Bayesian network. The reason that the term “Bayesian” is used in a Bayesian network

is described in the book [Pearl, 2000]. An excerpt from page 14 of the book [Pearl, 2000]:Bayesian networks, a term

coined in Pearl (1985) to emphasize three aspects: (1) the subjective nature of the input information; (2) the reliance

on Bayes’s conditioning as the basis for updating information; and (3) the distinction between causal and evidential

modes of reasoning, a distinction that underscores Thomas Bayes’s paper of 1763.
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gene ontology annotation, and transcription factor and DNA binding information) with the con-

sideration of the reliability of each source of biological knowledge in the network reconstruction

algorithm.

The details of our integrated framework for the joint inference of causal phenotype network

and causal QTLs are organized as follows. Section 2.2 describes the QTLnet method for the joint

inference of causal network and causal QTLs. Section 2.3 presents the proposed QTLnet-prior,

which incorporates biological knowledge into the prior probability distribution of phenotype net-

work structures. A simulation study is conducted in Section 2.4 to compare the proposed method

with several existing approaches and it shows that the incorporation of biological knowledge and

genetic variation is advantageous in inferring a causal network, especially when biological knowl-

edge is reliable. In Section 2.5, the proposed method is used to reconstruct a network of 26 genes

involved in the yeast cell cycle. Finally, in Section 2.6, we discuss the strengths and caveats of our

approach and point out future research directions.

2.2 Joint inference of causal phenotype network and causal QTLs

In Section 2.2.1, we first present a standard Bayesian network for modeling phenotype data.

Next, in Section 2.2.2, we present an extended model, based on the homogeneous conditional

Gaussian regression (HCGR) model, to incorporate QTL nodes into phenotype networks. Directed

edges in the standard Bayesian network can be interpreted as causal relationships. By extending

the phenotype network with causal QTL nodes we can further claim causal interpretations. In

Section 2.2.3, we present a rationale for the joint inference of the causal phenotype network and

causal QTLs and in Section 2.2.4, we describe the QTL mapping conditional on the phenotype

network. Finally, we give an overview of our joint approach for phenotype network and causal

QTL inference in Section 2.2.5.

2.2.1 Standard Bayesian network model

A standard Bayesian network is a probabilistic graphical model whose conditional indepen-

dence is represented by a directed acyclic graph (DAG). A nodet in a DAG G corresponds to a
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random variableYt in the Bayesian network. A directed edge from nodeu to nodev can suppos-

edly represent thatYv is causally dependent onYu, though an edge truly represents the conditional

dependency. The local directed Markov property of Bayesian networks states that each variable is

independent of its non-descendant variables conditional on its parent variables:

Yt⊥YV\de(t) | Ypa(t) for all t ∈ V,

whereV is the set of all nodes in a DAG,de(t) is the set of descendants of nodet, pa(t) is the set

of parents of nodet andYpa(t) is a set of variables indexed bypa(t), that is,{Yi : i ∈ pa(t)}. Assume

the node index is ordered such that the index of descendants is always bigger than the index of

their parents. Since{t − 1, . . . , 1} is a set of non-descendants of nodet and pa(t) is included in

the non-descendant set{t − 1, . . . , 1}, Yt is independent ofY{t−1,...,1} conditional onYpa(t). That is,

P(Yt | Ypa(t)) is equivalent toP(Yt | Yt−1, . . . ,Y1). The joint distribution can be written to be

P(Y1, . . . ,YT) =

T∏

t=1

P(Yt | Yt−1, . . . ,Y1)

=

T∏

t=1

P(Yt | Ypa(t)), (2.1)

where the first equality is satisfied by the chain rule in probability theory2.

2.2.2 HCGR model

The parametric family of a Bayesian network that jointly models phenotypes and QTL geno-

types corresponds to a homogeneous conditional Gaussian regression (HCGR) model. Conditional

2In probability theory, the chain rule permits that the joint probability of two variablesX andY can be written as

P(X,Y) = P(Y | X) P(X) = P(X | Y) P(Y). This can be extended to the joint probability of multiple variables:

P(YT , . . . ,Y1) = P(YT | YT−1, . . . ,Y1)P(YT−1, . . . ,Y1)

= P(YT | YT−1, . . . ,Y1)P(YT−1 | YT−2, . . . ,Y1)P(YT−2 | YT−3, . . . ,Y1)

= · · ·

=

T∏

t=1

P(Yt | Yt−1, . . . ,Y1).
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on the QTL genotypes and covariates, the phenotypes are distributed according to a multivariate

normal distribution, where QTLs and covariates enter the model via the mean, and the correlation

structure among the phenotypes is explicitly modeled according to the DAG representing the phe-

notype network structure [Chaibub Neto et al., 2010a]. Figure 2.1 depicts one example of a joint

Bayesian network of phenotypes and QTL genotypes.
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Figure 2.1: Example network with five phenotypes (Y1, . . . ,Y5) and four QTLs (Q1, . . . ,Q4).

The HCGR model is derived from a series of linear regression equations. Fori = 1, . . . , n and

t = 1, . . . ,T, let Yti be the value of phenotype for individuali and traitt. Then we assume for each

phenotype thatYti can be modeled as follows:

Yti = µ?ti +
∑

v∈pa(t)

βtv Yvi + εti , εti ∼ N(0, σ2
t ). (2.2)

The model can be decomposed into three parts: a genetic part (µ?ti ), a phenotypic part

(
∑

v∈pa(t) βtv Yvi), and an error term (εti). In the phenotypic part,βtv is the effect of parent pheno-

type v on phenotypet. The error term,εti, follows a normal distribution. The genetic part,µ?ti ,

corresponds to a model of QTL genotypes and possibly covariates:

µ?ti = µt +

C∑

k=1

ϑtkZki +

K∑

k=1

γtkθtkXki, (2.3)

whereµt is the overall mean for traitt, Zki represents a covariate,ϑtk represents the effect of the

covariate on the phenotype, and
∑K

k=1 γtkθtkXki is the overall effect of QTLs. For the simplicity,

we will not consider the covariatesZ later on. The parameterγtk is unknown, and represents the

inclusion (γtk = 1) or exclusion (γtk = 0) of the QTL located at the genomic positionk into the

model. The genetic effects of QTL can be partitioned into different types of genetic effects, e.g.
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additive and dominance effects, and hence the genotype of the QTL is coded into the variables to

estimate the different genetic effects. The vectorXki represents a column vector of coded variables

of the genotype at the genomic locationk for individual i and the vectorθtk is a row vector of

several types of genetic effects of QTL at the locationk on phenotypet. The coding of a genotype

may follow Cockerham’s genetic model [Kao and Zeng, 2002]. For example, in an intercross, the

segregating genotypes at a locus are denoted byAA, Aa, or aa, and we can code the genotype into

an additive variable by the number ofA alleles in the genotype minus 1 and a dominance variable

by 1/2 if it is Aa and -1/2 otherwise. In this case, the additive effect is the effect of substituting

one allelea with another alleleA and the dominance effect is the deviation ofAa from the mean

of AA andaa. Accordingly, in an intercross,Xki is a column vector of additive and dominance

coding variables, andθtk is the row vector of additive and dominance effects on phenotypet. It

was shown by Chaibub Neto et al. [2010a] that these linear regression equations in eqn (2.2) set a

HCGR model for phenotypes and QTL genotypes.

2.2.3 Systems genetics and causal inference

Systems genetics aims to understand the complex interrelations between genetic variations and

phenotypes from large scale genotype and phenotype data [Nadeau and Dudley, 2011]. Here we

explain how the systems genetics approach can infer causal networks. Causal relations from QTLs

to phenotypes are justified by the unidirectional influence of the genotype on phenotype and the

random allocation of genotypes to individuals. In contrast, causal relations among phenotypes are

induced from conditional independence. The key idea of systems genetics is that by incorporating

QTL nodes into phenotype networks we create new sets of conditional independence relationships

for distinguishing network structures that would, otherwise, belong to the same equivalence class

(see Tables 2.1 and 2.2).

First, we give a more detailed description for the causal relations between QTLs and pheno-

types. As stated in the central dogma of molecular biology, the hereditary DNA information is

transferred to phenotypes. Thus a genotype influences phenotypes in general but not the other
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way around. A genotype is assumed to be randomized to other environmental factors by indepen-

dent segregation of chromosomes in meiosis and random mating between gametes. These special

characteristics enable us to infer causal effects of QTLs on phenotypes since, by analogy with a

randomized experiment, we have that: (1) the treatment (genotype) to an experimental unit pre-

cedes the measured outcome (phenotype), and (2) random allocation of treatments to experimental

units guarantees that other common causes get averaged out. Two loci on the same chromosome

are highly correlated when their distance is small. But crossovers between two loci can still occur

randomly in proportion to the distance. One can distinguish the true causal QTL and false nearby

QTL with a large sample size. This random allocation is explicit in an experimental cross such

as a backcross or an intercross3. While this idea can be extended to natural populations, special

attention must be paid to admixture, kinship and other forms of relatedness.

Second, the explanation of causal inference among phenotypes requires the concept of con-

ditional independence in DAGs composed of phenotypes and QTL nodes. In the next three para-

graphs we present some definitions and results that allow us to infer phenotype-to-phenotype causal

relationships.

Here are definitions. In graph theory, apath is defined as any unbroken, non-intersecting

sequence of edges in a graph, which may go along or against the direction of arrows. We say that a

pathp is d-separated[Pearl, 1988, 2000] by a set of nodesZ if and only if: (1) p contains a chain

i → m→ j or a fork i ← m→ j such that the middle node is inZ, or (2) p contains a collider

i → m← j such that the middle nodem is not inZ and such that no descendant ofm is in Z. We

say thatZ d-separatesX from Y if and only if Z blocks every path from a node inX to a node in

3An experimental cross is generated by crossing inbred lines. An inbred line is obtained by repeated generations

of inbreedings so that any genotype of the inbred line is homozygous,AA. Therefore, breeding within the inbred line

produces genetically identical offspring to its parents. Both backcross and intercross first produce the first generation

of population by mating two different inbred lines,AA andBB. The first generation is identical to each other with

heterozygous genotypes,AB. The backcross population is produced by mating the first generation to one of its parental

inbred lines such asAA. Then, the backcross population has genotypes eitherAA or AB in a ratio of 1 : 1. The

intercross population is produced by mating the first generation itself so that it has genotypesAA, AB, or BB in a ratio

of 1 : 2 : 1.
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Y. Theskeletonof a DAG is the undirected graph obtained by replacing its arrows by undirected

edges. Av-structureis composed by two converging arrows whose tails are not connected by an

arrow.

The equivalence concept plays a key role in learning the structure of networks from the data.

Here we present three important equivalence relations for graphs or statistical models of graphs.

Two graphs areMarkov equivalentif they have the same set of d-separation relations [Spirtes et al.,

2000]. Two structuresm1 andm2 for Y aredistribution equivalentwith respect to the distribution

family F if they represent the same joint distributions forY, that is, for everyθ1, there exists a

θ2 such thatp(Y | θ1,m1) = p(Y | θ2,m2) [Heckerman et al., 2006]. In other words,m1 andm2

are distribution equivalent if the parametersθ1 andθ2 are simple re-parametrizations of each other.

If m1 and m2 are distribution equivalent, then the invariance principle of maximum likelihood

estimates guaranteesp(Y | θ̂1,m1) = p(Y | θ̂2,m2), andm1 andm2 cannot be distinguished using

the data. In this case we say thatm1 andm2 are likelihood equivalent. In a Bayesian setting we

define likelihood equivalence using the prior predictive distribution,
∫

p(Y | θ,m1) p(θ | m1) dθ =
∫

p(Y | θ,m2) p(θ | m2) dθ. If modelsm1 andm2 are distribution equivalent and we adopt a proper

prior p(θ | m), it is often reasonable to expectp(Y | m1) = p(Y | m2), so that we cannot distinguish

m1 andm2 for any data setY [Heckerman et al., 2006].

Now we state four important results regarding causal inference in systems genetics: (1) Two

DAGs are Markov equivalent if and only if they have the same skeletons and the same set of v-

structures [Verma and Pearl, 1990]; (2) Distribution equivalence implies Markov equivalence, but

the converse is not necessarily true [Spirtes et al., 2000]; (3) For a Gaussian regression model,

Markov equivalence implies distribution equivalence [Heckerman and Geiger, 1996]; (4) For the

homogeneous conditional Gaussian regression model, Markov equivalence implies distribution

equivalence [Chaibub Neto et al., 2010a].

Therefore, for the HCGR parametric family, two DAGs are distribution and likelihood equiv-

alent if and only if they are Markov equivalent. This implies that we can simply check out if any

two DAGs have the same skeleton and the same set of v-structures in order to determine if they are

likelihood equivalent and hence cannot be distinguished using the data.
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Getting back to the idea of causal inference among phenotypes, letGY be a phenotype network

represented by a standard Bayesian network of phenotypes,Y. Phenotype data alone can distin-

guish some network structures by its likelihood but may fail to distinguish some other network

structures. For example, consider the three network structures in Table 2.1. ModelsG1
Y andG3

Y

have the same skeleton (Y1 − Y2 − Y3) and the same set of v-structures (no v-structure) and, thus,

are distribution/likelihood equivalent. ModelG2
Y, on the other hand, has the same skeleton but a

different set of v-structures and, hence, is not distribution/likelihood equivalent to modelsG1
Y and

G3
Y. Therefore, phenotype data alone can identifyG2

Y but cannot distinguishG1
Y andG3

Y.

Table 2.1: ModelsG1
Y andG3

Y are distribution/likelihood equivalent.

DAG structures skeletons v-structures

G1
Y = Y1→ Y2→ Y3 Y1 − Y2 − Y3 ∅

G2
Y = Y1→ Y2← Y3 Y1 − Y2 − Y3 Y1→ Y2← Y3

G3
Y = Y1← Y2→ Y3 Y1 − Y2 − Y3 ∅

Adding causal QTL nodes to a phenotype network allows the inference of causal relationships

between phenotypes that could not be distinguishable using phenotype data alone. For example,

if we add a causal QTLQ1 to Y1 in phenotype networksG1
Y andG3

Y in the above example, then

the corresponding extended network structuresG1 andG3 have different v-structures as shown in

Table 2.2.

Table 2.2: Extended modelsG1 andG3 are no longer distribution/likelihood equivalent.

Extended DAG structures skeletons v-structures

G1 = Q1→ Y1→ Y2→ Y3 Q− Y1 − Y2 − Y3 ∅
G3 = Q1→ Y1← Y2→ Y3 Q− Y1 − Y2 − Y3 Q→ Y1← Y2
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2.2.4 QTL mapping conditional on phenotype network structure

Now we examine the inference of QTLs conditional on a phenotype network. QTL mapping

can be done in a conditional or unconditional fashion. In the unconditional mapping analysis, we

measure the association of a traitYt and QTLQ using the LOD score (logarithm of odds)

LOD(yt,q) = log10

(
f (yt | q)

f (yt)

)
,

where f (yt | q) represents the predictive density of a linear model withQ as an independent

variable andf (yt) the predictive density of the baseline model. Here a predictive density is given

by a maximized likelihood in a frequentist setting, or by the prior predictive density in a Bayesian

setting. A high LOD score means thatYt andQ are associated. Note that unconditional analysis can

detect QTLs that directly affect the phenotype under investigation, as well as QTLs with indirect

effects [Chaibub Neto et al., 2010a]. For example, if we consider the causal network of phenotypes

and QTLs in Fig. 2.1, then the unconditional QTL mapping ofY2 detects a direct QTLQ2 as

well as an indirect QTLQ1 that affectsY2 via Y1. Figure 2.2 shows the expected results of the

unconditional analysis for each phenotype.
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Figure 2.2: Output of the unconditional QTL mapping analysis for the phenotypes in Fig. 2.1.

Dashed and pointed arrows represent direct and indirect QTL/phenotype causal relationships, re-

spectively.

The conditional mapping analysis, on the other hand, incorporates other traits as covariates, and

measures the association ofYt andQ conditional on these covariates (sayyz) using the conditional

LOD score

LOD(yt,q | yz) = log10

(
f (yt | q, yz)

f (yt)

)
− log10

(
f (yt | yz)

f (yt)

)

= LOD(yt,q, yz) − LOD(yt, yz).
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Now, consider QTL mapping analysis tailored to a known phenotype network structure. In

this situation we can avoid detecting indirect QTLs by simply performing mapping analysis of the

phenotypes conditional on their parents. For instance, in Fig. 2.1, if we perform QTL mapping

of Y5 conditional onY2, Y3 and Y4 we do not detectQ1, Q2 and Q4 because of the following

independence relations:Y5⊥Q1 | Y2,Y3,Y4; Y5⊥Q2 | Y2,Y3,Y4; andY5⊥Q4 | Y2,Y3,Y4. We only

detectQ5 due to the following relation:Y5 6⊥ Q5 | Y2,Y3,Y4.

In practice, however, the structure of the phenotype network is unknown, and performing QTL

mapping conditional on a misspecified phenotype network structure can result in the inference of

misspecified causal QTLs as shown in Fig. 2.3. The mapping analysis of a phenotype conditional

on downstream phenotypes in the true network, induces dependencies between the phenotype and

QTLs affecting downstream phenotypes. This leads to the erroneous inference that the phenotype

includes downstream QTLs as its QTLs. For example, the mapping analysis ofY4 conditioning

on Y1, Y3 and a downstream phenotypeY5 includes downstreamQ5 as its QTLs in Fig. 2.3(b).

However, a model with misspecified phenotype network and QTLs will generally have a lower

marginal likelihood score than the model with the correct causal order for the phenotypes and

correct QTLs. Since in practice QTLnet adopts a model selection procedure to traverse the space of

network structures, it tends to prefer models closer to the true data generating process. Simulation

studies presented in Chaibub Neto et al. [2010a] corroborate this point.

Note that, as pointed out in Chaibub Neto et al. [2010a], the conditional LOD score can be

adopted as a formal measure of independence between a phenotype and QTLs. Even though we

restrict our attention to HCGR models, conditional LOD profiling is a general framework for the

detection of conditional independencies between continuous and discrete random variables. Con-

trary to partial correlations, the conditional LOD score does not require the assumption of multi-

normality of the data in order to formally test for independence, and it can handle QTL by covariate

interactions.
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Figure 2.3: QTL mapping tailored to the network structure. Dashed, pointed and wiggled arrows

represent, respectively, direct, indirect and incorrect QTL/phenotype causal relationships. (a) Map-

ping analysis ofY5 conditional onY3 andY4 still detectsQ1 andQ2 as QTLs forY5, since failing

to condition onY2 leaves the pathsQ1 → Y1 → Y2 → Y5 andQ2 → Y2 → Y5 in Fig. 2.1 open.

In other words, (Y3,Y4) cannot d-separate (Q1,Q2) from Y5 in the true causal graph. (b) Mapping

analysis ofY4 conditional onY1, Y3 andY5 incorrectly detectsQ5 as a QTL forY4 because in the

true network the pathsY4 → Y5 ← Q5 andY4 ← Y3 → Y5 ← Q5 in Fig. 2.1 are open when we

condition onY5.
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2.2.5 Joint inference of phenotype network and causal QTLs

Section 2.2.4 describes the QTL mapping conditional on a phenotype network. In practice, the

phenotype network is generally unknown and we cannot directly infer the correct causal QTLs.

Therefore, we need to perform a joint inference of phenotype network and causal QTLs.

Recall thatY are phenotypes,X are genetic variations as defined in Section 2.2.2, andG is a

Bayesian network structure of phenotypes and QTLs. LetGY represent a phenotype network and

let GQ→Y represent a graph from causal QTL nodes to phenotype nodes. Note thatGY andGQ→Y

are subgraphs of the extended network structureG. Conforming to the HCGR model in eqn (2.2),

GY corresponds to the collection of causal relations frompa(t) to trait t andGQ→Y corresponds

the collection of causal relations from nonzeroγtk to traits. DenoteθG to be the parameter sets

(βtv, σ
2
t , µt, θtk). From eqn (2.2), the likelihood of a Bayesian network of phenotypes and causal

QTLs can be written as a product of normal densities:

P(Y |G,X, θG) = P(Y |GY,GQ→Y,X, θG)

=

T∏

t=1

n∏

i=1

N
µ?ti +

∑

yk∈pa(yt)

βtkyki , σ
2
t

 .

The marginal likelihood of phenotypes and causal QTLsP(Y |G,X) is calculated by integrating

parametersθG out in the Bayesian network

P(Y |G,X) =

∫
P(Y |G,X, θG) P(θG |G) dθG.

The posterior probability ofG conditional on the data is given by

P(G | Y,X) =
P(Y |G,X)P(G)∑
G P(Y |G,X)P(G)

,

whereP(G) represents the prior probability of the network structureG. In the next section we

devote our attention to the specification ofP(G) using integrated biological knowledge.

Following Chaibub Neto et al. [2010a], we adopt the QTLnet framework that jointly infers the

phenotype network structure and causal QTLs. Most of the current literature in genetical network

reconstruction has treated the problems of QTL inference and phenotype network reconstruction
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separately, generally performing QTL inference first, and then using QTLs to help determine the

phenotype network structure [Zhu et al., 2008, Chaibub Neto et al., 2008]. As indicated in Section

2.2.4, such a strategy can include QTLs with indirect effects into the network.

2.3 Causal phenotype network incorporating biological knowledge

Besides the causal QTLs, biological knowledge is another useful and important information

resource to enhance the construction of the phenotype network. Such knowledge can be integrated

on top of the causal network to provide a more comprehensive picture of how genes are regulated.

This integrated network could generate a new hypothesis on gene regulation, having an overall

consistency with biological knowledge.

In this section, we propose a network inference method, QTLnet-prior, from phenotype data

with genetic variations, integrating biological knowledge. The QTLnet-prior extends the frame-

work of QTLnet referred to at the end of Section 2.2.5. It specifies the prior probability on pheno-

type network structures to integrate multiple sources of biological knowledge with flexible tuning

parameters on confidence of knowledge [Werhli and Husmeier, 2007]. The weighted integration

of biological knowledge could produce a more predictive Bayesian network. The details of our

extended framework, QTLnet-prior, are presented in Section 2.3.1. In Section 2.3.2, we sketch a

Metropolis-Hastings (M-H) MCMC scheme for QTLnet-prior implementation that integrates the

sampling of network structures [Madigan and York, 1995, Grzegorczyk and Husmeier, 2008], the

QTL mapping, and the sampling of biological knowledge weights. In Section 2.3.3, we present

how to encode biological knowledge into the prior distribution over phenotype network structures.

2.3.1 Model

2.3.1.1 Extended model

Denote byG a Bayesian network structure of phenotypes and QTLs. The graphG consists of

a phenotype network (GY) and causal QTLs to phenotypes (GQ→Y). Let Y be phenotype data,X

be genetic variations, andW represent weights set on various sources of biological knowledgeB.

The biological knowledgeB is considered to be relations between phenotypes such as transcription
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factor binding, protein-protein interaction and gene ontology annotation. That is, biological knowl-

edgeB can give a prior probability only for the phenotype networkGY. The QTLnet framework

presented in Section 2.2 assumes intrinsically a uniform prior over phenotype network structures.

Additionally, we specify a prior distribution on the weights of biological knowledge in order to

control the consistency between phenotype data and knowledge. Because the prior information

can be inaccurate or incompatible with the phenotype data, it is important to quantify its uncer-

tainty. We write the extended model as follows:

P(G,W | Y,X, B) ∝ P(Y |G,W,X, B)P(G,W | X, B)

= P(Y |G,X)P(G,W | X, B)

= P(Y |G,X)P(GY,W | X, B)P(GQ→Y | X, B)

= P(Y |G,X)P(GY,W | B)P(GQ→Y | X)

= P(Y |G,X)P(GY | B,W)P(W | B)P(GQ→Y | X). (2.4)

In the first step, the posterior probability of a networkG and weightsW is calculated by multiplying

the marginal likelihoodP(Y |G,W,X, B) of the traits given the networkG and the prior probability

P(G,W | X, B) of a network and weights given genetic variations and biological knowledge. The

marginal likelihoodP(Y | G,W,X, B) can be simplified to beP(Y | G,X) as in the second step. In

the third step, the prior probabilityP(G,W | X, B) can be decomposed intoP(GY,W | X, B) and

P(GQ→Y | X, B) by assuming the independence between a phenotype networkGY along with the

weightsW and causal QTLsGQ→Y given genetic variationsX and biological knowledgeB. The

fourth step is provided by the fact thatP(GY,W | X, B) is equal toP(GY,W | B) because the genetic

variations are not included in the structure of the phenotype networkGY, andP(GQ→Y | X, B) is

equal toP(GQ→Y | X) becauseB affectsGY but notGQ→Y. The extended model in eqn (2.4) shows

that prior distributions on phenotype network structureP(GY | B,W), biological knowledge weights

P(W | B) and causal QTLs of traitsP(GQ→Y | X) must be specified. We will describe how to set

P(GY | B,W), P(W | B), andP(GQ→Y | X) in the following.
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2.3.1.2 Prior on phenotype network structuresP(GY | B,W)

Incorporation ofa priori biological knowledge into a prior on network structures can lead

to discriminate Bayesian networks having the same likelihood [Werhli and Husmeier, 2007, Zhu

et al., 2007]. IfG1 andG2 have the same likelihood (P(Y |G1) = P(Y |G2)) but have different prior

probabilities (P(G1) , P(G2)), the posterior probabilities would become different (P(G1 | Y) ,

P(G2 | Y) ∝ P(Y | G2)P(G2)). For example, consider two graphs for nodest andv: one ist → v

and the other isv → t. Their likelihoods are the same because they are Markov equivalent. If a

prior indicates that one direction (t → v) is more likely than the other direction (t ← v), then the

posterior of one direction (t → v) becomes higher than the other direction (v→ t). The biological

knowledgeB along with its weightW can therefore give different prior probabilitiesP(GY | B,W)

for the phenotype networkGY.

Various types of information can supplement the learning of a phenotype network. We can

encode this supplementary information into unequal priors on network structures. A transcription

factor binding location can be used to prefer the direction from a transcription factor to the tar-

get gene [Bernard and Hartemink, 2005]. Pathway information can also guide to infer directions

among phenotypes [Werhli and Husmeier, 2007]. For example, consider a network with three

nodest, v andu, where a path fromt to v is known. Then, we can at least distinguish these two

relations: t → v ← u and t → v → u. Regulation inference [Peleg et al., 2010, Yeang et al.,

2004, Ourfali et al., 2007] from knock-out data and protein-protein interaction [Imoto et al., 2003]

can be used as a prior for network structure. We will describe how to encode this information in

Section 2.3.3. Since QTLnet is a Bayesian approach, we can flexibly incorporate various sources

of biological knowledge by constructing meaningful priors for the network structures.

Now, it remains to set the prior distribution on phenotype network structureGY with respect to

biological knowledgeB. Since a Bayesian network distribution can be factored by its parent-child

relations
∏

t P(Yt | Ypa(t)), it is natural to assume the prior on DAG structures to be factored by

its parent-child relations. Adapting the prior formulation over network structures in Werhli and

Husmeier [2007], we will show below that the prior satisfies the parent-child factorization.
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Let us define theenergyof a phenotype networkGY relative to the biological knowledgeB to

be

E(GY) =

T∑

i, j=1

|B(i, j) −GY(i, j)|, (2.5)

whereB is an encoding meant to describe biological knowledge ranging from 0 to 1 andGY is

represented by the adjacency matrix of a network structure. The adjacency matrix is a 0-1 matrix

which assignsGY(i, j) to be 1 if there is a directed edge from nodei to j, and to be 0 otherwise. The

energyE(GY) acts as a distance measure between biological knowledge and a network structureGY.

For a fixed biological knowledge matrixB, network structures will have small energy if they agree

with the biological knowledge, and will have large energy if they disagree with the knowledge.

The energy can be decomposed into the sum of local pseudo-energies defined by parent-child

relations for each trait:

E(GY) =

T∑

j=1


∑

i∈pa( j)

(1− B(i, j)) +
∑

i<pa( j)

B(i, j)



=

T∑

j=1


|B|
T

+
∑

i∈pa( j)

(1− 2B(i, j))

 =

T∑

j=1

( |B|
T

+ E j,pa( j)(GY)

)
,

where|B| = ∑T
i, j=1 B(i, j) andE j,pa( j)(GY) =

∑
i∈pa( j)(1− 2B(i, j)), which is the local pseudo-energy

defined by phenotypej and and its parents. Therefore, the prior distribution on network structures

can be constructed in terms of energy and it is shown to be the Gibbs distribution factorized by

parent-child relations:

P(GY|B,W) =
exp(−WE(GY))

Z(W)
(2.6)

=

∏T
j=1 exp(−WE j,pa( j)(GY))

Z′(W)
, GY ∈ DAG

whereZ(W) is a normalizing constant given by
∑

GY∈DAG exp(−WE(GY)) and Z′(W) is another

normalizing constant given byZ(W)/exp(−W|B|). For a fixedW, network structures with small

energy will have higher prior probabilities than network structures with large energy. The weight

W of biological knowledgeB is introduced to tune the confidence of biological information which
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sometimes can be inaccurate or incompatible with expression data. AsW goes toward 0, the

influence ofa priori knowledge gets negligible and the prior distribution of network structure is

assumed to be almost uniform. On the contrary, asW goes to the infinity, the prior on network

structure peaks at the biological knowledge.

Multiple sources of biological knowledge can be integrated into a prior on network structures

with different weights.

P(GY | B,W) =
exp(−∑

k WkEk(GY))
Z(W)

, GY ∈ DAG

whereBk is an encoding matrix of biological knowledge from sourcek, B is the vector of biological

knowledge matrices (B1, . . . , Bk), Wk is the weight ofBk, W is the weight vector (W1, . . . ,Wk), and

Z(W) is the summation of the numerator over all DAGs.

2.3.1.3 Prior on biological knowledge weightsP(W | B)

The weight parameter is introduced to control the influence of biological knowledge on the

phenotype network. A higher value of the weight would increase the influence of the biological

knowledge on the posterior distribution of networks. Specifically, a largeW puts significant prior

probability on the phenotype network structures which consistently agree with biological knowl-

edgeB. Conversely, a smallW puts fairly equal prior probabilities on all possible networks. If

biological knowledgeB is similar to the true network from which the expression data are gener-

ated, then the posterior probability will peak at highW. On the contrary, if biological knowledge

is deviated substantially from the true network, the posterior will peak at smallW. This happens

because a smallerW leads to a smaller ratio of prior probabilities of the deviated network and the

true network. Consequently, the posterior of the true network can be larger than the posterior of

the deviated network by the virtue of likelihood ratio overcoming the prior ratio at a smallW.

For each biological knowledgeBk, we specify the prior probability distribution of the weight

Wk to be an exponential distribution such that

P(Wk | Bk) = φ exp(−φWk), (2.7)
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with the rate parameterφ. Such an exponential prior forWk has several advantages. First, it does

not impose an upper bound onWk. Second, it would not allow the weight going to infinity too easily

since an infinite weight always results in a network closer to the biological knowledge regardless of

expression data. Third, when biological knowledge is inaccurate or incompatible with expression

data, the exponential distribution can control the contribution of negative biological knowledge

more easily than a uniform distribution. The rate parameterφ is set to be 1 in our simulation

because this rate balances the prior and likelihood well in the empirical study.

2.3.1.4 Prior on causal QTLsP(GQ→Y | X)

Without any specific information about the causal QTLs, we set the prior of causal QTLs to be

a uniform distribution. Several alternative specifications can be found in Bayesian QTL mapping

such as in Yi et al. [2005] and in Yi et al. [2007].

2.3.2 Sketch of MCMC

A main challenge in the reconstruction of networks is that the graph space grows super-

exponentially with the number of nodes. An exhaustive search approach over all network structures

is impractical even for small networks. Hence, heuristic approaches are needed to efficiently tra-

verse the graph space. We adopt a Metropolis-Hastings (M-H) MCMC scheme that integrates the

sampling of network structures [Madigan and York, 1995, Husmeier, 2003], the QTL mapping, and

the sampling of biological knowledge weightsW. The MCMC scheme iterates between accepting

a network structureG and acceptingk weightsW1, · · · ,Wk corresponding tok types of biological

knowledge.

1. Sample a new phenotype network structureGnew
Y from a network structure proposal distribu-

tion R(Gnew
Y |Gold

Y ).

2. Given the phenotype network structureGnew
Y , sample a new set of causal QTLsGQ→Y from a

QTL proposal distributionR(Gnew
Q→Y |Gold

Q→Y).
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3. Accept the new extended network structureGnew composed ofGnew
Y andGnew

Q→Y given the

biological knowledge weightsW with a probability

AG = min{1,
P(Y |Gnew,X)P(Gnew

Y | B,W)P(Gnew
Q→Y | X)

P(Y |Gold,X)P(Gold
Y | B,W)P(Gold

Q→Y | X)

×
R(Gold

Y |Gnew
Y )R(Gold

Q→Y |Gnew
Q→Y)

R(Gnew
Y |Gold

Y )R(Gnew
Q→Y |Gold

Q→Y)
}.

4. For each biological knowledgek,

(a) Sample a new weightWnew
k for biological knowledgeBk from a weight proposal distri-

butionR(Wnew
k |Wold

k ).

(b) Accept the new biological weightWnew
k given the phenotype networkGY with a proba-

bility

AWk = min{1, P(GY |Wnew
k ,Wold

−k , B)

P(GY |Wold, B)

P(Wnew
k | B)

P(Wold
k | B)

R(Wold
k |Wnew

k )

R(Wnew
k |Wold

k )
}.

5. Iterate the steps 1-4 until the chain converges.

In step 1, a new phenotype network structure is proposed by a mixture of single edge operations

(single edge addition, single edge deletion, single edge reversal) and edge reversal moves with or-

phaning [Grzegorczyk and Husmeier, 2008]. The edge reversal move with orphaning consists of

selecting an edgei → j, removing the parents of each node on the selected edge, sampling new

parents of nodei (including nodej), and sampling new parents of nodej, as long as it does not

make a cycle. It has been shown that edge reversal moves can significantly improve the conver-

gence of MCMC sampler [Grzegorczyk and Husmeier, 2008]. The proposal distribution puts the

same probability, summing to 1, to the graphs that can be reached by a corresponding edge move.

In step 2, causal QTLs can be sampled conditional on the phenotypes’ parents. There are sev-

eral ways to sample causal QTLs. One way is a Bayesian QTL mapping proposed in Yi et al.

[2005] for each phenotype. The prior distribution for the indicators of QTLs is
∏

wγk

k (1 − wk)γk

wherewk = p(γk = 1) is the prior inclusion probability for thekth QTL. We can use this indepen-

dent prior for the prior distribution and the proposal distribution for a causal QTL. Another way
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is the classical interval mapping of QTL for each phenotype conditional on its phenotypic parents.

The classical interval mapping regresses a phenotype on a single QTL and picks every QTL over

the significance threshold computed by permutations. Thus, this approach is deterministic as it

chooses the same set of QTLs given the same set of parent phenotypes. It is a fast algorithm ap-

proximating the Bayesian mapping of QTL though it might fail to satisfy the irreducibility of the

Markov Chain. We use the interval mapping for practical reasons.

In step 3, the computation of the ratio of marginal likelihoods, or Bayes factor,

P(Y | Gnew,X)/P(Y | Gold,X), can be approximated by the difference of BIC scores [Kass and

Raftery, 1995] when the sample size is large,

P(Y |Gnew,X)
P(Y |Gold,X)

≈ exp(−1
2

(BICGnew − BICGold)).

The BIC score is defined to be−2 logL + k logn whereL is the maximized value of the likelihood

for the estimated model,k is the number of free parameters estimated, andn is the sample size.

In step 4, a new weightWnew
k can be sampled from a moving uniform distributionU(Wold

k −
1,Wold

k + 1) and if the sampledWnew
k is less than 0, we take a negative of the new weight. This

proposal distribution makes a ratio of proposal distributions,R(Wold
k |Wnew

k )/R(Wnew
k |Wold

k ), being

1. In addition, we need to compute

P(GY |Wnew
k ,Wold

−k , B)

P(GY |Wold, B)
=

exp(−Wnew
k Ek(GY)−∑k′,k Wold

k′ Ek′ (GY))

Z(Wnew
k ,Wold

−k )

exp(−∑
k Wold

k Ek(GY))

Z(Wold)

,

whereZ(W) =
∑

GY∈DAG exp(−∑
k WkEk(GY)) is a normalizing constant. Note that it is not feasible

to compute the exactZ(W) due to the exclusion of cyclic networks. We approximate the normaliz-

ing constant by the summation over directed graphs with restriction on the number of parents, e.g.

3 as adopted by Werhli and Husmeier [2007].

After running an MCMC chain, we need to efficiently summarize the chain for the inference of

a network structure after discarding a transient burn-in period. The burn-in period can be arbitrary

determined by looking at the chain which seems to be away from an equilibrium distribution. The

choice by the highest posterior network structure might not produce a convincing model because

the graph space grows rapidly with the number of phenotype nodes and the most probable network
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structure might still have a very low probability. Therefore, instead of selecting the network struc-

ture with the highest posterior probability, we perform Bayesian model averaging [Hoeting et al.,

1999] over the causal links between phenotypes, to infer an averaged network. Explicitly, let∆uv

represent a causal link fromu to v, that is,∆uv = {Yu→ Yv}. Then

P(∆uv | Y,X) =
∑

G

P(∆uv | G,Y,X) P(G | Y,X)

=
∑

G

11{∆uv ∈ G}P(G | Y,X).

The averaged network is represented by the causal links with maximum posterior probability or

with posterior probability above a predetermined threshold, e.g. 0.5.

2.3.3 Summary of encoding of biological knowledge

In eqn (2.6), we have constructed a prior distribution on a network structureGY in terms of

energyE(GY) relative to biological knowledgeB. Now we describe how to encode a biological

knowledge matrixB from several sources of biological information. Recall thatB is an encoding

meant to describe biological knowledge ranging from 0 to 1, and energyE(GY) is defined to be a

distance measure betweenB andGY in eqn (2.5). When there is no available biological knowledge,

we would put every element inB as 1/2. Then all DAGs have the same energy and therefore the

probability of a network structure conditional onW is 1/K with K as the number of all DAGs.

In contrast, when biological knowledge is available, we will look at several ways of encoding

biological knowledge intoB : transcription factor and DNA binding [Bernard and Hartemink,

2005], protein-protein interaction [Jansen et al., 2003] and gene ontology annotations [Lord et al.,

2003].

2.3.3.1 Transcription factor and DNA binding

Chromatin immunoprecipitation with microarray experiments is used to investigate the inter-

action of proteins and DNAin vivo. This technology has been employed to generate putative lists

of transcription factor/target gene interactions [Lee et al., 2002]. Bernard and Hartemink [2005]

suggested an approach to convert a p-valuePi j , quantifying the evidence that a transcription factor
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i binds to a putative target genej, into a posterior probability for the presence and directionally

of an edge in a Bayesian network. Following Bernard and Hartemink [2005] we assume that the

p-valuePi j follows a truncated exponential distribution with meanλ when the transcription factori

binds to a target genej (GY(i, j) = 1) and a uniform distribution when the transcription factor does

not bind to a target gene (GY(i, j) = 0).

Pλ(Pi j = p |GY(i, j) = 1) =
λe−λp

1− e−λ
,

Pλ(Pi j = p |GY(i, j) = 0) = 1.

The probability of the directed edge before observing any biological data is assumed to be

P(GY(i, j) = 1) = 1/2 so that without any biological data, the probability of the presence of

the edge only depends on the expression data. By the Bayes’ rule, the probability of presence of

an edge after observing a p-value is

Pλ(GY(i, j) = 1 | Pi j = p) =
λe−λp

λe−λp + (1− e−λ)
.

Hereλ is assumed to be uniformly distributed over the interval [λL, λH] and the integration overλ

is performed to obtain the probability of the presence of an edge,

P(GY(i, j) = 1 | Pi j = p) =
1

λH − λL

∫ λH

λL

λe−λp

λe−λp + (1− e−λ)
dλ.

This can be solved numerically, for instance, by choosingλ in the range [0,10000]. We should

thus obtain the following estimate:B(i, j) = P(GY(i, j) = 1 | Pi j = p).

2.3.3.2 Protein-protein interaction

Since protein-protein interaction is non directional, we put the same probability on both direc-

tions. If we do not consider the diverse reliabilities of protein-protein interaction from several ex-

periments, we setB(i, j) andB( j, i) to beδ > 1/2 when we find any interaction on any experiment.

If there are gold standards for positive and negative protein-protein interactions, and experiments

have diverse reliabilities, then we can use the Bayes classifier proposed by Jansen et al. [2003]

to combine heterogeneous data. Positive gold standards are well-known true protein-protein in-

teractions while negative gold standards are interactions which cannot happen such as a pair of
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proteins in different subcellular compartments. An interaction experimental data set is a collection

of observations over all pairs of proteins by binaries whether the interaction is present or absent

for each pair. Suppose there areL interaction experimental data sets with different false positive

rates. We can calculate the posterior odds of an interaction from binary observationsf1, . . . , fL,

Oposterior =
P(pos| f1, . . . , fL)
P(neg| f1, . . . , fL)

= Oprior × LR

=
P(pos)
P(neg)

× P( f1, . . . , fL | pos)
P( f1, . . . , fL | neg)

.

In the positive gold standard interactions, we can find a set of interactions which have the observed

values f1, . . . , fL. The likelihood under the positive gold standard can be defined to be the pro-

portion of the set with the valuesf1, . . . , fL in the positive gold standard. Similarly we define the

likelihood P( f1, . . . , fL | neg) under the negative gold standard. Then we can take the ratio of the

two likelihoods to calculate the likelihood ratio (LR). The prior oddsOprior can be defined by an

expert. The encoding ofB can be obtained by transforming the posterior odds into a posterior

positive rate:

B(i, j) = B( j, i) =
Oposterior

1 + Oposterior
.

When the posterior odds is equal to 1,B(i, j) andB( j, i) are equal to 1/2. As the posterior odds

increases, the values ofB(i, j) andB( j, i) also increase.

2.3.3.3 Gene ontology

The Gene Ontology (GO) [Ashburner et al., 2000] is a well controlled vocabulary of terms

describing the molecular functions, biological processes and cellular components of a gene. A GO

ontology is structured as a directed acyclic graph where each node represents a GO term. The GO

terms annotate a large fraction of genes. The distance between two genes can be defined in terms

of their GO annotations. One well defined distance is Lord’s similarity [Lord et al., 2003]. This

measure takes into account the hierarchy of GO ontology and GO term occurrences in the myriad

of genes. If two genes share a more specific GO term positioned in the lower part of the GO

hierarchy, they are more likely to be similar. However, even if the shared GO terms lie in the same
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level of the hierarchy, the frequencies of the GO terms in the whole genes are different and it affects

the similarity. Consider that two GO termsc1 andc2 lie in the same level of the hierarchy. Suppose

there are one hundred genes annotated with termc1 and there are one thousand genes annotated

with termc2. Then the chance of two genes sharing the termc2 is higher than the chance of sharing

the termc1. Therefore, it implies that the termc1 is more informative. The information content

IC(c) for a GO termc is defined to be the negative logarithm of the number of times the term or

any of its descendant terms occurs in the myriad of genes divided by the total occurrences of GO

terms. The root of the hierarchy will have zero information content while the leaf of the hierarchy

will have high information content. Once the information contentIC(c) for each node in the GO

ontology is set up, we can define GO term similarity and gene similarity. The similarity between

two GO terms is defined to be the maximum information content among the shared parents of the

two terms, which is

sim(c1, c2) = max
c∈(pa(c1)∩pa(c2))

IC(c).

Then, since a gene is annotated with a set of GO terms, the similarity between two genesg1 andg2

can be defined as the average similarities of all pairs of GO terms between two genes. That is,

sim(g1,g2) =

∑n
i=1

∑m
j=1 sim(c1,i , c2, j)

nm
.

This Lord’s measure can be used as an encoding ofB if it is rescaled to be in the interval [0,1].

2.4 Simulations

We performed a simulation study for comparing the proposed method (QTLnet-prior) with

three other methods - QTLnet [Chaibub Neto et al., 2010a], WH-prior [Werhli and Husmeier,

2007], and Expression. Table 2.3 provides a summary of these four methods in terms of using

the genetic variation information and biological knowledge. The QTLnet was implemented using

R/QTLnet, the QTLnet-prior was implemented with prior setting on R/QTLnet, the WH-prior was

programmed as in Werhli and Husmeier [2007] with a modification of approximating the marginal
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likelihood with the BIC score instead of using the BGe score4 [Geiger and Heckerman, 1994].

Expression was programmed by modifying R/QTLnet excluding QTL mapping.

Table 2.3: Four methods which differ in the use of genetic variation information and biological

knowledge.

Method
Use of Use of

Genetic Variation Information Biological Knowledge

QTLnet-prior YES YES

QTLnet YES NO

WH-prior NO YES

Expression NO NO

We simulated expression data anda priori knowledge matrix according to the network struc-

ture in Fig. 2.1 and produced 100 simulated data sets. To generate expression data based on the

network in Fig. 2.1, the genetic information was simulated first. The genetic map described 5

chromosomes of 100 cM with 10 equally spaced markers in each chromosome and the markers

were simulated for 500 mice in an F2 population using R/qtl [Broman et al., 2003]. We assumed

QTL Qt is located in the middle of chromosomet. Then, each expression data set of F2 pop-

ulation was generated with different genetic effects and partial regression coefficients between

phenotypes. Genetic additive effects were sampled from a uniform distributionU[0,0.5] and dom-

inance effects were sampled fromU[0,0.25]. The partial regression coefficientsβut were sampled

from U[−0.5,0.5]. The residual phenotypic variance was 1. Biological knowledge matrixB was

4BGe stands forBayesian metric forGaussian networks having scoreequivalence. The BGe score is developed as

a scoring metric for a Bayesian network of continuous variables under the assumption that the data is sampled from a

multivariate Gaussian distribution. The BGe score is first derived for a complete Bayesian network where every pair

of distinct nodes is connected by a direct edge. It assumes a prior on parameter to be a normal-Wishart distribution

so that one can obtain a closed-form marginal distribution. Under the assumption of a parameter independence and

modularity, the BGe score for an arbitrary Bayesian network is derived to bep(Y |G) =
∏T

t=1
p(Yt ,Ypa(t) | Gc)
p(Ypa(t) | Gc)

whereGc is

any complete DAG model such that each node has the same parents as in G. It is known that Markov equivalent DAGs

have the same BGe score. See Geiger and Heckerman [1994] for details.
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generated for several cases. The valueB(t,u) was generated from one of two [0,1]-truncated nor-

mal distributionsN±(0.5 ± δ,0.1) [Geier et al., 2007]. The distribution is truncated at 0 and 1 to

guarantee the valueB(t,u) ranging from 0 to 1. When no biological knowledge is available, the

natural choice ofB(t,u) is 1/2. Consequently, the evidence for the presence (resp. absence) of

edget → u is necessarily specified through a value ofB(t,u) greater (resp. lower) than 1/2. In

the simulation, theB(t,u) value of true edge was generated fromN+ and theB(t,u) value of false

edge was generated fromN−. The parameterδ controls the accuracy of prior knowledge. We

denote the generated biological knowledge to be positive knowledge, non informative knowledge

or negative knowledge based on the sign ofδ: +,0,−, respectively. We examined eleven cases of

different accuracies of prior knowledge:δ ∈ {±0.1,±0.08,±0.06,±0.04,±0.02,0}. In the extreme

case whenδ is equal to 0.5, the prior knowledge almost correctly reflects the network structure

while whenδ is equal to−0.5, the prior knowledge is incorrectly reflecting the network structure

almost in the opposite way. Whenδ is equal to 0, the information is generated with no distinction

between true and false edges. For each simulated data set, we ran a Markov chain Monte Carlo

for 30300 iterations, discarded the first 300 iterations, sampled every 10 iterations, and generated

3000 samples.

We assessed these four methods by using receiver operator characteristic (ROC) curves of the

proportion of recovered and spurious edges. Bigger areas under the ROC curve generally indicate

better performance, as the area represents the probability that the classifier ranks true edges higher

than false edges [Fawcett, 2006]. The ROC curves are obtained from the set of proportions of

recovered edges and spurious edges for various posterior probability thresholds ranging from 0 to

1.

If we are more interested in getting the true edges, precision-recall curves are useful. Since

the area under ROC curve could be high if the false edges are not included frequently in the net-

work but the true edges are not so much included. Precision-recall curves compare the proportion

that the inferred edge is true (precision) and the proportion that true edge is inferred (recall). Fig-

ure 2.5 shows that as positive knowledge is incorporated, the performance to get the true edges is

improved. In addition, QTLnet-prior works better than WH-prior in estimating the true edges.
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(a) The areas under ROC curves of QTLnet-prior,

QTLnet, WH-prior, and Expression. The ar-

eas under ROC curves of QTLnet-prior and WH-

prior are plotted against the accuracy of biologi-

cal knowledge,δ. Since QTLnet and Expression

do not incorporate biological knowledge, they are

plotted in a single point each (×, �). The shaded

area indicates the standard error of the area under

ROC curve.
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(b) The ROC curves of QTLnet-prior and WH-

prior are drawn when non informative biological

knowledge (δ = 0) is incorporated. They are com-

pared with the ROC curves of QTLnet and Expres-

sion which do not incorporate biological informa-

tion.

Figure 2.4: The comparison of four methods by the area under the ROC curves with respect to the

accuracy of biological knowledge.
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Figure 2.5: Precision-recall curves show the trade-off between the probability that an inferred edge

is the true edge and the probability that a true edge is included. As the biological knowledge

gets positively informative, the precision-recall curve moves to the upper right which means good

performance. The performance is better when the network is estimated by QTLnet-prior compared

to the network by WH-prior.
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First, we evaluate the effect of incorporating genetic variation information. The effect of QTL

mapping can be tested by comparing QTLnet-prior and WH-prior. QTLnet-prior is more effective

in recovering the network structure than WH-prior in Fig. 2.4a and we can conclude that QTL

mapping increases the effectiveness. Better causal QTLs can be inferred by conditioning on the

phenotype network. Similarly, a better phenotype network can be inferred by conditioning on

causal QTLs. The gain is more emphasized when the biological knowledge is negative.

Second, we evaluate the effect of incorporating biological knowledge. In Fig. 2.4a, whenδ is

positive, QTLnet-prior performs better than QTLnet and WH-prior performs better than Expres-

sion, whereas whenδ is negative, QTLnet-prior performs worse than QTLnet and WH-prior per-

forms worse than Expression. With a positiveδ, as the accuracy of knowledge increases, QTLnet-

prior and WH-prior benefit by the prior knowledge incorporation. However, a negativeδ, indicating

that the knowledge disagrees with the true network structure, makes QTLnet-prior and WH-prior

be harmed by prior knowledge incorporation. The decreased performances in QTLnet-prior and

WH-prior bring in the attention whetherW can effectively control the influence of negative knowl-

edge. Figure 2.6 shows that the median ofW in the posterior sample is close to 0 with negative

knowledge. It implies that the weightW can effectively control the use of negative knowledge to

some extent but not completely, based on the decreased recovery observed in comparison to the

case of non informative knowledge evidenced in Fig. 2.4a. In comparison with QTLnet and Expres-

sion, the reduced performance of QTLnet-prior and WH-prior can be explained by the remaining

uncontrolled effect of prior probability incorporating negative knowledge. When non informative

knowledge is incorporated, there is no significant difference in area under ROC curve between

QTLnet and QTLnet-prior (p-value=0.82) and between Expression and WH-prior (p-value=0.89)

as shown in Fig. 2.4a and Fig. 2.4b.

2.5 Analysis of yeast cell cycle genes

We applied QTLnet-prior to reconstruct a network of 26 genes involved in the cell cycle in

yeast (Saccharomyces cerevisiae), previously chosen by Bernard and Hartemink [2005] for cell
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Figure 2.6: The distribution of median weightW of posterior sample by QTLnet-prior inference.

Each panel shows the medianW distribution when biological knowledge is defective (δ = −0.1),

non informative (δ = 0), and informative (δ = 0.1).
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cycle network analysis with time-dependent expression data and transcription factor binding in-

formation. Genes express periodically by cell cycle phases (genome duplication phase, gap phase

2, cell division phase and gap phase 1) and there are transcription factors to regulate some pe-

riodical genes [B̈ahler, 2005]. The gene expression data and genetic variation information were

obtained from a backcross population of 112 segregates between BY4716 and RM11-1a [Brem and

Kruglyak, 2005]. Brem and Kruglyak [2005] extracted the gene expression data by constructing a

backcross, isolating RNA, and hybridizing cDNA to microarrays. They also genotyped the popula-

tion at 2957 genetic markers for genetic variations. In addition to gene expression data and genetic

variations, we incorporated transcription factor binding information as biological knowledge for

QTLnet-prior analysis. The p-value for evidence of transcription factor binding from chromatin

immunoprecipitation with microarray experiments is available for 106 transcription factors from

Lee et al. [2002]. For the 26 genes in our analysis, 11 of them are transcription factors (TF) and

the rest are known targets of one or more transcription factors. We transformed the p-values into

biological knowledge matrixB as described in Section 2.3.3.

The construction of the causal network focused on the 26 phenotypes of 112 yeast segregates,

incorporating genetic variation information at 2957 markers and biological knowledge of tran-

scription factor binding. We ran an MCMC for 760,000 iterations, discarded the first 200,000

iterations, sampled every 100 iterations, and finally got 5,600 samples used for estimation. The

computation took around 14 days of CPU time on a 2.66GHz Intel(R) Core(TM)2 Quad running

Red Hat 4.1.2-50. To examine the mixing and convergence of the MCMC chain, we first computed

the autocorrelation of BIC scores and autocorrelation ofW, respectively. As shown in Fig. A.2 in

the appendix, both autocorrelation values get close to 0. It indicates that the MCMC chain may

not suffer from a slow mixing rate. Furthermore, we calculated Geweke’s convergence statistics

[Geweke, 1992] to check the convergence of the Markov chain. The Geweke’s statistics is asymp-

totically N(0,1) when it is equal for the two means of the first 10% and the last 50% parts of

the Markov chain. The Geweke’s statistics on BIC score is 0.34 and is -0.25 onW, suggesting

the convergence of the chain. Figure 2.7 shows the causal phenotype network reconstructed by
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Figure 2.7: Yeast cell cycle phenotype network by QTLnet-prior, integrating transcription factor

binding information. A solid edge is the inferred edge with its posterior probability over 0.5 and

the darkness of the edge is in proportion to the posterior probability. Dark nodes are transcription

factors. The edge consistent with transcription factor binding information is marked with a star,∗.
The TF binding relation recovered by an indirect path in the inferred network is represented by a

dashed edge.
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QTLnet-prior. The full network of phenotypes and causal QTLs can be found in Fig. A.1 in the

appendix.

In the TF biological knowledge matrixB, we defined a pair (i.e. an edge from nodei to node

j) to be significant if its B(i, j) value is over 0.5. There are 44 significant TF pairs in the TF

biological knowledgeB. For the constructed network with 36 inferred edges as in Fig. 2.7, we

found 3 significant direct TF pairs (MBP1→ CDC20, SWI5→ CDC6 and MCM1→ CTS1) and

2 significant indirect TF pairs (ACE2→ CDC21 and FKH2→ SIC1). Interestingly, we did not

find any reverse relations – causal relation from target gene to TF – in the inferred network. The

remaining 39 TF causal relations inB were not inferred in the phenotype network.

Figure 2.8 shows the posterior density distribution of the weightW of TF information, which

has a mode of approximately 0 with right skewness. To further examine the contribution of TF

information on phenotype network reconstruction, we applied QTLnet to construct the pheno-

type network without using TF information. For the two networks inferred by QTLnet-prior and

QTLnet, the posterior probability of every possible directed edge is very similar to each other as

shown in Fig. 2.9. Although the TF knowledge did not improve the reconstruction of the cell

cycle network, it did not have a negative impact on reconstruction, either. The weight parameter

was actually effective in protecting the network reconstruction against the inconsistent TF infor-

mation. The inconsistency between TF information and expression data may be due to any of the

following reasons: (1) inconsistency between physical regulation of transcription binding and tran-

scriptional regulation level of expression changes; (2) necessary post-translational modification of

TF or construction of TF complex with other proteins for regulation of target genes; (3) cell cycle

phase or tissue dependent TF binding or false transcription binding information; (4) incapability

of capturing cyclicity of the cell cycle network from static expression data of a single time point.

2.6 Conclusion

We have developed a phenotype network inference method (QTLnet-prior) to incorporate ge-

netic variation information and biological knowledge. Genotypes are known to control phenotypes

but not the other way and thereby can help to distinguish phenotype network structures. Biological
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knowledge can improve the clustering and directional inference between phenotypes. The simula-

tion study shows that the proposed method can improve the reconstruction of the gene network by

integrating genetic variation information and biological knowledge as long as knowledge agrees

with data. When biological knowledge does not agree with data, the weight of knowledge controls

the contribution of prior probability of biological knowledge on the likelihood of data, reducing (to

some extent) the negative impact of the defective knowledge. We applied QTLnet-prior to estimate

a yeast cell cycle network of 26 genes with causal QTLs by integrating transcription factor bind-

ing information, and compared its performance to QTLnet. The distribution of weight suggests

that TF binding information was inconsistent with expression data. Nonetheless, comparison with

QTLnet’s output showed fairly similar result, suggesting the weight parameter of knowledge was

effective in controlling the negative impact of inconsistent knowledge in this case.

When we interpret the inferred networks, we need to be cautious. Even though, in theory, the

incorporation of causal QTLs allows us to distinguish network structures that would otherwise be

likelihood equivalent, in practice some of the detected expression-to-expression causal relation-

ships might be invalid. The problem is that the inferred expression network represents a projection

of real causal relationships that might take place outside the transcriptional regulation level. For

instance, the true causal regulations could be due to transcription factor binding, direct protein-

protein interaction, phosphorylation, methylation, etc. and might not be well reflected at the gene

expression level. The incorporation of diffused biological knowledge, mined from different levels

of biological regulation, could potentially improve the reconstruction of gene-expression regula-

tory networks. In any case, the inference of these networks can still play an important role in

generating hypothetically possible causal relations.

There are several factors that could change the inference by QTLnet-prior. One is the prior

distribution specification. We have used the Gibbs distribution as a prior distribution for network

structures in eqn (2.6) in terms of an absolute distance measure in eqn (2.5) to incorporate bio-

logical knowledge. The exponential distribution is used for the weight of biological knowledge

in eqn (2.7) with the rate parameter (see Section 2.3.1). However, we could consider different
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choices of network structure distributions, measures to incorporate information, weight distribu-

tions, and hyperparameters. Another factor is the sample size of expression data. As the sample

size increases, the contribution of biological knowledge will be generally reduced. This shows

the limited contribution of biological knowledge on the reconstruction of networks, even though

biological knowledgeB can also be obtained from a number of experiments as discussed in Werhli

and Husmeier [2007]. The third factor is the global control of biological knowledge on network re-

construction. Illustrated by the yeast cell cycle network, every TF/target regulation was controlled

by the same weight parameter. It may have resulted in no contribution of any biological knowl-

edge even though 5 TF/target regulations were inferred to be consistent with expression data. This

suggests incorporation of biological knowledge by local control parameters when reconstructing

a network. Finally, the encoding of biological knowledge plays an important role. We have pro-

posed to use the encoding for transcription factor and its targets by Bernard and Hartemink [2005],

protein-protein interaction by Jansen et al. [2003], and gene ontology annotations by Lord et al.

[2003]. These encodings are mainly about direct relationships in separate biological regulation

levels. As discussed in the previous paragraph, this diffused biological knowledge can improve the

Bayesian network reconstruction.

There are shortcomings of QTLnet-prior framework inherited from QTLnet. One of the as-

sumptions of QTLnet is no presence of latent variables. Latent variables can make it impossible

to find the marginalized model in the class of DAG as shown in Richardson and Spirtes [2002]

and can induce erroneous relations. Suppose there are three nodesy1, y2, y3, andy1 andy2 have a

common parentc1 while y2 andy3 have a common parentc2. If the common parentsc1 andc2 are

not observed, we obtain the following independence relations:y1⊥y3 andy1 6⊥ y3 | y2. Then we

mistakenly infer thaty1 andy3 are parents ofy2. To address this problem, one can consider the

more general class of ancestral graphs, which takes care of latent variables. Ancestral graphs open

up the possibility of latent variables while they do not explicitly include the latent variables in the

network structures [Richardson and Spirtes, 2002].

A persistent challenge in Bayesian network analysis is to cope with large networks since the

DAG space size grows super-exponentially with the number of nodes. Approaches based on
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Markov blankets with and without restrictions on the number of parent nodes have been proposed

[Riggelsen, 2005, Schmidt et al., 2007, Perrier et al., 2008]. Jaakkola et al. [2010] approximated

the Bayesian network problem to a linear programming problem. Tamada et al. [2011] developed

a parallel algorithm that infers subnetworks restricted on a Markov blanket and merges the subnet-

works. Likewise, in phylogeny estimation, the supertree reconstruction from small trees has been

studied [Bininda-Emonds et al., 2002]. We think the rigorous development of super Bayesian net-

work methodology to integrate small subnetworks is a promising direction to infer a large network

since the inference of small subnetworks is computationally inexpensive and multiple subnetworks

can be parallelized for computation. In the era of vast biological data and knowledge in various

aspects, integrating them reasonably in a large scale can be an interesting topic for future research.
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Chapter 3

Causal network incorporating genetic variations with latent phe-
notypes

3.1 Motivation

In the previous chapter, it was discussed that Bayesian network inference assumes that all

variables are included. In other words, there are no latent variables, no hidden variables, or no

unmeasured variables. This assumption may not hold because data cannot be always obtained for

all the constituents of the network. For example, a microarray measures genome-wide mRNA ex-

pression levels and we could reconstruct a gene network on mRNA gene expressions. However, it

is possible that some mRNA levels are governed by other molecules’ levels such as metabolites,

proteins and signaling molecules. In this case, even if we have the genome-wide expression lev-

els, the important variables are missing when constructing a network. Another reason is that we

may focus on a subset of observed variables to be computationally practical in inferring a network.

For instance, QTL mapping on expression levels of mRNAs provides us a list of genes that are

controlled by the same genomic loci, which co-maps with interesting clinical traits such as insulin

levels, glucose levels, and so on. To decipher how the insulin level is controlled by genetic varia-

tions and mRNA levels, we can reconstruct a gene network with genes co-mapped with the insulin

level. However, it is not always computationally feasible to reconstruct a causal gene network

on hundreds of co-mapped genes and in practice, we take a subset of genes to reconstruct a gene

network.

Then, what happens to the inference of networks on observed variables when some variables

in the true data-generating Bayesian network are not measured? The answer is that the class of
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Bayesian networks is not sufficient to properly represent the conditional independence relations on

observed variables and we need to consider an extension of Bayesian networks. In the following

Bayesian network, supposey1, y2, y3 andy4 are observed butc is unmeasured. The conditional

c
~~~~

~~
ÃÃ@

@@
@

y1 // y2 y4 y3oo

independence relations on observed variables are like these:

y2 6⊥ y4|{y1, y3}
y1 6⊥ y2 y3 6⊥ y4

y1 ⊥ y4 y3 ⊥ y2

y1 6⊥ y4|y2 y3 6⊥ y2|y4.

The conditional independence relations ony1, y2, y4 can orient edges to bey1→ y2← y4 while the

conditional independencies ony2, y3, y4 can orient edges to bey3 → y4 ← y2. These orientations

have conflicting edges betweeny2 andy4, and hence there is no Bayesian network representing the

conditional independencies on observed variablesy1, y2, y3 andy4. Therefore, we consider a class

of ancestral graph Markov models, an extension of the class of DAG Markov models (Bayesian

networks), to properly represent conditional independencies on observed variables.

An ancestral graph Markov model is a graphical independence model whose graph consists

of vertices and three kinds of edges between vertices – directed, undirected and bidirected edges

[Richardson and Spirtes, 2002]. Each vertex corresponds to a variable and each edge shows the

relationship between variables. Directed edges are associated with causal relations as in DAGs,

bidirected edges are associated with marginalization over latent variables and undirected edges are

associated with conditioning on selection variables. Conditioning on selection variables means

that the data is collected by the selecting criteria of the selecting variables. This data is sampled on

a selected sub-population, but not on the whole population. The details of ancestral graphs will be

described in Section 3.2.
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Here we focus on the cases when there could be latent variables between phenotypes but not

selecting variables, and hence we restrict a phenotype network to directed ancestral graphs whose

edges are either directed or bidirected. We extend the phenotype network with genotypes and

show that the extended network is an ancestral graph. It is proved that the addition of QTLs helps

to distinguish Markov equivalent phenotype networks. We model the extended network by recur-

sive linear equations with correlated Gaussian errors. We develop a Markov chain Monte Carlo

(MCMC) algorithm to search over the extended phenotype networks allowing latent variables

The details of ancestral graph inference for phenotypes and genotypes are organized as follows.

In Section 3.2 we briefly introduce the definition, terminology and properties of ancestral graphs.

Section 3.3 formulates a statistical model of a gene network with genotypes represented by an

ancestral graph and presents its graphical and statistical properties. Section 3.4 proposes an MCMC

method to infer a directed ancestral graph of phenotypes and QTLs. Section 3.5 conducts the

simulation study of the proposed methods for gene network inference and Section 3.6 applies the

developed method on F2 mice data. Finally, in Section 3.7, we discuss the pros and cons of our

approach.

3.2 Ancestral graph

A graphical independence model is a model to represent the independence relations entailed

by a graph. The independence relations are obtained by applying a separation criterion to a graph,

which produces a global Markov property. For example, a Bayesian network is a directed acyclic

graph (DAG) Markov model and its independencies are entailed by applying d-separation on the

DAG as defined in Chapter 2. Likewise, the independence relations of an ancestral graph is entailed

by m-separation criterion. We will first describe terminology, define an ancestral graph and explain

the m-separation. Note that this section summarizes the paper of Richardson and Spirtes [2002]

which introduced and defined ancestral graphs and proved several properties of ancestral graphs.
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Terminology In an ancestral graphG, three types of edges describe the relationship between

vertices.

If



x→ y

x← y

x — y

x↔ y



, thenx is a



parent

child

neighbor

spouse



of y.

The set of parents ofy is denoted bypa(y), the set of neighbors ofy is denoted byne(y), and

the set of spouses ofy is denoted bysp(y). A pathbetween two vertices is a sequence of distinct

adjacent vertices. A vertexx is anancestorof a vertexy, x ∈ an(y), if either there is a directed path

x→ · · · → y or x = y. In an ancestral graph,x is ananterior of y, x ∈ ant(y), if there is ananterior

path from x to y which is eitherx — · · · — y, x→ · · · → y, or x — · · · — → · · · → y. Note that

an anterior path cannot be in the form ofx→ · · · → — · · · — y because it will be contradictory

to the definition of an ancestral graph in the next paragraph. Acollider at η on the path is defined

as→ η ←, ↔ η ↔, ↔ η ←, → η ↔, shortly,�→ η ←(, where�→ can be either↔ or→ and←(
can be either↔ or←. Vertices other than a collider are defined to be non-colliders.

Definition 3.1 (Definition 2.1 in Ali et al. [2009]). An ancestral graphis a graph whose vertices

are connected by at most one of undirected ( — ), directed (→) or bidirected (↔) edges, holding

the following conditions:

1. there are no directed cycles;

2. whenever there is an edgex↔ y, then there is no directed path fromx to y or fromy to x;

3. if there is an undirected edgex — y thenx andy have no spouses or parents.

The third condition makes the configurationsx — y↔ z andx — y← z impossible. We can

split all verticesV in an ancestral graphG into a set of vertices with no arrowheads pointing to it

(unG) and the remaining vertices (V \ unG). Explicitly, let unG = {x | pa(x) ∪ sp(x) = ∅}. The

schematic view of an ancestral graph separated byunG is like in Figure 3.1.

An edge takes a specific form whether the endpoints of the edge is inunG or not. If both

endpointsx andy of an edge are inunG, then the edge should bex — y. If x ∈ unG andy ∈ V \unG,
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un V \ unG G

Figure 3.1: Schematic view of an ancestral graph. Reproduced from from Fig. 4 in Richardson

and Spirtes [2002].
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then the edge takes the formx→ y. This decomposition byunG will be used in parameterization

of an ancestral graph.

m-separation The separation criterion for an ancestral graph ism-separation. A pathπ between

x andy along graphG is m-connected givenZ, with x, y < Z, if

1. every non-collider on the pathπ is not inZ, and

2. every collider on the pathπ is in ant(Z).

If there is no m-connecting path betweenx andy givenZ, thenx andy are said to be m-separated

givenZ. By applying m-separation on ancestral graphG, we can read off a set of independencies

J(G) such that< X,Y | Z >∈ J(G) interpreted asX andY are independent conditional onZ.

The second condition is equivalent to “every collider on the path is inan(Z)” because a vertexη in

ant(Z) but not inan(Z) is connected to a vertex by an undirected edge and then the vertexη cannot

have any parents or spouses by the third condition in the definition of an ancestral graph, which

thereby cannot form a collider.

We have presented the definition of an ancestral graph, its special property and m-separation

criterion. Now we will briefly show how marginalization of latent variables and conditioning on

selection variables are associated with an ancestral graph.

Marginalization and Conditioning The ancestral graph is motivated by the case in which the

data generating process is a directed acyclic graph (DAG) model but only a subset of variables

are observed (corresponding to marginalization) and there are selection effects (corresponding to

conditioning) [Richardson and Spirtes, 2002]. As an example of the effect of marginalization over

latent variables, consider a networkX ← C → Y whereC is latent andX andY are observed.

The variablesX and Y are independent conditional onC in the underlying network while we

cannot recover the conditional independence ofX andY from the observed variables only. The

marginalization overC will transform the graphX ← C → Y into X ↔ Y. As an example of the

effect of conditioning on selection variables, suppose that we want to investigate whether the hours



63

of workout (W) and the amount of food eaten (F) are related. Let the truth to be thatW andF affect

the body weightB respectively andW andF are independent:W→ B← F. If the data is collected

randomly, we would observe the independence betweenW andF. However, if units in the data

are sampled depending on some criteria such as sampling only overweight people,B > 300lbs, in

other words, the data is collected conditional on the selecting variableB, a misleading conclusion

will be made thatW andF are inversely dependent. Conditioning on the selecting variableB will

transform the graph intoW — F.

These changes of dependencies by marginalization and selection are handled by forming an

ancestral graph with bidirected edges and undirected edges, respectively. We will show how a

DAG is transformed after marginalization and conditioning.

Theorem 3.2(Richardson and Spirtes [2002]). LetG be an ancestral graph with vertex setV and

L andS are arbitrary disjoint sets inV. After marginalizing out the vertices inL and conditioning

on the vertices inS, G is transformed into the ancestral graphG[S
L with vertex setV \ (S∪ L). The

edge inG[S
L betweenx andy is present if

x 6⊥ y | Z ∪ S, for all Z such thatZ ⊂ V \ (S ∪ L ∪ {x, y}).

Its edge type is specified by the following way:

If



x ∈ ant({y} ∪ S); y ∈ ant({x} ∪ S)

x < ant({y} ∪ S); y ∈ ant({x} ∪ S)

x ∈ ant({y} ∪ S); y < ant({x} ∪ S)

x < ant({y} ∪ S); y < ant({x} ∪ S)



then



x —y

x← y

x→ y

x↔ y



.

Proposition 4.13 in Richardson and Spirtes [2002] shows that the transformed ancestral graph

from a DAG will have undirected edges only when there are selection variablesS. Likewise,

Proposition 4.14 shows that bidirected edges will only be present if there are latent variablesL.

These two propositions justify the statement that bidirected edges are associated with marginaliza-

tion over latent variables and undirected edges are associated with conditioning.

By Theorem 3.2, we can obtain the transformed ancestral graphG[S
L after marginalizing over

L and conditioning onS, and then we can obtain its independence relationsJ(G[S
L) by applying
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m-separation onG[S
L . Another track to obtain the marginalized and conditioned independence

relations would be by marginalizing outL and conditioning onS from the independence relations

of the original graphG. The set of independence relationsJ(G)[S
L after marginalizing outL and

conditioning onS is defined to be:

J(G)[S
L= {< X,Y | Z > | < X,Y | Z ∪ S >∈ J ;< X ∪ Y∪ Z > ∩(S ∪ L) = ∅}.

Theorem 4.18 in Richardson and Spirtes [2002] shows that the independence relationsJ(G[S
L)

entailed by the transformed ancestral graphG[S
L are the same as the independence relationsJ(G)[S

L

after marginalizing and conditioning the independenciesJ(G) of the original graphG.

We have described fundamentals of ancestral graphs so far. Unlike a DAG, a missing edge in

an ancestral graph does not mean an existence of conditional independencies. We will introduce

a subclass of ancestral graphs where a missing edge corresponds to at least one set of conditional

independencies.

Maximal ancestral graph A graph is defined to bemaximalif for every pair of vertices (x, y)

that are not adjacent inG, there is a setZ such thatx⊥y | Z for x, y < Z. Hence, a missing edge in a

maximal ancestral graph means that the corresponding two vertices are independent by condition-

ing on some set. A way to make a maximal ancestral graph from a non-maximal ancestral graph

G is by constructingG[∅∅ becauseG[S
L is always maximal. This will add bidirected edges without

changing independence relations ofG. Having the same set of independencies means that two

graphs areMarkov equivalent. Therefore,G andG[∅∅ are Markov equivalent. Even two different

maximal ancestral graphs can be Markov equivalent to each other. By augmenting missing depen-

dent edges with bidirected edges, a maximal ancestral graph has the following pairwise Markov

property: If there is no edge betweenx andy in G, then

x⊥y | ant({x, y}) \ {x, y}.

In a non-maximal ancestral graph, two non-adjacent vertices, for which no m-separating setZ

exists, will be joined by an inducing path. Aninducing pathπ between verticesx andy in an
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ancestral graphG is a path on which every vertex other thanx andy is both a collider onπ and an

ancestor of at least one ofx or y.

We will link an ancestral graph with probability distributions. Richardson and Spirtes [2002]

suggested a natural Gaussian parameterization via recursive equations with correlated errors.

Gaussian Parameterization A probability density of an ancestral graphG can be factorized into

the undirected component and the remaining component,

P(YV) = P(YunG)P(YV\unG |YunG).

This factorization is enabled by the decomposition of an ancestral graph by the subgraph ofunG and

the remaining subgraph, mentioned after the definition of an ancestral graph, diagramed in Figure

3.1. The undirected subgraph ofunG can be parameterized by an undirected graphical Gaussian

model [Dempster, 1972]. Alternatively,unG can be defined to be a set of vertices connected by

undirected edges,{x | ne(x) , ∅}, and the factorization still works.

The remaining subgraph can be parameterized by a set of recursive equations in a Gaussian

distribution family as follows. First, for directed edges,

Yt = µt +
∑

v∈pa(t)

βtvYv + εt.

Second, for bidirected edges:

If there is no edge int ↔ s in G, Cov(εt, εs) = 0.

Otherwise,Cov(εt, εs) = 0.

Finally, we will briefly show the difference in the inference of DAGs and ancestral graphs. When

there is no noise in the data, an algorithm to infer a DAG correctly is PC algorithm [Spirtes et al.,

2000]. Similarly, an algorithm to infer an ancestral graph correctly is FCI algorithm [Spirtes et al.,

2000]. Both algorithms build graphs from conditional independencies and begins with undirected

graphs that are fully connected. They first infer the skeleton by sequentially removing edges if
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there exists a set that makes the two nodes to be conditionally independent. The key element to

infer directions is by the relations thatv-structure specifically have. The PC algorithm orients

X — Y — Z with nonadjacentX andZ asX → Y← Z if and only if Y does not makeX andZ to

be conditionally independent. The FCI algorithm orients the relaxed version (X∗— ∗Y∗— ∗Z) to

beX∗ → Y← ∗Z where∗ can be either an arrowhead, tail, or no information. This way, ancestral

graphs can have bidirected edges. Another difference between PC algorithm and FCI algorithm is

that additionally FCI should consider the conditioning sets that are connected to the two nodes but

not directly. Further explanation can be found in Spirtes et al. [2000].

when there is no noise in the data differ differences in inferring DAGs and ancestral graphs.

algorithmic differences to get DAGs and ancestral graphs. we will show differences in algorithms

which correctly infer DAGs and ancestral graphs respectively when there are no noises in the data.

One algorithm to infer DAGs correctly is PC algorithm [Spirtes et al., 2000] and one algorithm to

infer ancestral graphs correctly is FCI algorithm [Spirtes et al., 2000]. Both algorithms test con-

ditional independencies and begin with complete graphs where all nodes connected by undirected

edges. The PC algorithm works like this.

1.

3.3 Ancestral graph for phenotypes and genotypes

We will develop a statistical model for a network of phenotypes and genotypes based on ances-

tral graphs in Section 3.3.1. The parametric family of the proposed statistical model is determined

in Section 3.3.3 and the graphical properties of the ancestral graph of phenotypes and genotypes are

established in Section 3.3.2. Lastly, Section 3.3.4 conjectures that the Markov equivalence of two

MAGs implies the same set of distributions corresponding to each graph in a Gaussian distribution

and the parametric family of the proposed model.
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3.3.1 Model

In a traditional experimental cross study, QTL mapping is done to identify genetic locations

(QTL) associated with a phenotype traitY. To refine QTL positions, pseudomarkersQ are aug-

mented from flanking markersm with recombination rates [Broman, 2001]. A phenotype is often

modeled with pseudomarker genotypesQ such that

P(Y,Q | m) = P(Y | Q,m)P(Q | m) = P(Y | Q)P(Q | m), (3.1)

where the second equality holds because conditioned on pseudomarker genotypes, marker informa-

tion would not give additional information about phenotypes. The recombination modelP(Q | m)

estimates the probability of pseudomarker genotypes from flanking markersm.

Multiple phenotypes can be observed such as gene expression from microarray data. We focus

on building a network of phenotypesY and pseudomarker genotypesQ on how a genotype changes

a phenotype level and how a phenotype level changes other phenotype levels. In building a network

of phenotypes and genetic variations, a Bayesian network has often been used [Li et al., 2006, Zhu

et al., 2008, Chaibub Neto et al., 2008, 2010a]. The inference of a Bayesian network assumes

that all variables constituting the Bayesian network are observed. The assumption may not hold

because 1) there could be unmeasured variables in a network such as metabolite levels controlling

gene expressions, or 2) we may take a subset of genes in building a network instead of working

on thousands of genes, and in this process we may omit important genes comprising a Bayesian

network. This is why we consider an ancestral graph, which can properly represent conditional

independencies after marginalizing out latent variables.

Equation (3.1) still holds whenY are various observed phenotypes. The linkage modelP(Q | m)

is rather fixed and we will show how to modelP(Y | Q) when there could be latent variables

between phenotypes. Fori = 1, . . . , n and t = 1, . . . ,T, let Yti be the value of the phenotype for

individual i and traitYt. Each phenotypeYti can be modeled as follows:

Yti = µ∗ti +
∑

v∈pa(t)

βtvYvi + εti , (3.2)
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whereµ∗ti is a genetic architecture and
∑

v∈pa(t) βtvYvi is the effect of its parental phenotypes. The

genetic architectureµ∗ti is modeled to be

µ∗ti = µt +

K∑

k=1

γtkθtkXki, (3.3)

whereµt is the overall mean for traitYt, γtk represents the inclusion (γtk = 1) or exclusion (γtk =

0) of the k-th pseudomarker (Qk), Xki is a column vector of coded variables of pseudomarker

genotypes for individuali and the vectorθtk is a row vector of several types of genetic effects of

pseudomarkerQk. Whenγtk = 1, Qk is identified to be a QTL forYt. Different from a Bayesian

network model, the errorsε = (ε1, . . . , εT)′ can be correlated as follows:

ε ∼ NT(0,Ω), (3.4)

whereΩ(t, s) = 0 if and only if there is no bidirected edge betweenYt andYs. The bidirected edges

are due to latent variables between phenotypes.

This Gaussian parameterization by eqn (3.2) and eqn (3.4) along with the linkage modelP(Q |
m) corresponds to a graphG of phenotypesY and psuedomarkersQ. The schematic view ofG is

in Figure 3.2. The graphG can be split into three subgraphs — a linkage mapGQ, a QTL mapping

GQ→Y and a phenotype networkGY. First, a linkage mapGQ is constructed to have undirected

edges between neighboring pseudomarkers. It is modeled byP(Q | m). Second, a QTL mapping

GQ→Y is constructed to have directed edges fromQ to Y. The directed edge fromQk to Yt is present

whenγtk = 1 in eqn (3.3). Third, a phenotype networkGY is constructed to have directed edges and

bidirected edges among phenotypesY. The directed edge fromYv to Yt is present whenv ∈ pa(t)

in eqn (3.2) and the bidirected edge betweenYt andYs is present whenΩ(t, s) , 0 in eqn (3.4).

Table 3.1 summarizes the relationship between graphical representation and the parameters in the

statistical model.

Since we only allow latent variables but not selection variables between phenotypes, the class

of phenotype networks,GY, we consider is a directed ancestral graph, which consists of directed

edges and bidirected edges. Without losing any possible set of conditional independencies that

directed ancestral graphs can entail, we restrict to the phenotype network to be a directed maximal
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chr1

chr2

Q

Y

Figure 3.2: Schematic view of an ancestral graph of phenotypesY and pseudomarkersQ.

Table 3.1: Decomposition of ancestral graphG of genotypes and phenotypes intoGQ,GQ→Y and

GY. Nodes and edges consisting of each subgraph are summarized and the corresponding values

in the statistical model are summarized.

subgraph meaning nodes values edges values

GQ Linkage map Qk Qk Qk — Qk+1 modeled byP(Q|m)

GQ→Y QTL mapping Qk Xki Qk → Yt γtkθtk , 0

Yt Yti

GY Phenotype network Yt Yti Yv→ Yt βtv , 0

Ys↔ Yt Ω(t, s) , 0
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ancestral graph (DMAG). We will prove that the extended networkG from the phenotype network

GY with GQ→Y andGQ is a maximal ancestral graph (MAG) in the next section. Note that even

though undirected edges inGQ are not associated with conditioning on selection variables, they

fit well in the definition of ancestral graphs. First,Q always precedeY because of the assumption

that genotypes affect phenotypes but not the other way around. Second, the undirected Markov

property holds forP(Q | m) such that non-adjacent pseudomarkers are independent given other

pseudomarkers. Third,P(Y,Q | m) = P(Q | m)P(Y | Q,m) = P(Q | m)P(Y | Q), which is in

analogous to the factorization of the probability function of an ancestral graph into the undirected

graph and the remaining.

3.3.2 Graphical properties of extended network

We assume a phenotype networkGY to be a directed maximal ancestral graph (DMAG). We

prove that the extended networkG by QTLs mapping and the linkage map is also a maximal

ancestral graph (MAG) in Theorems 3.3 and 3.4. The converse also works that ifG is a MAG, then

GY is a DMAG in Theorem 3.5.

Theorem 3.3. SupposeGY is a directed ancestral graph consisting of bidirected and directed

edges. If we add QTLsGQ→Y and a recombination graphGQ to GY, then the extended networkG

is an ancestral graph.

Proof. To proveG is an ancestral graph, we need to check that the extended networkG satisfies

the conditions in the definition of ancestral graphs. The condition 1 in Definition 3.1 is satisfied

in G. If adding Q → Y makes a directed cycle, then, there exists a directed path fromY to Q.

However, there is no directed edge from a phenotype to a genotype, therefore, there is no directed

path fromY to Q. The condition 2 is satisfied as follows: SupposeY1 ↔ Y2. We need to prove

that there is no directed path fromY1 to Y2 (or from Y2 to Y1) in the extended network. We know

that there is no directed path fromY1 to Y2 only through phenotypes from the assumption ofGY.

In the path viaQ, the triple (Ym,Q,Ym+1) cannot make a directed path fromY1 to Y2 because the

only possible configuration of the triple isYm ← Q→ Ym+1. Hence, condition 2 is satisfied. The
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condition 3 is satisfied naturally becauseQ only have neighbors inQ or children inY. Therefore,

the extended network is an ancestral graph. �

Note that if there is an undirected edgeY1 — Y2 in GY, then, adding a directed edgeQ → Y1

does not satisfy the conditions of an ancestral graph.

Theorem 3.4. If GQ→Y andGQ is added to DMAGGY, then the extended network is a maximal

ancestral graph (MAG).

Proof. We need to prove that there is no inducing path between non-adjacent vertices in the ex-

tended network.

• BetweenY1 andY2: If there is an inducing pathπ =< Y1, v1, . . . , vk,Y2 >, there are two cases,

– vi ∈ Y,1 ≤ i ≤ k: If vi is an ancestor ofY1 or Y2, solely through the directed path

on phenotypes, it contradicts the assumption of maximality inGY. If the directed path

goes throughQ, it contradicts the assumption of the directionality betweenQ andY.

– there existsvi ∈ Q: Q cannot be a collider in the collider pathπ.

• BetweenQ andY: If there is an inducing pathπ =< Q, v1, . . . , vk,Y >, the configuration

of the collider path isQ → v1 ↔ . . . vk ←( Y where←( can be either↔ or←. By the

condition for an inducing path and the condition for an ancestral graph,vk should be an

ancestor ofQ, which contradicts the directionality between pseudomarkers and phenotypes

and undirectedness between pseudomarkers.

�

Theorem 3.5. If G is a MAG, thenGY = G[Q
∅ and hence,GY is a MAG. Since we do not allow

selection variables,GY is a DMAG.

Proof. First, when there is an edge betweenx andy in GY, then, for allZ ⊃ Q, x 6⊥ y|Z, and hence,

there is an edge betweenx andy in G[Q
∅. By lemma 3.9 in Richardson and Spirtes [2002], the edge

type will be conserved inG[Q
∅.
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Second, when there is no edge betweenx andy in GY, the maximality ofG ensures that there

existsZ such thatx⊥y|Z. We want to show that the relationx⊥y|Z∪Q also holds. Suppose that the

relation (x⊥y|Z ∪ Q) does not hold. Then, there is anm-connecting pathπ betweenx andy given

Z ∪ Q, which satisfies both conditions:

(i) every noncollier is not inZ ∪ Q, and

(ii) every collider on the path is inant(Z ∪ Q).

If π goes through any ofQ, the corresponding variables inQ are noncolliers and it violates the

condition (i). Therefore, there is nom-connecting path givenZ ∪ Q andx⊥y|Z ∪ Q holds. Let’s

consider thatπ does not go throughQ and conditions (i) and (ii) are satisfied. Sinceπ does not

containQ, the condition (i) can be stated that every noncollider is not inZ. Also, every collider on

the path is inant(Z). The satisfaction of two conditions makes thatπ is anm-connecting path given

Z, which is contradictory. Hence, whenx⊥y|Z holds,x⊥y|Z∪Q holds. This shows that when there

is no edge betweenx andy in GY, then there is no edge betweenx andy in G[Q
∅.

It proves thatGY = G[Q
∅ and thereby,GY is maximal. �

We have shown that the extended networkG is also a maximal ancestral graph (MAG) ifGY is

a directed maximal ancestral graph (DMAG). We will look at how adding QTLs toGY can break

Markov equivalence ofGY in Lemma 3.7 and Theorem 3.8. Ali et al. [2009] states that ifG1 and

G2 are maximal ancestral graphs (MAGs), thenG1 andG2 are Markov equivalent (G1 ≡ G2) if and

only if G1 andG2 have the same adjacencies and the same colliders with order. An order for a

triple is defined recursively.

Definition 3.6 (Ali et al. [2009]). Let Di(i ≥ 0) be the set oftriples of order iin a MAG G defined

recursively as follows:

Order 0. A triple< a,b, c >∈ D0 if a andc are not adjacent.

Order i+1. A triple< a,b, c >∈ Di+1 if

1. for all j < i + 1,< a,b, c >< D j, and,
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2. there is a discriminating path< x,q1, . . . , qp,b, y > for b with either< a,b, c >=<

qp,b, y > or < a,b, c >=< y,b,qp > and thep colliders

< x,q1,q2 >, . . . , < qp−1,qp,b >∈ ∪ j≤iD j .

A discriminating path< x,q1, . . . , qp,b, y > between non-adjacentx andy for b is actually a

collection of paths

x�→ q1↔ · · · ↔ qj → y (1 ≤ j ≤ p),

x�→ q1↔ · · · ↔ qp←( b�→ y,

where�→ can be either↔ or→ and←( can be either↔ or←.

Lemma 3.7. Suppose two verticesY1 andY2 are adjacent by either a directed edge or a bidirected

edge. There are three Markov equivalent directed ancestral graphs for a pair ofY1 andY2: Y1 →
Y2, Y1 ← Y2, andY1 ↔ Y2. (i) If a QTL Q1 affectsY1 but notY2, then it partially distinguishes the

extended graphs:Q1 → Y1 → Y2 versusQ1 → Y1 ← Y2 or Q1 → Y1 ↔ Y2. (ii) Further, if a QTL

Q2 affectsY2 but notY1, then it distinguishes all three extended graphs:Q1 → Y1 → Y2 ← Q2

versusQ1→ Y1← Y2← Q2 versusQ1→ Y1↔ Y2← Q2.

Proof. (i) The extended networksQ1 → Y1 → Y2, Q1 → Y1 ← Y2 andQ1 → Y1 ↔ Y2 are MAGs.

They all have the same adjacencies.Q1 → Y1 → Y2 has no collider whileQ1 → Y1 ← Y2

and Q1 → Y1 ↔ Y2 have one unshielded collider. Since an unshielded collider is order 0,

Q1→ Y1← Y2 andQ1→ Y1↔ Y2 are Markov equivalent.

(ii) The further extended networks are MAGs and have the same adjacencies. The triple<

Y1,Y2,Q2 > in Q1 → Y1 ← Y2 ← Q2 is not a collider while the triple< Y1,Y2,Q2 > in

Q1 → Y1 ↔ Y2 ← Q2 is a collider with order 0. Therefore, these two networks are not Markov

equivalent. �

Similar to Result 2 in Chaibub Neto et al. [2010a], adding QTLs can distinguish Markov equiv-

alent MAGs.
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Theorem 3.8. Consider a class of Markov equivalent DMAGsGY. Let Y1 and Y2 be any two

adjacent nodes in the graphs inGY. Assume that for each such pair there exists at least QTLs,Q1

directly affectingY1 but notY2 andQ2 directly affectingY2 but notY1. LetG represent the class of

extended graphs. Then the graphs inG are not Markov equivalent.

Proof. For each pair of two adjacent phenotypes, we can apply the above lemma so that the ex-

tended subgraphs have the same adjacencies but different colliders with order. Since this holds for

each pair, the graphs inG have the same adjacencies but different colliders with order, therefore,

they are not Markov equivalent. �

3.3.3 The parametric family of the extended network

By extending a phenotype networkGY with pseudomarkers, the data is mixed with continuous

variablesY and discrete variablesQ. We will show in Proposition 3.10 that the parametric family

of phenotypes and pseudomarkers defined by eqn (3.2), eqn (3.4) andP(Q | m) is a homogeneous

conditional Gaussian (HCG) distribution. The conditional Gaussian (CG) distribution is named

by the fact that the joint distribution of continuous variables are Gaussian conditional on discrete

variables. The CG model is defined as in Definition 3.9 [Lauritzen, 1996].

Definition 3.9 (Cowell et al. [2003]). The conditional Gaussian (CG) model is

log f (z) = log f (q, y) = g(q) + h(q)′y− y′K(q)y/2,

wherez = (q, y), q ∈ ∆ (discrete variables),y ∈ Γ (continuous variables),g(q) is a real number,

h(q) is a vector inR∆ andK(q) is a positive definite matrix.

It is equivalent to

p(q) = P(Z∆ = i) > 0, L(ZΓ | Z∆ = q) = N|Γ|(ξ,Σ(q)),

where

Σ(q) = K(q)−1, ξ(q) = K(q)−1h(q).
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It is called homogeneous when the covariance is independent ofq, Σ(q) ≡ Σ, or, equivalently,

K(q) ≡ K. The next proposition shows that our model for phenotypes and genotypes defined in

eqn (3.2) and eqn (3.4) withp(Q | m) in eqn (3.1) corresponds to a homogeneous conditional

Gaussian (HCG) model.

Proposition 3.10. The proposed model for phenotypes and pseudomarkers factored into a pseu-

domarker reconstruction modelp(Q | m) and a set of linear equations in eqn (3.2) with correlated

Gaussian errors in eqn (3.4) falls into a homogeneous conditional Gaussian (HCG) family.

Proof. Equations (3.2) and (3.4) can be written to be

Y | Q ∼ NT(µ∗ + Yβ,Ω),

whereY = (Y1, . . . ,YT)′, µ∗ = (µ∗1, . . . , µ
∗
T)′ andβ(t, s) = βts1(s → t). The joint distribution of

phenotypesY conditional on pseudomarker genotypesQ is

p(Y | Q) = (2π)−T/2|Ω|−1/2 exp(−1
2

(Y− µ∗ − βY)′Ω−1(Y− µ∗ − βY)).

Then, the joint distribution of phenotypes and genotypes is

log p(Y,Q | m) = log p(Y | Q) + log p(Q | m)

= log p(Q | m) − 1
2

T log(2π) − 1
2

log |Ω| + (I ) + (II ),

where

(I ) = −1
2

(µ∗
′
Ω−1µ∗ − 2µ∗

′
Ω−1Y + 2µ∗

′
Ω−1βY)

= −1
2
µ∗
′
Ω−1µ∗ + µ∗

′
Ω−1(I − β)Y,

and

(II ) = (Y− βY)′Ω−1(Y− βY)

= ((I − β)Y)′Ω−1((I − β)Y)

= Y′[(I − β)′Ω−1(I − β)]Y

= Y′Ω�Y,
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whereΩ� = (I − β)′Ω−1(I − β).

It can be rewritten to be

log p(Y,Q |m) = g(Q) + h′(Q)Y− Y′K(Q)Y/2,

whereg(Q) = log p(Q | m) − 1
2(µ∗

′
Ω−1µ∗ + T log(2π) + log |Ω|), h(Q) = µ∗

′
Ω−1(I − β) andK(Q) =

Ω�. Therefore, the joint distribution of phenotypes and genotypes is a CG family. SinceΩ� is

independent ofQ, it is a homogeneous CG family with (g,h,K). �

3.3.4 Conjecture: Distribution equivalence is the same as the Markov equiva-
lence for Gaussian family and HCG family

When comparing the graphs, two graphs can be equivalent in terms of conditional indepen-

dence relations, distributions, or likelihoods. Two graphs areMarkov equivalentif they represent

the same set of conditional independencies. Two graphsG1 andG2 aredistribution equivalentwith

respect to the familyF if for every θG1, there exists aθG2 such thatp(Y | θG1,G1) = p(Y | θG2,G2),

and vice versa, representing the same set of joint probability distributions. When two graphs are

distribution equivalent with respect toF, it is often reasonable to expect that data can not help

to discriminateG1 andG2, that is, p(D | G1) = p(D | G2) for any data setD, called likelihood

equivalence. Distribution equivalence with respect toF implies Markov equivalence however the

converse does not hold in general.

We conjecture that there is a reparameterization between Markov equivalent DMAGs in a Gaus-

sian family in Conjecture 3.12. If this conjecture holds, Conjecture 3.14 for the reparameterization

between Markov equivalent MAGs for our gene network in a HCG family follows. Before going

to the conjectures, we introduce a known graphical transformation between two Markov equivalent

DMAGs, which will be an important piece in proving the conjectures.

Theorem 3.11(Zhang and Spirtes [2005]). For two Markov equivalent DMAGs, there is a se-

quence of legitimate mark changes between them. A legitimate mark change is defined to be as
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follows.

G : DMAG witht → v

G′ : identical toG exceptt ↔ v.

Then,G′ is DMAG and Markov equivalent toG if and only if

1. there is no directed path fromt to v other thant → v in G.

2. For anyC→ t in G, C→ v is also inG, and for anyD↔ t in G, eitherD→ v or D↔ v is

in G.

3. there is no discriminating path fort on whichv is the endpoint adjacent tot in G.

Conjecture 3.12.For two Markov equivalent DMAGsG1 andG2, there exists a reparameterization

θ2 for G2 to have the same likelihoodL(θ1|G1) = L(θ2|G2) in a Gaussian distribution family.

Proof. Sketch of proof 1. The likelihood of a DMAG in terms of (µ,Σ) whereΣ = C−1ΩC−T : In

a Gaussian distribution family, the model can be written by a set of recursive equations with cor-

related Gaussian errors,

Y = µ + B(Y− µ) + ε whereε ∼ N(0,Ω).

The coefficient matrixB is lower-triangle matrix such thatB(α, β) is the coefficient forβ→ α and

0 otherwise. The covarianceΩ of errors is thatΩ(α, β) = 0 if there is noα ↔ β whenα , β. Its

joint probability distribution is

Y ∼ N|V|(µ,Σ),

Σ = (I − B)−1Ω(I − B)−T = C−1ΩC−T for C = I − B,

where|V| is the number of vertices andI is the|V| × |V| identity matrix. Hence, the likelihoood is

a function of (µ,Σ) whereΣ = C−1ΩC−T .

2. Markov equivalence by a sequence of legitimate mark changes: By Theorem 3.11, there

exists a sequence of legitimate mark changes fromG1 to G2. Therefore, a reparameterization
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between two Markov equivalent DMAGs by a legitimate mark change can be sequentially applied

for a reparameterization fromG1 to G2. Let G andG∗ be Markov equivalent by a legitimate mark

change such thatG andG∗ are DMAGs and identical to each other except for one edge that is

t → v in G andt ↔ v in G∗. Denote (µ,Σ) and (µ∗,Σ∗) to be the sets of mean and covariance ofG

andG∗, respectively. In addition,C is a matrix to represent the directed edges andΩ is a matrix to

represent the bidirected edges ofG, whereΣ = C−1ΩC−T . Similarly, (C∗,Ω∗) representsG∗.

3. Reparameterization from (µ,C,Ω) of G to (µ∗,C∗,Ω∗) of G∗ to have the same likelihood: If

µ = µ∗ andΣ = Σ∗, thenG andG∗ have the same likelihood. We will propose a reparameterization

from (C,Ω) to (C∗,Ω∗) to satisfyΣ = Σ∗ in addition toµ = µ∗, which will guarantee the same

likelihood ofG andG∗. First, we present the reparameterization ofC∗ fromC and set the constraint

on the reparameterization to fulfill the graphical structures ofG andG∗. Second, we induce the

relation betweenΩ andΩ∗ from Σ = Σ∗ whereΣ = C−1ΩC−T andΣ∗ = C−1ΩC−T. Lastly, we set

the constraint onΩ∗ to fulfill the graphical graphical structure ofG∗.

3-1. C∗ = C + 1vh : We constructC∗ fromC such that the element inC∗ corresponding tot → v

is 0, the removal oft → v from G can be transferred intopa(v)→ v and other elements remain the

same.

C∗ = C + 1vh (3.5)

h[t] = bvt andh[x] = 0 for x < pa(v), (3.6)

where 1v is a column vector with zero entries except at thev-th entry as 1,h is a row vector and

h[x] is thex-th element inh. Then,C∗ complies with the graphical structure ofG∗ such that

C∗[v, t] = C[v, t] + 1v[v] ∗ h[t] = −bvt + bvt = 0

C∗[v, x] = C[v, x] + 1v[v]h[x] = 0 + 1 · 0 = 0, x < pa(v),

whereC[v, t] is a submatrix ofC formed by row(s)v and column(s)t.

3-2. Σ = Σ∗ : To holdΣ = Σ∗, C∗ andΩ∗ should satisfy that

Σ = (C∗)−1Ω∗(C∗)−T ,
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and we induceΩ∗ such that

Ω∗ = (C∗)Σ(C∗)T = (C + 1vh)Σ(C + 1vh)T

= CΣCT + 1vhΣCT + (1vhΣCT)T + 1vhΣhT(1v)
T

= Ω + 1vhΣCT + (1vhΣCT)T + 1vhΣhT(1v)
T . (3.7)

3-3. Ω∗ : Ω∗ needs to comply with the graphical structure ofG∗ such that the elements of zero

in Ω andΩ∗ differ only betweent → v in G andt ↔ v in G∗. In eqn (3.7),

• the last term 1vhΣhT(1v)T is a |V| × |V|-matrix with zero entries except at the (v, v)-th entry,

and thereby, it satisfies the constraint onΩ∗;

• the term 1vhΣCT is a |V| × |V|-matrix with zero entries except at thev-th row. Thev-th row

vector,hΣCT , should satisfy the constraint onΩ∗ such that

s[x] := (hΣCT)[x] = 0 for x < sp(v) ∪ {t, v}. (3.8)

4. Solve forh: We want to solve forh, satisfying the constraints in eqns (3.8) and (3.6) simul-

taneously. We have a set of|V|-linear equations:

s = hΣCT , (3.9)

for |sp(v)| + 2 unknowns ins and |pa(v)| − 1 unknowns inh. There is a bigger number of linear

equations than the number of unknowns. Let a vertex setV is divided into disjoint sets such as

V = pa(v) ∪ {v} ∪ sp(v) ∪ others

= {t} ∪ (pa(v) \ {t}) ∪ {v} ∪ sp(v) ∪ others,

andΣ andCT are rearranged accordingly. Equation (3.9) can be expressed with the constraints that

(s[t], s[pa(v) \ {t}], s[v], s[sp(v)], s[others])

= (h[t],h[pa(v) \ {t}],h[v],h[sp(v)],h[others])ΣCT

=⇒
(s[t],0, s[v], s[sp(v)],0) = (bvt,h[pa(v) \ {t}],0,0,0) ΣCT .
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Since bothΣ andC are non-singular, we can multiply the inverse ofΣCT on the both sides and the

equation becomes that

(s[t],0, s[v], s[sp(v)],0) (ΣCT)−1 = (bvt,h[pa(v) \ {t}],0,0,0)

=⇒
s[{t, v} ∪ sp(v)] (ΣCT)−1[{t, v} ∪ sp(v), ·] = (bvt,h[pa(v) \ {t}],0,0,0).

Let 4 := {t, v} ∪ sp(v). We can divide the equations into three sets:

(bvt,0,0) = s[4] (ΣCT)−1[4,4] (3.10)

h[pa(v) \ {t}] = s[4] (ΣCT)−1[4, pa(v) \ {t}] (3.11)

0 = s[4] (ΣCT)−1[4,others]. (3.12)

We proceed in this order.

(I) Solve fors[4] in eqn (3.10):

s[4] = (bvt,0,0)((ΣCT)−1[4,4])−1,

provided the inverse of (ΣCT)−1[4,4] exists.

(II) Plug in s[4] to geth[pa(v) \ {t}] in eqn (3.11):

h[pa(v) \ {t}] = s[4] (ΣCT)−1[4, pa(v) \ {t}].

(III) Check eqn (3.12) is satisfied.

Things to be proved : If this sketch of proof works, we need to prove two properties to

complete the proof: (1) The inverse of (ΣCT)−1[4,4] exists when we solve for eqn (3.10); (2)

Equation (3.12) is satisfied. It seems that eqn (3.12) is satisfied when the conditions in a legitimate

mark change are satisfied.

5. Concluding remarks: The solution ofh is added toC to getC∗ = C + 1vh andΩ∗ can be

obtained accordingly. (C∗,Ω∗) will comply with the graphical structure ofG∗. �
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The following example applies the conjectured reparameterization fromG to G∗ and confirms

that the reparameterization satisfies the constraints on the coefficient matrixC∗ and the covariance

matrix on errorsΩ∗.

Example 3.13. Consider the following two Markov equivalent graphs,G and G∗, whereG∗ is

transformed by a legitimate mark change fromG.

tOO
²²

// v

d

@@¢¢¢¢

(a)G

tOO
²²

oo // v

d

@@¢¢¢¢

(b) G∗

The graphG can be represented by recursive equations,

Yt = εt

Yd = εd

Yv = btvYt + bdvYd + εv,

with correlated Gaussian errorcov(εt, εv) = σtd. Letbtv = bdv = 1, var(ε) = 1 andσtd = 0.5. It is

written to be

C =



1 0 0

0 1 0

−1 −1 1


, Ω =



1 0.5 0

0.5 1 0

0 0 1


.

Then, we get

Σ = C−1ΩC−T =



1 0 0

0 1 0

1 1 1





1 0.5 0

0.5 1 0

0 0 1





1 0 1

0 1 1

0 0 1


=



1 0.5 1.5

0.5 1 1.5

1.5 1.5 4


.
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If we modifyt → v to t ↔ v as inG∗, to get the reparameterizationC∗ = C + 1vh andΩ∗ for

G∗, we first need to calculateΣCT ,

ΣCT =



1 0.5 0

0.5 1 0

1.5 1.5 1


, (ΣCT)−1 =



4/3 −2/3 0

−2/3 4/3 0

−1 −1 1


.

Following the procedure for reparameterization,

(I) Solve fors[4] where4 := {t, v} ∪ sp(v) = {t, v} in eqn (3.10):

s[{t, v}] = h[{t, v}] ∗ (ΣCT)−1[{t, v}, {t, v}]

= (1,0) ∗

4/3 0

−1 1



−1

= (1,0) ∗

0.75 0

0.75 0



= (0.75,0).

(II) Plug in s[4] to geth[pa(v) \ t] in eqn (3.11):

h[d] = s[{t, v}](ΣCT)−1[{t, v}, pa(v) \ {t}]

(0.75,0) ∗

−2/3

−1

 = −1/2.

Then,h = (1,−1/2,0) and we get the following reparameterizedC∗ andΩ∗ for G∗:

C∗ = C + 1vh =



1 0 0

0 1 0

0 −1.5 1



Ω∗ = C∗Σ(C∗)T =



1 0.5 0.75

0.5 1 0

0.75 0 1.75



whereC∗ andΩ∗ satisfy the constraints onG∗.
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We have applied the reparameterization on 16 DMAGs with the edget → v in Table 3.2 and

checked that the reparameterized parameters, (C∗,Ω∗), comply with their transformed DMAGs

with the edget ↔ v, respectively. In addition, we have applied the reparameterization on DMAGs

in Table 3.3 that the assumptions on the legitimate mark change are violated —pa(t) ∈ pa(v),

sp(t) ∈ pa(v) ∪ sp(v), and DMAG is maximal — and we checked that the reparameterized param-

eters do not comply with DMAGs witht ↔ v.

Table 3.2: A DMAG that the reparameterization complies with the transformed DMAG by a legit-

imate mark change fromt → v to t ↔ v.
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For Markov equivalent DMAGs, we can apply a sequence of legitimate mark changes to graph-

ically transform from one DMAG to another DMAG and the intermediate DMAGs are also Markov

equivalent. In general, there is no known transformation for MAGs. However, MAGs that we con-

sider here have a nature that undirected edges for marker recombination will not be transformed to

directed or bidirected edges and the directed edges from marker to phenotypes cannot be changed.

The only configuration change in the edge should be between phenotypes and the subgraph for

phenotypes is a DMAG. Hence, we can apply a sequence of legitimate mark changes between

phenotypes to transform between Markov equivalent MAGs that we consider here.

Conjecture 3.14. For two Markov equivalent MAGsG1 and G2 as a gene network that mark-

ers are connected by undirected edges, markers and phenotypes are connected by directed edges
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Table 3.3: DMAGs violating assumptions in a legitimate mark change

t //^^

ÁÁ=
==

= v

ÁÁ=
==

=

1

OO
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OO

3

t //
OO
²²

v

1

OO t //^^

ÁÁ=
==

= vOO
²²

@@
¡¡¢¢

¢¢

1 oo // 2

pa(t) 1 pa(v) sp(t) 1 pa(v) ∪ sp(v) It is not maximal.

from markers to phenotypes and phenotypes can be connected by directed or bidirected edges,

there exists a reparameterizationθ2 for G2 to have the same likelihoodL(θ1|G1) = L(θ2|G2) in a

homogeneous conditional Gaussian (HCG) distribution family.

Proof. Since we only allow legitimate mark changes between phenotypes and the QTLs enter

the HCG model through the mean, the reparameterization follows by replacingµt by µ∗t = µt +
∑K

k=1 γtkθtkXki in Conjecture 3.12. �

By proving that Markov equivalence implies distribution equivalence, we are ensured that

Markov equivalent graphs would have the same set of distributions and their maximum likelihoods

would be the same.

3.4 Algorithms for ancestral graph inference of phenotypes and QTLs

We have looked at the parametric family and the graphical class of the extended network. To

infer a network, there are two approaches — one is constraint-based and the other is search-and-

score based. The constraint-based method such as fast causal inference (FCI) algorithm Spirtes

et al. [2000] infers a network by conditional independence tests on the pairs of vertices. The

search-and-score method scores the graph by BIC or likelihood and searches over the space of

graphs. We develop a score-based search algorithm for DMAGs.

3.4.1 Score-based search – MCMC

We can explore the ancestral graph space by Markov chain Monte Carlo (MCMC). The MCMC

is constructed to jump over DMAGs and stays in DMAGs with higher scores (maximum likelihood

of the DMAG).
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First, we develop a Metropolis-Hastings algorithm to explore DMAG space in general.

1. Divide a DMAGGold into bidirected graphGB
old and directed graphGD

old.

2. Propose a new directed graphGD
new from GD

old by a DAG proposal distributionR(GD
new|GD

old).

3. Propose new bidirected edgesGB
new as long as it does not violate the ancestral graph as-

sumption. ConstructGnew by stitchingGD
new andGB

new together. Its proposal distribution is

R(Gnew|GD).

4. Accept the new DMAGGnew with a probability,

min{1, P(Y|Gnew)
P(Y|Gold)

R(GD
old|GD

new)R(Gold|GD
old)

R(GD
new|GD

old)R(Gnew|GD
new)
}.

5. Iterate until the chain converges.

In step 2, the DAG proposal distribution is a mixture of single edge proposal of a DAG [Hus-

meier, 2003] and edge reversal proposal of a DAG [Grzegorczyk and Husmeier, 2008]. The single

edge proposal is either addition of an edge, removal of an edge, or reversal of an edge as long as

it does not make cycles in new DAG. In addition to the possible proposed DAGs by single edge

proposal, we makes it possible for the old DAG to be equally sampled as other DAGs in order to

explore the bidirected edge space better. The edge reversal proposal is done by choosing an edge

(t → v), deleting all incoming edges tot and j, and making new parents includingv for t and new

parents forv. Since edge reversal proposal is not sufficient to explore all DAGs, it is mixed with

single edge proposal [Grzegorczyk and Husmeier, 2008].

In step 3, given the new directed graphGD, new bidirected edges can be freely added between

two nodes where two nodes are not in an ancestor relationship. Otherwise, it violates the ancestral

graph condition. To propose new bidirected edges, it begins with excluding node pairs where they

are in an ancestor relation inGD. The remaining node pairs are possible new bidirected edge sites.

For each bidirected edge site, the edge is included with a probabilitypB, e.g., 0.5.

In step 4, we merge the directed graphGD and the bidirected graphGB into a directed ancestral

graphG. SinceG may not be maximal, we maximizeG by adding bidirected edges if two nodes
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are always unconditionally and conditionally dependent. During the maximization procedure, the

same maximized graphMax(G) can be formed from different bidirected graphs. Hence, the pro-

posal probabilityR(Max(G)|GD) is the summation of proposal probabilities of bidirected edges

who would be maximized to become the sameMax(G).

Steps from 1 to 4 make the move fromG0 toG1 with a proposal probabilityR(GD
1 |GD

0 )R(G1|GD
1 ).

Hence, in step 5, the new DMAG (Max(G)) is accepted in proportion to the multiplication of

likelihood ratio P(Y|G1)
P(Y|G0) and the Hastings ratio

R(GD
0 |GD

1 )R(G0|GD
0 )

R(GD
1 |GD

0 )R(G1|GD
1 )

.

In step 4, the maximum likelihood of a DMAG does not have a closed form. LetY be a set of

vertices inV andB = (βi j ) be aV × V matrix such thatβi j , 0 only if j → i. The corresponding

set of recursive linear equations with correlated errors is

Y = BY+ ε, whereε ∼ N(0,Ω).

We can define the covariance matrix ofY to beΣ = (I −B)−1Ω(I −B)−T whereI is aV×V identity

matrix. Then,Y ∼ N(0,Σ). One popular way to calculate the maximum likelihood is the following:

First, the parameters inB associated with directed edges are calculated by the coefficient in a linear

regression. Second, the parameters inΩ = (ωi j ) associated with bidirected edges are calculated by

the covariance on the residuals after subtracting directed edge effects. However, the obtainedΩ is

not always positive definite because it puts zero for no bidirected edge. Drton [2004] proposed an

iterative conditional fitting for Gaussian ancestral graph models to find an MLE of (B,Ω). For a

fixed vertexi, it computes a submatrixΩ−i,−i for the remaining vertices andβpa(v), j for j , i, and

residuals ofε−i. In the conditional Gaussian distribution ofYi conditional onε−i, the conditional

expectation and variance equal to respectively,

Var(Yi |ε−i) = ωii .−i −Ωi,−i(Ω−i,−i)
−1Ω−i,i := wii .−i (3.13)

E(Yi |ε−i) =
∑

j∈pa(i)

βi j E(Yj |ε−i) + E(εi |ε−i) (3.14)

=
∑

j∈pa(i)

βi j Yj +
∑

k∈sp(i)

ωikZk, (3.15)

whereZk is the pseudo-variable in thek-th row in Zsp(i) = [(Ω−i,−i)−1]sp(i),−iε−i. After computing

Zk from the fixedΩ−i,−i, it fits the linear regression in eqn (3.14) ofYi with respect toYpa(i) and
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Zk to getβi j for j ∈ pa(i) andwik for k ∈ sp(i). It also calculates the conditional varianceωii .−i

in eqn (3.13) from the residual of the fitted regression in eqn (3.14). Next,wii is calculated from

the relation in eqn (3.13). It moves to next vertex iteratively until the MLE of (B,Ω) converges.

There is a different method to compute the maximum likelihood for ancestral graphs using only

least squares computations [Drton et al., 2009] and a Bayesian inference of parameters for a given

graph by setting priors on parameters [Silva and Ghahramani, 2009].

Now we apply the developed MCMC algorithm for the extended network of phenotypes and

genotypes. As the linkage mapGQ is fixed, we only need to explore the extended networks ofGY

andGQ→Y andGY is a DMAG. Here we denoteG to be the extended network ofGY andGQ→Y.

Steps 1 and 2 are modified to be

1. Propose a new DMAGG′Y from GY.

2. Sample a new genetic architectureG′Q→Y given G′Y and get an extended networkG′ com-

piosed ofG′Q→Y andG′Y.

3. Accept the extended networkG′ with a probability

min{1, P(Y|G′,Q)
P(Y|G,Q)

R(GY|G′Y)

R(G′Y|GY)

R(GQ→Y|GY)

R(G′Q→Y|G′Y)
}.

In step 2, sampling a new genetic architecture can be approximated by the interval mapping of

each phenotype given the parental phenotypes inG′Y for faster convergence of MCMC chains.

In step 3, The BIC score is used for the score of the modelP(Y|G). The BIC of an ancestral

graph is defined to be [Richardson and Spirtes, 2002]

BIC = −2 logL(B̂, Ω̂) + log(n)(2|V| + |E|),

whereL(B̂, Ω̂) is the maximum likelihood function,|V| is the number of vertex,|E| is the number of

edges, andn is the sample size. In the DMAG model of phenotypes and QTLs,|V| is defined to be

the summation of number of phenotypes and number of identified QTLs and|E| is defined to be the

summation of number of directed edges and bidirected edges in the phenotype network and number

of directed edges from QTL to phenotypes. The maximum likelihood of a DMAG is approximated



88

by plugging in the coefficients in the linear regression and the constrained covariance matrix of

the residuals of the fitted regression. When the constrained covariance matrix in accordance with

bidirected edges is not positive definite, the iterative conditional fitting [Drton, 2004] is used to get

a positive definite matrix.

3.4.2 Summarizing MCMC samples

After running an MCMC, we get several sample DMAGs and need a way to summarize the

MCMC chain. One way is to choose the most frequently sampled DMAG. This method is ineffi-

cient when the model space is too huge. Another way is Bayesian model averaging [Hoeting et al.,

1999]. The averaged network is expressed by the posterior probabilities of edge types (→,←,↔)

for every edge. We construct the skeleton first by thresholding the posterior probability of being

any edge type at 0.5. Then, we assign an edge type with the highest posterior probability. We use

this criteria for model selection in the simulation.

3.5 Simulation

A simulation study is conducted to show that MCMC algorithm for DMAG works. Phenotype

and genotype data from the network in Figure 3.3 are generated for 100 simulations. In Figure 3.3

phenotypes areY1,Y2,Y3,Y4,Y5, c but c is hidden and QTLs areQ1,Q2,Q3. We assume that the

data is from F2 population and QTLi is located in the middle of chromosomei. In each simulation,

the effects of parental phenotypes are sampled from 0.5U[0.2,0.5]+0.5U[−0.5,−0.2]. The additive

QTL effects are sampled from 0.5U[0.1,0.5] + 0.5U[−0.5,−0.1] and dominance QTL effects are

sampled fromU[−0.25,0.25]. The genetic marker data is generated for F2 population of 500

individuals at 10 unequally distributed locations on 3 chromosomes of length 100cM. Based on

the sampled effect sizes, phenotype data is generated by a set of linear equations with random

errors fromN(0,1).

We considerc to be hidden and the corresponding graph after marginalizingc is in Figure 3.4.

Each simulated data omitting the phenotypec is run with MCMC for 66000 iterations, burned

in for the first 6000 iterations, thinned at every 20 iteration, and finally resulted in 3000 samples.
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We apply the model selection criteria by Bayesian model averaging. First, the edges in the true

skeleton are recovered as in Figure 3.5. From 100 simulations, the edgeY1 — Y2 is recovered in

all simulations,Y2 — Y4 is recovered in 54 simulations,Y4 — Y3 in all simulations, andY4 — Y5

in all simulations. Other edges not in the true skeleton are detected in less than 8 simulations. The

reason the edgeY2 — Y4 is detected in only half the simulations is that their relation is rather weak

due to the hidden variablec. Figure 3.6 shows that the relation betweenY2 andY4 is weak as we

observe that correlations betweenY2 andY4 are distributed closer to 0 than correlations between

Y1 andY2 are.

1 .54 1

1

Y1 Y2 Y4 Y3

Y5

Figure 3.5: Frequency of detection of each edge in the true skeleton

Second, the true edge type is detected more often than other edge types as shown in Figure 3.7.

BetweenY1 andY2, Y1 → Y2 is assigned in 64 simulations,Y1 ← Y2 is assigned in 19 simulations,

andY1↔ Y2 is assigned in 17 simulations.

3.6 Real data analysis

We applied our method to reconstruct a causal gene network allowing latent variables in F2

mice population. The gene expression and genotype data were obtained from a F2 mice pop-

ulation between diabetes-resistant (B6) and diabetes-susceptible (BTBR) inbred lines, generated

by Alan D. Attie’s biochemistry lab in University of Wisconsin - Madison. The genome-wide

QTL mapping of mRNA transcripts in islet of 491 mice showed several hotspots where several

gene expressions co-map. Among them, we are interested in one hotspot around 112.102 cM
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Figure 3.6: Correlation betweenY1 andY2 and correlation betweenY2 andY4.
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Figure 3.7: Frequency of edge types. Thick arrows correspond to true directions.
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(165.74292Mb) in chromosome 2 where 593 genes are mapped to by the single QTL interval

mapping. We remove sex effects and batch effects of date by subtracting these effects in advance.

Since we cannot use our MCMC method to reconstruct a gene network of 593 genes, we need

to select a subset of genes. We first constructed an undirected graph of 593 genes by estimating

a sparse covariance matrix using a graphical lasso method (glasso) [Friedman et al., 2008]. The

undirected graph identifies connections between genes such that two genes are correlated condi-

tional on all the other genes. The identified connections do not have the directionality inference

but they imply that connected genes may have a regulatory relationship, a correlation that cannot

be explained by other genes, or common downstream genes. In either way, connected genes are

closely related in a network. We used an arbitrary penalization parameterρ = 0.5, which gives us

not too sparse and not too dense undirected networks and the result is shown in Figure 3.8. We

observe that there two highly connected clusters of genes and some genes positioned in the outlier

are not connected to other genes. The gene of interest is Nfatc2 because it is a transcription factor

and it has many target genes in the hotspot. In Figure 3.8, Nfatc2 is numbered to be 428 in red.

There are 6 genes that are directly connected to Nfatc2 in Figure 3.9 and 104 genes are connected

by at most 2 steps from Nfatc2 in Figure 3.10.

We took Nfatc2 and two directly connected genes (Iqsec1, Pcnt) in Figure 3.9 and constructed

a causal gene network allowing latent variables. In Figure 3.10, the top two highly connected

genes are Iqsec1 and Pcnt. Iqsec1 is connected to 63 genes and eight of them overlap with the

target gene of Nfatc2 and Pcnt is connected to 24 genes and two of them are the target genes of

Nfatc2. The gene information of Nfatc2, Iqsec1 and Pcnt are like this: Nfatc2 is a nuclear factor of

activated T-cells. Iqsec1 is a protein containing IQ motif and SEC7 domain and it accelerates GTP

gamma S binding by ARFs and preferentially functions as a guanine nucleotide exchange protein

for ARF6, mediating internalisation of beta-1 integrin. Pcnt is pericentrin which can be bound by

calmoduline.

The estimated network by the MCMC method is shown in Figure 3.11. All pairs of Nfatc2,

Iqsec1 and Pcnt are connected by bidirected edges, which imply that there could be latent common

parents for them. We confirmed that the estimated network is actually the network of the highest
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Figure 3.8: 497 genes out of 593 genes are connected to each other in the estimated undirected

graph by glasso. The gene of interest (Nfatc2) is numbered to be 428 in red and directly connected

genes are colored in blue.
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Figure 3.9: 6 genes are directly connected to Nfatc2
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Figure 3.10: 104 genes are connected to Nfatc2 on the top in red by at most 2 steps. 6 genes that

are directly connected to Nfatc2 is in blue.
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likelihood, and hence MCMC converged well. Figure 3.12 shows that three genes are highly

correlated even after adjusting for QTL effects. Three genes are also highly correlated conditional

on the other gene respectively, rejecting the conditional dependence with p-value less than 0.0005,

and thereby the only suitable network in terms of ancestral graphs would be Figure 3.11.

chr2@85.1
((QQQQQQQ chr19@44.7

vvlllllll

N f atc2
hh

((QQQQQQQQ66
vvmmmmmm

chr2@89 // Iqsec1 oo // Pcnt chr2@99.6oo

chr11@2.7

55kkkkkkkk
chr12@7.5

iiSSSSSSSSS

Figure 3.11: A causal network of Nfatc2, Iqsec1 and Pcnt allowing latent variables. chrK@x are

identified QTLs at x cM in chromosome K conditional on the phenotype network.

3.7 Conclusion

We have developed a causal gene network with genetic variations allowing latent variables.

Since Bayesian networks are not closed under marginalization, ancestral graph Markov models

are the proper class of graphical models to consider latent variables. Ancestral graphs can be de-

composed into an undirected graph and the remaining graph composed of directed and bidirected

edges, where there is no directed or bidirected edges pointing to the undirected graph. This al-

lows the probability of an ancestral graph to be factored intoP(YunG)P(YV\unG |YunG). We use this

decomposition property in an analogous way to the decomposition into the recombination linkage

map and the causal gene network with QTLs and latent variables in eqn (3.1). Conditional on the

recombination linkage map, we model a gene network of QTLs and phenotypes allowing latent

variables in eqn (3.2, 3.3, 3.4). The presence of nonzero off-diagonal elements in the covariance

of residuals handles the marginalization over latent variables.
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Figure 3.12: Scatter plots of gene expression after adjusting for sex, batch and QTL effects



98

Based on the ancestral graph modeling, we have proved that 1) QTLs help to distinguish

Markov equivalent DMAGs and 2) our parameterization of the network is in a homogeneous con-

ditional Gaussian (HCG) family. We conjecture that distribution equivalence implies the Markov

equivalence and vice versa in a Gaussian family and HCG family and suggest the reparameteriza-

tion between Markov equivalent graphs. We also developed an MCMC for DMAGs. The simu-

lation study shows that the bidirected edge associated with a latent variable is correctly detected

in 35% of the simulations in the given simulation setting. Directed edges are correctly detected

between 60% to 80% of the simulations. The lower detection rate of the bidirected edge can be

explained by lower correlation. The real data analysis on a subset of genes co-mapped to a hotspot

in islet, on the contrary, identifies bidirected edges between genes. These genes show high correla-

tions and partial correlations with each other, and hence any combination of directed edges cannot

explain their relationships better than the bidirected graph. The bidirected graph can imply an

hypothesis that there could be one or more gene products or signaling molecules that may govern

these genes.

As ancestral graphs are more flexible than directed acyclic graphs, there is price to pay for

allowing latent variables in ancestral graphs. The number of directed maximal ancestral graphs,

for the number of nodesp = 1,2, · · · ,5, is 1, 4, 56, 2492, 328924 while the number of directed

acyclic graphs is 1, 3, 25, 543, 29281. The space for ancestral graphs grows faster than the space

for DAGs, which already grows super-exponentially. Hence, we need a very efficient algorithm

to search over the ancestral graph space. In the proposed MCMC algorithm, the better proposal

distribution of new DMAG is desirable which not only jumps from the current DAG subgraph but

also jumps from the current bidirected graph.
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Chapter 4

Summary

4.1 Summary of my work

In Chapter 2, we incorporated biological knowledge to reconstruct a causal gene network from

genotypes and phenotypes. A Bayesian network is modeled for a causal network of genotypes and

phenotypes. Biological knowledge sets the prior on phenotype network, which is a sub-graph of

the whole causal gene network, that is, a causal network among phenotypes. The weight parameter

is introduced as a hyper parameter in the prior of phenotype network to control the contribution

of biological knowledge and the hyper prior for the weight is also set. The proposed model,

QTLnet-prior, shows the improvement of recovery of network when correct biological knowledge

is incorporated in a simulation study. When misleading biological knowledge is incorporated,

there is a decrease in the recovery of networks, however, the decrease is controlled somewhat by

the weight parameter so that the influence of biological knowledge could be negligible. By using

the weight parameter, QTLnet-prior is robust to noisy biological knowledge. The application of

QTLnet-prior on 26 yeast cell cycle genes with transcription factor binding information infers a

network that does not make much use of transcription factor binding information. There are several

explanations for this result. One is transcription factor binding information is noisy, especially

since the data is generated by Chip-chip in 2002. Another explanation is that transcription factor

binding information is not consistent with the underlying network to generate gene expression.

It is also possible that there is a biological network with proteins, transcription factors, mRNAs

and metabolites as elements and mRNA expression alone may not reflect the underlying biological

network well.
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In Chapter 3, we constructed a causal gene network of genotypes and phenotypes allowing

latent variables. An ancestral graph is modeled to take into account the possibility of latent vari-

ables. The possibility of latent variables is considered because the measurements may omit signif-

icant variables in the network, and we often take a subset of variables to construct a network. We

showed that 1) QTLs help to distinguish Markov equivalent ancestral graphs and 2) our model is

a homogeneous conditional Gaussian (HCG) distribution. We proposed an MCMC algorithm to

explore the space of DMAGs and presented the recovery of networks in the simulation study. We

applied the algorithm to real data of 3 genes (Nfatc2, Iqsec1, Pcnt) in F2 mice population and the

results suggested latent variables for all pairs of 3 genes.

The two chapters develop methods for the causal gene network inference from experimental

cross study. They are intended to decipher how genotypes cause the change in gene expressions

and how gene expressions cause the change in other gene expressions. The first method, QTLnet-

prior, incorporates biological knowledge to get more comprehensive causal gene networks. The

second method prevents us from making spurious causal relations by latent variables as much as we

can. Using both methods together will generate hypothetical regulatory relationships and indicate

hypothetical master regulators, which could be verified through biological experiments.

There are some limitations of our approach. One is that the currently developed algorithms

cannot handle a large number of genes. Second is that both methods are based on linear models,

but nonlinear relationships are important too.

4.2 Future work

The construction of large networks will be valuable to get a big picture of how gene products

regulate each other. To accomplish this goal, we need to do the following: 1) development of

a fast code using low-level programming language such as C and efficient algorithms such as

Metropolis-coupled MCMC, and 2) development of a parallel computing algorithm through the

divide-and-conquer strategy. The parallel computing algorithm will first divide the genes into sets

of genes that would be closely connected in the undirected graph estimated by glasso [Friedman

et al., 2008]. Second, it will construct causal subnetworks on each set in parallel. Third, the theory
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in ancestral graphs about marginalization will be incorporated to develop a method to integrate

subnetworks to infer one large network. Another aspect to improve in network inference to reflect

biological relationship is the nonlinear relationship, since not all relationship can be approximated

by linear parameterization. We could discretize variables and fit discretized values to capture

nonlinear relationships. Nonparametric or semiparametric approach for network inference could

be developed as well.

Causal network analysis on different conditions and developmental stages is of great interest.

For example, hematopoietic stem cells (HSCs) give rise to various blood cells and these HSCs

underwent development from embryo to adult [McKinney-Freeman et al., 2012]. By deciphering

the causal networks on gene expressions at different developmental stages, we could identify key

elements for each stage and the identified key elements could be used to induce the differentiation

of blood cells from induced pluripotent stem cells (iPSCs). Since causal networks at each devel-

opmental stage may share some common features and turning off an upstream gene will affect the

downstream genes, the joint prior probability on networks can be constructed to satisfy these two

properties.

There are several statistically interesting problems arising from causal network inference. One

is the violation of faithfulness assumption. The faithfulness assumption is that there are no con-

ditional independencies other than the graph entails. The set of unfaithfulness distributions has

Lebesgue measure zero where coefficients of the graph can cancel out making additional condi-

tional independencies. To estimate a network, a strong faithfulness is assumed due to sampling

error. The strong faithfulness assumption modifies the faithfulness assumption in that the condi-

tional independence is defined to be in the small neighborhood of 0. Uhler et al. [2012] proved

that there is a large volume of strong unfaithful distributions and the inference of causal networks

based on conditional independence tests such as PC-algorithm will have fundamental limitations.

We interpret this limitation as a multiple testing problem and it will be worthwhile to investigate the

relationship between the likelihood-based method such as glasso [Friedman et al., 2008] and faith-

fulness assumption. Another interesting problem arises when we summarize the MCMC result of

networks. Since networks can be Markov equivalent to each other, careful summarizing methods
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will be needed. Since Markov equivalent models have the same set of conditional independen-

cies, we can summarize the posterior probability of conditional independencies and reconstruct a

network from significant conditional independence relations.

Since the fundamental questions in biology are causal relations, causal network analysis will be

applied more and more. A statistical theory to support the consistent causal analysis will enhance

the wide use of causal networks.
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APPENDIX
Additional Figures

A.1 Inferred yeast cell cycle network with causal QTLs integrating TF infor-
mation by QTLnet-prior
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Figure A.1: Yeast cell cycle network integrating transcription factor binding information inferred

by QTLnet-prior. The edge darkness is in proportion to the posterior probability.
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A.2 Convergence diagnostics of yeast cell cycle network
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Figure A.2: The top two figures are the trace plot and the autocorrelation plot of BIC scores for

sampled causal networks. The bottom two figures are the trace and the autocorrelation plots of the

sampled weights (W) on transcription factor binding information.
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