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Chapter 1

Introduction

The role of the anterior temporal lobe (ATL) in semantic cognition remains a con-

troversial topic in cognitive neuroscience. It has been attributed with several spe-

cific kinds of semantic processing, such as social cognition (Simmons, Reddish,

Bellgowan, & Martin, 2009), the representation of unique entities (Grabowski et

al., 2001), and face recognition (Gainotti, 2007). On the other hand, the ATL is

thought to play the critical “hub” role in hub-and-spoke theory of semantic cogni-

tion, as a part of the brain that participates in the representation of concepts of all

kinds (Patterson & Lambon Ralph, 2016; Patterson, Nestor, & Rogers, 2007; Rogers

et al., 2004).

To date, the ATL’s hub status has been inferred from its anatomical connectiv-

ity (Binney, Parker, & Lambon Ralph, 2012; Morán, Mufson, & Mesulam, 1987), its

multi-modal sensitivity (Abel et al., 2015; Shimotake et al., 2014), and its associa-

tion with domain- and modality-general semantic impairments when damaged by

disease (Lambon Ralph, Lowe, & Rogers, 2007; Mayberry, Sage, & Lambon Ralph,

2011; Rogers et al., 2004) or disrupted by trans-cranial magnetic stimulation (TMS;

Pobric, Jefferies, and Lambon Ralph, 2007). L. Chen (2014, June 17) recently in-

tegrated these various sources of evidence to implement the hub-and-spoke hy-
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pothesis as a computation model which succeeds at simulating a wide range of se-

mantic behaviors, including the profiles of all known semantic disorders (Chen et

al, unpublished). And although the functional neuroimaging literature used to be

rather inconsistent with regard to whether the ATL played a functional role in se-

mantic cognition (Visser, Jefferies, & Lambon Ralph, 2010), recent years have seen

a rise in the number of studies showing increased activation of the anterior tempo-

ral lobes during semantic tasks. This is due to a variety of improvements in both

experimental design and technical aspects of fMRI image acquisition (Binder et al.,

2011; Binder, Swanson, Hammeke, & Sabsevitz, 2008; Rogers et al., 2006; Visser,

Embleton, Jefferies, Parker, & Lambon Ralph, 2010; Visser, Jefferies, & Lambon

Ralph, 2010).

While the general architecture of the model and in particular the location of

the hub has now been well established, exactly how the ATL contributes to con-

cept representation is unclear. The set of hypotheses that are consistent with the

ATL being an integrative hub can be boiled down to three perspectives. Each per-

spective predicts that the ATL represents cross-modal structure in a different way,

by encoding different kinds of information. These kinds of information are:

1. Points of peak convergence, associated with unique entities (A. R. Damasio,

1989a, 1989b; H. Damasio, Grabowski, Tranel, Hichwa, & Damasio, 1996; H.

Damasio, Tranel, Grabowski, Adolphs, & Damasio, 2004; Tranel, Damasio,

& Damasio, 1997).

2. Distributed representations containing all semantic content, including re-

representations of unimodal and cross-modal structure that might be en-

coded elsewhere (L. Chen, Lambon Ralph, & Rogers, 2016; Lambon Ralph

et al., 2007; Patterson et al., 2007; Rogers et al., 2004).

3. Distributed representations that encode the interactions among spokes, but
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not the full semantic similarity structure structure. Unimodal structure is

encoded in the spokes. The full semantic similarity structure is expressed

in the joint activity over both the hub and the spokes, and not in any sin-

gle region. This position is not articulated in the literature, but is hinted at

by the “graded hub hypothesis” (Binney et al., 2012; Patterson & Lambon

Ralph, 2016) which emphasizes the interactivity of the hub and the spokes

(rather than feed-forward convergence from spoke to hub) and which more

directly acknowledges the structural heterogeneity of the ATL than earlier

expositions of the hub-and-spoke hypothesis.

Critically, each of these positions imply different patterns of neural activity over

the ATL and the rest of cortex. If semantic knowledge is encoded as distributed

representations in a hub-and-spoke network, this poses serious challenges from

a neuroimaging perspective. Each concept would be encoded as some pattern of

activity over the same neural regions as every other concept. Within these regions,

the information would be encoded in fine-grained patterns of activity, rather than

consistent activation or deactivation over gross anatomical areas. Furthermore, a

distributed representation needs to be considered as a whole. This implies that

a pattern which spans multiple anatomical regions needs to somehow be jointly

identified, even if separated by expanses of irrelevant neural activity. Finally, the

information content of distributed representations is expressed via their similarity

to other distributed representations encoded over the same units. This implies that

even if two people have encoded exactly the same content over exactly the same

units, patterns of activity may still differ.

Until very recently, there did not exist a technique for analyzing neuroimages

capable of identifying distributed representations that encode semantic similar-

ity structure over potentially sparse patterns of neural activity that span multiple

regions of the brain. It has therefore been difficult to adjudicate between these hy-
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potheses with functional neuroimaging. In this dissertation, I will illustrate why

contemporary approaches are ill-suited to whole brain multivariate analyses of

distributed representations. I will then consider evidence that neural representa-

tions can be distributed in the ways just described (Chapter 2) and will articulate

newly developed statistical methods better suited to discovering such representa-

tions (Chapters 3 and 4). Finally I will apply the methods to two datasets (fMRI

in Chapter 5 and ECoG in Chapter 6) in order to adjudicate between the different

hypotheses about how semantic similarity structure is encoded in neural activity,

and the role of the ATL in that encoding.

Before proceeding, let us consider the three representational hypotheses al-

luded to above in more detail, with emphasis on the patterns of neural activity

that would be associated with each in fMRI or ECoG datasets.

1.1 How the ATL may contribute to semantic

representation: Three hypotheses

The convergence hypothesis

The convergence zone hypothesis of conceptual retrieval, developed by Damasio

and colleagues (A. R. Damasio, 1989a, 1989b; H. Damasio et al., 2004; Tranel et al.,

1997), predicts that conceptual retrieval involves time-locked reactivation of “frag-

mentary records”, information encoded in modality-specific regions. Convergence

regions contain “convergence zones”, which are amodal nodes that bind together

“fragments” of sensory information into coherent concepts. Convergence regions,

roughly speaking, exist in a hierarchy where more anterior convergence regions

contain the bindings relevant to more specific entities. The most anterior conver-

gence regions, such as the ATL and inferior frontal lobe, bind together fragments
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that can reconstruct unique entities (including spatial and temporal relationships),

while posterior convergence regions bind together the features composing non-

unique entities (A. R. Damasio, 1989a).

The convergence theory makes several clear predictions about the association

between neural activity and concept representation. Ironically, the theory does

not posit the existence of a convergence region that receives input from all modal-

ities, and thus there is no notion of a pan-modal hub. Rather, the assumption is

that time-locked reactivation of information fragments over disparate regions will

be integrated by virtue of simultaneous activation, meaning that the convergence

zone’s primary role is to enforce the right patterns of activity in posterior cortical

regions at the right time. Convergence zones do not re-represent information, and

so by this account the ATL would not encode any similarity structure. What it does

predict is that representational structure would be encoded in a widely distributed

pattern over posterior cortical regions, and that there would be no representational

structure/content within the hubs enabling semantic retrieval. 1

I should emphasize that, for the purposes of the current work, I do not intend to

pit convergence theory against the hub-and-spoke theory point-by-point. For in-

stance, it is not important that the two theories are at odds with respect to the exis-

tence and essential role of a pan-modal hub. What is interesting is that the theories

predict very different representation styles. Granting that the ATL is a high-level

integration site relevant to conceptual knowledge of all kinds (which, again, is not

Damasio’s hypothesis), the information encoded in the ATL might be distributed

representations or convergence zones. Just as distributed representation is a gen-

eral means of information encoding not unique to the hub-and-spoke model, the
1One can imagine situations where a Damasio-esque representational scheme could result in

structured ATL activation over the course of an experiment. If, for example, one was probed about
family members and personal items in a way that evoked many unique entities on each trial (or was
consistently ambiguous), the activated convergences zones could form a constellation of activity
that might look reliably different in the person vs. item contrast. Note, however, that there would
be no reason for unique person entities and unique item entities to be clustered in the ATL.
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Figure 1.1: Schematic depiction of the hub-and-spoke model of semantic cognition. Re-
produced from Lambon Ralph, Lowe, and Rogers (2007).

idea of “time-locked multiregional retroactivation” (A. R. Damasio, 1989b) can be

applied in the context of neural architectures other than the specific one hypoth-

esized by Damasio. In short, although devised in part to deal with the alleged

absence of a pan-modal hub anywhere in the brain, the core representational hy-

pothesis of the convergence theory is not fundamentally incompatible with such a

hub existing.

The semantic hub hypothesis

A major advantage of the hub-and-spoke model is that it has been explicitly im-

plemented as a neural network model that can be used to simulate semantic cog-

nition under a wide range of interesting conditions (L. Chen, 2014, June 17; Pobric

et al., 2007; Rogers et al., 2004). It also allows for an investigation of the underlying

representational structure that gives rise to the model’s behavior. Based on how

the implemented model learns—through error correction—and the position of the

semantic hub within the model (see Figure 1.1), the model predicts that the hub

will come to encode a similarity space that represents all semantic structure. This

means that the hub should participate in all semantic tasks regardless of stimu-
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lus modality (e.g., reading a word, hearing a sound, viewing an image, feeling a

texture, or smelling and odor). The structure expressed by the hub is abstracted

away from specific attributes and properties of individual concepts—the hub en-

codes similarity structure, but does not encode specific object properties. That is to

say, it is hypothesized that concepts that are similar will be associated with sim-

ilar patterns of activation, and vice versa, but that a single pattern of activation,

taken without the context of activation associated with other concepts, expresses

nothing about the content of the concept. This similarity-based encoding scheme

is strongly associated with distributed representation and is considered in detail

in Chapters 2 and 3. The spokes contain modality specific structure, and is also

where such properties would be encoded and retrieved from (Patterson et al., 2007;

Rogers et al., 2004).

On this account, there is a degree of redundancy: each spoke represents modal-

ity specific structure, and the hub represents pan-modal structure that integrates

over all modalities.

The semantic hub+spokes hypothesis

This perspective is not associated with an implemented model in the same sense

that the semantic hub perspective is. This perspective posits that the ATL encodes

only pan-modal structure, and does not reproduce any of the structure encoded in

other cross-modal or unimodal association areas. The spokes and the hub encode

independent components of semantic space. These disparate components might

be integrated by virtue of synchronous activation, similar to the mechanism pro-

posed under Damasio’s convergence theory. Critically, and in stark contrast to the

convergence theory, the hub+spokes perspective predicts that conceptual struc-

ture is encoded in cross-modal regions rather than only being present in unimodal

fragments. Whereas the convergence theory requires time-locked reactivation of
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sensory information, the hub+spokes perspective predicts simultaneous activa-

tion of information at several levels of abstraction. The full concept is encoded in

a radically distributed code spanning modality specific and cross modal regions.

The representational predictions of this model are a little more complex. What

does it mean for a region to encode only cross-modal structure? To develop the

basic intuition, we can think about this hypothesis in terms of a linear model that

includes interaction terms. Consider the following simple model to describe the

relationship between random variables x1 and x2 and a 1-dimensional similarity

structure, y:

y = β1x1 + β2x2 + β1·2x1·2 (1.1)

The similarity structure y can be perfectly predicted if you have several pieces

of information—namely, access to the random variables x1 and x2, the weights β1,

β2 and β1·2, and a function for combining—and the ability to work freely with

that information. In the model above, the is no sense of space or division of labor.

Consider instead the following:

ya = β1x1

yb = β2x2

yc = β1·2x1·2

Rather than a single model that describes the global similarity space, there are

three models, and each describes a local similarity space. Of course, by substitu-

tion:

y = ya + yb + yc (1.2)
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That is, the local spaces can be combined to recover the global similarity struc-

ture. This may be made even more clear by visualizing a 2-dimensional example

played out in a cartoon hub and spoke network. Imagine there are input features

in the audio spoke, and two input features in the visual spoke, and the two spokes

connect to the ATL. Each spoke can track the interaction between its two features,

but cannot track interactions between features in the other spoke. That is what

the ATL is for. For the sake of simplicity, let the ATL represent just the four 2-way

interactions among spoke features. Finally, let y be a matrix of 2-dimensional co-

ordinates, meaning that β will be a 10× 2 matrix of weights (two for each feature

and interaction of features). Assuming perfect knowledge of β, the local similarity

spaces are shown in the top row of Figure 1.2. They each have access to differ-

ent information, and so model only a portion of the structure. The plots show

the points in similarity space associated with the β and x that the region has ac-

cess to. The bottom row, in contrast, shows the global similarity structure. The

panel labeled [true] is generated by considering all features and interactions at

once. Compare that to the plot labeled “vis+aud+ATL”, which is generated by

simply summing the coordinates across the local representations displayed in the

top row. The structures are the same. This merely allows us to visualize what

was shown mathematically above: summing over representations or generating

the global representations directly is equivalent.

This simple example also shows how “modality specific” information may play

a critical role in pan-modal concept representations. Information received in the

visual or audio spoke is unimodal, but because the ATL only codes the cross-modal

aspects, they are very literally part of the pan-modal representation—the ATL rep-

resentation cannot stand on its own, and the conceptual structure exists only in the

aggregate local structures.

To be clear, the hub+spokes perspective is not wed to such simple models. The
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Figure 1.2: An example of how the ATL might encode only pan-modal structure, as under
the hub+spoke perspective. The data points were generated by a simple linear model of 4
input features, 2 in each spoke (audio and visual) and their interactions (1 local interaction
per spoke, and 4 global interactions reflected in the anterior temporal lobe). Given the
appropriate weights, when taken all together, the set of features and their interactions ex-
press a global similarity structure. However, if the features are spread over the two spokes,
no one region contains the full structure. Rather, each expresses local similarity structure.
The insight is that aggregating the local “representations” across regions is mathemati-
cally equivalent to generating a single global representation directly (at least in the case of
simple linear models).

demonstration above is meant only as a concrete example of how semantic repre-

sentations may be supported over multiple regions, and to show the purely cross

modal representations can exist, serve the proposed function, and are not so ab-

stract as to not be grounded in very simple models.

Summary

These three hypotheses have many aspects in common, making them consistent

with the general hub-and-spoke architecture. They all frame concept represen-

tation as a complex, experientially grounded process that involves some form of

multisensory integration, and they all predict that modality-specific relationships
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are encoded near perceptual and motor cortical areas, and the most abstracted rela-

tionships are encoded in anterior regions, including the ATL. In addition to being

consistent with the hub-and-spoke model, these points are in line with virtually

all neuroimaging work on semantics (Barsalou, 2008; Binder, Desai, Graves, & Co-

nant, 2009; Kiefer & Pulvermüller, 2012; A. Martin, 2007; A. Martin & Chao, 2001;

Patterson et al., 2007; Visser, Jefferies, & Lambon Ralph, 2010).

These baseline similarities neatly frame their differences, which pertain to how

exactly this multisensory integration and abstraction is handled by the brain. Crit-

ically, the various hypotheses outlined above predict different patterns of neural

activity associated with behaviors that require semantic cognition. In each case,

the associated neural activity will take the form of patterns that have the features

of distributed representations, including that the similarity among the patterns of

activity corresponds to similarity among the mental states. However, the where

exactly these patterns of activity can distinguish these hypotheses and thus pro-

vided insight into the underlying representations.

At a gross anatomical level, we have the following predictions associated with

each of the three hypotheses:

1. Convergence perspective. The only neural patterns that correlate with concep-

tual structure will be in modality specific areas.

2. Semantic hub perspective. The neural patterns that correlate with conceptual

structure will primarily exist in the ATLs. Neural patterns in modality spe-

cific areas may also correlate with semantic structure, but ideal images of the

ATLs (with minimal distortion and sufficiently high spatial and temporal res-

olution) would provide a window into the entirety of the encoded conceptual

structure.

3. Semantic hub+spokes perspective. The neural patterns that correlate with con-
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ceptual structure would be partially encoded by the ATL and partly encoded

in modality specific areas. Studying the neural activity of the ATL in iso-

lation, no matter how precisely, would only yield the pan-modal structural

aspects that express the interactions among input from the spokes. Content

encoded in unimodal areas is not re-represented in the ATL, and so the hub

and spokes need to be included in the same mode in order to account for the

relevant representational similarity structure encoded in the brain—indeed,

the hub and spokes together support a global semantic space.

In the experimental work reported in Chapter 5, I will conduct a series of novel

tests of the representational assumptions of the hub-and-spoke model, in an at-

tempt to clarify the role of the ATL in domain general semantic cognition.

1.2 Relation to prior work

Although prior work has been technically limited to considering localized and/or

regional structure in isolation of the rest of cortex, this dissertation does not mark

the first attempt to characterize the representational structure expressed by that

ATL or how semantic structure is expressed in the functional activity of the brain

more generally. Devereux, Clarke, Marouchos, and Tyler (2013) had participants

name the basic level category of specific images or names of category exemplars,

sampled from six categories, and then performed a whole brain searchlight RSA

considering the patterns of activity associated with words and pictures separately.

They found that middle temporal gyrus and angular gyrus are areas that express

semantic structure across both modalities, and not the anterior temporal lobe.

However, other studies have come to rather different findings. For example,

Peelen and Caramazza (2012) presented garage and kitchen tools that are manip-

ulated by either being squeezed or twisted (fully crossed design) in the context of
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a one-back task, where participants monitored for either changes in where or how

the tool is used. In contrast to Devereux et al. (2013), both searchlight RSA and a

region of interest RSA indicated that activity patterns in ventral ATL carry infor-

mation about how and where objects are typically used, and that this information

was independent of the perceptual properties of the objects.

In another cross-modal study using words and images, Fairhall and Caramazza

(2013) had participants rate how typical each stimulus was of its category (five cat-

egories total). They found an interesting dissociation between searchlight MVP

classification and a region of interest RSA with respect to the ATL: 5-way classifi-

cation was significantly above chance, but the RSA did not reveal that the seman-

tic structure was significantly correlated with the target structure. This might be

because classifiers involve modeling the neural activity, allowing the relative im-

portance of each voxel to be scaled, whereas the RSA does not. If the similarity

structure in that ATL is sparsely encoded, for instance, it may account for the dis-

sociation. A cross modal study considering spoken and written words, however,

seems to suggest that the left ventral and medial ATL expresses semantic similar-

ity when words are written but not when spoken (Liuzzi et al., 2015). Studies that

only used visual stimuli tend to identify posterior temporal regions (Connolly et

al., 2012), but it is of course difficult to tell whether these results are reliant on vi-

sual or conceptual similarity (Bruffaerts, Dupont, et al., 2013; Jozwik, Kriegeskorte,

& Mur, 2016).

The aforementioned research all measured neural responses with fMRI. A re-

cent study of ECoG data collected while 10 patients were presented with line draw-

ings and asked to name each one has revealed that a spatio-temporal searchlight

RSA identifies semantic similarity structure in the patterns of local field potentials

over electrodes implanted in the ventral ATL (8 out of 10 subjects had left hemi-

sphere implants; Y. Chen et al., 2016).
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In summary, there is a small but growing collection of functional evidence in-

dicating that the ATL expresses semantic similarity structure. However, impor-

tant questions remains. In particular, the distinction between audio and visual

stimuli suggested by Liuzzi et al. (2015) bears further investigation, and whether

these representations interact with local structure in modality specific spokes or

are completely supported by the ATL has not been tested.

1.3 Identifying sparse, distributed, whole brain

patterns of functional activity

Any analysis of complex high dimensional data, like that produced by neuroimag-

ing, involves making assumptions about what constitutes meaningful signal. Mul-

tivoxel pattern analysis (MVPA; Haxby, Connolly, and Guntupalli, 2014; Haxby et

al., 2001; Norman, Polyn, Detre, and Haxby, 2006) and Representational Similar-

ity Analysis (RSA; Kriegeskorte, Goebel, and Bandettini, 2006; Kriegeskorte and

Kievit, 2013) have greatly expanded the range of representational hypotheses that

can be tested relative to the narrow sensitivity of univariate analyses. In addition

to the tools and techniques that have taken firm hold in the neuroimaging com-

munity, there is active cross-disciplinary work with engineers producing novel

methodologies that sit on the cutting edge of optimization theory and neurosci-

entific investigation. In Chapter 3, I will review several of the most prominent and

influential of these techniques with a focus on their representational assumptions,

which will lay the groundwork for introducing network RSA (Oswal, Cox, Lam-

bon Ralph, Rogers, and Nowak, 2016) in Chapter 4, a novel analysis framework

developed with the explicit goal of discovering signal with the characteristics of

distributed representations.

Of course, it is not a given that artificial neural networks are worthy analogies to
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real neural networks, a fact which may cast doubt on whether the brain utilizes dis-

tributed representation at all. If it does not, then this is two hefty marks against the

hub-and-spoke hypothesis: it indicates invalid representational assumptions and

eliminates a major argument for why the ATL appears inactive during semantic

cognition when assessed by fMRI. This important consideration will be addressed

in Chapter 2, where I will define distributed representations and make a case that

brain does utilize them (see also C. R. Cox, Seidenberg, and Rogers, 2015).

1.4 Cross-modal representations in the ATL

If the ATL is a pan-modal hub, it must participate in semantic encoding regard-

less of the input modality. The semantic hub and hub+spoke hypotheses both

predict that the semantic structure encoded by the ATL is referenced regardless

of the input modality, and, given a unimodal stimulus like an image, is critical to

determining that associated properties in other modalities (Patterson & Lambon

Ralph, 2016; Patterson et al., 2007; Rogers et al., 2004). This critical hypothesis

can be tested by presenting with stimuli that represent a common set of concepts

from different modalities on different trials, for example presenting a picture of a

labrador on some trials and a sound clip of a labrador barking on others. Network

RSA can be used to estimate the network of voxels that express the semantic sim-

ilarity structure for trials picture and sound trials independently. The test of this

hypothesis could then be determined by a conjunction analysis. The fMRI dataset

which is reported an analyzed in Chapter 5 was designed with this test in mind,

and so I will be able to perform this test and potentially observe that the ATL en-

codes a cross-modal semantic space.

Although it has not previously been possible to assess the representational

structure encoded in distributed networks in the brain, there does exist consid-
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erable evidence that the ATL is involved in multi-modal representation, some of

which was reviewed in Section 1.2. Two recent intracranial ECoG studies have

detected local field potentials that that are similar whether recognizing a famous

person by their voice or their face (Abel et al., 2015) and shown that direct stimula-

tion at certain sites can disrupt both the comprehension of a spoken command and

the ability to perform picture naming or reading tasks (Shimotake et al., 2014). Of

course, that the ATL encodes cross modal structure is also evidenced by the pat-

tern of impairment seen in patients with semantic dementia, whose impairments

are not restricted by modality (Hodges, 1995; Hodges & Patterson, 2007; Hoff-

man, Jones, & Ralph, 2012; Nestor, Fryer, & Hodges, 2006; Snowden, Goulding,

& Neary, 1989).

1.5 Summary

To date, ATL’s hub status has been inferred from its anatomical connectivity (Bin-

ney et al., 2012; Morán et al., 1987), its multi-modal sensitivity (Shimotake et al.,

2014), its association with domain- and modality-general semantic impairments

when damaged by disease (Lambon Ralph et al., 2007; Mayberry et al., 2011; Rogers

et al., 2004) or disrupted by transcranial magnetic stimulation (Ishibashi, Lambon

Ralph, Saito, & Pobric, 2011; Jackson, Lambon Ralph, & Pobric, 2015; Pobric et al.,

2007, 2010a, 2010b; Pobric, Lambon Ralph, & Zahn, 2016), and demonstrations of

its functional involvement in semantic tasks performed by healthy participants rel-

ative to non-semantic tasks (Binney, Embleton, Jefferies, Parker, & Lambon Ralph,

2010; Visser, Embleton, et al., 2010; Visser, Jefferies, Embleton, & Ralph, 2012).

Nevertheless, the contribution of the ATL to semantic representation remains in

controversy because the representational predictions of the hub-and-spoke model

have not been but to a fair test due to past methodological limitations.
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In the proposed experimental work, the objective is to evaluate predictions the

hub-and-spoke model make about how semantic representations are expressed in

patterns of neural activity. In Chapter 2, I will review the functional neuroimag-

ing literature to support the foundational assumption that the brain utilizes dis-

tributed representations. Then, in Chapter 3 I will consider the technical chal-

lenges associated with identifying representations of this kind, and demonstrate

the need for a methodological innovation, which we call network RSA (Oswal et

al., 2016). Chapter 4 will then be dedicated to introducing network RSA in detail

to build intuitions about how it can be applied and what novel insights it can pro-

vide to cognitive neuroscientific research. With these foundations laid, Chapter 5

will contain a series of analyses peformed on a cross-modal fMRI dataset that has

many qualities that make it ideal for testing the representational hypotheses associ-

ated with the hub-and-spoke model outlined in this chapter. Chapter 6 will follow

up with an analysis of an ECoG dataset, including local field potentials collected

from microelectrod arrays implanted in the ventral ATL. I will then conclude the

dissertation in Chapter 7 with a general discussion in which I interpret my novel

empirical work in broader context.
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Chapter 2

Distributed Representations1

Distributed representation is one of the central tenets of the Parallel Distributed

Processing (PDP) framework (Rumelhart, McClelland, & PDP Research Group,

1986). The basic notion is that entities such as words, concepts, objects, faces,

places, and so on, are represented with patterns of activity over sets of neural

processing units. An individual unit may participate in many different repre-

sentations, while representations that express similar content will be coded with

similar patterns over many units. The utility of such representations has been

demonstrated in PDP models of many phenomena in many domains; a recent

special issue of Cognitive Science, for instance, surveyed the impact of the PDP

approach in the domains of learning, perception, language, memory, cognitive

control, and consciousness (see Rogers and McClelland (2014), and accompanying

articles). Together such models instantiate a theory of cognitive representation

and processing that differs from traditional approaches involving rules (Pinker,

1991), “theories” (Gopnick & Wellman, 1994), and other symbolic representations

(Tenenbaum, Griffiths, & Kemp, 2006). The models explain how representations

of different types of knowledge develop, how such knowledge is structured and
1This chapter is based on C. R. Cox et al. (2015), adapted for clarity and to flow the the rest of

the document. The full article situates distributed representations in a discussion about functional
neuroimaging methods and high-level functional specificity in the brain.
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organized, and how it is used in performing different tasks. Models using dis-

tributed representations have provided new accounts of important elements of

intelligent behavior (e.g., generalization) and explain detailed aspects of behav-

ior that other theories miss (e.g., the quasiregular character of language and other

types of knowledge; Plaut, McClelland, Seidenberg, and Patterson, 1996; Seiden-

berg and Plaut, 2014). They have also been the foundation for influential accounts

of many neuropsychological phemonena (Farah & McClelland, 1991; Harm & Sei-

denberg, 1999; Joanisse & Seidenberg, 1999; Lambon Ralph et al., 2007; Plaut, 2002;

Plaut & Shallice, 1993).

Despite these successes, important questions remain about the epistemic sta-

tus of distributed representations. The promise of the PDP approach is that the

use of “neurally-inspired” constructs such as distributed representations would

prepare the way for integrated theories of behavior and its brain bases. On the

cognitive side, the relevance of distributed representations to understanding be-

havior is well-established, but the models obviously abstract away many complex

properties of neural systems. On the neurobiological side, it is generally accepted

that mental representations are instantiated as patterns of activity over large sys-

tems of individual neurons, which communicate through synaptic networks with

structure at multiple spatial scales. It remains unclear, however, just how such net-

works represent entities such as words, concepts, objects, etc. (Quiroga, Reddy,

Kreiman, Koch, & Fried, 2005). The gulf between high-level cognitive and low-

level biological understanding of representation thus raises questions about the

extent to which the neural representations of cognitive entities are distributed in

the PDP sense.

But why put so much emphasis on this aspect of PDP models? If this gulf

were to be closed, what would be accomplished? Distributed representations are

so important because they are an emergent property of neural network models.
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Distributed representation is not chosen from among a set of alternative represen-

tational strategies when developing neural network simulations. The modeler can

design the organization of units and links, choose the response functions for units

and the learning rate on links, and even manipulate the error metric that super-

vised networks iteratively work to minimize. But PDP models will always develop

distributed representations as they extract structure from the environment and

learn to behave in desired ways. The content that they encode and the dynamics

associated with their development, utilization, and degradation are inextricably

bound. This means that these models are only relevant from a neuroscientific per-

spective if the brain also employs the basic mechanisms that would support the

existence of PDP-like networks.

If PDP models can be judged to be neurally plausible, this is a boon to cog-

nitive neuroscience. Questions that pertain to the computational qualities of bil-

lions of unmeasurable neurons in a human brain are virtually unsolvable without a

suitable modeling environment that abstracts away confounding complexity while

retaining essential core mechanisms. To explain how and why a PDP model per-

forms the way it does will invariably include an analysis the distributed represen-

tations that the model has acquired, and the hub-and-spoke model is no exception.

Consider the following apparently paradoxical qualities of the ATLs asserted by

the hub-and-spoke model: the two ATLs jointly support a single, domain-general

representational space for pan-modal conceptual knowledge, yet bilateral damage

results in much worse semantic impairment than equivalent damage concentrated

in a single hemisphere (Hermann, Seidenberg, Haltiner, & Wyler, 1995; Hermann

et al., 1994; Lambon Ralph, Cipolotti, Manes, & Patterson, 2010; Patterson, 1995;

Snowden et al., 1989; Warrington, 1975). An intuitive explanation might be that

each hemisphere encodes its own similarity structure in parallel, and the struc-

tures encoded by each hemisphere are largely redundant. However, this is incon-
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sistent with the notion of a single semantic system, and so would undermine a

central tenant of the hub-and-spoke model. In a series of simulations, Schapiro,

McClelland, Welbourne, Rogers, and Lambon Ralph (2013) explored how unilat-

eral and bilateral lesions distort the internal distributed representations in a par-

tial implementation of the hub-and-spoke model. Unilateral lesions reduced both

the fidelity and magnitude of distributed activity in one hemisphere, allowing the

other hemisphere to dominate. Critically, this pattern of results required that the

two ATLs support a single representational space. If the ATLs were considered sep-

arately and then averaged, the difference between bilateral an unilateral damage

vanishes; if considered separately and only the intact hemisphere is consulted, no

deficits are observed which is at odds with the patient data. This is just one exam-

ple where a serious challenge to a neurocognitive PDP model is addressed by ap-

pealing to the representational mechanics of PDP models. It means that the model

is not vulnerable to this particular critique, but it places an increasing burden on

the unconfirmed prediction that the brain utilizes distributed representation.

This chapter considers the status of distributed representations by examining

their relevance at the level of analysis we will term “neurocognitive”—the level

at which the processing units of neural network models arguably make closest

contact with measurements of the neural activity underlying cognitive behaviors.

Specifically, we consider whether measurements taken at the scale supported by

fMRI and other contemporary functional brain imaging methods reveal neural

representations that are distributed in the PDP sense. The grain at which these

methods engage cognitive phenomena seems roughly similar: the units in PDP

models are not neurons but capture, in simplified and abstract form, the aggre-

gate behavior of many neurons. Likewise voxels in neuroimaging studies reflect,

not the activity of individual neurons, but the aggregate behavior of many thou-

sands of neurons. Many important phenomena have been explored using both
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approaches. Our question, then, is whether neural representations of cognitive

entities like words, objects, faces, and concepts are distributed at this level.

Before beginning, it is worth considering in more detail the rough correspon-

dence suggested earlier between units in a PDP model and voxels in a brain imag-

ing study. What motivates this analogy, beyond convenience? Brains are, of course,

composed of neurons, and neural network models are sometimes described as as-

semblies of neuron-like processing units. Thus it might seem natural to think of

a unit in a PDP model as roughly analogous to a single neuron. The analogy is

tenuous, however. Whereas individual neurons exhibit all-or-nothing spiking be-

havior, units assume continuous activation states. Low level dynamics such as lat-

eral inhibition, temporal coherence, and local extra-cellular conditions are glossed

over in most connectionist models despite being critically important for under-

standing the behavior of individual neurons. The models also abstract away from

morphological differences among neuron types, cytoarchitectonic details such as

the organization of neurons into cortical columns, and other facts about brains.

PDP units can instead be viewed as capturing, in a modest number of process-

ing elements, the same informational states existing across vast numbers of het-

erogeneous spiking neurons in real nervous systems (Rogers & McClelland, 2014;

Smolensky, 1986). The central assumption is that the representational content and

cognitive functions expressed in the coordinated spiking behaviors of hundreds or

thousands of neurons can be usefully approximated as a much smaller vector of

continuous-valued activations, with individual units corresponding to single ele-

ments within the vector and summarizing the informational states of large popu-

lations of neurons.

Functional brain imaging adopts essentially the same central assumption. fMRI

does not measure the activity of individual neurons but infers, via changes in blood

oxygenation level at the scale of approximately 3mm3, the net synaptic input deliv-
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ered to a population of thousands of individual spiking neurons (Arthurs & Boni-

face, 2002; Logothetis & Wandell, 2004). That is, each voxel provides approximate

summary information about metabolic demands exerted by a large population of

individual neurons. The effort to relate such measurements to cognitive repre-

sentations and processes entails the assumption that there exists, in real brains,

an important relationship between neural activity abstracted at this scale and the

representations and processes that underlie cognition. Put differently, if functional

brain imaging is to have any validity, it must be the case that the representational

content and cognitive functions expressed in the coordinated spiking behaviors of

hundreds of thousands of individual heterogeneous neurons can be usefully ap-

proximated with a smaller vector of continuous-valued activations. In this case,

the elements of the vector are individual voxels and their values summarize a sta-

tistical relationship between the BOLD time-series at the voxel and other cognitive

events, but the parallel to the central PDP assumption is clear. For this reason, in

what follows we take the activation of a single unit to be a model analog of the

mean activity in a population of neighboring neurons, similar to that estimated

from changes in the BOLD response at a single voxel using fMRI. The central ques-

tion is whether neural representations so measured have the properties that the

PDP framework predicts.

Before turning to the literature to address this question, it is important to note

that there are at least two profiles of functional activity that have been described

as “distributed” which do not correspond to the kinds of representations that

emerge in PDP-like systems. First, the word “distributed” is sometimes used in

cases where univariate contrasts reveal reliable differences in BOLD response, not

just in one cortical area, but in multiple anatomically well-separated areas. For

instance, univariate fMRI studies of visual perception often show elevated BOLD

responses for faces relative to other objects in parts of the occipital cortex, the pos-
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terior fusiform, and the ventral ATL (Behrmann & Plaut, 2013). These regions are

sometimes then described as forming a distributed network for face representa-

tion. Second, the word “distributed” sometimes refers to the case where a rep-

resentation is encoded over multiple different regions, each encoding a different

kind of information. For instance, theories of semantic representation often view

the meaning of a word as being distributed over cortical regions that each individu-

ally encode a particular kind of sensory, motor, or linguistic information. Thus the

color of an item is represented within a color area, shape is coded within a shape

area, characteristic motion is encoded within a motion area, and so on (Fernandino

et al., 2016; A. Martin & Chao, 2001). In this scenario, the meaning representation

is distributed as a pattern of activation across many potentially widely dispersed

cortical regions. This does not necessarily imply anything more than that concepts

are supported by multiple cortical regions—it does not speak to the nature of the

representations themselves. Indeed, A. Martin and Chao (2001) summarize a body

of literature that exclusively employed univariate contrast analyses, which are not

sensitive to distributed representations (see Chapter 3 and C. R. Cox et al., 2015

for a discussion of the assumptions made by univariate and multivariate analy-

sis methods). Within the color area, for instance, the voxels are still viewed as

always encoding color without contributing to the representation of other kinds

of information; as encoding the color information independently, so that state of

units outside the color area need not be taken into account; as being anatomically

situated within the same contiguous region; and as being homogeneously located

across individuals.

So what profiles of functional activity would provide support for distributed

representations in the brain? Distributed representations that emerge through

learning in PDP models have the following four characteristics:

1. Interdependence of representational elements. In PDP models, interesting repre-
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sentational structure—phonological, morphological, conceptual, visual, etc.—

is encoded in the patterns of activation evoked across whole ensembles of

units, but may not be apparent in the individual activity of single units within

the ensemble.

2. Graded representation and functionality. In PDP models, a given unit can par-

ticipate in the representation of many different items. Within a distributed

representation that robustly distinguishes, say, two different domains, a sin-

gle unit may activate for subsets of items from both domains, or for all items

in one domain and a few items in the other, or for only a subset of items

within a single domain, and so on.

3. Heterogeneity of representation within and across individuals. In PDP models, the

units that jointly encode a distributed representation—typically units within

the same layer, which are connected in similar ways to other units in the

network—can nevertheless exhibit very different responses to their inputs.

Indeed, because the patterns of activation across units in a layer express rep-

resentational structure suited to the task at hand, units within a layer must

respond at least somewhat differently to different inputs.

4. Heterogeneity of location within and across individuals. Finally, even where dif-

ferent networks adopt the same representational code for various inputs, the

localization of the code over units—the particular way that a given unit in a

given layer responds to various stimuli—can vary arbitrarily.

In the remainder of the chapter, I will survey recent work in functional neu-

roimaging to assess the status of each of the four properties of representations

predicted by PDP. The principal aim is to assess the face validity of the four prop-

erties, not to conclusively determine whether representations in some domain are

distributed (in the PDP sense)—the current state of the evidence does not allow
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this. Rather, the objective is to determine that neural representations are plausi-

bly distributed in this sense. In each case I will first consider what evidence for

distributed representation would look like, and then review studies that report

relevant evidence.

2.1 Independence versus interdependence of

representational elements

One point of contrast in the representational assumptions of classical univariate

brain image analysis and PDP concerns the degree to which elements of a representation—

units in a model or voxels in the brain—individually express important cognitive

content. Standard brain imaging approaches assume that the important elements

of representation can be discovered through univariate analyses, and hence that

the elements contribute independently to representations. The fact that univariate

methods often succeed in finding such elements indicates that clusters of voxels do

indeed sometimes behave in ways amenable to discovery via univariate analysis.

PDP, however, posits that information can sometimes exist in the pattern of acti-

vation across multiple units, without being reflected in the individual activations

of the components. Is there any evidence supporting this hypothesis?

What might such evidence look like? As a start, consider that, if the univariate

assumptions are always true, then the information encoded across all units in a

representation will also be reflected in the individual elements of the representa-

tion. That is, there should be little or nothing gained in analyzing sets of voxels

all together compared to analyzing individual voxels separately, since each ele-

ment contributes to the representation independently. If the PDP assumptions are

valid, however, there should be information contained in the patterns of activation

across units that cannot be decoded from individual voxels taken separately. Thus,
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if multivariate methods and univariate methods, applied to the same data-set in

search of the same information, identify different voxel sets, this would suggest

that the PDP assumption is valid.

Jimura and Poldrack (2012) conducted just such an analysis in a study of how

the brain processes gain and loss in a gambling task. Many cortical regions were

identified using a multivariate searchlight analysis (Kriegeskorte et al., 2006) that

were not detected by the univariate method. If the searchlight method had sim-

ply identified a superset of the regions identified by the univariate method, the

result might not be compelling—it may simply be that multivariate methods are

“highly opportunistic” (Kriegeskorte et al., 2006, p.550), identifying regions with

very weak signal just as might happen by relaxing the significance criterion in a

univariate statistical test. What makes the result particularly interesting in the cur-

rent context is that the voxel sets identified by the univariate analyses and were not

simply a subset of those identified in the multivariate analyses overlapped very

little. In addition to flagging regions that seemed irrelevant from the univariate

analysis, the multivariate analysis did not flag several regions implicated by the

univariate analysis.

Other work has demonstrated that the results of univariate and multivariate

methods can actually doubly-dissociate. Riggall and Postle (2012) noted that re-

gions in frontal and parietal cortex displayed sustained activation during the delay

period of a working memory task in which participants were required to hold in

mind the speed and direction of an array of moving dots. The authors trained a

multivariate pattern classifier to determine which direction of motion was being

held in memory, using the activations of voxels in these fronto-parietal regions as

inputs. The classifier was unable to decode patterns at a level greater than chance,

indicating that, despite the systematically elevated delay-period activity in these

regions, the patterns did not encode the contents of working memory. Decoding
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was possible, however, from classifiers trained on voxels in the occipital cortex,

even though this area did not show elevated delay-period activity according to the

univariate analysis.

Such result might initially seem counter-intuitive—surely an effect that can be

detected by univariate methods must also be picked up by a multivariate approach.

To see why this intuition is incorrect, consider the patterns shown in the schematic

Figure 2.1. The three leftmost grids indicate a subset of voxels falling within a

searchlight centered at the same anatomical location in three different individuals.

The coloring of each grid cell indicates the degree to which each voxel’s activations

reliably predicts an experimental factor of interest: for instance, bright blue vox-

els might reliably predict that a stimulus item was from category A, while bright

red squares reliably predict category B. Pale colors indicate voxels whose activity

is only weakly correlated with the contrast of interest, while gray squares show

uncorrelated voxels.

The top row exemplifies the case where the multivariate searchlight approach

will identify signal missed by univariate analysis. Within each individual search-

light there are 2 or 3 voxels that reliably carry useful information about the stimu-

lus class so that a trained classifier will successfully generalize to a hold-out cross-

validation set. Such a classifier will therefore perform well in each individual sub-

ject, and the searchlight method will flag this searchlight location as encoding in-

formation relevant to the discrimination. Yet the particular way the information is

encoded is highly variable across voxels in the searching for each individual, and

the exact anatomical location of the signal-carrying voxels is highly variable across

individuals. Blurring signal within subjects will thus destroy signal, and averag-

ing signal at a given location across subjects will further eliminate signal. Thus the

mean difference in BOLD response to category A versus category B items will be

near zero for all voxels.
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Figure 2.1: Each row corresponds to a searchlight that contains a set of 25 voxels. These
voxels are the same across subjects, but different across the two searchlights. Searchlight
1 exemplifies a case where a searchlight MVPA will succeed but a univariate analysis, em-
ploying blurring within and averaging across subjects, will fail. Searchlight 2 exemplifies
a case where a searchlight multivoxel pattern analysis (MVPA) is likely to fail but a uni-
variate analysis will succeed.

The second searchlight shows the reverse case: here, most of the voxels in each

subject are uncorrelated with the distinction between A and B, and only a small

subset is weakly correlated with the distinction. A classifier trained on each sub-

ject individually has a high likelihood of failing a cross-validation assessment. If

the classifier fails in many subjects, the searchlight centre will not be identified as

reliably encoding information relevant to the distinction, meaning that this region

will not be identified by a searchlight MVPA. The weakly covarying units, however,

happen to encode the distinction of interest in the same manner, and to reside near

one another within and across individuals. The univariate assumptions are met,

so smoothing within and averaging across individuals reduces noise and allows

detection of the voxel with univariate tests. Thus, the searchlight MVPA can fail

to find signal in the very cases the univariate approach was designed to address—

that is, when the signal is buried in noise within individuals, but is coded inde-
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pendently in the same way and in the same location within and across individuals

(see Chapter 3 for simulation examples of this case).

2.2 Graded versus discrete contributions to

representation

The second point of contrast concerns the degree to which a given representa-

tional element can participate in many different representations. The classical view

posits a discrete functional specialization, in which each element contributes only

to a particular kind of representation—with, for instance, a given voxel activat-

ing only for faces (or a subset of faces), or for animals (or a subset of animals),

and so on. Distributed representations, in contrast, are useful because they allow

representational structure to be expressed as graded similarities across many rep-

resentational elements. In such a scheme, any individual element will contribute,

in graded fashion, to the representation of many different items or even to different

representational domains. Thus a second important question for the literature is

whether it contains evidence that individual voxels contribute in a graded fashion

to different representations.

A clever indirect method for answering this question leverages neuronal adap-

tation (Grill-Spector, Henson, & Martin, 2006). Typically, the neural response to

a stimulus will decrease over repeated presentations of the same item as active

neurons deplete their resources with repeated firing. If representations are dis-

tributed so that two stimuli evoke overlapping patterns, the overlapping portions

of the patterns would also be expected to adapt. Though the adaptation is hap-

pening at a scale much smaller than a functional voxel, if there is sufficient overlap

across the representations the net effect will be to diminish the voxel’s response

relative to an appropriate control condition. The method naturally extends to any
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domain where one is interested in testing whether neural representations overlap.

One particularly interesting domain to which fMRI adaptation analysis has

been applied is lexical semantics evoked by word reading. Printed words are

highly controlled stimuli, and orthography and phonology are both relatively un-

correlated with semantics, so it is possible to dissociate semantic from perceptual

similarity (e.g., BIG and LARGE are semantically similar but formally dissimilar;

HAIR and PAIR are semantically dissimilar but formally similar). Also, there is

a deep psycholinguistic literature that has set a high bar for stimulus set compo-

sition; it is standard practice to control for word frequency and other potentially

psycholinguistic dimensions, further isolating effects of interest.

With such stimulus sets, it is possible to use the adaptation procedure to assess

the extent to which representations of different word meanings overlap. If such

meanings are expressed as distributed patterns of activation, with similar mean-

ings evoking similar and therefore overlapping patterns, the predictions for such

a study are clear: The adaptation arising from successive presentations of seman-

tically related words should be larger than that produced by successive unrelated

words. That words from the same semantic category (e.g., two vehicles) result in

more adaptation that words from different categories (e.g. a vehicle and an an-

imal) is a widely replicated effect (Henson & Rugg, 2003; Rissman, Eliassen, &

Blumstein, 2003; Wheatley, Weisberg, Beauchamp, & Martin, 2005). However, to

address the PDP prediction that representations express graded similarity, more

than two points are needed. With only two conditions, one cannot assess whether

there is representational similarity among items from the same category. To our

knowledge, graded similarity structure for the meanings of words referring to ob-

jects has not been explored using this method. It has, however, been explored in the

domain of numbers and numeric magnitude. For example, (Piazza, Pinel, Bihan,

& Dehaene, 2007) found that the degree of dis-habituation between a habituated
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numeric quantity or numeral and a deviant stimulus was a function of the differ-

ence in magnitude. This suggests that there is graded similarity among number

concepts, even when presented as Arabic numerals. This outcome would not be

expected if the representations of meanings were discrete and non-overlapping.

Representational overlap can also be assessed by comparing the solutions found

by two or more multivariate pattern classifiers within the same subject. Many

such classifiers assign real-valued weights to each voxel that indicate the degree

to which the voxel contributes to the relevant discrimination. When two or more

classifiers are trained to perform different discriminations, the weights assigned

by each classifier to each voxel can be compared. Voxels that receive large weights

in both solutions can then be identified as important for both representational dis-

tinctions.

Studies of this kind are far less abundant, but do exist. One such study per-

formed a three-way linear discriminant analysis of evoked brain activity measured

by fMRI to distinguish trials in which subjects were presented with pictures of ei-

ther faces, houses, or chairs (Carlson, Schrater, & He, 2003). After demonstrat-

ing above-chance pattern classification, the authors projected the solutions asso-

ciated with each discrimination onto the brain, producing three maps of weights.

The magnitude of each weight indicated how much the activation of a given voxel

“pushes” the distributed representation away from the decision boundary, while

the sign of the weight indicated to which side of the boundary the representation

is being “pushed”. The authors found that these solutions did overlap somewhat,

meaning that some of the same voxels that were very indicative of “chairs” were

also very indicative of “faces”, and so on. Such results are particularly compelling

given that the goal of linear discriminant analysis is to find the voxels that maxi-

mally discriminate between the three stimuli types. In principle this means that,

so long as there are sufficient voxels responding uniquely to each category, other
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voxels showing similar responses across two categories should be ignored—yet the

analysis nevertheless identified voxels that appear to contribute simultaneously to

two different object domains.

2.3 Heterogeneity versus homogeneity of

representation

The third point of contrast concerns the degree to which elements of a distributed

representation respond in the same way to objects of representation. By averaging

neural responses across voxels in an individual, and again across individuals in

group analysis, the standard approach appears to assume that, by and large, all

elements respond to the objects of representation in the same way. For instance, it

may seem reasonable to suppose that the voxels involved in coding perceptual rep-

resentations of faces do so by showing consistently higher activation in response

to visually-presented faces than to other objects. If this assumption is valid, and

given the inherently noisy nature of the measurements in functional brain imag-

ing, voxel-averaging is the correct thing to do: the noise at each voxel will cancel

out across voxels, revealing the true underlying signal. The PDP view of repre-

sentation, however, suggests the alternative possibility that the elements of a rep-

resentation may respond to the objects of representation in quite different ways,

both within individuals and across individuals. For instance, one face-relevant

voxel might show elevated activation for one subset of faces and decreased activa-

tion of another subset; another voxel might show a different pattern of increased

and decreased activation across various faces; and the ensemble together might

express the degree to which different faces are perceptually similar. Since what

matters is the similarity structure taken across elements, the responses of a single

element within the representation can vary almost arbitrarily on this view, both in
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an individual subject and across different subjects.

At first blush, there seems to be a substantial body of evidence in favor of rep-

resentational homogeneity, both within and across subjects. After all, univariate

methods that rely heavily on homogeneity have been applied effectively to fMRI

data and yield replicable, consistent results, which would not be possible if neu-

ral responses to stimuli were purely heterogeneous and arbitrary across individu-

als. And, indeed, it has been demonstrated that cross-subject classification using

multivariate classifiers is possible, albeit on coarse distinctions such as discrimi-

nating different tasks (Poldrack, Halchenko, & Hanson, 2009), sentences vs. pic-

tures (Wang, Hutchinson, & Mitchell, 2004), or line drawings of tools vs. dwellings

(Shinkareva et al., 2008).

Although these findings demonstrate that individual brains share important

structure, they do not demonstrate representational homogeneity per se. To see

this, consider the study of (Wang et al., 2004) and its later reanalysis (Rao, Cox,

Nowak, & Rogers, 2013). The data were acquired while participants completed

a cross modality match-to-sample task: one of the stimuli was a simple configu-

ration of two symbols, and the other was a sentence which either did or did not

correctly describe the configuration of symbols. Stimulus order was counterbal-

anced, and the goal was to determine, from the evoked BOLD response at a given

time, whether the participant was reading a sentence of viewing an image. In the

original study, classification across individuals was achieved by averaging voxel

BOLD response within a small number of anatomically defined ROIs, and train-

ing a classifier using the averaged time series data from all but one participant. The

solution was then used to classify each time-point in the functional data from the

hold-out individual, and the results showed reliable above-chance performance.

The analysis thus indicates a degree of consistency across individuals in the mean

response to these different stimuli across coarse brain regions.
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Still, the averaging at a broad grain ends up revealing little about the nature

of the representations within and across individuals beyond this general consis-

tency. Rao et al. (2013) looked for representational structure at a finer grain within

and across subjects, using a whole-brain multivariate pattern classification method

in which the responses of every individual voxel were provided as input, rather

than the mean response averaged over pre-selected ROIs. To avoid over-fitting,

the classifier employed a regularization penalty that preferred sparse solutions

(i.e., most voxels receive weights of zero) in which selected voxels were located in

roughly similar anatomical regions across participants.2 In one sense the analy-

sis replicated the original study: the majority of voxels that the classifier selected

fell within the ROIs determined to be most informative by (Wang et al., 2004). The

classifier solution also differed from that implied by the original analysis in impor-

tant respects, however. Specifically, it did not identify some regions where all the

weights were positive for all subjects (indicating, for instance, increased activation

for sentences relative to pictures) and other regions where all the weights were

negative (indicating the reverse). Instead, all regions identified included a mix of

both positive and negative weights, consistent with the view that the representa-

tional code—whether high activation is observed for pictures or for words—can be

heterogeneous even within a given circumscribed region, both within and between

subjects.

Within this general mix, some regions showed a generally higher proportion

of positive weights and others a generally higher proportion of negative weights,

suggesting one explanation of the original result: when averaging across voxels

within an ROI, the mean activity may carry signal because a majority of the under-

lying voxels code the information of interest in a particular way. But the analysis

shows that such averaging can mask considerable underlying heterogeneity in the
2The SOS LASSO; see Rao et al., 2013 for a full explanation and demonstration of the technique.
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representational code.

2.4 Heterogeneity versus homogeneity of location

The final point of contrast concerns the degree to which representations are local-

ized homogeneously within and across individuals. The adoption of ROI averag-

ing, cluster-thresholding, and spatial smoothing require the underlying assump-

tion that the elements contributing to a given representation will be located near

one another anatomically within subjects, whereas the anatomical alignment and

averaging across participants require the additional assumption that localization

will be largely consistent across individuals. The PDP view of representation, in

contrast, suggests that the elements of a distributed representation may in fact vary

substantially in their anatomical location both within and across individuals.

Several studies have now suggested that, in a variety of cognitive domains, neu-

ral representations are not confined to a small number of discrete and homogenous

cortical regions but can be quite widely anatomically distributed. Recall that, in

the study by Riggall and Postle (2012) discussed earlier, the authors were able to

decode the direction of motion being held in working memory from activation pat-

terns measured in occipital cortex. The same study further showed, however, that

classification accuracy improved significantly when the logistic ridge-regression

classifier was trained on data from the whole brain. The information maps gener-

ated from this analysis suggested the direction-of-motion signal was encoded in a

very widely distributed cortical network, and not solely within a discrete region of

visual cortex. Moreover, separate classifiers were trained and tested for each indi-

vidual participant, so that the result did not arise from variability across subjects

but illustrated heterogeneity of location within individual participants.

A similar result was obtained in a different domain in an interesting study by
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Bulthé, Smedt, and de Beeck (2014). These authors applied multi-voxel searchlight,

region of interest, and whole-brain classifiers to the same fMRI dataset, where the

task was to decode numeric magnitude either from trials where Arabic numerals

were presented (symbolic) or from trials where arrays of dots were presented (non-

symbolic). This is a particularly interesting case, because prior univariate analyses

implicated the intraparietal sulcus (IPS) as functionally specific for numerical mag-

nitude, regardless of the stimulus modality (e.g., Dehaene and Cohen, 1997). The

results indicated that both symbolic and non-symbolic magnitudes could be de-

coded from all lobes of the brain, and that whole brain decoding was on par with,

if not better than, decoding from any individual lobe. The ROI analysis indicated

that numeric magnitude could be decoded from nearly all ROIs during the non-

symbolic trials (the visual word form area being the only exception), while only

the IPS, fusiform, inferior occipital, left superior parietal, and the right superior

frontal gyrus supported the decoding of magnitude during the symbolic trials. Fi-

nally, the searchlight analysis revealed that while non-symbolic magnitude could

be decoded locally almost everywhere in the brain, symbolic magnitude could not

be decoded anywhere from such local information. Thus in this case there appears

to be information distributed across very widely situated voxel sets that cannot be

extracted at more local scales, even by multivariate methods.

As a third example (Rish, Cecchi, Heuton, Baliki, & Apkarian, 2012) used elastic-

net classifiers to predict judgements about the magnitude of a perceived stimulus

in three quite different tasks, including magnitude judgments for visual object size,

velocity of motion and pain intensity. In each task, an elastic net regression was

run to select the 1000 most predictive voxels, a procedure that identified widely

distributed sets of voxels that reliably predicted the magnitude of the pain. The

authors then reran the analysis after excluding the 1000 voxels identified on the

first run and found to their surprise that the predictive accuracy of the new so-
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lution declined only negligibly relative to the original one. This process was re-

peated until performance reached floor. Remarkably, predictive accuracy in all

three tasks declined very slowly. The authors interpreted this result as indicating

that some kinds of information, such as stimulus magnitude, may be very broadly

represented in the brain.3

Each example suggests that, at least in these particular cases, voxels that con-

tribute to the discrimination of different cognitive states need not be situated near

one another within a small set of cortical regions. What about localization across

individuals? Is it possible that neural representations, even if they are widely dis-

persed anatomically within individuals, are nevertheless anatomically situated in

similar ways across individuals?

The question can be very directly and elegantly addressed by leveraging a sim-

ple insight: if a representation is localized in the same way across a sample of

subjects, the alignment of functional data should improve as the anatomical align-

ment improves. In turn, improving the functional alignment should increase the

effect size in a univariate analysis. Tahmasebi et al. (2012) systematically varied

how well participants’ brains were anatomically aligned within a common space

by applying a series of increasingly precise methods. He then assessed whether

better anatomical alignment subsequently led to stronger effects in the analysis

of functional data. In the experimental paradigm, subjects listened to sentences

with ambiguous words (“His new post was in China”), matched unambiguous

sentences (“The old tree was in danger”), signal-correlated noise (unintelligible

noise matched to the intelligible sentences with respect to their length, spectral

profile, and amplitude envelope), and silence in equal measures. Prior work had

established where different univariate contrasts should produce reliable effects:
3Another possibility is that the tasks induce whole-brain metabolic changes that are correlated

with stimulus magnitude but not involved in the cognitive representation of magnitude, an expla-
nation that seems likely especially in the case of pain perception.
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the contrast of sound to silence should activate the auditory thalamus, for instance,

whereas the contrast of sentences to noise should activate primary auditory cor-

tex, and the contrast of ambiguous to unambiguous sentences should activation

the left posterior inferior temporal gyrus (ITG) and the left inferior frontal gyrus

(IFG). With these predicted effects, the central question was whether improved

anatomical alignment would increase the functional effect size in the relevant re-

gions for each contrast of interest. The authors found that such an increase was

indeed observed in the auditory thalamus, where auditory codes are presumably

highly localized and consistent across subjects. A similar but weaker influence of

alignment was also observed in primary auditory cortex, again consistent with the

view that representations in this region should be relatively consistent across par-

ticipants. This result was not obtained, however, for the contrast of ambiguous to

unambiguous sentences. The size of the ambiguity effect was independent of the

quality of the anatomical alignment, suggesting that the processes underlying am-

biguity resolution are not anatomically localized in precisely the same way across

subjects.

Other work has very directly assessed the degree to which the location of rep-

resentational and processing structure varies across individuals. In one particu-

larly compelling study, Feredoes, Tononi, and Postle (2007) considered a discrep-

ancy in the neuroimaging literature related to working memory: group-level anal-

yses tend to yield data consistent with the hypothesis that the PFC serves as a

working memory buffer, evidenced by a delay-period sensitivity to memory load,

whereas single-subject case study analyses tended to not show this effect. In-

stead, single-subject analyses implicated quite different regions in different peo-

ple. These single-subject effects tended to be of greater magnitude than the group

level effect in the PFC, leading to the hypothesis that working memory is sup-

ported by different regions in different people, with only weak involvement of the
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PFC in any individual. Because the weak PFC activity is more consistently local-

ized across individuals, however, this is the region that emerges in the group-level

univariate analysis. An alternative hypothesis, and the one typically adopted in

standard image analysis, is that the single subject effects are just noise. To adju-

dicate these interpretations, the authors applied TMS in each participant to either

the PFC region identified in the group analysis or to an individual-specific loca-

tion corresponding to the region of greatest activation during delay-period in the

fMRI session. Larger effects were observed when TMS was applied to the individ-

ual hotspots than to the shared PFC region, suggesting that these regions—which

were heterogeneous in location across individuals—nevertheless were playing a

more important role in supporting the working memory task.

2.5 Conclusions

The preceding review supports the face validity of the representational claims

staked by PDP. There is at least some evidence that, in at least some cognitive

domains, neural representations measured at the scale of fMRI possess each of

the four properties of distributed representations articulated earlier. What are the

implications of these observations for our developing understanding of represen-

tation in the mind and brain? In particular, what can be concluded from the body

of neuroimaging literature that has relied on univariate analyses, and how should

future efforts proceed? These issues are given serious consideration in the General

Discussion of C. R. Cox et al. (2015), the paper upon which this chapter is based.

Having now established the plausibility of distributed representations, I will

now turn to addressing how they might be discovered in neuroimaging data.
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Chapter 3

Comparing methods1

In the previous chapter, I reviewed a collection of primarily fMRI studies which,

when surveyed as a whole, indicate that the brain may encode some kinds of infor-

mation as distributed representations. The evidence had to be pieced together—

no single study could serve as a fair test, because no analysis technique was well

matched to modeling the kind of structure that exists among distributed represen-

tations when the elements of the representations are not localized. What would

such a technique look like?

fMRI and other functional brain imaging technologies ubiquitous in human

cognitive neuroscience typically yield vast amounts of noisy data. To discern in-

teresting patterns and test particular hypotheses, the statistical models employed

must adopt specific assumptions about the nature of the underlying signal. For

many years, standard statistical approaches were built upon representational as-

sumptions that essentially presupposed that neural representations are localized

and not distributed (Kriegeskorte, 2008; S. L. Small & Nusbaum, 2004). These as-

sumptions are considered in detail by C. R. Cox et al. (2015), but briefly stated they

are:
1This chapter is based on an unpublished manuscript by Cox and Rogers, adapted for clarity

and to flow the the rest of the document.
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1. Independence of representational elements. The representational or processing

significance of a given voxel’s activation does not depend upon the states of

other voxels. Each voxel encodes whatever it encodes, regardless of what

other voxels are doing at the time.

2. Discrete representation and functionality. The brain is best thought of as an as-

sembly of discrete regions, where each region contributes to one kind of rep-

resentation or process and not to others.

3. Homogeneity of representation within and across individuals. The voxels con-

tributing to a given representation respond to relevant items in essentially

the same way, both within and across individuals.

4. Homogeneity of location within and across individuals. The voxels contributing

to a given function or representation are localized similarly both within and

across individuals.

Notice that these are exactly the reverse of the representational assumptions as-

sociated with distributed representations discussed in the previous chapter. This

rather narrow perspective was famously contested and expanded by Haxby et al.

(2001) work with fMRI. In particular, they conducted their analysis in such a way

that assumptions 1–3 were not necessary, and thereby demonstrated that—at least

for visual representations of faces, houses, and common objects in inferior tempo-

ral cortex—these assumptions are invalid and lead to an incorrect characterization

of the functional organization of this part of the brain.

The analysis of Haxby et al. (2001) is the first example of multi-voxel pattern

analysis (MVPA) in the cognitive neuroscience literature. Their analysis involved

assessing the similarity among neural representations, where a neural representa-

tion was defined as the pattern of activity over a population of voxels. It leaned

heavily on the assumption that the correlation between two neural representations
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corresponds transparently to how similar the encoded content is. They were able

to show that stimuli from the same category had more similar representations (i.e.,

their patterns of activity were more highly correlated) than stimuli from different

categories, suggesting that the population of voxels encoded information that cap-

tured the similarity structure of the stimuli.

This work had such impact because of how the populations of voxels were se-

lected. Haxby et al. (2001) selected specific parts of the inferior temporal cortex

that responded maximally to particular categories, like faces or houses, and their

MVPA revealed that each area contained distributed patterns that discriminated

many kinds of stimuli from one another. That is, faces could be discriminated from

other stimuli (including cats, chairs, and small man-made objects) with informa-

tion encoded in voxels maximally active for houses, and vice versa. Discrimination

among nearly all kinds of stimuli was successful based on patterns of activity in all

sub-samples of inferior temporal cortex that they considered. These results were

critically juxtaposed with the typical inference drawn from standard univariate

analyses (that make the four assumptions above), which is: if a region of the brain

is significantly more active in one condition relative to another, then it is dispro-

portionately more important to representing one sort of information than another.

The MVPA based on representational similarity provided the initial critical insight

that mean regional activity is insufficient to describe the processes and content as-

sociated with a region of cortex.

In the 15 years since, cognitive neuroscience has embraced the multivariate na-

ture of neural representation. The increasing prevalence of MVPA during this pe-

riod raised an important distinction between where and what information is en-

coded in the brain. Most often, the questions are handled separately. Anatomical

or functional regions of interest tend to be identified by univariate analyses, which

is taken to address where the information is, and then MVPA can be applied to
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some or all of the voxels within these regions. Thus, univariate analysis remains

the standard for learning about where information is encoded, even as MVPA has

become commonplace.

The notable exception is information-based functional brain mapping, often re-

ferred to as the searchlight technique (Kriegeskorte et al., 2006). The searchlight

technique is an elegant marriage of where and what: the researcher first defines

a volume (typically a sphere or cube) that would encompass a small selection of

voxels. Then, this volume is swept through the fMRI dataset, centering on each

voxel in turn. At each position, an MVPA is conducted based on the voxels in the

volume, and the result is stored at the current position. The result is an “informa-

tion map” (Kriegeskorte et al., 2006). The information map indicates locations in

the brain where the local patterns of activity contain information that is statisti-

cally related to an experimental manipulation, where “local” is defined as “voxels

which fall within the scope of the searchlight”.

However, as referenced in Chapter 2, even the searchlight is not sensitive to all

ways in which neural representations may be distributed over the cortex. Most

obviously, searchlight analysis cannot detect representations that extend over a

wider range of cortex than the scope of the searchlight. This might be addressed

by increasing the size of the searchlight; however, doing so would diminish the

resolution with which the technique localizes information. This might be prob-

lematic when investigating the representation of semantic knowledge, since there

is considerable evidence that semantic representations might be, at least in part,

represented across several sub-systems associated with sensory modalities (Barsa-

lou, 2008; Binder et al., 2009; Binder & Desai, 2011; Desai, Binder, Conant, & Sei-

denberg, 2009; Desai, Conant, Binder, Park, & Seidenberg, 2013; Fernandino et al.,

2016; Fernandino et al., 2013a, 2013b).

There are results in the literature that suggest this issue of scope ought to be
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taken seriously. For example, standard univariate analyses have implicated the in-

traparietal sulcus (IPS) as functionally specific for numerical magnitude, regard-

less of the stimulus modality (Dehaene & Cohen, 1997). However, Bulthé et al.

(2014) report being unable to decode symbolic magnitude from the IPS—or any-

where else in the brain using a searchlight approach. However, they were able to

decode symbolic magnitude using a whole-brain MVPA, conducted using ridge

regression. This suggests that the information is not localized to an area that can

be decoded without also considering information from elsewhere.

The state of the art in MVPA has now advanced to include a host of techniques

that allow researchers to conduct whole-brain multivariate analyses that do not re-

quire guidance from a prior univariate analysis or assume that representations are

fundamentally local as the searchlight does. However, far from being a panacea,

whole brain multivariate analyses bring with them important assumptions and

caveats that often complicate their interpretation. Each approach to fMRI analysis

provides a different perspective on the data that is colored by different simplifying

assumptions that will be in line with some kinds of representational structure but

not others. An appreciation for what an analysis is and is not sensitive to is essen-

tial for making valid inferences from experimental results and thus for meaningful

progress in cognitive neuroscience.

The goal of this chapter is to introduce and motivate the application of whole

brain multivariate analysis via regularized regression. This will be accomplished

through a series of simulated analyses applied to fabricated data constructed so

that they contain information represented in a wide variety of ways. The intuitions

developed through the simulations will help situate the methodology introduce

and applied in subsequent chapters among related methods, the problems they are

and are not well suited to, and the particular challenges involved in doing whole

brain multivariate analyses. Note that while these simulations involve multivoxel
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pattern (MVP) classification, the intuitions they aim to engender will translate to

representational similarity analysis (RSA) and, ultimately, network RSA (Oswal et

al., 2016).

3.1 A brief overview of PDP models and their

representational assumptions

We have at this point discussed distributed representation at length, both their po-

tential neuropsychological relevance and their form. However, we have avoided

a more formal consideration of the computational framework that gives rise to

them. PDP models are composed of simple processing units that communicate

via weighted synapse-like connections (Rogers & McClelland, 2014; Rumelhart et

al., 1986). Each unit adopts an activation state, typically varying between 0 and

1, that can be viewed as analogous in some respects to the mean firing rate of a

population of spiking neurons proportional to their maximal rate (Zipser & An-

dersen, 1988). Units transmit information about their current activation through

weighted connections, which can be viewed as capturing the net effect of activ-

ity in one population of neurons on another. Weights are typically real-valued,

with negative numbers indicating a net inhibitory effect and positive numbers in-

dicating a net excitatory effect. Each unit computes a simple process: it adjusts its

current activation state according to the input it receives from other units in the

networks. If a given receiving unit receives inputs from a set of n sending units,

then the input is usually computed as the inner product of the activation across all

sending units and the values of the weights projecting from the sending units to

the receiving units. The unit then converts the net input into a new activation state

according to a specified transfer function (often a sigmoid function of the net in-

put). All units are conceived as computing inputs and updating activation states in
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parallel in continuous real time (hence “parallel” distributed processing), though

on serial computers this parallel process is simulated by updating units in discrete

steps in randomly permuted order.

Within a network, units are generally organized into layers, which govern the

overall connectivity of the network: units within a layer tend to receive connec-

tions from, and direct connections toward, a similar set of units elsewhere in the

network. Typically a subset of the units are specified to receive inputs directly from

sensory systems (or other input systems outside the model), and to direct outputs

toward motor systems (or other output systems outside the model). These unit

subsets encode the input provided to the model and the outputs that simulate the

model response. They are often referred to as visible units, because the theorist

directly stipulates how different stimulus events and behaviors are represented

with patterns of activation over the input and output units. Most models also

include sets of units whose inputs and outputs are directed only to other units

contained within the model—they do not receive external inputs from or direct

outputs toward the model environment. For these hidden units, the theorist does

not stipulate how different stimulus events or behaviors are to be coded with pat-

terns of activation. Instead, the patterns of activation that arise across these units

are determined solely by the values of the interconnecting weights.

The weights themselves are viewed as being shaped by learning and experi-

ence. Many different learning algorithms have been explored in this framework

(see Hinton, 2014), but all share the general idea that the weights gradually change

over time in order to optimize some objective function—for instance, minimizing

the discrepancy between the outputs the model generates and the correct “target”

outputs—as the network processes information from different stimulus events. Be-

cause the weights adapt to experience, and because the patterns of activation over

hidden units depend upon the weight values, PDP models are therefore capable
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of acquiring learned internal representations: the patterns of activation generated

over hidden units by a given stimulus after the network has undergone learning

in a model environment. One interesting aspect of PDP models, responsible for

their utility in many different cognitive domains, concerns the nature of the inter-

nal representations they acquire after learning in a structured environment. Often

the models can acquire internal representations that may seem counter-intuitive

from other points of view, but that can be shown, through computer simulations,

to support behaviors documented in the domain of interest. Figure 3.1 and its cap-

tion provide one example of a PDP model used to understand aspects of semantic

memory.

With this overview of how PDP models work, we are ready to consider the

challenges that the framework raises for the discovery of mental representations in

functional brain imaging data. Many difficult issues arise, of course, in any effort to

relate artificial neural networks to real neural networks. Because network models

are functional abstractions of the neural processes they aim to uncover, they neces-

sarily gloss the complexity, and many aspects of structure and behavior, known to

be important in real nervous systems. In Chapter 2 (p. 2), I argued that PDP units

can viewed as capturing, in a modest number of processing elements, the same in-

formational states existing across vast numbers of heterogeneous spiking neurons

in real nervous systems (Rogers & McClelland, 2014; Smolensky, 1986). The central

assumption is that the representational content and cognitive functions expressed

in the coordinated spiking behaviors of hundreds or thousands of neurons can be

usefully approximated as a much smaller vector of continuous-valued activations.

The effort to relate neural activity to cognitive events entails the assumption that

important informational states over vast sets of neurons can be so abstracted.

Let us therefore adopt a fairly simplified stance on the relationship between net-

work models and the brain networks we seek to discover in imaging data. Specifi-
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Figure 3.1: A PDP model used to understand semantic memory (from Rogers et al., 2004).
Units in the Visual layer code visual features and units in the Verbal layer encode familiar
words. The Visual and Verbal units can receive direct inputs from the environment, corre-
sponding to direct perception of a visually-presented item or of a spoken statement. Units
in both layers send connections to, and receive connections from, an intermediating hid-
den layer. To simulate a task such as object naming, visual features of the object are directly
activated in the Visual layer and the activation propagates to other units via the weighted
connections. If the weights are set to appropriate values, the model will ultimately acti-
vate the Verbal unit corresponding to the item name. Likewise name comprehension is
simulated by directly activating the unit corresponding to the name and propagating acti-
vation throughout the network. With appropriate weights the visual features of the named
item will activate, along with verbal units describing the item’s properties. Appropriate
weights are discovered through a predictive error-driven learning algorithm. Following
learning, each input provokes a pattern of activation over hidden units that depends on the
acquired weight configuration—a learned internal representation of the input. Though the
particular pattern acquired for a given item varies across training runs, the representations
always encode the same similarity structure among items in the environment, represent-
ing items that are conceptually related with similar patterns of activation.

cally, let us assume that the activation of a single unit in a network model is roughly

analogous to mean neural activity in a population of hundreds of neighboring neu-

rons within a small volume of cortex as estimated at a single voxel from BOLD

activity in fMRI. Thus we will treat the pattern of activation generated by a given

stimulus over units in a model network as analogous to the set of beta coefficients

estimated over voxels from the BOLD response evoked by a given stimulus in a

sparse event-related design.



50

3.2 Challenges for the discovery of PDP

representational structure in the brain

Even with this relatively transparent view of the relation between model elements

and measured physiological responses, PDP raises four difficult challenges for the

discovery of representational structure in the brain.

The same content in the same location across individuals can be

associated with different functional activity

For any given network, there are typically many different weight configurations

that can generate appropriate outputs given the various inputs. The particular

configuration that a network discovers with learning can depend on many things,

including the initial random weight configuration, the ordering and distribution of

the learning experiences sampled from the environment, and the effects of noise

in the unit activations and/or weight changes. Thus a particular hidden unit in

a given model can, across different training runs in the exact same environment,

exhibit quite different patterns of activation in response to a given input. Yet the in-

ternal representations learned by a network are not arbitrary; the learning models

are of interest because they reliably extract important similarity structure across

the set of input and output patterns to which they are exposed. What varies is the

particular way that individual units contribute to encoding the interesting struc-

ture across network runs. C. R. Cox et al. (2015) provide an example of this kind

of variability in a simple model.

We can conceive of a single model training run as simulating the effects of learn-

ing and experience in a single individual person. The different weight configura-

tions and internal codes that arise across model training runs thus indicate the

kind of variability in representation that may exist across individuals under the
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PDP view, even if the individuals show the same pattern of overt behavior in the

domain and the same gross neural architecture. Specifically, the response gener-

ated by a given stimulus or process in a given patch of cortex may vary arbitrarily

across individuals, even if the same representational structure is being encoded

across the same cortical subregions. This possibility poses a challenge to imaging

methods that focus on finding voxel clusters that reside in similar locations and

respond in similar ways across individuals. If representations vary across indi-

viduals in the way that PDP models suggest, such methods will fail to discover

them.

This consequence of distributed representations may pose greater problems for

finding signal in some cortical regions than others. In peripheral regions (i.e., early

sensory and motor cortices), it is clear that information is encoded in largely the

same way, and with a largely similar neuroanatomical organization, across indi-

viduals. In association cortices, it may be that neural codes are less constrained

are more strongly shaped by learning and experience, so that the way information

is organized across cortex is more highly variable. PDP models provide a rough

analog to this state of affairs, insofar as input and output units for a given model

are stipulated to represent information in the same way in every model training

run—that is, in every model “individual.” The issues of variability in representa-

tion mainly apply to learned internal representations coded across hidden units.

Activation of individual units may not be interpretable

independent of other units

A corollary of the preceding points is that the behavior of a given cortical unit may

not be interpretable, or may have quite different interpretations across individu-

als, when analyzed independently from other units. This property of distributed

representation is important because it suggests that univariate approaches to data
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analysis—methods that assess the behavior of individual voxels or voxel clusters

independently—can fail to uncover important components of neural representa-

tions. Wherever the interesting structure is embedded in activations across multi-

ple cortical units, but is not reflected in individual units, such methods will yield

null results (see C. R. Cox et al., 2015 for a concrete example).

The functional model architecture may not map transparently

onto anatomical structure in the brain

A third issue concerns the relationship between the functional architecture of a

computational model used to simulate performance on a task of interest and the

actual anatomical structure of the corresponding neural network in the brain. As

noted earlier, units in PDP models are organized into layers, with units in a given

layer receiving connections from and directing connections toward the same sub-

sets of units elsewhere in a network. The layer is a useful construct for understand-

ing how a network functions, insofar as the units within a layer, by virtue of having

similar connectivity to the broader network, “work together” to represent and pro-

cess the same information. Distributed internal representations in PDP networks

are typically viewed, therefore, as being encoded across units within a particular

layer.

It may seem natural to view layers as model analogs of cortical regions, so

that the gross architecture of a computational model maps transparently onto the

anatomical structure of networks in the brain that carry out the modeled cogni-

tive function. Though this analogy is reasonable, it is not the only possible way

that the functional architecture of a computational model might relate to the neu-

roanatomical structure of a corresponding cortical network. In fact, the layers of

a computational model do not, in principle, have any implications for how the

corresponding cortical units might be anatomically situated in the brain. Units
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that function together as a “layer” could be situated in multiple different cortical

regions, or widely dispersed anatomically, or interdigitated with other units sub-

serving different functions. The defining property of layers in a computational

model is their pattern of connectivity in the gross architecture, and the same net-

work connectivity can exist among many different spatial arrangements of units.

In other words, the relationship between the functional architecture of a compu-

tational model—the grouping of units into layers as typically depicted in model

figures, for instance—may not transparently reflect the topological arrangement of

the corresponding cortical units in the brain.

This lack of transparency poses a problem for approaches to brain imaging that

assume representations to be encoded over a volume of anatomically contiguous

cortical units, including approaches that average signal over regions of interest,

that spatially blur signal, or that restrict statistical analysis only to voxels within

pre-specified areas. If cortical units that function together as a representational

substrate do not happen to reside in a single contiguous cortical region, such meth-

ods may fail to discover important signal.

This is not to suggest that the PDP view predicts that anatomical structure is

unimportant, or that shared structure across individuals is unexpected or mean-

ingless. To the contrary, the connectivity of a given network strongly constrains

its behavior. Thus the network architecture always constitutes an important as-

pect of the explanatory hypothesis a model is intended to exemplify. It is typically

assumed that this architecture is largely shared across individuals, and that, how-

ever it is anatomically situated in the brain, there will be at least coarse similarities

across individuals.
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A network of interest will co-exist in the brain with many other

networks serving other functions

Any given computational model is designed to aid understanding of a particular

aspect of cognition, and typically includes only those elements that the theory stip-

ulates to be important for the behavior of interest. Even if the model is a relatively

faithful and accurate abstraction of a real cortical network in the brain, the physi-

ological measurements generated by that network will be intermingled with mea-

surements from a great many other cortical systems involved in other aspects of

cognition unrelated to the task of interest. Odds are that the great majority of mea-

surements taken will reflect metabolic activity unrelated to the representational

structure we are searching for. Thus the effort to find distributed representations

in brain imaging data raises concerns about needles and haystacks.

Summary

The representational assumptions of the PDP framework lead to rather bleak out-

look. The behaviors of individual cortical units (i.e., voxels) may not independently

covary with or otherwise reflect the objects of representation we are interested in

finding in a systematic way across individuals. Mental representations may in-

stead inhere in the patterns of activation evoked across whole sets of units that

together function as a representational ensemble by virtue of their connectivity

within the overall cortical network (like the layers of a neural network model). This

is the core sense in which representations are distributed in the PDP view. The way

that a particular unit contributes to different representations can be highly variable

across individuals, even if the ensemble encodes the same representational struc-

ture across individuals. This means that the search for voxels exhibiting similar re-

sponses in similar anatomical locations across people will fail to reveal important
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representational structure. Moreover, the units that operate together as a represen-

tational ensemble may not be anatomical neighbors, may vary in their location to

some extent across individuals, and are certain to be buried within the mountain

of measurements provided by functional imaging technologies across the whole

brain. These possibilities raise a daunting challenge: representational structure

can only be discerned by considering the whole pattern of activation over a repre-

sentational ensemble; yet the units within such an ensemble may be anatomically

dispersed and intermingled with a vast amount of irrelevant information. One

cannot understand the representation without knowing which units together con-

stitute an ensemble, but how is one to find the ensemble in the first place?

In what follows, we assess how well different approaches to fMRI data analysis

meet this challenge by applying them to the discovery of representational struc-

ture in data generated by a simple neural network model as it processes different

input patterns. We will see that all methods bring with them important biases

in the kinds of representational structure they are capable of detecting, and that

some methods are better-suited to finding the distributed structure that the PDP

framework assumes. We will also see that patterns of results across methods can

provide important information about the nature of the representations encoded in

different parts of a network.

3.3 Model and Methods

The model we will employ for these analyses is illustrated in Figure 3.2A. It is an

auto-encoder network: when presented with an experience in the form of a pattern

of activity over its 36 input units, it learns to reproduce that same pattern over its 36

output units. Auto-encoder networks have been used as simple models of human

memory, because once they have learned they are capable of both retrieving full
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Figure 3.2: A) Architecture of the auto-encoder network used to generate the data for 10
model subjects used in subsequent simulations. The model has 36 input units (18 system-
atic), 14 hidden units (7 systematic), and 36 output units (18 systematic). The 22 irrelevant
units are completely disconnected from the network, and stand for units that subserve
an unrelated function but are anatomically adjacent to units of interest. B) Left: Ratio of
between-domain to within-domain Euclidean distances for the representations coded over
different sets of units in the network, averaged over the 10 model subjects. Distributed rep-
resentations that encode the domain structure should have large distances for items from
different domains and small distances for items from the same domain, and so should
show a large ratio. While the systematic I/O units clearly code the domain structure to
some degree, the systematic hidden units express the structure more strongly.

information from a partial cue and of generalizing prior learning to new items

(McClelland & Rumelhart, 1985). In this case, however, we do not intend the model

to embody a specific hypothesis about a particular real-world cognitive function.

Instead, it is designed to make explicit the challenges noted in the introduction.

To this end, the patterns that the model processes are viewed as coming from

two different domains, A and B, corresponding to some cognitive distinction of

theoretical import. For instance,A and Bmight correspond to nouns versus verbs,

or animals versus manmade objects, or faces versus non-faces, or any other binary

distinction thought to be of potential relevance to behavior. Each individual item is

represented with a unique pattern of activation over input units, and the network’s

task is simply to generate the same pattern over output units. In this sense, there

is no explicit representation of the two classes A and B in the inputs, outputs, or
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network task. The two domains are assumed, however, to be distinguishable from

the distribution of input/output properties they possess. Specifically, one subset

of input/output properties is marginally more likely to be active for items from

domain A, while another subset is marginally more likely to be active for items in

domain B. We will refer to these subsets together as systematic I/O units, because

they each weakly co-vary with the representational distinction of interest. Each

item also possesses several features coded by arbitrary I/O units whose activations

do not systematically differ between domains.

After the model has learned, it is possible to “query” it by presenting an in-

put pattern and generating patterns of activation throughout the rest of the net-

work. As noted earlier, we take the activation at each unit in response to an in-

put as a model analog of the neural response to a stimulus estimated from the

BOLD signal at a single voxel in a single individual. Across different training runs,

the model will always exhibit the same overt behavior (generating the correct pat-

tern over output units), but arising from different configurations of weights, and

hence from different internal representations. Variability in weight configurations

and internal representations acquired across different training runs thus provides

a model analog of individual variability in the neural representations acquired

across the population. To simulate data generated by a functional brain imaging

study with, say, 10 participants, we train the model 10 times with different ran-

dom initial weight configurations. For each trained model, we record the pattern

of activation generated over all model units by each input pattern (i.e., stimulus),

taking these as model fMRI data. The question we then wish to ask, by applying

different statistical methods to the analysis of this synthetic imaging data from a

sample of trained models, is the following: which units in the network encode

representations of the domains A and B, and how?

The network architecture is designed so that there are two possible answers to
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this question. The first answer is that representations of A and B are directly en-

coded in the individual activations of the systematic I/O units. For all input and

output units, the response of a given unit to a particular item is directly specified

by the environment, so that these units will always respond to a given stimulus in

the same way across model individuals. Each systematic I/O unit has a marginally

different probability of being active depending upon the domain; in this sense the

A units each independently encode a representation of the A domain and the B

units encode a representation of the B domain. The relationship between domain

and activation is, however, stipulated to be quite loose: for each domain, only a

small number of the corresponding systematic units will be active for any given

item—each unit participates in just a few patterns. Each item thus overlaps in their

systematic properties with just a few other items in the domain, and the correlation

between activation and domain is weak for any individual unit. We further stipu-

late that theA input and output units are anatomical neighbors, as are the B input

and output units, and that this anatomical arrangement is exactly the same across

individuals. Thus the systematic I/O units individually encode a weak distinction

between A and B that is consistent across model individuals and is anatomically

localized within input and output layers.

The second answer is that the representations ofA and B domains are encoded

in a distributed fashion over a subset of model hidden units. As shown in the

Figure, the input units project to the output units by way of two separate hidden

layers. The systematic hidden layer (SH) contains 7 hidden units that receive con-

nections from the systematic input units and send connections to the systematic

output units. The arbitrary hidden layer (AH) also contains 7 units that receive

connections from the arbitrary inputs, and send connections to both the systematic

and arbitrary outputs. The weights are shaped by learning, so every input gener-

ates a pattern of activation—a learned internal representation—over both the SH
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and AH layers. The particular way that layers are connected, however, ensures that

these internal representations will have specific representational properties. The

SH layer connects systematic inputs to systematic inputs. Because items within a

domain have a weak tendency to share systematic properties, the SH units can effi-

ciently perform their mapping by representing the domain structure: items within

a domain evoke similar patterns over units and items from different domains evoke

quite different patterns. The AH layer receives inputs only from the arbitrary in-

put units and directs outputs to all units. There is no tendency for items within a

domain to share arbitrary features, so there is little pressure for these units to repre-

sent the domain structure. The AH layer thus acquires distributed internal repre-

sentations that have little obvious structure. The weights in the arbitrary pathways

effectively serve to “memorize” both the arbitrary features and the idiosyncratic

differences among items in the same domain. In other words, the architecture pro-

duces a division of labor in which the SH layer learns distributed representations

of the domain structure and the AH layer learns idiosyncratic differences among

items. A good method, then, should identify SH units as important for represent-

ing the domains.

Indeed, the SH units arguably provide a better encoding of the domain struc-

ture than do the systematic I/O units. To illustrate this we first trained the model

to saturation on 15 runs with different initial random weights, then analyzed, for

each layer in the model, the Euclidean distance between the patterns of activation

elicited by each pair of stimuli in the model. For each layer, we computed the mean

distances for pairs within a domain and for pairs in different domains. We then

took the ratio of between-domain to within-domain distances as a measure of how

well the domain structure is expressed in each layer. A ratio of 1 indicates that

between- and within-distances are about the same; a number greater than 1 in-

dicates that between-domain distances are larger on average than within-domain
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differences, indicating good differentiation of the domains. The results averaged

across the 10 model subjects are shown in Figure 3.2B. For arbitrary units (both I/O

and hidden), no domain structure is expressed: both ratios are near 1. For system-

atic I/O units, the ratio is clearly larger than 1, indicating reasonable encoding of

the domain structure, but the ratio is much larger for the SH units, indicating that

these distributed representations do a better job of systematically differentiating

items from the two domains.

Finally, the model also includes 22 completely irrelevant units. These are units

assumed to be anatomically near the SH and AH units but uninvolved in the task.

These units always take a low activation value, and provide a simple model analog

of the fact noted above that the units of interest may exist alongside other units that

remain uninvolved in the task under investigation.

With this general understanding of the model behavior, let’s consider how it

makes explicit the four challenges for brain imaging noted earlier. First, although

the SH units jointly encode the same representational structure across model sub-

jects, the contribution of a given hidden unit to this structure varies arbitrarily

across model subjects (Challenge 1). Second, the mean activations of SH units do

not systematically differ for items in the A and B domains: to find the important

structure, one must consider the pattern evoked over multiple units (Challenge 2).

Third, the functional architecture of the model shown in Figure 3.2 can be anatom-

ically arranged in many different ways (Challenge 3). To make this issue explicit,

we consider two different topographic arrangements of the functional model. In

the first, units within the same layer are always situated as anatomical neighbors,

so that the representations encoded by the SH and the AH layers are anatomically

localized. In the second arrangement, we assume that the SH units are spatially in-

termingled with the AH units, in a different way across model individuals, so that

the representations they encode are anatomically dispersed. In the results we will
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consider how well each method identifies the SH units as a function of whether

they are localized or dispersed. Finally, the model captures the idea that the units

of interest constitute only a small proportion of all the units measured (challenge

4). In the model itself, most of the units encode information irrelevant to the stim-

ulus domain (the 43 arbitrary units plus 22 irrelevant units). The next largest set

are the 36 systematic I/O units that encode the domain structure weakly but con-

sistently across subjects. The units of greatest interest, the 7 SH units, constitute

just 6% of all the units in the data.

Summary

Though very simple, this auto-encoder network captures each of the challenges

noted in the introduction: it acquires distributed internal representations that ex-

press representational structure of interest; the way the structure is coded across

units varies in different individual models; the structure cannot be discerned from

the activations of single units but arises in patterns over multiple units; the rela-

tionship between the functional architecture and the underlying model topogra-

phy can be opaque; and the units that encode the structure we wish to discover are

buried in a large number of other measurements. The question we now address is

how well different analysis methods fare at discovering representational structure

across both systematic I/O units and the SH units, when they are applied to data

generated from a sample of model training runs

3.4 Simulation details

The model shown in Figure 3.2 was trained on 72 items sampled from two do-

mains, A and B. Each item activated exactly 2 systematic and 2 arbitrary input

units, and across items each unit was active in exactly 8 items. Half of the system-
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atic units were activated only by items from domain A, while the remaining half

were activated only by items from domain B. Thus any pair of items in the same

domain had a small probability of overlapping in some of their systematic prop-

erties, while items from different domains never overlapped in their systematic

properties. Arbitrary units were equally likely to be active for items from domain

A versus B.

The model was fit in LENS (Rohde, 1999) using back-propagation to minimize

cross-entropy error. The weights were adjusted with a learning rate of 0.1, using

momentum (“Doug’s” momentum = 0.9) and subject to weight decay (decay con-

stant = 0.001). The model was trained 10 times to asymptotic performance with

very low error over 1000 epochs. Prior to each training run, the model was initial-

ized with random weights sampled from a uniform distribution in the range [-1,1].

These 10 models were used to generate data for 10 model “subjects,” based on the

patterns of activity elicited by each input over the whole network. Each model

was presented with the 72 input patterns in sequence, and the pattern of activation

elicited over the 98 units in the network (including the 22 irrelevant units, which

always had an activation of zero) was recorded. The dataset for each model sub-

ject thus consisted of a matrix with 72 rows corresponding to stimulus items and

98 columns corresponding to model voxels. Each matrix contained the “true” re-

sponse pattern for each subject to each item. To simulate noise in the measurement

of this activity, a random value sampled independently from a Gaussian distribu-

tion with a mean of zero and standard deviation of 1 was added to each cell of the

matrix. We take the resulting values in each cell of a matrix to be a model analog

of the estimated BOLD response to a single stimulus at a single voxel in a single

subject in an fMRI study.

To apply different brain-imaging methods to the discovery of structure, it is

necessary to further stipulate the anatomical locations of the different units in the
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model. In all simulations, input units were situated all together, with domain-A

units neighboring one another, domain-B units neighboring one another, and arbi-

trary units neighboring one another. Output units were organized the same way,

though outputs were assumed to be anatomically distal to inputs. The anatomical

arrangement of input and output units was assumed to be identical across model

individuals. For hidden units, we considered two different anatomical organiza-

tions. For anatomically localized models, units within a layer (SH, AH, or irrel-

evant) were also assumed to be anatomical neighbors, localized in the same way

across model individuals. In the anatomically dispersed condition, units from the

three hidden layers were assumed to be randomly intermingled with one another

anatomically, in a different manner across model individuals. In either case, units

in the hidden layers (together with irrelevant units) were assumed to be anatomi-

cally distal from both the input and output layers. For each anatomical variant the

activation patterns evoked across model units by different inputs, and the ways

these patterns were distorted by measurement noise, were identical—all that dif-

fered was the assumption about the spatial locations of the units in each layer.

3.5 Results

With this understanding of the model, we are now ready to consider how differ-

ent statistical methods for fMRI fare at discovering the model units that encode

representations of the two domains, both in the case where the hidden units are

anatomically localized and when they are anatomically dispersed. The methods

we consider include the standard univariate contrast method and four forms of

multivariate pattern classification (MVPC). Each method faces the challenges in-

herent in fMRI analysis—that of finding meaningful signal within a vast amount

of quite noisy data. To address the challenge, each method adopts a different set of
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assumptions about the nature of the underlying signal, and so brings with it biases

in the kinds of results it yields. For each method, we will begin with a brief expo-

sition of the basic logic and essential concepts and will explicitly note the under-

lying representational assumptions. We then report the implementational details

and results of the analysis, with the aim of answering four questions:

1. Does the method identify the systematic I/O units, but not arbitrary units,

as important for domain representation?

2. Does the method identify the systematic hidden units, but not arbitrary units,

as important for the domain representation?

3. Do the results differ when hidden units are anatomically localized versus

dispersed?

4. Does the method indicate differences in how the information of interest is

coded across unit sets? Specifically, does it indicate that some units respond

more to A items than to B items, others show the reverse pattern, and still

others express the A/B distinction with a distributed code?

Univariate contrast analysis

The univariate contrast analysis is the standard method for interrogating fMRI

data. Its goal is to identify regions of cortex that, across subjects, exhibit system-

atically different mean BOLD responses to two (or more) different kinds of cog-

nitive events. Typically the BOLD signal is spatially smoothed, so that the raw

response at each voxel is replaced with a weighted average of the responses from

anatomically neighboring voxels. The smoothed time-series is then modeled in-

dependently at each voxel for each subject using a deconvolution procedure. This

yields a beta coefficient for each experiment condition at each voxel indicating how
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well the measured BOLD signal matches the response expected if the activation of

neurons within the voxel varies systematically with the experiment condition. The

beta coefficients for each subject are projected into a common anatomical reference

space, and univariate statistical tests are computed at each voxel independently to

assess whether the coefficients differ reliably in the two experimental conditions

across subjects. Voxels that show significantly different responses across subjects

are viewed as important for coding the representation of interest.

A major challenge for the approach lies in establishing a meaningful criterion

of significance in the context of tens or even hundreds of thousands of individ-

ual statistical tests. To avoid both false-positives and punishing corrections for

multiple comparisons, it is common to seek ways of reducing the number of tests

performed. Several different methods have been employed, but all rely on the

idea that the representations of interest can be localized to particular cortical re-

gions, and that the responses of voxels within a functional region will be largely

similar. With these assumptions, the number of tests can be reduced by (1) con-

ducting regions-of-interest analyses, where the responses of voxels within a ROI

are averaged and the test is performed on the result mean response, (2) applying

cluster-thresholding, where tests are only performed on clusters of n anatomically

contiguous voxels all showing a similar response across subjects, or (3) applying

a topographic control of the false-discovery rate. The univariate contrast method

thus favors the discovery of clusters of anatomically neighboring voxels located

in similar regions across individuals and showing similar response profiles across

experimental conditions. From this brief description we can see that the method

relies on five assumptions about the nature of the neuro-cognitive representations.
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Figure 3.3: Results from the univariate analysis of simulated data. Bar height indicates the
absolute value of the t statistic for the unit-wise contrast between conditions at the group
level. Colored bars indicate units showing significant differences with p-values corrected
to control the false discovery rate at q < 0.05. The red-blue scale indicates the direction
of the contrast effect across model subjects, with red indicating units consistently showing
greater activation for A items. S=systematic; A=arbitrary.

Implementation

The activity at each unit was modeled simultaneously for all subjects in a mixed

effects model that treated subject as a random factor (G. Chen, Saad, Britton, Pine,

& Cox, 2013; Friston, Stephan, Lund, Morcom, & Kiebel, 2005) using the lme4 pack-

age in R (Bates, 2007). Each model contains a single regressor, coding whether each

item is an example of categoryA or B. The coefficients obtained from the mixed ef-

fects model were tested for significance using the Kenward-Roger approximation

for the degrees of freedom (Kenward & Roger, 1997) and a standard F-test, numer-

ator degrees of freedom = 1, denominator degrees of freedom = 9. The results are

directly analogous to a repeated-measures ANOVA. The criterion for significance,

alpha, is corrected to control the false discovery rate at q<0.05. The analysis was

conducted for both the anatomically localized and the dispersed model. In both

cases, the data were spatially smoothed, taking a weighted average over a three

unit window, where the center unit was weighted about twice as much as the two

flanking units.
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Analysis

Figure 3.3 shows the results of applying the univariate method to the localized

(left) and dispersed (right) models. In these plots, each bar corresponds to a single

unit in the model. The bars are ordered according to their functional role in the

network, as indicated by the X-axis labels. Colored bars indicate units showing

statistically significant differences in mean activation across model individuals,

while grey bars indicate units that did not show significant differences. Among

the colored bars, red indicates units where activation was systematically higher for

domain A across models, and blue indicates units where activation was systemat-

ically higher for domain B. Note that, in the anatomically dispersed plot (right),

the units are shown in their standard functional location for ease of interpretation.

In both localized and dispersed cases, the univariate contrast method identi-

fies systematic I/O units as important for representing the A/B distinction, and

correctly indicates that different subsets of input units code this information dif-

ferently (some responding more toA than B and others showing the opposite pat-

tern). Note that these are the units for which the five univariate representational

assumptions are all valid. In both localized and dispersed cases, however, the anal-

ysis completely misses the systematic hidden units, even though these jointly en-

code a cleaner representation of the A/B domain structure. The failure arises be-

cause, in both cases, the univariate assumptions are invalid. When hidden units

are localized, assumptions 2 and 4 are violated: the way individual units encode

information can vary across SH units in the same model individual, and across

individuals at the same anatomical location. When the units are anatomically

dispersed, assumption 3 is also invalid: the representation is coded in different

anatomical locations across individuals. Because of these departures from the sta-

tistical assumptions, the mean activation of a unit at a given anatomical location

across individuals does not differ reliably for SH units, even though these do reli-
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ably encode the domain distinction in each individual.

Introduction of MVPA

The remaining methods we consider are all variants of multi-voxel pattern anal-

ysis (MVPA) that rely on pattern classification algorithms (Norman et al., 2006).

Such approaches reverse the objective underlying univariate analyses: rather than

using knowledge of the experimental design to explain variance in neural activity

at individual voxels, MVPA uses the variance of neural activity across many voxels

to make predictions about the experimental condition to which each trial, stimu-

lus, or time point (henceforth, “example”) belongs (Pereira, Mitchell, & Botvinick,

2009; Wang et al., 2004). To accomplish this, a classification algorithm is applied to

a set of training data which include (a) the pattern of estimated activation evoked

over a set of voxels for each of many examples and (b) a set of labels indicating

the experimental condition or class associated with each pattern. For instance, in

our model experiment, items in condition A might be labeled with a 0 while items

from domain B are labeled with a 1. From the training data, the algorithm re-

turns a pattern classifier—a statistical model that can be used to predict the label

associated with any pattern of activation over voxels. Many different classification

algorithms exist in the literature; as just one example, a logistic classifier will re-

turn a set of weights, one for each voxel, such that the estimated voxel activation,

multiplied by its weight, summed over all voxels, and subject to a transformation

function, yields a number that indicates the pattern label. In our example, a good

logistic classifier should yield a number near 1 for all condition A items and near

zero for all condition B items.

Even if there is no real signal at all in the data, it may be possible for a clas-

sifier to generate correct predictions for all items in the training set, especially

when there are many predictors. Training set performance thus does not indicate
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whether the classifier is exploiting real signal in the data. Instead, the classifier is

typically assessed on a hold-out set: an additional set of examples and labels col-

lected in the same experiment but excluded from the training data. The classifier

learned from the training data is applied to patterns in the hold-out set, and for

each pattern it generates a “guess” about the associated condition label. The clas-

sifier output is compared to the true label to get a measure of accuracy. If a model

performs above chance at classifying the hold-out set, this indicates that it is likely

exploiting real information in the data. To ensure that the results do not depend

upon the particular items chosen for the training and hold-out sets, it is common

to test a model using n-fold cross-validation. On each “fold” a subset of items is

chosen for the hold-out set, and different hold-out sets are selected for different

folds, such that, across folds, all items appear in exactly one hold-out set. Each

hold-out set provides a measure of model classification accuracy, and this is usu-

ally averaged across folds to provide a single number indicating how accurately

the trained model can classify hold-out patterns. We will refer to this number as

the cross-validation accuracy of the classifier.

MVPA algorithms, like univariate analyses, are challenged by the abundance

of data provided by fMRI, and so must adopt additional assumptions about the

nature of the underlying signal. In any fMRI study (as in our model) there will al-

ways be more predictors (voxels) than things predicted (stimulus items or events),

producing an over-fitting problem. In such cases, there exists no unique solution

to the classification problem defined by the training set. Closed-form analyses

are undefined, and other model-estimation procedures will produce a classifier

that perfectly fits the training data without any guarantee of finding real signal.

These problems can only be addressed by constraining the analysis based on an

underlying hypothesis about how signal is truly encoded in the data. As with the

univariate method, these constraints systematically affect the results. Each of the
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remaining methods adopt different constraints to solve the over-fitting problem.

Searchlight pattern classification analysis

We begin with the well-known “searchlight” approach (Kriegeskorte et al., 2006),

which was formulated specifically to address the challenge of finding distributed

representations in brain imaging data. The method works as follows. Instead of

training a classifier using all predictors at once, a separate classifier is trained for

every individual voxel location in every individual subject. For each location, all

voxels within a radius r of the center voxel are included as predictors in the clas-

sifier. This avoids the over-fitting problem by restricting the number of predictors

included in any given classifier. The mean cross-validation accuracy for each clas-

sifier is stored in the searchlight center voxel, providing an information map for

each subject. An univariate group-level analysis can be conducted on the informa-

tion maps, similar in all respects to the analysis described in the previous section.

Per the univariate assumptions, this means that each point in the accuracy map is

considered independent of all others. However, within each searchlight, the effect

of a given unit on the classification can differ depending upon the activations of

other units in the searchlight, and these units can respond to various stimuli in

quite different ways.

Thus the searchlight method relaxes assumptions about the consistency of the

neural code within and across individuals, and about the independence of repre-

sentational units, but retains assumptions about localization of information within

and across individuals. What results are observed in the model with these differ-

ing representational assumptions?
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Implementation

The searchlight analysis was conducted using the SearchMight toolbox (Pereira &

Botvinick, 2011) for MATLAB (The Mathworks). The input units, hidden units,

and output units were treated as three anatomically separated regions so that a

searchlight never encompassed units in different regions. This was accomplished

by inserting empty units between the layers, and providing a mask to SearchMight

to omit those units during analysis while ensuring that no searchlight spans mul-

tiple regions. Within each searchlight, a Gaussian Naive Bayes (GNB) classifier

was fit to distinguish between category A and B items. Although GNB classifiers

are limited in some ways (Pereira & Botvinick, 2011), the concerns do not apply to

this simple and idealized case where noise is truly identically and independently

distributed (i.i.d.) with uniform variance. The amount of category information in

each searchlight was estimated through 6-fold cross validation; the mean cross-

validation accuracy was stored at each searchlight center; and the mean accuracy

over model subjects was then computed for each unit and tested to see if it dif-

fered significantly from chance. The resulting map of p-values is FDR corrected,

q < 0.05.

As previously, the analysis was performed on both the anatomically localized

and the anatomically dispersed arrangements of units. The data were not smoothed

prior to the searchlight analysis. The analysis was performed with various search-

light sizes, ranging from 3 to 28. A searchlight size of 7 or 9 should be roughly

“optimal” given the size of the clusters of informative units in the localized data.

Analysis

Figure 3.4 shows the results of the searchlight analyses, for localized and dispersed

model architectures, and for different searchlight sizes. The format is the same as

in the preceding analysis, except the y-axis now indicates the mean classification
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Figure 3.4: Result of the multivariate searchlight analysis of simulated data. Bar height
indicates the mean classifier accuracy over subjects. Bars in red indicate searchlights where
classification accuracy differed from chance over subjects, p-values corrected to control the
false discovery rate atq < 0.05. Each column shows results from a different searchlight size
indicated by the number on the far right. In the row labeled Localized, units were clustered
by kind during the searchlight analysis; in the row labeled Dispersed, the systematic and
arbitrary hidden units were shuffled together. S=systematic; A=arbitrary.

accuracy for searchlights centered on each unit, rather than a t-value at each unit.

As before, colored bars indicate units that the method identifies as statistically

significant—that is, units whose surrounding searchlights show classification ac-

curacy reliably above chance across model individuals.

There are several points to note in these plots. First, when the hidden represen-

tations are anatomically localized, the method can do a quite good job of identify-

ing both the systematic I/O and the systematic hidden units as important for the

domain representations, though for both unit types the results vary substantially

with the searchlight size. When the searchlight is small, the method reliably finds

the SH units but misses most of the systematic I/O units. This happens because,

as noted earlier, the SH units encode a clearer differentiation between domains, so

that even if the searchlight does not encompass all 7 units there is sufficient infor-

mation within it to classify stimuli above chance. The domain distinction is weaker
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in the systematic-I/O units, so when only a small number of such units fall within

the searchlight, there is insufficient information to classify correctly. With a larger

searchlight (9 units), the method does very well at finding all relevant units. When

it grows too large, however, it begins to incorrectly flag irrelevant units as being

important for the representation (28 units). A very large searchlight, even when

centered on an uninformative (arbitrary) unit, can have a broad enough span that

it encompasses other informative units. In this case the classifier will perform well

by virtue of the informative units appearing in the edge of the searchlight, but the

above chance result will be “stored” in the searchlight center, making it appear as

though there is useful information present at that location. Thus when the signal

is anatomically localized, there is a tradeoff between searchlight size and discovery

of representational structure, with searchlights that are too small missing weaker

signal and those that are too large incorrectly flagging arbitrary signal.

In the model case, where we know a priori which are the signal-bearing units,

it is easy to discern the optimal searchlight size, but it is less clear how this would

be determined from real brain imaging data. One might initially expect the op-

timal searchlight to be identifiable from the accuracy of the resulting classifiers,

but Figure 3.4 suggests that this is not the case: the very large searchlight, which

flags many irrelevant units, shows almost as good classifier performance as the

optimal size at the SH units and better performance at the systematic I/O units.

If we did not already know which units were important for representation in the

model, it would be difficult to know which searchlight size to choose, and hence

which results to believe.

The second thing to note is that the searchlight analysis does a much poorer job

overall of identifying the SH units when these are anatomically dispersed (right

panels of Figure 3.4). The poor performance arises because the precise anatomical

location of the signal-carrying units is assumed to vary across individuals in this
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case. Within any individual model, a searchlight that includes a few of the infor-

mative units will show above-chance performance in classification, but the search-

light centers will differ across model individuals, especially when the searchlights

are small. Thus the cross-subject statistical test at each location will yield a null

result, leading to poor signal discovery. Larger searchlights will be more likely to

contain the signal-carrying units, but also lead to poorer localization of the signal

as already noted.

In sum, the method deals with the over-fitting problem by only including a

small number of contiguous voxels in each classifier—an approach which assumes

that useful representational structure can be localized within the searchlight ra-

dius, in the same locations across subjects. When these assumptions are met, the

approach does a good job of discovering representational structure, even if the rep-

resentational code (i.e., the way that individual units respond to particular stimuli)

is highly variable within and across individuals. The limitations noted above arise

when the assumptions are violated—when representational structure is anatomi-

cally distributed across multiple searchlights (as when searchlights are too small

in the localized case), or in different ways across individuals (as in the dispersed

model). Moreover, whether the assumptions are met depends, not only upon the

anatomical distribution of the signal, but also upon the searchlight size, and it is

not clear how the latter can be optimized for real brain imaging data.

Finally, it is worth noting that, in contrast to the univariate method, the search-

light approach does not provide information about how the contrast of interest

in encoded in unit activations. Thus there is no way for the method to show, for

instance, that there are some units systematically more active for A items than B

items, others showing the reverse pattern, and still others that express the A/B

distinction in a distributed code (the SH units).
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Regularized logistic regression for whole-brain pattern

classification

The limitations of the searchlight method arise from the relationship between a

searchlight’s field of view and the anatomical distribution of the underlying signal.

A small searchlight provides better localization but is more likely to exclude signal-

carrying units; a large searchlight is more likely to include the signal-carrying units

but provides less information about where the signal really is.

An alternative approach that avoids this trade-off is to train a pattern classi-

fier on the whole dataset simultaneously. While many classification algorithms

exist, we focus here on variants of logistic regression because they are easily in-

terpretable, powerful, and draw upon intuitions formed through experience with

linear regression. A regression model is composed of a set of weights βx, one for

each predictor variable x plus an additional intercept term, tuned to make accurate

predictions about a response variable y. In logistic multivariate pattern classifica-

tion, the predictor variables are the voxels, and the response is a binary variable

that codes class or condition label. For instance, in a contrast of conditions A and

B,A events are labeled with y = 1 andB events are labeled with y = 0. To generate

a prediction for a given item, the logistic regression model takes the weighted sum

of the estimated response over voxels and passes it through a squashing function

bounded at 0 and 1:

f(z) =
ez

1 + ez
(3.1)

where z = β0 + β1Xi1 + β2Xi2 + · · · + βnXin + εi—which is the model’s linear

response to a particular pattern of activity. Thus, f(z) is a transformation of the

weighted sum of predictor values expressing the probability that y=1 given the

pattern of activity for the ith item. Fitting a logistic regression model involves
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finding coefficients that minimize the discrepancy between the true labels in y ∈

0, 1 and the probabilities assigned by the model. This is typically measured by the

logistic loss:

arg min
β

n∑
i=1

log(1 + e−ȳiXiβ) (3.2)

where ȳi is −1 when yi = 0 and +1 when yi = 1. This loss is minimized when

the sign of the model’s linear response Xiβ is positive for items labeled y = 1 and

negative for items labeled y = 0.

As noted previously, the problem is that there are infinite possible solutions to

the minimization when there are more predictors than items. One needs a way

of deciding which among these is most likely to uncover the real signal. Regular-

ized regression provides one way of doing this. Such approaches seek to jointly

minimize the prediction error plus an additional cost, itself a function of the coef-

ficients:

arg min
β

n∑
i=1

log(1 + e−ȳiXiβ) + λh(β) (3.3)

The additional penalty or regularizer represented byh(β)prioritizes some model

solutions over others, and in this way embodies a hypothesis about the nature of

the true underlying signal. The constant λ is a free parameter that controls the

degree to which the two terms (prediction error versus minimization of the regu-

larizer) should be weighted in the joint optimization.

We here consider two varieties of regularized logistic regression recently em-

ployed in the fMRI literature: LASSO (Rish et al., 2012; Tibshirani, 1996) and ridge

regression (Hoerl & Kennard, 1970/2000; Riggall & Postle, 2012). Though superfi-

cially similar, the two methods embody different implicit assumptions about the

nature of the underlying signal and so yield quite different results. In LASSO, the
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regularizer is the sum of the absolute values of the model coefficients:

h(β) =

m∑
j=1

|βj| (3.4)

For ridge regression, the penalty is the sum of their squared values:

h(β) =

m∑
j=1

β2
j (3.5)

In both cases, the optimization is convex: for a given value of λ, there exists

a unique set of coefficients that minimize the cost and that can be efficiently dis-

covered by gradient descent. Yet the different penalties lead to quite different so-

lutions. To understand why, it is useful to consider how they treat sets of pre-

dictors that covary together. Imagine four voxels whose responses across items

are perfectly correlated, and suppose their activations are useful in predicting the

condition label. In this scenario, there are many different ways of placing weights

over the four voxels that will all have the same effect on the classifier output. For

instance, placing a weight of 1 on each voxel will have exactly the same effect as

placing a weight of 4 on one voxel and a weight of 0 on the other three. Because the

voxel activations are perfectly correlated, and the classifier operates on a weighted

sum over voxel activations, these different weight configurations have the same

effect on the model output and hence on the prediction error. The regularization

penalty, however, should prefer some weight configurations over others.

If the data really are perfectly correlated, the LASSO penalty won’t be any help:

the sum of the absolute value of the coefficients is the same for models that place a

1 on each unit versus models that put a 4 on one unit and zeroes on the rest. If we

imagine, however, that all measurements are subject to some independent noise,

the scenario is a bit different. In this case, one of the 4 units will, just by chance,

covary slightly better with the category labels. In this case, the classifier can do a
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slightly better job of minimizing the error term by loading up all of the weight on

this single voxel. Thus the joint optimization will lead to a solution where just one

(or perhaps a few) of the redundant voxels are selected.

Ridge regression behaves very differently. Here the penalty scales exponen-

tially as weights increase on a single voxel, but only linearly as weights are added

across voxels. Thus the penalty is minimized by placing small weights on many

voxels. In the preceding example, placing a weight of 4 on one unit and 0 on the

remaining three leads to a total penalty of 16 over the four units. Placing a weight

of 1 on each unit, in contrast, leads to a penalty of 4. Ridge regression thus prefers

solutions where small weights are “spread out” over redundant predictors. In

fact, as the weight approaches zero, the ridge penalty becomes vanishingly small,

so with a finite number of training examples, ridge regression will always place

at least a tiny weight on every predictor. In real data, of course, voxel states are

never perfectly correlated nor perfectly informative about the condition label, so

the behaviors of the two approaches are less easy to intuit. In general, however, it is

useful to think of LASSO as minimizing prediction error with the fewest possible

predictors (i.e., as many zero coefficients as possible), while ridge regression can be

viewed as “spreading” small weights over all predictors exhibiting any systematic

relationship with the category labels, without care for the number of predictors.

All assumptions are relaxed relative to the univariate and searchlight methods.

However, this does not mean that they are assumption-free. To the contrary, each

approach entails additional assumptions about the sparsity and redundancy of the

underlying signal:

• Sparsity: LASSO assumes the signal to be sparse, in that only a small pro-

portion of voxels are involved in coding the information of interest. In this

case, the best approach to finding true signal is to minimize prediction error

using the smallest number of predictors possible. Ridge regression makes
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no sparsity assumption.

• Redundancy: Ridge regression assumes that the signal is highly redundant,

so that many voxels express essentially the same information. In this case

the best approach to finding true signal is to minimize prediction error us-

ing distributions of weights that are as close to zero as possible, so that all

informative predictors are included in the solution. LASSO assumes that the

underlying signal is not highly redundant, so that different predictors carry

different information.

With these assumptions, what signal do LASSO and ridge regression detect in

the model?

Implementation

Logistic LASSO and ridge regression were conducted using GLMNET (Friedman,

Hastie, & Tibshirani, 2010) in MATLAB (The Mathworks). Both methods have a

free parameter λ that controls the importance of the regularization penalty rela-

tive to the prediction error, leading to greater sparsity in LASSO and more severe

weight shrinkage in ridge regression. The analysis thus proceeded in two steps:

one to estimate a useful λ for each subject, and a second to fit a model at the es-

timated λ and evaluate it on a hold-out set. The data for each model subject was

first divided into 6 equal parts, each containing the same number of category A

and B items. One part was set aside and the remaining 5 were passed to a func-

tion that conducted a 5-fold cross validation accuracy test at 100 values of λ. The

function returns the λ producing the highest cross-validation accuracy, which is

subsequently used to fit a model to all 5 parts of the data. The resulting model

was then assessed on the original hold-out set (the 6th part). This procedure was

carried out separately for all 10 model subjects, in both localized and anatomi-
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cally dispersed model variants, for both LASSO and ridge regression. For each

model subject, each method returns a vector of coefficients that indicates how the

classifier interprets each unit’s activation in generating a predicted class label. To

understand which units contribute to the representation of interest and how these

units encode information, the coefficients must be interpreted. A key difference

between methods lies in the ease of interpretation. We will therefore consider re-

sults from the two methods separately, before contrasting them.

Analysis

For LASSO, interpretation of the classifier coefficients is straightforward: the method

places zero weights on as many predictors as possible, so any unit receiving a

non-zero weight can be viewed as having been “selected” by the classifier as im-

portant. If the classifier shows above-chance cross-validation accuracy, we can be

certain that it has successfully identified signal-carrying units. In contrast to the

preceding methods, there is no statistical test performed on a null hypothesis at

each unit. Instead, any selected unit in a given model individual can be viewed

as “significant” for the representation because, if it could be discarded without af-

fecting classifier performance, LASSO would have done so. In this sense, for each

subject, the method can be viewed as finding the smallest sufficient set for classi-

fication. The central questions then are (1) how well does the selected set pick out

the signal-carrying voxels in I/O and hidden layers, (2) do the classifier weights

indicate differences in how information is encoded for different voxel sets and (3)

do the results differ for localized versus dispersed model variants?

Figure 3.5A shows how often LASSO selected each unit across the 10 model

subjects for localized versus dispersed cases. To get a sense of which units were

selected more often than expected by chance, we took the overall proportion of

units selected across subjects as a base probability for conducting a binomial test
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Figure 3.5: A) The results from the LASSO and ridge regression analyses. The blueness
or redness of the bar conveys the frequency with which each unit was assigned a positive
weight over subjects. Positive weights mean that activation at that unit will push the model
towards labeling the current item as belonging to domain A. LASSO: Grey bars were se-
lected less often than expected by chance given the overall rate of unit selection. Ridge: Bar
saturation indicates which units would count as “selected” under three different policies,
based on weight magnitude. Bright bars are in the top third of the distribution, pale bars
are in the middle third, and gray bars are in the bottom third. S=systematic; A=arbitrary.
B) Hit rate and precision for each regularization method, computed across the whole net-
work (top), the I/O units only (middle), and the hidden units only (bottom)

at each unit.2 Colored bars indicate units that were selected more frequently than

expected if LASSO was choosing at random with this base rate, without correction

for multiple comparisons. From this plot, the approach does a fairly good job of

identifying the SH units, reliably tagging 5 of the 7 units (71%). The approach did

less well discovering the systematic I/O units, reliably identifying only 6/36 (17%).

This difference reflects the fidelity of the representations coded across different

unit sets: as already noted, the 7 SH units encode the cleanest representation of the

domain distinction, and so are more likely to be included in the smallest sufficient
2This binomial test for significance is not recommended for real analyses, but fits the need in

this very simple context. This foreshadows the complexity of making statistical inferences based
on weights obtained through regularized regression.
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set for any individual. Also, note that the results are identical for localized versus

dispersed cases. Since LASSO is conducted separately for each individual and is

blind to anatomical structure, the results are literally identical regardless of how

the units are spatially arranged.

This summary plot is misleading in one sense, however, since it applies an ag-

gregate statistical test across model individuals to assess which units are reliably

discovered. Such a test would not be possible with real data, since it would not

be clear which voxels should be “lined up” across subjects to compute the bino-

mial probabilities. The virtue of LASSO (and ridge regression) is that they are

essentially single-subject analyses, and so are freed from assumptions about con-

sistency in location and coding across individuals. What we really wish to know

is how accurately the solution picks out the units of interest for each individual

model. For every model individual, from the binary classification of selected ver-

sus unselected units, we can compute two numbers that jointly describe how well

the solution identifies the important units. Specifically, we compute the hit rate,

which is the proportion of actual signal-carrying units identified by the algorithm,

and the precision, which indicates what proportion of the selected units are true

signal-carrying voxels. Moreover, these figures can be tallied for just the I/O units,

just the hidden units, and for the whole network, to provide an indication of how

well the method singles out informative units in these different sets.

Figure 3.5B shows the mean of these figures across model individuals for LASSO

(and other methods). The general pattern is clear: precision is relatively high, in-

dicating that most of the units LASSO identifies are indeed signal-carrying units.

LASSO is sub-optimal, however, in the hit rate: for the hidden layer, about half the

important units are missed, while the great majority of signal-carrying units are

missed in the I/O layer. Thus if LASSO selects a unit, one can have confidence

that it does carry useful information, but one cannot have confidence that it has
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discovered all the useful elements.

Finally, we can ask how well LASSO uncovers differences in the representa-

tional code. The red-blue spectrum of the colored bars in Figure 3.5A indicates the

frequency with which each unit receives a positive weight across model subjects.

Red and blue colors indicate that a unit’s activation receives the same interpreta-

tion across model subjects, while shades in between indicate that the interpretation

varies. Figure 3.5A shows that, where LASSO does identify systematic I/O units,

it also reveals the correct code: all units are red or blue.3 There are so few units

identified, however, it is difficult to “see” the systematic layout of these responses.

In the SH layer, LASSO correctly indicates that code can vary across individuals

for some units, though it also appears to show consistent category-selective re-

sponses for some units. These differences arise because LASSO does not succeed

in selecting all SH units in every model individual. Instead, each unit is identified

in about half of the individuals. When the algorithm selects a unit in a small set

of participants, all of whom happen to have acquired the same code, the selected

unit appears to show a selective code.

The ridge regression classifier showed marginally better cross-validation ac-

curacy (0.65 compared to 0.6 for LASSO), but with a very different distribution

of weights. In fact, ridge regression placed a non-zero weight on every unit—

effectively using the whole pattern of activation across all units in the network.

Consequently it is difficult to know which predictors are playing an important role

in the classifier behavior and which are not. Weight size (i.e., absolute value of a

weight) provides one indicator of predictor importance, since the regularization

penalty tries to keep weights as close to zero as possible. Any predictor receiv-

ing a weight that deviates strongly from zero must, therefore, be important for
3In general, interpreting the weights obtained by LASSO and similar methods is not necessarily

as transparent as it is in these simple models (c.f. Haufe et al., 2014). See Section 3.6 (the discussion
of this chapter) for more on this issue.
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reducing prediction error. But this relationship is not perfectly transparent. Con-

sider the case where a single unit carries important information for classifying one

subset of items, while ten highly redundant units all carry information important

for classifying another subset. In some sense all 11 units are equally informative

for the classifier, but ridge regression will place a large weight on the singleton

unit and many small weights across the ten redundant units. That is, the weight

size under ridge is sensitive to both the informativeness of the unit activation and

its redundancy with other units. Highly redundant units can receive quite small

weights even if they carry useful information. For these reasons it is not clear, in

the model and more so in real data, just how strong or weak a weight must be to

“count” as having been selected by the classifier.

Figure 3.5A illustrates these points by showing the mean, over model subjects,

of the absolute value of the classifier weight at each unit. It is clear that signal-

carrying units receive somewhat stronger weights than the arbitrary units overall.

It is also clear that the SH units receive stronger weights on average than do the

systematic I/O units, reflecting their greater utility in reducing prediction error.

Intuitively, one wants to draw a threshold below which units are classified as ir-

relevant, but it is not clear how the threshold is to be selected. The differences in

weight magnitude are not large, and there is no a-priori basis for deciding how

small a weight should be in order to conclude that it is not useful. Yet the con-

clusions one draws about where the signal is encoded can vary fairly dramatically

depending upon this decision. The intensity of the shading in the ridge regression

subplot in Figure 3.5A indicates which units would be “selected” under different

thresholding policies. With a very strict policy (discarding 66% of the units), the

representation would appear to reside mainly within the SH units. With a more lax

policy (discarding 33% of the units) it would appear to be very broadly distributed

over many units.



85

As with LASSO, the aggregate plot is somewhat misleading, since the different

selection policies operate on mean coefficient values that could not be calculated

in real data unless representations were localized identically across individuals.

We therefore conducted the same analysis of hit rates and precision values across

model individuals, adopting three different policies for discarding small weight

values. In the lax policy, the 21 units (20%) with the weakest classifier weights were

deemed unselected; in the moderate policy, half of the weights were discarded; and

in the aggressive policy, only the 21 units with the strongest classifier weights were

retained. For each policy we computed hit rates and precision, for I/O units, hid-

den units, and all units. The results are included in Figure 3.5B. When the policy

is lax, the pattern is opposite to that observed in LASSO: relatively high hit rates

but low precision for all unit subsets, indicating that the method has incorrectly se-

lected many arbitrary units. When the policy is aggressive, the pattern is similar to

LASSO: low hit rates but relatively high precision, especially for the SH units. Thus

the accuracy with which the classifier weights pick out the signal-carrying units

varies dramatically depending on the arbitrary selection of a weight threshold. In

the model we can, in principle, discover an optimal thresholding policy—one that

maximizes hit rate and precision—but only because we already know the ground

truth. With real data, where the number of predictors is much larger, the represen-

tational structure likely to be much more complex, and with no knowledge of the

ground truth, it is not clear how the set of weights discovered by ridge regression

might be used to discover where the useful signal is coming from.

Finally, does ridge regression provide useful information about the different

nature of the representational code at different units? As previously, the hue of

the colored bars in Figure 3.5B indicate the frequency with which a unit receives

a positive weight across model subjects. Both the independent coding of domain

in I/O units and the variable nature of the code across subjects at the SH units
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come across fairly clearly. Thus the method does a reasonable job of highlighting

differences in the representational code across these units subsets. The chief prob-

lem with the approach is the difficulty it poses in understanding which units are

contributing meaningfully to the classification.

3.6 Discussion

The PDP approach, which has made important theoretical contributions to cog-

nitive science, adopts specific claims about the nature of mental representations.

Despite this usefulness for understanding many aspects of cognition, representa-

tions of this kind have been difficult to empirically test in functional brain imag-

ing studies. PDP suggests that mental representations are patterns of activation

distributed over neural populations, with information encoded, not in the activ-

ity of individual cortical units taken independently, but by the complete pattern

coded over a representational ensemble. It further suggests that the response of

any given element in an ensemble may vary arbitrarily across individuals, even if

the ensemble jointly codes the same structure across individuals; that elements of

an ensemble need not all be anatomical neighbors within an individual; and that

their location across individuals, while not completely random, may be subject

to at least some variability. These assumptions about representation, paired with

the observation that functional brain imaging technologies yield up vast amounts

of quite noisy data, present serious challenges to discovery of the neural bases of

mental representation.

We have now reviewed four different methods for analyzing brain imaging

data, considered their underlying assumptions, and assessed their ability to dis-

cover distributed representations of the kind PDP assumes. From this analysis it

is clear that very different results arise depending upon the statistical method em-
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ployed or, in some cases, upon parameterization of the method in question. Each

method succeeds best when the implicit assumptions it adopts are met in the data.

Thus univariate contrast successfully identifies the systematic I/O units, which

conform to the assumptions listed in the corresponding column of 1. The SH units,

despite encoding cleaner domain representations, violate all of these assumptions

and so are completely missed. Searchlight does well at detecting both systematic

I/O and SH units, but only if the useful information is contained within the radius

of a relatively small searchlight and is localized in the same way across individu-

als. LASSO performs well at discovering SH units, but in assuming no consistency

across model individuals and no redundancy within individuals, becomes highly

susceptible to noise and so misses many important units. Ridge regression, in as-

suming highly redundant signal without care for overall sparsity, spreads weights

over all units, making the solution hard to decipher even if the classifier performs

well.

However, saying the LASSO did well at recovering the SH units comes with

a very important caveat. In any given subject (i.e., model run), only a subset of

the SH units were discovered. Counting across subjects, the SH voxels stand out,

but the degree to which those voxels stand out may be somewhat exaggerated by

them being plotted as a neighbors in the figure. In reality, the voxels that LASSO

discovers may not be neighbors, and certainly the number of voxels in an MRI

dataset is orders of magnitude larger than the number of units in these simulations.

This means there is more opportunity for false alarms, and the degree of overlaps

across subjects may be diminished. The ruthless sparsity of LASSO, therefore,

can result in solutions that are much less easily interpreted than those obtained

through the analysis of these toy models.
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Improving on LASSO

It is clear, then, that while regularized regression holds great promise for test-

ing hypotheses about the representations that support different mental content

and cognitive processes, neither is ideal. The limitations of LASSO and ridge re-

gression have inspired a variety of methods, such as elastic net (which combines

the `1 and `2 norms into a single model; Zou and Hastie, 2005), group LASSO

(which allows the researcher to specify groups of features that are thought to be

related a priori and exert some control over the sparse structure that is obtained;

Simon, Friedman, Hastie, and Tibshirani, 2013; Yuan and Lin, 2007) and multi-

task group LASSO methods such as sparse overlapping sets (SOS) LASSO (which

was designed to encourage discovering sparse models that can leverage course

spatial structure within and across fMRI datasets while retaining the benefits of

LASSO; Rao et al., 2013), and the ordered weighted `1 (OWL) regularized regres-

sion(Figueiredo & Nowak, 2014; Figueiredo & Nowak, 2016; Zeng & Figueiredo,

2014). These techniques are different attempts to obtain more complete, inter-

pretable models when there are highly correlated features. Each of the cited meth-

ods attempts to group features that are highly correlated or related, rather than as-

signing a weight to every feature (as in ridge regression) or seeking solutions that

sample as few units as possible from sets of correlated features (as in LASSO). With

group LASSO, features are assigned to groups a priori—grouping affects the opti-

mization, but the optimization does not identify the groups. The researcher must

approach the dataset with a hypothesis about which features should be grouped.

This is not ideal in all cases. Elastic net and OWL, on the other hand, identify

correlated sets of features as part of the optimization. While similar in this sense,

OWL differs from elastic net in that it more explicitly groups variables, by assign-

ing voxels deems to belong to the same group exactly the same weight (Figueiredo

& Nowak, 2016). This means that OWL defines groups in transparently “human
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readable” way, while elastic net allows correlated features to be assigned different

weights, which obscures the group structure. In addition to producing more inter-

pretable models, OWL has been shown to outperform elastic net in terms of how

well it selects and groups features (Bondell & Reich, 2008; Zhong & Kwok, 2012)4.

In these ways, OWL reflects the state of the art among regularized regression

techniques. It will be reintroduced in the next chapter, as part of the optimiza-

tion that drives network RSA, which will be critical to the experiments reported in

Chapter 5.

Interpreting model weights in regularized regression

Interpreting sparse models of data like MRI datasets, characterized by tens of thou-

sands of features that may be correlated with each other to various degrees and

very few training examples, faces a complication we have not yet addressed. Intu-

itively, it seems that if including a voxel in the model reduces its prediction error,

then the voxel must carry some information about the cognitive process under

study. This is not necessarily the case, however. When voxels are correlated, they

may be correlated in a way that is unrelated to the process of interest. Given two

features with correlated noise, let one of the features participate in the process of

interest and the other be completely unrelated to the process. A linear model can

combine these two features to effectively cancel out the noise (Haufe et al., 2014).

A model that is able to perform above chance on an out of sample prediction task

has certainly discovered some voxels of interest, but it is likely that a subset of the

voxels included in the model are “merely” being used to boost the signal of other

voxels that are actually driving the model’s performance. Because the noise ap-

plied to the simulated data above was i.i.d., and the overall number of voxels was
4Bondell and Reich (2008) and Zhong and Kwok (2012) performed their experiments using

OSCAR, which is a special case of OWL.
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small, correlated noise was not an issue, which made the models reported above

easy to interpret; it will not be so in general.

One way to address this concern is to perform follow up analyses on subsets

of voxels. Consider the following scenario: you have a group of participants make

simple value judgments about faces and places. You then analyze these data using

LASSO to learn a sparse model of each subjects data that can classify whether they

are looking at a face or a house on any given trial. You identify voxels in the stan-

dard face and place regions, as well as many voxels in less typical places. Perhaps

face and place judgments recruit a widely distributed neural network, or perhaps

these other scattered voxels happen to have noise components that correlate with

voxels in the standard areas. They are boosting the signal, but not contributing

new face or place information. These two possibilities can be adjudicated by a fol-

low up analysis, where the standard areas are “lesioned”—simply dropped from

the fMRI dataset before refitting LASSO to the data. If this new model on the le-

sioned dataset can still perform above chance, and selects voxels in similar places

as seen in the “intact” brain analysis, it suggests that neural regions beyond the

standard areas really do support discrimination between judgments about faces

or places.

It would be incorrect, however, to claim strongly that other areas of the brain

are functionally independent of those that were “lesioned” from the dataset. To

the extent that other areas of the brain are functionally connected with the “le-

sioned” areas, and given that when the data were collected the brain was healthy

and intact, it is possible that these other areas express the representations that they

do only because of the proper function of the areas we later omit from the models.

While this certainly lacks an element of experimental control, we can at least say

that these widespread areas, beyond the typically defined face-system, are adopt-

ing a state that distinguishes faces from other objects. This may because they are
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central to face processing, or that they are ancillary to conceptual processing that

is also relevant to the face stimuli in our task. But, nevertheless, an argument that

these areas are functionally connected to the typically defined face system is in-

teresting and suggests a wider base of relevant contributions to the processing of

these stimuli than under the standard account.

Which is the best method to use?

This question is posed somewhat facetiously—the intention is not to advocate for

one method to the exclusion of others. Rather, the point we wish to emphasize is

that each statistical method is closely associated with an implicit hypothesis about

what matters in neural signal. The question of what matters—what “makes” a pat-

tern of activation over neurons a mental representation—is itself a central question,

maybe the central question, of cognitive neuroscience. Each of the approaches we

have considered begins with an implicit hypothesis about the answer to this ques-

tion. The univariate contrast method begins with the hypothesis that consistency

in location and neural response across individuals is what really matters to the dis-

covery of representation. Searchlight begins with the hypothesis that what matters

is the similarity of evoked responses over neural populations within a particular

contiguous region of cortex. LASSO begins with the hypothesis that representa-

tions are sparse, are not highly redundant, and can be localized any which way.

Ridge regression begins with the hypothesis that representations are highly re-

dundant, but still can be localized any which way.

Like any hypothesis, each of these is potentially useful in guiding discovery,

but is also subject to empirical assessment. From this point of view, brain imag-

ing might best proceed, not by choosing the “best” method, but by comparing

and contrasting the results obtained across different methods. With a good under-

standing of the underlying assumptions each method adopts, and consequently of
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its blind spots, one may arrive at a better understanding of the neural code than

any method individually provides. In the current work, for instance, the univari-

ate contrast method excelled at identifying systematic I/O units but failed to find

SH units. LASSO showed the reverse pattern. The juxtaposition of the results

provides a fuller picture of how the network represents domain structure than

does either method on its own. One could imagine conducting a univariate con-

trast analysis, masking out all voxels that show reliable effects, then conducting a

whole-brain multivariate analysis on the remaining voxels to assess if there exists

a distributed code. In general, it is not difficult to imagine how the different meth-

ods could be used in combination to better understand the neural basis of mental

representations.

It is also worth noting, however, that the hypotheses underlying these different

methods, like any hypothesis, must also play a coherent role within a broader theo-

retical account of the mechanisms that support the behavior of interest. In the case

of the univariate contrast method, for instance, it is not generally sufficient simply

to state that what matters is consistency in location and neural response across sub-

jects. One wants some broader explanation as to why cross-subject consistency is

an important indicator of the underlying representation. This is where we feel the

connection to the PDP framework for cognition offers some real utility. The repre-

sentational assumptions the approach adopts are not stipulated arbitrarily. They

arise from a coherent set of principles stemming from neuroscience, computer sci-

ence, and cognitive psychology that have proven useful for understanding a very

broad range of behaviors in developing, healthy, and disordered populations. The

hypothesis that mental representations are distributed in the particular way we

have explored is, in this sense, deeply theoretically motivated. Statistical methods

that begin with this hypothesis thus have a built-in theoretical justification that

other methods may lack. What has been lacking, and what the new generation of
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statistical methods—including the methods reviewed here and other approaches

beginning to emerge in the literature—is a good understanding of how to look.
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Chapter 4

Network Representational Similarity

Analysis

In the previous chapters, I took a broad view on the challenges associated with test-

ing the hypothesis that the brain utilizes distributed representations using readily

available functional neuroimaging methods (primarity, fMRI), and made a case

that testing this hypothesis is of great significance to the field. In Chapter 2, I re-

viewed a collection of fMRI literature that, taken as a whole, provide evidence that

four defining qualities of distributed representation do appear to have a basis in

the human brain. This review leaves one with an appreciation for the representa-

tional complexity of distributed representations, and with a desire for a more ideal

means of identifying them. In Chapter 3, I compared several methods with respect

to a simulated MRI dataset containing both localized, “nameable”, functionally

specified elements, and collections of elements that encode content via distributed

representations. Here, we saw that distributed representations are fundamentally

multivariate, and univariate techniques may overlook them even when the repre-

sentations themselves are localized. Therefore, searchlight MVPA is a fine solution

when the distributed representations are localized. When representations are dis-
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tributed in space, and intermixed with other irrelevant representational elements,

the searchlight method is less suited to the task. This led us to consider regular-

ized regression, which eliminates the spatial constraint of the searchlight and may

therefore be a more appropriate tool for studying distributed representations.

However, regularized regression is not a single method, but a whole class of

methods. Regularization involves making additional assumptions about the struc-

ture of signal within the dataset, and models derived via regularized regression

are in general much more complicated to interpret than standard regression. Some

regularization techniques, such as applying the `2 norm as in ridge regression,

make no attempt to yield an interpretable model: the objective is to make accurate

predictions. This is not useful for neuroscientific investigation of where or how

content is represented—it can only tell you if a certain prediction problem can be

solved based on some linear combination of the available information. Others,

such as applying the `1 norm as in LASSO, will identify a sparse subset of features

which share as little variance as possible—the model pressured to not include re-

dundant information because of how it is penalized. Further, the sparse model that

is obtained can be difficult to interpret for the same reasons that weights returned

by ridge regression are difficult to interpret. That all said, LASSO is more infor-

mative from a neuroscientific perspective than ridge regression. But it is clearly

limited.

These limitations have inspired a variety of methods, such as elastic net (which

combines the `1 and `2 norms into a single model; Zou and Hastie, 2005), group

LASSO (which allows the researcher to specify groups of features that are thought

to be related a priori and exert some control over the sparse structure that is ob-

tained; Simon et al., 2013; Yuan and Lin, 2007) and multitask group LASSO meth-

ods such as sparse overlapping sets (SOS) LASSO (which was designed to encour-

age discovering sparse models that can leverage course spatial structure within
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and across fMRI datasets while retaining the benefits of LASSO; Rao et al., 2013),

and the ordered weighted `1 (OWL) regularized regression(Figueiredo & Nowak,

2014; Figueiredo & Nowak, 2016; Zeng & Figueiredo, 2014). These techniques are

different attempts to obtain more complete, interpretable models when there are

highly correlated features. Each of the cited methods attempts to group features

that are highly correlated or related, rather than assigning a weight to every feature

(as in ridge regression) or seeking solutions that sample as few units as possible

from sets of correlated features (as in LASSO). With group LASSO, features are

assigned to groups a priori—grouping affects the optimization, but the optimiza-

tion does not identify the groups. The researcher must approach the dataset with

a hypothesis about which features should be grouped. This is not ideal in all cases.

Elastic net and OWL, on the other hand, identify correlated sets of features as part

of the optimization. While similar in this sense, OWL differs from elastic net in

that it more explicitly groups variables, by assigning voxels deems to belong to

the same group exactly the same weight (Figueiredo & Nowak, 2016). This means

that OWL defines groups in transparently “human readable” way, while elastic

net allows correlated features to be assigned different weights, which obscures the

group structure. In addition to producing more interpretable models, OWL has

been shown to outperform elastic net in terms of how well it selects and groups

features (Bondell & Reich, 2008; Zhong & Kwok, 2012)1. In these ways, OWL is the

state of the art among regularized regression techniques, and it will provide the

base for the analyses in this dissertation.

In the previous chapter, regularized regression was introduced in the context

of classification. This was done to keep things simple and as closely comparable

to the most prevalent analysis techniques in neuroscience, which are applied to

identify sets of voxels that maximally discriminate between experimental condi-
1Bondell and Reich (2008) and Zhong and Kwok (2012) performed their experiments using

OSCAR, which is a special case of OWL.
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tions. However, not all hypotheses are best assessed by discrete, categorical de-

signs. Most theories of concept representation, for example, hypothesize that the

brain encodes information with greater fidelity than the level of category. This rich

semantic content may be encoded via distributed representations (Chapter 2), or

some other form of continuous feature space (e.g., Fernandino et al., 2016; Huth,

de Heer, Griffiths, Theunissen, and Gallant, 2016; Huth, Nishimoto, Vu, and Gal-

lant, 2012; Just, Cherkassky, Aryal, and Mitchell, 2010; Mitchell et al., 2008), but

in either case performing classification (and, indeed, designing experiments with

classification in mind by requiring participants to retrieve and work with concep-

tual information that are believed a priori to form clusters in “concept space”) may

lead to a somewhat distorted image of how and where concepts are represented

in the brain. This is, in part, because a classifier does not need to model the struc-

ture of items within categories—it only needs to discriminate between them. By

modeling more complex similarity structure among stimuli, the model will need to

identify the components of the neural signal that carries this more nuanced infor-

mation, which may cast distributed representations in stark relief relative to even

whole brain multivariate classification.

Until very recently, the analysis that is suggested by this discussion had never

been done. That is, regularized regression had only been applied to classify neural

data, and never in the service of a representational similarity analysis. Representa-

tional similarity analysis (RSA) refers to a general methodology that involves com-

paring the similarity structure among patterns of neural activity (e.g., the structure

expressed by the covariance of their activity over time or over stimuli) to a refer-

ence similarity structure (e.g., a similar covariance structure derived from another

brain region or the same region in another (human or non-human) subject, or a

structure based on an independent non-neural source like human similarity judg-

ments or a computational model). Typically, these comparisons are direct, without
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any sort of modeling to relate the two similarity structures. This involves nothing

more than computing, for example, the correlation between the two structures.

While elegantly simple and flexible, the standard approach to RSA has sev-

eral notable limitations. Consider how the representational similarity structure

expressed by the brain is assessed: first, a set of voxels are selected, often either by

hypothesis or as part of a searchlight analysis (3.5). Then, in a second independent

step, the covariances among those voxels are computed directly. This means that

the standard representational similarity analysis cannot be used to discover pat-

terns; it involves analyzing the structure expressed by a predetermined selection

of features.

Furthermore, standard RSA involves a strong assumption about the relation

between neural activity and the represented structure: that the variance of every

voxel in the predetermined selection contributes to the encoded similarity struc-

ture to the same extent. This is because the standard RSA procedure does not

involve fitting any sort of model when relating the neural activity to the target

structure. This puts any uninformative voxels which may exist in the set on equal

footing with the most informative, adding noise to the estimate of the structure

expressed over the set. The consequence is that selections that contain many un-

informative voxels along with some voxels that actually contribute to the structure

will be incorrectly overlooked. On the other hand, in regions where the ratio of

signal to noise is favorable enough to express similarity structure that matches the

target structure of interest, one does not know which voxels in the region actually

express the structure. The structure is attributed to the whole region.

While not in the purview of standard RSA, there is great interest in discover-

ing the network structure of the brain. DTI and related probabilistic tractography

methods aim to map the major white matter tracts that connect various parts of

the brain and allow information to be propagated and integrated among and be-
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tween regions. In addition, functional connectivity analysis has begun to play an

important role in identifying interactivity among brain regions in the context of

specific tasks, clinical sub-populations, etc. Functional connectivity analysis (FCA)

involves measuring the covariance among regions of the brain, and determining

which of those regions are statistically related. However, functional connectiv-

ity analysis does not address what content is encoded in that covariance. In this

sense, RSA and functional connectivity analysis are like two research disciplines

that possess means to address the deep problems of the other, but have not found a

common language to communicate effectively and so have historically talked past

each other.

We recently proposed a new analysis technique that unites RSA and FCA into

a single method, and which, like the unity of two formerly independent research

disciplines, is ultimately more than the sum of its parts. We call this technique

Network Representational Similarity Analysis (network RSA), and it addresses all

three limitations of standard RSA by fitting a model of the voxel covariance in an

fMRI dataset to a target similarity structure via sparse, multi-task regression (Os-

wal et al., 2016). Just as with the regularized regression approaches to multivoxel

pattern analysis (MVPA) discussed in Chapter 3, this model of the data can gener-

ate predictions; unlike MVPA, the predictions are not attempts to categorize trials,

but to properly situate the trial within a similarity space. The structure of the space

expresses some psychologically relevant relationship among the trials, such as se-

mantic or perceptual similarity.

Using network RSA, we will consider a simple cognitive task in a new light.

When viewing an image and making a semantic judgment pertaining to the con-

tent of the images engages at least two processes: object perception and semantic

evaluation. Visual object perception, a hierarchical process beginning with low

level visual feature detection and ascending into more and more abstract abstrac-
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tions of the input (Humphreys & Forde, 2001, 3; Logothetis & Sheinberg, 1996;

Marr, 1982; Tanaka, Saito, Fukada, & Moriya, 1991, July), begins in the occipi-

tal lobe and extends into temporal and parietal areas. Perception relies heavily

on knowledge, and the line between higher order vision and semantic processing

continues to blur. That being said, while there is an agreed upon neural locus

for several aspects of visual processing, the same cannot be said for semantic pro-

cessing. Semantic processing of visual stimuli has been variously ascribed to the

otherwise visual regions in posterior ventral temporal cortex (A. Martin & Chao,

2001), the inferior parietal lobe (Binder & Desai, 2011), and the anterior temporal

lobe (Patterson et al., 2007). Surveys of the literature on semantic processing im-

plicate the majority of cortex to some extent (Binder et al., 2009). In short, picking

a semantic ROI a priori would be arbitrary, especially because most models of se-

mantic processing predict that relevant semantic information may be represented

in multiple regions and integrated in some way. This is inconsistent with a search-

light approach, which would not permit integration beyond the 6–8mm diameter

of a standard searchlight.

4.1 Intuitions

Before continuing, it will be useful to establish some intuitions about how network

RSA works and to make explicit the assumed relationship between psychological

similarity structure (e.g., the perceptual or semantic similarity among a selection

of images) and functional activity as measured by fMRI. For a full discussion of

this method and its assumptions from a more technical perspective, see Oswal et

al. (2016).

Previous applications of RSA in the neuroimaging literature are attempts at

information mapping, in the sense of Kriegeskorte et al. (2006). The objective has
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Figure 4.1: Overview of W matrix. See text for details.

been to identify brain regions in which voxel covariance directly expresses a target

similarity structure, without modeling the variance or covariance in any way. As

discussed in the introduction, this poses important challenges and limitations for

a program of research interested in discovering the neural networks that encode

structured knowledge about the world.

With network RSA, the objective is to model the covariance among voxels ofX to

fit the data to a target similarity structure. Symbolically, the assumed relationship

between a target similarity structure, S, and neural activity, X, can be expressed as:

S ≈ XWXT (4.1)

See figure 4.1a for a visual depiction of this equation. Here, the superscript T in-

dicates that the associated matrix is transposed, S is a symmetric matrix expressing

a measure of similarity between each pair of items, X is a matrix representation of
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the fMRI data where rows correspond to items and columns correspond to voxels,

and W is a matrix of weights that expresses the importance of each voxel (along

the diagonal) and pair of voxels (off the diagonal) to expressing the structure in

S. To be more explicit: the first value in the first row of W is a weight on voxel 1

which expresses how the activation of that voxel should be scaled before being lin-

early combined with the (weighted) activity of other voxels. This is the weight that

would be applied to voxel 1 if all other voxels were to be held constant at zero. The

remaining values in the first can be understood as interaction terms in a regression

model. That is, they moderate the weight on voxel 1 by expressing how much this

weight should be increased (or decreased, in the case of negative weights) for a

unit change on each other voxel. Put another way, they express the influence of

voxels 2 to n on voxel 1. This is consistent with conceiving ofW as a representing

graph structure, from which a network of voxels and their interconnections can be

drawn.

Because it is so central to our method and the interpretation of our results, let

us build intuitions about W by considering the four illustrative example graph

structures depicted in figure 4.1b, which correspond to contrived configurations

of weights in W. Let W have a row and column for every voxel in cortex, and let

us consider eachW structure in turn from left to right.

In the first example,W is fixed so that there are ones along the diagonal and ze-

ros elsewhere (i.e., the identity matrix). In this case XWXT would simplify to XXT ,

which, if the columns of X are mean centered, yields the full covariance matrix of

X. Conceptually, this W structure expresses that every voxel and pairwise combi-

nation of voxels in the brain contributes equally to expressing the target similarity

structure. The second example W structure omits some of the voxels by setting

rows and columns that correspond to the unwanted voxels (that is, columns in X)

entirely to zero. Columns of X that correspond to all-zero rows (and columns) in



103

W are set to zero byXW. In this way, one can conceive of standard ROI and Search-

light based analyses in terms of W matrices with a subset of diagonal values set

to 1 and all other values set to zero. Given such a W, XWXT yields the covariance

matrix among only the voxels with non-zero rows inW.

Next, we consider a less intuitive yet conceptually important structure, where

off-diagonal values of W are non-zero. A block of ones in the W matrix, such as

shown in the third example structure, expresses that all of the covariance, and

the variance of individual voxels, are equally important. In fact, this particular

structure of W expresses that the set of voxels that belong to a block are effectively

the same. They ought to be treated as a single voxel. To cultivate this intuition,

imagine that the set of voxels in the block are nodes in a network. W tells us the

weights to assign the edges that connect these nodes, and in this case it is a block of

ones: every node is connected to every other node with weight of 1. If any single

node is stimulated, all nodes will adopt that same state. If multiple nodes were

activated, the activation would sum. The network is most strongly active when all

nodes are stimulated at the same time in the same way, less so when only a few

units are active or when some units activate positively and others negatively. This

is conceptually akin to aggregating voxel activity within ROIs.

The three example W structures we just considered are deliberately artificial,

with fixed values in particular patterns. In reality,W is fit to the data and can take

on whatever values are necessary, while respecting the constraints of symmetry

(the influence of voxel i on voxel j must be the same as the influence of voxel j on

voxel i) and of positive semi-definiteness (the Eigen decomposition ofW must not

contain negative eigenvalues). The fourth example depicts this, with an emphasis

on the fact that W is sparse—most values in W are set to zero. The sparsity con-

straint will be explained in the next section, in which the optimization problem

itself is described.
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In summary, to conduct an network RSA is to solve for W in S ≈ XWXT , and

the appropriate interpretation of W is that it contains the weighted edges of an

undirected graph which represents the network structure among voxels.

4.2 Optimization

I will now consider in more detail howW is obtained for a given S andX. The fitted

W should be sparse and low rank, which means that many voxels will receive zero

row/column weights and be ignored (sparse) and that if one were to perform a

principle components analysis onW, many of the eigenvalues would be zero (low

rank). The full optimization problem can be written as:

arg min
W∈S+

||S− XWXT ||2F + λ1||W||1 + λ2||W||∗ (4.2)

This essentially conveys three pieces of information. We want to find a W that

will jointly minimize:

1. Data fitting term: The Frobenious norm of the difference between the target

similarity matrix S and the predicted similarity matrix, given by XWXT .

2. Sparsity: The `1 norm of W, which is the sum values in W. Technically, the `1

norm is the sum of the absolute values, but W cannot have negative values

to begin with. The `1 norm encourages W to be sparse.

3. Low rank structure: The nuclear norm of W, which is the sum of the singular

values of W. The nuclear norm encourages W to be low rank.

Note that λ1 and λ2 are simply non-negative scalar values that correspond to

free parameters that allow the importance of the `1 and nuclear norms to be scaled

up or down to fit the data.
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Because the nuclear norm is computationally expensive, in practice the opti-

mization routine is simplified by applying the “square root trick” (citation). Just

as 4 can be expressed as 2×2, a matrix can often be expressed in terms of its square

root. If
√
S = Y, then S = YYT , and if

√
W = B then

√
W = BBT , and the original

equation S ≈ XWXT can be rewritten as YYT = XB(XB)T . Once the redundancy in

the re-written form is eliminated, we are left with simply:

Y ≈ XB (4.3)

Again, W can be recovered by BBT . The square root of a symmetric matrix

is a basis set which can be linearly combined with itself to reproduce S. We are

defining Y as:

T = UΣ (4.4)

Here, UΣ comes from the singular decomposition of S, S = UΣV . U is a matrix

where columns are eigenvectors and Σ is a matrix with the square roots of the

eigenvalues on the diagonal. Because S is symmetric and positive semi-definite,

these values are readily obtained and will ensure that S = YYT .

Recall that the objective of the nuclear norm is to penalize based on the absolute

sum of the eigenvalues, and that this penalty can be minimized by forcing eigen-

values to be zero. This is how we would enforce the constraint that W should be

low rank if we were to work with S ≈ XWXT directly. In the form Y ≈ XB, we have

the opportunity to directly set values in Σ to be zero, which will cause Y to have

all-zero columns and thereby assert that the structure being modeled is low rank.

Simply put, if we wanted to assert that the structure being modeled is rank 3, then

we would set all but the first three eigenvalues to zero, and then only retain the

first 3 columns of the resulting Y (columns 4 to n would be all zeros and contain
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no information). Let us refer to this “truncated” Y as Yr.

Now, rather than the optimization written above, we are going to pose Yr ≈

XBr as a multi-task learning problem.2 Multi-task learning involves fitting several

related models at once, and allowing the models to jointly constrain and guide one

another as they converge towards a solution. Conceptually, a separate regression

model will be fit to each column of Yr. This will result in rweight vectors, where r

is the number of columns in Yr, amounting to r weights per voxel. What makes it

a multi-task regression and not merely r independent regression models is that all

models will be solved as part of the same optimization problem, which can now

be stated as:

arg min
B

||Yr − XBr||2F + λ

p∑
i=1

wi||bi||2 (4.5)

Where Yr is the truncated square root of the target similarity matrix S, X is a

matrix representation of the fMRI data where columns correspond to voxels, Br

is a matrix of weights where rows correspond to voxels and there are r columns

to match the r columns of Y, p is the number of voxels, and λ is a free parameter

that can be adjusted to modulate the importance of the regularization term. The

regularization term is a modification of the group LASSO penalty. For more infor-

mation on this regularization penalty, please see Oswal et al. (2016) and Figueiredo

and Nowak (2016). At a high level, this optimization equation conveys two pieces

of information. We want to find a Br that will jointly minimize:

1. The Frobenious norm of the difference between the truncated square root of

the similarity structure S, represented by Yr, and the predicted values for

each component in Yr, given by XBr.
2The r superscript is intended to make explicit that the Y and Bmatrices have r columns, where

r is defined by the rank truncation step explained in the previous paragraph.
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2. The modified group LASSO regularization penalty, which forces XBr to be

“row sparse”. That is, it forces many rows of Br to be set to all zeros, but also

imposes the constraint that if one element of a row is zero, all must be zero.

To assign a zero to one element in a row requires setting the whole row to

zero.

In fact, there is one other important aspect of this equation, and it has to do with∑p
i=1wi||bi||2. This is the modification to group LASSO that makes it a variant of

ordered weighted LASSO (OWL, Bondell and Reich, 2008; Figueiredo and Nowak,

2014; Figueiredo and Nowak, 2016). OWL is intended to address one of the key

problems associated with LASSO, which is that if a set of voxels are all informative

and are highly correlated with one another, LASSO will tend to select only one

voxel from the set and set the rest to zero. This is problematic when a key objective

is to test hypotheses about where in the brain information is being encoded and

what that neural code is like. LASSO will tend to exaggerate sparsity in ways that

can be misleading about the true nature of neural representations. OWL attempts

to select whole sets of correlated voxels and provide a more complete picture of

the neural representation.

In summary, the objective is to obtain a matrix of weights that maps between

neural activity as measured by fMRI and a target similarity structure, which is

expressed by Equation 1. The optimization that most obviously follows from this

objective, expressed by Equation 2, is computationally intensive and motivated

refactoring the problem as Equation 3, which will be optimized with all the same

constraints by Equation 4. Once obtained, we can compute our estimate of W as

Br(Br)T .
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Chapter 5

fMRI Experiments

How does the brain support semantic knowledge? The hub-and-spoke model pre-

dicts that concepts are supported by a distributed network of brain regions (the

spokes) which each represent modality specific structure, and single hub region

that all the spokes interact with. In this way, a single, domain general semantic

system is enabled by pan-modal integration of our internal, external, and linguis-

tic experiences. This all important semantic hub role is believed to be fulfilled by

the bilateral anterior temporal lobes (ATL). However, how the ATL functionally

performs this pan-modal integration is controversial: the hub-and-spoke model

predicts that the semantic hub should be functionally involved with semantic pro-

cessing of all kinds, but—as outlined in Chapter 1—there are three hypotheses

about how the ATL contributes to semantic representation. Each hypothesis is

associated with different representational structure being expressed among pat-

terns of activity, both locally/regionally in the ATL and over cortex more gener-

ally. Briefly, those hypotheses about how semantic cognition might be supported

by the ATL were:

1. The convergence hypothesis: The ATL contains high level convergence zones

that describe how sensory features are distributed all over posterior, modal-
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ity specific cortical regions.

2. The semantic hub hypothesis: The ATL encodes pan-modal representations that

express all semantic similarity structure across all modalities.

3. The hub+spoke hypothesis: The ATL “hub” encodes the interactions among

modality specific “spokes”, so the hub and spokes jointy express the seman-

tic similarity space.

All three hypotheses predict that representational similarity will be expressed

among distributed patterns of neural activity associated with different stimuli, but

differ in where that information is expressed. Respecting the same indexing as

above, the predictions under each hypothesis are that representational similarity

is encoded:

1. Over modality specific regions, each region expressing different dimensions

of structure.

2. Over the bilateral anterior temporal lobes, which together express all dimen-

sions of structure, as well as over modality specific regions. The hub taken by

itself, or the spokes taken together but without the hub, are largely redun-

dant from a brain decoding perspective. Of course, the hub is important from

a neural processing perspective.

3. Over the bilateral anterior temporal lobes (hub) and modality specitic ar-

eas (spokes), where each spoke expresses different dimensions of structure,

and the hub expresses dimensions of structure that capture the interactions

among dimensions expressed in the spokes. Any given representation re-

quires all areas, and from a brain decoding perspective a “full” model that

includes the hub and all spokes should outperform any partial permutation

of areas.
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All three hypotheses predict distributed representations involving multiple anatom-

ical regions. By this, I mean that all hypotheses predict that if one were able to

simultaneously model information encoded across modality specific areas, and

the model appropriately combined that information, that this model would have

captured all dimensions that contribute to semantic structure. This ideal model

would, in essence, be performing the role of the ATL.

The semantic hub hypothesis (2) differs from the others in that it predicts that

the bilateral ATL support a locally consolidated high-dimensional semantic simi-

larity space that has already combined, through relevant experience, the content

encoded in the various spokes. This means that semantic representational simi-

larity should be discovered in the ATL, without any additional information about

activation states elsewhere in the brain. On the other hand, the hub+spoke hypoth-

esis (3) predicts that the ATL does not encode a the full semantic space, but rather

only encodes information about cross-modal interactions. This means that if the

scope of analysis is limited to the ATL, it will not be possible to recover the seman-

tic similarity structure, but considering the the ATL and modality specific regions

together will. From an empirical modeling perspective, this predicts an interaction

effect: modeling the hub and the spokes together should produce a more accurate

model of the semantic similarity structure encoded in the brain than either the

hub alone or the spokes alone. The convergence hypothesis (1) would be consis-

tent with the ATL expressing no semantic similarity structure whatsoever, and so

naturally including the ATL in a model’s scope should make no difference.

This means that these three hypotheses may be adjudicated by comparing mul-

tivariate analyses with either locally restricted or whole-brain scope. Previous

work with representational similarity analysis (RSA) has only performed analy-

ses with locally restricted scope, due to limitations with the method. However, by

employing network RSA, a technique introduced to the literature by Oswal et al.
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(2016) and discussed at length in Chapter 4, we can perform a whole brain RSA and

test this contrast. Also, because network RSA involves fitting a model that makes

principled estimates of network structure associated with the selected voxels, the

tools now exist that permit testing these hypotheses in much greater detail.

No matter which representational structure, the ATL’s hub status means that it

receives input from multiple modalities. Therefore it follows that the ATL should

be functionally relevant regardless of the stimulus modality. That is, semantic

processing of stimuli presented in audio or visual form should both involve the

ATL. There is direct evidence, acquired via electrocorticography (ECoG) in pa-

tients preparing for neurosurgery, that neural sites within the ATL have tuning

functions that respond to multiple modalities (Abel et al., 2015; Shimotake et al.,

2014). However, to the extent that semantic representational similarity among

items presented, say, visually can be detected in the ATL using local or whole brain

RSA in an fMRI dataset, the hub-and-spoke model strongly predicts that a similar

result would be obtained if the stimuli were presented in another modality.

In this first set of experiments these three representational hypotheses will be

tested in a distortion corrected fMRI dataset, collected from participants who per-

formed semantic judgments about a set of concepts, referenced by either a visual

or audio stimulus. In combination with network RSA, this multimodal dataset

collected with a protocol designed to correct MR imaging artifacts in the ATL and

orbitofrontal regions has all the critical pieces in place to test, for the first time,

whether semantic cognition is supported by distributed representations that span

multiple brain regions.
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5.1 Materials and methods

Participants

This dataset is comprised of 23 right handed participants (5 male). All partici-

pants were native English speakers, had normal or corrected-to-normal vision and

none of them reported having any neurological disorder or dyslexia. The exper-

iment was conducted at the Neuroscience and Aphasia Research Unit (NARU) at

the University of Manchester, UK. Participants were paid 10 pounds for their par-

ticipation. The experiment was approved by the Research Ethics Committee at

University of Manchester.

Stimuli

In this experiment, 37 concepts were represented by both a black and white line

drawing selected from the Snodgrass and Vanderwart (1980) set and a character-

istic sound. Sounds were purchased purchased from Soundrangers1 and edited

using the software Audacity2 to have equal duration (2s) with the same level of

maximum amplitude. The set of line drawings was constrained two factors: 1) the

need to chose items that could be matched with a characteristic sound available in

this database, and 2) the need to select a set of line drawings where the low level

visual similarity structure among items was uncorrelated with their estimated se-

mantic similarity structure (see Models subsection, below).

Models

Representational similarity analysis (RSA) compares a target similarity structure

selected by hypothesis to the similarity structure among patterns of functional ac-
1https://www.soundrangers.com/
2http://audacity.sourceforge.net/
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tivity. In order to conduct RSA for the visual and semantic similarity structure

among the 37 stimuli, we generated two matrices through independent means.

Visual similarity

The purpose of the RSA of visual structure is to serve as a control for low level

similarity structure, and as a sanity check that our analyses localize this low level

similarity structure to early visual cortex. To that end, we simply computed the

minimum point distance to translate each black and white line drawing into every

other black and white line drawing (the Chamfer method). The distance between

each pair of items was arrived at through an iterative procedure where one of the

images was scaled and translated relative to the other. The distance between the

two images was taken to be the smallest value to emerge from these scaling and

translation steps.

The resulting distance matrix was then converted to a similarity matrix via

S = e−cD, where c is a constant which scales how quickly similarity degrades

towards zero with distance. The particular c we chose, 0.05, was selected because

it produces a matrix S in which the rank similarity between each item perfectly

corresponds to the rank dissimilarity expressed by D, and for which its eigenval-

ues were distributed similarly to the eigenvalues ofD (indicating similar structural

complexity).

Semantic similarity

Finally, for semantic dissimilarity, stimuli were scored using the binary features

lists obtained in a recent feature norming study (Dilkina & Lambon Ralph, 2012).

These are revised feature lists from Cree and McRae (2003), who originally asked

undergraduates to list ten most salient features associated with each concept. Us-

ing these feature lists as a guide, Dilkina and Lambon Ralph (2012) effectively



114

cross-referenced the set of features produced by participants over all items with

each item: rather than have participants list features themselves, they were pro-

vided with a word and a list of features, and their task was to indicate which of

the features pertain to the concept referenced by the word. Relative to the fea-

ture listing task of Cree and McRae (2003), this feature verification task discovered

richer structure, with more features being associated with each item. This is be-

cause there are many features of objects that do not spring to mind: you know that

your desk chair is assembled with screws, but this is probably not as salient to you

as whether it is comfortable (or not), whether it reclines, whether it has lumbar

support, and so on, and being asked to list the features of your chair would reflect

the availability of those facts. However, how your chair was assembled makes it

similar to other things, in a way that may come out after explicitly cross-referencing

features with concepts. The revised feature lists correlate well with other methods

of getting semantic features, such as studying participants’ drawings of different

concepts (Rogers et al., 2004). The semantic similarity matrix is derived by com-

puting the pairwise cosine similarity between these feature vectors.

Comparing structures

The visual and semantic structures are uncorrelated (r = 0.06, n.s.). Hierarchical

cluster plots of each structure are displayed in Figure 5.1. The figures also contain

examples of stimuli that are clustered close together in each structure, to give a

sense of their visual similarity.

Experimental Procedure

The experiment consisted of four blocks, each of which lasted 8 minutes. In each

block, all stimuli (both visual and auditory) were presented once. To avoid priming

effects, trials were pseudorandomized with the constraint that visual and auditory
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Figure 5.1: Hierarchical cluster analysis of the semantic (left) and visual (right) similarity
structure among the 37 stimuli in the experiment.

versions of the same stimuli were separated by at least 10 trials. Pseudorandom-

ization was achieved using Mix (van Casteren & Davis, 2006). Each trial lasted

4000ms. Visual trials started with a red fixation cross for 500ms, followed by the

visual stimuli for 2000ms and a blank screen for 1500ms. Auditory trials started

with a blue prompt “sound”, followed by natural object sounds for 2000ms and

a blank screen for 1500ms. Twenty-five null events (blank screen) were randomly

inserted into each block to make ITIs variable to aid in deconvolution.

Participants were instructed to mentally perform a size judgment task: whether

each item can be physically fit into a “wheelie bin” (outdoor trash can) in the real

world (c.f. Horner & Henson, 2012). From time to time there would be a question

mark at the end of a trial and participants needed to press buttons to indicate their

size judgment regarding the previous item.
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Image acquisition protocol

Functional MRI scanning was performed using a Philips 3T MR system with a

head coil at the NIHR/Wellcome Trust Central Manchester Clinical Research Fa-

cility. Dual Echo sequence (Ajay D. Halai, Parkes, & Welbourne, 2015) was ac-

quired using a TR = 2.8s, TEshort = 12ms, TElong = 25ms and a flip angle of 85

degrees. Reconstructed images contained 31 slices covering the whole brain, with

slice thickness 4mm, interslice distance 0mm, field-of-view 240mm and in-plane

resolution 80× 80 voxels (3× 3mm). Slices were tilted so that the front was up 30

degrees and the posterior end was down 30 degrees. A field map was acquired for

each participant and used to perform distortion correction. Functional scans were

preceded by a high-resolution structural T1-weighted MRI scan, acquired using a

3D MPRAGE sequence, field-of-view 240×191mm, voxel size 1×1×1mm, matrix

dimensions 256× 256× 256, TR = 8.4ms, TE = 3.9ms.

Anatomical segmentation and surface construction

Cortical reconstruction and volumetric segmentation was performed with the Freesurfer

image analysis suite, which is documented and freely available for download on-

line (http://surfer.nmr.mgh.harvard.edu/). The technical details of these pro-

cedures are described in prior publications (Dale, Fischl, & Sereno, 1999; Fischl &

Dale, 2000; Fischl, Liu, & Dale, 2001; Fischl et al., 2002; Fischl, Salat, et al., 2004; Fis-

chl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999; Han et al., 2006; Jovi-

cich et al., 2006; Reuter, Rosas, & Fischl, 2010; Reuter, Schmansky, Rosas, & Fischl,

2012; Segonne et al., 2004). Briefly, this processing includes removal of non-brain

tissue using a hybrid watershed/surface deformation procedure (Segonne et al.,

2004), automated Talairach transformation, segmentation of the subcortical white

matter and deep gray matter volumetric structures (Fischl et al., 2002; Fischl, Salat,

et al., 2004) intensity normalization (Sled, Zijdenbos, & Evans, 1998), tessellation
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of the gray matter white matter boundary, automated topology correction (Fischl

et al., 2001; Segonne, Pacheco, & Fischl, 2007), and surface deformation following

intensity gradients to optimally place the gray/white and gray/cerebrospinal fluid

borders at the location where the greatest shift in intensity defines the transition

to the other tissue class (Dale et al., 1999; Fischl & Dale, 2000). Once the cortical

models are complete, a number of deformable procedures can be performed for

further data processing and analysis including surface inflation (Fischl, Sereno,

& Dale, 1999), parcellation of the cerebral cortex into units with respect to gyral

and sulcal structure (Desikan et al., 2006; Fischl, van der Kouwe, et al., 2004). The

maps are created using spatial intensity gradients across tissue classes and are

therefore not simply reliant on absolute signal intensity. The maps produced are

not restricted to the voxel resolution of the original data and thus are capable of

detecting submillimeter differences between groups.

Cortical reconstruction and volumetric segmentation was conducted based on

each subject’s T1 anatomical scans and the methods cited above above. Cortical

masks for each subject are defined as the space between the pial surface and white

matter. Temporal lobe regions of interest were defined in reference to the Destrieux

atlas (Destrieux, Fischl, Dale, & Halgren, 2010). Segmentations were visually in-

spected, and no corrections were deemed necessary.

Preprocessing

Functional images were corrected for slice timing, realigned and unwarped to re-

move any movement artifacts using tools and pipelines available in SPM 8 (Well-

come Department of Cognitive Neurology, London, UK). Images were coregis-

tered to the T1-images using a mutual information coregistration procedure (Pluim,

Maintz, & Viergever, 2003). The structural MRI was normalized to the TT_N27 Ta-

lairach template using tools and pipelines available in AFNI (R. W. Cox, 1996).
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Functional data remained in native space for all multivariate analyses, and solu-

tions were warped into Talairach space using these transformations prior to group

level statistics.

A general linear model (GLM) was used to model individual items’ hemody-

namic response using SPM 8. Each item was presented four times in each modality.

The beta maps for these four repetitions were then averaged, resulting in one pat-

tern per item in each modality.3 These beta maps were then filtered to exclude vox-

els not belonging to the cortex. This was determined according to segmentations

produced with Freesurfer. The trials associated with the visual and audio modali-

ties were then separated. For each modality, voxels with estimated responses more

than 5 standard deviations from the mean response across voxels were dropped.

The resulting censored whole brain beta maps for individual items in individ-

ual participant’s native space were used in further analysis multivariate analyses.

5.2 Analysis methods

Univariate analysis

A univariate analysis was carried out by Yuanyuan Chen, PhD at the University

of Manchester, and communicated to me through unpublished materials. These

results will be reproduced in the following section to provide context relevant con-

text. In these analyses, rather than considering individual stimuli, we consider 4

different conditions that a participant will experience over the course of the ex-

periment: 1) audio trials, 2) visual trials, 3) size judgment “catch” questions, and

4) rest—points in time where nothing more than a fixation point is displayed and

the participant is between trials. A general linear model is fit as describe above,
3Alternatively, the four repetitions of each item could have been modeled together so that that

GLM would have simply produced one beta map per item per modality.
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except that each subject’s data are smoothed with an 8mm FHWM gaussian blur

prior fitting the GLM, and rather than modeling each stimulus these 4 conditions

are modeled. Four contrasts will be reported: 1–3) each trial type > rest, and 4)

visual vs. audio

Searchlight RSA

RSA analysis has been applied in previous papers (Connolly et al., 2012; Kriegesko-

rte, 2009; Kriegeskorte et al., 2008) and its pipeline has been described by Kriegesko-

rte (2008). Briefly, for a selection of voxels, the 3 dimensional pattern of activity for

each item are formed into an item by voxel matrix. The correlation among a rows

of this matrix will express the representational similarity structure expressed over

that selection of voxels. The lower triangle of the similarity matrix for the region

is then correlated with the lower triangle of target similarity matrix. The resulting

correlation coefficient is a measure of how similar the two structures are.

Whole brain searchlight (Kriegeskorte et al., 2006) simply involves repeating

this process at every voxel in the dataset. That is, for each voxel, select all vox-

els within a particular radius, convert the patterns of activity over items to a ma-

trix as just described, compute the correlation among rows, and correlate with the

target matrix. The resulting coefficient is then inserted at the center voxel of the

searchlight, and move on to the next voxel. This can be applied to produce a map

of correlation coefficients for each subjects, with can then be passed into a group

univariate analysis to test which points in the brain reliably express the target sim-

ilarity structure across subjects.

We performed this analysis using a spherical searchlight with 8mm radius,

which is comparable to previous studies (Giordano, McAdams, Zatorre, Kriegesko-

rte, & Belin, 2013; Peelen & Caramazza, 2012). The Spearman correlation was used

to assess the similarity between the target and searchlight similarity matrices. The
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resulting correlation maps for each subject were interpolated to align with the

TT_N27 template brain, and smoothed with an 8mm FWHM gaussian kernel prior

to group level analysis via a univariate t-test.

Network RSA

Derive target embeddings from model similarity matrices

Network RSA solves for a matrix of weights that will identify and linearly combine

a set of voxels which jointly express a target similarity structure, here either visual

or semantic similarity. However, as discussed in Chapter 4, the optimization does

not model the full rank similarity matrix directly. Instead, the full model similarity

matrix, S, is decomposed into its eigenvectors and values, and the r largest com-

ponents are taken as a low rank embedding of S, which I will call Y to emphasize

that this is what is being modeled and predicted by network RSA. I refer to Y as

an embedding to express that the similarity structure has been “embedded” in a

low dimensional metric space. A 2 dimensional embedding could rightly be plot-

ted on a coordinate plane, and the distances among the points could be intuitively

interpreted: points that are closer together are more similar.

The number of dimensions is chosen by setting a threshold for ||S−YYT ||F/||S||F

needs to be. With more dimensions, this error term will decrease, but not all vari-

ance in the similarity matrix is necessarily meaningful. When decomposing the

visual model matrix, this threshold was set to 0.2, which results in a 3 dimensional

embedding of visual structure. When decomposing the semantic model matrix,

this threshold was set to 0.3, which results in a 8 dimensional embedding of se-

mantic structure.
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Voxel standardization

When model fitting, it can often help to standardize the variables in the data being

modeled. In the case of regularized regression, this carries additional importance:

voxels with more variance can be assigned a smaller weight. And since the reg-

ularization penalty will grow as the magnitude of the weights grows, this exerts

influence on which voxels are selected. However, if the goal is to identify this most

informative voxels rather than the “loudest” voxels, this is undesirable. Thus, ev-

ery voxel is standardized by dividing by its standard deviation.

Cross validation

Model performance is assessed through cross validation. The 37 items are split into

9 groups (8 with 4 items, 1 with 5 items). When training the model, one of these

groups is excluded from the training set. Once the model is fit to the truncated

training set, it can be used to make predictions about the held out items. Error is

assessed as ||Y − Ŷ||F/||Y||F, where Y is the r dimensional target embedding, with

a coordinate for each item and Ŷ is the models prediction of those values. This

process is then repeated so that each of the 9 groups is held out one time. These 9

errors are then averaged to obtain the expected error for that model.

Likewise, in the analyses that follow, model solutions (i.e., the values attributed

to each voxel) are also aggregated over cross validations: node strength estimates

are averaged, and the number of times the voxel was assigned a weight over cross

validations is taken as a metric of stability.

Parameter tuning

The network RSA procedure involves fitting two free parameters. Before cross val-

idating to obtain a final error and a final solution map, the appropriate values

for these must be determined. This parameter search is nested within each cross
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validation noted above. This is necessary: estimating parameters for the whole

dataset at once would provide some information about the portion of the data

that will be held out during cross validation. By performing a separate parame-

ter search within each cross validation loop, one can be sure that the model is not

being “leaked” information about the test set.

The parameter space is searched via a manual grid search: At each point in

the grid, cross validation is performed over the remaining item 8 groups and then

averaged to obtain the expected value for that particular combination of parame-

ters. Once the models at all points in the grid have completed, the point with the

lowest cross validated error determines the parameters used to fit the models that

will actually be inspected and analyzed further.

Group level significance testing

To determine whether a given voxel is statistically reliable at the group level, we

have devised a permutation-based nonparametric test that obtains p-values with

respect to a binomial distribution. A null distribution for the test statistic at each

voxel is estimated by refitting a particular model many times, each time with the

training examples permuted into a different, random order. Each time, a sparse set

of voxels will be identified. At a given voxel, the distribution that emerges from

these permutations will be left skewed with a large number of zeros—very non-

normal, and also not well fit by a gamma function. However, one thing that can

be safely said about the distribution is that the probability of the next random ob-

servation from this distribution being in the top half of the distribution is 0.5. The

test statistic at a given voxel can be ranked against its empirical null distribution as

determined by the permutation procedure, and if the value is ranked higher than

half of the values in this distribution, then we can store a 1 at that voxel for that

subject. Again, the probability of obtaining a 1 under the null hypothesis is 0.5. If
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this procedure is applied for each subject, then for a given voxel one can simply

count the number of subjects where it was assigned a one and perform a binomial

test. The resulting probability can be used to determine whether a voxel value is

statistically non-random at the group level.

In practice, because network RSA is applied to each subject’s data before inter-

polating to a common coordinate space, the full procedure is as follows: 1) com-

pute the test statistic for each voxel, 2) refit the model for 100 random permutations

of the training set to form a null distribution for the test statistic at each voxel in

the subject’s native space, 3) interpolate all maps into the common space, to obtain

a common space test statistic and associated common space null distribution, 4)

rank the common space test statistic against the common space distribution, 5) if

in the top half of the distribution, replace the test statistic with a 1, otherwise re-

place it with a 0, 6) repeat for all subjects, and 7) perform a binomial test at each

voxel over subjects.

Each of these permuted models also yields a prediction error on an (also ran-

dom) test set. The distribution of errors over permutations is normally distributed.

Because the chance error rate for a model cannot be determined a priori, the mean

and standard deviation of the error distribution can be used to standardize the

error obtained by the “true” model. The standardized errors over subjects can be

tested against a null hypothesis of zero with a simple t-test to determine whether

performance is reliably better than chance in the sample.

High throughput computing with HTCondor

The network RSA procedure is computationally intensive. Parameter tuning, per-

mutation ranking, and cross validation for each subject and modality and target

structure involves fitting hundreds of thousands of models, and each model can

take 20 or 30 minutes. The amount of computation time required to conduct this
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analysis can be tallied in years. Obviously, this is grossly impractical to do on a

workstation, or even a high performance super computer. Fortunately, because

each model can be run without input from any other model, they can all be run as

separate processes. Problems of this kind are very well suited to high throughout

computing.

I, in collaboration with the Center for High Throughput Computing (CHTC)

at the University of Wisconsin-Madison, have developed workflows for interfac-

ing with distributed computing resources on campus and throughout the United

States via the Open Science Grid (Pordes et al., 2007; Sfiligoi et al., 2009) using

HTCondor (Thain, Tannenbaum, & Livny, 2005). The code necessary to repro-

duce these analyses are hosted at https://github.com/crcox/WholeBrain_RSA

and https://github.com/crcox/condortools.

5.3 Results

Behavioral results

Participants performed the size judgment task in catch trials quite accurately, with

mean accuracy of 91% (SD=13%) and mean response time of 1167 ms (SD=281 ms).

This indicates that participants were paying attention and accessing the requisite

semantic knowledge in order to perform accurately.

Univariate analysis

Before considering the searchlight RSA and network RSA solutions, let us consider

the univariate solution (Figure 5.2). When contrasted with each other (bottom

row), viewing stimuli in one or the other modality activated the associated pri-

mary motor cortex and little else. However, when considered relative to a passive

baseline (rest), the audio trials are associated with increased BOLD in both hub-
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and-spoke modelr temporal sulcus and inferior posterior temporal lobe, which is

involved with processing visual form. This is consistent with prior work showing

that that a stimulus presented in one modality can activate areas of the brain in-

volved in processing other modalities of input, and that the very same stimulus can

activate different modality specific cortical regions when the task demands change

(see A. Martin, 2007 for review). Perhaps we see increased activity in visual areas

on audio trials and not vice versa because the size judgment that participants were

directed to make covertly is relies on form knowledge encoded in visual areas, and

not on information encoded in the audio modality.

The audio, visual, and rest conditions are all passive in that they do not require

any sort of overt response. The catch trials, which occur only periodically and do

require an explicit behavior, show a much wider pattern of activation. Notable

among the implicated areas are lateral inferior prefrontal cortex, bilaterally, which

is thought to be a part of the semantic control system (Hoffman, Binney, & Ralph,

2015; A. Martin, 2007; A. Martin & Chao, 2001; Schnur et al., 2008). The inferior

parietal lobe and middle temporal gyrus are also active on catch trials relative to

baseline. The IPL is a often active in semantic tasks with an action component,

particularly involving manipulation (Boronat et al., 2005). It is also associated with

ideomotor apraxia (Buxbaum, 2001), a neurological disorder that affects tool use

and other learned gestures. While the task does not explicitly demand knowledge

about how to manipulate anything, when thinking about whether an object can fit

in a bin one might consider how the object can be manipulated in order to make

it fit. The middle temporal gyrus, up to and perhaps including the angular gyrus

are also activated relative to rest. The angular gyrus in particular has been flagged

as a major cross modal hub which might be important for integrating audio, vi-

sual, motion, and action information, making it semantically relevant (Binder et

al., 2009; Binder & Desai, 2011).
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Figure 5.2: Univariate solutions obtained for visual, audio, and catch trials (where catch
trials called for explicitly making a relative size judgment, and audio and visual trials were
when stimuli were covertly processed). Maps for each trial type were thresholded at FDR
corrected p < 0.05 and overlaid.

In all, the univariate results here capture the typical pattern of results seen in

the literature rather well. The ATL is virtually silent.

Searchlight analysis

The preceding univariate analysis tests whether there are regions of the brain that

show mean shifts in activity relative to a baseline, relative to 4 broad experimental

conditions. It cannot test whether or how these regions express representational

structure, and so does not speak directly to the central questions of this work. For

that, we turn now to the multivariate representational similarity analyses, begin-

ning with searchlight RSA.

Searchlight RSA can test whether there are localized patterns of activation that

express similarity structure of theoretical interest, in consistent anatomical loca-

tions across participants. In the analyses to follow, trials where participants re-

trieved concepts based on their characteristic sounds—audio trials—or their black

and white line drawing depictions—visual trials—will often be analyzed separately.

This will allow us to ask whether the same cortical regions express semantic struc-
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Figure 5.3: Searchlight conjunction p < 0.05 FDR corrected. 8mm searchlights, 8mm blur.

ture when concepts are retrieved, regardless of which modality the stimulus prompt-

ing retrieval was perceived through.

Conjunction analysis

The results of such a conjuction analysis are presented in Figure 5.3. This aggre-

gates the results of three analyses, overlaid on top of one enough to reveal any

overlap. Each analysis is exploring the fMRI dataset with a 8mm searchlight, con-

sidering the raw, unsmoothed beta coefficients associated with a GLM which statis-

tically deconvolved the BOLD response using a canonical hemodynamic response

function. This results in an information map for each subject and analysis, which

has the Spearman correlation between the target and neural similarity structure

stored at each voxel. These information maps are then warped to a common space

and spatially smoothed with a 8mm FWHM gaussian kernel. These interpolated

and smoothed maps were then used as the basis for a group-level univariate t-test.

To compose Figure 5.3, each map was thresholded at false discovery rate (FDR)

corrected p < 0.05 before being overlaid. One analysis compared the visual simi-

larity structure to the correlation among patterns of activity on visual trials (shown

in yellow); the other two compared the semantic similarity to the correlation among



128

patterns of activity on audio and visual trials (blue and red, respectively).

The first thing to note is that visual and semantic structure corresponds to

clearly separate regions: visual structure correlates only with local structure ex-

pressed in early visual cortex, while semantic structure on visual trials is expressed

in the posterior ventral temporal lobe (pvTL) and lateral occipital cortex (LOC),

both bilaterally. This is consistent both with the univariate and a great deal of mul-

tivariate semantic studies in the literature.The pvTL and POC encode higher-order

visual structure, and seem to play an important roll in the semantic representation

of concrete objects, like animals and tools. However, the parts of the brain that ex-

press semantic structure on audio trials appear to be very different—the selections

are non-overlapping. On audio trials, semantic structure is found along the hub-

and-spoke modelr temporal gyrus (STG), and in the posterior middle temporal

gyrus (MTG). The MTG is thought to particularly involved in representing con-

cepts related to motion, both biological and mechanical, as well as being relevant

to tool concepts. The STS is an important part of the language network.The left

lateral prefrontal cortex (PFC) and right dorsolateral PFC also appear to reliably

express semantic structure. The frontal lobe is generally thought to participate in

cognitive control, including concept retrieval and selection among conceptual al-

ternatives and irrelevant context (Hoffman et al., 2015). These areas were shown

to be active during the catch trials in the univariate analysis, in keeping with their

typically ascribed function. It is interesting to note that, in a more passive con-

dition, that these areas are not reliably more active than baseline, in a univariate

sense, but do seem to correlate with semantic structure.

The complete lack of overlap among localizable semantic similarity structure is

interesting, as well as the absence of representational structure in the ATLs. When

the statistical threshold is relaxed, the degree of overlap between the visual and au-

dio semantic information maps remains low—however, a lower threshold reveals
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Figure 5.4: Searchlight conjunction plot, each component thresholded at uncorrected p <
0.01

that, on audio trials, the extent of areas that are more weakly correlated with the

target semantic similarity structure expands considerably (Figure 5.4). The pos-

terior extent comes to include the angular gyrus, and the anterior extent reaches

down into lateral and even ventral ATL, both bilaterally. Even some overlap in

pvTL seems to emerge. However, although these results would be very interesting

if reflective of something true about the brain, the lack of statistical control cou-

pled with the compounded distortion of location information (8mm searchlight

solutions, interpolated into a common space and then further spatially smoothed)

warns against drawing strong conclusions.

Averaging activity or structure

An alternative way to look for brain regions that express the cross-modal semantic

similarity structure that is stable across stimulus modalities is to average the audio

and visual datasets. Critically, this can be done in two ways. The first, most ob-

vious approach is to average the beta coefficients for each item across modalities.

This will boost signal in individual voxels that have similar response profiles over

items. Alternatively, the representational similarity matrices constructed within

each searchlight can be averaged together. This will enhance the fidelity of the
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Figure 5.5: A follow up searchlight analysis, in which data were averaged across modal-
ities in one of two ways before comparing the resulting similarity structure to the target
semantic matrix. Searchlight analysis was peformed in parallel on data from each modal-
ity, each visiting the same voxel at the same time. The beta values in each searchlight were
either averaged together directly, or a representational similarity matrix was generated for
both sets of betas before averaging these resulting structures. The top row shows the result
of doing the former, and the bottom row the latter. Note that the analysis of averaged be-
tas resulting in a group level statistical map that could not be appropriately FDR corrected
without excluding all voxels. While the averaged beta analysis echoes the univariate and
searchlight conjunction analyses, the averaged structure analysis suggests that the simi-
larity structure in the pvTL is more similar across modalities than in the STG. This may be
because the size judgment is in part a visual, concrete-object oriented task.
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similarity structure when they are similar across modalities, making them easier

to detect. It is possible that these two approaches could lead to very different so-

lutions.

In Figure 5.5, the results of this comparison are displayed. The top row shows

the group level map associated with averaging over betas, and the bottom row

for averaging over similarity structures in each searchlight. While averaging over

betas seems to reiterate a diluted version of the familiar story, averaging over sim-

ilarity structures suggests that the similarity structure in the pvTL is more similar

across modalities than in the STS. However, averaging over local similarity struc-

tures does not change the story about the ATL, does not seem to locally express

the target similarity structure.

Network RSA

So far, the results suggest that this task recruits many of the same regions typi-

cally identified in studies of semantic processing, and that local representational

similarity structure appears to be restricted to areas that are relatively modality

specific and not in the ATLs. However, the searchlight RSA makes very restrictive

assumptions about how similarity structure is encoded: it must be localized, and

it must be very transparent in the raw correlations among patterns of activity for

each item. Network RSA, in contrast, allows for structure to be sparsely encoded,

even across multiple regions, and for the relative importance of each voxel to be

weighted, as is common practice in MVP classification analyses. Will this more

flexible approach identify voxels that encode similarity structure in ways that we

have previously been unable to measure?

The network RSA methodology is laid out in detail in the methods section,

above. After obtaining appropriate values for the model’s two free parameters,

separately for each subject and cross validation fold within each analysis reported,
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9 whole brain models were fit to each subject’s visual and audio data (separately)

and for each target structure (visual and semantic). Each of the 9 models were

trained while withholding a different (mutually exclusive) set of trials to use as

a cross validation set. Each model’s prediction error was assessed with respect

to these withheld trials, ultimately producing 9 error terms that are averaged to-

gether. This is the expected value for the error of network RSA when modeling

under that particular combination of conditions (trial modality, target structure,

parameter selections, and participant).

The following results will depict solutions maps in two ways that involve dif-

ferent summaries of each voxel’s contribution to the overall solutions. Voxels will

be described in terms of their stability or their node strength. A voxel’s inclusion in a

group-level solution map will determined by a binomial test conducted with respect

to a non-parametric description of the voxel value with respect to an empirical null

distribution obtained via permutation analysis. See the methods section for more

detail on each point. Table 5.1 reports the average model performance over subjects

for each whole brain model we fit, in standard deviation units. In these standard

units, 0 is chance performance, and a good standardized error will be significantly

negative. Chance performance and the standard deviation of the null distribution

are determined based on the permuted models (see methods). Model error was

determined to be normally distributed over permutations, which justifies scaling

in this way. All models perform well above chance. Do keep in mind, however,

that group level solution maps displayed in many of following analyses are have

been thresholded based on correspondence across subjects, and do not necessarily

reflect the models that generated this performance.
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Figure 5.6: Network RSA solution maps displaying the mean stability of each over sub-
jects. The maps are thresholded with respect to the binomial test based on empirically
estimated null distributions, as described in the methods. Note that only the maps display-
ing the solutions for visual models of visual structure could be appropriately statistically
thresholded at FDR corrected p < 0.05.
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modality model mean t(22) SE p-value
audio semantic -1.79 -7.34 0.24 <0.001
visual semantic -2.20 -10.30 0.21 <0.001
visual visual -3.06 -8.52 0.36 <0.001

Table 5.1: Whole brain network RSA error

Whole brain analysis

In Figure 5.6, stability maps are thresholded by binomial permutation test. Stabil-

ity maps simply express which voxels are most reliably selected over variations in

the training set, on average over subjects. In the top panel, we see that, again, even

with whole brain scope, network RSA localized low level visual structure to early

visual cortex when thresholded at FDR corrected p < 0.05. When modeling se-

mantic similarity structure expressed over the whole brain in the audio trials, the

largest concentration of stable voxels we located in the STG, similar to prior search-

light analyses. A few voxels from the lateral and ventral posterior temporal lobe

are also identified. Also identified are bilateral posterior cingulate, which is active

is a wide variety of contexts including spatial attention (Mesulam, 1990; D. Small

et al., 2003) and visual imagery (Burgess, 2008; Hassabis, Kumaran, & Maguire,

2007; Johnson, Mitchell, Raye, D’Esposito, & Johnson, 2007), and ventral medial

PFC which has been associated with motivation and reward processing (Bechara,

Damasio, & Damasio, 2000; A. R. Damasio, 1994; Drevets et al., 1997; Mayberg et

al., 1999; Phillips, Drevets, Rauch, & Lane, 2003).

When modeling semantic structure expressed over the visual trials, however,

things look radically different. While the most stable voxels are to be found in vpTL

and LOC, an extensive collection of other regions are also implicated, including the

anterior temporal lobes bilaterally. Despite how extensive the map is, it does not

identify structure in the STS, which is the primary site identified when considering

the semantic models of audio data. Yet, in its relative sparseness, the semantic



135

model of audio data does extend into the middle and inferior temporal gyrii. This

again could be taken to be consistent with the “wheelie bin” task being very visio-

spatial in addition to being semantic. Audio trials may involve activating high level

audio structure in the STS as a part of activating the concept, and once the concept

it retrieved, the visiospatial reasing involved in comparing the concept to a wheelie

bin will require activating these posterior temporal, high level visual areas.

The plots in Figure 5.6 favor voxels that are very reliably selected, but the stabil-

ity metric does not express about the role a voxel plays in the overall representation

other than it is reliably useful to reducing error. Network RSA conveys a great deal

more information about each voxel and its position in the distributed network sup-

porting the representations that express the target structure. Each voxel selected

by network RSA can be considered as a node in a network, that has edges that link

it with other nodes. TheW matrix (see Chapter 4) contains estimates of the impor-

tance of each node and how they relate to one another—in other words, the edge

and vertex weights of a graph structure. One way to characterize the importance

of a node is in terms of the sum of the magnitude of the edge weights that are

connected with it. This statistic is referred to as node strength. Rather than describ-

ing each voxel in terms of how reliably it is selected for inclusion we can instead

describe them in terms of their node strength.

While conceptually distinct, stability and node strength are bound to be some-

what correlated. Strong nodes are influential players in the representation, and so

models will do well to include them. Alternatively, imagine that they are some un-

correlated in the case of some voxels: a voxel with very high node strength is only

selected during a single cross validation fold. Since the voxel was only selected

once, the every other time the voxel was given a zero value. After averaging, the

expected value of the node strength will be small.

In the present analysis, plotting the node strength results in maps that are very
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similar to those based on stability. They are shown in Figure 5.7. However, again,

it may be possible to over-interpret these models. The semantic model of visual

data is surprisingly inclusive, and none of the semantic models were associated

with parametric maps that could be appropriately FDR corrected.4

A major hypothesis of the hub-and-spoke model is that the ATL is a semantic

hub. This implies that units in the ATL should have larger node strengths than

voxels in posterior areas. At first blush, Figure 5.7 may appear to disconfirm this

prediction: if anything, it appears that node strengths are larger in the pvTL than in

the ATL. However, this figure may be misleading. For instance, it may be the these

posterior voxels are more densely sampled over subjects than the anterior vox-

els, and so interpolating, blurring, and averaging across subjects results in node-

strengths that appear large at the group level, but in individual subjects are only

moderately sized. Meanwhile, ATL voxels may be sparsely sampled, overlap less

across subjects, and end up appearing small in the group map.

To inspect whether voxels in or near the ATL have larger node strength than

voxels outside the ATL, each subject’s individual node strength maps (before in-

terpolation, blurring, or group level averaging) are projected onto the plane de-

fined by the anterior–posterior (AP) and inferior–superior (IS) axes. Within each

subject, a point in the ventral anterior temporal pole was determined, and the Eu-

clidean distance from this point to every identified voxel on the AP-IS plane was

computed. These distances were grouped into 10 equal bins defined by radial dis-

tance from the temporal pole point, and node strength was averaged by bin within

each subject. Figure 5.8 plots mean node strength for each subject and radial bin as

a function of distance from the temporal pole. Although crude, this visualization

does not show the expected pattern with larger node strengths in the ATL. Instead,

for models fit to visual data, the largest mean node strength is very distant from
4Because these models are by nature sparse, cluster thresholding is not necessarily a viable

alternative.
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Figure 5.7: Network RSA solution maps displaying the mean nodestrength of each over
subjects. The maps are thresholded as in Figure 5.6.
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Figure 5.8: Node strength as a function of distance (mm) from temporal pole along the
AP and IS axes. Each colored dot is the average over a bin of distances equal to 10% of
maximum distance from the temporal pole within each subject; each color is a different
subject, and position along the x-axis is the mean distance within each of the 10 bins. Peak
nodestrength can be seen to roughly correspond to “spokes”, rather than the “hub”. The
red line is tracks the mean over subjects at each bin.

the ATL, corresponding to the vpTL, and for models fit to audio data, the largest

mean node strength is at a moderate distance from the temporal pole, correspond-

ing to STG. In short, the individual subject data appears roughly consistent with

the group maps with regard to the location of peak node strength.

However, the group maps presented so far have all relied on permutation distri-

butions to provide an estimate of the null map against which statistical significance

can be assessed. These maps resulting from the permuted models are surprisingly

structured, however, for reasons that are not yet fully understood—either frag-

ments of the target structure are surviving the permutation procedure, or there is

a confound such that certain voxels will be selected regardless of the target struc-

ture, in data with certain degrees of covariance. The permutation maps, averaged

by condition, are shown in Figure 5.9. Because there are still complications with

the statistical procedure, I will present maps that are not referenced to the permu-
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Figure 5.9: Overlap maps for 100 permutation models for subjects 1, 2, and 3 (represen-
tative sample). Voxels are not sampled at random by permutation test, and are clearly
affected by the modality of the stimulus.

tation distribution at all. Figure 5.10 shows straight-forward subject overlap maps.

The top row shows the overlap of the average model for each subject over cross

validation folds, which were used in the group level statistical analyses reported

previously. The bottom row shows the overlap considering just a single model for

each subject, for a single model (that is, without averaging over hold sets). The

color at each voxel tracks how many times that voxel was implicated over subjects

after interpolating each subject’s solutions map into the common space. No addi-

tional spatial blurring was applied. Regions showing the most overlap over subject

are the same as those implicated in the statistical analyses. When considering the

average model for each subject (which effectively counts all voxels selected on any

cross validation fold with equal weight within each subject), it is not surprising

the overlap is fairly widespread. In this case, the audio maps include ventral tem-

poral lobe, including the ventral temporal lobe, but these selections are apparently

not very common: the single-model overlap maps do not indicate that voxels are

selected in the ventral temporal lobe in 6 or more subjects.
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Figure 5.10: Network RSA overlap maps. Voxel color indicates the number of subjects
for which that voxel was implicated after interpolating to the common space. The top
row shows overlap across the average model for each subject; the bottom row shows over-
lap across a single model per subject. In these figures, no additional spatial smoothing
is applied. For maps corresponding to the stability of voxels in individual subjects, see
Appendix A.

In summary, this series of whole brain analyses has demonstrated that the net-

work RSA procedure is capable of identifying both well localized and radically

distributed representations in the brain. While the visual model and the semantic

model of audio data resemble solutions obtained with other methods, the semantic

model of visual data marks a major departure from the standard set of results.

ROI and lesion analysis

The semantic hub variant of the hub and spoke hypothesis predicts that conceptual

knowledge is supported by pan-modal representations encoded in the bilateral

ATLs, which if appropriately measured and be interpreted without information

about activation states elsewhere in the brain. The hub+spokes variant, in contrast,

predicts that the ATL extracts and encodes the interactions among the modality

specific spokes, but does not locally re-represent modality specific structure that

can be encoded by the spokes. This means that the hub and the spokes together

jointly support the concept—they cannot be determined by ATL activity alone.

The preceding whole brain analyses were not restricted to just considering the
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audio and visual spokes (in the STS and pvTL, respectively) and semantic hub

(ATL). Although model performance was significantly better than chance, it is dif-

ficult to determine from these analysis, particularly at a group level, which com-

binations are regions expressed the structure that supported this performance.

In an attempt to more directly test hypotheses about the role of the ATL in

supporting semantic representation, three regions of interest were defined, guided

by anatomical segmentations for each subject automatically generated using the

Freesurfer image analysis suite (see methods), prior literature, and the expert input

of my dissertation committee. All are defined the same in both hemispheres. The

definitions are mutually exclusive, meaning that the audio and visual spokes only

extend anteriorly up to the point where the semantic hub begins.

1. Audio spoke: The hub-and-spoke modelr temporal gyrus, transverse temporal

gyrus, and Heschel’s gyrus.

2. Visual spoke: The fusiform gyrus, lingual gyrus, inferior temporal gyrus, and

other structures of the posterior ventral temporal lobe.

3. Hub: The ATL is not a single monolithic structure (Binney et al., 2010; Bin-

ney et al., 2012; Sanjuán et al., 2015; Visser et al., 2012; Visser & Ralph, 2011),

and so does not have clear anatomical demarcation. Jackson et al. (2015) fo-

cus their rTMS at three locations within 10mm of the time of the temporal

pole. Likewise Nestor et al. (2006) defined the middle temporal gyrus into

anterior, middle, and posterior by splitting it into three 10mm sections with

the posterior commissure separating posterior from middle sections. On the

other hand, the most common areas of hypometabolism in patients with se-

mantic dementia extend, on average, back to around MNI y = −21 in the STS

and y = −39 in the fusiform gyrus (Binney et al., 2010; Nestor et al., 2006).

We have defined that ATL by a plane, defined in MNI coordinate space. The
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Figure 5.11: The definitions of the hub and spokes that will be used in the following “ROI”
and “lesions analyses that follow. See the text for details on how they were defined.

plane intercepts the anterior posterior axis at y = −10 mm and has a slope

of −1.6 mm. The plane is perpendicular to the anterior–posterior axis. See

Figure 5.11B for a depiction of the plane relative to the y- and z-axes in MNI

space, with lateral and medial projections of the Destrieux atlas (Destrieux

et al., 2010) for reference.

Figure 5.11A presents all three ROIs on for a single subject. Using these ROIs,

two sets of analyses were completed. The first uses the ROIs to select voxels in dif-

ferent combinations, and the second uses the ROIs to exclude voxels in different

combinations. These are referred to informally as ROI and lesion analyses respec-

tively, although those terms typically have other more rigorous meanings in the
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literature. The claim here is not that omitting voxels is analogous to a brain lesion

in terms of the claims that can be made about the functional organization of the

brain. Rather than thinking of them as brain lesions, think of them as model le-

sions: the brain remains in tact, but network RSA is denied access to aspects of the

functional patterns it expresses.

The ROI analyses include analyzing restricted versions of the dataset, com-

prised of:

1. The semantic hub (S) and both the audio (A) and visual (V) spokes.

2. The semantic hub and only the audio spoke.

3. The semantic hub and only the visual spoke.

4. The visual and audio spokes, excluding the hub.

5. Each ROI, individually.

Each of these restricted datasets were defined for visual and audio trials sep-

arately and modeled with network RSA to discover sets of voxels that encode se-

mantic similarity structure. The left panel of Figure 5.12 shows the error associated

with the various ROI analyses, as well as the error associated with the whole brain

(WB) analysis for reference. Each subjects errors (colored dots) are standardized

with respect to 100 permutations; red dots indicate the mean over subjects. Ta-

ble 5.2 reports the error and t-statistics associated with each model.

There are several important points to make about this pattern of errors over

different restricted datasets. First is that semantic structure can be decoded from

the modality specific spoke that corresponds to the format of the input, but not

vice versa. For instance, decoding from just the audio spoke is better than chance

when stimuli were presented as characteristic sounds, but not when presented as

images. To be concise, I will refer to the spoke that corresponds to the stimulus



144

Figure 5.12: Error for Network RSA analyses.

modality ROI code mean t(22) SE p-value
audio A -2.28 -11.24 0.20 <0.001
audio AV -1.57 -8.88 0.18 <0.001
audio S -0.68 -3.99 0.17 <0.001
audio SA -1.55 -9.42 0.16 <0.001
audio SAV -1.55 -9.70 0.16 <0.001
audio SV -0.58 -3.76 0.16 0.001
audio V -0.38 -2.28 0.17 n.s.
audio WB -1.79 -7.34 0.24 <0.001
visual A 0.35 1.82 0.19 n.s.
visual AV -1.88 -6.65 0.28 <0.001
visual S -0.10 -0.54 0.19 n.s.
visual SA 0.03 0.11 0.23 n.s.
visual SAV -1.52 -5.62 0.27 <0.001
visual SV -1.65 -6.53 0.25 <0.001
visual V -2.11 -8.42 0.25 <0.001
visual WB -2.20 -10.30 0.21 <0.001

Table 5.2: ROI error. Uncorrected p < 0.001 exceeds the Bonferroni criteria for 16 tests.
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modality as the congruent spoke. Particularly remarkable is that the performance

from just the congruent spoke is equivalent to a model fit to all voxels in cortex.

These ROI analyses also reveal a pattern of results that seems to contradict

the whole brain solution maps studied in the previous section. Namely, although

whole brain network RSA of audio trials did not reliably select voxels in the ATL,

when restricted to only voxels in the ATL network RSA is able to identify sets of

voxels in the region that encode the target semantic structure on average over sub-

jects (t(22) = −3.99, SE = 0.17, p < 0.001). The opposite appears to be true when

considering visual trials: although whole brain network RSA did tend to select vox-

els in the ATL, when trained exclusively on voxels from the ATL a model cannot be

fit to the data that makes better than chance predictions, on average over subjects

(t(22) = −0.54, SE = 0.19, n.s.). This raises additional important questions about

our permutation and statistical procedures for determining voxel selections.

It also raises questions about how semantic representations are being supported

by these regions and the rest of cortex. Particularly when considering the visual

trials, the spoke region seems necessary to the semantic representation. On the

other hand, the ATL seems to carry semantic structure on audio trials, but com-

bining the hub and congruent spoke does not improve over the spoke alone.

To help test the necessity of each ROI, a series of “lesion” analyses were per-

formed, where each group of voxels was omitted. This resulted in four additional

restricted datasets, comprised of:

1. All of cortex minus the audio spoke (lA).

2. All of cortex minus the visual spoke (lV).

3. All of cortex minus the both spokes (lAV).

4. All of cortex minus the hub and both spokes (lSAV).
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modality lesion code mean t(22) se p-value
audio lA -1.16 -4.89 0.24 <0.001
audio lAV -1.24 -5.20 0.24 <0.001
audio lSAV -1.04 -4.33 0.24 <0.001
audio lV -1.56 -6.47 0.24 <0.001
audio [none] -1.79 -7.34 0.24 <0.001
visual lA -2.46 -8.29 0.30 <0.001
visual lAV -1.98 -6.61 0.30 <0.001
visual lSAV -2.07 -7.23 0.29 <0.001
visual lV -1.97 -6.34 0.31 <0.001
visual [none] -2.20 -10.30 0.21 <0.001

Table 5.3: Lesion error. Uncorrected p < 0.001 exceeds the Bonferroni criteria for 10 tests.

The model errors associated with each of these four restricted datasets are

shown in the right panel of Figure 5.12, along with the error associated with the

whole brain ([none], indicating “no lesion”) model. Table 5.3 reports the error

and t-statistics associated with each model. Model performance is above chance

in all cases—even when removing the hub and both of the spokes from the data.

This indicates that, while the congruent spoke is sufficient for decoding, it is not

necessary. Semantic structure can be obtained from patterns of activity in regions

beyond the temporal lobe.

5.4 Discussion

These experiments were approached with an eye towards testing a central pre-

diction of the hub-and-spoke model, namely that the anterior temporal lobe is a

pan-model hub that contributes to semantic representation regardless of stimulus

modality. This prediction was decomposed into three nuanced hypotheses that

are consistent with the overall architecture of the hub-and-spoke model, but make

different predictions about how concepts are represented over the network and the

specific contributions of the ATL. In particular, they variously predicted that (net-

work) RSA would 1) not discover semantic structure in the ATL, 2) would discover
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semantic structure entirely expressed by the ATL, or 3) discover semantic struc-

ture that was supported over multiple regions, and because the ATL only encodes

interactions among spokes, the ATL would not be identified unless considered in

combination with other areas.

Although the convergence hypothesis is technically consistent with the hub and

spoke architecture, it runs counter to the computational principles that motivate

the model. It is also unclear how such a model of semantic cognition would ac-

count for the patterns of impairment seen in, for example, semantic dementia. Crit-

ically, it predicts that the ATL should not express semantic similarity structure in

its patterns of activation. However, at least when stimuli are presented aurally, the

ROI analysis reported above provides evidence that such structure is encoded in

the ATL, even when the region is considered in isolation. The hub+spokes hypoth-

esis was tested by whole brain network RSA analyses and by contrasting perfor-

mance on restricted datasets that included just the ATL or the ATL plus the STG/S

(audio spoke) and vpTL (visual spoke). Specifically, the hub+spoke prediction is

that semantic structure is expressed in the interaction of the hub and that spokes,

so including both should lead to a superior model than when including just one

or the other. This was not observed.

Taking these points together, the evidence so far seems to lean in favor of the

semantic hub hypothesis. But this conclusion is not decisive. The evidence for

semantic structure in the ATL is inconsistent, where it was observed the effect size

was relatively small (standardized mean=−0.68, relative to −2.28 in the congruent

spoke on audio trials), and the whole brain network RSA solutions maps resisted

clear interpretation.

Although only weakly supported by the work reported above, prior multivari-

ate work in fMRI has also identified semantic structure in the ATL (Bruffaerts,

Dupont, et al., 2013; Clarke & Tyler, 2014; Fairhall & Caramazza, 2013; Liuzzi et
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al., 2015; Peelen & Caramazza, 2012). And despite higher node strength not being

correlated with distance from the temporal poles, the ATL has been shown to have

extensive intrinsic connectivity temporal and parietal regions (Binney et al., 2012),

and that these connections appear to become disordered in patients with semantic

dementia (Guo et al., 2013).

It should also be emphasized that similar studies have revealed quite differ-

ent results than the what we observed in the work reported above. Visser and

Ralph (2011) conducted a cross modal study where participants were presented

with a picture, a spoken name/label, or an environmental sound for each of a

common set of concepts. While they found that the anterior superior temporal

gyrus was only active in that auditory conditions, they found that all stimulus

modalities elicited increased activity in the ventral anterior temporal lobe. Given

the close experimental similarity, what can account for the different results? Visser

and Ralph (2011) contrasted all semantic trials with an active non-semantic control

condition. This may be a critical distinction—because passive “resting” states are

likely filled with idle thought which relies on the semantic system, an active base-

line may more clearly isolate the task-relevant semantic activity (Binder et al., 1999,

January; Binder et al., 2011; Binney, Hoffman, & Ralph, 2016; Jackson, Hoffman,

Pobric, & Ralph, 2016). While this is a clear concern for univariate contrast analy-

ses looking to assess the conjunction between multiple semantic conditions, it may

also be consequential to MVPA and RSA. Future work will explore this possibility.

In light of the rest of the literature, the results of this chapter are remarkable in

at least two related senses. Unlike many others in the literature, we do not see that

the ATL contributes significantly to semantic structure among visual stimuli. On

the other hand, this effect is observed for the structure among non-word auditory

stimuli. This has not been demonstrated before. Given that prior work has iden-

tified the region in visual and verbal tasks, demonstrating the semantic structure
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is active in the ATL for audio stimuli might be taken as evidence for cross modal

convergence. Our lack of a visual effect in the ROI is confounding in this regard.

Whole brain network RSA maps may appear to implicate the ATL on visual stud-

ies, as does an inspection of the data in individual subjects (see Figure A.1 in Ap-

pendix A), but this has not been shown at a group level with appropriate statistical

rigor.

Exciting work which relies on ECoG datasets have demonstrated that there are

in fact cortical sites of multimodal convergence in the ATL (Abel et al., 2015; Shi-

motake et al., 2014). Even more recently, Y. Chen et al. (2016) reported that a spatio-

temporal searchlight RSA has detected semantic structure in the patterns of activ-

ity over implanted grid electrodes in the same dataset studied by Shimotake et al.

(2014).

This motivates an interesting hypothesis: perhaps the ATL represents semantic

structure, but does so in a code that changes dynamically over time. If this were

true, then what is visible to ECoG would be invisible to fMRI.

An important difference between the dataset I have reported above and others

in the literature to which RSA has been applied is the category structure of the

stimuli. In most studies the chosen stimuli are selected so that clusters of items

neatly separate into categories, as necessary for contrast and classification analy-

ses. The target similarity matrices employed are often binary, and often involve a

relatively small number of distinctions. Regions of the brain that respond some-

what categorically, tending to activate more for one stimuli over the other, may

correlate reasonable well with these similarity structures. In contrast, our stimuli

were not chosen to be strongly categorical (see Figure 5.1). This may be holding

the patterns of activity “to a higher standard”, as it requires more subtle structure

to be expressed, which are more easily drowned out by the inherent noisiness of

fMRI.
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It should be pointed out that the “ROI” and “lesion” analyses reported above do

not test the full hub-and-spoke model, which of course would have included other

modal regions and regions known to be associated with action and motion repre-

sentations throughout the parietal lobe and middle temporal gyrus. The analysis

was focused on the spokes associated with the modalities directly tested in this

study, but stimuli were from a variety of categories including some that would be

associated with motions, actions, and learned manipulation routines. These parts

of the brain may be critical to the representation, and the semantic model of visual

data touches on them—however, this map is so inclusive and resistant to appro-

priate statistical thresholding, that it is hard to draw strong conclusions.

Returning attention to the ATL, both possible methodological confounds (poor

signal to noise and low temporal resolution of fMRI) can be better addressed by

considering data collected by other means which are less subject to these concerns.

In the next chapter, I will extend analyses performed by Shimotake et al. (2014)

using the same ECoG dataset.
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Chapter 6

ECoG Experiments

In the previous chapter, major predictions of the hub-and-spoke model were eval-

uated against an fMRI dataset that had many desirable qualities for a study aiming

to discover patterns of neural activity that express cross-modal semantic represen-

tations. The data were distortion corrected (Ajay D. Halai et al., 2015; Ajay D Halai,

Welbourne, Embleton, & Parkes, 2014; Visser, Embleton, et al., 2010) to enhance

clarity in the anterior temporal lobes (ATL), and a common set of concepts were

referenced with stimuli presented either visually (line drawing) or aurally (char-

acteristic sound), and participants completed a semantic task involving a relative

size judgment. While the functional activity evoked by trials of each kind inde-

pendently expressed the target semantic structure among the relevant concepts,

the areas that expressed this structure were not held in common as the stimuli

modality changed.

Furthermore, evidence of the ATL’s contribution to semantic representation

was inconsistent. At the end of the previous chapter, I discussed several reasons

why this may have been so. Some relate to experimental limitations: the stimulus

set was small (37 items) and stimuli were sampled to emphasize the distinctiveness

of their characteristic sounds. Others relate to limitations inherent to fMRI: the sig-
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nal is noisy and temporally smoothed because each image acquired is separated by

roughly 2 s. In this final set of experiments, I turn my attention to an ECoG dataset

previously reported by Y. Chen et al. (2016) and Shimotake et al. (2014). Shimotake

et al. (2014) provided direct evidence, through the ability to measure and stimulate

the anterior temporal lobe directly using the same electrode grid, for cross modal

integration in the region. Y. Chen et al. (2016) have demonstrated that a spatiotem-

poral searchlight reveals that patterns of activity over the electrode grid reliably

express the target semantic similarity structure among visually presented stimuli

(defined by feature norms very much like those used in the experiments reported

in the previous chapter). Notably, they show that both living vs. nonliving clas-

sification performance and representational similarity expression begin to peak at

around 200 ms after stimulus onset, and remain level for over a second.

At first this may seem to suggest that activations “come on and stay on”. How-

ever, it is important to keep in mind that both classification performance and rep-

resentational similarity can be supported by very different patterns of activity. In

one sense, this was one of the critical concepts demonstrated in the simulations

reported in Chapter 3. However, it could also be due to redundant coding, or per-

haps each aspect in the dynamics emphasizes different dimensions of the semantic

similarity structure and they are cycled through. A significant correlation between

two similarity structures (i.e., the one expressed by the brain and the target struc-

ture determined by hypothesis) does not imply that they match. It only implies that

they are more similar than would be expected by chance. This means it is possible

that two different structures could express similarity that correlates with the tar-

get, yet convey different information about the stimuli. Indeed, this is precisely the

hub+spoke hypothesis detailed in Chapter 1 and discussed at length in this thesis,

except that the hub plus spoke prediction is that this happens over space.

The prior demonstration of Y. Chen et al. (2016) involved performing RSA with
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target similarity matrices based on semantic features and superordinate semantic

categories (living and non-living). Performance on these two models were similar

for most time points. The correlation between the target similarity matrix and neu-

ral data peaked at around r = 0.03 in both cases, which might be achieved even

if the neural signal only expressed relatively coarse categorical structure. In our

unpublished own work with this data, it was not possible to train classifier mod-

els with LASSO to perform sub-category classification among the living things

(mammals vs. non-mammals). In short, while the existing evidence is consistent

with high-order semantic structure encoded in the ATL, it has not been demon-

strated that the region actually encodes the fine-grained structure as predicted by

the hub-and-spoke model,

In this final chapter of experiments, I test three hypotheses: 1) is semantic struc-

ture encoded in local field potentials evoked by naming visual stimuli and sampled

from the ATL using ECoG, 2) does this structure contain meaningful sub-category

structure, and 3) does this code have an important temporal component.

6.1 Materials and methods

These data have been reported elsewhere (Y. Chen et al., 2016; Shimotake et al.,

2014). Please visit those publications for further detail about the patients and sur-

gical procedures. Much of the study descriptions below are reproduced from Y.

Chen et al. (2016).

Participants

Eight patients with intractable partial epilepsy (eight) or brain tumour (two, one

associated with intractable partial epilepsy) participated in this study. Background

clinical information about each patient is summarized in Table 1. Subdural elec-
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trode implantation was performed in the left (seven) or right (one) hemisphere for

presurgical evaluation (mean 83 electrodes, range 56–107 electrodes/patient). 6–

30 electrodes (mean 20 electrodes) covered the ventral ATL in each patient. The

subdural electrodes were constructed of platinum with an inter-electrode distance

of 1 cm and recording diameter of 2.3 mm (ADTECH, WI). ECoG recording with

subdural electrodes revealed that all epilepsy patients had seizure onset zone out-

side the anterior fusiform region, except one patient for whom it was not possible

to localize the core seizure onset region. The study was approved by the ethics

committee of the Kyoto University Graduate School of Medicine (No. C533). Par-

ticipants all gave written information consent to participate in the study.

Stimuli and procedure

One hundred line drawings (50 living and 50 nonliving items) were obtained from

previous norming studies (Morrison et al., 1997 and Snodgrass and Vanderwart,

1980). Living and nonliving stimuli were matched on age of acquisition, visual

complexity, familiarity and word frequency. Independent-sample t-tests did not

reveal any significant differences between living and nonliving items for any of

these variables.

Participants were presented with stimuli on a PC screen and asked to name

each item as quickly and accurately as possible. All stimuli were presented once

in a random order in each session and repeated over four sessions in the entire

experiment. The responses of participants were monitored by video recording.

Each trial was time-locked to the picture onset using in-house MATLAB scripts

(version 2010a, Mathworks, Natick, MA). Stimuli were presented for 5 seconds

each (the patients’ average naming time was 1190 msec) and each session lasted 8

minutes 20 seconds. Participants’ responses and eye fixation were monitored by

video recording.
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Data preprocessing

Data preprocessing was performed in MATLAB. Raw data were recorded at sam-

pling rate of 1000 Hz. Trials with greater than±500 µV maximum amplitude were

considered rejected as artifacts. Visual inspection of all raw trials was conducted

to reject any further trials contaminated by artifacts, including canonical interic-

tal epileptiform discharges. The mean waveform for each stimulus was computed

across repetitions. Out of the full set of 10 subjects, 8 have been analyzed so far.

Data analysis

Both mutivariate classification with spatio-temporal LASSO of living and nonliv-

ing items and representational similarity analysis with spatio-temporal network

RSA were performed.

LASSO analysis

LASSO was performed for all subjects over all electrodes simultaneously in a “mov-

ing window” procedure. A 50 ms time window was defined and, beginning with

the window from 0–50 ms, a model was fit using LASSO. Then the window was

slid forward in time by 10 ms, and the process repeated. This procedure was re-

peated 10 times, holding out a different set of 10 items each time to facilitate cross

validation. This analysis confirmed the finding that there is useful signal over the

1000 ms time window following stimulus onset (Y. Chen et al., 2016). Subsequent

analyses focus on this range.

Finally, once models were obtained for each time window, these models were

applied to make predictions given the pattern of activity at each other time win-

dow. The mean error on the training sets for each combination is used to populate

a full matrix of training and test windows.
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Network RSA analysis

Network RSA was performed over all electrodes and over the time range from 200

ms to 1200 ms post stimulus onset. While during the LASSO classification analysis

we modeled ever 1 ms time point, due to the large window size of the network RSA

analysis data were reduced by average every consecutive 10 ms time window to a

single data point for each electrode. The target semantic structure was determined

by referencing the Leuven Concept Database (Deyne et al., 2008). These feature

vectors were constructed in a similar way as Dilkina and Lambon Ralph (2012),

which were the basis for the semantic features in the previous chaper. Sixty-three

out of the 100 stimuli in this study had a corresponding entry in this database,

meaning that only this smaller subset could be modeled with network RSA. The se-

mantic similarity matrix was generated by computing the cosine similarity among

the feature vectors for each of the 63 items (42 living, 21 nonliving). This cosine

similarity was then embedded in a low dimensional space via the same procedure

as in Chapter 5. An error threshold of 0.3 yielded a 5 dimensional embedding.

As with the fMRI analysis, an accurate interpretation of the error term requires

standardizing by the mean and standard deviation of an empirical null error distri-

bution obtained by fitting 100 models to randomly permuted versions of the target

embedding.

6.2 Results

Network RSA analysis

The analysis has a simple logic: if the neural activity is conveying semantic struc-

ture via a time-varying code of some kind, averaging over large windows of time

will destroy meaningful signal. On the other hand, a spatio-temporal network RSA
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Figure 6.1: Error associated with two network RSA models fit to the raw ECoG local field
potentials (LFP) over electrodes. In one case (time info=no), the time points from 200 to
1200 ms were averaged together for each electrode. This corresponds to the window of
peak performance, both for Y. Chen et al. (2016) and in our own work involving superor-
dinate classification (no shown). In the other (time info=yes), time was not averaged down
to a single point. Instead, aside from moderate data reduction (consecutive 10 ms bins of
LFP were averaged), all time points were entered into the model at once. This means that
if different points in time express different elements of structure, they could be linearly
combined to produce a single, more complete structure and allow a better fit to the target
similarity structure. Error is shown for the whole dataset, and living and nonliving items
separately (to show subcategory structure is learned). This manipulation of time informa-
tion did not yield significantly different performance. Colored dots indicate subjects by
time manipulation, black dots indicate the mean, and error bars correspond to 95% confi-
dence intervals for the test of the mean against zero. Errors are standardized with respect
to the permutation models.

analysis will be able to model the similarity structure and take advantage of rep-

resentational structure that may exist at different points in time. The prediction

the model ultimately makes will take all of these time points into account with an

appropriate linear combination, rather than naively averaging. If the signal has

meaningful structure at several points in time, the spatio-temporal network RSA

will outperform a network RSA performed on the average of those time points.

These two analysis procedures were completed for each subject, with cross val-

idation. The error for each subject was standardized relative to an empirical null
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Figure 6.2: A) Electrode coverage over subjects, subject to a 4 mm FWHM Gaussian blur.
One subject had electrodes implanted in the right hemisphere, so maximum overlap of
coverage is 7 subjects in the right hemisphere. This blur is applied to make it comparable
to the maps presented in B) which display the proportion of overlap at each electode for
network RSA solutions obtained by modeling the target semantic structure in the LFPs col-
lected with ECoG. To compose these maps, I first aggregated over cross validation models
and consecutive 250 ms windows and applied a 4 mm FWHM Gaussian blur before assess-
ing overlap across the 8 subjects. The count at each voxel was then divided by the number
of times an electrode existed at that location, as shown in panel A).
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distribution determined by the 100 permuted models (see methods). In both cases,

we can ask whether 1) network RSA can capture meaningful semantic structure in

the data, 2) if this structure exists within categories or only at the superordinate

level, and 3) if these answers differ as a function of whether network RSA is allowed

to freely combine information from different points in time or not.

The results are presented in Figure 6.1. Performance does not differ signifi-

cantly as a consequence of whether or not time information is available. This in-

dicates that the representations in the ATL that carry semantic structure may be

fairly stable over time. However, network RSA does identify structure both within

and across living and nonliving superordinate categories. This is consistent with

Clarke and Tyler (2014), who found that the ventral medial ATL expressed seman-

tic similarity structure that corresponded better with a rich semantic feature space

as opposed to coarse category structure. It also enhances our interpretation of the

original searchlight RSA analysis of these ECoG data presented by Y. Chen et al.

(2016).

Although electrode coverage overlaps across patients most completely in the

more anterior regions of the ventral temporal lobe, each patient has somewhat id-

iosyncratic coverage that, in some cases, extends into what is decidedly posterior

ventral temporal lobe (see Figure 6.2A). It is therefore important to consider the

network RSA solutions in more detail to determine that the models are reliant on

LFPs sampled from the anterior areas. Figure 6.2B shows the voxel selection maps,

for four equal time windows post stimulus onset (250 ms each). These maps are

scaled by the number of subjects that have coverage at each point of the map (af-

ter applying a 4 mm blur to account for the fact that grid arrays are not perfectly

aligned across subjects). Areas in red indicate that an electrode at roughly that

position was selected in every patient for which there is available data. Of course,

this metric is most sensitive where coverage overlaps the most over patients. For-



160

tunately, peak overlap occurs at the point in the anterior ventrolateral temporal

lobe currently thought to be the “core” of the semantic hub (Binney et al., 2016;

Jackson et al., 2016; Patterson & Lambon Ralph, 2016; Rice, Hoffman, & Lambon

Ralph, 2015; Shimotake et al., 2014). A star has been overlaid to mark MNI (-39, 6,

-39), the point chosen for the vATL seed by Jackson et al. (2016).

From these maps, we can see that the anterior aspects are important with a

very high rate of consistency over time and subjects—electrodes in this area are

virtually always selected. This indicates that even though some models had access

to information in posterior ventral temporal lobe, the structure expressed by the

vATL was important to accurately fitting the target semantic structure.

LASSO analysis

Another way to test whether signal is stable over time is to train a model at one

time point and test at other time points. Because of the large number of models

involved, I performed LASSO to classify all 100 items into living (50) and nonliving

(50) categories. The full error matrices associated with training at each time point

and testing each model at all other time points are shown in Figure 6.3. Each row is

a trained model, and each column a timepoint where it was evaluated. Note that

time each time window was 50 ms large, trained at ever 10 ms step through the

data, so neighboring windows overlap by 40 ms.

While it is clearly possible for models trained at many time points to generalize

over time, there are other time points that seem to generalize less well. This can be

more clearly seen in the context of an analysis proposed and initially conducted

by Tim Rogers (unpublished personal correspondence). Each row of the matrices

shown in Figure 6.3 can be thought of as the “accuracy profile” of a model trained

at a particular time window. Models with similar accuracy profiles must be tap-

ping into similar structure with similar sets of weights (because they perform sim-
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Figure 6.3: Binary classifiers fit with LASSO were trained on each time point, and then
evaluated on every other time point. Maps are thresholded based on a binomial test of the
error out of 90 items, where the probability of obtaining an error less than 45 under the
null hypothesis is p = 0.5. Points are thresholded at uncorrected p < 0.001. Each panel
shows the matrix of train- and test-time windows for one subject.

ilarly in the context of particular patterns over the LFPs). Thus, we can simplify

Figure 6.3 by averaging models with similar response profiles, as determined by

a cluster analysis. In the following, a simple k-means clustering was performed

with k=5 (clustering accounts for greater than 85% of total variance in all subjects,

and 88% on average over subjects), and so 5 mean temporal average profiles are

displayed for each subject in Figure 6.4. Colored dots along the top of each fig-

ure indicate the points in time that were averaged to form each average accuracy

profile of the same color.

Here, it is more clear to see that different clusters of models may perform better

at different times, which indicates that the underlying code may be dynamically

shifting. Consider patients 1, 5, and 8: each has a cluster of models that perform

well (binomial p < 0.001) briefly early in the trial, before showing marked declines

in performance over the rest of the time windows. At a more relaxed threshold,

the same pattern is observed in patient 2. This is consistent with a rather stark
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Figure 6.4: Accuracy profiles, based on a k-means clustering of the temporal error maps
shown in Figure 6.3 (k=5). Each colored line is a average of several rows from the previous
figure (exactly which rows are indicated by the corresponding colored dots along the top
of each panel), with error inverted into accuracy. The dotted line indicates p<0.001 by
binomial test as a fairly conservative reference for above-chance generalization.

change in the underlying activity. On the other hand, patients 1, 2, 5, 7, and 8

also show signs of more gradual, graded shifts over time (overlapping followed by

gradual separation of performance for clusters 3 and 4 in patient 1, clusters 1 and

5 in patient 2, clusters 1 and 2 in patient 5, clusters 3 and 4 in patient 7, and the

very intersting cascade of clusters 2, 3, 4, and 5 in patient 8). On the other hand,

patients 3 and 10 show remarkable stability over time over several clusters.

However, there are typically one or two clusters that generalize well to many

time points, which means at least some aspects of the code are relatively stable.

Indeed, if this were not the case, the ability to discover structure after averaging

over all time points as reported in Figure 6.1 would be rather difficult to compre-

hend. In short, there seem to be interesting dynamics that merit a great deal of

further investigation, but there may be enough stability to support signal that is

identifiable by fMRI.
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6.3 Discussion

In this chapter, I considered three basic hypotheses about the semantic structure

expressed in the ventral ATL. The first was that, contrary to what was seen in the

fMRI analysis in Chapter 5, the ATL contains semantic structure that is active and

relevant when processing visual stimuli in a semantic task (in this case naming).

This was confirmed by the fact that network RSA can learn a model of the LFPs

sampled from electrodes implanted in this region in 8 patients that performs sig-

nificantly better than chance on predicting where out of sample stimuli should be

positioned within the low rank embedding of the target similarity structure. The

second hypothesis was that this it would be possible to recover within-category

semantic structure, and this was confirmed by noting that within category predic-

tions were also better than chance. The final hypothesis was that the ATL encodes

semantic structure with a time-varying code that expresses different semantic di-

mensions at different points in time. This was generally not supported by the data.

Averaging all time points within the window of peak decoding reported by Y. Chen

et al. (2016) did not reduce or eliminate the ability of network RSA to model the

semantic structure, indicating that the content being expressed is relatively stable

over time.

The follow up analysis with LASSO took a different angle, considering if a

model fit at one point in time will generalize to other points in time. Here we noted

interesting dynamics around a reasonably stable core: the temporal accuracy pro-

files often indicated some time points (particularly early in the trial) that do not

generalize well to other time points, which indicates that the underlying activity

supported classification but with different patterns of activity than at other time

points. On the other hand, models trained later in the trial do tend to generalize

to many other time points, sometimes 500 ms into the the future and into the past.

Taken together, these data do not robustly support the hypothesis that semantic
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structure in the ATL was difficult to detect with fMRI due to it being expressed in

a highly dynamic code.

It is important to note, however, that time series data contain a wealth of useful

information which we have not considered here. It is typical, for example, to per-

form a spectral decomposition when analyzing high-temporal resolution data as a

way of isolating different components in the time varying signal. These analyses

conceive of fluctuations in the data as a mixture of sine waves of various frequen-

cies. By decomposing a time series into its constituent frequency bands, it may

become easier to isolate the aspects of the signal that carry information of interest.

In other words, there may be be structure expressed in the time frequency domain

that cannot be directly assessed in the raw LFP data.

There are many interesting open questions regarding the time course of seman-

tic representation (Hauk, 2016; Jackson et al., 2015). Specifically in the context of

the hub-and-spoke model, it may hold some of the keys to understanding why

pan-modal semantic representations remain so elusive.
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Chapter 7

General Discussion

In the preceding chapters, I framed important questions about the neural repre-

sentation of semantic knowledge and specifically the role of the anterior temporal

lobes (ATL) in supporting pan-modal concept representations, and then attempted

to address these questions through experiments. Among the novel contributions

of this work is the application of network RSA, a novel analysis technique for dis-

covering representational similarity structure in sparse distributed networks of ac-

tivity. Network RSA enables us to test hypotheses that involve representational

structure encoded over multiple brain regions. This dissertation specifically fo-

cused on the representational predictions of the hub-and-spoke model, but vir-

tually all contemporary hypotheses about the neural representation of concepts

involve multiple brain regions working together. Network RSA would therefore

be able to identify semantic structure, regardless of whether it was integrated in a

hub region or if different parts of the structure are encoded throughout the brain.

The convergence hypothesis predicted that the ATL does not encode seman-

tic structure, but that such structure would be expressed in a widely distributed

network involving cortex in generally modality specific areas. The ATL contains

convergence zones that facilitate reactivation of fragments of information encoded
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over this vast network for specific unique entities, but does not encode similarity

structure. Both the fMRI and ECoG datasets provide evidence that semantic sim-

ilarity structure is expressed in the ATL, and so this critical prediction appears to

be incorrect.

The semantic hub hypothesis, in contrast, predicted that the bilateral ATL sup-

port a domain general and cross modal semantic space, and so semantic structure

should be present in the neural activity of the ATL during semantic tasks. How-

ever, it also predicts that the ATL functions by integrating and re-representing in-

formation expressed and coded, in isolated fragments, in other areas of the brain.

Thus, the semantic hub hypothesis also predicts that a whole brain RSA would be

able to identify patterns of activity expressing semantic similarity structure either

over all the spokes taken together, or in the semantic hub in isolation. The hub

may express this structure more concisely, which might make it more likely to be

discovered by sparse logistic regression techniques (see Chapter 3), all else being

equal. Of course, signal in the ATL may be less strong and more difficult to image,

resulting in noisier response profiles in neuroimaging data, encouraging whole

brain models that prefer the spokes. In short, a whole brain analysis of a brain

adhering to all predictions of the semantic hub hypothesis might be expected to

come out in various ways. And, indeed, it these whole brain maps ultimately do

not provide compelling support for the hypothesis.

What does support the semantic hub hypothesis is the ability to recover se-

mantic signal from the ATL in isolation, as demonstrated for audio stimuli in the

fMRI experiment and for visual stimuli in the ECoG experiment. But, to merely

demonstrate the semantic structure is available in ATL activation is not definitive

evidence. The hub+spoke hypothesis does predict that some semantic structure

will be present in the ATL on its own. On the hub+spoke account, ATL activation

will be associated with cross modal interactions, and not express modality specific
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structure. So, while the hub+spoke hypothesis predicts that different aspects of se-

mantic structure are encoded across the hub and the spokes without redundancy,

making the full structure available only if information is considered across all re-

gions at once, is not incompatible with above chance performance of a model fit

just to activity in the ATL. However, the fact that quite fine grained structured was

available in the ECoG dataset, supporting accurate predictions about sub-category

structure for both living and non-living things, is consistent with ATL representa-

tions being rather complete.

It is becoming clear that studying the representational structure that is present

in the ATL will require devising a range of semantic target structures, expressing

different components of the complete semantic structure. In the experiments re-

ported in this dissertation, we considered semantic structure and low-level visual

structure. However, considering whether the ATL represents higher order visual

or audio structure, or whether it is better fit to a semantic structure with compo-

nents that might be expressed by models of “spoke-level” representation removed

than to a complete semantic structure. At present, it is difficult to discern whether

even fine grained semantic structure can be conveyed in the absence of any percep-

tual structure that, under the hub+spoke account, would be represented beyond

the ATL.

However, given the data we have available, the hub+spoke hypothesis predicts

that semantic structure should be better expressed by the interaction of hub and

spokes, rather than just in the hub or just in the spoke alone. This was not the case

in either modality of the fMRI experiment: the hub and spoke together did not

exceed the spoke on its own. Taken together, the evidence seems somewhat more

consistent with the semantic hub hypothesis, in which the full semantic space is

represented in the ATL.

The series of experiments reported here additionally emphasize the important
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of the spokes to semantic representation (Patterson & Lambon Ralph, 2016). Al-

though the importance of the ATL and the computational utility of a semantic

hub have been thoroughly discussed, there is also considerable evidence that the

spokes convey substantial semantic content in their own right. Retrieving con-

cepts, even when only cued by the word, is associated with both brain activation

in sensory or motor regions(Hauk, Shtyrov, & Pulvermüller, 2008; Pulvermüller,

2005; Simmons et al., 2007). Lesions near these same areas result in impairment

relating to the aspects of knowledge that can be expressed in that modality on its

own (Boulenger et al., 2008; Pulvermüller et al., 2010). Representational similarity

analysis of the posterior ventral temporal lobe has demonstrated that some, but

critically not all, semantic structure seems to be encoded in the reason (Mur et al.,

2013). These all point towards important semantic contributions in a wide range

of specialized regions, which then require a common hub to reveal cross modal

structure.

While important progress has been made through the work reported in this dis-

sertation, much remains to be done. Aside from developing tractable solutions to

the statistical challenges facing whole brain network RSA, there are exciting open

questions about how the brain supports semantic knowledge. One important as-

pect of semantic knowledge that is not often considered in cognitive neuroscience

is that the meaning of a word, the interpretation of an event, and the function of an

object can all be highly context dependent. Rather than a concept such as “dog”

evoking a specific representation time after time, every encounter is different and

our semantic system will very flexibly integrate the dog into appropriate contexts,

and support constrained generalizations.

Representational similarity analysis has the potential to be a very sensitive method

for assessing these shifts in representational structure. Given an appropriate set of

stimuli, one would expect the items to become conceptually more similar or dis-
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tinct as a function of changing context, and this should have corresponding shifts

in the neural code. Peelen and Caramazza (2012) conducted an interesting experi-

ment along these lines, in which they presented participants with images of tools

that are either used in the kitchen or the garage by either squeezing or twisting

them. Participants completed a one back task, where they were instructed to ei-

ther monitor for repetitions of location or usage in different blocks. In other words,

participants considered all the same stimuli, but in on block they cared where the

items are used, and in another they cared how the items were used. This might

be expected to change the underlying representations as expressed by patterns of

activity over cortex. Their results do not bear out this prediction: their ROIs based

on Brodmann areas 20 and 38 (the ventral temporal lobe and temporal poles, re-

spectively) were sensitive to both kinds of information, regardless of whether the

information was task relevant. Nevertheless, this line of questioning bears further

research. For instance, their ROIs were very large, and representational structure

was not modeled with a technique like network RSA, so there might be relevant

differences in structure between the two conditions that were overwhelmed by

noise and went undetected. Correlations between the target semantic similarity

structure and the similarity structure expressed in activity within each ROI were

low—r < 0.1—and the test only involved 12 items. Furthermore, the semantic

similarity structure was very simply, encoding two dimensions in binary fashion

(garage vs. kitchen and squeeze vs. twist). While it is exciting that they iden-

tified representational structure that expressed these dimensions, more nuanced

questions about task effects on these representations are still wide open.
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7.1 Estimating semantic structure

In order to ask these questions well, we need tools and methods for estimating se-

mantic similarity structure in ways that capture the potentially high dimensional-

ity if the space, are sensitive to context effects, and which can be targeted to specific

populations in the service of representing individual differences. These are tall or-

ders. Collecting feature norms, word associations, and category fluency responses

are labor intensive on the part of the experimenter and depend on the participants

to generatively map out the semantic space. In the case of feature norming, it is

well understood that participants do not list all important features of cued con-

cepts, even omitting ones that are quite obvious because, in that context, there is

nothing driving attention to that aspect (Dilkina & Lambon Ralph, 2012; Hoffman

& Lambon Ralph, 2013; Rogers et al., 2004). On the othe hand, corpus analytic

techniques like latent semantic analysis (Deerwester, Dumais, Furnas, Landauer,

& Harshman, 1990; Landauer & Dumais, 1997) are more data rich, and can as-

sess the utilization of words across a huge range of contexts. However, such broad

scope may gloss over semantic space may shift and change as a function of context.

A different angle would be to give participants a simple task that requires them

to assess the relative similarity among pairs of items. Examples might include col-

lecting similarity data using rating scales (Lee, Pincombe, & Welsh, 2005), multiple

item arrangement (Kriegeskorte & Mur, 2012), sorting tasks (Rosenberg & Park

Kim, 1975; Shaver, Schwartz, Kirson, & O’Connor, 1987) or forced-choice tasks

(Jamieson, Jain, Fernandez, Glattard, & Nowak, 2015; Navarro & Lee, 2002). Carl-

son, Ritchie, Kriegeskorte, Durvasula, and Ma (2014) compare semantic spaces es-

timated from human judgments and multiple corpora and databases to one an-

other and to representations in inferior temporal cortex. In particular, the utiliza-

tion of a forced-choice task has been pursued fruitfully by our research group, and

the problem of learning a similarity space adaptively is being studied (Jamieson
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et al., 2015). The particular task involves comparing two stimuli to a point of refer-

ence, and judging which is more similar to the referent. The relevant dimensions of

similarity can be specified by the researcher, imposing a particular context within

which the judgments will be made, or left ambiguous. Each trial may involve a

completely new set of stimuli, options and referent, which may emphasize com-

pletely different semantic dimensions.

There are several benefits to this approach. For one, while the task probes se-

mantic structure from a variety of angles, each individual judgments is a fairly

simply task. Participants do not need to consider all dimensions at once, as when

listing features, or be clever in their word associations. As with other behavioral

tasks, it can be targeted to specific individuals and populations, but relative to

other behavior tasks there are no responses to code, spelling errors to correct, or

feature labels to consolidate, making it an easier experiment to conduct.

A related method is the multiple item arrangement task introduced by Kriegesko-

rte and Mur (2012). In this task, participants arrange a large number of images or

printed words on a screen, so that more similar items are closer together. Similar-

ity structures estimated with this technique for individual participants has been

shown to reflect individual differences that bear our in their patterns of neural ac-

tivity (Charest, Kievit, Schmitz, Deca, & Kriegeskorte, 2014). Nevertheless, this

technique may impose some limitations on participants: assessing many items at

once and imposing a two-dimension work space may artificially restrict the dimen-

sionality of the semantic space.

How best to estimate semantic structure is clearly an exciting topic of active

research. Progress in this area will have important consequences for study of the

neural basis of semantic knowledge and cognition.
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7.2 Basis sets for meaning?

The preceding discussion about estimating semantic space considered some meth-

ods, like feature norming, that try to establish a list of properties that might be said

to “define” a concept, and others that make no such attempt and simply aim to de-

scribe the similarity structure. The difference between these approaches is of deep

theoretical significance, even if they both yield similarity structures that and be

subjected to many of the same kinds of analysis.

In PDP models, distributed representations are composed of units that cannot

in general be interpreted in isolation of the other units. This is distinctly differ-

ent from neuroscience’s roots in single cell recording. For example, the seminal

work of Hubel and Wiesel (1959, 1968) characterized the receptive fields of neu-

rons throughout striate cortex in cats and monkeys. They found that any given

neuron responded to a particular, sometimes very narrow, set of visual stimuli.

Different recording sites responded to different stimulus features, and different

visual areas responded to more ot less complex combinations of features. Given a

collection of “feature detectors” of this kind, complex visual representations can be

expressed in the population code expressed by multiple feature detectors respond-

ing in unison (Singer & Gray, 1995)—all the information fragments are integrated

into a whole. Population coding is an important feature of neural representation

in all modalities (Averbeck, Latham, & Pouget, 2006; Pillow et al., 2008; Pouget,

Dayan, & Zemel, 2000, November).

From a decoding perspective—fitting a model of neural activity that allows ac-

curate prediction of a target structure—a population code and a PDP distributed

representation can look similar. Both involve patterns of neural activity, where

neighboring functional units may respond differently from one another, and the

patterns of activity associated with a common stimulus may differ across people.

The difference is that, unlike distribute representations, each element of a popula-
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tion code is often considered to have a particular interpretation as a feature detec-

tor of some kind. On this perspective, one might aim to build an encoding model,

which predicts how each functional unit will respond given the presence or ab-

sence of particular features. Encoding and decoding models are sometimes also

referred to as forward and backward models. The difference is that forward mod-

els go from stimulus features to neural activity, while backward models go from

neural activity to stimulus features. All MVPA and RSA analyses are decoding

models. Standard univariate analyses of fMRI datasets are technically encoding

models—the stimulus conditions and nuisance variables are used to predict the

time series of each voxel. More sophisticated encoding models will involve more

detailed stimulus information than a condition or category label.

Constructing an encoding model of visual stimuli or audio stimuli is relatively

straight forward, in the sense that there is general consensus about the features

that might be relevant to encoding content in each modality. For instance, visual

stimuli might be encoded in terms of orientation, contour, luminance, and the like.

Audio stimuli might be encoded in terms of energy in different frequency bands,

amplitude, etc. The set of features that can be used to compose representations in

a domain are called a basis set. Developing basis sets for visual and audio repre-

sentations has strong neuroscientific motivation. However, this is not the case for

all domains of interest. To highlight the most relevant example: is there such a

thing as a basis set for semantic knowledge?

There are several examples of encoding models developed study the neural

bases of semantic knowledge. The first model of this kind was presented by Mitchell

et al. (2008). They defined a “basis set” of 25 verbs, and counted how many times

each of a set larger set of nouns co-occurred with each of the verbs. So for each

noun, there is a 25 element vector of numbers reflecting, in a sense, how related

the noun is to each verb. These nouns were then presented to participants during
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an fMRI study, which was pre-processed to result in a single beta map for each

word. Then, the variance at each voxel was modeled with respect to the 25 “verb

loadings” for a subset of the nouns. The model at each voxel can then be used to

predict how the voxel will respond to nouns not included in the training set. Taken

together, this results in a full brain map of predictions that can be compared to the

true beta maps for each noun. They found that these predictions were more ac-

curate than would be expected by chance (when comparisons are restricted to the

500 most stable voxels over stimulus repetitions). This might be taken to suggest

that semantic knowledge might be at least partly encoded in terms of action.

Subsequent encoding models in the literature follow a similar methodology,

differing primarily in the composition of the basis set. Just et al. (2010), for instance

defined the basis set in terms of three principle factors: manipulation, shelter, and

eating. Fernandino et al. (2016) normed each of 900 words with respect to their as-

sociation with five physical attributes (sound, color, manipulation, visual motion,

and shape) and treated these dimensions as a basis set. On the other hand, Huth

et al. (2012) had participants watch hours of natural video, and coded every TR

according to the presence or absence of 1,364 words and 341 categories, and mod-

eled each voxel in terms or their response to these 1,705 entities. More recently,

the same research group had participants listen to 2.5 hours of stories from The

Moth Radio Hour and computed the co-occurance between every unique word in

the stories and 985 common English words in (Huth et al., 2016). These studies

are much less committed to a particular basis set of theoretical significance. While

each research group brought a distinct theoretic perspective, they unanimously

show that semantics are supported by a wide range of areas, and that individual

units can have complex tuning functions responding to multiple basis dimensions.

Whether this approach to the study of the brain bases of semantics, marked by

the effort to characterize the response profiles of individual functional units, is an
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important point for theoretical discussion. From a purely PDP perspective, using

encoding models to map out which functional units covary with a set of basis fea-

tures may appear to be misguided. As has been rehearsed at multiple points in

this thesis, PDP distributed representations are composed of units that cannot be

interpreted in isolation, and the dimensions that are relevant for defining a PDP

representational space are not known in advance. These points suggest that char-

acterizing the response profiles of individual units in terms of a basis set is a lost

cause. However, even if semantic knowledge is encoded by PDP distributed repre-

sentations, encoding models can still be informative. The representational struc-

ture learned by PDP models can be embedded in low dimensional spaces, and

these dimensions may correlate with theoretically relevant features. For example,

the hub and spoke model would predict that representational structure in the vi-

sual spoke should be better described along visual dimensions like shape and color

than representations in the audio spoke or the hub. If the first principle compo-

nent of representational structure in the posterior ventral temporal lobe is shape,

that means that an encoding model predicting activity in this regions with a basis

set of shape features should be able to predict reasonably well. In other words, the

success of encoding models does not necessarily imply that populations of neu-

rons are tuned to particular basis features in an a priori sense, and may instead be

picking up on learned dimensions among acquired distributed representations.

Nevertheless, encoding models can give important insight into which dimensions

are encoded in different brain regions.

7.3 Conclusion

This dissertation attempted to characterize the role of the ATL in supporting se-

mantic representations, experimentally testing for the first time whether semantic
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similarity structure is jointly encoded over multiple distant brain regions working

together. This perspective was referred to as the hub+spoke hypothesis, to dis-

tinguish it from the semantic hub hypothesis which predicts that the ATL collects

information from various sources and represents that content in a single, cross

modal and domain general semantic space. When the hub and spoke model of

semantic cognition was introduced to the literature as a neural network model, it

was described quite explicitly in terms of that computational framework, which

predicts a semantic space as described in the semantic hub hypothesis (Rogers et

al., 2004). The most current descriptions of the theory, however, emphasize the

importance of the hub and the spokes together in supporting semantic knowledge

(Patterson & Lambon Ralph, 2016).

The results I have reported mark the first evidence that semantic structure of

auditory sounds is encoded within ATL and that even fine-grained semantic struc-

ture for visual stimuli is likewise encoded in ATL (as evidenced by network RSA

conducted on the ECoG dataset). It has also emphasized that critical aspects of

semantic structure are reflected within modality-specific spokes, but only when

the stimulus is from the corresponding modality. This has revealed a brain-wide

picture of semantic representation that is consistent with the hub and the spokes

both being relevant for encoding semantic structure, but not necessarily in the

hub+spoke sense laid out in the introduction, which predicted that an interaction

should have been observed between the hub and the spokes.

While this dissertation has not settled this representational question about the

role of the ATL once and for all, it has provided additional evidence that seman-

tic structure, even relatively fine grained structure, can be decoded from the ATL

without considering the activity of the spokes. By demonstrating the presence of

semantic structure in the ATL in the context of auditory stimuli in the fMRI ex-

periments, this work also adds to the range of stimulus modalities that express
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semantic similarity structure over this region.

Further work, and the refinement of the network RSA analysis procedure, will

be required to further enhance our understanding of how, where, and when se-

mantic structure is represented over cortex. The current evidence is consistent

with an important role of the semantic hub which encodes a fully integrated cross

modal and domain general semantic space.
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Appendix A

Network RSA selection maps for
individual subjects

Network RSA is a regularized regression technique that obtains sparse models in
individual subjects. In Chapters 5 and 6, these solutions are aggregated over sub-
jects in an attempt to make more general claims about the contributions of various
brain regions in in the sample and, ideally, in the population. In those chapters, we
confronted some of the inherent challenges to this endeavor. Statistical threshold-
ing presented a challenge because there is currently no good way to characterize
the distribution from which the weights that comprise the models obtained with
network RSA are sampled from, neither within nor across subjects. We attempted
to address this by empirically simulating these distributions by performing anal-
yses of permuted data. However, the sets of voxels selected by the permutation
procedure were anything but random, and in fact were far more likely in precisely
the areas one would expect true signal to be a priori, which saps a great deal of
statistical power.

In light of the complications faced by attempting to aggregate over subjects in a
principled way, I would like to present the solution maps for each individual sub-
ject each of the semantic models trained on visual and audio trials, respectively. In
Figures A.1 and A.2, I show stability maps for each subject: voxels that are more
yellow are selected more often over cross-validations (i.e., variations on the train-
ing set). These solutions are visualized on the common Talairach TT_N27 template,
so there is some degree of spatial smoothing due to interpolation, but no additional
smoothing was applied.

In these figures, it is clear that group level aggregates may not be doing justice
to the wide and idiosyncratic voxel selections observed in each subject.
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Figure A.1: Network RSA solution maps when modeling the target semantic structure
described in Chapter 5 on visual trials, where stimuli were presented as line drawings.
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Figure A.2: Network RSA solution maps when modeling the target semantic structure de-
scribed in Chapter 5 on audio trials, where stimuli were presented as characteristic sounds.
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