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Abstract 

 Myriad patterns and processes at virtually all levels of chemistry, geology, and biology 

have been observed to depend on temperature. Temperature dependence in nature can often be 

traced back to the chemical kinetics that underlie all chemical and biochemical reactions. The 

ubiquity of temperature dependence is central to concerns about the impact of climate change on 

the Earth. Understanding and predicting responses to climate change requires knowledge of how 

global patterns of warming rates intersect with the temperature sensitivity of ecosystem 

processes to elicit ecosystem responses. Here we use long-term temperature data from lakes 

around the world to assess global patterns in lake warming rates and the sensitivity of lake 

ecosystems to warming. We find that for many responses to warming, tropical lake ecosystems 

may be more sensitive than lakes at higher latitudes. Even though tropical lakes tend to have 

slower surface warming rates, their heightened sensitivity to temperature can cause greater 

absolute responses to climate warming. We use field data from Lake Tanganyika, the deepest 

and oldest lake in Africa, to show how the inherent high sensitivity of tropical lakes to warming 

can lead to complex responses to temperature. In sum, this dissertation highlights the usefulness 

of chemical kinetics for understanding and predicting global lake ecosystem responses to climate 

change. 
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Introduction 

“It’s getting hot in herre [sic].”  

-Nelly 

 

Temperature is often considered a “master” variable in the natural sciences. Observations 

of temperature dependence in nature have been described for myriad patterns and processes at 

virtually all levels of chemistry, geology, and biology. Temperature has been attributed with 

governing everything from the speed of sound (Del Grosso, 1972) to the dissolution rate of cane 

sugar in water (Arrhenius, 1889) to the rate at which a cricket chirps (Martin et al., 2011). 

Recent meta-analyses have even shown that temperature governs the configurations of 

biodiversity across the planet (Allen et al., 2002), and the algal stoichiometry of the global 

oceans (Yvon-Durocher et al., 2015).  

 The temperature dependence of patterns in nature can often be traced back to the 

temperature dependence of chemical kinetics that underlie all chemical and biochemical 

reactions. The power of chemical kinetics for understanding patterns in nature is a central tenant 

of the metabolic theory of ecology. Metabolic ecologists have attempted to use mass and 

temperature scaling of metabolism to provide a unified theory for the importance of organismal 

metabolism as a driver of ecological dynamics. Since the foundational papers in metabolic 

ecology were published (Gillooly et al., 2001; Allen et al., 2002; Brown et al., 2004), this sub-

field of ecology has grown substantially with thousands of new publications every year. It is one 

of few branches of ecology that directly links individuals, populations, communities, and 

ecosystems to fundamental thermodynamics, and its applications are rapidly expanding.  

Metabolic ecology has gained prominence, in part, for its capacity to explain and predict 

the influences of climate change on the earth. The direct, kinetic influence of climate warming is 
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widely predicted to accelerate metabolism from the cellular to the ecosystem level (Lloyd & 

Taylor, 1994; Staehr & Sand-Jensen, 2006; Dillon et al., 2010). But with so many physical, 

chemical, and biological variables in the environment linked to temperature, warming has the 

potential to have complex, indirect influences on metabolism that outweigh the direct, positive 

influence. A prominent, recent example being the negative influence of temperature on terrestrial 

primary production when temperature changes coincide with reductions in precipitation (Zhao & 

Running, 2010). Thus, to better understand the influences of climate change on metabolism at 

the global scale, it is important to know how fast ecosystems are warming, how sensitive they are 

to warming, and how patterns of warming intersect with local temperature sensitivity to produce 

ecosystem responses to climate change. The aim of this dissertation is to explore all three aspects 

of the influence of climate change on metabolism with a focus on lake ecosystems. Lake 

ecosystems were chosen because they are discrete, act as global sentinels of climate change 

(Adrian et al., 2009), provide key provisioning and cultural ecosystem services to people 

(Wilson & Carpenter, 1999), and make an important contribution to the global carbon cycle 

(Tranvik et al., 2009). 

While the core of this dissertation focuses on broad scale consequences of warming 

across lakes, chapter one focuses on spatiotemporal variation in warming within a single lake: 

Lake Tanganyika. As the oldest and deepest lake in Africa with a long temperature record, Lake 

Tanganyika has been the focus of several studies of climate change impacts on lakes. Thus far, 

studies of warming trends in Lake Tanganyika have targeted the deep, anoxic zone (> 100 m) 

where temperature variability primarily reflects long-term climate forcing rather than seasonal 

variation. Warming trends in the upper water column remain understudied. Here we use a 

comprehensive database of in situ temperature data that span the lake’s lateral extent to explore 
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spatiotemporal variation in the top 100 m of the water column. Our results demonstrate that 

century-long warming trends in the upper water column vary by depth, distance from shore, 

season, and latitude. We explain the observed spatiotemporal variation in warming trends by 

linking it to vertical mixing patterns within the lake—areas with low vertical mixing experience 

the fastest warming rates. In sum, chapter one demonstrates that thermal shifts in the upper water 

column of Lake Tanganyika are in step with climate change and highlights the need to assess 

variation in warming trends within large lakes. 

Vertical stratification patterns in warm tropical lakes, like Lake Tanganyika, may be 

exceptionally sensitive to surface warming. This heightened sensitivity is due to the nonlinear 

chemical kinetics underlying the exponential relationship between water temperature and water 

density. In chapter two, I explore whether tropical lake stratification patterns exhibit heightened 

sensitivity to surface warming using long-term temperature data from 26 lake monitoring sites 

around the globe. The results show that climate change has altered lake stratification globally 

and that the magnitude of lake stratification changes are primarily controlled by lake 

morphometry (mean depth, surface area, and volume) and mean lake temperature. Deep lakes 

and lakes with high average temperatures have experienced the largest changes in lake 

stratification even though their surface temperatures tend to be warming more slowly. These 

results demonstrate that the nonlinear relationship between water density and water temperature 

and the strong dependence of lake stratification on lake morphometry makes lake warming rates 

poor predictors of lake stratification responses to warming.  

In addition to the exponential relationship between water temperature and water density, 

the exponential relationship between water temperature and metabolism may also make tropical 

lakes more sensitive to climate warming. In chapter three, I use long-term lake temperature data 
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from 296 lake monitoring sites around the globe to estimate global patterns in metabolic 

responses to climate. By substituting temperature data into simple models describing the 

temperature-dependence of 7 key metabolic rates in lakes (i.e. fish metabolism, gross primary 

production), I show that most metabolic rates are more sensitive to warming in tropical lakes 

than lakes at higher latitudes. Our findings indicate that activation energies associated with each 

metabolic rate provide a simple heuristic for predicting variation in the magnitude and 

geographic patterns of responses to warming. In many cases, the expected direct effects of 

warming on lake metabolism are greatest in the tropics. 

Chapter four synthesizes concepts from chapter one through three and demonstrates 

how in Lake Tanganyika, lake stratification responses to climate change outweigh the direct 

influence of temperature on metabolism. Climate warming is predicted to accelerate lake 

metabolism due to the fundamentals of biochemical kinetics. But, I show that in Lake 

Tanganyika, pelagic primary production, pelagic ecosystem respiration, littoral primary 

production, littoral ecosystem respiration, fish body condition, and some fish species’ excretion 

rates are negatively related to temperature despite the prediction from biochemical kinetics. In 

Lake Tanganyika, the effects of surface warming on vertical mixing belies the direct, kinetic 

influence of temperature on metabolism. Negative “apparent” temperature dependence of 

metabolism may be widely observed in the tropics when vertical mixing is a key source of 

nutrients to the photic zone. The indirect influences of temperature on metabolism can outweigh 

the direct influence and should be incorporated into models of lake ecosystem responses to 

climate change. 

In sum, this dissertation partially addresses the three questions that I posed earlier in the 

introduction as they relate to lake ecosystems: (1) How fast are lake ecosystems warming? (2) 
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How sensitive are lake ecosystems to warming? and (3) How does warming intersect with local 

temperature sensitivity to produce lake ecosystem responses to climate change? Most lakes are 

warming, but warming trends vary substantially within and across lakes. When temperature 

dependences are nonlinear, as in the case of water density and lake metabolism, warm 

ecosystems tend to be more sensitive to temperature change. When global patterns in lake 

warming trends intersect with local lake sensitivity to temperature, the tropics emerge at the 

forefront of climate change impacts on lake ecosystems.  
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Chapter 1: Century-long warming trends in the upper water column of Lake Tanganyika* 

Abstract 

Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the 

last century in response to climate change. Separate analyses of surface warming rates estimated 

from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, 

leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, 

we use a comprehensive database of in situ temperature data from the top 100 meters of the 

water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term 

temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The 

observed spatiotemporal variation in surface warming rates accounts for small differences 

between warming rate estimates from in situ instruments and satellite data. However, after 

accounting for spatiotemporal variation in temperature and warming rates, the TEX86 

paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster 

warming rates (by a factor of three) than in situ measurements. Based on the ecology of 

Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 

proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature 

of the low-oxygen zone, rather than of the lake surface temperature as has been suggested 

previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming 

                                                 
* Published as Kraemer, B. M., S. Hook, T. Huttula, P. Kotilainen, C. M. O’Reilly, A. Peltonen, 

P.-D. Plisnier, J. Sarvala, R. Tamatamah, Y. Vadeboncoeur, B. Wehrli, and P. B. McIntyre. 

2015b. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika. PLOS 

ONE 10:e0132490.  
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rates, offering strong evidence that thermal and ecological shifts observed in this massive 

tropical lake over the last century are robust and in step with global climate change.  

Introduction 

Climate change is altering the thermal characteristics of lakes worldwide, leading to a 

broad range of impacts on ecosystem processes (Adrian et al. 2009). Thermal characteristics of 

lakes directly influence water column stratification (Livingstone 2003, Coats et al. 2006, 

MacIntyre 2013), water budgets, oxidation-reduction state (Davison and Seed 1983), greenhouse 

gas efflux rates (Yvon-Durocher et al. 2012, 2014), and organismal metabolic rates (Gillooly et 

al. 2001). Despite recognition that climate change has important direct and indirect effects on 

lake ecosystems, monitoring of long-term thermal changes in lakes remains limited.  

Compared with temperate and arctic lakes, long-term, in situ lake temperature data sets 

are rare in the tropics. Satellite remote sensing of lake surface temperatures can redress the 

latitudinal bias of temperature monitoring for large lakes. Remote sensing typically yields 

comparable results to in situ monitoring (Schneider and Hook 2010, MacCallum and Merchant 

2014), but is presently limited to only three decades of imagery. Conversely, paleolimnological 

temperature proxies can expand the temporal scales of lake temperature measurement, but the 

expense of core collection and analysis limits the spatial scope of this approach. Ideally, 

assessment programs should simultaneously consider multiple independent methods to cover 

longer timescales and allow maximal spatial and temporal resolution.  

East Africa’s Lake Tanganyika has become one of the best-known cases of warming 

among the world’s lakes. As a result of the pattern of warming with depth, the lake has become 

more stratified, thereby reducing internal nutrient loading to the upper water column (Verburg et 
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al. 2003, O’Reilly et al. 2003, Verburg and Hecky 2009). Evidence from sediment cores suggests 

that reduced internal nutrient loading has caused the lake to become less productive, with 

implications for the lake’s fishery (O’Reilly et al. 2003, Tierney et al. 2010) on which hundreds 

of thousands of people depend for their nutrition and livelihoods. 

Multiple methods have independently been used to estimate the warming trends in this 

large (volume: 18,900 km3), old (~12 million years), and meromictic rift lake. The in situ water 

temperature record is one of the longest direct observation time series from any lake in the 

world. While historical temperature data are distributed across the entire spatial extent of the 

lake, previous analyses have focused on long-term warming trends in deep water (> 100 meters 

depth) in the north basin (~1/3 of the lake’s volume) in the wet season (October-April) where the 

data are the richest (Verburg et al. 2003, O’Reilly et al. 2003, Verburg and Hecky 2009). Lake 

surface temperatures have been measured using space-borne radiometers since 1985 including 

the Advanced Very High Resolution Radiometers (AVHRR) and the Along Track Scanning 

Radiometer (ATSR) (Schneider and Hook 2010). The high-resolution satellite record (mean data 

gap is 5.1 days) complements the long-term but sporadic in situ temperature record from Lake 

Tanganyika. In addition to in situ instruments and satellites, the TEX86 paleotemperature proxy 

has been used to reconstruct 60,000 years of lake surface temperature data in Lake Tanganyika 

(Tierney et al. 2008, 2010). The TEX86 paleotemperature proxy uses the temperature dependence 

of Thaumarchaeal (planktonic microorganisms) glycerol dialkyl glycerol tetraether cyclization to 

reconstruct surface temperatures (Wuchter et al. 2004, Powers et al. 2004).   

Published warming rate estimates from each method disagree by a factor of two. In situ 

instruments, the TEX86 paleolimnological proxy, and satellite-borne radiometers  reporting 

warming rates of 0.15 (Schneider and Hook 2010), 0.21 (Tierney et al. 2010), and 0.30 °C 
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decade-1 (Schneider and Hook 2010), respectively. This variation in temperature trend estimates 

could be attributable to spatiotemporal variation in warming rates because they were applied to 

different parts of the lake, different portions of the year, and different lengths of time. However, 

spatiotemporal variation in warming trends have not been explored in lake Tanganyika. The 

differences might also be attributable to inherent differences between the measurement 

approaches themselves (e.g. temperature at the air-water interface measured by satellites versus 

bulk surface temperatures measured by in situ thermometers). Our understanding of the impacts 

of warmer temperatures on Lake Tanganyika’s spectacular ecosystem would benefit from the 

reconciliation of all three perspectives to yield a more consistent estimate of warming rates.  

In this paper, we assess whether warming rates in the upper water column (<100 m depth) 

vary spatially within the lake using in situ data and test whether spatiotemporal variation in 

temperature and warming rates can account for observed differences between measurement 

methods. To address these goals, we synthesized new and previously published in situ surface 

temperature data with other data sources (the TEX86 paleolimnological temperature proxy, the 

ATSR satellite instruments, and the AVHRR satellite instruments) for Lake Tanganyika. Using 

the in situ data, we develop models to characterize spatiotemporal variation in upper water 

column temperatures and rigorously compare model output to the other data sources. Our work 

demonstrates the need to explore spatial variation in the response of lake temperature to climate 

change within large lakes.   

Methods 

Study Location 
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Lake Tanganyika is a long (650 km) and deep (1470 m) lake located in East Africa and 

oriented on a roughly north-south axis between 3.4 and 8.9 °S latitude (Fig. 1). It has three basins 

that are separated by relatively shallow transverse sills (~500 m depth). The north, central, and 

south basins are located between 3.4-5.8 °S, 5.8-7.0 °S, and 7.0-8.9 °S, respectively. The south 

basin is the deepest while the north basin has the highest volume. Seasonal southeast trade winds 

during the dry windy season (May-October) and differential evaporative cooling over the 650 km 

length of the lake drives large scale convective circulation and internal waves with a period of 25 

to 30 days (Verburg et al. 2011). The internal waves are reactivated at the end of the dry season 

(September) and persists through the rest of the year with decreased amplitude (Podsetchine and 

Huttula 1996, Plisnier et al. 1999, Verburg et al. 2011). 

Temperature Data 

Several syntheses of in situ temperature data have been published for Lake Tanganyika 

(Verburg et al. 2003, O’Reilly et al. 2003, Verburg and Hecky 2009). These syntheses focused 

on deep water below 100 meters depth. Here we expand upon those records by including 

historical temperature data sets that were not included in previous work and by focusing on 

temperature in the upper water column (Appendix 1). This enabled us to include data which span 

the spatial extent of the lake and the entire seasonal range. We also include new temperature data 

in the north, central, and south basins (Appendix 1) that were collected near Kigoma, Mpulungu, 

and offshore from Tanzania’ Mahale Mountains National Park. Field research permits were 

granted by the Vice Chancellor of the University of Dar es Salaam. We collected these data 

between 1993-2013 using an YSI 6600 V2 data sonde, titanium RBRduo TD, Seacat Profiler 

V3.1b, and Onset HOBO U22 temperature loggers that were cross calibrated biannually. 

Temperature data taken before 1993 were measured using data loggers, standard mercury 
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thermometers, and reversing thermometers. All temperature data taken over the last century 

reported here come from at least 1.5 km offshore and where the water depth exceeds at least 100 

m. Much of the data come from sites near the three major research centers on the lake near 

Uvira, Democratic Republic of Congo; Kigoma, Tanzania; and Mpulungu, Zambia (Fig. 1). In 

total, 13985 temperature observations were included in our analysis. The temperature data used 

here are freely available through the Long-Term Ecological Research network data portal 

(Kraemer et al. 2015).  

TEX86 is a well-documented surface water temperature proxy applied to the open ocean 

and many large lakes that have well-preserved sediments with limited inputs of terrestrial 

organic matter (Tierney et al. 2010). Sediment cores from Lake Tanganyika were taken from the 

central basin of the lake at 6.552 °S, 29.975 °E (Fig. 1) (Tierney et al. 2010). The original 

published TEX86 data (Tierney et al. 2008) were recalibrated and updated in a subsequent 

publication (Tierney et al. 2010). The recalibration leads to a downward temperature correction 

of about 2.0 °C. All data presented here are based on the updated calibration procedure. 

Uncertainty in the TEX86 temperature estimates arises from random error in the calibration and 

aging of the sediment core, but results are considered to be accurate to within 0.4°C for 

Tanganyika (Tierney et al. 2010). In total, 9 TEX86 temperature observations over the last 

century are included in our analysis, each interpreted as the mean annual surface temperature at 

the core site. The complete TEX86 temperature data used here are freely available through the 

World Data Center for Paleoclimatology (Tierney et al. 2010). 

Calibrated satellite lake skin temperature data for Lake Tanganyika spanning the seasonal 

range have been published in an online database for a single data extraction point in the central 

basin (Schneider and Hook 2010). We update these published data with the addition of two years 
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of data (2010-2011) processed by the same methods. The ATSR and AVHRR data used in this 

study were acquired for the periods when they were available from 1985-2011, and excluded 

pixels with cloud cover following the algorithms of previously published work (Schneider and 

Hook 2010). Night-time ATSR and AVHRR data were extracted and averaged within a 3 X 3 

km and 4 X 4 km area, respectively,  centered over the location 6.792°S, 30.072 °E in the central 

basin of the lake (Fig. 1). Night-time data were used to avoid bias from orbital drift of the 

satellites. Satellite temperature estimates were calibrated and validated against buoy data from 

the Laurentian Great Lakes (Schneider and Hook 2010). The mean and maximum data gaps for 

the Lake Tanganyika satellite data are 5.1 days and 112 days, respectively. The satellite data are 

freely available through the “Large Lakes” data portal on the National Aeronautics and Space 

Administration’s Jet Propulsion Laboratory website (Schneider and Hook 2010). 

Statistical modeling of in situ temperature 

 We developed a statistical model of in situ temperatures to (1) test whether upper water 

column (top 100 meters) warming rates vary spatiotemporally, and (2) determine whether 

differences in the location and time of satellite and TEX86 measurements can account for 

disparities in temperature and warming rates among these three methods. The spatial and 

temporal incompleteness of Lake Tanganyika’s in situ temperature data precluded traditional 

statistical modeling such as autoregressive integrated moving average (ARIMA) approaches.  

Instead, we build a series of general linear mixed effects models to all available temperature 

observations in the upper water column (≤ 100 m depth) made over the last century. We fit the 

model separately for data from 11 depths (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100) in the 

upper water column. The structure of the model reflects known and hypothesized drivers of 

temperature variation in the upper water column of Lake Tanganyika: 
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𝑌𝑖,𝑊 =  𝐿𝑊 +  𝑆𝑊 +  𝛽1𝐷𝑒𝑐𝑎𝑑𝑒 +  𝛽2𝐺𝐼𝑆𝑆 + 𝛽3𝐷𝑒𝑐𝑎𝑑𝑒 ∗ 𝐿 + 𝛽4𝐷𝑒𝑐𝑎𝑑𝑒 ∗ 𝑆 + 𝛽7𝐷𝑒𝑐𝑎𝑑𝑒

∗ 𝐻𝑊 +  𝜖𝑖 

where Yi,w is the ith temperature observation on the wth week of the year; Lw is the week of the 

year-specific effect of latitude (°S); Sw is the week of the year-specific effect of distance from 

shore (km); Decade is the decimal decade of each observation since 1900; GISS is the detrended 

Goddard Institute for Space Studies Land-Ocean Temperature Index (GISS) (Hansen et al. 

2010); L and S are the latitude and distance to shore at the location of each measurement; Hw is 

the average relative percent humidity for the week of the year when the temperature 

measurement was made (averaged over a 2.5 year period from 2011-2013 from a weather station 

in Kigoma, Tanzania); and ϵi is the observation-specific error. In total, the models characterizes 

spatial, seasonal, interannual, and century-long variation in temperature.  

The term in the model for latitude (Lw) and distance to shore (Sw) at the location of each 

measurement characterize spatial variation in temperature over the course of the year (but not 

inter-annual or century-long variation). Lw and Sw were fit separately for each week of the year 

because these effects are known to vary substantially within a season. In other words, Lw, and Sw 

are interaction terms between week of the year (as a random effect) and two spatial predictors of 

temperature (L, S).  

The β terms in the above equation are coefficients for the continuous, fixed effects in the 

model that characterize inter-annual and century-long variation in temperature. In part, this 

variation is captured by the first two fixed effects in the model; Decade and GISS. β1, the 

coefficient for the Decade term, can be interpreted as the generalized, century-long warming 

rate. β2, the coefficient for the GISS term, can be interpreted as the influence of global, inter-
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annual variation in temperature on upper water column temperatures in Lake Tanganyika. We 

include the detrended, monthly GISS index over the period from 1912-2013 as a predictor 

because inter-annual variation in Lake Tanganyika temperatures have been shown to closely 

track global air temperatures (Verburg and Hecky 2009). The GISS data have had the long-term 

trend removed so that the GISS coefficient (β2) describes the effect of interannual variation in 

global land surface temperatures but not the long-term warming trend.  

The long-term warming trend has also been hypothesized to vary seasonally and spatially 

within the lake (Verburg and Hecky 2009). The continuous, fixed interaction terms in the model 

between Decade and latitude (L); Decade and distance from shore (S); and between Decade and 

the average relative humidity for week of the year (Hw) characterize the influence of location 

within the lake and season on the long-term temperature trend. The average relative humidity on 

each week of the year was included in the model as an interaction term with Decade because 

humidity is tightly related to the multivariate seasonal axis from the cold, dry and windy season 

to the hot, wet, and less windy season. The β terms associated with these interaction terms (β3, 

β4, and β5) can be interpreted as the impact of L, S, and H on the generalized warming rate 

estimate (β1).  

To assess the accuracy of the model, we compare raw temperature measurements to 

modeled estimates using the root mean squared error (RMSE) from ordinary least squares 

regression. We used bootstrapping to minimize spatial and temporal autocorrelation in the 

temperature data; we randomly sample 10% of the temperature observations made over the last 

century for each 10 meter depth bin and fit the model to that subset of the data. We repeated this 

procedure 100 times with replacement and examined the distribution of each model parameter 

across models. By randomly subsetting the data across large spatial and temporal scales, we 



17 

 

 

 

severely limit violations of the assumption that temperature data are not spatially or temporally 

autocorrelated. To interpret the robustness of our model, we compare the coefficients from the 

full model to the distribution of parameters derived from fitting data subsets. Because the median 

parameter is more robust to the violations of model assumptions, the median parameters from 

model subsets are used for predicting in situ temperature data at the sites of the satellite and 

TEX86 core extractions.   

In situ temperature comparison to TEX86 and satellites 

The second major goal of the in situ temperature model was to determine whether the 

observed variation in warming rates based on in situ temperature data can account for differences 

in warming rate estimates across methods (in situ, satellites, TEX86). Ideally, TEX86 temperature 

data and satellite data could be compared directly to in situ temperature observations made in the 

same location. However, that is not possible with the available data. Instead, we used output 

from the in situ temperature model to predict surface temperatures at the satellite data extraction 

site and the TEX86 core site over time. First, we substituted the latitude (6.55° S) and distance 

from shore (5.62 km) at the location of the TEX86 core site into the temperature model fit to 

surface temperature data to generate daily estimates of surface temperature at the core site. We 

used the daily estimates of modeled, in situ surface temperature to calculate annual means for 

comparison to the raw TEX86 data. Similarly, we substituted the latitude (6.72° S) and distance 

from shore (30.69 km) at the location of the satellite extraction site into the temperature model to 

generate daily estimates of surface temperature at the site of the satellite extraction. The resulting 

model output is our best estimate of surface temperatures at those specific locations, and is 

informed by all available in situ data.  
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Temperature model output for the locations of the satellite extraction and the TEX86 core 

site were compared to raw data from each method using major axis (MA) regression. MA is a 

type II, least squares regression technique used when there is error in the measurements of both x 

and y variables (McArdle 1988). The long-term warming rates associated with modeled in situ 

data, satellites and TEX86 were based on annual means. To estimate the surface warming rate 

based on TEX86 temperature data, we randomly resampled from the TEX86 error distribution 

(±0.4 °C) (Tierney et al. 2010) to account for uncertainty in the TEX86 calibration procedure. We 

used the resampled data to calculate the long-term trend. We repeated this resampling procedure 

1000 times to estimate a distribution of warming rate estimates and an associated 95% 

confidence interval. Warming rates were compared using analysis of covariance (ANCOVA). 

All statistics were computed using R (R v3.1.0, core team, 2013). 

Results 

Statistical modeling of in situ temperature 

The models fit to in situ temperature observations in the upper water column of Lake 

Tanganyika accounted for 44-89% of the variation in temperature depending on the depth to 

which the model was fit (Appendix 2). The fixed effects in the models which characterize inter-

annual and century-long temperature trends explained progressively more of the temperature 

variation with increasing depth. The fixed effects explained 4% of the variation in surface 

temperature while they explained 45% at 100 m (Appendix 2). The RMSE of the temperature 

models decreased with depth from 1.19 °C at the surface, to 0.21 °C at 100 m (Appendix 2). 

Model residuals were normally distributed and unrelated to any of the predictors in the model. 
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The random effects of latitude (°S) and distance to shore (km) on temperature varied over 

the course of the year. Latitude showed strong seasonal variation in its impact on temperature. 

As expected, during the dry season, temperature increased with latitude and during the wet 

season temperature decreased with latitude. The distance from shore had a weak, seasonally 

variable impact on temperature; in the dry season, temperature tends to decrease with distance 

from shore and in the wet season temperature tends to increase with distance from shore. Surface 

temperatures were strongly related to the GISS-LOTI, but this relationship was less pronounced 

at depth and became slightly negative below 70 m (Appendix 3). 

According to the model of in situ temperatures, the surface of the lake has warmed on 

average at a rate of 0.129 ± 0.023 °C decade-1 over the period 1912-2013. Water temperatures 

increased over the period 1912-2013 at all depths from 0-100 m across the spatial extent of the 

lake (Fig. 2). The fastest warming rates on average can be found at depths of 50-80 m (Fig. 2). 

The model results suggest that there is significant variation in warming rates over the surface of 

the lake and through the year. On average, warming rates at the nothern tip of Lake Tanganyika 

exceed warming rates at the southern tip by about 0.013 °C decade-1 (Fig. 2). This latitudinal 

difference is most pronounced at 50 m below the surface where the northern basin is warming 

0.076 °C decade-1 faster than the southern tip of the lake (Fig. 2). The seasonal temperature cycle 

also influences the rate of temperature change. Surface warming rates vary by 0.080 °C decade-1 

over the seasonal cycle with the slowest surface warming rates occuring in the dry season when 

temperatures are typically lower (Fig. 2). The opposite pattern (warming rate faster in dry 

season) is observed over the depth range from 20–80 m (Fig. 2). The distance from shore also 

impacted the century-long warming rate but the effect was weaker than the effects of latitude and 

seasonality. The fastest surface warming rates occurred close to shore but for much of the water 
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column (10-50 m and from 90-100 m), distance to shore was negatively related to warming rate 

(Fig. 2). 

Overall, the model coefficients for the full fitted model agreed well with the median 

coefficients from models fit to resampled 10% subsets of all data (Appendix 3). However, the 

full model tended to underestimate the effect of latitude and seasonality on warming rates, and 

overestimate the generalized warming rate and the effect of GISS-LOTI on temperature data 

(Appendix 3). The semi-parametric data subsetting approach is more robust than the full model 

which makes more assumptions about the underlying data. However, if the full model is more 

accurate, then the seasonal and latitudinal variation in warming rates estimated here may be 

overestimated. 

In situ temperature comparison to TEX86 and satellites 

Between 1985 and 2011, satellite temperatures were 0.26°C colder on average than the 

modeled in situ surface temperatures. Despite the difference in temperatures, there was no 

significant difference in surface warming rates between satellite data ( 0.225 ± 0.112 °C decade -

1) and modelled in situ data (0.164 ±  0.075°C decade -1) over the period from 1985-2011 

(analysis of covariance, p = 0.26, Figs. 3-5). The relationship between daily modeled in situ 

surface temperature (x axis) and satellite temperature (y axis) had a slope significantly greater 

than one (slope = 1.11, 95% confidence interval = 1.07-1.15, MA regression with 100 

permutations, Fig. 3). The slope of the annual averages of modeled in situ surface temperature (x 

axis) versus satellite temperature (y axis) was significantly greater than one (slope = 2.12, 95% 

confidence interval = 1.55-3.14, MA regression with 100 permutations, Fig. 3). 
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TEX86-based temperatures were 1.46 °C colder on average than the modeled in situ 

surface temperatures (Fig. 3). TEX86-based warming rates were faster than in situ temperatures 

by a factor of 3 over the period from 1918 to 1996 (0.248  ± 0.053 °C decade -1 for TEX86
  versus 

0.079 ±  0.052°C decade -1 for modeled in situ data, Fig. 4). After accounting for uncertainty in 

the TEX86 temperature calibration using monte carlo simulations with 100 permutations, there 

was still a significant difference in warming rates between TEX86 and the modeled in situ 

temperature trend (analysis of covariance p < 0.01, Figs. 4 and 6). The slope between annual 

modeled in situ surface temperature (x axis) and TEX86 temperature (y axis) was significantly 

greater than one (slope = 5.29, 95% confidence interval = 2.96-20.91, MA regression with 100 

permutations, Fig. 4).  

Discussion 

All three methods (in situ, satellite, TEX86) suggest that the surface of Lake Tanganyika 

warmed significantly over the last century (linear regression, p<0.05, Figs 4-6). Our analyses 

provide a detailed portrait of spatiotemporal patterns of warming in the upper water column of 

Lake Tanganyika, revealing that previous work on long-term warming in deeper water capture 

only a portion of the changes over the last century. Spatial variation in warming rates partially 

account for the differences between warming rate estimates based on in situ, satellite and TEX86 

data. However, even after accounting for spatiotemporal variation in temperature and warming 

trends, key differences among methods remain.  

Spatiotemporal variation in warming rates appears to be linked to vertical mixing patterns 

within the lake. Warming rates tend to be slower in areas of the lake with relatively high vertical 

mixing. For instance, warming rates are slower in the southern latitudes where vertical mixing is 
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greater. The most persistent vertical mixing in the southern basin occurs in the dry windy season 

when wind-induced tilting of the thermocline induces ‘primary upwelling’ as the thermocline is 

lifted toward the surface there. Primary upwelling may slow apparent surface warming rates by 

transporting accumulated surface heat to deeper water and refreshing the surface with cold 

hypolimnetic water annually. Thus, in effect surface heat is distributed into a much larger mass 

of water than the local epilimnion, yielding a slower warming rate in the upper water column. 

Enhanced vertical mixing has also been suggested as a mechanism for slower warming in the 

upper water column at the onset of summer in Lake Ontario (Finlay et al. 2001). Areas of Lake 

Ontario that were more strongly stratified warmed faster at the surface than areas with lower 

stratification (Finlay et al. 2001). A similar pattern was observed in Lake Tanganyika but over 

interannual timescales instead of over seasonal timescales. 

Seasonal differences in the pattern of warming with depth also suggest that warming rates 

are linked to patterns of vertical mixing. Surface warming rates in the wet season were faster 

than warming rates from 10-100 m whereas surface warming in the dry season is slower than at 

depth. This pattern can be explained by seasonal differences in the strength of microstratification 

at the surface of the lake. Due to weakening of surface winds in the wet season, a secondary 

thermocline typically forms in the top 5-15 meters of the water column in Lake Tanganyika 

(Verburg and Hecky 2003). The secondary thermocline serves as a barrier to mixing and may 

prevent the transfer of heat to deeper depths in the wet season. Heat that gets trapped in the top 

5-15 m of the water column above the secondary thermocline may be lost back to the atmosphere 

through outgoing long wave radiation, sensible heat loss, or latent heat loss. However, latent heat 

losses may be relatively small in the wet season due to high humidity and low wind speeds. In 

the dry season, persistent trade winds disrupt the secondary thermocline, thus heat may be 
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transferred to greater depths at that time of year. Thus seasonal variation in surface 

microstratification may explain season differences in the pattern of warming with depth.  

Periodic, localized vertical mixing also occurs in near shore areas of Lake Tanganyika 

when internal waves interact with the lake bottom (Corman et al. 2010). Turbulent mixing of this 

sort is likely to transmit heat from the surface to deeper parts of the lake, thereby slowing 

apparent surface warming rates near shore. The coefficient in our model associated with the 

interaction term between distance to shore and Decade suggested that warming rates may be 

slower nearshore only at the surface and from 60-80 m depth. Thus our model does not strongly 

support the hypothesis that warming rates closer to shore at the surface are slower than warming 

rates over deeper water where internal waves interact less strongly with the lake bottom. We may 

not have detected a strong effect of distance from shore on warming rates because we excluded 

data that were taken from areas shallower than 100 m and less than 1.5 km from shore.  

The in situ temperature model suggests that the northern basin of the lake is warmer on 

average and experiencing relatively fast surface warming rates. This result contrasts with the 

global latitudinal gradient in lake warming where temperature is negatively correlated to 

warming rates (Schneider and Hook 2010). The warmest time of year in Lake Tanganyika (wet 

season) has the fastest surface warming rates. At the global scale, warming is often slower at 

times of the year when temperatures are high (Screen and Simmonds 2010), which also contrasts 

with our finding that water temperatures in the warm, wet season are warming faster. 

In situ temperature comparison to satellites 

The difference between satellite and modelled in situ temperatures is at least partly 

attributable to differences in the time of day when satellite and in situ data are collected. In situ 
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temperature data are measured during daylight hours when surface temperatures are at or near 

daily peaks, whereas satellite data are measured at night to avoid bias from orbital drift of the 

sensors (Jin and Treadon 2003). At night, surface temperature is typically 0.2-0.6 ºC lower than 

the daytime temperature (Verburg and Hecky 2003). Thus, the average observed temperature 

difference between satellites and in situ instruments (0.26 ºC lower for satellites) could be 

entirely explained by the timing of observations. Furthermore, the difference between nightime 

and daytime surface temperatures are lowest in the cooler dry season when winds disrupt 

daytime surface microstratification. Similarly, the difference between satellite (night) and in situ 

(day) temperatures are also smallest in the cooler dry season. This further supports the 

hypothesis that differences between in situ and satellite-based surface temperature estimates 

primarily reflect differences in the time of day when temperature is measured by the two 

methods.  

Even after accounting for diurnal variation in surface temperatures, there remains a 

substantial amount of unexplained variation in the comparison between daily satellite and daily 

in situ temperatures (Fig. 3). Some of this variation may arise from spatial or temporal biases in 

satellite data collection. For instance, non-random spatial variation in surface temperature and 

atmospheric interference (clouds, smoke) could bias satellite temperature measurements 

(Merchant et al. 2005). Additionally, satellite data represent only cloud-free days, which could 

bias the annual mean surface temperature estimates toward warmer temperatures. Differences 

between temperature at the air-water interface (skin temperatures) and bulk surface water 

temperature may also explain adiditional variation in the difference between satellite and 

modeled in situ temperature. For example, satellite-based temperatures often exceed in situ 

measurements by ~0.2 °C in lakes due to the differences in heat exchange between the 
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atmosphere and skin water versus surface bulk water (Roni et al. 2013, Wilson et al. 2013, 

MacCallum and Merchant 2014). While inherent differences in the measurement approaches 

may be reflected in our data, satellite data and in situ data  match relatively closely (Figs. 3 and 

4) and the differences between satellite and in situ temperatures observed here likely reflect the 

time of day when measurements are made.  

In situ temperature comparison to TEX86  

The substantial differences between TEX86 temperature data and the modeled in situ 

temperature data at the location of the sediment core raise questions about interpretation of 

TEX86 data. Based on the pattern of mismatch between in situ bulk temperature and TEX86 

temperature (Fig. 6), it appears that the TEX86 paleolimnological proxy substantially and 

consistently underestimates the surface temperature in Lake Tanganyika using the current TEX86 

calibration method. Given the direction of the mismatch, the TEX86 record may be most closely 

related to temperature at a fixed depth below the surface, or the average temperature over a range 

of depths (Schouten et al. 2012). The quantitative agreement between TEX86 temperatures and in 

situ temperatures over the last century is closest for in situ measurements taken at ~60 m depth 

where temperatures are colder than the surface. However, warming rates inferred from TEX86 are 

still much greater than those at 60 m according to our in situ temperature model for that depth.  

Furthermore, the satellite-based temperature data were extracted from images near the site where 

the sediment core was collected for TEX86 analysis (Fig. 1), yet the satellite-based warming rate 

is similar to modelled in situ data and far lower than TEX86 temperatures. Together, these 

comparisons suggest that it is unlikely that warming at the core site was truly 3 times faster than 

that indicated by in situ data. 
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 We propose an alternative explanation for the mismatch between TEX86 and in situ 

temperature data that is rooted in the ecology of Thaumarchaeota. Though no single abiotic shift 

is sufficient to explain why TEX86 suggests more rapid warming than in situ data in Lake 

Tanganyika, the observed shallowing of the oxycline suggest that TEX86 could reflect a 

biological response overlaid upon the in situ warming pattern.  In Lake Tanganyika, 

Thaumarchaeota are most productive in the zone of the lake with moderate to low oxygen levels 

(“suboxic zone,” 0.5-4.0 mg L-1 dissolved oxygen, 40-180 m depth) (Schouten et al. 2012). The 

suboxic zone has shallowed over the last century due to reduced vertical mixing (Verburg et al. 

2003, O’Reilly et al. 2003, Verburg and Hecky 2009, Van Bocxlaer et al. 2012), suggesting that 

Thaumarchaeota have likely moved into shallower, warmer water. The magnitude of this inferred 

shift in the depth of Thaumarchaeota is comparable to the upward shift observed in the depth 

niche of endemic deep water molluscs in response to the shallowing oxic zone in Lake 

Tanganyika (Verburg and Hecky 2009, Van Bocxlaer et al. 2012). Shallowing of 

Thaumarchaeota’s oxygen niche would lead to warmer TEX86 temperatures over time 

irrespective of warming rates at any specific depth. Thus, TEX86 could be responding to an 

ecological change that is indirectly linked to the temperature that it purportedly measures 

(Wuchter et al. 2004, Castañeda and Schouten 2011).  

The combination of climate-mediated warming at all depths with upward shifts in the 

oxygen niche of Thaumarchaeota is sufficient to explain the observed differences in both 

temperatures and warming rates between methods. If this interpretation is correct, the TEX86 

paleolimnological proxy is still valid but may be more closely related to the temperature in the 

suboxic zone, not temperature at the surface or any other fixed depth. As a measure of suboxic 

zone temperature, the TEX86 record augments previous analyses of shallowing trends in snail 
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depth distributions, and directly connects the measured temperature increases and estimated 

stabilization of the water column with organismal responses to climate change in Lake 

Tanganyika. Thus, our reinterpretation of the TEX86 record could lead to a more nuanced view of 

the entire 60,000 year temperature time series derived from TEX86 data for Lake Tanganyika. 

Without accounting for this ecological perspective, the most rapid rates of warming and cooling 

in the TEX86 record may be especially exaggerated, and published temperatures are likely to 

reflect temperature at a particular depth only during periods of relative stasis in suboxic zone 

depth.  

Conclusions 

Our update and synthesis of in situ temperature data from Lake Tanganyika demonstrates 

that long-term warming rates in Lake Tanganyika vary with latitude, distance from shore, and 

with the seasonal cycle. Though our statistical approach to the incomplete space-time matrix of 

in situ observations from Lake Tanganyika has limitations, it nonetheless reveals consistent 

patterns of spatial variation in warming that illustrate a need to assess the spatial dimensions of 

warming within large lakes. This variation is most likely driven by variation in vertical mixing; 

areas and times of year with low vertical mixing experience the fastest warming rates. This 

pattern may be observed in other large lakes with spatial and temporal variation in vertical 

mixing patterns. There are few large lakes where time series of in situ observations encompass a 

wide enough range of locations to estimate spatial variation in warming rates. Such comparisons 

have been made over shorter time scales in other large lakes, and have revealed substantial 

differences in warming across the surface of lakes (Austin and Colman 2007, Ngai et al. 2013). 

The analyses of spatial variation in lake skin temperatures for Lake Tanganyika from satellites 

could be an informative complement to our work on spatially distributed in situ data. 
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The broad quantitative agreement between temperature records from satellites and in situ 

instrumental data engenders new confidence in the records themselves as well as their 

implications for climate change effects. Unfortunately, there are few lakes in the world that have 

temperature records from multiple methods spanning over a century of change. Of the lakes that 

have well-preserved sediments, few also have both long-term in situ temperature records and 

surface area large enough for unobstructed satellite-based measurements. Lakes Baikal and 

Malawi could provide all three types of records, thereby broadening perspectives on the effects 

of climate change on surface temperatures as well as testing whether our reinterpretation of the 

TEX86 paleolimnological temperature proxy could be correct for other lakes. 

As the oxic zone shallows in Lake Tanganyika, aerobic organisms will be forced upward 

in the water column where temperatures are both warmest already and rising fastest. Higher 

temperatures exact metabolic costs for these organisms, potentially reducing their discretionary 

energy available for growth and reproduction (Dillon et al. 2010, Sumaila et al. 2011). Reduced 

vertical mixing associated with thermal shifts has already diminished internal nutrient loading, 

leading to reduced primary productivity and shifts in phytoplankton assemblages (Verburg et al. 

2003, O’Reilly et al. 2003, Tierney et al. 2010). Warm lakes like Lake Tanganyika are especially 

vulnerable to warming-driven shifts in lake stratification due to the nonlinear relationship 

between water density and water temperature. The combination of reduced oxic habitat, 

increased metabolic demands, and lower primary productivity is likely to have negative effects 

on the lake’s ecosystem and the hundreds of thousands of people who depend on the lake for 

their nutrition and livelihoods. 
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Fig. 1. Map of Lake Tanganyika and its position in East Africa. White circles with black outlines 

indicate locations of in situ temperature measurement. The size of the circle is proportional to the 

number of temperature measurements taken at each location. Most of the in situ data come from 

areas near major research centers (Uvira, Kigoma, and Mpulungu). The orange circle indicates 

the location of the TEX86 sediment core and the red square indicates the location of the satellite 

data extraction site. The north, central, and south basins are located between 3.4-5.8 °S, 5.8-

7.0 °S, and 7.0-8.9 °S, respectively.  

 

Fig. 2. Modeled century-long warming rate estimates (1912-2013). Each colored pixel on the 

maps is an estimate of the warming rate for that location in the lake based on the temperature 

model fit to all available in situ temperature data. Separate map panels show variation across 

seasons and depths in the estimated warming rate. The top row of warming estimate maps are for 

the dry season and the bottom row of warming rates are for the wet season. The columns indicate 
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the depth gradient of warming rate estimates from 0-100 m. All temperature models were fit to 

data from more than 1.5 km from land and in locations where the water depth exceeded 100 m 

deep. 

 

Fig. 3. Satellite temperature and TEX86 temperature as a function of modeled in situ temperature. 

The black dashed line represents the 1:1 reference line. Small red square dots represent daily 

satellite temperatures as a function of the modeled in situ estimate at the satellite extraction site. 

Large red square dots with black outlines represent annual mean satellite temperatures as a 

function of modeled annual mean in situ temperatures at the extraction site. Annual mean 

satellite temperatures were calculated from raw satellite data linearly interpolated to daily 

timescales. Large orange circular dots with black outlines represent the TEX86 measurements as 

a function of the modelled annual mean temperature at the core site.  
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Fig. 4. Surface warming rates based on in situ, satellite, and TEX86 data. Each bar represents a 

warming rate estimate based on one of the three temperature measurement methods (in situ, 

satellite, TEX86). Error bars represent 95% confidence intervals for each estimate. The two 

leftmost bars are warming rate estimates over the period from 1918-1996 based on TEX86 data 

and the in situ model output for the location and timeframe of the TEX86 core. The two rightmost 

bars show warming rate estimates over the period from 1985-2011 based on satellites and in situ 

model output for the location and time frame of the satellite data extraction.  

 

Fig. 5. Long-term satellite temperature data compared to model estimates. Each small red square 

dot is a raw, satellite measurement of the lake’s surface. The grey line is the modeled surface 
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temperature at the location of the satellite extraction.  Satellite temperatures closely track the 

seasonal, interannual, and long-term variation in temperature data predicted by in situ 

temperature data. 

 

Fig. 6. Long-term TEX86 temperature data compared to model estimates. Each large orange 

circular dot is a raw TEX86 surface temperature measurement. Each TEX86 measurement 

represents the annual mean surface temperature at the location of the TEX86 core site ± 0.4°C 

(95% confidence interval). The three lines are the modeled annual surface temperature at the 

location of the TEX86 core site at three different depths (0, 50, 100 m).  There is a strong 

disagreement between TEX86 and modeled in situ temperatures, especially early in the time 

series. Deviations between the TEX86 temperature measurements and the modeled surface 

temperature may reflect model error, error in the TEX86 calibration procedure, or long-term 

shifts in the depth range of Thaumarchaeota (the microbes whose biomolecules are involved with 

generating the TEX86 proxy).  

Appendixes 
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Appendix 1. The vast majority of data in this compilation have not been included in previous 

long-term temperature trend estimation. In total, temperature data are now available from the 

years 1912-3 (Stappers 1913, Jacobs 1914), 1938-9 (Beauchamp 1939), 1946-7 (van Meel, 

Ludovic, Kufferath 1987), 1953 (van Meel, Ludovic, Kufferath 1987),1955-7 (Dubois 1958), 

1960-2 (Coulter 1968), 1964-6 (Coulter 1968), 1973 (Craig 1974), 1975 (Edmond et al. 1993), 

1981-2 (Narita et al. 1986), and intermittently from 1991 through 2013 (Huttula 1997, Plisnier et 

al. 1999, Plisnier 2001, Verburg et al. 2003, O’Reilly et al. 2003, Corman et al. 2010, Durisch-

Kaiser et al. 2011). A portion of the data from some of these sources has been used in previous 

analyses, but our inclusion of all three basins and both wet and dry seasons enabled us to use 

additional temperature data that was excluded from previous syntheses (Stappers 1913, Jacobs 

1914, Beauchamp 1939, Coulter 1968, van Meel, Ludovic, Kufferath 1987). We also included 

data in our analyses from published sources that have never before been used in long-term 

temperature syntheses (Narita et al. 1986, Corman et al. 2010, Durisch-Kaiser et al. 2011). When 

raw data were not directly available, temperature data were digitized from figures in 

publications.  
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Appendix 2. Mixed effects model evaluation. Root mean squared error (RMSE) and coefficient 

of multiple determination (R2) for mixed effects models fit to in situ temperature data as a 

function of depth. The variance explained by the fixed effects in each model is reported as “R2 

Fixed Effects.” 
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Appendix 3. Fixed effects model parameters. The β terms in the figures are coefficients for the 

continuous, fixed effects in the in situ temperature models. These models characterize inter-

annual and century-long variation in Lake Tanganyika temperature as a function of depth. β1, the 

coefficient for the Decade term, can be interpreted as the century-long warming rate for a 

specific depth (°C decade-1). β2, the coefficient for the GISS term, can be interpreted as the 

influence of global, inter-annual variation in temperature on upper water column temperatures in 

Lake Tanganyika. The β terms associated with the interaction terms in the model (β3, β4, and β5) 

can be interpreted as the impact of latitude (°S), relative humidity, and distance to shore (km) on 

the generalized warming rate estimate (β1). Blue dots indicate the median coefficient estimate 

across all models fit to 10% subsets of temperature data. Error bars extending from the blue dots 

represent the standard deviation in model coefficient estimates across models fit to data subsets. 

The empty circles represent coefficients from the full models fit to all available temperature data 

at a specific depth. 
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Chapter 2: Morphometry and average temperature affect lake stratification responses to 

climate change* 

Abstract 

Climate change is affecting lake stratification with consequences for water quality and 

the benefits that lakes provide to society. Here we use long-term temperature data (1970-2010) 

from 26 lakes around the world to show that climate change has altered lake stratification 

globally and that the magnitudes of lake stratification changes are primarily controlled by lake 

morphometry (mean depth, surface area, and volume) and mean lake temperature. Deep lakes 

and lakes with high average temperatures have experienced the largest changes in lake 

stratification even though their surface temperatures tend to be warming more slowly. These 

results confirm that the nonlinear relationship between water density and water temperature, and 

the strong dependence of lake stratification on lake morphometry makes lake temperature trends 

relatively poor predictors of lake stratification trends.  

Introduction 

Lake stratification responses to climate change affect people around the world through 

their impacts on water quality. Intensified thermal stratification of lakes can exacerbate lake 

anoxia (Chapman et al. 1998, Hecky et al. 2010, Van Bocxlaer et al. 2012, Palmer et al. 2014, 

North et al. 2014), enhance the growth of planktonic, bloom-forming cyanobacteria (Steinberg 

and Hartmann 1988, Paerl and Huisman 2009, Paerl and Paul 2012), and changes to internal 

                                                           
* Published as Kraemer, B. M., O. Anneville, S. Chandra, M. Dix, E. Kuusisto, D. M. 

Livingstone, A. Rimmer, S. G. Schladow, E. Silow, L. M. Sitoki, R. Tamatamah, Y. 

Vadeboncoeur, and P. B. McIntyre. 2015. Morphometry and average temperature affect lake 

stratification responses to climate change. Geophysical Research Letters. 
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nutrient loading with consequences for lake productivity (Verburg et al. 2003, O’Reilly et al. 

2003, Verburg and Hecky 2009). Despite the recognition that climate change effects on lake 

stratification are ubiquitous (Livingstone 2003, Coats et al. 2006, Saulnier-Talbot et al. 2014), 

global patterns in the impact of climate change on lake ecosystems including lake stratification 

remain uncertain (Adrian et al. 2009, Williamson et al. 2009). 

Climate change has strongly influenced surface temperatures of lakes worldwide 

(Schneider and Hook 2010). The ecosystem consequences of climate change are often assumed 

to parallel warming rates (Smol et al. 2005, Solomon et al. 2007), but this is unlikely to be true 

of climate change effects on lake stratification. Due to the nonlinear relationship between water 

temperature and water density, the impact of temperature changes on lake stratification is highly 

dependent on average lake temperatures (Lewis 1987). Furthermore, lake stratification depends 

strongly on basin morphometric characteristics (mean depth, surface area, volume) (Lerman et 

al. 1995, Butcher et al. 2015) which may constrain lake stratification responses to warming. For 

instance, the capacity for lake warming to lead to thermocline depth shifts may be dampened in 

large lakes where the depth of the thermocline is strongly constrained by a lake’s fetch (Gorham 

and Boyce 1989, Mazumder and Taylor 1994, Fee et al. 1996, Boehrer and Schultze 2008, 

MacIntyre and Melack 2010). Thus, predicting lake stratification responses to climate change 

may depend on understanding how patterns in warming rates intersect with a lake’s baseline 

temperature and morphometry to alter its stratification regime. 

Given the importance of lake stratification for lake biota and water quality, we aim to 

determine which of the 26 lakes in our analysis are most susceptible to stratification changes in 

response to climate change. We compiled temperature profile data from lakes on five continents 

to test whether mean lake temperatures, lake warming rates, or lake morphometry can be used to 
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predict the observed trends in lake stratification as indicated by the depth of the thermocline, the 

thermal stability of the water column (Schmidt stability), and the steepness of the thermocline 

(thermocline buoyancy frequency). Due to the extraordinary size and depth of some of the lakes 

in our analyses, they represent 3.0% of the cumulative lake surface area, and 44% of the 

cumulative liquid surface freshwater on earth. The broad range of lake locations and 

characteristics represented in our analyses (Appendix 2, Appendix 3) provides insights into 

controls on lake stratification trends and informs predictions of how the global population of 

lakes will respond to climate change.  

Methods 

Study Sites 

We compiled temperature profiles for 26 lakes over the period from 1970-2010 from 

arctic, boreal, temperate, subtropical, and tropical regions. Temperature variation in these lakes 

have already been linked to climate change (Ambrosetti and Barbanti 1999, Quayle et al. 2002, 

Livingstone 2003, Lorke et al. 2004, Dokulil et al. 2006, Coats et al. 2006, Hampton et al. 2008, 

Moore et al. 2009, Schneider and Hook 2010, Hecky et al. 2010, Rimmer et al. 2011, Hsieh et al. 

2011, Shimoda et al. 2011, Winslow et al. 2014) but several of the temperature time series in our 

study have not been previously published in their full length (Atitlan, Moss, Sombre, Heywood, 

Nkugute). The lakes included in our analysis represent a wide range of surface area (0.02 to 

68800 km2), maximum depth (2.3 to 1642 m), and elevation (-212 to 1987 m above sea level) 

(Supplementary Table 1). All are freshwater lakes except for Lake Kivu which has a marked 

salinity gradient that affects its stratification. We analyzed the three basins of Lake Tanganyika 

independently as they span a significant latitudinal gradient, are separated by relatively shallow 

sills, and have divergent temperature and stratification trends. The temperature data for 5 lakes in 
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our analysis did not span the entire range from 1970-2010 but all lakes had temperature data 

which started in 1976 or earlier and ended in 2004 or later. Some lakes had only one profile per 

year while others had daily profiles from high resolution data loggers. Several lakes had data 

gaps of more than one year. The mean data gaps (average time between temperature profile 

measurements) for Tanganyika, Kivu, Victoria, Nkugute, and Atitlan were 2, 3, 3, 7, and 10 

years, respectively. Sensitivity analyses showed that data gaps of this size do not significantly 

bias our stratification trend estimates (Supplementary Figure 1). The number of depths in each 

temperature profile varied across lakes from 8 to 16 depending on lake depth. We verified that 

the values for stability, thermocline depth, and thermocline strength that were calculated from 

temperature profiles with discrete depths closely matched those calculated based on high 

resolution temperature profiles when they were available.  

Temperature and Stratification Trend Estimation 

The mean surface temperature, whole-lake temperature (volume-weighted), and bottom 

temperature were calculated from each temperature profile. From these profiles, we also 

calculated the Schmidt stability (kJ m-2), thermocline depth (m), and Brunt-Väisälä buoyancy 

frequency (s-1) at the thermocline using LakeAnalyzer (Read et al. 2011). LakeAnalyzer used 

well-accepted methods of calculating lake stratification indices from in situ temperature profiles 

and hypsographic data. Schmidt stability (hereafter “stability”) is the amount of energy required 

per unit area to mix a lake to homothermy without the exchange of heat (Schmidt 1928, Idso 

1973). Stability is a valuable metric because it is related to the potential for accumulation and 

depletion of deep water solutes in lakes (Kling 1988). The thermocline depth is the depth of the 

maximum density gradient in the water column and is a key variable controlling the depth niches 

of aquatic organisms (Weyhenmeyer et al. 2011). The Brunt-Väisälä buoyancy frequency 
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(hereafter “buoyancy frequency”) is the angular frequency at which a parcel of water would 

oscillate if it was displaced from its location in the water column. We calculated the buoyancy 

frequency at the thermocline for each temperature profile to estimate the steepness of the 

thermocline—a key control on vertical mixing in aquatic systems (Wüest and Lorke 2010). High 

buoyancy frequency signifies that the thermocline is steep and the resistance to vertical mixing at 

the thermocline is pronounced. 

Changes in the timing of stratification were not analyzed here as several lakes were 

stratified year-round. However, we did determine the typical start and end date of stratification in 

lakes that mix completely; only temperature profiles taken during the stratified period were used 

for trend estimation. We estimated the typical start and end date of stratification by calculating 

the average day of the year (DOY) over the entire observation period (1970-2010) on which the 

density stratification was sufficient to develop a persistent (lasting more than 5 days), mid-water 

thermocline. Year-round data were used for lakes that are permanently stratified or partially 

stratified all year round. 

To estimate trends in temperature and stratification indices during the stratified period, 

we removed the seasonal pattern from the temperature and stratification data and used Theil-Sen non-

parametric regression for trend estimation (Theil 1950, Sen 1968). We removed the seasonal 

pattern by first calculating a 30-day running mean over the course of a seasonal data curve made 

up of data pooled from all years for each lake. Then, we calculated the difference between the 

30-day running mean centered on each day of the year and the grand mean over the entire 40-

year record. That difference was subtracted from raw measurements made on the same day of the 

year to remove variation in the data attributable to time of year when the measurement was 

made. The seasonal detrending procedure was carried out independently for surface 
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temperatures, whole-lake temperatures, bottom temperatures, and the three stratification indices. 

The non-parametric Mann-Kendall test was used to assess the significance of trends (α = 0.05). 

Predictors of stratification trends 

Multiple linear regression models, hierarchical variance partitioning, and AIC model 

selection were used to determine the best predictors of trends in lake stratification indices. One 

value (the trend over time) was calculated for each lake stratification index for each lake. The 

trends were then used as response variables in the models. We used multiple linear regression 

models designed to predict the magnitude of the stratification trends from nine variables that fell 

into one of three categories: lake morphometric predictors (average depth, surface area, and 

volume), average temperature predictors (surface temperature, whole-lake temperature, and the 

difference between surface and bottom temperature) and temperature trend predictors (surface 

trend, whole-lake trend, and the difference between surface and bottom trends). Each lake was 

treated as a single observation of change through time. The response variables in each model 

(stability, thermocline depth, and buoyancy frequency trends) and the morphometric predictors 

were log transformed to attain normality in distributions, as confirmed by the Kolmogorov-

Smirnov test. Published values were used for lake morphometric characteristics (maximum 

depth, mean depth, surface area, and volume). 

We used Akaike’s information criterion (AIC) (Akaike 1981, R Development Core Team 

2013) forward and backward stepwise predictor selection to identify models that maximize 

explanatory power while minimizing the number of predictors (AIC selection criteria: δAIC > 2). 

The models for predicting stratification trends were refit using only the variables selected by the 

AIC. Using the most parsimonious model for trends in each stratification index, the significance 

of each predictor was assessed using the 95% confidence interval for its regression coefficient.  
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We also used hierarchical variance partitioning (Mac Nally 1996, R Development Core 

Team 2013) on each full model with all nine predictor variables to determine the independent 

contribution of each predictor variable to the total variance explained by the full multiple linear 

regression model. We compared across predictor variables and across categories of predictor 

variables (morphometric, average temperature, and temperature trends) to determine which 

variables had the most influence on the magnitude of stratification trends.  

Results 

Temperature and Stratification Trends 

On average, lake surface temperatures, whole-lake temperatures, and bottom 

temperatures have warmed by 0.84°C, 0.43°C, and 0.05°C, respectively, over the period from 

1970-2010 across the 26 lakes (Fig 1a). Significant increases in surface, whole-lake, and bottom 

temperature were observed in 20, 14, and 9 lakes, respectively (Mann-Kendall p < 0.05). 

Significant decreases were only observed in the bottom temperatures of one lake (Lake Pielinen, 

Mann-Kendall p < 0.05). Lake surface temperature trends, whole-lake temperature trends, and 

bottom temperature trends were positively related to latitude (Pearson’s correlation coefficient, r 

= 0.26, 0.18, and 0.14, respectively) and negatively related to mean depth (Pearson’s correlation 

coefficient, r = -0.22, -0.36, and -0.21, respectively). 

Lake stratification is becoming more stable, with deeper and steeper thermoclines (Fig 

1b). Of the 26 lakes, significant increases in buoyancy frequency, stability, and thermocline 

depth were observed in 17, 12 and 9 lakes, respectively (Mann-Kendall, p < 0.05). Only one lake 

had a significant decrease in buoyancy frequency (Mann-Kendall, p < 0.05) and no lakes had a 

significant decrease in Schmidt stability or thermocline depth (Mann-Kendall significance test, 

p > 0.05).  
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Predictors of stratification trends 

Lake morphometric variables and the mean lake temperature are better predictors of lake 

stratification trends than lake warming rates. The morphometric predictors and average 

temperature predictors together explained a high percentage of the variance in stratification 

trends, while warming rates were comparatively unimportant. In sum, morphological variables 

and average temperature variables explained 94% of the explain variation in Schmidt stability 

trends, 81% of the explained variation in buoyancy frequency trends, and 83% of the explained 

variation in thermocline depth trends (Fig 2). Morphological variables were the best predictors of 

stability trends (70% of explained variance) and buoyancy frequency trends (64% of explained 

variance), while average temperatures were the best predictors of trends in thermocline depth 

(49% of explained variance).  Mean depth explained the most variation in stratification trends 

across all three models (27%, on average, Fig 2, 3a). Lakes with greater mean depths had larger 

changes in their stability but slightly smaller changes in buoyancy frequency (Fig 3a). Of the 

average temperature predictors, average surface temperature explained the most variation in 

stratification trends (12%, Fig 2, 3b). Lakes with higher surface temperatures had larger changes 

in stability and thermocline depth but small buoyancy frequency trends (3b). Temperature trends 

explained little of the variation in stability (4%), thermocline depth (4%), and buoyancy 

frequency (6%) trends, respectively. Thus, multiple linear regression models of stratification 

index trends are largely unaffected by removing warming rates from the model (Fig. 4). 

According to AIC, the best predictors of stability trends were mean depth, average 

whole-lake temperature, and the average difference between surface and bottom temperature. All 

three variables were significant predictors of stability trends (multiple linear regression, R2 = 

0.91, p < 0.05). The best predictors of thermocline depth trends were lake volume, average 
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whole-lake temperature, and average difference between surface temperature and bottom 

temperature. All three were significant predictors but the resulting model explained considerably 

less of the variation in thermocline depth trends (multiple linear regression, R2 = 0.60, p < 0.05). 

The best predictors of buoyancy frequency were mean depth, volume, and whole-lake warming 

rate. Mean depth and volume were significant predictors of trends in buoyancy frequency 

(multiple linear regression, p < 0.05) while whole-lake warming rate was not (multiple linear 

regression, p = 0.11). The resulting model explained a relatively small proportion of the variance 

(R2 = 0.40, p < 0.05). Moderate non-random patterning in the residuals of models for 

thermocline depth and buoyancy frequency suggested that the models overestimated trends when 

the observed change was small and underestimate trends when the observed change was large. 

Discussion 

Lake stratification in the 26 lakes in our analysis has become more stable with deeper and 

steeper thermoclines. The consistency of the trends across lakes suggests a global driver of these 

changes over the last 40 years. Of the predictor variables that we investigated, lake 

morphometric variables and mean lake temperature explain the most variation in the magnitude 

of stratification trends across lakes. Knowing a lake’s surface temperature trend, its whole-lake 

temperature trend, and the difference between its surface and bottom temperature trend does not 

considerably increase our ability to predict its stratification responses to climate change. 

Changes in lake stability increase as a function of lake depth, as has been shown 

previously at the regional scale (Butcher et al. 2015). This finding suggests that the extension of 

the stratified season in lakes that fully mix or the reduction in the spatial extent of mixing in 

lakes that partially mix will be most common in deep lakes. In contrast to lake stability, the 

magnitude of shifts in buoyancy frequency were negatively correlated to lake depth. Thus, higher 
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turbulent energy in large lakes (Gorham and Boyce 1989) may make the depth of the 

thermocline more resistant to change even as the surface warms. Thus, global patterns in the 

responses of lake stability to climate change will, in part, depend on global patterns of lake 

depth. Regions with many large, deep lakes may be most susceptible to ecosystem changes 

associated with increases in lake stability, while regions with many small lakes may be most 

susceptible to ecosystem changes associated with the strength of the thermocline.  

Stability and thermocline depth trends were positively related to lake surface temperature 

with warmer lakes having larger changes in stability and thermocline depth. This suggests that 

lake stratification patterns may be more sensitive to climate change in the tropics than in 

temperate and arctic regions because lake temperature during the stratified period in each lake 

was strongly correlated to lake latitude. This observed pattern echoes previous work which used 

numerical simulations to show that lake stratification in warm, tropical lakes is more sensitive to 

changing surface temperatures (Lewis 1987). This latitudinal gradient in lake stratification 

sensitivity arises from the nonlinear relationship between water temperature and water density. 

The magnitude of thermocline shifts was also dampened in lakes with large temperature 

differences between the surface and bottom temperatures. Surface-bottom temperature 

differences tend to be greatest at mid-latitudes, thus reducing thermocline shifts there. 

 Long-term temperature monitoring is carried out in only a small fraction of the world’s 

lakes which limits the predictive capacity of our statistical models. For instance, climate change-

mediated shifts in water clarity (Gaiser et al. 2009), lake level (Coops et al. 2003), and wind 

speed [Young et al., 2011] may explain a large portion of the variation left unexplained by our 

lake stratification models. Our predictions of global lake stratification responses to climate 

change could be improved considerably by accounting for regional and lake-specific changes in 



51 
 

these variables. Future work with more lakes will be less encumbered by the risk of model 

overfitting and will be free to incorporate these variables as predictors.  

We urge caution in the use of our models to predict lake stratification responses to 

climate change for certain lake types that are not well-represented in our analyses. While the 

lakes in our analyses represent 44% of the global liquid surface freshwater, they represent only 

2.2 x 10-5 % of all lakes on earth (Verpoorter et al 2014). The lakes with the most consistent, 

data-rich, in situ temperature profile records are almost all from temperate, subarctic, and arctic 

regions; relatively few are from tropical and subtropical regions. Of the tropical lakes included in 

our analyses, rift lakes and crater lakes are overrepresented. In reality, most tropical lakes may be 

fluvial in origin (Lewis 1987), but to our knowledge there are no fluvial lakes with long-term 

temperature profile datasets. Most long-term lake temperature monitoring programs initiated 

during the last few decades still focus on mid and high-latitude lakes, so this bias is unlikely to 

be remedied in the near future (but see (Saulnier-Talbot et al. 2014)). Remote sensing has 

circumvented this bias for surface temperatures, but our results show that surface temperature 

trends have little association with shifts in stratification. Unfortunately, understanding lake 

stratification requires temperature profile data, which are challenging to collect on a regular 

basis. Given the significant increases in stratification observed in most of the lakes analyzed in 

this study, it is clear that understanding the effects of climate change on the world’s lakes will 

require a much broader monitoring network for temperature profiles. 

While we did not include ecological data in our analyses, the stratification trends 

analyzed here have direct implications for lake ecosystem dynamics. The shifts in lake 

stratification will intensify the confinement of dissolved oxygen, nutrients, particles, and non-

motile organisms to specific lake strata with profound effects on lake ecosystems (O’Reilly et al. 
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2003, Adrian et al. 2009, Shimoda et al. 2011, North et al. 2014). Our results indicate that while 

stratification changes are likely to be felt across latitude, deep tropical lakes like the African rift 

lakes, the ancient lakes of Indonesia, and the crater lakes of Central America may be most 

susceptible to shifts in lake stratification. The resulting ecological shifts that may result are 

particularly hazardous because tropical lakes provide critical sources of nutrition to adjacent 

human populations and tend to be hotspots of freshwater biodiversity (Vadeboncoeur et al. 2011, 

Brawand et al. 2014). 

Conclusion 

In situ temperature profile observations from 26 globally distributed lakes were used to study 

how lake warming rates intersect with a lake’s baseline temperature and morphometry to alter its 

stratification. Calculations of lake mixing indices over time from 1970-2010 showed that on 

average, lake stratification is becoming more stable with deeper and steeper thermoclines. The 

magnitude of stratification responses to climate change across lakes were associated with lake 

average temperature and morphometry, but not with warming rates. These results suggest that 

the influence of climate change on lake temperature and stratification is ubiquitous, but may be 

felt most strongly in large tropical lakes. 
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Figures 

 

Fig 1. (a) Temperature change (Theil-Sen slope) for 26 globally distributed lakes (1970-2010). 

(b) The associated percent change in three lake stratification indices (1970-2010).  
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Fig 2. The variance in long-term (1970-2010) trends in lake stratification indices explained by 9 

predictor variables as a percentage of variance explained by the full model. Predictor variables 

for each stratification index are grouped by morphometry, baseline temperature, and warming 

rate. All bars of a given shade sum to 100%. 
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Fig 3. (a) Long-term (1970-2010) trends in lake stratification indices as a function of mean 

depth. Variance in trends explained by baseline temperature has been removed. (b) Long-term 

(1970-2010) trends in lake stratification indices as a function of the average surface temperature 

across the entire time series. Variance in trends explained by lake morphometry has been 

removed.  

 

Fig 4. Predicted stratification trends versus observed stratification trends. Statistical models were 

fit to lake stratification data and used to predict the magnitude of long-term (1970-2010) 

stratification trends in each lake. Predicted trends here use models without warming rates as 

predictors. Predictors in the model included morphometric variables (mean depth, surface area, 

and volume) and average lake temperature variables (surface temperature, whole-lake 

temperature, and the difference between surface and bottom temperature). We compare predicted 
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trends from statistical model output to the actual long-term trend based on in situ temperature 

data from each lake. 

Appendixes 
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Appendix 1. We performed sensitivity analyses to determine whether our estimation of long-

term trends in lake stratification indexes was sensitive to the number of years of temperature 

profiles used in trend estimation. Our first approach to this sensitivity analysis was to select the 

19 lakes which had data for at least 30 years between 1970 and 2010. We then plotted the 

average long-term (1970-2010) trend in lake stratification indexes for all lakes as a function of 

progressively greater numbers of randomly selected years of data from 6 to 30. The average 

stratification trend across those 19 lakes was found to be insensitive to the number of years of 

data included in trend estimation. We also fit the models described in the first paragraph of 

section 3.2 with “data years” and “data depths” as predictors in the model. In all cases, “data 

years” and “data depths” were not significant predictors of long-term stratification trends 

(multiple linear regression p > 0.05). This suggests that the richness of data from each lake did 

not bias our long-term trend estimates. The algorithms used by LakeAnalyzer are ideal when 

stratification indices are being calculated from discrete depth temperature profiles. We also 

verified that the values for stability, thermocline depth, and thermocline strength calculated with 

LakeAnalyzer from temperature profiles with discrete depths closely matched those calculated 

based on high-resolution temperature profiles. Much of the temperature data included in our 

analysis is published in the DataONE and LTER data repositories. Metadata for these datasets 

contain more information about the temperature measurements included in our analyses. 
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Appendix 2. Map of study locations. 

 

 

Lake characteristics       

Lake 
Max 

depth (m) 
Mean 

depth (m) 
Surface 

area (km
2
) 

Latitude 

(S/N) 
Elevation 

(m) Type Continent 
Data 

years 
Data 

depths 

Heywood 6 2.3 0.04 -60.68 4 Subantarctic Antarctica 29 13 

Moss 11 2.6 0.02 -60.72 48 Subantarctic Antarctica 24 18 

Sombre 12 5.5 0.02 -60.72 10 Subantarctic Antarctica 30 14 

TanganyikaS 1470 623 10617.83 -7.75 773 Tropical Africa 10 16 

TanganyikaC 885 521 9066.33 -6.26 773 Tropical Africa 8 16 

TanganyikaN 1310 572 13215.84 -4.65 773 Tropical Africa 21 16 

Kivu 480 240 2700 -2.05 1460 Tropical Africa 12 18 

Victoria 83 40 68800 -0.76 1133 Tropical Africa 14 17 

Nkugute 58 15 0.79 -0.32 1080 Tropical Africa 6 18 

Atitlan 340 188 130.1 14.70 1562 Tropical North America 6 18 

Kinneret 47 24 166 32.83 -212 Subtropical Asia 41 12 

Biwa 104 41 670.4 35.33 86 Subtropical Asia 38 12 

Tahoe 501 305 495 39.10 1897 Temperate North America 41 18 

Castle 34 11.4 0.2 41.19 1657 Temperate North America 41 18 

Mendota 25 12.5 39.88 43.11 259 Temperate North America 41 18 



66 
 

Trout 36 14.9 16.08 46.05 494 Temperate North America 31 18 

Geneva 310 154 580.03 46.43 372 Temperate Europe 41 12 

Zurich 136 49 66.6 47.22 406 Temperate Europe 41 18 

Greifensee 32 17.6 8.45 47.35 435 Temperate Europe 41 14 

227 10 4.4 0.05 49.68 370 Temperate North America 41 15 

302 14 5.4 0.24 49.67 370 Temperate North America 34 15 

Rawson 30 10.5 0.56 49.66 370 Temperate North America 41 12 

Baikal 1642 744 31722 53.51 456 Subarctic Asia 40 14 

Pielinen 60 9.9 894.21 63.25 94 Subarctic Europe 31 17 

Toolik 26 7.1 1.5 68.63 720 Arctic North America 33 18 

Inari 92 15 1040.28 69.03 119 Arctic Europe 41 12 

Appendix 3. Physical characteristics of 26 focal lakes. The “Data Years” column indicates the 

number of years with temperature data for each lake dispersed over the period from 1970-2010. 

The “Data Depths” column indicates the number of depths with raw temperature data across all 

years which span the depth range of each lake. Lake Tanganyika’s three basins are separated by 

relatively shallow sills and span a broad latitudinal gradient. Here, we analyzed the three basins 

independently due to variation across basins in baseline temperature, warming rates, and 

stratification index trends. Surface temperature data from all lakes came from the top 1 m of the 

water column. Bottom temperature data were taken from the deepest measurements in each 

profile with consistent measurements across years for each lake. Bottom temperature data were 

typically from within 1-10 meters of the deepest point of the lake and always in the isothermal 

zone below the thermocline. 
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Chapter 3: Activation energies affect global patterns of lake metabolic responses to climate 

warming* 

Abstract 

Ecosystems are sensitive to climate warming in part due to the direct temperature dependence of 

metabolism. The direct effect of climate warming on metabolism in a specific ecosystem will 

depend on the ecosystem’s average temperature, its warming rate, and the sensitivity of the 

metabolic response to temperature often represented by its activation energy. Given that patterns 

in temperature, warming rates, and activation energies vary substantially across ecosystem types, 

a wide range of global patterns in metabolic responses to temperature change can emerge when 

ecosystems warm. Here we use observed, long-term variation in lake temperature from 271 

globally distributed lakes along with 94 empirically-derived freshwater activation energies to 

estimate the magnitude and distribution of direct lake responses to warming from 1970-2010. 

Lake metabolic responses to warming tended to be greatest in warm lakes for the bulk of 

freshwater metabolic responses even when cold lakes were warming faster, suggesting that 

relatively few metabolic responses to warming will parallel warming rates. Metabolic responses 

with low activation energies were most likely to parallel warming rates, signifying that activation 

energies provide a simple heuristic for predicting variation among traits in the geographic 

patterns of responses to warming. The direct metabolic consequences of lake warming for 

freshwater ecosystems are likely to be most strongly felt in tropical freshwaters where human 

well-being and freshwater biodiversity may be most affected. 

                                                           
* Prepared for submission with co-authors Sudeep Chandra, Margaret Dix, Esko Kuusisto, David 

M. Livingstone, Geoffrey Schladow, Eugene Silow, Lewis M. Sitoki, Rashid Tamatamah, Peter 

B. McIntyre 
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Introduction 

Many biochemical reactions respond nonlinearly to variation in temperature due to 

fundamental chemical kinetics. The relationship between temperature and biochemical reaction 

rates is described by the Boltzmann-Arrhenius factor, 

𝜐 ∝ 𝑒−𝐸𝑎/𝑘𝑇 

where 𝜐 is the reaction rate, e is Euler’s number (2.718), Ea is the activation energy (eV), k is the 

Boltzmann constant (8.617 x 10-5 eV K-1), and T is the temperature (°K). A key feature of this 

equation is that as the activation energy of a reaction rate (Ea) approaches kT, the steepness of the 

nonlinear relationship between temperature and reaction rate is dampened (i.e., approaches 

linearity with a fixed slope) (Fig 1). Thus, the sensitivity of a given chemical reaction rate to 

temperature is linked to its activation energy; a higher activation energy connotes higher 

sensitivity to temperature changes which arises from a steeper exponential response to 

temperature (Fig 1).  

Nonlinear biochemical responses to temperature are manifest at the cellular, organismal, 

and ecosystem levels (Gillooly et al., 2001; Dell et al., 2011; Yvon-Durocher et al., 2012, 2014). 

For instance, the temperature dependence of gross primary production in forests is thought to 

reflect the temperature dependence of RUBISCO carboxylation of CO2—a key rate-limiting step 

in photosynthesis (Yvon-Durocher et al., 2010). Organismal metabolic rates (Gillooly et al., 

2001), carbon cycling rates (Bond-Lamberty & Thomson, 2010; Yvon-Durocher et al., 2012), 

and ecosystem greenhouse gas emissions (Gudasz et al., 2010; Dell et al., 2011; Marotta et al., 

2014; Yvon-Durocher et al., 2014) all respond exponentially to temperature due to the 

fundamental temperature dependence of chemical reactions underlying these processes.  
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Estimates of metabolic responses to warming based on Boltzmann-Arrhenius equations 

suggest that the ecological consequences of warming can be uncorrelated to variation in warming 

rates (Dillon et al., 2010; Marotta et al., 2014). For instance, in regions where baseline 

temperatures are high, a small temperature increase can lead to larger absolute responses than in 

areas where baseline temperatures increase faster from a lower starting point (Dillon et al., 2010; 

Marotta et al., 2014). It is estimated that climate change has had larger absolute effects on the 

metabolic rates of terrestrial ectotherms in the tropics even though air temperatures are 

increasing faster at higher latitudes (Dillon et al., 2010). But when the activation energy of a 

metabolic rate is low, the temperature dependence relationship approaches linearity and we 

expect the resulting patterns in responses to temperature change to parallel warming trends. 

Moreover, if sites with low initial temperatures are warming sufficiently fast, the resulting 

change in metabolic rates might still be greater than sites with higher initial temperatures despite 

nonlinear responses. Thus, a wide range of global patterns in ecosystem responses to temperature 

change could emerge when a given response is exponential. Understanding how temperature and 

warming patterns intersect with that ecosystem’s temperature sensitivity in a particular 

ecosystem type is essential for developing heuristics that guide understanding of patterns in 

ecosystem responses to warming. 

Here we use long-term lake temperature data and well-characterized exponential 

relationships between temperature and metabolic responses to explore how they intersect to 

produce variation among lake ecosystems in the effects of climate warming. Lakes tend to be 

warming faster (Schneider & Hook, 2010) and have lower activation energies than terrestrial or 

marine environments (Dell et al., 2011), suggesting that ecosystem responses in lakes are much 

more likely to parallel warming rates. We test whether the direct influence of temperature on 
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metabolism will or will not parallel warming rates for the bulk of metabolic responses in lakes. 

Lakes are ideal ecosystems for quantifying the effects of warming because their global 

geographic distribution and mutual independence make them sensitive sentinels of climate 

change (Adrian et al., 2009; Schindler, 2009). Moreover, changes in lake ecosystem traits are 

likely to affect key provisioning and cultural ecosystem services (Wilson & Carpenter, 1999; 

Bennett et al., 2009; Allan et al., 2015), global carbon cycling (Tranvik et al., 2009), and 

freshwater biodiversity (Vadeboncoeur et al., 2011). 

Materials and Methods 

We conducted parallel analyses on temperature data from two lake temperature datasets: 

one dataset that takes advantage of depth-specific temperature data, and another that includes 

temperature data from more lakes but with average summer surface temperature only. Together, 

these two temperature data sources offer complementary approaches that demonstrate the value 

of rich geographical coverage across the globe and rich depth coverage within lakes for 

estimating direct metabolic responses to warming. We analyzed time series of temperature from 

multiple depths at 26 lake monitoring sites to ascertain how metabolic rates in lakes are expected 

to respond to warming as a function of lake depth. The 26 lake monitoring sites had a global 

distribution, and represent a wide range of morphometric characteristics (mean depth, surface 

area, volume). To further capture global trends, we also analyzed time series of average, summer 

surface temperatures from 271 lakes from a published database (Sharma et al., 2015), yielding 

greater geographic representation but with less temperature data per lake. 19 lakes had data from 

both data sources. We substitute lake temperature data from both sources into Boltzmann-

Arrhenius equations relating temperature to 94 metabolic responses to estimate metabolic change 

through time.  
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Annual lake temperature data 

We compiled temperature profiles encompassing the entire annual temperature cycle for 

the 26 lake monitoring sites where such data were available. These 26 lake monitoring sites 

represented a wide range of surface area (0.02 to 68800 km2), depth (2.3 to 1642 m), and 

elevation (-212 to 1987 m above sea level). The 26 lake monitoring sites had on average 30 years 

of temperature profile data (range: 6-41 years) over the period from 1970-2010. To estimate 

metabolic rates through time as a function of lake temperature, we substituted surface and 

bottom temperature data from each lake into general Boltzmann-Arrhenius equations for 94 

organismal and ecosystem traits. The output from these calculations can be interpreted as daily 

estimates of metabolic rates in a given lake based on the direct effect of temperature alone at a 

specific depth.  

The activation energies for these traits were derived empirically from a combination of 

field and laboratory data using Boltzman-Arrhenius model fitting to raw data. Field and 

laboratory data were obtained from online published databases (Dell et al., 2013) and extracted 

from peer-reviewed publications (Gillooly et al., 2001, 2002; Yvon-Durocher et al., 2012, 2014). 

We only included data that were measured at temperatures below the temperature where the 

maximum metabolic rate was observed. When more than one species or ecosystem type was 

represented in the data set for a given trait, the median activation energy for that trait was used in 

our study. All traits show nonlinear temperature dependence and represent a gradient of 

activation energies. The lake traits analyzed here included methane emissions (0.96 eV) (Yvon-

Durocher et al., 2014); invertebrate metabolism (0.74 eV) (Gillooly et al., 2001), pelagic 

ecosystem respiration (0.63 eV) (Yvon-Durocher et al., 2012), benthic ecosystem respiration 

(0.55 eV) (Yvon-Durocher et al., 2012), fish metabolism (0.41) (Gillooly et al., 2001), and 
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planktonic gross primary production (0.35) (Yvon-Durocher et al., 2010) (Fig 1) among 88 

others. Prior to Boltzmann-Arrhenius model fitting, we took the inverse of all responses to 

temperature where the unit in the response was time (e.g. gut clearance time). 89 out of 94 

activation energies reported here characterize processes that occur in all lakes, all year round, 

and both at the surface and at the bottom of lakes. A full list can be found in dataset supplement 

S1.  

Prior to substituting temperature profile data into Boltzmann-Arrhenius equations, 

temperature data were interpolated to create a continuous record with a daily time step.  To 

interpolate the temperature time series, first, data were deseasonalized separately for each depth 

in each lake. To deseasonalize the temperature data, we began by pooling them by day of year 

for a specific depth over the entire temperature time series for each lake. The seasonality of the 

temperature cycle at each depth was calculated as the difference between the 30-day running 

mean temperature for each day of the year and the grand mean across all days of the year. This 

date-specific seasonal variation was subtracted from each raw temperature measurement to yield 

a deseasonalized dataset. The deseasonalized dataset was then linearly interpolated from the 

beginning to end of any data gaps to yield a continuous daily time series. Finally, the seasonal 

temperature variation was re-added to obtain an interpolated time series informed by all available 

data at a particular depth. We carried out this procedure separately for the uppermost and 

lowermost temperature measurements in each lake. To determine whether the 26 lakes with 

annualized data were representative of the broader population of lakes, we calculated summer 

averages following the methods of (Schneider & Hook, 2010) from the 26 lakes with annual 

data. 

Average summer surface temperatures 
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Average summer surface temperature data from 271 lake monitoring sites located in 

arctic, boreal, temperate, subtropical, and tropical regions were extracted from a published data 

source (Sharma et al., 2015) and also used to estimate change in metabolic traits through time. 

These temperature data are available for the period 1985-2009 and includes both remote sensing 

and in situ measurements in order to represent the spatial distribution and physical characteristics 

of lakes around the world. Each of these 271 lakes had at least 12 years of summer mean surface 

temperature data over the study period. “Summer” was defined as the period from July 1 through 

September 30 for lakes in northern hemisphere and January 1 through March 29 for lakes in the 

southern hemisphere. Some large, multi-basin lakes had up to 3 monitoring sites within them in 

recognition of the substantial amount of within-lake variation in warming rates in some lakes 

(Kraemer et al., 2015a). 

As we had done with temperature profile data, we substituted time series of lake average 

surface temperatures from each site into general Boltzmann-Arrhenius equations relating seven 

metabolic rates to temperature. We interpret output of these calculations as an estimate of each 

metabolic rate at the lake’s average summer surface temperature for a given year. While using 

year-round temperature data would be ideal, such time series are not available for most lakes. As 

a consequence of using average summer surface temperature data, these estimates do not 

represent the average metabolic rate over the entire summer, as such extrapolations would violate 

the fallacy of the average (Savage, 2004). Rather, they should be interpreted as an estimate of a 

given metabolic trait when the lake temperature is at its summer average.  

Trend Analysis 
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We analyzed long-term trends in lake temperatures and in metabolic traits using Theil-

Sen nonparametric regression (Theil, 1950). To enable comparison across traits of different 

activation energies with different units, we express the rate of change over time for each 

metabolic trait as a proportion of the estimated trait at 15ºC. To test whether lake warming rates 

and lake temperatures were correlated across lakes, we calculated Spearman’s correlation 

coefficients separately for each temperature data source. All statistics were run using the R 

statistical computing environment (R Development Core Team, 2013).  

Results 

Geography of lake temperature 

 Average lake temperatures based on 271 globally distributed lakes varied predictably 

across the globe. High latitude and high elevation lakes were typically cooler than low latitude 

and low elevation lakes. The earth’s two subtropical high pressure zones coincided with 

relatively low lake temperatures on average than would be expected at these latitudes due to the 

dominance of relatively cold, high-elevation lakes there. The range of average lake temperatures 

depended on lake depth and season. Average summer surface temperatures had a wider range 

(3.81 - 31.49 °C) and higher median (20.23 °C) than either annualized lake surface temperatures 

(range: 1.14 - 26.35 °C, median: 11.40 °C) or annualized lake bottom temperatures (range: 1.76 

– 25.01 °C, median: 5.17 °C) (Fig 2).   

Geography of lake warming rates 

Average summer surface temperatures increased by 0.36 °C decade-1 over the period 

from 1985 to 2009 based on lake temperature data from 271 lake monitoring sites around the 

world (Fig 2). Of the 271 lakes in this analysis, 233 showed warming trends based on average 
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summer surface temperature data (positive Theil-Sen slopes). The warming trend was significant 

in 123 of the 233 lakes with positive warming trends (Mann-Kendall, p < 0.1). Of the 38 lakes 

with cooling trends (negative Theil-Sen slopes), only 2 trends were significant (Mann-Kendall, p 

< 0.1). Lake warming rates were negatively correlated to average summer lake temperature (r = -

0.21, p < 0.001) (Fig 3).  

Average annual surface temperature has increased by 0.29 °C decade-1 over the period 

from 1970-2010 for the 26 lake monitoring sites with annual profile data (Fig. 2). Of these 26 

lake monitoring sites, all 26 were warming (positive Theil-Sen slopes), and 20 of those showed 

significant warming trends (Mann-Kendall, p < 0.1). Average annual bottom temperature data 

have increased by only 0.04 °C decade-1 over the period from 1970-2010 on average. 18 of 26 

lake monitoring sites with temperature profiles had increasing bottom temperatures (positive 

Thiel-Sen slopes) but the increase was significant (Mann-Kendall, p < 0.1) in only 10 of these 

lakes. Eight lakes had cooling bottom temperature trends, two of which were significant (Mann-

Kendall, p < 0.1). In contrast to summer average surface warming, annualized surface warming 

and annualized bottom warming were only weakly correlated to average lake temperatures 

(surface r = -0.01 and p = 0.96, bottom r = -0.19 and p = 0.35) (Fig 3).  

Metabolic responses to warming 

 Freshwater activation energies reported here span a range from 0.005 eV (effective 

temperature independence) to 2.56 eV (high temperature sensitivity) (Fig 1). The mean and 

median activation energies were 0.57 eV and 0.481 eV, respectively, indicating slight skewness 

(Fig 1). Using the median activation energy to calculate metabolic change through time, we 

expect metabolic traits at the surfaces of lakes to increase by a factor of 0.019*υ15°C decade-1, 
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where υ15°C is the estimated metabolic response at 15 °C (Fig 3). Also using the median 

activation energy, we expect metabolic responses at the bottom of lakes to change more slowly 

than at lake surfaces (0.004*υ15°C decade-1) due to slower warming rates there on average (Fig 3). 

The median metabolic response based on summer surface average temperatures was higher than 

annualized surface temperatures (0.036*υ15°C decade-1) where temperatures are warming faster 

on average from higher starting point (Fig 2).  

There was extraordinary variation in the estimated direct effects of temperature on 

metabolism across metabolic responses with different activation energies. The average metabolic 

response to warming for the metabolic response with the lowest activation energy (0.005 eV) 

was less than 0.001*υ15°C decade-1 averaged across lakes based on annualized lake surface 

temperature. However, the average metabolic response to warming with the highest activation 

energy was 1.160*υ15°C decade-1 when based on annualized surface warming. 

For the bulk of activation energies analyzed here, metabolic responses to warming were 

greatest for lakes with high average temperatures (Fig 4). This pattern held true even when low 

temperature lakes were warming faster on average than high temperature lakes (Fig 4). For 

instance, Lake Superior is one of the top five fastest warming lakes on the planet, but its median 

metabolic response is only in the 63rd percentile due to its low average temperature. Metabolic 

responses in warm lakes were more sensitive to temperature change than cold lakes especially 

when metabolic responses had high activation energies (Fig 4). However, at the lowest activation 

energies, metabolic responses were greater in cold lakes than in warm lakes across all 

temperature data sources used (Fig 4). The point where cold lakes switched from having larger 

metabolic responses to having lower responses occurred below the median activation energy and 

well below the mean activation energy for metabolic responses in lakes (Fig 4). This switching 
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point varied depending on depth and season. The activation energies where the switches occurred 

were 0.425 eV (summer average surface temperature), 0.057 eV (annualized surface 

temperature), 0.208 eV (annualized bottom temperature) (Fig 4). This variation in switching 

points appear to be most related to the strength of the correlation between average temperatures 

and warming rates. When the correlation between temperature and warming rates is most 

negative (as is the case with summer surface average temperature and warming rates), the range 

of activation energies over which warm lake metabolic responses exceeded cold lake responses 

is smallest (Fig 4). 

Discussion 

Our findings suggest that global patterns in the response of lake ecosystems to climate 

change are linked to the kinetics of the chemical reactions underlying those responses. The bulk 

of metabolic responses show larger absolute changes in warm lakes even when warm lake 

temperatures are warming more slowly than cold lakes. However, traits with low activation 

energies (e.g. fish metabolism, gross primary production) tended to show larger absolute rate 

changes in cold lakes in parallel with warming rates especially when average lake temperature 

and warming rates were negatively correlated (Fig 4). Thus, activation energies provide a simple 

heuristic for predicting both where and why metabolic consequences of warming do not parallel 

warming rates. 

Geography of temperature and warming rates 

The surfaces of relatively cold lakes were warming faster than warm lakes in the summer, 

agreeing with previous findings based on satellite-derived surface temperatures of large lakes 

(Schneider & Hook, 2010). This pattern was observed when we used summer average data from 
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271 lakes and also when we used summer average data from the 26 lakes where annual 

temperature data were available. Global patterns in lake warming rates represent the intersection 

of global and regional climatic drivers with local lake conditions (O’Reilly et al. 2015, in press). 

Variability in lake warming rates across the globe has been explained by a number of factors 

including cloud cover, solar radiation, the presence or absence of lake ice, and air temperature 

(O’Reilly et al. 2015, in press).  

In contrast to summer surface warming rates, annualized warming rates were not strongly 

related to average lake temperature. This result suggests that the mechanisms that drive 

variability in summer surface warming may be outweighed by other factors at other times of the 

year. Thorough characterization of annualized lake warming rates across the globe will require 

the addition of many more long-term lake monitoring sites in the tropics than are currently 

operational. Satellite-based estimates may help circumvent the latitudinal bias in lake surface 

temperature monitoring. But, given the strong difference between metabolic responses estimated 

here for lake surfaces and lake bottoms (Fig 3), surface temperature change alone may be a poor 

indicator of lake-wide metabolic responses. For this reason, satellite based lake surface 

temperature still give a limited representation of temperature change in lakes and will not be able 

to circumvent the need for more long-term in situ temperature monitoring in the tropics.  

Activation energies as a heuristic 

  Responses to lake warming will be disproportionate to warming rates themselves for 

most metabolic responses to temperature. This corroborates other work that showed that 

metabolic impacts of warming on terrestrial ectotherms may be greatest in the tropics despite 

lower air temperature warming rates there (Dillon et al., 2010). However, generalizations about 
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nonlinear responses to temperature always being disproportionate to warming rates are not 

justified. This is because the temperature dependent metabolic responses with low activation 

energies (e.g. gross primary production and fish metabolism) will parallel global patterns of 

warming rates in lakes. The difference between our conclusions and that for terrestrial 

ectotherms is attributable to the inclusion of a broader range of metabolic responses including 

those with low activation energies. 

Our findings have applications for predicting whether the metabolic responses for other 

biological responses with different activation energies than those included in our analyses will be 

disproportionate to warming rates. We identified critical transition points where warm lakes 

switched from having lower to having higher metabolic responses than cold lakes. This critical 

transition point varied by season and by lake depth. The critical transition point increased for 

summer surface temperatures where there was a strong negative correlation between temperature 

and warming rates. This suggests that relatively high warming in lakes with cold average 

temperatures counteracts the nonlinearity of metabolic responses and affects global patterns in 

metabolic responses. Other ecosystem types where there is a strong negative correlation between 

temperature and warming rates, as in terrestrial ecosystems, are most likely to have metabolic 

responses that parallel warming rates. 

Due to the decrease in warming rate at depth in many lakes (Winslow et al 2014, 

Kraemer et al 2015), absolute biological responses to temperature depend heavily on the depth 

where each process is concentrated. The disparity between surface temperature trends and 

bottom temperature trends reflects differences in the factors affecting temperature at different 

depths in lakes. Lake surface temperatures are determined predominantly by direct heat 

exchange across the air-water interface and are hence correlated with air temperature on many 
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timescales (Livingstone & Lotter, 1998; Livingstone, 2003), whereas the temperature of deeper 

water is determined to a large extent by lake mixing behaviour (Livingstone David et al., 1993; 

Livingstone, David et al., 1997; Ambrosetti & Barbanti, 1999). While 89 out of 94 of the 

activation energies reported here characterize processes that occur throughout lakes, several key 

metabolic responses are localized. For instance, gross primary production occurs near the surface 

of lakes where light is most available and where metabolic responses to warming are most likely 

to parallel warming rates. However, responses that occur primarily in the anoxic benthos of lakes 

(e.g. methanogenesis), are least likely to parallel variation in lake warming rates. 

Distinguishing fundamental and apparent activation energies 

We have focused on estimating the direct effect of temperature rise on metabolic 

responses. However, the actual change in metabolism through time as a result of climate change 

will depend on the sum of direct and indirect effects of temperature on metabolism as well as the 

effects of independent temperature covariates. For instance, climate warming-driven shifts in 

lake mixing could affect lake metabolism but is not accounted for in our analysis. Incorporating 

all direct and indirect effects of climate change into models of lake metabolism will be required 

to generate accurate estimates of changes in metabolism through time. This is especially the case 

for metabolic responses that have large standard deviations in site-specific activation energy (e.g. 

0.59 eV standard deviation for methane emissions across sites) (Yvon-Durocher et al., 2014). 

There is a strong need to evaluate whether variability in site specific activation energies can be 

explained by site traits.  In some cases, ecological differences between sites (e.g. organic carbon 

recalcitrance, nutrient stoichiometry, community structure, local adaptation) may constrain or 

amplify the apparent sensitivity of metabolic responses to temperature change (Yvon-Durocher 

et al., 2014). Thus, site-specific conditions could dampen or amplify the underlying temperature 
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dependence of a specific metabolic response (Jankowski et al., 2014). At present, there is no 

evidence that site-specific activation energies vary systematically across the globe (Perkins et al., 

2012; Yvon-Durocher et al., 2012, 2014). In our compilation of freshwater activation energies, 

we found no significant relationship between activation energy and the average temperature over 

which activation energy was calculated or with whether they were measured in the laboratory or 

in the field. However, activation energies for tropical metabolic responses to temperature 

continue to be underrepresented in our data compilation, underscoring an acute need for further 

assessment of site-specific activation energies in the tropics. A better understanding of drivers of 

site-specific activation energies would enable more accurate estimates of the effect of climate 

change on lake metabolism at the global scale. But site specific activation energies reflecting 

direct and indirect effects of temperature on metabolism are not likely to substantially alter the 

general patterns suggested by our analyses regarding the direct effects of temperature alone. 

Consequences of metabolic acceleration 

Our calculations suggest that the direct effect of climate warming on lakes has been to 

accelerate metabolism. Higher rates of organismal, population, community, and ecosystem 

metabolism estimated here have likely altered the functioning of lake ecosystems. Higher 

metabolic rates may increase the vulnerability of fish and other ectotherms to starvation unless 

food resources increase commensurately (Dillon et al., 2010; Cheung et al., 2012). The relative 

increase in lake primary production estimated here is 1.2% lower, on average, than the increase 

in ecosystem respiration, suggesting that food availability may decline relative to its demand 

(Yvon-Durocher et al., 2010). Increases in metabolic demands of organisms estimated here also 

assume that these organisms will acclimate to their new thermal environment. If behavioral and 

physiological acclimation are not possible, the impacts of warming on organisms could be 
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dampened or amplified. Maintenance of metabolic stasis through relocation to deeper, colder 

water has been invoked as an adaptation strategy for aquatic ectotherms in the face of 

environmental temperature change (Cheung et al., 2012; Burrows et al., 2014); however, such 

forced shifts may raise a host of new problems by separating aquatic fauna from habitats whose 

depth distribution is constrained by light and nutrient gradients (Cheung et al., 2012). 

Understanding the consequences of metabolic acceleration for lake ecosystems is critical 

for predicting shifts in the benefits that lakes provide to society. The lakes included in this 

analysis are globally significant repositories of freshwater biodiversity and ecosystem services 

(Millennium Ecosystem Assessment, 2005). In aggregate, they contain the vast majority of liquid 

surface freshwater on the planet. The large ancient lakes in our analysis (Tanganyika, Hovsgol, 

Baikal, Biwa, Kinneret, Van, Valencia, Titicaca, etc.) hold thousands of animal species found 

nowhere else on Earth (Vadeboncoeur et al., 2011). The African rift lakes support highly 

productive fisheries that are vital to regional economies and food security (UN Water Report: 

Water Monitoring, Mapping Existing Global Systems & Initiatives, 2006). Lakes Tahoe and 

Zurich are deeply integrated into regional economies through recreation and tourism. The 

consequences of metabolic acceleration for biodiversity and ecosystem services in lakes will also 

depend on shifts in lake physics (Kraemer et al., 2015b), the global distribution of lake area 

(Lewis, 1987), and complex ecological interactions that are beyond the scope of this study. 

However, our work suggests that substantial metabolic acceleration has already occurred since 

1970, and is most pronounced in the tropics where human well-being and freshwater biodiversity 

may be most affected. 

Conclusion 
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Joint consideration of global patterns of baseline temperatures and warming rates 

indicates that warming has had greater absolute direct effects on warm lake ecosystems than cold 

lake ecosystems for most temperature dependent metabolic responses in the world’s lakes. The 

extent to which metabolic responses to warming will parallel warming rates in other ecosystem 

types will depend on their activation energy and whether temperature and warming rates are 

correlated over broad spatial scales in those ecosystems. Like analyses of climate velocity 

(Loarie et al., 2009; Burrows et al., 2014), climate novelty (Williams et al., 2007), and the 

thermal tolerances of organisms (Ghalambor et al., 2006; Deutsch et al., 2008; Tewksbury et al., 

2008; Huey & Kingsolver, 2011), our findings demonstrate that patterns in warming rates alone 

can be misleading as predictors of organismal or ecosystem responses to climate change (Fig 4). 

For the critical biological processes analyzed herein, activation energies provide a powerful basis 

for understanding such decoupling and the resulting counterintuitive patterns of metabolic 

responses to temperature change. 

Acknowledgements 

We are grateful for field research funding from the National Science Foundation (NSF) (DEB-

1030242 and DEB-0842253), and encouragement from the Global Lake Temperature 

Collaboration (DEB-1147666, National Aeronautics and Space Administration (NASA), 

Research Opportunities in Space and Earth Sciences (ROSES) Grant, Institute of Agricultural 

and Natural Resources (IANR), University of Nebraska-Lincoln). Thank you to several 

anonymous reviewers for constructive feedback. 

References 

Adrian R, O’Reilly CM, Zagarese H et al. (2009) Lakes as sentinels of climate change. 

Limnology and Oceanography, 54, 2283–2297. 



84 
 

Allan JD, Smith SD, McIntyre PB et al. (2015) Using cultural ecosystem services to inform 

restoration priorities in the Laurentian Great Lakes. Frontiers in Ecology and the 

Environment, 13, 418–424. 

Ambrosetti W, Barbanti L (1999) Deep water warming in lakes: an indicator of climatic change. 

Journal of Limnology, 58, 1–9. 

Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple 

ecosystem services. Ecology letters, 12, 1394–404. 

Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil 

respiration record. Nature, 464, 579–582. 

Burrows MT, Schoeman DS, Richardson AJ et al. (2014) Geographical limits to species-range 

shifts are suggested by climate velocity. Nature, 507, 492–5. 

Cheung WWL, Sarmiento JL, Dunne J et al. (2012) Shrinking of fishes exacerbates impacts of 

global ocean changes on marine ecosystems. Nature Climate Change, 3, 254–258. 

Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of 

physiological and ecological traits. Proceedings of the National Academy of Sciences of the 

United States of America, 108, 10591–6. 

Dell AI, Pawar S, Savage VM (2013) The thermal dependence of biological traits: “Ecological 

Archives” E094-108. Ecology, 94. 

Deutsch C a, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) 

Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the 

National Academy of Sciences of the United States of America, 105, 6668–6672. 

Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. 

Nature, 467, 704–706. 

Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes 

higher in the tropics? Janzen’s hypothesis revisited. Integrative and comparative biology, 

46, 5–17. 

Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and 

temperature on metabolic rate. Science (New York, N.Y.), 293, 2248–2251. 

Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and 

temperature on developmental time. Nature, 417, 70–3. 

Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-

controlled organic carbon mineralization in lake sediments. Nature Climate Change, 466, 

478–81. 

Hein AM, Keirsted KJ (2012) The rising cost of warming waters: effects of temperature on the 

cost of swimming in fishes. Biology letters, 8, 266–9. 

Huey RB, Kingsolver JG (2011) Variation in universal temperature dependence of biological 

rates. Proceedings of the National Academy of Sciences of the United States of America, 

108, 10377–10378. 



85 
 

Jankowski K, Schindler DE, Lisi PJ (2014) Temperature sensitivity of community respiration 

rates in streams is associated with watershed geomorphic features. Ecology, 95, 2707–2714. 

Kraemer BM, Hook S, Huttula T et al. (2015a) Century-Long Warming Trends in the Upper 

Water Column of Lake Tanganyika. PLOS ONE, 10, e0132490. 

Kraemer BM, Anneville O, Chandra S et al. (2015b) Morphometry and average temperature 

affect lake stratification responses to climate change. Geophysical Research Letters, n/a–

n/a. 

Lewis WM (1987) Tropical Limnology. Annual Review of Ecology and Systematics, 18, 159–

184. 

Livingstone DM (2003) Impact of Secular Climate Change on the Thermal Structure of a Large 

Temperate Central European Lake. Climatic Change, 57, 205–225. 

Livingstone DM, Lotter AF (1998) The relationship between air and water temperatures in lakes 

of the Swiss Plateau: A case study with palaeolimnological implications. Journal of 

Paleolimnology, 19, 181–198. 

Livingstone David M, Livingstone, David M, Livingstone, David M (1993) Temporal structure 

in the deep-water temperature of four Swiss lakes: a short-term climatic change indicator? 

Verhandlungen des Internationalen Verein Limnologie, 25, 75–81. 

Livingstone, David M, Livingstone David M, Livingstone, David M (1997) An example of the 

simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling 

episodes in several Swiss lakes. Verhandlungen des Internationalen Verein Limnologie, 26, 

822–826. 

Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of 

climate change. Nature, 462, 1052–1055. 

Marotta H, Pinho L, Gudasz C, Bastviken D, Tranvik LJ, Enrich-Prast A (2014) Greenhouse gas 

production in low-latitude lake sediments responds strongly to warming. Nature Climate 

Change, 4, 467–470. 

Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Biodiversity 

Synthesis, Vol. 86. 86 pp. 

Munch SB, Salinas S (2009) Latitudinal variation in lifespan within species is explained by the 

metabolic theory of ecology. Proceedings of the National Academy of Sciences of the 

United States of America, 106, 13860–4. 

Perkins DM, Yvon-Durocher G, Demars BOLL et al. (2012) Consistent temperature dependence 

of respiration across ecosystems contrasting in thermal history. Global Change Biology, 18, 

1300–1311. 

R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing Vienna Austria, 0, {ISBN} 3–900051–07–0. 

Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F, Vucic-Pestic O, Petchey OL (2012) 

Universal temperature and body-mass scaling of feeding rates. Philosophical transactions 

of the Royal Society of London. Series B, Biological sciences, 367, 2923–34. 



86 
 

Savage VM (2004) Improved approximations to scaling relationships for species, populations, 

and ecosystems across latitudinal and elevational gradients. Journal of theoretical biology, 

227, 525–34. 

Savage VM, Gilloly JF, Brown JH, Charnov EL (2004) Effects of body size and temperature on 

population growth. The American naturalist, 163, 429–41. 

Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on 

watersheds, airsheds, and landscapes. Limnology and Oceanography, 54, 2349–2358. 

Schneider P, Hook SJ (2010) Space observations of inland water bodies show rapid surface 

warming since 1985. Geophysical Research Letters, 37. 

Sharma S, Gray DK, Read JS et al. (2015) A global database of lake surface temperatures 

collected by in situ and satellite methods from 1985–2009. Scientific Data, 2, 150008. 

Tewksbury JJ, Huey RB, Deutsch C a (2008) Ecology. Putting the heat on tropical animals. 

Science (New York, N.Y.), 320, 1296–1297. 

Theil H (1950) A rank invariant method of linear and polynomial regression analysis, I, II, III. 

Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen, Series A -- 

Mathematical Sciences, 53, 386 – 392. 

Tranvik LJ, Downing JA, Cotner JB et al. (2009) Lakes and reservoirs as regulators of carbon 

cycling and climate. Limnology and Oceanography, 54, 2298–2314. 

UN Water Report: Water Monitoring, Mapping Existing Global Systems & Initiatives (2006) 

Stockholm. 

Vadeboncoeur Y, McIntyre PB, Vander Zanden MJ (2011) Borders of Biodiversity: Life at the 

Edge of the World’s Large Lakes. BioScience, 61, 526–537. 

Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing 

climates by 2100 AD. Proceedings of the National Academy of Sciences of the United 

States of America, 104, 5738–5742. 

Wilson MA, Carpenter SR (1999) Economic valuation of freshwater ecosystem services in the 

United States: 1971-1997. Ecological Applications, 9, 772–783. 

Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the 

metabolic balance of ecosystems. Philosophical transactions of the Royal Society of 

London. Series B, Biological sciences, 365, 2117–2126. 

Yvon-Durocher G, Caffrey JM, Cescatti A et al. (2012) Reconciling the temperature dependence 

of respiration across timescales and ecosystem types. Nature, 487, 472–6. 

Yvon-Durocher G, Allen AP, Bastviken D et al. (2014) Methane fluxes show consistent 

temperature dependence across microbial to ecosystem scales. Nature, 507, 488–91. 

Supporting Information: 



87 
 

Dataset S1: Activation energies and data sources for 94 freshwater activation energies used in 

our study. 

Response 

Activation 

Energy (eV) 

Sites/ 

Species Source 

Attack Probability             1.79               3  (Dell et al., 2013) 

Attack-Field Encounter Density Rate 0.78 3 (Dell et al., 2013) 

Attack-Field Encounter Rate 0.5 4 (Dell et al., 2013) 

Attack-Field Reaction Probability 0.72 3 (Dell et al., 2013) 

Average lifespan 0.46 30 (Munch & Salinas, 2009) 

Chlorophyll-a-Specific Carbon 

Production Rate 0.48 1 (Dell et al., 2013) 

Community-level rate of CH4 production 0.93 47 (Yvon-Durocher et al., 2014) 

Critical Holding Velocity 0.33 3 (Dell et al., 2013) 

Critical Travel Velocity 0.34 15 (Dell et al., 2013) 

Critical Travel Velocity 50% 0.24 3 (Dell et al., 2013) 

Development Time 0.57 2 (Dell et al., 2013) 

Digestion Time 50% 0.77 2 (Dell et al., 2013) 

Digestion Time 75% 0.83 5 (Dell et al., 2013) 

Digestion Time 90% 0.76 5 (Dell et al., 2013) 

Digestion Time 99% 0.76 5 (Dell et al., 2013) 

Ecosystem-level CH4 emission 0.96 127 (Yvon-Durocher et al., 2014) 

Ecosystem-level CH4:CO2 emission ratio 0.71 38 (Yvon-Durocher et al., 2014) 

Ecothermic vertebrate attack rate 0.51 115 (Rall et al., 2012) 

Ecothermic vertebrate handling time 0.28 115 (Rall et al., 2012) 

Escape Angular Rate of Body Turning 0.23 4 (Dell et al., 2013) 

Escape Body Acceleration 0.12 1 (Dell et al., 2013) 

Escape Body Velocity 0.25 31 (Dell et al., 2013) 

Escape Muscle 50% Relaxation Time 0.38 3 (Dell et al., 2013) 

Escape Muscle 50% Twitch Time 0.41 3 (Dell et al., 2013) 

Escape Muscle Peak Twitch Time 0.38 3 (Dell et al., 2013) 

Escape Stroke Length 0.03 2 (Dell et al., 2013) 

Escape Stroke Rate 0.08 11 (Dell et al., 2013) 

Escape Tail Beat Rate 0.25 2 (Dell et al., 2013) 

Faecal Excretion Rate 0.34 3 (Dell et al., 2013) 

Filtration Rate 0.62 4 (Dell et al., 2013) 

Fish respiration 0.41 113 (Gillooly et al., 2001) 

Fish swimming metabolic cost of 

transport 0.19 29 (Hein & Keirsted, 2012) 

Fixed-point Activity Rate 0.16 1 (Dell et al., 2013) 

Foraging Submergence Duration 1.77 2 (Dell et al., 2013) 

Foraging Submergence Time 1.35 2 (Dell et al., 2013) 

Foraging Velocity 0.44 4 (Dell et al., 2013) 

Grazing Rate 0.01 1 (Dell et al., 2013) 

Gross primary production 0.45 1 (Yvon-Durocher et al., 2012) 

Gut Loading Time 0.48 1 (Dell et al., 2013) 

Gut Passage Time 0.43 2 (Dell et al., 2013) 

Handling Duration 0.67 2 (Dell et al., 2013) 

In Vitro Gill Beat Rate 0.51 2 (Dell et al., 2013) 
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In Vitro Muscle 50% Relaxation Time 0.43 6 (Dell et al., 2013) 

In Vitro Muscle Contraction Duration 0.15 3 (Dell et al., 2013) 

Individual Length Growth Rate 1.12 2 (Dell et al., 2013) 

Individual Mass Growth Rate 2.56 1 (Dell et al., 2013) 

Instantaneous Digestion Mass Rate 1.12 4 (Dell et al., 2013) 

Invertebrate attack rate 0.53 154 (Rall et al., 2012) 

Invertebrate handling time 0.42 154 (Rall et al., 2012) 

Invertebrate respiration 0.74 20 (Gillooly et al., 2001) 

Lake benthic ecosystem respiration 0.55 27 (Yvon-Durocher et al., 2012) 

Lake Pelagic ecosystem respiration 0.63 95 (Yvon-Durocher et al., 2012) 

Longevity 0.46 1 (Dell et al., 2013) 

Mass-scaled amphibian embryonic 

development time 0.14 34 (Gillooly et al., 2002) 

Mass-scaled fish embryonic development 

time 0.13 59 (Gillooly et al., 2002) 

Mass-scaled multicellular eukaryote 

population growth rate 0.84 57 (Savage et al., 2004) 

Mass-scaled multivoltine aquatic insects 

embryonic development time 0.12 35 (Gillooly et al., 2002) 

Mass-scaled Post-embryonic 

development time for zooplankton 0.11 103 (Gillooly et al., 2002) 

Mass-scaled unicellular eukaryote 

population growth rate 0.54 14 (Savage et al., 2004) 

Mass-scaled vertebrate population growth 

rate 0.35 9 (Savage et al., 2004) 

Mass-scaled zooplankton embryonic 

development time 0.11 96 (Gillooly et al., 2002) 

Mass-Specific Ammonia Excretion Rate 1.1 1 (Dell et al., 2013) 

Mass-Specific Consumption Rate 1.99 3 (Dell et al., 2013) 

Mass-Specific Escape Inertial 

Hydrodynamic Power Requirement 0.65 11 (Dell et al., 2013) 

Mass-Specific Mass Clearance Rate 0.4 2 (Dell et al., 2013) 

Mass-Specific Mass Consumption Rate 0.51 1 (Dell et al., 2013) 

Mass-Specific Oxygen Mass Scope For 

Activity 0.16 2 (Dell et al., 2013) 

Mass-Specific Respiration Rate 0.67 1 (Dell et al., 2013) 

Maximum lifespan 0.6 43 (Munch & Salinas, 2009) 

Molting Frequency 0.59 1 (Dell et al., 2013) 

Mortality Rate 0.14 3 (Dell et al., 2013) 

Net Primary production 0.41 1 (Yvon-Durocher et al., 2012) 

Photosynthesis 0.3 1 (Yvon-Durocher et al., 2012) 

Point-Encounter Rate 0.71 2 (Dell et al., 2013) 

Population Filter-Feeding Probability 0.02 7 (Dell et al., 2013) 

Population Growth Rate 0.53 9 (Dell et al., 2013) 

Population Size 0.37 1 (Dell et al., 2013) 

Population Voluntary Exposure 

Probability 1.1 2 (Dell et al., 2013) 

Population Voluntary Movement 

Probability 1.45 3 (Dell et al., 2013) 

Population Voluntary Movement 

Probability of Exposed Individuals 0.29 1 (Dell et al., 2013) 

Population-level rate of methanogenesis  1.1 33 (Yvon-Durocher et al., 2014) 

Resource Consumption Rate 0.57 71 (Dell et al., 2013) 



89 
 

Resource Mass Consumption Rate 0.5 28 (Dell et al., 2013) 

Strike-Field Encounter Rate 0.53 4 (Dell et al., 2013) 

Subjugation-through-Consumption 

Duration 0.83 1 (Dell et al., 2013) 

Successful Attack Probability 0.23 3 (Dell et al., 2013) 

Survival Time 0.41 2 (Dell et al., 2013) 

'Swim Underwater' Defence Probability 0.51 1 (Dell et al., 2013) 

Undigested Mass 1.4 10 (Dell et al., 2013) 

Unicell respiration 0.71 30 (Gillooly et al., 2001) 

Voluntary Body Velocity 0.29 42 (Dell et al., 2013) 

Voluntary Moving Probability 0.11 4 (Dell et al., 2013) 

Voluntary Stroke Rate 0.33 27 (Dell et al., 2013) 

Voluntary Tail Beat Rate 0.38 1 (Dell et al., 2013) 

 

Text S2: Temperature Data Sources. Signy Island lake (lakes Heywood, Moss, Sombre) 

temperature data were contributed by the Polar Data Centre under a British Open Government 

License, British Antarctic Survey, 1963-2004 (GB/NERC/BAS/AEDC/00063) 

(http://www.antarctica.ac.uk/bas_research/data/access/index.php). Long-term temperature data 

from Lake Tanganyika are available through DATAOne and LTER data portals. Lake Kivu data 

were supplied by Francois Darchambeau, Jean-Pierre Descy, Alberto Vieira Borges, and Martin 

Schmid and funded by the ARES-CCD through the “ECOSYKI : Studies on Lake Kivu 

ecosystem for its sustainable management” project, by the Belgian Federal Science Policy Office 

through the “EAGLES: East African Great Lake Ecosystem Sensitivity to Changes’’ (EAGLES, 

SD/AR/02A) project, and by the Fonds National de la Recherche Scientifique (Belgium) through 

the ‘‘CAKI: Cycle du Carbone et des Nutriments au Lac Kivu’’ and ‘‘MICKY: Microbial 

Diversity and Processes in Lake Kivu’’ projects (data contact: Jean-Pierre Descy, 

jpdescy@gmail.com) . Lake Tahoe temperature data collection has been funded by the Tahoe 

Regional planning Agency, Lahontan Regional Water Quality Board and contributed by the UC-

Davis Tahoe Environmental Research Center (data available at http://terc.ucdavis.edu/). Lake 

Atitlan temperature data collection was funded by UVG and USAID (data contact: Margaret Dix, 
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margeret.dix@gmail.com). Lake Baikal temperature data collection was partially funded by the 

Russian Ministry of Education and Science, (GR 01201461929) (data contact: Eugene Silow, 

eugenesilow@gmail.com). Data from Toolik Lake, Lake Mendota, and Trout Lake were 

provided by the National Science Foundation’s Long-Term-Ecological Research program (data 

sets titled, North Temperate Lakes LTER: Physical Limnology of Primary Study Lakes, Physical 

and chemical data for various lakes near Toolik Research Station, Arctic LTER, 

http://www.lternet.edu/lter-sites). Lake Kinneret temperature data were accessed through the 

Yigal Allon Kinneret Limnological Laboratory (data available through the Lake Kinneret Data 

Center, http://www.ocean.org.il/Eng/KineretDataCenter/ProfileDC.asp). Data from Lake Zurich 

were provided by the City of Zurich Water Supply (WVZ). Data from Greifensee were provided 

by the Amt für Abfall, Wasser, Energie und Luft, Canton of Zurich. Data contact for lakes 

Zurich and Greifensee is David Livingstone, David.Livingstone@eawag.ch. Data from Lake 

Geneva were from SOERE OLA-IS, INRA Thonon-les-Bains, CIPEL, [downloaded on January 

2014], developed by Eco-Informatics ORE INRA Team (data contact: Orlane Anneville, 

orlane.anneville@thonon.inra.fr). Lake Biwa data were shared by Akihiko Oyama 

(gf30@pref.shiga.lg.jp) of the Shiga Prefectural Fishery Experiment Station. Data for lakes 

Rawson, 227, and 302 were contributed by the Experimental Lakes Area of Fisheries and 

Oceans-Canada (data freely available after signing data use agreement at 

www.experimentallakesarea.ca). Data from Castle Lake were contributed by the Aquatic 

Ecosystems Analysis Laboratory, University of Nevada-Reno (data contact: Sudeep Chandra, 

limnosudeep@me.com). Lake Nkugute data are from “CLANIMAE” report: Science for 

Sustainable Development, 2010 

(http://www.belspo.be/belspo/ssd/science/Reports/CLANIMAE%20FinRep%20PH%201.pdf). 
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Summer mean annual surface temperatures from 1985-2009 are available for the lakes in this 

analysis at doi:10.1038/sdata.2015.8. 

Figures: 

 

Figure 1: Exponential temperature-dependence of biological process rates in lakes. Nonlinear 

temperature dependencies were based on the Boltzmann-Arrhenius factor with activation 

energies specific to each biological process. Nonlinear temperature dependencies are illustrated 

here as a proportion of the rate estimated for 15o C. The steepness of the curve is related to the 

activation energy of each biological process; the higher the activation energy, the steeper the 

curve.  



92 
 

 

Figure 2: Distribution of lake average temperatures (a) and lake warming rates (b) based on three 

different temperature sources: average summer surface temperatures (grey), annual surface 

temperatures (blue), and annual bottom temperatures (orange). 
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Figure 3: Warming rate (a) and metabolic responses (b) as a function of average lake 

temperature. Warming rates and metabolic responses are split by temperature data types: average 

summer surface temperatures (grey), annual surface temperatures (blue), and annual bottom 

temperatures (orange). Lines in panel (b) indicate the metabolic response for the median 
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activation energy. Colored ribbons in panel (b) indicate range of metabolic responses between 

the first and third quartiles (see Fig 1) of the distribution of activation energies used in our study. 

 

Figure 4: Average metabolic responses for warmest 50% of lakes (red) and coldest 50% of lakes 

(blue) as a function of activation energy. Warming rates and metabolic responses are split into 

separate panels by temperature data types used in their estimation: annual bottom temperatures 

(a, b), annual surface temperatures (c, d), average summer surface temperatures (e, f). Panels a, 

c, and e show the estimated change in each metabolic response scaled to the estimated rate at 

15oC. Panels b, d, f show the metabolic responses divided by the global average metabolic 

response for its activation energy to facilitate comparison between warm and cold lakes. The 

vertical dashed line indicates the median activation energy. The point where the implied blue and 
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red lines cross indicates the activation energy where warm lakes switch from having smaller to 

having larger metabolic responses to warming. 
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Chapter 4: Warming reduces ecosystem and organism metabolism in Africa’s deepest lake*  

Abstract 

Climate warming is predicted to accelerate ecosystem and organism metabolism due to 

the fundamental temperature dependence of biochemical kinetics. However, the direct influence 

of temperature on metabolism can be outweighed by warming’s indirect influences—potentially 

causing metabolic rates to decrease with temperature. Here we show that in Lake Tanganyika, 

ecosystem metabolic rates (pelagic primary production, pelagic ecosystem respiration, littoral 

primary production, littoral ecosystem respiration) and the metabolic rates of some endemic 

species of fish (respiration, ammonium excretion, soluble reactive phosphorus excretion) are 

negatively related to temperature on seasonal timescales. The negative relationship between 

organismal and ecosystem metabolism arises from warming-induced shifts in lake mixing which 

diminish lake productivity and food availability for fishes. Metabolic declines brought about by 

warming may be widely observed in other nutrient-poor lakes where lake mixing is a key source 

of nutrients to the photic zone.  

Introduction 

The metabolic theory of ecology predicts that organismal and ecosystem metabolism is 

directly linked to temperature due to the fundamentals of biochemical kinetics (Gillooly et al. 

2001, Yvon-Durocher et al. 2010, Dell et al. 2011). Within their optimal range, organisms and 

ecosystems operating at higher temperatures are expected to have higher metabolic rates in 

proportion to the Boltzmann-Arrhenius factor, 

                                                           
* To be submitted for publication with Cortney Morris, Lesley Yu-Jung Kim, Ellen Hamann, 

Yvonne Vadeboncoeur, Peter B. McIntyre as potential co-authors 
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𝜐 ∝ 𝑒−𝐸𝑎/𝑘𝑇 

where 𝜐 is the reaction rate, Ea is the activation energy, k is the Boltzmann constant, and T is the 

temperature in Kelvin. Boltzmann-Arrhenius model fitting of metabolism at the organismal, 

population, community, and ecosystem scale have demonstrated that the metabolic theory of 

ecology has broad importance for explaining pattern and process in nature (Gillooly et al. 2001, 

Dell et al. 2011, Yvon-Durocher et al. 2012). 

 The ubiquity of temperature dependence in nature has implications for the direct effect of 

climate warming on the environment. Estimations of the temperature sensitivity of metabolism 

have been used widely to model global scale ecosystem responses to warming (Allen et al. 2005, 

Munch and Salinas 2009, Dillon et al. 2010, Marotta et al. 2014). Many suggest that global 

warming is likely to enhance both primary production and respiration (Smith and Kemp 1995, 

Caffrey 2003, Allen et al. 2005, Staehr and Sand-Jensen 2006, Davidson and Janssens 2006, 

Dillon et al. 2010, Marotta et al. 2014).  

 The positive relationship between temperature and metabolism predicted by the 

metabolic theory of ecology may be confounded by indirect influences of temperature or its 

independent covariates. For instance, drought can make ecosystems less productive even as 

temperatures warm (Zhao and Running 2010). Changes in resource quality can also amplify or 

dampen the apparent temperature dependence of metabolism (Cross et al. 2015). Changes in 

community composition (Kratina et al. 2012) and cloud cover (Carbone et al. 2013) have been 

shown to confound the fundamental relationship between temperature and metabolism. The 

temperature dependence of aquatic metabolism can be altered by temperature driven changes in 

the oxygenation or salinity of water (Claireaux and Lagardère 1999, Pörtner and Knust 2007). 

Thus, while the generalized temperature dependence of metabolism may be fundamental and 
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consistent across sites, there can be a significant amount of variability in the “apparent” 

temperature dependence of metabolism due to the indirect influence of temperature or its 

independent covariates. 

 Lake Tanganyika is the deepest and oldest lake in the tropics and while it is a nutrient-

poor and low-productivity lake, it also supports one of the most species-rich and productive 

freshwater fisheries in the world (Coulter and Mubamba 1993). Pelagic (offshore) gross primary 

production has been shown to decrease with temperature even over small temperature ranges 

(~2 °C) on interannual timescales (O’Reilly et al. 2003, Tierney et al. 2010, Loiselle et al. 2014) 

and seasonal timescales (Plisnier et al. 1999, O’Reilly 2006). The apparent negative temperature 

dependence of gross primary production seemingly contradicts the prediction from metabolic 

theory that warming increases metabolic rates (Yvon-Durocher et al. 2012). Lower productivity 

at higher temperatures in Lake Tanganyika has been explained by climate-change mediated shifts 

in the strength of water column stratification (O’Reilly et al. 2003, Verburg and Hecky 2009, 

Tierney et al. 2010). Higher surface temperatures amplify the density stratification of the water 

column thereby dampening vertical mixing and trapping nutrients below the photic zone 

(Kraemer et al. 2015). Consequently, pelagic primary productivity in Lake Tanganyika has an 

“apparent” negative relationship to temperature due to an indirect influence of temperature on 

lake stratification. Thus, the net effect of diminished nutrient supply due to warming appears to 

overwhelm the expected boost in potential primary productivity as the water warms, yielding 

negative “apparent” temperature dependence. 

The temperature dependence of consumer metabolism in Lake Tanganyika remains 

uncertain. This uncertainty stems from the potential for consumers to also have a negative 

“apparent” temperature dependence arising from lower food availability when the surface of the 
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lake warms. The strict prediction from the metabolic theory of ecology is that metabolism will 

increase with temperature at both the ecosystem level (Yvon-Durocher et al. 2012) and the 

organismal level (Gillooly et al. 2001, Vanni 2002, Savage et al. 2004, Clarke 2004) in 

proportion to the Boltzmann-Arrhenius factor. If consumer metabolism is tightly constrained by 

the Boltzmann-Arrhenius factor in Lake Tanganyika, warming may result in metabolic deficits 

whereby primary production decreases with temperature and the metabolic demands of 

consumers, increase. But if consumer metabolism is more tightly constrained by endogenous 

primary productivity, it may also exhibit negative apparent temperature dependence in tandem 

with primary production. Despite the high likelihood of warming causing metabolic imbalances 

for consumers in Lake Tanganyika, the temperature dependence of consumer metabolism has not 

yet been estimated based on field data. 

To determine the apparent temperature dependence of metabolism in Lake Tanganyika, 

we fit Boltzmann-Arrhenius models to organismal and ecosystem metabolism data over the 

seasonal temperature cycle. Temperature-dependent variables in our analysis fell into two major 

categories: ecosystem responses (pelagic primary production, pelagic ecosystem respiration, 

littoral gross primary production, and littoral ecosystem respiration) and fish responses (fish 

metabolism, and fish excretion rates of two key nutrients: ammonium (NH4) and soluble reactive 

phosphorus (SRP)).  

We use the relationship between metabolic variables and temperature to determine 

whether they match what would be predicted from metabolic theory alone. For the ecosystem 

responses listed above, we use chlorophyll-α specific rates to factor out variability in lake 

stratification and better estimate the direct effect of temperature alone. Furthermore, we use the 

directionality of fish metabolic responses and fish body condition responses to temperature to 
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test whether fish are above or below their apparent temperature optima. Increases in fish 

metabolism and body condition with temperature would indicate that fish are below their 

apparent temperature optima whereas decreases in fish metabolism and body condition would 

indicate that fish are above their apparent temperature optima (Dell et al. 2011). Here we use the 

term “apparent” temperature optima to indicate that the metabolic optima are not only a function 

of temperature but also other variables that are correlated to temperature such as food 

availability. In sum, this analysis will help resolve the potential links between fish, metabolic 

kinetics and lake hydrodynamics. Resolving these links will provide insights into the impacts of 

climate warming on the biota of this remarkable tropical lake. 

Methods 

To estimate the apparent temperature dependence of metabolism in Lake Tanganyika, we 

fit Boltzmann-Arrhenius models to data over the seasonal temperature cycle. We used Theil-Sen 

slope estimator, a non-parametric linear model (Theil 1950, Sen 1968, Peng et al. 2008), to 

estimate ecosystem and organism metabolism as a function of standardized temperature, 1/(kTc) 

- 1/(kT), where k is the Boltzmann constant (8.62 X 10-5 eV K-1) Tc is the average temperature 

over the seasonal temperature cycle (26.78 °C), and T is the temperature in Kelvin. Fish body 

condition was modeled against the average temperature over the month leading up to the 

measurement because fish body condition is a more time-integrative measure of the conditions 

affecting fish fitness. Daily estimates of ecosystem fluxes were natural log-transformed prior to 

model fitting. Fish excretion rates and fish respiration rates were scaled to the average for each 

species and natural log-transformed prior to model fitting using the equation, ln(x/xs), where x is 

a measurement on an individual from species “s,” and xs is the average for that species. We 

calculated Theil-Sen slopes for each response variable pooled across fish species and separately 
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for each fish species. These slope estimations for fish metabolic responses reflect the sum of 

direct and indirect temperature effects of temperature on metabolism.  

In standard Boltzmann-Arrhenius model fitting, the slope estimates described in the 

previous paragraph are interpreted as the “activation energy” of the underlying biochemical 

reactions involved with each specific metabolic rate. Here, we use the term, “apparent activation 

energy” in recognition that the direct effect of temperature on biochemical reactions underlying 

metabolism may be confounded by indirect effects. The significance of the apparent activation 

energy for each response to temperature was assessed using the distribution of all pair-wise slope 

estimates from the Theil-Sen slope calculations in the “R” package, “mblm” (Theil 1950, Sen 

1968, Peng et al. 2008).  

Positive activation energies for fish responses to temperature would suggests that fish are 

below their “apparent temperature optima” and negative slopes would suggests that fish are 

above their “apparent temperature optima” over the temperature range where data are collected 

(Dell et al. 2011). We use the word, “apparent” here as well in recognition that estimates of 

temperature optima based on field data may reflect optima in other environmental variables that 

are correlated to temperature (like food availability). 

Ecosystem fluxes 

 We measured pelagic gross primary production and ecosystem respiration daily from 20 

July, 2012 to 19 September, 2012 and from 29 November, 2012 through 18 April, 2013. We 

estimated pelagic ecosystem fluxes based on free-water, diel variation in dissolved oxygen at one 

offshore site (4.903766 °S, 29.590183 °E) approximately 1.5 km from shore near Kigoma, 

Tanzania. We measured dissolved oxygen every 10 minutes at a depth of 15m below the surface 
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using an optical dissolved oxygen probe on an YSI 6600 sonde. The sonde also measured 

specific conductivity and temperature and was deployed on a subsurface mooring. At this 

location, the depth of the water column is 140 m and the thermocline typically ranges from 40-70 

m depth. Thus, the dissolved oxygen sensor was well above the thermocline within the photic 

zone of the lake. 

 We also measured littoral gross primary production and ecosystem respiration at a rocky 

nearshore site (4.913400 °S, 29.598350 °E) at Jacobsen’s beach near Kigoma, Tanzania 

continuously from 19 July, 2012 to 14 August, 2013. We used an YSI 6600 sonde to measure 

water temperature and dissolved oxygen at 5 meters depth with the dissolved oxygen sensor 15 

cm above the rocky bottom. The deployment at 5 meters depth is above the thermocline, within 

the photic zone of the lake, and below the average depth to which wave surges penetrate 

(generally 2-4 m). The sensor was located 15 meters from shore. The variation in dissolved 

oxygen at this location is assumed to primarily reflect benthic primary production and respiration 

due to the proximity of the sensor to the benthos. 

To estimate daily gross primary production and ecosystem respiration at the pelagic and 

littoral site, we used a state-space model with maximum likelihood estimation and a Kalman 

filter (Read et al. 2011, Batt 2012, Winslow et al. 2015). We estimated the gas transfer 

coefficient daily using wind speed data from a nearby land-based weather station (Cole and 

Caraco 1998, Staehr et al. 2010).  

We assessed whether the fundamental, direct temperature dependence of ecosystem 

metabolic rates differed from that predicted from the metabolic theory of ecology. To disentangle 

the direct and indirect effects of temperature, we calculated chlorophyll-α specific ecosystem 

metabolism rates over the seasonal temperature cycle. Chlorophyll-α was measured using an 
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optical chlorophyll-α sensor which was calibrated to chlorophyll-α extractions measured using 

an Aquafluor brand, handheld fluorometer. We expected chlorophyll-α specific metabolic rates 

to more closely match the temperature dependence of metabolism predicted from metabolic 

ecology because they control for the effects of producer mass in the ecosystem (López-Urrutia 

and Morán 2007, Yvon-Durocher et al. 2010).  

Consumer metabolism 

 We measured fish body condition and excretion rates on 6 species of littoral fishes 

(Lepidiolamprologus elongatus (n=55), Neolamprologus brichardi (n=55), Neolamprologus 

mondabu (n=56), Ophthalmotilapia heterodonta (n=52), Petrochromis kasumbe (n=72), and 

Tropheus brichardi (n=70)) over the seasonal temperature cycle. These species were chosen to 

represent the most abundant species of fish from five of the main trophic groups in the littoral 

fish community: benthic algivores, benthic invertivores, planktivores, omnivores, and piscivores. 

5-7 individual fish from each species were captured near the littoral sonde deployment every 1.5 

months from June 2012 to August 2013, totaling 360 fish. Individual fish were targeted to 

represent a size range that closely reflected the size range of fish in the rocky littoral habitat from 

which they were caught. 

Ammonium (NH4) and soluble reactive phosphorus (SRP) excretion rates were measured 

by incubating fish in 1-2 gallon Ziploc bags filled with 2 or 3 L of filtered lake water depending 

on the size of the fish. After fish were caught, they were immediately placed into an incubation 

bag which was partially submerged in the lake to maintain temperatures that matched lake 

temperatures. NH4 samples were taken before and after 30 minute incubations and analyzed with 

a handheld fluorometer within 24 hours of being collected. We calculated NH4 concentrations 

while accounting for matrix effects and background fluorescence using an unamended sample 
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and three spiked samples (Taylor et al. 2007). SRP samples were also taken before and after the 

fish incubations and kept frozen during transport to UW-Madison where they were analyzed 

using the standard molybdate blue method on an autoanalyzer. Excretion rates were determined 

by subtracting the initial mass of NH4 and SRP from the final mass after the incubation and 

dividing by the incubation time.  

The live weight, standard length, and total length of each fish was measured and used to 

estimate species-specific mass scaling exponents for length and excretion rates. We estimated the 

body condition of each fish using the Weight/Lengthn ratio where n is the species-specific mass-

length scaling coefficient estimated from the entire data set. This is a standard metric for fish 

body condition widely used when more detailed information is not available (Bolger and 

Connolly 1989).  

Fish respiration rates were measured over a portion of the seasonal temperature cycle 

from June-August 2012 and from July-August 2013. Closed system respirometry (Steffensen 

1989, Urbina et al. 2012) was used to measure metabolism in seven species of littoral fish 

(Lepidiolamprologus elongatus (n = 14), Lamprologus lemarii (n = 13), Eretmodus cyanostictus 

(n = 15), Tropheus brichardi (n = 100), Neolamprologus brichardi (n = 15), Altolamprologus 

compressiceps (n = 15), and Perissodus microlepis (n = 13)). Two respirometry chambers (61 

cm long and 700mL volume) were constructed from PVC with caps on both ends and a rubber 

sealed port on the top. Fish were caught from one of eight rocky littoral sites along a 20 km 

stretch of shoreline north and south of Kigoma, Tanzania. After being caught, individual fish 

were immediately placed into a respirometer with a dissolved oxygen probe inserted into the 

rubber sealed port. Each fish was allowed to acclimate to the respirometer for 30 minutes. 

Changes in dissolved oxygen over 20-40 minute incubations were compared to changes in the 
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control chamber without a fish. We also kept 85 individual Tropheus brichardi for 12 hours in 

plastic buckets without food to allow them to clear their guts. Respiration rates on these semi-

starved fish were measured at the end of the 12-hour waiting period using the same methods. 

Results 

Direct temperature dependence of ecosystem metabolism 

When we used chlorophyll-a specific ecosystem metabolism rates to factor out the 

influence of the indirect effects of temperature on metabolism, the temperature dependence of 

ecosystem carbon cycling was within the range for that predicted from metabolic theory (Fig 1). 

The activation energy for littoral gross primary production (1.29 ± 1.02 eV, p = 0.01) was not 

significantly different from what has been shown for aquatic ecosystems (0.35 eV) (Yvon-

Durocher et al. 2010, 2011). The activation energy for littoral ecosystem respiration (1.68 ± 0.99 

eV, p < 0.01) was slightly higher than what has been predicted from mesocosm studies (0.62 eV) 

(Yvon-Durocher et al. 2010) and meta-analyses (0.55 eV) (Yvon-Durocher et al. 2012) but well 

within the range of activation energies reported for other freshwater metabolic rates (Dell et al. 

2011). Both of these estimates of fundamental activation energies was significantly different 

from zero (p > 0.1). The activation energies for chlorophyll-specific pelagic gross primary 

production and pelagic ecosystem respiration (0.50 ± 1.39 eV and 1.37 ± 1.80 eV, respectively) 

were also not significantly different from that predicted from metabolic ecology (0.35 eV) 

(Yvon-Durocher et al. 2012). 

Apparent temperature dependence of ecosystem metabolism 

The apparent temperature dependence of ecosystem metabolism diverged from the 

chlorophyll-α specific activation energies (Fig. 2 and Fig. 3). Pelagic gross primary production 
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was negatively related to temperature (Ea = -3.96 ± 0.82 eV). Littoral gross primary production is 

also negatively related to temperature but with a lower activation energy (-2.05 ± 0.51 eV). 

Ecosystem respiration rates were highly correlated to ecosystem gross primary production in 

both the littoral and pelagic zones. Apparent activation energies for pelagic and littoral 

ecosystem respiration were -4.89 ± 1.01 eV and -1.88 ± 0.58 eV, respectively. None of the four 

ecosystem fluxes had apparent activation energies that agreed with the fundamental prediction 

from the metabolic theory of ecology.  

Apparent temperature dependence of consumer metabolism 

Consumer metabolism was negatively related to temperature for five out of ten species in 

at least one of the three metabolic responses measured here (Fig. 3). The species that observed 

negative apparent temperature dependence for at least one of the metabolic variables measured 

here were Lepidiolamprologus elongatus, Lamprologus lemarii, Tropheus brichardi, 

Opthalmotilapia heterodonta, and Neolamprologus mondabu. The negative activation energies 

reported for these species are outside the range of freshwater metabolic responses for organisms 

that are within their optimal range (0.005 – 2.56 eV) (Dell et al. 2011). 

The apparent fish respiration responses to temperature varied considerably across species 

(Fig. 3). Three of the fish species analyzed here (Lepidiolamprologus elongatus, Lamprologus 

lemarii, and Eretmodus cyanostictus) exhibited metabolic falls with apparent activation energies 

ranging from -0.38 to -1.48 eV. Four species had respiration rates that increased with 

temperature (Tropheus brichardi, Neolamprologus brichardi, Altolamprologus compressiceps, 

and Perissodus sp.) with apparent activation energies ranging from 0.03 to 1.97 eV (Fig. 3).  
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The temperature dependence of excretion rates were also highly variable across fish 

species (Fig. 3). Five out of six species had NH4 excretion rates that were negatively related to 

temperature with apparent activation energies ranging from -0.39 to -1.35. Four of these negative 

responses to temperature were significantly different from zero (p < 0.05) and all of them were 

significantly different from the predicted activation energy for excretion rates based on metabolic 

theory (Vanni 2002). Petrochromis kasumbe had a significant positive apparent activation energy 

(Ea = 2.39 ± 1.46 eV, p < 0.01) that was within the range of common freshwater activation 

energies (Dell et al. 2011). NH4 excretion activation energies were highly correlated to average, 

mass-scaled NH4 excretion rates across species. SRP excretion apparent activation energies 

ranged from -2.49 to 2.30 with three out of six being significantly different from zero and 

significantly different from the prediction based on metabolic ecology (Vanni 2002) (p < 0.01). 

SRP excretion rate activation energies were not correlated to the average mass-scaled SRP 

excretion rate across species (p > 0.05). 

The body condition of all six species of fish declined with temperature, three of which 

were significant (Lepidiolamprologus elongatus, Tropheus brichardi, and Neolamprologus 

brichardi, p < 0.05) (Fig. 4). The declines in body condition with temperature observed here 

correspond to a 2-11% reduction in body condition per 1 °C of warming. Slopes for fish body 

condition were negatively correlated (r = -0.91) to the apparent activation energy for SRP 

excretion rates across fish species but not to the apparent activation energy for NH4 excretion 

rates. There was an overall inverse relationship between loss of body mass and SRP excretion 

across species. The species with the largest seasonal declines in body condition had the largest 

increases in SRP excretion with temperature. Fish with smaller declines in body condition had 

low or negative activation energies for SRP excretion rates. 
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Discussion 

 The metabolic theory of ecology predicts that metabolic rates at the organism and 

ecosystem scale will increase with temperature. The direct temperature dependence of ecosystem 

metabolism estimate here roughly matches this prediction. However, our results on the 

“apparent” temperature dependence of metabolism in Lake Tanganyika demonstrate a stark 

departure from this prediction. All aspects of whole-ecosystem metabolism analyzed here 

(littoral gross primary production, littoral ecosystem respiration, pelagic gross primary 

production, and pelagic ecosystem respiration) respond negatively to temperature suggesting that 

warming-induced changes in lake stratification belie the fundamental temperature dependence of 

metabolism. Some aspects of fish metabolism and fish body condition analyzed here also 

decrease significantly with temperature, suggesting that some fish are already above their 

“apparent” thermal optima.  

Ecosystem responses to temperature 

It is well established that pelagic primary production in Lake Tanganyika is negatively 

related to surface temperature based on sediment core data (O’Reilly et al. 2003, Tierney et al. 

2010), in situ observations (Plisnier et al. 1999, Plisnier 2001), and remote sensing data (Loiselle 

et al. 2014). This substantial decline in pelagic productivity has been demonstrated over small 

temperature ranges (~2 °C) similar to the temperature range in our analyses. We corroborate 

these findings with pelagic gross primary production estimates based on free water dissolved 

oxygen data. Our results closely match inferences from remote sensing data which has shown 

~40% reductions in pelagic gross primary productivity in the warm season near our study site 

over the entire seasonal temperature and wind cycle (Bergamino et al. 2010). Such massive 
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reductions in primary productivity over such small temperature ranges (~2 °C) demonstrates the 

extraordinary sensitivity of Lake Tanganyika to temperature variation and lake stratification. 

Littoral gross primary productivity is also negatively related to temperature on seasonal 

timescales at our study site. Littoral gross primary production was less sensitive to temperature 

than pelagic gross primary production (apparent activation energy closer to zero) suggesting that 

the cumulative direct and indirect effects of temperature on littoral productivity may be 

dampened relative to the pelagic zone. Several characteristics of littoral ecosystems may explain 

the dampened apparent temperature dependence there. Tight nutrient recycling between fish and 

benthic algae may serve to reduce nutrient losses from littoral ecosystems thereby maintaining 

higher productivity through periods of low nutrient supply. Nutrient runoff from terrestrial 

ecosystems may also help support littoral primary production in the warm season more so than 

pelagic primary production. While nutrient runoff is generally thought to only be a marginal 

component of the lake’s annual nutrient budget, it may be an important source of localized 

nutrients to nearshore areas in the warm season when vertical mixing is reduced (Langenberg et 

al. 2003). Tight nutrient recycling and nutrient runoff may serve to dampen the apparent negative 

temperature dependence of littoral gross primary production. However, even with those sources 

of nutrients, the negative apparent relationships between littoral gross primary productivity and 

temperature diverge strongly from what would be predicted from metabolic theory alone. 

Ecosystem respiration in both the pelagic and littoral zones were also negatively related 

to temperature and highly coupled to primary productivity in their respective lake zones. The 

activation energies for pelagic and littoral ecosystem respiration were well outside the range 

reported by a recent global meta-analysis (Yvon-Durocher et al. 2012), although tropical lakes 

were underrepresented in the meta-analysis and most lakes had data over a wider seasonal range 
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in temperature. The negative apparent activation energies for ecosystem respiration suggests that 

in Lake Tanganyika, ecosystem respiration is more tightly constrained by endogenous gross 

primary production than by temperature. The relative dearth of imported exogenous primary 

production at our field sites may restrict the temperature dependence of ecosystem respiration, 

forcing it to match the temperature dependence of primary production. In other lakes where 

exogenous carbon sources make up a substantial component of the ecosystem carbon demand, 

ecosystem respiration may be decoupled from endogenous gross primary production. With ample 

exogenous carbon inputs, the temperature dependence of ecosystem respiration would be 

expected to more closely resemble the temperature dependence predicted from metabolic theory. 

The relatively strong negative relationship between temperature and ecosystem respiration in the 

pelagic zone (apparent activation energy: -4.89 ± 1.01 eV) may reflect the scarcity of alternate 

carbon sources when endogenous primary productivity declines. 

The apparent activation energies we report reflect the sum of all indirect influences and 

the direct influence of temperature on metabolism. We were able to distinguish between the 

direct, kinetic influence of temperature and the indirect influences of warming-induced shifts in 

lake stratification (Fig 1 and Fig 2). This suggests that the underlying fundamental dependence 

of littoral gross primary production and littoral ecosystem respiration on temperature via 

chemical kinetics may still closely match that predicted from metabolic theory.  

Fish responses to temperature 

The direct and indirect influence of temperature on fish was a primary concern in our 

study because fish from the littoral zone of Lake Tanganyika make up a substantial component 

of littoral ecosystem biomass (McIntyre et al. 2007), are a critical source of protein for adjacent 

human populations (Coulter and Mubamba 1993), represent a globally significant repository of 
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vertebrate biodiversity (Vadeboncoeur et al 2011), and are subject to a host of anthropogenic 

stressors (Cohen et al. 1993, Alin et al. 2002, Manirakiza et al. 2002, Donohue et al. 2003).  

The temperature dependence of fish metabolism (respiration, NH4 excretion, and SRP 

excretion) was highly variable across species. This variability may be due in part to seasonal 

variation in food availability and the proximity of some fish to their thermal optima. For most of 

the fish species in our analysis (five of seven), the apparent activation energy for fish respiration 

was statistically indistinguishable from the fundamental temperature dependence of fish 

metabolism estimated from meta-analyses (Gillooly et al. 2001). Thus, the metabolic demands of 

these fish are likely to increase with temperature even as gross primary production and food 

availability goes down. Increased food demands in the face of decreased food supply suggests 

that at higher temperature, fish will have less discretionary energy for growth and reproduction. 

The resulting metabolic deficit may be especially problematic for Lake Tanganyika’s algivorous 

fish that depend directly on benthic primary production.  

Two species of fish (Lepidiolamprologus elongatus, Lamprologus lemarii, both primarily 

piscivorous) exhibited negative activation energies for fish respiration. Their negative apparent 

activation energies were significantly below the prediction for fish living within their optimal 

temperature range, suggesting that they are above their apparent thermal optima for at least some 

of the year. The activation energies for respiration in these two fish species together with the 

metabolic rates of semi-starving Tropheus brichardi were not significantly different from the 

fundamental temperature dependence of catabolism estimated by a recent meta-analysis (-1.15 ± 

0.39 eV) (Dell et al. 2011). This suggests that like the semi-starving Tropheus brichardi, 

Lepidiolamprologus elongatus and Lamprologus lemarii may also not get enough food to meet 
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their metabolic demands at higher temperatures, leading to decreased performance (Rummer et 

al. 2014).  

Variation in NH4 excretion rates across species also likely reflect differences in the 

seasonality of food availability. NH4 excretion tended to significantly decrease with temperature 

across most species in our incubations. Underfed fish tend to have lower NH4 excretion rates 

than fed fish (Buttle et al. 1995, Whiles et al. 2009), thus seasonal availability of food resources 

could underlie the negative temperature dependence of most fish species’ NH4 excretion rates. 

Fish species that excrete the most NH4 per unit biomass had the most positive apparent activation 

energy for NH4 excretion rates (r=0.84). Petrochromis kasumbe, a common benthic algivore that 

inhabits the rocky nearshore zone of Lake Tanganyika, had a strong increase in NH4 excretion 

rates with temperature which may reflect its diet. Unlike many aquatic benthic herbivores in lake 

Tanganyika that specialize on eating filamentous algae, Petrochromis species have rasping 

mouthparts for scraping biofilms off rocks (Kassam et al. 2003). Thus, their diet not only consist 

of diatoms and filamentous algae but also cyanobacteria and unicellular algae that live deeper 

within the biofilm and are richer in nitrogen. In addition to having the highest apparent activation 

energy for NH4 excretion rates, Petrochomis kasumbe also had the highest mass-scaled excretion 

rate of any fish that we incubated.  

All six species of fish in our study had decreased body condition at higher temperature, 

four of which were at least marginally significant (p < 0.1). The species of fish with the largest 

decline in body condition was Lepidiolamprologus elongatus, a common piscivore that is likely 

above its apparent temperature optimum. The species with the smallest decline in body condition 

was Ophthalmotilapia heterodonta; an omnivore that may have the greatest capacity to switch its 

diet between algae and other food sources when endogenous primary production decreases.  
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The relationship between fish body condition and temperature was highly correlated to 

the apparent activation energy for SRP excretion across species. The four species with the largest 

declines in body condition all had positive activation energies for SRP excretion rates. The two 

species with negative apparent activation energies for SRP excretion had the smallest decreases 

in body condition. This observation suggests that fish above their apparent temperature optima 

excrete more SRP than fish below their apparent temperature optima. From this pattern, we infer 

that as fish become temperature stressed or food limited in the warm season, they may catabolize 

their own proteins and nucleic acids or have less need to retain dietary phosphorus for growth 

and reproduction. The increase in Catabolism and decreased need for phosphorus at higher 

temperature would lead to higher SRP excretion rates in the warm season. Reductions in body 

condition may also involve partial clearance of bone mass (Huusko et al. 2011, Bendik and 

Gluesenkamp 2013) which would be a potent source of excreted SRP. 

Reductions in fish body condition with temperature reported here may reflect losses in 

either somatic or reproductive tissue mass. Seasonal variability in reproduction and gonadal 

tissue mass have not been thoroughly explored in Lake Tanganyika, but, many species of 

Tanganyikan cichlids have demonstrated a capacity to reproduce year-round in aquaria when 

resources are abundant. Work from other East African Great Lakes suggests that when nutrients 

are limiting, fish reproduce year-round with moderate seasonal peaks coinciding with high food 

availability (Witte 1980, Marsh et al. 1986, Gordon and Bills 1999). Thus the seasonal variability 

in body condition may reflect seasonal variability in gonadal mass as opposed to warming-

induced catabolism of fats and proteins. Thus, in Lake Tanganyika, decreases in food availability 

as a result of surface warming may reduce discretionary energy for reproduction. Whether the 

decrease in body condition we observed reflected losses of somatic or gonadal tissues, the 
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implications of warming for fish fitness remain grim. However, in the unlikely scenario that 

seasonality in gonadal mass arises from a seasonal pattern unrelated to food availability, gonadal 

tissues may still be unaffected by long-term warming. 

Climate warming implications 

Using the apparent temperature dependence of metabolism fit to data over seasonal 

timescales to infer climate warming impacts assumes that the interannual temperature 

dependence of metabolism will closely match seasonal temperature dependence. This 

assumption may be reasonable given that the mechanism which directly links temperature to 

metabolism (chemical kinetics) is likely to function similarly over seasonal and interannual 

scales (Yvon-Durocher et al. 2012). Furthermore, temperature and hydrodynamic variables are 

correlated on seasonal and interannual timescales (Supplementary Figure S1), thus, the primary 

mechanism which indirectly links temperature to metabolism (wind and lake hydrodynamics) is 

also likely to function similarly over seasonal and interannual timescales. However, there are 

some potential drivers of metabolism that are correlated to temperature only on seasonal 

timescales or only on interannual timescales. These differences could affect the climate change 

implications of our study. For instance, the carbon dioxide concentration in the atmosphere did 

not vary substantially over the duration of our study but is positively correlated to temperature on 

interannual timescales. A long-term increase in dissolved carbon dioxide concentrations in Lake 

Tanganyika could have a fertilizing effect on lake primary production (Jansson et al. 2012) that 

could partially offset the reduction in primary production resulting from changes in lake 

stratification. Nevertheless, our results suggest that 1 °C of seasonal warming would lead to 

roughly a 20% reduction in pelagic gross primary production. This matches the approximate 

reduction in gross primary production estimated from other work on seasonal variation in pelagic 



115 
 

primary production (Bergamino et al. 2010) and a recent study of the long-term reduction in 

pelagic primary production resulting from climate change (O’Reilly et al. 2003). Thus, seasonal 

responses to temperature may be a reasonable first approximation of interannual responses to 

climate warming. 

As climate change warms Lake Tanganyika, chronic seasonal reductions in fish body 

condition (Weight/Lengthn) may result in absolute reductions in fish size over time (weight, 

length, etc.). Shrinking body size is a known consequence of climate change induced shifts in 

metabolism and environmental variables (Todd et al. 2008, Daufresne et al. 2009, Cheung et al. 

2012). Size reductions as a result of climate warming have been observed in a wide variety of 

taxa including plants, insects, birds, mammals, and fish (Daufresne et al. 2009). Reductions in 

body condition and body size in the fish of Lake Tanganyika would have implications for the 

hundreds of thousands of people who depend on these fish as their primary source of protein. 

The evidence presented in this paper for wide-ranging effects of warming on ecosystem 

and organismal metabolism in Lake Tanganyika raises the possibility that other lakes may be 

experiencing similar impacts of climate change. We suspect that warm oligotrophic lakes where 

most of the nutrient demand is met by vertical mixing are most likely to have negative apparent 

activation energies for gross primary production. Correlations between temperature and photo-

inhibition or ultra-violet light exposure, cloud cover, and wind speed might also give rise to 

negative apparent temperature dependencies. In fact, many tropical or low elevation lakes have 

been shown to exhibit negative correlations between temperature and primary productivity 

including Lake Kyoga (Loiselle et al. 2014), Lake Kivu (Loiselle et al. 2014, Darchambeau et al. 

2014), Lake Carioca (Brighenti et al. 2015), Lake Dom Helvecio (Brighenti et al. 2015), Lake 

Titicaca (Richerson et al. 1986), Lake Nkuruba (Saulnier-Talbot et al. 2014), Pink Lake  
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(Hammer 1981), Lake Kariba (Regina 2012, Ndebele-Murisa et al. 2014), Lake Rotorua (Yvon-

Durocher et al. 2012), Lake Toreadora (Michelutti et al. 2015), and Lake Chorerras (Michelutti 

et al. 2015). Whether these lakes are idiosyncratic or part of a systematic response to temperature 

across the tropics remains uncertain. We recommend further investigation into the mechanisms 

leading to metabolic decreases in lakes as a response to warming. There is a strong need to 

integrate this pattern into our predictions of lake responses to climate warming as they contradict 

those predicted by metabolic theory alone.  
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Supplementary Materials 

Supplementary Figure S1: Time series of littoral gross primary production (GPP) and 

thermocline buoyancy frequency from August to December, 2012 at a site in Lake Tanganyika 

near Kigoma, Tanzania. Thermocline buoyancy frequency is an estimate of the strength of the 

thermocline and is linked to the level of vertical mixing in the water column. Peaks in 

thermocline strength coincide with decreases in littoral gross primary production. Lake 
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temperature profiles were measured on the offshore mooring to which the pelagic sonde was 

attached every 10 minutes from 20 July, 2012 to 19 September, 2012 and from 29 November, 

2012 through 18 April, 2013. Temperature was measured at 10, 20, 30, 40, 50, 55, 60, 70, 80, 90, 

and 120 m depths. We supplemented these discrete temperature profiles with a weekly 

temperature profile cast with temperature measured every 0.1 meters and interpolated to a daily 

time step. Temperature profiles were used to calculate three lake mixing indexes: thermocline 

depth and buoyancy frequency. The thermocline depth is the depth of the maximum density 

change with depth in the water column and is a key variable controlling the depth distribution of 

solutes [Weyhenmeyer et al., 2011]. The Brunt-Väisälä buoyancy frequency (hereafter 

“buoyancy frequency”) is the angular frequency at which a parcel of water would oscillate if it 

was displaced from its location in the water column. We calculated the buoyancy frequency at 

the thermocline for each temperature profile to estimate the steepness of the thermocline—a key 

control on vertical mixing in aquatic systems [Wüest and Lorke, 2010]. High-buoyancy 

frequency signifies that the thermocline is steep and the resistance to vertical mixing at the 

thermocline is pronounced.  

 

 

Supplementary Figure S2: Thermocline buoyancy frequency as a function of lake surface 

temperatures. Data are from lake temperature data collected discontinuously since 1912 in Lake 
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Tanganyika (Kraemer et al. 2015). Grey dots represent temperature and buoyancy frequency 

estimates from individual temperature profiles. Large, black dots represent annual averages. We 

also used a century of temperature profiles from around the northern basin of the lake (Kraemer 

et al. 2015) to determine whether temperature and buoyancy frequency were correlated on 

seasonal and interannual timescales. Buoyancy frequency and thermocline depth were calculated 

using the package, “LakeAnalyzer” in R (Read et al. 2011, R Development Core Team 2013). 

Thermocline buoyancy frequency, a key control on lake productivity, was highly correlated to 

surface temperature on daily (r = 0.37) and interannual (r = 0.68) timescales. Thermocline depth, 

another important control on lake productivity was also correlated to surface temperature on 

daily (r = -0.18) and interannual (r = -0.51) timescales. 
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Figure 1: Arrhenius plots showing the relationship between the natural logarithm of each 

chlorophyll-α specific metabolic rate against the standardized temperature (1/kTc) – (1/kT) where 

k is the Boltzmann constant (8.62 X 10-5 eV K-1), Tc is the average temperature over the seasonal 

temperature cycle (299.93 °K), and T is the temperature in Kelvin. The equivalent temperature 

in °C is also reported on the top panels in the figure. Littoral and pelagic ecosystem respiration 

(ER) and gross primary production (GPP) were calculated based on free water dissolved oxygen 
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data at sites near Kigoma, Tanzania. Temperature values are standardized to the mean 

temperature across all measurements for the purposes of visualization only. 

 

Figure 2: Arrhenius plots showing the apparent relationship between the natural logarithm of 

each variable against the standardized temperature. Abbreviations as in Fig. 1.  
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Figure 3: Apparent activation energies and 95% confidence intervals for metabolic responses to 

temperature in Lake Tanganyika (filled black circles). Activation energies are calculated from 

the Boltzmann-Arrhenius model based on field data. Responses are grouped by variable and 

separated out by species or ecosystem flux. Sample sizes are reported in parentheses next to each 

variable. The vertical dashed line and grey box represent the mean and range for the diversity of 

fundamental activation energies predicted from metabolic theory. 



128 
 

 

Figure 4: Body mass index (BMI) pooled across six fish species and scaled to be independent of 

fish mass and fish species. Solid lines represent the Theil-Sen’s slope for each of the six species 

represented in the plot.  

 


