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Abstract

Local Radon-like transforms are examples of Fourier integral operators which appear in
many areas of harmonic analysis and integral geometry. These transforms integrate a
function along a family of submanifolds of R?, and as such we expect that they exhibit
some smoothing. The (local) LP-Sobolev regularity of a local Radon-like transform is in
part determined by the geometry of its canonical relation. In almost all cases excluding
averages over hypersurfaces the canonical relation always projects with singularities,

meaning the calculus of Fourier integral operators due to Héormander does not apply.

In this work we investigate the (local) LP-Sobolev regularity of local Radon-like trans-
forms with one-sided folds, specifically transforms which integrate over families of curves
in R3. We prove LP-Sobolev estimates for a class of these local Radon-like transforms
associated to fibered folding canonical relations which are optimal except possibly for
endpoints. The proof of this main result relies on L? estimates for frequency-localized
oscillatory integral operators, which we prove in all dimensions, and decoupling inequal-
ities by Wolff and Bourgain-Demeter for plate decompositions of thin neighborhoods of

cones.

We investigate applications of these results to two model cases, restricted X-ray
transforms, and Heisenberg convolutions with compactly supported measures on curves
in the Heisenberg group. We also construct a Sobolev space adapted to translations on
the Heisenberg group which permits a global extension of our main result for this second

model case.
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Notation and Symbols

We use x, w, y, z to represent physical variables in R?. Meanwhile &, and 7 will typically
denote frequency variables. In this work we consider families of curves in R?, and use
local coordinates with the last coordinate distinguished, hence we will write x = (2/, z3),
w=(w,ws), y =, ys), 2= (¥, 23), § = (£, &), and n = (', 73). For ease of reading
the dot - will be reserved for the inner product on R?, and ( , ) for inner product on R?. In
cases where this choice affects readability we default to (, ), but these instances should
be clear from context. In this work we also consider local coordinates on dimension n
submanifolds of R?, in which case we use local coordinates with the last n coordinates
distinguished, i.e. = = (2/,24_pns1,...,24) € RL In these circumstances the dot - will
be used to denote the inner product on R% ™ while ( , ) will be reserved for the inner
product on R¢. For i =1, ...,d, e; represent the standard unit basis vectors in R%. The
Euclidean ball of radius 7 centered at x € R? is denoted B,(z) (where the dimension is
implied by the context), and the volume of B,(x) is given by V (d)r? so that V(d) is the

volume of the unit ball in R?.

In this work C' and ¢ will represent positive arbitrary constants. The values of these
constants may change from line to line. If a constant C' depends on a parameter ¢, we
write C; to reflect this dependence. Additionally, for non-negative quantities X and Y
we will write X < Y to denote the existence of a positive constant C' such that X < CY'.
If this constant depends on a parameter such as ¢ we write X <. V. If X <Y and

Y < X then we write X ~ Y.



Generally we denote smooth compactly supported functions by x, ¥, ¢, and 7,
whereas the indicator function of a set F is denoted by 1g. For a real number x the
functions |z | and [z] denote respectively the largest integer less than x and the smallest
integer greater than z, while [z] denotes the closest integer to x (note if = n + 3 for

some integer n then we define [z| = |z] =n).

We write 0,, f to mean the partial derivative of f with respect to x;. A multiindex
a is a tuple @ = (aq, ag, ..., ag) with o; € N for all i = 1,...,d. The length (or order) of

a multiindex is given by |a| = ag + as + ... + ag. We write
(o s S I s 2> ag
afr _ Qo qaz . Aog
oxf =010 o

T1 YT

for any multiindex . The dimension of the multiindex may vary within different con-

texts.

The Fourier transform of a function f is denoted

3111(6) = / P £ (1) da

or more simply f(€). A partial Fourier transform in only some variables will be denoted
by subscripts; for example given f € L?(R3?), the partial Fourier transform of f in the

first two variables is given by

Sralf (o 29))(€) = / T (0! 1) di,

The inverse Fourier transform of a function f(¢) is denoted F![f](z) or f(x).

Below is a non-exhaustive list of spaces used throughout this work.

e N - the natural numbers, 0,1, 2, ...



vi
Z - the integers
R? - The Euclidean space of dimension d
C - The complex plane
S?-1 - the (d — 1)-dimensional sphere.
H - The (first) Heisenberg group, see Section 4.2
Hy - The discrete Heisenberg group, see Chapter 6
M,,,, - The space of affine n-planes in R?, see Section 4.1

Gan(R?) - The Grassmannian; the space of all n-planes through the origin in R?,

see Section 4.1.

(? = LP(Z) - The discrete Lebesgue spaces; for 0 < p < oo, the space of sequences

a : Z — C such that

laller = (Z |a(n)\p>1/p < 00.

nel

L?, LP(R?) - the Euclidean Lebesgue spaces; for 1 < p < oo, the space of functions

1= ([ 1) < o

LP. (RY) - The space of compactly supported functions f € LP(R?)

comp

f :R?Y — C such that

L (R?) - The space of functions f such that f|x € LP(R?) for any compact set
K c R
C>(R?) - The space of functions f : R? — C which are infinitely differentiable



vii

Cs°(RY) - The space of functions f : R? — C which are infinitely differentiable

such that im0 f(z) = 0.

C>(RY) - The space of compactly supported functions f : R¢ — C which are

infinitely differentiable

S(R?) - The Schwartz space; the space of functions f : R¢ — C such that for any
multiindices «,

sup |20 f| < oo.
z€RY

HP, HP(RY) - The Hardy spaces; for 0 < p < oo and ® € S(R?), the space of

tempered distributions f such that the maximal function

M f(z) = sup|f * ()|

is in LP(RY), where ®;(z) = t~9®(z/t).

P LP(RY) - The Sobolev or Bessel potential spaces; for 1 < p < oo and s € R,

the space of functions f : R? — C such that

(I — A)*?f € LP(RY).

LP(H) - The Heisenberg Sobolev spaces, see Definition 6.1

FP4(RY) = FP4 - The Triebel-Lizorkin spaces, see Definition 8.7

BP4(R?) = BP9 - The Besov spaces, see Definition 8.7.
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Chapter 1

Introduction

The classical Radon transform maps a function defined on the plane to a function defined
on the space of lines in the plane by taking its integral over each line. More specifically,
given a smooth compactly supported function f : R? — C, the Radon transform of f is

defined for each line ¢ C R? by integration of f over ¢, i.e.

Rf(6) = /g ;

The Radon transform was introduced over 100 years ago by Johann Radon [47], who
was interested in recovering f from its Radon transform. See [34] for a more detailed

introduction to the classical Radon transform in R?.

Any line ¢ in the plane can be defined as the solution set of an equation y - 6 = s,
where 6 € S' and s € R. Note that the pairs (6,s) and (—0, —s) are associated to the
same line ¢, hence the map ¥ : (0, s) — £ is a double covering of S' x R onto the space of
lines. We can furnish the space of lines with a canonical manifold structure with respect
to which 9 is differentiable and regular [34]. Indeed, we may identify Rf(¢) with an even
function on S' x R given by

J0.5)= [ s

where o is Lebesgue measure on the line y - 0 = s. If f(z) = O(Jz|™) for N > 2 then



we can recover f from Rf by the formula

f(x) = 2(—A)2 / RI(0) dp,

0>z

where i, is the unique probability measure on the compact set {¢ : x € ¢} invariant
under rotations about x [47]. This inversion formula has a more concrete presentation

as

flx) = @m) 7 (=) | J(0,(0,2))db (1.1)

Sl
where df is the 1 dimensional Hausdorff measure on the unit circle S' [34].

Using a coordinate patch on the space of lines, we can view the Radon transform
locally as an operator acting on smooth functions compactly supported in R?, which
integrates over a certain family of curves parametrized by x € R%. For example, by
parametrizing the circle S' by the map z; — (cos(z;),sin(z;)) and utilizing the projec-

tion 9, we see that for x; near 0 we have

Rf(V(x1,22)) = /f(xg sec(x1) — yo tan(zy), y2) dyo.

thus we see that in a certain coordinate patch on the space of lines, the Radon transform
integrates over the family of non-horizontal lines {y € R? : y; = zosec(x1) —yo tan(z)}

parametrized by x € R? near the origin.

This perspective leads to a natural and well-studied local variant: given open sets
01, Qg C R? suppose we have a family of n-dimensional submanifolds M, C Qg
parametrized by and smoothly varying with z € Q. A local Radon-like transform
R : C2(Qr) — C=(§2) associated to this family of manifolds is defined for f € C°(Q2g)
by

Rf(x) = y fWx(z,y)do.(y), x € Qu, (1.2)



where x € C°(Q x Qg) and do, is the restriction of Lebesgue measure onto M,. For

convenience, let n’ = d — n, the codimension of the manifolds M.

Local Radon-like transforms appear in many areas of harmonic analysis and integral
geometry; we will see a few examples in Chapters 3 and 4. Due to their appearance in
many different contexts, local Radon-like transforms have been studied from a variety
of perspectives. In integral geometry questions of inversion are common, and have been
investigated for restricted X-ray transforms and the classical Radon transform in R?, to
name a few examples (see [27] and also [34, Ch. II]). The LP-improving properties of
local Radon-like transforms are related to a well-studied problem in harmonic analysis,
the LP-improving properties of convolutions with measures supported on curves (see
[12, 54, 13]). More generally, the LP-improving properties of local Radon-like transforms
have been studied by Gressman (see for example [30, 31, 32]), Greenleaf and Seeger [23],

and many others in more specific contexts.

In this work we focus on analyzing the regularity properties of R - how does the
smoothness of Rf compare to the smoothness of f? To measure the smoothness of f
and R f we use LP-Sobolev norms; however, to define Sobolev norms on an open set like
), using Bessel potentials would require careful consideration of the boundary. The
choices of the particular open sets €2, and Qr are arbitrary, so to avoid assumptions
about the regularity of the boundaries of {2, and 2z and to emphasize the local nature
of our analysis we will investigate conditions under which R extends to a continuous
operator

R« Lg (QR) - Lg,loc(QL>

comp

for certain 1 < p < oo and s € R. An estimate of this form means that for any C*



function vy compactly supported in {2, and for any compact set K C {2z we have for all

L? functions f supported in K,

Vo RS || ey < Cp(vo, K| £l Lo (may-

Here LP(RY) is the standard Sobolev space consisting of tempered distributions g on R?

such that (I — A)*2g € LP(R?).

In this work we will often use local changes of variables to transform general operators
into a model case locally. Thus it is helpful to note that changes of variables leave the
local Sobolev spaces defined above invariant. We present this result below for s between
0 and 1, but applying Leibniz rule and chain rule we can prove the same result for local
changes variables for Sobolev spaces of integer order, then apply interpolation to obtain

the equivalence for all s.

Lemma 1.1. If ¢ : Qp — Q) is a C* diffeomorphism then for 0 < s <1 f e L? ()

s,loc

if and only if fov € LP, (Qr), and || f|

s,loc

P (Qp) = | f o

s,loc

P, () With constants only

s,loc

depending on p,s and | det Jy|.

Proof. Let Jy denote the Jacobian matrix of ¢. Suppose f € LISJOC(Q’L). Then by a

change of variables f o € Lg,IOC(Q 1) since for any compactly supported v € C*°(Q})

([1s@rpar)” = ( [10e0mwe vl i)

| det(J,)|*/? is bounded above and below on Qp, and v o ¢ is a compactly supported

function in C*(€). Note that this implies

inf | det(Jy ()| f o ¥l
yeQL

0,loc

@) < Ml @) < sup [det(Ju(u)PIf o ¥llzz . (an)
L yEQL 0,loc

0,loc



Next, suppose that f € L7 ,,.(Q}). By chain rule V(f o¢) = ((Vf) 0 4)TJy. Thus for

any compactly supported v € C>(Q})

(/Kvow)V(foWIdet lel‘p)l/p ~ (/ (00 0) (V1) 0¢0) Jy|"| det J¢,1—p>1/p
< (/\(vow>|p|<w) o [P det le)l/p

= ( [y

Repeating the same argument with ¢)~! and using the uniform bounds on | det Jy|, we

see that
771 /p
inf | det Jy(y |(vV f) w\ Ivf\p
yer
/|Uf\p < sup |det Jy(y /! vV f) ¢|p
yeflL

Interpolation between Lh(RY) = LP(RY) and L7 (R?) implies the desired equivalence

with a constant depending on vy. O

Suppose T is an integral operator of the form T'f (z) = [ K (z,y)f(y) dy such that T is

bounded from L, .(Qr) — LT,

s1,loc

() where 0 < 59,81 <l and 1 < pgy,p; <oo. Ilfo:
Qp — Qr and n : Q) — Qp are C* diffeomorphisms, by the above lemma the operator

T with Schwartz kernel K (n(z),o(y)) is also bounded from L

sp,loc

(%) = L

S1, IOC(QIL>
with operator norm C||T'||, where C' depends only on py, p1, So, S1, | det J,|, and | det .J, |.
Thus we may freely apply local changes of variables in x and y separately to integral

operators throughout this work. Because we typically are free to change our open sets

Qp and Qg freely we may even suppose that o and 7 are only local diffeomorphisms.



1.1 Outline

In Chapter 2 we review the microlocal analysis of local Radon-like transforms and more
general Fourier integral operators. We begin with a review of the work of Hormander,
who developed a calculus of Fourier integral operators associated to so-called “nondegen-
erate” canonical relations. In the context of local Radon-like transforms this condition is
equivalent to the notion of nonvanishing rotational curvature, due to Phong and Stein.
As we will see, local Radon-like transforms cannot satisfy the nonvanishing rotational
curvature condition unless the dimension of the ambient space and codimension of the
manifolds M, satisfy a very restrictive number theoretic relation; in particular, rota-
tional curvature must vanish for local Radon-like transforms over families of curves in
R3. From here we introduce the definitions of folding canonical relations and fibered

folding canonical relations.

In Chapter 3 we give a brief history of LP-Sobolev regularity results to date, beginning
with results on L2. Results on L? are the most well-studied, and depend on the associated
microlocal geometry. Sharp LP-Sobolev regularity was not established for p # 2 until
2007, with a result by Pramanik and Seeger [45] about convolutions with measures
supported on curves in R?. The novel method in the proof of sharp LP-Sobolev regularity
for large p is the use of Bourgain-Demeter-Wolff decoupling of thin plates associated to
a general cone with one non-vanishing principal curvature. Pramanik and Seeger were
later able to generalize this method of proof to a class of local Radon-like transforms
associated to folding canonical relations, which we present as an introduction to our
main results, Theorems 3.14 and 3.15, which further generalize this method of proof to

include sharp LP-Sobolev estimates for all p for a class of local Radon-like transforms



associated to fibered folding canonical relations.

In Chapter 4 we introduce two examples of local Radon-like transforms associated
to families of curves in R?, and analyze the microlocal geometry associated to each
operator. First, we introduce restricted X-ray transform, which have been studied in
integral geometry for decades to model problems in tomography. Greenleaf and Uhlmann
proved nonlocal inversion formulas for a class of restricted X-ray transforms in [27],
and we show that transforms in this class are associated to fibered folding canonical
relations, and generically satisfy the conditions of the main theorem. We also introduce
a noncommutative version of a convolution with a measure supported on a curve, in
this case set on the Heisenberg group. We characterize the microlocal structure of this
operator, and use it as an example to show the sharpness of the main theorem in Chapter
5. We also can use the geometric structure of the “Heisenberg convolution” to extend
the the local LP-Sobolev regularity to LP regularity on an analogue of the global Sobolev
space which is adapted translations on the Heisenberg group, which we introduce in

Chapter 6.

In Chapter 7 we begin the proof of Theorem 3.15 by proving using Hardy space
estimates to interpolate LP-Sobolev regularity for small values of p. This result is general,

relying only on local L! boundedness and some L? regularity.

We begin the proof of Theorem 3.14 in Chapter 8. Here, we decompose our local
Radon-like transform using Littlewood-Paley theory and the techniques of Phong and
Stein in order to formulate an oscillatory integral estimate which is the essential estimate
needed to prove Theorem 3.14. We also outline the structure of the proof of Theorem

3.14, which involves three main parts, constituting the next four chapters. In Chapter 9



we prove an L2-Sobolev estimate using a similar argument to the proof of the Calderén-

Vaillancourt Theorem for a general class of oscillatory integral operators.

The heart of the proof lies in Chapters 10 and 11, where we relate LP regularity to
decoupling inequalities via a microlocal analysis. A model case is introduced in detail in
Chapter 10 and families of changes of variables are introduced in Chapter 11 to reduce
the study of the general case to the model case. Finally, in Chapter 12 we use a Calderén-
Zygmund type estimate to relate the oscillatory integral estimates in Chapter 8 to the

LP-Sobolev estimates in Theorem 3.14, finishing the proof of Theorems 3.14 and 3.15.

This work is in part based on results from preprints of the author [6, 7]. In particular,
Section 4.2 and Chapters 5-7 draw from [6] while Section 4.1 and Chapters 9-11 draw

from [7].



Chapter 2

The Microlocal Picture for Local

Radon-like Transforms

The formula (1.1) for inverting the Radon transform involves two dual forms of integra-
tion, an integration over all the points x in a given line ¢, and an integral over all lines ¢
containing a given point x. These dual integrals suggest two operators which integrate
over dual fibers of the same manifold; this construction is known as the double fibra-
tion formalism [22]. Let’s assume that (z, M,) are fibers of a manifold known as an

incidence relation; more specifically, assume that
Mw = {y € QR : (I,y) S M}?

where M C 0, x Qr has codimension d — n, and the natural projections

M

V w (2.1)

Qr Qg
are submersions. By shrinking €1, 2 we can additionally assume that pr, pg are surjec-
tive. We can define a local Radon-like transform directly from this manifold M. Since
we assume that the natural projections py : M — Qp and pg : M — Qg are surjective

submersions, by an application of the implicit function theorem we have that for each
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z ey

M. = prop ({z}) ={y € Qr : (z,y) € M}

is a smooth immersed n-dimensional submanifold of Qg, depending smoothly on =x.

Indeed, since dpy, has rank d near x, locally we can pick coordinates in 2z such that

pr ({2}) = {(x v s Yns 91, s 0n))s (W1s s ) € U}

for some smooth function g : R® — R4 ™. In these coordinates

preL ({2}) = {1, s Yn, 91, - 9n)), (W1, - yn) € U,

hence M, is locally a n-dimensional manifold in Qg.

Helgason [34] observed that we can construct a dual operator associated to M by the
same argument; MY = prps'({y}) are also smooth immersed n-dimensional manifolds

smoothly depending on y € Q2. This perspective gives rise to two operators,

and its adjoint

Rigly) = / g (2.2)

My

These two operators, integrating over dual fibers of the same incidence relation, allowed
Helgason to develop inversion formulas for more general Radon-like operators over ho-
mogeneous spaces which satisfy this double fibration condition (see for example [34]).
For our purposes, the fact that R and R* share the same incidence relation will be
important in relating the microlocal behaviors of R and R*, a relationship observed by

Hormander in [35].
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A local Radon-like transform R can be related to an oscillatory integral by writing
the Schwartz kernel of R as an oscillatory integral distribution. Since M is embedded
in Q7 x Qr C R*, in a neighborhood of some reference point P° = (2°,5°) € M we can
use the implicit function theorem to find a smooth R*"-valued function ® such that
near P°

M=A{(z,y) € QL x Qg : P(z,y) =0}.
The Schwartz kernel of R is then given by the measure xd o ®, where ¢ is the Dirac
measure on R, and y is C* and compactly supported near P° € Q; x Qp, which we

can take to be the origin in R? x R%. Thus by the Fourier inversion formula in R¢™

Rf(x) = / F)x (e, ) dy
{yeR? : ®(z,y)=0}
= /X(x,y)5o O(x,y) f(y) dy
=[] e ) ) dr . (2.3

where 7- ®(z,y) = 3.9 7,®(x, y). The formula (2.3) reveals that R is an example of a
Fourier integral operator (FIO), the theory of which we will discuss in the next section.
First, we note that the assumption that py, pr are submersions implies that R is locally

a bounded operator on L!'(R?) and L*°(R%), and hence all LP(R%), 1 < p < oo.

Lemma 2.1 ([25, p. 4]). Suppose that R and M are defined as above and the natu-
ral projections pp, : M — Qp, pr : M — Qg are submersions. Then R extends to

continuous operator

R . L2, (Qp) — LP

comp loc

(QL>, 1§p§ Q.

Proof. Let vg € C°() and K C Qg be a compact set; let H = suppuvy. Let n €

C>(R*™) such that 0 <7 <2V(d—n)"', [n=1, and suppn C B;(0), where V(d —n)
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is the volume of the ball of radius 1 in R¢~™. Then 5_(d_”)n(§) converges in the sense

of distributions to the Dirac delta function on R4 as e — 0T. Thus for f € C>°(Qpg)

supported in K,

Rf(x) = lim [ y(z,y)e"@n(22L) f(y) dy.

e—0t

To prove that R is bounded on L', we estimate

/

By Fatou’s Lemma this is bounded by

lim /vo(z)x(x,y)s_(d_”)n(@)f(y) dy‘ dx.

e—0t

liminf//|vo(x)x(x,y)s_(d_")n(@)f(y)}dydx

e—0t
Interchanging the order of integration and applying Holder’s inequality to pull out || f| 1,

it suffices to estimate the expression

ap [ et ()

yeK
uniformly in €. As 7 is supported in the unit ball, for fixed y € K the function

vo(z)x(z, y)n(@) is supported in the set

EY={zxe H : |P(z,y)| < e}

Since pgr is a submersion, EY is the e-neighborhood of the immersed n-dimensional
manifold MY. Applying the implicit function theorem we can represent MY locally as
the graph of a R?"-valued C" function in a neighborhood U = U x V C Qp, x Qp of a
fixed point (xg,y0) € M. On this set we see that |[EY N U| < Ce?™" uniformly in y. As
Hx K C Qp x Qg is compact, we can cover H x K by finitely many such neighborhoods

U; thus by a partition of unity we see that

Su}?/ |vo(2)x (2, y)e ™ (2LL) | da < Callvoxlos e
ye
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Thus

“mi“f/ / oo (@)x (2, )e~ @ (22D £ ()] dy dz < Cllxlzs = 1 lram

e—0t

Next we prove the estimate on L. For fixed x € H, vo(x)x(:v,y)n(@(i’y)) is sup-
ported in the set

E,={ye K : |®(z,y)| <e}.

Again, since py, is a submersion, F, is the e-neighborhood of the immersed n-dimensional
manifold M,. Applying the implicit function theorem we can represent M, locally as
the graph of a R "-valued C! function in a neighborhood U = U x V C Qp x Qp of a
fixed point (xg,y0) € M. On this neighborhood we see that |E, NV | < Ce?™™ uniformly
in . Applying a partition of unity on the finite cover of H x K obtained by the same

argument as in the L' case, we see that

lim /vo(:r)x(:v,y)s‘(d‘”)n(q)(ﬁ’y))f(y) dy‘ < Canll Fllzoe@m 1X | 2o (rx i) -

e—0t

Interpolating between L' and L™ yields the desired L estimates for 1 < p < oo. [

2.1 Fourier Integral Operators

Let X,Y be open sets of R, A Fourier integral operator F is locally given by a

sum of oscillatory integral operators of the form

Fi(z) = / / TE0a (2. y. 0) f(y) dy db,

where § € RY forsome N,z € X,y €Y, ¢,a € C°(X xY xRY), Vg, are independent

at {¢g = 0}, and ¢ satisfies a homogeneity condition ¢(z,y,t0) = to(x,y,0) for |0] =1
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and t > 1. We say F is a FIO of order p if a € S#T(@=N)/2 the standard symbol class
of order p1+ (d — N)/2, for each F. The canonical relation associated to F is locally
given by

¢ ={(z,¢s,y,—¢y) : ¢ =0},
and we assume that € C 7*X \ 0 x T*Y \ 0, where T*X \ 0 = {(z,§) € T*X : &£ # 0}.

Staying away from the zero-sections in 7% X and T*Y implies that

|62(2,,0)| = |0] = |y (2,y,0)|

when ¢y is small, hence € is conic (in the (&, n)-variables) [25]. If ox and oy are the

canonical 2-forms on 7*X and T*Y respectively, then € is Lagrangian with respect to

the symplectic form ox — oy [20, § 3.6]. As explored in the work of Hérmander [35] and

the general theory of FIOs, the L?-Sobolev regularity of a Fourier integral operator F

depends on the geometry of its canonical relation, more specifically the geometry of the
natural projections

V Y (2.4)

T T* Qg
If € is locally the graph of a canonical transformation, meaning that 7, and mp are
locally diffeomorphisms, then we have the following theorem, due to Hérmander [35] as

a consequence of his work developing a calculus for FIOs.

Theorem 2.2 ([35], cf. [25, p. 4]). Suppose F is a Fourier integral operator of order u
associated to a canonical relation which is locally the graph of a canonical transformation.
Then for all s € R, F extends to a continuous operator from L? . (Y) into L? (X).

s,comp s—pu,loc

If the canonical relation associated to F' is locally the graph of a canonical transfor-

mation, we say that F'is associated to a local canonical graph.
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2.2 Applications to Local Radon-like Transforms

Given this context, R, as described in (2.3), is a FIO of order —n/2 (as x(z,y) is a

symbol of order 0), and the canonical relation associated to R is given by
(N*M)' = {(z, (T ®)s,y, —(7- ®)y), : P(z,y) =0}. (2.5)

The set (N*M)' is related to the conormal bundle of the incidence relation M (hence

the notational similarity) by

(N*M) = {(z,&,y,—n) : (z,y,6,m) € N*M},

hence we refer to (N*M)" as the twisted conormal bundle of M. Recall the conormal

bundle of a manifold M is given by
N*M = {($ay7€an) € T*(QL X QR) \ {O} : (5777) 1 T(x,y)M}

Note that the diagram (2.4) corresponds to a refinement to the cotangent spaces of the
double fibration formalism (2.1). Note that since the adjoint (2.2) shares an incidence
relation with R, the canonical relation associated to R* is the inverse image of (N* M)’
under the map T*Qr x T*Qp — T*Q x T*Qpg, interchanging the two factors. This in
turn interchanges the projections m;, and mg between R and R*. This symmetry allows
us to state theorems with assumptions on 7;, without loss of generality, as we can treat

the adjoint to interchange to the projections.

Since the projections in (2.1) are submersions, we can choose local coordinates to

parametrize M as a graph so that

O(z,y) = S(z,y") —
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with ' = (Y1, s Y )s ¥ = Ynig1, -, a), and S = (S, ..., S™). Recall that n' = d —n
is the codimension of M, C €. This process is described in detail in [46] in the case

d = 3,n =1, and is presented below for general d and n.

Indeed, since py, is a submersion the n’ x d matrix ®, has rank n’, so by a linear
change of variables in y we can find coordinates y' (defined above) so that det(V,®) # 0
near a reference point y°. Then by the implicit function theorem, we can choose (z,y")

as local coordinates on M so that the equation ®(z,y) = 0 is equivalent to
yi = S'(x,y"), i=1,..,n (2.6)

near y°. Thus we can write

n/

Oz, y) = > (S'(x,y") — vi) Bi(,y), (2.7)

i=1

where
1
Bz(x,y) = - / ¢yi (l’, S(ma y//) + S(Q/ - S(ac,y")), y”) ds.
0
Since @, has rank n/, ®,, are linearly independent on M, hence if we choose x supported
sufficiently close to M we can ensure that B; are linearly independent as well. Thus we

can rewrite (2.7) as
O(w,y) = Ble,y) (") - ).
where B(z,y) is a n’ x n’ invertible matrix whose column vectors are B;. Additionally,

since pg is a submersion the gradients {S%(x,y”) }i=1, . are linearly independent as well,

so through a change of variables we can rewrite (2.3) as

/X(x,y)éoq)(m W dy—/|det I/ 2 S gr f(y)dy. (2.8)

By redefining y we have parametrized M as the graph 3/ = S(x,").
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Given these changes of variables, the twisted conormal bundle associated to R is

given by

(N M) =@, &ym) o = S(ey"), €= D mS' (@),
=1

17 = <7—, — Z TZ'S;// (.’Ij, y//)> }
i=1
Thus parametrizing (N*M)’ by the coordinates (x, 7,y"), the projection 7, is identified
with the map

7L (x, 1, y") e <x, ZTiS;(x,y”)) (2.9)
i=1

and the projection 7g is identified with the map

ﬁ-R : (SL’, T, y”) = <S($, y//)7 y//7 T, — Z TiS;“<x7 y//>> (21())
i=1

From these identifications we can see that the rank of the differentials of 7;, and 7w must
be equal; this is a more general consequence of the canonical relation being Lagrangian
(see [35]). Since we can identify the differential of 7, and g with the Jacobians of 7,

and g respectively, we see that

Tixa  Ogxn Odxn

(T . S)m; Sx (T . S)xy//

corank dm;, = corank

= corank <5x (1 - S)a:y”) (2.11)
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and
(SI)T O sens (Sy”)T

On xd On xn' [n xXn
corank dmp = corank

On/xd [n’xn’ 0n’><n

(T . S),y//z Sy// (T . S)y//y//

(5a)T
= corank : (2.12)

(7- S)y”x

This implies in particular that 7 is a local diffeomorphism if and only if 7 is a local

diffeomorphism.

2.3 Inherent Singularities

In the case of local Radon-like transforms over families of hypersurfaces the local canon-
ical graph condition of Theorem 2.2 coincides the notion of nonvanishing rotational

curvature [53], given by the invertibility of the matrix

However, if the codimension of M, exceeds 1 then the local canonical graph condition
does not generically hold. In fact, as noted by Gressman in [32] (using the language of
rotational curvature), the projections 7y and mg must be singular unless d and n satisfy

a strict number-theoretic relation. We reproduce his result below.

Lemma 2.3 ([32, Theorem 3]). Suppose that R, M, and the projections 7y, mr are

defined as above. Suppose that n (the dimension of the manifolds M, ) factors into the
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form 2%%7s for integers q,r,s, such that s is odd and 0 < r < 3. Then if d — n (the
codimension of the manifolds M, ) exceeds 8q + 2", then R is not associated to a local

canonical graph. Specifically, for every point (z,y) € M there is a P = (x,&,y,n) €

(N*M)" such that (drr)p and (dwg)p are singular.

Proof. Fix (z,y) € Qp x Qg. As discussed above, it suffices to check whether (dmp) is
invertible at a point P = (x,&,y,n). As noted above, we can identify 7 with the map

(2.9), so by (2.11), dry, is invertible if and only if the matrix

(S;(ZL‘, y//) . S;z’ (ZL’, y//) Zl TiS;yn,ﬂ (x’ yl/) ... ZZ TiS:inyd (IL‘, y//))

is invertible. Since {S"}; are linearly independent, dry, is invertible if and only if

rank (ZZ TiS;yn/+1<x7 y) - Y, TiS;yd(CU, y”)) =n.
By renaming and possibly reordering coordinates, this is equivalent to invertibility of

S;nlﬂyn,ﬂ(x’ Y - S;‘nlﬂyd(x’ 4
2T
i

3 /! 3 /!

S;"dynt‘rl (ZL‘, y ) e S;:dyd (:’E7 y )
Since 7 may be any nonzero vector in R?", for fixed x, vy’ we are asked to find a family
of d — n real matrices of dimension n x n such that every linear combination of them is
invertible. If such a family of matrices exists then it is easy to construct S(x,y”), linear
in z and y”, for which the associated projections 77, and 7g are local diffeomorphisms;
if no such family exists then for every choice of S(z,y”) and every (z,y”) we can find

some 7 # 0 such that 7, (and hence 7g) is singular at (z,y"”, 7).

The existence of such families of matrices has been completely characterized for some

time, originally due to Adams, Lax, and Phillips in [1, 2] (see also a minor correction in
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[3]). In particular, the maximal number of n x n real matrices for which every nontrivial
linear combination is invertible is given by the Radon-Hurwitz function p(n) = 8¢ + 2",

where ¢ and r are defined as in the statement of this lemma.

[]

The possible values of d and n’ which admit examples of R associated to a local

canonical graph are few and far between. A table of such pairs (n/, d) is shown in Figure

1.

N 21314(5 1678910111213 (141516
1 VIV VIV IV VIV IVI|IVIV IV IV VIV
2 X v v v v v v v
3 X | X v v v
4 X | X | X v v v
5 X | X | x| X v
6 X | X | X | X |X v
7 X | X | X | X | X |X v
8 X | X | X [ X | X]|X]|X v

Figure 1: Pairs (n/,d) which admit local Radon-like transforms R satisfying the condi-

tions of Lemma 2.2

For example, if n is odd then for the local canonical graph condition to hold n’ must
equal 1 (This phenomenon is essentially the observation made by Christ in [10] in the
setting of Fourier restriction). In general, one can only expect to find examples of local

Radon-like transforms over families of manifolds of large codimension which satisfy the
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conditions of Theorem 2.2 if n is divisible by a large power of 2, and even then the
possible codimension n’ only grows logarithmically with n. This severely restricts the
application of Theorem 2.2; in particular, local Radon-like transforms over families of

curves in R? must have singular projections 7, and mp unless d = 2.

We can observe this degeneracy directly for averages over curves in R? d > 3 by
parametrizing the projections 7 and 7g. Recalling our definition of ® from (2.8), after

a change of coordinates we can parametrize M as a graph

O(x,y) = S(z,ya) =y
with ¥ = (y1,...,9%a_1) € R™! and S = (S,...,9%1). Then the condition that m, is
locally diffeomorphic is equivalent to the nonvanishing of the determinant
TPy P,
det = (—1)"det (7 - Suy, Sa)
TP, 0
for all 7 € S%2. This determinant is a linear functional in 7, and thus for each fixed

(x,y) vanishes for all 7 in a hyperplane.

2.4 Classification of Singularities

In light of Lemma 2.3, it is unsurprising that many local Radon-like transforms encoun-
tered in the literature are associated to canonical relations with singular projections.

Recall that in view of the symplectic structure of 7*Q; x T*Qr we always have
rank dr;, = rank drp,

but the behavior of the singularities of 7, and 7z may differ. In this section we explore

different notions of singularities which can and do occur in the projections 77 and mg.
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Here we focus on the case corank drg) < 1, which is the situation when the manifolds

M, are curves.

Let X,Y be smooth d-dimensional manifolds, and 7 : X — Y a smooth map between
them. We call a smooth vector field V' on a neighborhood U of P € X a kernel field
of m if V' is not identically zero, is smooth on U, and if there exists a smooth vector
field W on 7(U) so that drpV = det(dmp)Wr(py for all P € U. Note that this definition
implies Vp € kerdnp for every P € X such that det dmp = 0, hence why these vector

fields are called kernel fields. As shown by Greenleaf and Seeger in [26], on the set
L={PeX : det(dr)p =0} (2.13)
kernel fields are unique up to scaling by smooth functions.

Lemma 2.4 ([26, pp. 2-3]). If corank (dm)p < 1 then there is a kernel field of m defined
in a neighborhood of P. Moreover, if V and V are both kernel fields on U, then V =

aV — det(dm)W for some smooth function a and smooth vector field W.

Proof. Following [26], assume corank (dm)p < 1, and P € X. Then we can pick coor-
dinates (2’,x4) on X and (y/,y4) on Y vanishing at P and 7(P) respectively so that
(dm)p = (Cﬁ P), where A is an invertible (d — 1) x (d — 1) matrix, p and ¢ are vectors
in R r € R, and A,p,q, and r depend smoothly on x. Define a vector field V =
Oz, — (A7 p, 0,v). We see that dr(V) = (r—qTA™'p)d,,, and det dm = (r—qT A~ 'p) det A;

thus V is a kernel field.

Furthermore, assume that V = (B', 0wr) + Ba0Oy, is also a kernel field of 7 near P, i.e.
dn(V) = det(dr)W, where W = (0’,8,) + 040,,, and 8 = (8', 34) and o = (¢’,04) are

smooth functions of x and y respectively. Then, at any z, A5’ + pBy = det(dm)o’; since
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A is invertible this implies that 8’ = det(dr)A~'o’ — A™1pf,, and therefore
V = B4V + det(dm) (A7 0", 0.
]

We say m drops rank simply at a point P if rank (dm)p = d—1 and d(det dm)p # 0.
By an application of the implicit function theorem we see that if 7 drops rank simply at
P, then L is locally a hypersurface near P. If we assume 7 drops ranks simply whenever
it is singular then we can classify many types of singularities that 7 may exhibit using

kernel fields. The first type is called a Whitney fold, introduced by Whitney in [57].

Definition 2.5. We say m has a Whitney fold at P € X if m drops rank simply at P

and V det(dm)p # 0 for any (and therefore every) kernel field V.

The prototypical example of a map with a Whitney fold is f : (z,y) — (z,y?). This
is also in some sense the only example of a Whitney fold, since in local coordinates every
Whitney fold can be expressed as the graph of a parabola in the final two coordinates.

We can see the “fold” more clearly if we consider f as a composition of the maps

(z,y) = (z,y,9%) = (z,9),

illustrated in Figure 2. The map f “folds” the lower half plane onto the upper half
plane, and the crease of this fold is the line y = 0. Unsurprisingly, this crease is also
the set on which f exhibits a Whitney fold. Indeed, the differential of f at (x,y) is the
2 x 2 matrix (g, ), which drops rank by 1 when y = 0, and the determinant of the
differential of f vanishes to order 1 in the dy direction, which is also the direction of the

kernel of df, along {y = 0}.
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Figure 2: Prototypical Whitney Fold

In this work we consider local Radon-like transforms for which at least one of the
projections 7y, mr has at most fold singularities. For the purpose of simplicity we shall
usually assume that this map is 7, although analogous results can be derived easily

from the mapping properties of the adjoint (2.2).

The essential characteristic of a Whitney fold is the order 1 vanishing of the determi-
nant of dm in the direction of the kernel of dm. A natural generalization of this condition

is due to Comech, who proposed the following classification of singularities of finite type.

Definition 2.6 ([15, p. 3]). We say 7 is of type k at P if m drops rank simply at P

and for all j < k we have V7 det(dr)p = 0, but V* det(dr)p # 0.

We say m has maximal type k if at every point in its domain, w is either nonsin-

gular or is type 7 with j < k.

From this definition we see that a Whitney fold is equivalent to a type 1 singu-
larity. The Morin singularities (cusps, swallowtails, etc.) are examples of finite type
singularities which are stable under perturbations, but we will not discuss them fur-

ther here (see [33]). An example of a map with a type k singularity is gx : (z,y,2) —
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Figure 3: Surface £ associated to g3

k+1>

(z,y, 22 + 57y2"*"). The differential of g is given by

1 0 0
Welwyy = |0 1 0
2R g ysk
and ¢, drops rank simply along the surface £ defined by # = —yz*, which contains

the y- and z-axes. This surface is illustrated in Figure 3 in the case k = 3. A kernel
field for g, along this surface is 9., and 9, det(dg) = kyzF~1. This quantity is nonzero
on almost all of £, implying that g, has Whitney folds on almost all of £. However, g

is of type k along the y- and 2- axes, where kyzF~! = 0.
While there are many exotic singularities which do not fall into the classes described

above, there is arguably one “worst” case, when 7 is maximally degenerate.

Definition 2.7 (cf. [25, p. 5]). We say 7 is a blowdown on L if © drops rank simply

on L, but every kernel field V' of w, when restricted to L, is everywhere tangential to L.

Note that the blowdown condition implies that V*(det dg) ‘ p =0forall k € Nand all

P € L. An example of a blowdown is the map h : (x,y, z) — (x,y,yz). The differential
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of his

which is singular along the plane y = 0. A kernel field for h along {y = 0} is 0., which

lies tangent to the plane y = 0 everywhere.
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Chapter 3

History of Results

3.1 History of Results on L?

The L?-Sobolev regularity of R is well-studied when one of 7;, 7 projects with only
fold singularities. The first results in this case are due to Melrose and Taylor [37] in
the context of scattering of plane waves. They proved L2-Sobolev results in the case
when both 7, and wg project with only fold singularities; a canonical relation with this
property is called a folding canonical relation. Phong and Stein, motivated by the
earlier work of [52] and [17], were instrumental in unifying the subject by introducing a
dyadic frequency decomposition relative to £ that became crucial to proving L2-Sobolev
estimates. We will use a modified version of their argument in Chapter 8. We state three
results that will be crucial for this work. First, we describe the L?-Sobolev boundedness

of R associated to a folding canonical relation.

Theorem 3.1 ([37, 40]). Suppose that both 7, and g project with only fold singularities.

Then R extends to a continuous operator

R : Lg,comp(QR> - Li-l—%—%,loc(QL)’

Greenleaf and Seeger proved a uniform estimate of L? regularity under the assump-

tion that one of the projections 7y, 7z has only fold singularities, with no assumption
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on the other projection.

Theorem 3.2 ([23, Theorem 1.1]). Suppose that one of the projections 7y, g has maz-

imal type 1. Then for s € R, R extends to a continuous operator

R : L?....(Qr) — L?

s,comp s+%—i,loc(

QL).

As was shown in [28, 29], this L? regularity estimate is sharp for local Radon-like
transforms associated to canonical relations where one projection has at most fold sin-
gularities and the other has a blowdown singularity; a canonical relation with such a

configuration of projections is called a fibered folding canonical relation.

However, when one of the projections has only fold singularities and the other is less
degenerate than a blowdown one might expect better L? regularity. This was proven in
the finite type case by Comech, who obtained a sharp loss of s(k) = (44 %)’1 derivatives

if one of 7, and 7g has only fold singularities, and the other has maximal type k.

Theorem 3.3 ([15, Theorem 1.1]). Suppose that one of the projections 7w, mr has mazi-
mal type 1 and the other has maximal type k. Then for s € R, R extends to a continuous
operator

s,comp

R L7 (QR) — L§+%—s(k),loc(QL>'

Note that for curves in R? the quantity 5 — s(k) ranges between % for folding canon-
ical relations and i for fibered folding canonical relations, interpolating between the

regularity results in Theorems 3.1 and 3.2.

L2-Sobolev estimates are also known for larger classes of singularities, such as two-

sided and one-sided cusps ([16, 24]), and higher order singularities ([25, 26, 18]). While
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much progress has been made in L2, sharp LP-Sobolev regularity has largely been out

of reach for local Radon-like transforms R for arbitrary dimensions d and n.

As a first attempt at LP-Sobolev regularity we can interpolate the estimates of these
three theorems with the LP estimates of Lemma 2.1. However, we cannot interpolate
L' or L™ with a Sobolev space to obtain LP-Sobolev estimates; instead we adapt an
analytic interpolation method due to Fefferman and Stein [21] involving Hardy space

estimates.

Proposition 3.4. Let R be a local Radon-like transform. Assume there exists o > 0

such that R extends to a bounded operator

R ;L2 (D) — L2,..(Qn). (3.1)

comp a,loc

Then for 1 < p < 2, R is bounded from LP _(Qg) to L’;(p) 10c(Q21) where a(p) =

comp

(200 — 2?0‘) Note that a(2) = a.

We will prove Proposition 3.4 in Chapter 7. Applying the result to R and R* we

obtain the following LP regularity estimates.

Theorem 3.5. Suppose that R is a local Radon-like transform such that 7 projects
with folds. Let k be the mazximal type of mr, with k = 0o and s(00) = limyg_,o s(k) if mg
does not have mazimal type. Then R extends to a bounded operator from LF _ (2g) to

comp

LP

s,loc

(Qr), where (1/p, s) lies within the shaded region of Figure /.

These LP-Sobolev estimates are not sharp. Results exist for improvements to this
range which are sharp in the plane [50, 51]. More recently, sharp results on LP have
been proven for local Radon-like transforms over families of curves in R3, which will be

the focus of this work.
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0 1/2 1 1/p

Figure 4: A priori LP — L? mapping for R with one-sided fold singularities

3.2 An Example of Sharp L? Regularity

We introduce the discussion of sharp L regularity with an example. Let v : [0,1] — R?
be smooth and regular (i.e. v is C* and ' # 0), and let x be a smooth nonnegative
function supported on [0,1]. We can define a measure p supported on ~ given by

(f.py = [ f((#))x(t) dt. Then the convolution operator

A f(x) = [ # plz) = / F (@ — A()x(t) di (3.2)

is an example of a local Radon-like transform associated to the family of curves M, =
{z —~(t) : t €]0,1]} in R3. In [45], Pramanik and Seeger proved that Ag satisfies
sharp LP-Sobolev estimates for sufficiently large p provided Ag is associated to folding

canonical relations.

In this section we will investigate which class of curves v are associated with folding
canonical relations for Ag and examine the proof of Pramanik and Seeger’s result, as the
techniques introduced in [45] provide the foundation for later sharp LP-Sobolev regularity

results.

Since 7" # 0 we may choose coordinates so that locally v(t) = (71(t),72(t),t). Then
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the incidence relation associated to Ag is given by

M ={(z,y) : ®(x,y) =0}
where ® = (®', ®?)T, and ®'(x,y) = z; — y; — Yi(xs — y3) for i = 1,2. The twisted
conormal bundle of M is then
(N M) ={(z,&y,m) + yi =z — yilas,ys), i =1,2,
§=n=(m,7, —m7 (25 — ys) — 272(23 — y3)) }

In the coordinates induced by ® we can identify the differentials of 7, and mx with the
Jacobians of the maps

7L (@, y3,7) = (@, 71, T2, —T1Y) (03 — y3) — T2Ya(23 — ys3))

TR (@,ys,7) = (21 — (23 — y3), 22 — Y23 — Y3), y3

T1, T2, —7171@3 —y3) — Tﬂé(ﬂﬂs - y3))
respectively. We obtain (dWL)‘(I,yM) = < 4 g), where
1 0 0
B = 0 1 0 :

—Y(3 —y3) —Yo(ws —ys) TV (T3 — ¥3) + 7275 (03 — ¥3)

and (dﬂR)‘(%T 9 equals
10—l —ys) 0 0 (s = ys)
01 —~b(xs—ys) 0 0 Vo3 — y3)
0 0 0 0 0 1
00 0 1 0 0
0 0 0 0 1 0

00 —7- 7//(333 —ys) —’Yi(ms —y3) —’Yé(ﬂfs —y3) T- ’Y”(»T:s —y3)
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Calculating the determinant of both of these matrices, we see that

det(de)‘(wg’T) =— det(dﬂR)}(x,yg,T) =117 (r3 — y3) + T2v5 (23 — y3).

Thus both 7, and 7 are singular on the set 7 - +"(x3 — y3) = 0; if we assume that
~ has nonvanishing curvature (i.e. ~”(t) # 0) then this condition is only satisfied for
a l-parameter family of 7 € R?, specifically (11, 72) = p(—4(z3 — y3),7/ (3 — y3)) for

p € R. Thus
L={Pec(N'M) : det(dm)|p = 0}
={(=,&ym) + yi =i —viles —ys), 1=1,2
§=n= (1,7, —n1m(xs — ys) — 7272(23 — ¥3))

(11, 72) = ,0(—75@3 - y3>77¥($3 —Y3)), pE R}- (3.3)

Kernel fields for 77, and 7g are given by Vi, = 0, and Vg = v{(x3 — y3)0y, + V5(23 —
Y3)Ox, + Ou, Tespectively. Since det(dny) and det(dmg) are identical (up to a minus sign)
and are functions of 7 and x3 — y3 (in particular they are constant in xy, z5), the types

of 7, and 7 at a particular point in (N*M)’ will always be identical. Indeed, for any

ke N
VF det(dr = (=1)*7 - A (g —
L (dms) 7" (23—y3)=0 (=1) K (5 = ) T:p(775/(137%)’%/(137%))
1k Vi (z3—ys) 5 (z3—ys3)
= ( 1) pdet <’y§k+2>(z‘3—y3) 7é164r2)(w3_y$)) (34)
VE det(drg) = (=1)Ftr. ’Y(HZ)(% —y3) , "
Ty (z3—y3)=0 T=P(*“/2(13*y3)771 (13*93))

= (1) pdet (J5T AR ), (3.5)

WD (s —ys) 7 (23-ys)
Since the absolute value of these two expressions are equal both must vanish on the same

set. Thus we can summarize the conditions on which 77 and 7z have maximal type k.
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Proposition 3.6. Let I be a compact interval, and suppose v : I — R? is a smooth
compactly supported curve such that v'(t),~"(t) # 0 for allt € 1. For each t € I let

ki > 1 be the smallest integer such that

det (7/(1)7'(1) 7" (1)) #0. (3.6)

Suppose that max,e; ky = K. Then ©;, and g both have mazimal type K.

Proof. As above we may assume that ~;(¢) = t by a change of variables. This applied to
(3.6) immediately yields the expression (3.4) (and (3.5)) at any point P = P(x,ys,T) €
(N*M)" such that 3 —y3 = ¢t and 7-v"(x3 — y3) = 0. Thus all that remains is to
check that 7 and g drop rank simply at P. This is not hard to see, as V. det(dmr) =
—V.,det(drg) = ~"(t) # 0. Hence 7, and 7g are type k; at points such that z3 —y3 = t,

and have maximal type K if the maximum exists.

In particular, we see that 7, and wr have only fold singularities if and only if

det (’71 xr3— y3) '7,2//(333 y3 ) % 0

Y (x3—ys3) ¥4 (x3—y3)

Note that ~(¢) has nonvanishing curvature and torsion if and only if v/(¢),~"(t), " (t)

are linearly independent, or equivalently if

1 0 0
det (7’(15) 7"(t) 7”’(t)) =det [y3(r) 45(t) ') | #0
() ) 25()
Thus the condition that the only singularities of 77, (and thus 7g) are folds is equivalent

to the condition that v has nonvanishing curvature and torsion. Under this condition,
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Pramanik and Seeger used the fact that Ag is a Fourier multiplier to prove the following

sharp result.

Theorem 3.7 ([45, Theorem 1.1]). If v is a smooth regular curve with nonvanishing

curvature and torsion then Ag is bounded from LP(R3) — Lﬁ’/p(]R:”) forp > 4.

The proof of Theorem 3.7 relies on an observation about the non-isotropic decay of

the Fourier transform of the measure . Let i be the Fourier transform of u, given by

AlE) = / e 2mEO) (1) dt. (3.7)

If v has nonvanishing curvature and torsion then ~'(t),~7”(t),7"”(t) span R?® for each
t € [0,1]; thus there is a constant ¢ > 0 such that for every & € R?\ 0 at least one of the
inequalities

(&, 7' ()] = clé] >0

(€, 7" ()] = clg] > 0

(€7 ()] = cl¢] > 0

must hold. Applying the method of nonstationary phase and Van der Corput’s Lemma

to (3.7) shows that i decays at a uniform rate

()| < Cle|~v3. (3.8)

Since fi(€) is also bounded by ||x||1 we conclude

(1+ [PV 0()

is a Fourier multiplier on L?*(R?), hence by Plancherel’s theorem Ag maps L?(R?) —
L2 /3(R3) boundedly, matching the regularity of Theorem 3.3 in the case of folding canon-

ical relations.
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However, there are many directions in which /i decays faster than the estimate (3.8).

Suppose 6 € C2°(R?) is a smooth cutoff function such that for ¢ € supp 6, we have

(& A O+ (€7 ()] = el

for some ¢ > 0 uniformly for all ¢t € [0,1]. Then by Van der Corput’s Lemma

0(E)aE)] < Cle[~12.

By the same argument as above this implies that (1+|£|)*/26/i is a Fourier multiplier on
L?(R?), meaning that the operator f [0/ is bounded from L*(R?) — L3 ,(R?), the
same regularity as Theorem 2.2, when the canonical relation is a local graph. The set
of £ which do not lie in the support of 6 is a neighborhood of the conic set of directions
binormal to 7,

B={pt)ANY"(t) : peR, tel} (3.9)

If v has nonvanishing curvature and torsion ‘B is a cone with one nonvanishing principal

curvature. For example, if v is the moment curve y(t) = (¢,t2,3), the set B is given by

B ={p(3t?,-3t,1) : pcR, tc}.

An important observation made by Pramanik and Seeger is that B coincides exactly

with the fibers of 77 (L) [45]. Indeed, for each x we define the fibers of 7 (L£) to be

S ={€ ¢ (2,6) € m (L)), (3.10)

Then given the parametrization of £ from (3.3) we see that

vy (1 —y1)v5 (@1 —y1) =74 (@1 —y1)v5 (1 —v1)
Yy = {p( 74 (z1—y1) ) s p€eR zy— E[},

=74 (z1—v1)



36

Figure 5: Section of Binormal Cone B for the Moment Curve ~(t) = (¢, t2,t3)

which is exactly the cone B for every z.

By applying a dyadic decomposition of the support of i in the distance away from
this cone we obtain a sum of functions whose Fourier transforms are supported in a
neighborhood of a curved cone. For ¢ € N let 6,(£) be a smooth cutoff function supported

where dist(&,B) ~ 27¢|¢| such that

(1= 0)a(€) = 0u(&)A9).

Then by an argument in [45, Lemma 3.3] involving Van der Corput’s Lemma and an
almost orthogonal decomposition we see that the decay of i improves quantitatively as

the distance from ‘B increases. In particular,

10(O)(E)] S 2721¢172.

When £ = 0, i is supported far away from B, and |(€)| < [£]7'/2, the optimal bound.
On the other hand, once if 27¢ is smaller than |¢|~'/3 the estimate is no better than the

uniform decay of ji.
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3.3 (P Decoupling for the Cone

To estimate the LP boundedness of Agr Pramanik and Seeger interpolated the “quanti-
tative” L? estimates with (”-decoupling estimates, first proven by Wolff [58] for large
p and subsequently extended by Bourgain and Demeter [8] to the optimal range p > 6.
We present the extension of their results for a general cone in R? with one nonvanishing

principal curvature (cf. [45, Proposition 2.1] and [8, Theorem 1.2]).

Let I C [—1,1] be a closed interval and let g : I — R? define a C® curve in the plane.

Suppose there are constants cg, ¢y, co > 0 such that

lglles < co,
19'(D)] > e,
1(0) g7 (b)
| det (o) gy )| = ez
for all b € I. Then
Cg:{€€R3 : §:A<gl(b)>g2(b)71)a bE[, )‘>0} (311)

is a cone in R? with one nonvanishing principal curvature. A basis for the tangent space

of C, at A(g(b),1) is given by

ur(b) = (g(b), 1) (3.12)

and a vector normal to C, at A\(g(b), 1) is given by

ug(b) = ur(b) Atia(b) = (= ga(b), 91(), 91(b)g5(b) — 9201 (b)) (3.13)
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Thus T(4),1)Cy has an orthogonal basis given by u;(b) and
ug(b) == u1(b) A us(b). (3.14)
Given this basis, we can define thin plates adapted to the cone C, at the point (g(b), 1).

Definition 3.8. Let A > 1,0 < 6§ < 1, and b € I. Given pairwise orthogonal vectors

up(b), uz(b), uz(b) € R?, let T 44(0) be the set of & € R® defined by the inequalities

A7 < ()| < 4
<‘Z§EZ§‘,€> < As (3.15)
(it €)] = 49 (3.16)

The sets I14,(d) are unions of A x AJ x Ad*-boxes with long, middle, and short
sides parallel to ui(b),uq(b), and ug(b) respectively. Decoupling inequalities allow one
to efficiently estimate the LP norm of a sum of functions whose Fourier transforms are
supported on a family of plates II4;,(0) for a set of separated points b, € I. We
formulate this theorem in terms of /7 decoupling for small p for the purposes of our later
proof, but they are equivalent to the typical presentation of 2 decoupling inequalities

for large p.

Theorem 3.9 (cf. [8, Theorem 1.2],[58, Theorem 1], see also [45, Proposition 2.1]). Let
e >0 and A > 1. There exists a constant C(g, A) depending on cy,c1,co such that the
following holds for any choice of 0 < 6y < 6, < 1. Let M > 1 and let B = {b,}M., be a
set of points in an interval J C I of length &y such that |b, — b),| > 6 for v # V', Let
2 <p<6. Let f, € LP(R3) such that f, is supported in Map, (01) foreachv =1,2,..., M.

Then

M
HXij

. M 1/p
<O A/ (P IAE)
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To apply this method of decoupling to a local Radon-like transform over curves in
R3 there are two obstructions to circumvent. First, the fibers associated to Ag are fixed
only because Ag is a convolution operator and is thus translation invariant; the fibers of
L associated to a generic local Radon-like transform a priori vary with x. We will deal

with this obstruction using iterations of changes of variables, which we will introduce in

Chapter 10.

Second, the fibers of 77, (£) may not in general be curved cones. To ensure that they
are we need an assumption, first formulated in the context of FIOs in [23] and later

characterized for local Radon-like transforms over families of curves in R? in [46].

Lemma 3.10 ([46, § 3|). Let w : (N*M)" — M be the natural projection. If the
restriction of w to L

wle: L —> M

is a submersion, then the fibers of m(L) are curved cones in T}y, for each .

3.4 The Surjectivity Condition on @

In this section we examine the assumption on w in Lemma 3.10, and how it impacts
the geometry of the conormal bundle of M. In this section 2, g are 3-dimensional
manifolds, and M C Qj x 1y is a 4-dimensional submanifold such that the projections
oL, pr defined in (2.1) are submersions. As discussed in §2.2, in a neighborhood of a

reference point P € M,

Rf(x)= //J”(Tl(sl(w,ys)y1)+72(52(xvy3)yz))X(x7y>f<y) dr dy.
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Recall from §2.2 that the canonical relation associated to R is the twisted conormal

bundle of M, given by

2
(N*M)/: {(I7§7y77]> : yi:Si(xayfi)a 22172 5227-25;(1‘7:%’))
=1

2
i = Ti, Z:]-a2 n3:ZTiS;3(x7y3)}7
i=1
and 7y, g are defined as in (2.4). From (2.11) and (2.12) we see that
2
det(dry) = det <Si,(x,y3) S2(x,ys) ZTZ-S;% (x, y3)>.
i=1
To see that the fibers of 7. (L) are conic, let

A'(z,y3) = det(S: 52 S )

x Mz Mrys

Li=1,2.

Then we can rewrite det(dry) = 1Az, y3) + 2A?(x,y3). Given the parametrization

above, L (see (2.13)) is the subset of (N*M)’ such that
T1A1<:U7 yB) + 7_2A2(x7 y3) =0.

Let @ be the projection defined in Lemma 3.10. Then we have the following result from

Pramanik and Seeger.

Lemma 3.11 ([46, Lemma 3.1]). If w|; : L — M is a submersion and 7, is a fold then
ANz, y3)] + |A (2, y3)| # 0
for (x,y) near P.

This lemma implies that for any (z, y3) we can find 7 such that (z,ys, 7) parametrizes

a point in £; in particular

7 =%p(— A%(z,y3), Al(w,13)),
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for some p > 0. Although [46] deals with the case of folding canonical relations, Lemmas

3.11 and 3.10 only require a fold condition on one of the projections.

Next we examine the fibers of 71 (L), defined by
Yo ={¢ ¢ (x,§) em(L)}
Given the parametrization of (N* M)’ above we see that
e ={(7-8)u(@,y3) + 7-Alz,y3) =0} = {£p=(z,y3) : p> 0}

where

5(17? y3) = _AQ(xvy?))S;(x?y?») + Al(xvyfﬂ)si(x?y?»)'

(3.17)

Thus ¥, is conic, and we can construct a basis for its tangent and normal spaces. Let

a € Qp be fixed. We begin with an observation. By an identity for vectors in R?, for

i=1,2
Ai(‘r7y3> = <S;($U,y3) A S§($7y3>7S;,y3(‘ray3>>'

This implies that

(SIAS2ANS?, — A2SL )= AN(SIA S22 ) — AX(SL A 52,8

= ATA? - AZA!

:O,

TY3

implying that —AZS;yB + A15§y3 € Span(S}, S?) for fixed (a,y3). The tangent space of

T~

Y. at a point parametrized by (ys, £p) is spanned by

Ti(a,y3) = E(a,ys3)

TZ(a7 3/3) = Eyg (CL, y3)7

(3.18)
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so a normal vector at this point is given by

Ty ATy == AE,,
= (A'A2, — A’A} (S A S2)
+(A1S2 — AZSH A (ATS? — A%S! ).

Y3 Y3

Since —A*S] +A'SZ € Span(S;, S2) the expression in the final line of the calculation

Y3

of Ty A Ty is either 0 or a scalar multiple of the vector S A S2, meaning that a normal

vector to ¥, at a point parametrized by (ys,+p) is given by
N(a,ys) := Sy(a,ys) A S3(a,ys). (3.19)
Finally, to construct an orthogonal vector in the tangent space to ¥, we define
Ty(a,ys) := Ti(a,y3) A N(a,ys). (3.20)

In the proof of Lemma 3.10, Pramanik and Seeger proved in particular that ¥, is a

two-dimensional cone that has one non-vanishing principal curvature given by

p<Ey3,y3a N).

It is useful to construct explicit kernel fields of 7, and 7 in conic neighborhoods of L.

Note that L splits as a disjoint union of two cones,
L = {(m, +p(—A%S! 4+ A'S?), St S§y3,y3,7, ip(AQS;3 — AISi)) Cp> O}.
Lemma 3.12. A kernel field for Tz near L* is given by

Vr = (N(x,y3), V).
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Define T';(x,y3), i = 1,2 by

[y (z,y3) = det(S; S2,, Say,) (3.21)
Ty(z,ys) = det(S,,, S257,,). (3.22)
Then
£7]

VL:E )l (Fg(l’, yS)aﬁ - Fl(x7 y3)872> + 8y3

INEE

is a kernel field for 7;, near L.

Proof. We begin with Vz. Applying the local representation of drg in (2.12) (which

map coordinates (z,7,y3) — (wy, ...,ws)) to Vg = Sk(z,y3) A S%(z,y3) we obtain

<Sal:($’ y3) A S£($, y3)7 S;(ZL’, y3)>
(Sa(z,y3) A SZ(2,3), S5 (2, 93))

0
dﬂ'RVR

(z777y3) o

0

0

<S:11:(x7 y3) N S:%(x7 y3)7 TIS;yg (ZE, y3> + TQS:%,yg (ZE, y3>>
= (ﬁAI(% y3) + 7'2A2($>?/3))(9w6

we *

= det(dmp)|

mL(2,y3)
Clearly Vi is a kernel field for 7g. Note this implies that —A%S; +A'S? € Span(S}, S7).

To show that V= is a kernel field for 7, near £* we follow the argument in the

proof of [46, Lemma 3.2]. Applying the local representation of dry in (2.11) (mapping
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coordinates (x,7,ys) — (wi, ..., ws)) to the definition of V;* above we obtain

0
dr Vi = '
"LV @i T 0
(S5 (5irs = $201) + (miSh,, + 7252,,) ) -
Evaluating at 7 = +p(—A%(z, y3), Al(z,y3)) it suffices show that
STy — STy — A'S,, + A*S2 e 0. (3.23)

Let W equal the left hand side of the above equation. To prove (3.23) we note that since

= Az, ys)[*,

(I,yg)

det(S' S2 A'SL + A*S?

vy rys)

which is nonvanishing by Lemma 3.11, the vectors S!(x,y3), S?(x,y3), and AIS;% +
2.q2 . 3 PR P 15 Q2 1A AlQL 2. Q2
A Sxy?)}(mg) form a basis on R”. This implies that SIASx‘(m,ys)’ SyNANS A Sf”ys‘(x,ys)’

and SZ A ALS! + A2S2

s mys}(m’yg) also form a basis of R®. We can show that W = 0 by

testing it against these three basis vectors.

First, we test W against S. A S? to obtain

(W, S, A Sa) = (Sy ASg, —A%Sg, ) + (Sp A S5, ANSE L)

Y3
= —A2Al + ATA?

=0.

Next, we test W against S A (A'S] + A2S2

s ;) and obtain

)) = _F1A1<S§7 Si“ A S;y3> - F1A2<592:7 S; A S:%yg)

(W, 5, A (A'S),, + A*S2

Y3

—(AD2(SL STASE )+ (AD2(S2 STASL ).

TYy3’ T x TY3 TYy3? T x TY3
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By the definition of I'y, 'y this vanishes. An analogous argument can be made to show

(W, S2 A (ASL + A2S2 ) =0,

TY3

]

We can give an explicit condition that m, is a fold along £ by computing for p > 0

VLi (T1A2(33, ys) + TzAQ(JU, y3))

redp(—A2,AL) = pK’('I.a y3)

where

R(x,ys) = ToAL = T1A% + ATAZ — APA (3.24)

(@)

Since we assume 7, has fold singularities along £, x must be nonzero.

3.5 Sharp L”-Sobolev Estimates

Under the assumption of Lemma 3.10, Pramanik and Seeger were able to prove that the
same 1/p gain in regularity holds on L for p > 4 for a large class of local Radon-like
transforms over families of curves in R? associated to folding canonical relations. Since
R has folding canonical relations if and only if R* has folding canonical relations, the
same result can be applied to R and R*. Interpolating their result with the L? estimate
from Theorem 3.3 we obtain the following characterization of the LP-Sobolev regularity

of R with folding canonical relations.

Theorem 3.13 ([46, Theorem 1.1]). Let Qr,Qr C R? be open sets, and M C Qp, x Qg
be a four-dimensional manifold such that the projections M — Qp and M — Qg are
submersions. Let R be the local Radon-like transform associated to M. Assume that

the only singularities on wp, : (N* M) — T*Qp and 7g : (N*M)" — T*Qpr are Whitney
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folds. Let L be the conic submanifold on which dry and drg drop rank by one, and let
w be the projection of (N* M) onto the base M. Further, suppose that w|; : L — M

18 a submersion. Then R extends to a continuous operator

R @ L (QR> — Lls),loc(QL)

comp

for (1/p, s) within the shaded region of Figure 6.

S
1/31 -
1/41 o
0 1/4  1/2  3/4 1 1/p

Figure 6: Sharp L? — LP mapping for R with folding canonical relations

As the curvature assumption on the fibers of £ only requires that 7, be a Whitney
fold, it is conjectured that this method of proof could be extended to all local Radon-like
transforms over families of curves in R?® with one-sided folds satisfying the submersion
condition of Lemma 3.10. In this work our main result is to prove one case of this

conjecture, that R still gains 1/p derivatives on L for p > 4 when 7y is a blowdown.

Theorem 3.14. Let Q;,Qr be open sets and let M C Qp X Qg be a four-dimensional
manifold such that the projections pr, : M — Qp and pr : M — Qg are submersions. Let
R be the local Radon-like transform associated to M. Let L be the conic submanifold
on which dry, and drg drop rank by one. Assume that the only singularities on 7y, :

(N* M) — T*Qp are Whitney folds, and that g : (N*M) — T*Qg is a blowdown
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on L. Let w be the projection of (N* M) onto the base M. Further, suppose that

wle : L — M is a submersion. Then R extends to a continuous operator

R : L (Qr) — Lzl)/p,loc(QL)7 4 < p < oo.

comp

Theorem 3.14 generalizes the results of [6] and [44]. Interpolating the results of The-
orem 3.14 with the L2-Sobolev estimate in Theorem 3.3 we obtain LP-Sobolev estimates
for 2 < p < 4. To obtain estimates for p < 2, we apply Proposition 3.4. We combine

the estimates for all p together in the following result.

Theorem 3.15. If R satisfies the conditions of Theorem 3.14 then R maps boundedly

from L2 (R3) into L”

comp s,loc

(R3), where (1/p,s) lies within the shaded region of Figure 7.

1/41

0 /4 1/2 1 1/p

Figure 7: Sharp L” — LP mapping for R with fibered folding canonical relations

Examples in [44, 6] show that the LP-Sobolev estimates of Theorem 3.15 cannot be
expanded beyond the boundary of the trapezoidal region of Figure 7, although it may be
possible to extend to the endpoints (i.e. the closure of the trapezoidal region). We will
introduce these examples in Chapter 4 and prove related sharpness results in Chapter

D.

The proof of Theorem 3.14 follows the same basic structure of the proofs of Theorem
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3.7 and of Theorem 3.13, first showing “quantitative” improvements in L?-Sobolev esti-
mates moving away from £, then applying decoupling to cones deriving from the fibers
of m;(L). However, the maximal degeneracy on 7g introduces difficulties not present in

the case of folding canonical relations.

First, the dyadic decomposition away from L is halted once the the “quantitative”
estimate is no better than the uniform L2-Sobolev estimate. In the case of fibered folds,
the decomposition continues much closer to £ because the uniform L2-Sobolev estimate
of Theorem 3.2 is worse than in the case of folding canonical relations (Theorem 3.1).
Because the support of the decomposed pieces is much closer to the singularities in L,

proving estimates there requires greater care in the analysis.

Second, since 7g is a blowdown on £, Vg is parallel to £, which implies VE7T -
A(z,y3) = 0 on L for all & > 0. Moreover, since Vg = (N(z,y3), V,) we also have by
definition that Vz7-S,,(z,y3) = 0 on L. In other words, the blowdown imposes a flatness
condition in the Vg direction which does not permit almost orthogonal decompositions
in the Vg direction which were possible in the case of a fold. These difficulties will be
discussed in more detail in Chapters 8, 9, and 10 when we introduce the dyadic frequency

decomposition in distance from L.
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Chapter 4

Examples of Local Radon-like

Transforms

In this chapter we explore and characterize examples arising from problems in harmonic
analysis and integral geometry which motivate our investigations into LP-Sobolev regu-
larity. In the study of local Radon-like transforms, model cases are key as the general
picture can usually be seen as a perturbation of one (or more) examples. The notation

in each section is self-contained.

4.1 n-plane transforms and Restricted X-ray trans-

forms

Let My, be the bundle of affine n-planes in R, and define the n-plane transform

Punf () = [ $(@)dis(x),7 € M.

where du, is Lebesgue measure on the n-plane 7. The dimension of My, is (n+1)(d—n),
and can be illustrated by relating My,, to the Grassmannian G, (R?), the space of all

n-planes through the origin in R%. The Grassmannian can be realized as a homogeneous
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space by the identity
O(d)
O(n) x O(d —n)

which also implies that dim(G,,(R?)) = n(d—n) [38]. We can parametrize My, by (0, y),

G, (Rd) ~

where 6 € G, (R?), and y € 6+, the (d — n)-dimensional subspace of R? orthogonal to
6. We identify (0,y) with the n-plane parallel to € containing the point y in My, [11].
This parametrization is one to one, and shows that the dimension of My, is indeed

(n+1)(d—n).

In the case of hypersurfaces, Pgq—1 is the higher-dimensional analogue of the Radon
transform introduced at the beginning of this work. At the other extreme, 1-plane
transforms, more commonly referred to as X-ray transforms, have served as a model for
X-ray tomography, where an important problem involves reconstituting f from Py f.
Hence the possibility of inversion is an important question regarding n-plane transforms.
When n < d—1 the dimension of My, is strictly larger than R?, so the problem of finding
f from Py, f is overdetermined. Thus it is natural to restrict the domain of Py, f to
an d-dimensional submanifold 7 C My, (called an n-plane complex), and ask for which
n-plane complexes F can the associated restricted n-plane transform P, f| = be inverted

(see e.g. [22, 27, 48]).

Local versions of restricted X-ray transforms have served as model examples for both
folding canonical relations [46, § 4.2] and fibered folding canonical relations [27, 44]. We
introduce a concrete example of the latter from [44]. Let I be a compact interval and
suppose that v : I — R? is a smooth regular curve with nonvanishing curvature (i.e.

7' (s),7"(s) # 0 for s € I). For a Schwartz function f € S(R3) and « € I define

Xf(a'a) = / £+ 53(0), $)xa(5)xa(o) ds, (4.1)
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where x; and X are smooth real-valued functions supported in the interior of [1,2] and
I respectively. The family of curves associated to this local Radon-like transform is
parametrized by (2/, ) € R3; for each (z/, ) the restricted X-ray transform integrates

f over the unique line through the point (z’,0) pointing in the direction (y(«),1).

The operator X belongs to a class of restricted X-ray transforms initially formu-
lated in the complex setting by Gelfand and Graev [22] to give an essentially complete

characterization of when inversion of the X-ray transform is possible.

Definition 4.1 (Gelfand Admissibility). Given a three-dimensional line complex F C
M, 3, let I'p be the conic set generated by lines in F through the point P. We say
that F is Gelfand-admaissible if I'p is a two-dimensional cone for each P, and I'p is
tangent to I'g along the line between the points Q and P for every Q) in the cone I'p.
Additionally, let Xz be the restricted X-ray transforms associated to F. We say that Xx

1s Gelfand-admaissible if F is a Gelfand-admissible complex.

Examples of Gelfand-admissible line complexes include the set of light rays in R3
(i.e. all lines which make an angle of 7/4 radians with the horizontal plane, see for
example [41]), and the complex of lines (called a Chow variety, see [27]) which intersect
a curve which intersects almost every affine hyperplane (X" is the Chow variety of 7 and
thus an example). Gelfand-admissible restricted X-ray transforms have been studied
by many authors, including Greenleaf and Uhlmann who, in [27], showed that Gelfand
admissibility, along with the assumption that I'p is curved for each P, is sufficient for the
inversion of Xz, extending the results of Gelfand-Graev to the real setting. Moreover,
generic restricted X-ray transforms which are Gelfand-admissible (including (4.1) if ~

has nonvanishing curvature) satisfy the conditions of Theorem 3.14.
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Proposition 4.2. Suppose that F is Gelfand-admissible and that for each point Q) the
cone Ug of lines in F through Q) is curved. Then (Xr)* satisfies the assumptions of

Theorem 3.14.

4.1.1 Jacobi Fields and the Canonical Relation

We begin by showing that the assumption on @ from Theorem 3.14 holds under a basic
nondegeneracy condition on the sets I'p. The presentation of the canonical relation

associated to X'z in this section is due to Phong in the survey paper [41]; see also [27].

Lemma 4.3. Let @ and L be defined as in Theorem 3.14. Suppose that for each P € R3
the set I'p is a locally a conic submanifold of dimension 2 away from P. Then w|, is a

submersion.

As in the case of the classical Radon transform in the introduction, we can locally
identify each line [ in F C M 3 with a point P € R? and a direction v € R? with |y| =1
via the map (P,v) — {P+sy : s € R} =1. As a consequence we can view M 5 locally
as a submanifold of TR3. For each line [ € F X7 integrates over all points @) € [, hence

the incidence relation for Xx is given by

Z={((P),Q) : (Py)eF, Qel}={((P),Q) : (Q=P)Ay=0}CF xR
Note that (QQ — P) Ay = 0 if and only if @ lies on the line parametrized by (P, 7). As
Q@ € 1, there is some t € R such that Q — P = t~.

At this point we use Jacobi fields (see [19, Ch. 5]) to make a more concrete character-

ization of T} F and T;M] 3. We omit some details in the construction of Jacobi fields as
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we only focus on Jacobi fields for Euclidean spaces, which avoids much of the necessary
Riemannian geometry. We refer to [19] and [27] as general references for Jacobi fields

and their connection to X-ray transforms respectively.

Definition 4.4 ([19]). Let (M,g) be a Riemannian manifold with curvature tensor R
defined in [19, Ch. 4]. Let l(s) be a geodesic on M parametrized by s. Note that l'(s) is

then a vector field along l. A vector field J(s) along l(s) is called a Jacobi field if it

satisfies
D2
227 (8) + R(J (). U(s)I'(s) = 0, (4.2)
s
where % is the covariant derivative along l(s) arising from the Levi-Civita connection

(see [19, pp.50-56]).

Jacobi fields describe the difference between a given geodesic and infinitesimally close
geodesics, meaning that we can use Jacobi fields to form a basis for the tangent space at
a geodesic [ in the space of geodesics on (M, g) (cf. [27, § 2]). In the case of Euclidean
spaces the geodesics are lines, the curvature tensor R is uniformly 0, and % coincides
with the usual derivative with respect to s. Thus (4.2) implies that Jacobi fields J(s)

on a given line [ C R? are precisely the vector fields along [ that are linear in s.

Returning to the X-ray transform restricted to F C M 3, we fix Iy = (P, 70) € F.
Letting ug = 7o we can pick uy,us such that wug,uq,us form an orthonormal basis of
vectors on R3. Then the set of J of solutions to (4.2) for the line Iy € F is a 6-
dimensional vector space which splits as JT @& J+, where J7T is spanned by ug, suy and
J+ is spanned by uy, ug, suy, suy. Informally, we see that TjM] 3 can be identified with

J* by considering perturbations of ly. The line [ can be deformed to another line in



54

I\\411,3 by

Py + sy — Py + sy + (a15 + by)uy + (azs + be)us,

where a;,b; are any constants, giving a basis for 7;,M] 3 in terms of the Jacobi fields
Uy, Ug, Suy, sug. The formal proof of the statement that 7; M, 3 is canonically isomorphic
to J+ is given in [27, p. 209]. Given a Jacobi field X (s) = (a1s + by)uy + (ags + by)us,

we can view the deformation above using the identification | = (P,7) € TR? as
(Po,70) = (P + X(0), 70 + X).

Thus a tangent vector in Tj,M; 3 can be identified as a pair (X (0), X') lying in T*(TR?)

where X (0), X’ € span(uy, us).

Since we identify M 3 as a subset of T(R?) we can identify ((P,7),Q) — (Q — P) Ay
with a defining function ® : (R3 x R3) x R® — R3 where we let P,7,Q each vary in
R3; we then restrict the domain of @ to ((P,7),Q) € F x R? and the output of ® will
be thus restricted to the two-dimensional space orthogonal to . Using this scheme the
restriction (Q — P) Ay = 0 is equivalent to & = 0 for (P,v) € F. Let v/, P’ be the
projections of the variables v, P to the plane spanned by uq, us; these are the directions
of T;,M 3 coming from the Jacobi fields in J+. Then covectors (I',&) in Nip, o2 are

0,70

given by the restriction of

(0,6) = ((Vr(r- @), V(7 @), 1 Valr-0))|

((P),Q)=((Po,70),Po+tv0)

= ((72u1 — Tiug, H(T1Us — Touy)) ‘Tzof’ TA 7|7:q,0>.

Thus we can use (2.5) to define the twisted conormal bundle N, (0.0 2 !

{((P0770)7 (TQUI - Tlu27t(7-1u2 - 7—2u1>) ‘TZO]:? PO + t%, TN 7"7=“{0) tle Rv T E R2 \ 0}

(4.3)
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4.1.2 The Proof of Lemma 4.3

Suppose that for each @ € R3 the set g is a cone. We can pick uy,us such that for
some constants a, by, by € R the Jacobi field X4(s) = au; + s(bjuy + byuz) € Tp, o) M3
is normal to F at (Fp,v9). We remark that if b; = by = 0 the set I'p, contains all lines
in M 3 through Fp for v in a neighborhood of ~y, contradicting our assumption that
['p, forms a cone. Thus we may assume that b + b2 # 0. Applying the Gram Schmidt

process, the Jacobi fields

Xi(s) = ugy
XQ(S) = S(—bg’ul + bl’MQ)
Xg(S) = (b% + bg)ul — sa(b1u1 + b2u2)

form an orthogonal basis for T{p, ,,)F. Let ¥; be the dual basis to X; in T| (*Pmo)

F,ie. let
V; € Tip, ) such that the pairing (U;, X;) = 5; for each 7,7 = 1,2,3. Then projecting

our expression in (4.3) to T,  \F we obtain

Nio.oyZ' = {((Po;70); (=101 + t(by7a + by7y)Wa + (at(bay — bi7a) 4 2(b7 + 05)) Ws);
Py +tyo; 7 A 7|7:70)}'

Let 7, : N*Z' — T*F be the natural projection as in (2.4). The differential (d7r,)((py o) .t,7)
is given in the local coordinates induced by ({X;}?_,,¢,7) by the matrix (§ %), where
0 -1 0
B=| b +bm bt bot : (44)
abymy — abymy  taby (b + b3) — abit
The determinant of this matrix is (b + b3)(71(by — at) + 7abs). Since b? + b3 # 0 for

sufficiently small ¢ (or equivalently for @ sufficiently near P) the set £;,, = {(T',§) €
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N Z' . detdrp = 0} is the subset of N Z’ such that (71, 7) L (b1 — at, by).

Our analysis of T, F can be repeated for each [ in a neighborhood of {j, leading to the
definition of smooth functions w;(P, ), i = 0, 1, 2, such that u;(Py, ) = w; fori =0, 1,2,
{u;(P,7)}i=01.2 is an orthonormal basis for R? for each (P,7), ug(P,v) = 7, and uy(P,7)
is normal to the cone I'p at the line [ = {P + sy}. Using these smooth functions
we obtain for each line [ local coordinates W;(P,7) of 17}, F which depend smoothly
on (P,v) near (Fp,7). The normal Jacobi field X4(s) =: x\m (s) also varies with
(P,7), hence the parameters a, by, by in (4.4) also vary smoothly with (P,~). Repeating
the argument above, for each [ in a sufficiently small neighborhood of [y and @) in a
neighborhood of P, LN N/ Z is the subset of NZ’ such that (71, 7) L (by — at,by) # 0,

i.e. (11,72) = £p(by,at — by) for any p > 0.
The projection w : N*Z" — Z from Theorem 3.14 maps

((P,7), (=Y (P, ) + t(bymy — b172)Wa (P, ) + (at(b11y + beme) — 11(b5 + 13)))W3(P, ),

P+ty, 7 Ay) = ((P); P +1y),

where a, by, by smoothly depend on (P,v). By plugging in the restriction in 7, the

restriction of w to £ near [y and @ near P is then defined for p > 0

((P7 7)7 :l:p((bl - at)\lll(Pv ’7/) + t(bg + b% - a’blt)\lj2(P7 ’7) + bg(((lt)2 - (b% + bg>>qj3(P7 7)7

P+ ty,2p((at — by)ui(P,7) — boua(P, 7)) = ((P,7); P + ty).

Thus we see that w|. is still a projection in the first and last coordinates to Z near [

and is thus a submersion.
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4.1.3 The Proof of Proposition 4.2

The implication that the canonical relations of Gelfand admissible restricted X-ray trans-
forms are fibered folds is shown in [41, § I1.3]; we present the proof below giving more
detail. Pramanik and Seeger also gave an explicit parametrization of the fibered folding
canonical relation for a model restricted X-ray transform in [46, § 4.2]. In addition to
implying the conditions of Lemma 4.3, the Gelfand admissibility condition (Definition
4.1) allows us additional control over the Jacobi field X,(s). It states that along the line
ly, the normal space to F is proportional to a fixed vector in R3. Given our previous
choice of uy,uy the Gelfand admissibility condition implies that Xy(s) = au; + bysuy

with b; # 0, and therefore by rescaling

Xi(s) = uqg
Xo(s) = sus
X;3(s) = biuy — sauy

X4(S) = auy + Sblul

form an orthogonal basis for T{p, 1, M 3 while X;(s), X5(s), X3(s) form an orthogonal
basis for T p, o) F - Repeating the argument above and applying the additional constraint
by = 0 to (4.4) we see that det dmy|((p,0).t,r) = T1(b1 — at), which implies that for (P, )

near (P, ) and @ near P, L is the subset of N*Z’ such that 7, = 0.

We also see from (4.4) that the kernel field for 7y, at ((Po,70), Po + ty0) is given
by VL|((Pyv0),Po+tv0) = T10m. Since £ has no restriction on 75, Vi, is tangent to £ at
((Po,0), Po+t70). Repeating this same argument for each [ we see that 7, is a blowdown

along L.
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Next we examine the projection mg. Note that given our discussion above we may
rewrite Tr(N*Z) = (P+tvy, ouy (P, y) —iua (P, 7y). We use ug = o, u1 = u1(Fo, Y0), ug =
us( Py, 7o) as a basis for R® near Py and for T} R®. Then we can identify the differential

of g at ((Py,%),t, 7) in the local coordinates induced by ({X;(s)}3_,,t,7) as

ATR| (P o) tsr) =

010

where A describes the derivatives of muy(P,7y) — Tyus(P,~y) with respect to the vari-
ations of (P,~) within F (i.e. the Jacobi fields X;(s), Xa(s), X3(s)). For an element
Z?:o BiOx,(s) + cOy + d10;, + d20;, to lie in the kernel of dmg|((p,~0).-) it must be that
B3 = ¢ = 0 and By = —tB;. We know that ;1 = 0 on L, so finding the kernel of
AT R|(Pyy0)t,r) O0 £ amounts to determining the variation of w;(P,~) with respect to
Xs(s), i.e. varying 7 in the uy direction leaving P fixed at P,. To make this more con-
crete we give a parametrization of I'p, and relate the variation of u; to a projection of a
derivative of a curve on the cone. Recall that u; is normal to the cone I'p, at the line [y
and w9 is tangent to I'p, at the line [y, and that I'p, has nonvanishing curvature. Thus
for some € > 0 we can find a smooth map g : (—¢,¢) — R? such that |g|* = ¢ + g3 = 1,

g is parametrized by arc length, 79 = \/75(9(0), 1), and

1—‘PO :{Po—{—S(g(OZ),l) : S€R7 |U| <€}'

Then if (FPpy,) is is sufficiently near (Fy,vy) we can find o € (—¢,€) such that v =
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2(g(a), 1) = up(), uz( Py, 7) = (¢'(),0) =: us(e), and
ur(Po,7) = 7y Aua(Po,7) = 2 (= gh(@), g1 (), g1 () gh(a) — ga(@)gi (@) =: ua(ar). (4.5)

Thus {u;(«)} forms an orthonormal basis of R? adapted to the cone I'p, so that u;(«) is
normal to the cone at Py + s(g(a), 1), and uy(c) is the horizontal tangent vector at the
same point. Then the variation of u;(P, ) in the X5(s) direction at (Fy, o) is equivalent

to the projection

S

(1(0),u2(0)) = (*7 (= 95(0), 97(0), 91(0)95(0) — 92(0)g7(0)), (91(0), g(0), 0))

(91(0)g5(0) — 41(0)g5(0)),

St

which is proportional to the principal curvature of I'p, along us(0) = ua(Fy, o). This im-
plies that elements of ker d7rR|(( Poyo),t,7) Must have dy # 0, implying that V is transversal
to £. Additionally, since det(dmg)|((pyq0)t,r) is linear in 71 we conclude that 7z has a

fold singularity at ((Fp,v0),t, 0, T2).

4.2 Convolution-type Operators on the Heisenberg

Group

The Heisenberg group H can be defined as R? with the group law

1
(21, 22,u) © (y1,Y2,v) = (T1 + Y1, 22 + Y2, u + v + 5 (@12 — Tayn)).

Note that with this presentation the group inverse of an element is its negative (i.e.

r7! = —x), and the center of H is the z3-axis.
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Let v : [0,1] — R3 be a smooth regular curve (e.g. C°° and 4/ # 0) and let u be
a smooth measure supported on 7([0,1]). Then we can define a family of curves by
translating v (or rather y~!) by x € H via the group law, M, = {y(t) '@z e H : t €

[0,1]}. The local Radon-like transform associated to this family of curves is

A f (z) = / FO(t) ™ © z)x(t) dt. (4.6)

The definition of Ay is very similar to the definition of Ag in §3.2, as both operators
average over families of curves generated by group translation, one by Euclidean transla-
tion and one by Heisenberg translation. In other words, both operators are convolutions
in their respective groups with measures supported on curves. This perspective in part
suggests that the behavior of both operators may share some similarities. In particular,
we may expect that curves in H obeying some group-invariant notion of nonvanishing
curvature and torsion would correspond to Ay being associated to a two-sided fold.
Secco, in [49] provided such a notion of curvature and torsion. The derivative +/(t) is an
element of T, H, so it is natural to compare higher derivatives of v by first mapping

7/(t) to the tangent space at the origin.

Let R, : H — H be right translation by v(t) (i.e.  — x®~(t)). Then the pullback
dR. ) is a map from T, )H — ToH. Similarly, let L. : H — H be left translation by
y(t) (ie. z — ~(t) ® ). Then the pullback dL,q is also a map from T,yH — ToH.
Since H is noncommutative this choice of pullbacks results in two distinct notions of

nonvanishing curvature and torsion.

Definition 4.5 (Secco '99). Given the definitions of dL. ) and dR.y) above, we define
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the left-invariant derivatives and right-invariant derivatives of ~y

VL) = dL;(%:)V/(t) Vr(t) = dR (tﬂ( )
VL) = $(t) Tr(t) = SR(1)
L (t) = i) VR () = SYR(1).

We say that v has left- (resp. right-) invariant nonvanishing curvature and

torsion att if vi(t), v/ (t), 7] (t) (resp. YR(t),vi(t), V% (t)) are linearly independent.

Since we assume 7' # 0, we may change variables so that either v{(t) = ¢, ¥4(t) = t,
or v4(t) = t. However, because the center of H is the zs-axis, we split our analysis
into two cases: first when v is nowhere vertical and second when 7 is near vertical.
In the second case we see that the notions of left and right invariant derivatives of ~
coincide since 7 is parallel to the center of H. Indeed, suppose that v4(ty) = v4(to) = 0
and v3(tg)’ = ¢ > 0. Via Definition 4.5 we see that the nonvanishing left- and right-

invariant curvature and torsion is equivalent to the nonvanishing of the determinants

0 7Y (to) 1 (to)
0 73 (to) 74 (to)

¢ 3 (71 (to)va(to) = (to)n (t0) ) 44 (t) 5 (417 (to)va(to) =74 (to) v (t0) ) +7%(to)

— <71 (to)Vs (1) — vy (to)%ﬁ(to)>

det (v, VL V1) li=to =

and

0 74 (to) vy (to)
73 (to) ”' (to)

15 (74 (t0)v2(t0) % (o)1 (t0) ) +% (t0) —75 (44" (to)r2(t0) =4 (t0)m (t0) ) 444 (t0)

= c(a (1024 (1) = (1031 (10))

"

det (Yz Y& V&) li=to =

respectively. Since these quantities are identical when ~ is vertical, v must either have

non-vanishing left- and right-invariant curvature and torsion in a neighborhood of ¢y or
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both must vanish at 5. Therefore we do not expect to see asymmetric behavior of the

projections 7y, and mgr when v is near vertical.

Thus we assume that v is nowhere vertical, i.e. (71,75) # 0. Then without loss
of generality (though possibly with a reordering of the first two coordinates) we can
write y(t) = (¢, 72(t), v3(t)), where 7o, 73 € C*°(R). Given this parametrization of v, we
can again relate nonvanishing left- and right-invariant curvature and torsion of v to the

nonvanishing of the determinants

1 0 0
det ,)// 7// ’}/H _ 75 (t) 73 (1) 72 (1)
( L 'L L) vé(t)—%(t”/é(t)—“ﬂ(t)) A/é’(t)—%wé'(t) Wé”(t)—%(’Yé’(t)""t“/g/(t)
1" t i t
= det (240 ) + 25 0)? (4.7)
and
/1( ) ,,0( ) //(/)( )
det 7/ ")/” ,y/// _ Yo (t Y2 (t 72
( R IR R) 'y:',’(t)—l—%(tvé(t)—ﬁ’Q(t)) q/é’(t)—l-%’yé'(t) ’Yé"(t)—i—%("/é’(t)-l-t“/é”(t)
_ WO O\ 1 2
= det (75//(,5) "/§/(t)> - 5(7;’(25)) (48)

respectively. If 74 # 0 then these quantities differ, and therefore at least one of them
must be nonzero. When we compare these notions of torsion and curvature of v to the
microlocal behavior of Ay we see very similar behavior to the Euclidean operator of
§3.2. Indeed, when v exhibits both left- and right-invariant nonvanishing curvature and
torsion then both 7y and mr have at most fold singularities. However, if v only satisfies
one of these conditions then only one of the projections has folds. Thus we can find
examples of curves in H where the associated projections 7, and 7wz have asymmetric

behavior, unlike in the Euclidean case.
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4.2.1 One-Sided Fold Conditions for Ay

First we give a characterization of the curves for which Ay satisfies the conditions of
Theorem 3.14. Specifically, this case occurs when (4.7) is nonzero, but (4.8) is uniformly

zero, or equivalently, if 74 never vanishes, but (4.8) is uniformly zero.

Proposition 4.6. Suppose that y(t) = (t,72(t),v3(t)) is a smooth regular curve in H
fort e [0,1]. If v5(t) # 0 and

1

F (@) () _ 1 2
det (35"@) 35”(1&)) =3(12(1)
for allt € [0,1] then Ay satisfies the conditions of Theorem 3.14. On the other hand, if

¥y (t) # 0 and
(¢ (¢
det (3 40 ) = —bs)?

for all t € [0,1] then A}y satisfies the conditions of Theorem 3.14.

The conditions of Proposition 4.6 restrict the class of admissible curves v quite

significantly, as we can rewrite the conditions
¥\ 12
det <,yé// ,yg// - j:i(rYQ)

as (v§/44) = £5. This implies the existence of constants Cy, Cs, C3 € R such that

V3 (t) = (35t + C1)s (1)
v3(t) = (£5t + C1)va(t) F 372(t) + Co

v3(t) = (5t + C1)72(t) FL(t) + Cot + Cs, (4.9)

where

F(t):/o Y2(s) ds. (4.10)
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A concrete example which satisfies each of the two conditions is given by ~(t) =
(t, 12, £5t%).
We can additionally characterize the curves 7 for which Ag is associated to fold and

finite type conditions.

Proposition 4.7. Suppose that v(t) # 0 fort € [0,1]. Let

//t
)

hE(t) = det (Wélig e ) +EriY ), k=12,

)

() v ()
)

(

.
() () k+1
PR = det (HS ) = B0, k=12
Then for each t € [0,1] at least one of h¥(t), hi(t) is nonzero. Further:

1. Suppose h¥(t) # 0 and h(t) # 0 for all t € [0,1]. Then the only singularities of

w1, and mr are Whitney folds.

2. Suppose hi(t) # 0 for allt € [0, 1], but that h¥(t) vanishes at finitely many isolated
points tj, 7 = 1,...,N. For each point t;, suppose that there is k; > 1 such that
hkRj(tj) #0, and hf(tg) =0 for all 1 < i < k;. Let k =max{k; : j=1,...,N}.

Then mp has at most Whitney folds and mg has maximal type k.

3. Suppose hit(t) # 0 for allt € [0,1], but that hE(t) vanishes at finitely many isolated
points tj, 7 = 1,...,N. For each point t;, suppose that there is k; > 1 such that
hﬁj(tj) # 0, and hf(ty) =0 for all 1 <i < kj. Let k = max{k; : j=1,..,N}.

Then wr has at most Whitney folds and 7y, has maximal type k.

Note that h¥ and hft are equal to (4.7) and (4.8). An example of a curve that satisfies

condition (1) is v(t) = (¢, at®), where o # +¢. An example of a curve that satisfies
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condition (2) is y(t) = (¢, 4%, §t* + t"?). An example of a curve that satisfies condition

(3) is y(t) = (¢, 12, — 513 + t712).

4.2.2 The Proof of Propositions 4.6 and 4.7

The incidence relation M associated to Ay is the zero locus of @ = (9% &*)T, defined

by

q)Q(xay) =T — Y2 — ’72(951 - yl)

@3(%?4) =x3—y3 —3(v1 —y1) + %(15172(951 —y1) — Ta(T1 — Y1) (4.11)

We change variables to rewrite ®3 so that it no longer depends on 5. First, we rearrange
D% (x,y) = (w3 — 57211) — Y3 — Ys(x1 — y1) + 52172(21 — ¥1) + 57201

Next, on M = {®(z,y) = 0} we may substitute x5 = yo + Y2(z7 — y1) and rearrange to

obtain

O (z,y) = (x5 — %l“ﬂl) —y3 —y3(r1 —y1) + %$172(5U1 — Y1) — %yl(?h + 72 (21 — Y1)
= (x5 — %@xl) —(ys — %yl?ﬂ) —y3(z1 — 1) + %@1 +y1)v2(T1 —y1).
By a smooth change of variables 3 = z3 — %1)11'2 and g3 = y3 — %ylyg (and abusing

notation slightly by rewriting Z3 and g3 as x3 and ys3 respectively) we can define M as

the zero locus of ®(x,y) = (' — v — S(z1,11)), where

S (w1, 91) = ya(x1 — ) (4.12)

53(5517 y1) = 3(z1 — 1) — %(xl +y1)v2(21 — Y1) (4.13)
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In the coordinates induced by the defining function @, the twisted conormal bundle is
given by
€= {(a, (7 @)y, (7 8),) = Br,y) =0}
We define £ C € as in (2.13).
Note that ® can be expressed as the graph of an R2-valued function F(x,y;) = 2’ —
S(x1,11), hence the differentials of the projections 7, and 7g at a point P(z,y;,7) € €

can be expressed as the Jacobians of the functions W% Sz, 7) = (=78, (1, 11), T)

and ﬂ}% c(x,yn, ) = (y, ' =S (21, y1), 7Sy, (@1, 31), T), respectively. Thus drr|p(zy, - =

I~3><3 0 h
(T.{))zizj B ) where

_T'S;mzﬂ(xhyl) _5:31@1791) _Sg’l(%,yl)
B = 0 1 0

0 0 1

Thus we see that det(dry,) = —7 - S,y (21,%1). Then in the coordinates induced by ®,

L=A{P(x,y,7) €€ : 75 = £p(v§(x1 — y1) — 5(x1 + y1)V5 (@1 — y1))

T3 = Fpys(T1 — 1), p > 0}. (4.14)

Let the restriction of 7 in £ be denoted 7 = £p7(x1,71). In these coordinates the

restriction of the projection w|, : £ — M defined in Theorem 3.14 maps

('Ia + p%('xl:yl) ’ le('xbyl)? :I:p%(xlayl)aybx, - S($1>y1)7

+ p%(g:l?yl) ’ Sy1 (a’:la 91)7 :l:%(xla yl)) = (x7y17x/ - S(.ﬁl’fl, yl))

Clearly the restriction of w to L is still a projection and therefore a submersion.
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We also see that 7, and g drop rank simply on £. Indeed, since 4 (¢) # 0 for all ¢,
Or, det(dmr(r)) = vy (21 —y1) # 0.

Next we characterize the various finite type conditions possible for 7 and 7g. Fol-
lowing the procedure in Lemma 2.4, we see that a kernel field for 7, is given by Vi, = 0,,;

thus for any point P(z,y;,7) € £ and any k > 1

VF det d?TL‘P =—7- leyllc+1(.r17 Y1)

T'Szlyl (mlyyl)zo

7 (T1=y1) 5 (z1—y1) k+1
- p(—l)k(det (’Yézim(lw:ilyl) ’Yézim(lxlyjyl)> + %7&'(1’1 B y1)7§ ' )($1 - yl))

(4.15)

A similar calculation yields that det(dmg)|p = — det(dnr)|p. Again following the proce-

dure of Lemma 2.4 we can construct a kernel field for 7z, given by
Vi =0y, + Sil(xhyl)am + Sil(x17y1)a$3'

As above, for P(z,y;,7) € L and any k > 1 we have

deetdwR‘ =785 k1, (1,1
R P xy yl( ) )T'Szlyl(wl,yl)ZO

vy (zi—y1) 3 (z1—y1) k+1
= (= (e (" T ) = B = e - ).
(4.16)
Note that (4.15) and (4.16) correspond to the definitions of hZ and Al respectively. In
particular, if ht(tg) = 0 for 1 < j < k but hj(te) # 0, then we see that 7 is type k at

points in £ where x1 — y; = ty, and we can make an analogous statement for wz. Thus

we have proven Proposition 4.7.

Finally we prove Proposition 4.6. Suppose 4 (t) # 0 and hf¥(t) = 0 for all ¢. Then

hE(t) # 0 for all t € [0,1] and 77, is Whitney fold. As in (4.9) there are constants
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C1, 05, C5 € R such that
() = (5t + Ci)ya(t) = T(t) + Cot + Cs,
where I'(¢) is given by (4.10). This implies that
So @i, yn) = = (3(z1 —y1) + CY () + 5(z1 + )5 (1) = (y1 — Cu)vs (21 — ).
This in turn implies that det(dr) = 0 when
(72,75) = p(yn — C1, )75 (t)
for any p € R. Since ~4(t) # 0 this implies that £ is given by the set
L=A{P(x,y,7) €T : (72,73) = p(yn — C1,1), p € R}

Since Vg lies in the span of {0, }i=123, Vg is clearly tangent to £ everywhere along L,
implying that 7p is a blowdown. On the other hand, if v4(t) # 0 and h¥(t) = 0 for all

t, an almost identical argument shows that mg is a fold and 7, is a blowdown.
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Chapter 5

Sharpness Results on the

Heisenberg Group

In this chapter we prove that Theorem 3.15 is sharp for examples, meaning that there
exist examples of local Radon-like transforms R which satisfy the conditions of Theorem
3.15 but for which LP-Sobolev estimates cannot be improved past the boundary of the
shaded region in Figure 7. Since Theorem 3.14 is implied by Theorem 3.15 we will
consequently establish the sharpness of Theorem 3.14. The sharpness of the region in
Figure 7 was observed for the restricted X-ray transform (4.1) in [44], where Pramanik

and Seeger proved the following proposition.

Proposition 5.1 ([44, Proposition 1.1)). Suppose that X is defined as in (4.1) such

that v has nonvanishing curvature. Suppose that X* : LE, = — Lf;loc. Then s <
o1l 1\ 1
min {3, 5(1 7)1}

The proof of the necessity of s < i is closely related to the sharpness of decoupling
inequalities. A general correspondence between LP-Sobolev estimates for averages over
curves and decoupling inequalities is established in [5] in the case of translation invariant
operators. Unfortunately that link is less transparent in the variable coefficient setting,

where the fibers of 7 (L) may vary with x (recall our discussion of the fibers of 7.(£)
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and their relation to decoupling in §3.3).

However, we can adapt techniques from [44] to establish the first two of these neces-
sary conditions also hold in the case of Heisenberg convolutions with measures supported
on curves satisfying the conditions of Proposition 4.6 (see [6]). In addition, we establish
the third necessary condition (s < 1/4) for the case of the moment curve y(t) = (¢, 2, $°)

through a change of variables which renders the associated fibers of 7. (£) fixed in z.

Proposition 5.2. Let Ay be defined as in (4.6). If v satisfies the conditions of Propo-

sition 4.6 and Ay extends to a continuous operator from LP.—— LP  then

comp s,loc

s < min 1—17,%(1—%)}.

Additionally, if y(t) = (t, 12, 3t*) then we may also conclude s <

1
1

To prove this proposition we recall the oscillatory integral representation of Ay,

where after a change of variables

Auf(@) = / / i@ =@ )y (2, 1) f(y) dr dy,

where S(z1,71) is given by (4.12),(4.13) and x is smooth and compactly supported.

Then the adjoint of Ay is given by

Aig(y) = / e TV =S@)y (1) ) g () da.

For simplicity, the sharpness examples will be proven on the adjoint of Apy.

Consider a Fourier multiplier my, in R? of order 0 which vanishes for |¢/| < ¢2*. Then

identifying &' = (&, &3) when € = (£1,€') € R? we can let my, act on functions on R? via

mi(D') f(z) = § mi(€) f()](2).
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Observe that Aj; (and Apg) commutes with my(D’) since Aj; is translation invariant in

/

Yy, i.e.
Ang(yr v — ) = Aulg(,- — y)](y).

This implies that my(D’) commutes with Ajf;. Indeed, applying Fourier inversion,

mi(D)Asg(y) = [ e < my(¢) / e A g(yy, ') d dE

p2miT(S(w1,y1)~ (// —2miz’(§'=7) 2miy" ¢y (5’)d§'dz'>

X X(w1,y1)9(x) dx dr

)627riy’~’r

my(7)Xx (21, y1)9(x) dx dr
2T S =W (1) (21, 90 g () dax dr

/
-/
/

On the other hand,
Axlma( D)) = A | [ @) [ gt ) du de') 0

= /627”;7—'(5(1:171/1)4‘9/)(//627T’i$/(€/—7')6—27ri§/-w/mk(gl) dgl d.I,)

X x(x1,y1)9(x1, w') doy dw' dr
= /627ri7--(5(x1,y1)w/+y/)mk(7_>x(x1’yl>g<x1’w/) i, dw' dr.

If Ay : L2, — L for some p € (1,00) it follows that Af : L, .omp — L¥', and thus

that

I (D) Azl = 1Az [ (D) gl < Collma(D)gll v < Cor2™ gl

for any compactly supported g € L¥ (R?).
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5.1 The Necessity of s < 1/p

Let ¢; be supported in {€' : 1/2 < |¢/| < 2} with ((0) = 1. Let my, be the Fourier

multiplier acting on functions in R? by my (D) f(z) = F'[¢1(27%¢) f(€)]. Then

mi(D')Apg(y1,y') = /22k21(2k($, —y' = S(x1,1)))9(x)x(x1,y1) do. (5.1)

Let y; be fixed for now and let zy € [—1/2,1/2] such that x(zo,y1) > 0. Choose k large
enough that y(x1,y1) > ¢ > 0 for |z — 9] < 27%. Let g; be the indicator function
of a ball of radius 27% centered at (z,0,0), and let ¢,, be the curve {S(z1,41) : =1 €
supp x(-, 1)} C R% For small ¢ > 0 let E,, be the set of all ¥ such that dist(v/, ¢,,) <
e27%. Since 74 # 0 on [—1, 1] we can conclude that S(-,4;) is a regular curve in R? on a
neighborhood of (g, y;) that has diameter at least 1/2, hence we estimate |E,, | &~ 272
for each fixed y;. As Zl is positive near the origin we see that the integrand in (5.1) is
bounded below by ¢2?* if v € F,,, whence we can bound the integral (5.1) below by
27", After integrating in ' over the size of F,, and in y; over a fixed compact set, we
see that ||mg(D")Afgrlly = 272727 On the other hand, ||gx|l, < 273%/7, hence by a

scaling argument we must have s <1—1/p' = 1/p.

5.2 The Necessity of s < 3(1 — )

Notice that since 7" # 0 the direction of the vector Sy, ., (x1,y1) = V5 (x1 — v1)(1, —11)
does not depend on x1. Let T(y;) = (1, —y1) and let N(y;) = (y1,1). Let (o € S(R)
be such that (» is non-negative everywhere and is positive in [—1/2,1/2]. Let (3 be

supported in {1/2 < |t| < 2} with G > 1/2 on [—-C,C]. Pick b such that x(b) > 0 and



73

define the Fourier multiplier m; by

mi(1e,73) = G277, T(0))) (27 (r, N (D).

Again, my, acts on functions in R? as

-~

my(D") f(x) = F | ma(r2, 73) f (€1, 72, 73) | -
Since my(7) vanishes for |7] < ¢2* we have ||my(D") A9l < 27%g|l,, and that
mi(D") Ajzg (y) —/23’“/222(2’“/2(1:’ —y = S(x1, ), T(0))) (5.2)
X G2’ =y = S(x1,y1), N()g(@)x (w1, 91) da
Let gi(x) be the indicator function of the set defined by the equations
(2’ — S(x1,0), T(b))] < 2772

(2" = S(w1,b), N(b))| <27

Let Py be the set of y such that [{y/, T(b))| < 27%2 |(y/, N(b))| < 27*, and |y, — b| <

27k/2 For x € supp g and y € P, we see that since |y; — b < 2*7?/2’
(2 =y — S(x1, 1), T(b))| < C27H/2.

However, we have better decay in the N(b) direction, as S(xy, -) vanishes to second order

in the N(b) direction. Indeed, a Taylor expansion reveals
(S (@1, 91) = S(21,8), N(O))| = (31 — 0)*(—va(x1 = b)) + [y — bJ*Ru(r, )] < C27F,
where Rj(x1,y1) is smooth and uniformly bounded. Thus

|<y, — a1’ — S(‘rhyl)?N(b)H < 02_k7
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implying by the conditions on (» and (3 that the integrand in (5.2) is greater than ¢23%/2,
implying that my(D’)Afgx(y) is bounded below by a positive constant for all y € P.
Thus ||mg (D) A4gklly > 2727, On the other hand, ||gx|,y < 27°¥/?"") implying that

1 1 1

5.3 The Necessity of s < 1/4 for the Moment Curve

In the case v(t) = (£,¢% §t%), we can make a change of variables to transform Ag
into the restricted X-ray transform (4.1). This allows us to give another example of
a local Radon-like transform which cannot map LP — LP locally unless s < 1/4. Let
n(y) = (2 +uyi ys— %yi’ — %y1y2, y1). Note 1 is a smooth function whose Jacobian always

has determinant 1. We apply the operator Ay to f on to obtain

Ag(f on)(z) = /f(Ig + x] — 2a1t, x5 — 228 — wywy + 22Tt — b, — O)x(t)dt

Next, we change variables (%1, Z2, T3) = (1,22 — a3, 23 — 32122 + 573) to get

Au(f on)(7) = /f(fz + 23 (T — t), T3 — T1(T1 — 1), 31 — t)x(t)dL.

The map * — 7 is also smooth with Jacobian always equal to 1. Finally, letting
ys = 1 —t we see that our operator has been transformed into the adjoint of (4.1),

associated to the curve y3 — (—2ys3,43).

Given this transformation, we can directly apply the third sharpness constraint of

Proposition 5.1, that s < 1/4.
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Chapter 6

An Extension to the

Heisenberg-Sobolev Space

Convolution operators like (3.2) commute with translation on R3; thus we can bootstrap
local results like Theorem 3.13 to global results for convolution operators by translating
and stitching together compactly supported functions into a global function. Suppose
that R is a local Radon-like transform that is also a convolution operator such that
R f is supported in B¢ (0) whenever f is supported in B;(0) for some uniform constant

C > 1. Suppose also that R extends to a continuous operator

R : L2 (Qr) — L2, (Q) (6.1)

comp a,loc

for some @ € R. Then let V C R3? be a countable collection of points such that
{B1(v)},ev covers R® and {Bc(v)},ev is finitely overlapping. Using a partition of
unity we split f =" . f.(z), where f,(x) are supported in B;(v) for each v. Since R
is translation invariant, R f,(z —v) = R[f,(- —v)](z), and therefore R f, (x) is supported
in Be(v) for each v € V. Thus {Rf,(x)},ev is a collection of functions with bounded
overlap. By applying (6.1) to each R f, and using this observation of bounded overlap

we see that

IRA Nz <D IRSMuz <D Clfully < CIUY_ fulls = Cllfllp-
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This argument can be adapted to other operators which are not invariant under
Euclidean translation. For example the averaging operator Ag from Chapter 4 can be
viewed as a Heisenberg convolution with a measure supported on the curve ~; thus Ag
commutes with the action of the Heisenberg group on itself (which we call Heisenberg
translation). Hence we can prove via an adaptation of the above argument that Ay is
bounded from LP(R?) to an analogue of the space L} /p(R3) adapted to translations on

the Heisenberg group, which we now introduce.

Define the discrete Heisenberg group Hy = {(x1,$2,x3+%131x2) cx; € Z} C H
Asin §4.2, let R, denote right (Heisenberg) translation by A € Hyz and R} the associated
translation operator defined by R} f(z) = f(z ® A™1). The discrete Heisenberg group
acts as a discrete approximation of H, as Z? is a discrete approximation of R?, and we
can use its integer-like properties to construct a partition of unity adapted to Hy (this
construction is an example of a uniform partition of unity on a locally compact
group, see [36]). Hy is a uniform lattice on H, meaning that we can find a compact
set C' C H such that H = |, .5, COA. This condition is satisfied by C' = {(a, b, c+3ab) :
—% <a,b,c< %} C B1(0). Indeed, given (x,y, z) € H we can find a discrete translate of
C' that contains (z,y, z). Let [-] denote the nearest integer function, so that =z = [z] +a,

y=[y] +0b, and z = [z] + ¢, where |al, [b], |c| < 1. Then defining

A= (Tz], Ty, [z = 32y + bly) | + §x][y]) € Hg,

we see that (x,y,2) = (a,b,¢) ©® A, implying that (z,y,z) € C ® A. Also note that the
interiors of C'® A for every A € Hy, are mutually disjoint. Moreover, By(0) D B1(0) D C
contains finitely many elements of Hy. Thus we can pick ¢ € C2°(B3(0)) with uniformly

bounded derivatives such that 0 < ¢ < 1, and define translates ¢,(z) = ¢(z © A7) =
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R3¢ so that Z/\E]HZ ¢ =~ 1 with finitely overlapping support. Then since the sum

> e, @A 18 locally finite the functions

_
Z,\/eHZ ¢/\’

form a C'*° partition of unity. Moreover, the family of functions is still generated by the

Ux

group action of Hy as

z) = Oz © A _p o)
(@) ZX@AGHZ ¢((I oW)teorxtho /\) i Z)\’EHZ Pron’

implying ¥y = R3¥0,0,0) =: R3%. Given this partition of unity, we define the following

norim.

Definition 6.1. Let v € C°(By(0)) such that 0 < ¢ < 1 with uniformly bounded
derivatives and Z/\GHZ Ry = 1 with finitely overlapping supports. We define LP(H) to

be the space of functions in LP(R3) such that the norm

/]

pay = || D2 R = ARy f

A€Hy

Lr(R3)

18 finite.

By an adaptation of the argument above, Theorem 3.14 and Proposition 4.6 imply

the following.

Theorem 6.2. If v satisfies the same conditions as in Proposition 4.6, then Ay 1is

bounded from LP(R3) to L¥

1p(H) for p>4.

In this chapter we will prove Theorem 6.2 and examine some aspects of the norm
| - [|z2@m). This norm is a natural choice for a Sobolev space on H for three reasons.

First, the standard (Euclidean) Sobolev norm and the Heisenberg-Sobolev norm are
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comparable for functions supported near the origin. Given a compact set K containing
the origin there are only finitely many 1, that are nonzero on K, hence for functions
supported on K we can apply finitely many changes of variables and use the finitely

overlapping support of {¢,} to conclude

171

Lr(r3) —K ||f| LE(H)"

Second, if we replace Heisenberg translations over Hy with Euclidean translations over

the integers (denote these translations 7,,) we see that

‘p

| ot = ay2ur ]| = | S mlr - Ay
nez neZ

=l =223 s
nez P
= [I(1 = D)2,
assuming that > _ 1, = 1. So the main obstruction between this space and the

standard (Euclidean) Sobolev space is the fact that (I — A)*/? does not commute with
Heisenberg translations, making it a natural analogue of the Sobolev space in a non-
commutative setting. Third, this norm is independent of our choice of smooth cutoff

function .

Proposition 6.3. The choice of a different 1 in the definition of the Heisenberg-Sobolev

norm results in an equivalent norm.

We will prove this proposition in Section 6.2. First, we prove Theorem 6.2.
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6.1 The Proof of Theorem 6.2

We use finitely overlapping support of ¢, and the fact that Ay commutes with Heisen-
berg translation to show

< * L * p 1/p

st fller o S (D0 IRAU = D) mvdarioi f2)

AEA

We first remove the right translation by A by an affine change of variables. We observe
that for 7 a fixed dilate of the support of ¢ we have Y AxR}_, f = Vv AulrR;_, f. This

combined with Theorem 3.14 gives

(Sl - abvasmsly) " s (S hesosig)
AEA e
S I e

finishing the proof.

6.2 Independence from o

We now prove Proposition 6.3. Suppose {Qz)\} et is another partition of unity satisfying
the conditions in Definition 6.1. Observe that there is a finite set B C Hy contained in

the Euclidean ball B4(0) (independent of ¢ and 1) such that

v=v(>d).

oceB

Next, for each 0 € B and A € Hy we have

Ve Ryor f = YRR Ry f

= Ritp, R, o f.
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Since the supports of ¢, are finitely overlapping and B is finite, we obtain

‘p - H Z Ri(I N A)S/2 ZwijoR:ﬂf
AEHy B

,

| > R - ayruRsg
A€Hy,

B H > - A)S/ZR;%—I&R?UA)JHP

)\GHZ oceB
~ (3 IR - AR SR 1) (62)
AeHy ceB

Let ), = wg_leRE*U/\)_lf. We prove that ||(I — A)*2R:gaoll, =~ |RE(I — A) 2950,
uniformly in ¢ and \. To show this we need some technical details from the definition

of Triebel-Lizorkin spaces (cf. [55, 56]).
Definition 6.4. Let Q be the collection of all sequences {w;}52, C S(R?) with the

properties

1. there exist positive constants A, B,C' such that

suppuwo C {€ : [§] < A}

suppw; C {€ : B2 < |¢] < 0271 j=1,2,3,..

2. for every multi-index o there exists c, > 0 such that

sup sup 2j|a‘|8awj ©)| < ca,
zeR3 jEN

3. for every £ € R3
> wil€) =1
§=0

For a sequence {w;} € Q we define the Triebel-Lizorkin norm

=, 1/q
1 leps = || (32 1273« £1%)
j=0

We remark that a different choice of {w;} results in an equivalent norm.

e
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12

Let {w;} € Q with associated constants A, B,C,c,. Recall that ||R}gx.|rr

| 125950lpp2. A direct calculation reveals that
R3g(6) = e*m09G(6 + $65.€ — 565.6)
We define 9(n) = (m1 — %ns3,m2 + 5 n3,13). Then by a linear change of variables
Gy Bigne = [ @09y (€)e 709G, (0(6)) de

/€2m(<x®o‘1)m>wj (¥(n)ga.0(n) dn

The smooth cutoff w; o, j = 1,2,3... is supported where
B2 < |9(n)| < C27H.
Since |o;| < 4 for all o € B these inequalities imply that
suppw;(9(n)) C {n : 2271 < n| < 5C2H .

The same argument also implies that suppwy(9d(n)) C {n : |n| < 5A}. Next, since J(n)

is linear and |o;| < 4 for j = 1,2,3 we can conclude that for any multi-index «

sup sup 2/1°10%w; (9(n))] < 31%c,.
neR3 jEN

Since clearly » 7" w;(9(n)) = 1 for every n we conclude that {@;}22 = {w;00}2, € Q,

hence
%) .V i 1/2
(T = AP 2R gy = H (Z 1275, * Rgg,\,o|2> Hp
=0

e 1/2
— (e gnal?) | = IR = 2) gl
§=0
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Plugging this into (6.2) we obtain

H Z Ri(I — A)*?yR; fH NC( SN IR = D) uaiho R,y D )

AeHz oeB

<C( Y Y IR U - A, bR fE)

A€My, 0€B
~|| X0 w5 - (L v ) 5]
AEHy,
= 0| X2 Ry - ayoRy |
AeHy, P

proving that the Heisenberg-Sobolev norm is equivalent for different choices of cutoft

function.
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Chapter 7

The Proof of Proposition 3.4

In this chapter we present an analytic interpolation argument for local Radon-like trans-
forms of arbitrary dimensions d and n with a given L2-Sobolev estimate. Let 1, Qr be
n-dimensional manifolds, and let M C Q x Qg be a (d + n)-dimensional submanifold
such that the projections pr, pr defined in (2.1) are submersions. Then as in (2.3) we
can express M locally as the zero locus of a smooth R?"-valued function ®, and we

can write
Rf(z) = / / V@D (5, ) f(y) dr dy.
Rd Rd—”

Recall that V,®7(z,y) are linearly independent, as are V,®(z,y) for j = 1,2,...,d — n.

By the implicit function theorem we can find Cy > 0 such that for (z,y) € supp x

4G T < (7 @)o] < Co/d7] (7.1)

4G | < |(m - @)y| < Co/Alr]. (7.2)

We now introduce a dyadic partition of unity which we will use many times throughout
the remainder of this work. Let yo € C2°(R) be nonnegative such that yo = 1 on [—1, 1]
and is supported on [—2,2]. For & > 1 define Yx(z) = x0(27%2) — x0(2'7*x). Thus
x1 € C=(R) is supported where 1 < |z| < 4, xi(-) = x1(217%) is supported where

281 < x| < 281 and 3°,o0xx = 1. We can use this dyadic partition of unity to
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dyadically decompose R as follows. For & > 0 and f € S(R?) define

Ref@) = [ [ @ gyl s drdy

For k > 0 let P, and ﬁ’k be any standard Littlewood-Paley multipliers such that F[Py f]
and S"[lf’k f] are supported where |£| ~ 2% for k > 1 and F[Fyf] is supported where
€] < 1. We introduce a lemma about Littlewood-Paley decompositions of local Radon-

like transforms.

Lemma 7.1. Suppose Cy > 0 is such that (7.1) and (7.2) hold. For each k € N let
Dp={(k K)eN? : |k—FK|>CYU{(}. k) eN® : [k—K'|>C),  (7.3)

where Cy depends on Cy. Let vy € C°(Qr) and vy € C®°(Qg). Then for any k € N and

any (k' k") € Dy

||PkUORk/’U1pk//||Lp_>Lp < C’rnin{2—kN7 2_]9/]\[’ 2—k’”N}.

Proof of Lemma 7.1. This integration by parts argument is essentially due to Hormander
[35], based on the fact that the canonical relation stays away from zero sections (cf. [50,

Lemma 2.1]). Note that the Schwartz kernel of the operator PyvgRy vy Pyr is given by

/ / / / / Frilfemwm Qo2 GOy (n)xw (7] xe (1€])

X x(z, y)vo(z)v1(y) dw dz dr dn dE.
Our assumption on ® implies that if max{|k — k|, |k" — k"|} > C} we have
View (@ —w,n) + 7 ®(w, 2) + (2 — y,&)] > cmax{2, ok ok},

We integrate by parts many times in the (w, z) variables and use the compact support

of the kernel and Minkowski’s integral inequality to obtain the desired bound on LP.



85

Suppose there exists @ € R such that R extends to a bounded operator from

L? (QR) — L?

comp 2loc(§2), and define a(p) as in Lemma 3.1. We first construct an

analytic family of operators. As before, let vy € C(Q), v1 € C®°(Qg), and define

T.f = voR[vi(I — A)z f]. Then we prove

IT-fll <Clifllz; Rez=a (7.4)

1T fllzr < Cyllfllaer,  Rez =0, (7.5)

where C, depends at most polynomially on y. Here H' = H!'(R?) refers to the Hardy
space on R?. Since (I — A)#/? is a Calderon-Zygmund operator, it is bounded from
L? — L[? and H' — L! with constants depending at most polynomially on y. Thus the
estimate (7.4) follows from the assumption (3.1) and the L? boundedness of (I — A)¥;
note that (3.1) still holds for R with x(z,y) replaced by vo(z)x(z,y)vi(y). On the other
hand, (7.5) follows from the local L'-boundedness of R and the H' — L' boundedness
of (I —A)%. Thus we can use an analytic interpolation theorem of Stein found in [21,

§ 5] to deduce that the operator Ti,) extends to a bounded operator
Togp) - LPF(R") — LP(R")

for 1 < p < 2. Since R is not translation-invariant we cannot directly commute R and

(I — A)*®)/2 to conclude that R is bounded from L2, (Qg) — L”

P omp a(p)loc(§22). However,

we can use Littlewood-Paley theory and Lemma 7.1 to achieve the same result. Suppose

that v; = 1 in a neighborhood of the origin. For f € L? supported in the set {v; = 1}
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we can write

1/2
loR sz, = || 120 PaoRun 1) |
k>0

2
Note that since P (2"“"(”)([ — A))a(p)/ s also a Littlewood-Paley multiplier of order k,

foreach £ >0

ProgRuy f = kao( Z Rjv1 P (2 ‘o) (1 — A)&(p)ﬂ)f
(K k") & Dy
4 Z R Ulpk” k//a(p)(]' _ A)a(p)/Q)Jc)
k’ k” eka
= Prvo Z Rt5101 Prts, (2_k+520‘(p)(1 - A)a(p)/Z)f
|517|S2‘§Cl
+ > Rhu P (2701 — A)@)/2) f).
(k/,k”)EDk

Thus by the triangle inequality and an application of Lemma 7.1, we can estimate

o\ 1/2
[ooR S| s SH(Z’ > 2720 Py R o 01 Py (1T — A)* P2 f )
) k>0 [s1] |sal<Cn

p

+Cfll

o\ 1/2
(Z ‘ Z Prvg R vsy 01 Prysy (I — A)O‘(p)/Qf‘ )

k>0 |s1],]s2|<C1

< 9C1a(p)

+ [ fllp-
Note that by the triangle inequality

E Rk+slvl Pk+82

Z Rk/Ul.PkH - Z Rklvlpk//

|51|’|52|§CI k' k">0 k’ k” EDk
§ Rk'vlpk” + g Rklvlpku
k' k">0 (k' k") €Dy,
- |va| + E Rk/l)lpk,//

(k' k")EDy,
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Thus by another application of Lemma 7.1

1/2
H(}: > PogRpss, v1 Pogs, (I — A)F >
k>0 |s1],|s2]<C1

<c|(intprr) "],

k>0

+ClIfll
< | Taw) fllp + Cll fll»

< Clfllp

finishing the proof that R extends to a bounded operator from L, (Qr) — L? (o)1oc(§22)

for 1 <p<2.
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Chapter 8

The Structure of the Proof of

Theorem 3.14

In this chapter we begin the proof of Theorem 3.14 by relating LP-Sobolev estimates
to estimates on oscillatory integral operators. Recall the definitions of y; for & > 0
from Chapter 7. We decompose dyadically in |7| as in §7, then dyadically in the size
of |det(dmy)|, following the ideas of Phong and Stein in [42]. Since 7, is a fold the
decomposition in | det(dn.)| also decomposes dyadically in the distance away from L,
locally in the direction of V. As the Schwartz kernel of R is compactly supported in
(z,y), we have a uniform bound |A(z,ys)| < 27 for some Cy, € R. Let ¢ > 0 be a

small constant to be determined and let ¢, = (,(k,e) = LQ—_IL:_J Then for Cy < ¢ < ¢, let
o+ (T,y3,T) = X1(2€+1_k(:|:7 - Az, y3))) Cy <Vl < ¥,
an, (T, 93, 7) = X027 - Az, )
For Cy < ¢ < /¢, we then define
Riesf(x) = /eQﬂiT'(S(I’yS)yl)X(x, V) fW)xe(|T])ake s (2, ys, 7) dy dr. (8.1)

By our assumption on A and the definitions of xx, > . > 450 Ecggfgfo(k,s) Riox = R.
We will suppress the dependence of R on + as we deal with Ry, ¢+ and Ry identically,

and we will suppress the dependence of /, on k and € when clear from context.
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8.1 Oscillatory Integral Estimates

The main estimate we prove for our decomposed operator is the following.
Proposition 8.1. For p > 4 there exists eo(p) > 0 such that for all Cy < < L,

HRk,ZHLPaLP < Cp27(k+eso)/p.

This proposition follows by interpolation with L? estimates, L™ estimates, and a
decoupling inequality. Let Z be a collection of intervals of length 2= with disjoint
interiors intersecting a small neighborhood of 0. Then for a function f : R® — C
supported in small enough neighborhood of the origin and any I € Z, let fi(y) =
f(y)11(y3), so that f =3, ; fr almost everywhere, with almost disjoint supports in ys.

We also define the operator

Riof (€) = Ri11f]()
for each I € 7. Note that Ry fr(z) = Régff(x).

The decomposition in distance from L allows us to quantitatively estimate the im-
provement in L? estimates as we move away from £. This observation is analogous to
the nonisotropic Fourier decay of measures supported on curves in R?® away from the

binormal cone, illustrated in §3.2.
Proposition 8.2. For every k > 0, every e > 0 and Cy < < {,
IRl p2re < 277 6. (8.2)

Moreover, by almost disjoint supports of the functions fr,

(S IrLAl) " <25 (S unl) " (83

Ier IeT
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We will prove a more general version of Proposition 8.2 in Chapter 9, following
methods of almost-orthogonality found in the proof of the Calderén-Vaillancourt theorem
(see [39], § 9.2). The foundation of this method was originally introduced into this
context by Phong and Stein [42], Cuccagna [18], and Comech [14]. The general version
of Proposition 8.2 (Theorem 9.1) drops the assumption on @ and on dimension, and

applies to all FIOs associated to fibered folding canonical relations.

The main estimate in the proof of Theorem 3.14 is the decoupling inequality.

Proposition 8.3. If ¢ < {,, for every e >0

HL_1 Vp
HZRk’EfIHLP <. 216 P+€)<Z HRk,ffIH%p> + 271 f o
Iez IeT

for2 <p<6.

Following a similar approach to [4] and [46], we prove Proposition 8.3 using an induc-
tive argument, at each step combining [P decoupling with suitable changes of variables.
We first prove one step in this inductive argument for a model case in Chapter 10, then

reduce the general case to the model case and perform the induction in Chapter 11.

To show that Propositions 8.2 and 8.3 imply Proposition 8.1 we interpolate with an

easy L™ estimate.

Proposition 8.4. For every k >0 and ¢ </,

sup || Ry, ofilloe < 27 sup || /1l (8.4)
IeZ IeT

R flloo S 11floo- (8.5)

Interpolating the estimates (8.4) with (8.3) for the vector-valued operator {Rf ,}rez
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applied to {f;} we obtain

1/p 3 _1a4e)a_ 1/p
(S IReesily) " e 26792 0 () ¥, 2<p<oo (86)

Iel IeT

Combining this estimate with Proposition 8.3 we obtain

er2_ 1y 1/p _
Rl S 25 D20 (S £0) " +27%0fl,.  2<p<6 (87)

Iel

Note that the power of 2¢ in (8.7) is negative if 4 < p < 6 and ¢ is sufficiently small. A

further interpolation with the L> estimate (8.5) yields Proposition 8.1 for p > 4.

8.2 Integration by Parts and Nonstationary Phase

Arguments

Each of these propositions relies on integration by parts estimates, with careful consid-
eration of the derivatives applied to the various symbols. We begin by stating a general
integration by parts estimate, which we will apply many times throughout the next four

chapters.

Lemma 8.5. Suppose ¢ € C*(R?), and define the differential operator L = (%, V).
Suppose g € C°(RY) and there exists D > 0 such that for every derivative & of order
Jj €N, |07g] < DI. Assume that there exists some E > 0 such that [V¢| > E and
07| < C;DI7YE for j > 2. Then for every N > 0,
N
Lo Sva (5) - 89
Proof. This lemma is a special case of [4, Lemma A.2], which describes the structure of

(L*)Ng.
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Definition 8.6 ([4, Definition A.1]). 1. The term g is of type (A,0). A term is of

type (A, ) for some j > 1 if it is & g/|Vé[? where &7 is a derivative of order j.

2. A term is of type (B,0) if it is equal to 1. A term is of type (B, j) for some j > 1

if it is of the form &7 1¢/|V |’ where &7 is a derivative of order j + 1.

Let N =0,1,2,.... Then per [4, Lemma A.2], we can write

K(N,d)
(L*)Ng = Z CN,I/gN,V'
v=1
Each gy, is of the form
M
Vo
P(W)QA H 5m

m=1

where P is a polynomial of d variables (independent of g and ¢), a4 is of type (A, ja) for

some j4 € {0,..., N} and the terms f3,, are of type (B, k,,) so that ja + Zn]‘le Km = N.

Our assumptions on the derivatives of ¢ and g imply that terms of type (A4, 7) and

terms of type (B, j) are both bounded by C;D?/E?. Then we have for each N, v

D\N
9| < ||P||L°o<Bl<o>><§> )

implying that

()Yl < Cna(F)

8.2.1 The Proof of Proposition 8.4

To prove (8.4) we estimate the Schwartz kernel of Ry,

R o(z,y) = x(2,y) /€2mT'(S($’y3)_y,)Xk(|T|)ak,e¢(9€7y3,T) dr
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by integrating by parts in the 7 variables. For fixed x,y we integrate by parts in the
distinguished directions (A!(z, y3), A%*(z, y3)) and (—A?(x,y3), Al (z,y3)). Here our sub-
mersion assumption of @ comes into play, implying via Lemma 3.11 that both (A!, A?%)

and (—A? A') are nonzero. Since 7 - (S(z,y3) — v') is linear in 7,

‘(Al(x,y?))aﬁ T A2($>y3)3m)j[><k(|7|)]‘ < C27M

(7,099 + A2 10)0,) o5, )] € €207,
and

(= 8%, 5)0, + A (2, 3)05) D7) < €274

‘( - Az(xv 3/3)871 + A1($7 y3)a7'2)j[ak,£,:l:(x7 Ys, T)]‘ = 07

for any j > 1, we can apply Lemma 8.5 in the (A!, A?) direction and then the (—AZ% Al)

direction to obtain

|Rio(z,y)] < Cn (25 A (51— SY) + A% (g —52)|) 7 (2K = A2y — 1)+ A2(y,— 5)]) 7.

On the other hand, for fixed z,y the symbol of Ry ,(z,y) is supported in a rectangle
which has length 2= in the (A!, A?) direction and length 2% in the (—A2, A!) direction.

This shows that |Ry(z,y)| < CnUi(z,y)Us(z,y), where

2k—€
Ui(z,y) = (1 + 250 AL(y, — S1) + A2(y, — S2))V
2k’
U2(x7y) =

(1+ 28 = A%(yy = §1) + A%y, — S?) Y
We integrate the kernel in 3/’ first, then over y; € I, which is an interval of length 2.

To prove (8.5) we apply the same argument, but integrate over a larger interval in ys.
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8.3 Recombining into L”-Sobolev estimates

As in [44, 45, 46, 6], we prove Theorem 3.14 from Proposition 8.1 by estimating the

Triebel-Lizorkin norm of

Ri= Y R

k> (2+¢)¢
First, we introduce the definitions of global and local Triebel-Lizorkin and Besov norms.
Definition 8.7 ([55], cf. [46, pp.33-34]). For k € N let Py be standard Littlewood-Paley
multipliers on RY. For 0 < p,q < oo and s € R the Triebel-Lizorkin norm || - | ppa(ray is
given by
If

Lp(R?)

1/p
FPA(RA) = H (Z |2kSPkf|q> ‘
i

and the Besov norm || - || gpa(ray is given by

1/q
1f 1l sragrey = (Z 2* Pkf“%p(ﬂ%d)) '
k

Given open sets Qp, Qr C RY we say a linear operator T is bounded from (ng’qo)comp(QR)

to (Frr), (Qy) if for any vo € C°(Qr) we have for all f € Br®(R?) which are sup-

loc

ported in a compact set K C Qg
[T f || v gy < Cp(vo, K)||f]] pro-mo gay.

Proposition 8.1 implies the following local estimate on Triebel-Lizorkin and Besov

spaces.
Proposition 8.8. For f € C*(Qg) and vy € C°(82y)

laRefllers < 2“0 fllgge,  0<g<2<d<p<oo. (8.9)
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The decay in ¢ allows us to sum in ¢ with ¢ > 1, and conclude that

R : (Bg’p) (Qr) — (Fipq)loc(QL), g<2<4<p<oo.

/v

comp

Since L = FP? — BPP for p > 2 and Uy = Flp/’; = L7, for ¢ < 2, this implies the

asserted LP-Sobolev bounds for R.

We will prove Proposition 8.8 in Chapter 12 by applying [43, Theorem 1.1], a now-

standard argument previously used in [44, 45, 46] and [6].
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Chapter 9

L? Estimates for Oscillatory Integral

Operators

In this chapter we prove an L?-Sobolev estimate for a general class of oscillatory integral
operators which implies Proposition 8.2. These oscillatory integral operators are related
to FIOs associated to fibered folding canonical relations (see [23, § 2]), in particular the
local Radon-like transforms considered in Theorem 3.14. As in §2.1, let X, Y be open

sets in R%, and define for kK € N

(o) = [ @D ) (. )iy, (9.1
wherez € X,y €Y, e C®(X xY),and 0 € C(X xY).
We define the canonical relation associated to an oscillatory integral operator of the
form (9.1) to be
Ca={(z,Ps,y,—P,) : 2€X, yeY} CT"X xT*Y.

We will see this set is directly related to the canonical relation for related FIOs [25]; in
particular €4 again has natural projections ny, : €4 — T*X and ng : €4 — T*Y which
we associate with the maps (x,y) — (z,®,) and (z,y) — (y, —®,) respectively. Let
h(z,y) = det ®,, and let £ be the subset of €4 on which h(z,y) vanishes. We assume

that the only singularities of 7, are folds.
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9.1 Reductions

By a partition of unity we may choose the support of o small enough such that we can
choose coordinate x = (2/,74), y = (y,9y4) in R¥! x R vanishing at a reference point

P° = (2°,y°) € X x Y such that 7, is a fold at P°, and in these new coordinates

Dy (0,0) = Iy4 (9.2)
®,,,(0,0) =0 (9.3)
®,1,,(0,0) = 0 (9.4)
®,,,.(0,0) =0 (9.5)

and for (z,y) in a small neighborhood of the origin

max{| @y, (2, Y)], [Poyy (2,9)[} < e (9.6)

We present the proof of this statement from [23, § 2]. Let ey, ..., ¢4 denote the standard
orthonormal basis vectors in R%. First, suppose that 0 # a € coker®,,(z°,y°) and that
0 # b € ker &, (2°,9°). Set ¢p(x,y) = ®(2° + Biz,y° + Bay) where By, By € GL(d,R)

have the properties

Bieg=a
Bged =b

Bse; L 92(a, ©,)b, j=1,...,d—1.

The fold condition on 7 at P° implies that the quadratic form n — <8§ (a, @), 77> is
nondegenerate on ker drp, which in turn implies that By can be made invertible. Clearly

eq € coker®,,(0,0) and e4 € ker @,,(0,0); this implies (9.3) and (9.4), which in turn
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implies (9.6) if we shrink the support of o accordingly. The fold condition on 77, implies
(9.2) and (9.5). Applying a linear change of variables we can thus assume our phase is

¢(z,y) and o is supported in a small neighborhood of the origin.

Let ¢*Y = ¢;’Z" Then using the construction from Lemma 2.4 we can define the

kernel fields

Vi = Opy — Guyy (07 )0y

Vi, = 0y — Gy Y Oy

for mg and 7, respectively. The assumption on 7 implies that that there is a fixed

constant ¢y, > 0 such that
hz,y) =0 = [Vih(z,y)| > cp > 0.
Note that if 7 is a blowdown V5 is tangent to the singularity surface £, implying
h(z,y) =0 = |Vih(z,y)| =0V > 0.
Note that (9.6) additionally implies
|(Ve = 8y,)h(z, y)| < el[olles

for (z,y) in the support of o.

Through the loss of a constant we may assume that |h(z,y)| < 1. Then we decompose
dyadically in the size of h(x,y), which in view of 7 having only fold singularities, is

also a decomposition in the distance to L. For 0 < ¢ < {, = \_ﬁj let

Apof () = / 2D f(y)o (a,y)x1 (20 (x, y))dy,
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and for ¢ = ¢, define
A f(@)i= [ 720D 1), y)xo (2R, )y
We prove the following decay estimate.

Theorem 9.1. Suppose that g is a blowdown on the set {h(x,y) = 0}. Then for all

k>0,alle >0 and all 0 < </,

[ Akefll2 < C255 | £l (9.7)

9.2 Connections to Local Radon-like Transforms

For local Radon-like transforms we can derive L?-Sobolev estimates directly from the rate
of decay of associated oscillatory integral operators via the Fourier transform. Indeed,

let Ry be defined as in (8.1)

Ruef (@) = / / 2 SEV) (2, y) ) dy dr,

where S € C*° and x € C°. As seen in §3.4, the canonical relation associated to Ry ¢

is given by

<= {(.Z’,’T : Sx($7y3)7s(xay3)ay377—a -7 Sy3($a93)) : (Z’,y3> csuppx, T € Rz}?
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We will assume for now that x(z,y) = x(x, y3)n2(y’). Then if we apply a partial Fourier

transform to f in the ¢y’ variables we see that

Rief (z) = / / X S@u) Y (2, ys Yo (y) f () x| T ane(, ys, 7) f (y) dy dr
= [ [emmsem o palirhande ) [ ¢ 0 vy dy dus dr
_ / / 2SI G 2,y s (21| are(e, g5, 215 7)Fy [F1)(7, s) dys dr
— g2 / / Q2w Sn) (1 ) o (21 (2, s, 200)8 ] (1 ) s

with obvious modifications via the definition of Rgy (8.1) if k =0 or £ = {, = b—_’iaj
Thus Ry, is directly related to the oscillatory integral operator Ay, with ¢(z,y) =
y - S(x,y3), h(z,y) = v - A(x,ys), and o(z,y) = x(z,y3)x1(2]¢|). In addition, the

canonical relation associated to Ay, is given by

{(z,y - Sulz,y3),y, —S(x,y3), =y - Sys(x,3)) : (w,y3) €supp X, 2|y'| € x1},

which by rearranging the coordinates is the subset of the canonical relation associated
to Ry such that |7| ~ 1. In particular, if Ry, is associated to a fibered folding canon-
ical relation, then so is the canonical relation associated to Aj,. Additionally, since
1Sy [fmlllee = l|fn2llzz < C| fllr2 by Plancherel we can prove Proposition 8.2 from

Theorem 9.1 by this same argument.

To reduce to the case where x(z,y) = X(z,y3)n2(y’) we first assume by scaling
and translating to the origin that x is supported in [, 2]% Then applying the Fourier
inversion formula on the unit interval six times there exist constants ¢, , for r,s € 73
such that for z,y € [0,1]3

Xay) =33 ¢ emitral i)

reZ3 seZ3
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and for any N > 0

lers) < COn(1+ ||+ |s|)_N.

Let n € C°(R?), and 1, € C°(R?) such that n(z, y3)n1(y’) = 1 on the support of x and
is supported in the unit cube. Then x(z,y) = x(z,y)n(x, y3)m(y'), and thus
X(@y) =D Y e sy (g )™V, (i),
reZ3 seZ3

Fix r,s € Z3 and let

2mi((r,z)+s3y3

X(7,y3) = %Cr,se n(x, ys)

1 2mis’ -y’

772(3//) = 3Crs€ m (?/)

Each of these functions is smooth and compactly supported. Since the coefficients ¢, ,
are rapidly decaying we can apply Theorem 9.1 for each choice of r, s € Z* then sum in

r and s.

9.2.1 Connections to L2-Sobolev Estimates of FIOs

The L?-Sobolev estimates introduced in §3.1 are also typically deduced from estimates
on oscillatory integral operators such as Ag. In particular, [23, Theorem 2.1] states that
if 77, has at most fold singularities

Al 22 S 2677, (9.8)

while [15, Theorem 1.2] states that if both 7, and 7z have at most fold singularities

Ao S 26°% 9.9)
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However, as seen in Theorem 9.1, if the kernel of A, is supported away from L the
estimates on L? improve quantitatively, analogous to the nonisotropic Fourier decay
of measures supported on curves with nonvanishing curvature and torsion, as in §3.2.
Indeed, the estimate (9.7) is better than (9.8) until ¢ = ¢, = Lﬁj The estimate (9.7)
is also proven in [15] in the case of folding canonical relations, but for a reduced range
of £. The reason for this reduction is that (9.7) matches the uniform bound (9.9) when
¢ = k/3 in the case of folding canonical relations, whereas (9.7) doesn’t equal the uniform
bound until ¢ = ¢,. This increased range in ¢ makes the estimates harder to prove than

in the case of folding canonical relations. Additionally, our proof of (9.7) relies on the

uniform bound (9.8) for the case ¢ = {,, so it cannot be used to reprove (9.8).

9.3 The Proof of Theorem 9.1

Let ¢ > 0. We note that by global estimates of A; proven in [23], if Theorem 9.1
holds for ¢ < {, then it also holds for £ = (.. Indeed, since A, = > oy Ars =

chgkﬁ Ayo + Ag g, we can estimate by (9.7)

e, <M+ DT Il
L2512
ngé<fo
<2 40 ) 2
CQSE<€0
k__dk Lo —dk

S 08(22_7 _|_2 D) +E€o)'

Since k < (2+¢)ls, we see & < Lo 42 hence

Lo—dk
2

[ Ak fllz S277 7% fll2,

proving Theorem 9.1 for this case.
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k

In the rest of this section we assume that ¢ < ¢, = LZ—JFE

J . In this range we decompose
the support of o(x,y) using methods of the proof of the Calderon-Vaillancourt theorem
on the L? boundedness of pseudodifferential operators [9], following the ideas of Phong

and Stein [42], Comech [14], and Cuccagna [18].

Let m € Z4, ng € Z, and let ¢ € C>(R) supported in [—2,2] such that 0 < ¢ < 1
and Y, _, (- — k) = 1. We decompose the support of o(z,y) along 27 diameter boxes

in y-space, by way of smooth cutoffs
d
Um(y) = [[ 02"y — my)).
j=1
We also decompose the support of o(x,%) in 4 into much larger 27 length intervals
with smooth cutoffs 1, J(xq) = (2% x4 —ng). Because of the flatness in the x4 direction
introduced by the blowdown condition on 7g, we will not show orthogonality in the x4
decomposition, instead summing in ny loss of a large (but controlled) constant depending
on ¢. This loss (as well as our restricted range of £ < {,) introduce constants 2% in our

estimates which are too large to prove endpoint L2-Sobolev estimates with this method

of proof.

We fix &, £ for now and let A} := Ao t[0m (y)Un,(24)-]. Then i ( Z?é”d)* has

Schwartz kernel

Kﬁ,’g,nd(% w) = / 27128 (9(,y) —d(wy)) T (T, 0, 9) dy,

where

Tmyiina (T, 0,9) = (2, y)X1 (2°M(, Y)) Vi (Y) U, (24)

x o (w, y)x1 (2 h(w, ¥)) i (y) U, (wa).-
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Similarly, the Schwartz kernel for ( Z?g")*AZZ" is given by

K;i;;in (y7 Z) = / e2m2kww,y)id)(lﬂ&))&m,m,n (Q?, Y, Z) dZE,

where

5-m,ﬁ1,n($a Y, Z) = U(ﬁ, y)X1<26h(ZB7 y)ﬁ/’m(?/)@nd (xd)|2

X x1(2¢h(z, 2)o(x, 2)m(2).

By splitting Ay, into a finite number of collections of {A}"}**} we may assume that if
mj # m; then |m; —m;| > max{g, 2v/d}. We first prove two lemmas.
Lemma 9.2. There exists a constant C' > 0 such that for every m € Z% ng € Z

£—dk

| ARy 2z < C272.

Lemma 9.3. For every N > 0 and every ng € Z the following estimates hold.
(a) If m # m then
AT (A )l = 0.

(b) If m # m and |m' —m'| < |maq — mg| then

cL
10fl¢llc3

(AR ) AL = o.
(¢c) If m #m and |m' — m/| > IOHZ+H03|md — my| then

||( Z,Lén)* ’:ngnH <y 2€—dk(2k—2£|m . mD_N‘

We state a few remarks. First, the estimates in Lemma 9.3 rely on neither the de-

composition of the support in x4 nor the blowdown assumption; they essentially reprove
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results of Comech in [14], albeit through different approaches. Second, the separation
of ¢ from k/2 is only necessary for part (c) of Lemma 9.3; in particular, it is not needed

to prove Lemma 9.2.
We prove Theorem 9.1 using the Cotlar-Stein Lemma.

Lemma 9.4 (Cotlar-Stein Lemma). Consider a family of operators T;, j € N, such that

T; is a bounded linear operator on L?*(RY). Define
ajr =TT 2, bjge = [T5Tkll2-
We say that the family of operators {T};};en is almost orthogonal if
A:supz aj < 00 B:squ\/bﬁ<oo.
Tk Tk
If T} are almost orthogonal then

Iyor

Lemmas 9.2 and 9.3 prove that for each ng the family of operators {A}}" },,cz¢ are

< VAB.
2

almost orthogonal, and by choosing N large enough (depending on £) we can ensure that
A< (025" and B < 6’52%“5 uniformly in ny. Additionally, since o is compactly

supported inside the unit ball, we see that A", f(z) = 0 for |ng| > C2%. Thus

m,nq
Z : Ak‘,f
meZd

which by an application of the Cotlar-Stein Lemma, gives the desired result.

| Apellosre: < C2%  sup
Ing|<C2¢=

212’

9.3.1 The Proof of Lemma 9.2: Individual Box Estimates

We prove this lemma by noting that ||A}*|7._, . = |47 (A7) | L2— 2 and esti-

AA

m,m,nq

mating the Schwartz kernel (z,w) uniformly in m and ng. We wish to apply the
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differential operator

£, Vy((zy) — dlw,y) o )
TNV (o) = o)

using Lemma 8.5 to integrate by parts many times in the y variables, which requires us to

find a lower bound for V,(¢(z,y) — ¢(w,y)). We investigate estimates for V,, (¢(z,y) —

P(w,y)) and 9, (d(z,y) — ¢(w,y)) separately.

Since |¢zry| > ¢ > 0 the set of equations V,(¢(x,y) —¢(w,y)) = 0 is solved uniquely

by ' = t'(w, x4,y). By the implicit function theorem we see that

1
117 =¥ za y) < oy (2,y) = oy (w,y)| < dfa" =¥ (w, 24, )]

This implicit function also helps us to find a lower bound for ¢,,(z,y) — ¢,,(w,y). Note
that

;/(UJ?wd)y) = w/7 (910)

and by the implicit function theorem,

axdz:/<wa X, y) = _(¢r’y’)1’<x/(w’ Xd, y)7 XTd, ?J) (¢xdy’)T(xl(w7 Xd, y)7 Xd, y)

= —(Gray ") (' (W, 20, y), 74, Y)- (9.11)

These two statements imply that

= Guaa (W0, Y) — Byuer (W, Y) (D Y ) (w, y)
= ¢xdyd (w, y) - Cbzdy’qu,y,gbx’yd (w7 y)

= h(w,y) det ¢*¥ (w, y). (9.12)

aa:d [¢yd (;l(w7 Zq, y)? L, y)] ‘

Tg=wWq

Furthermore, the definition of ¢’ allows us to exchange 0,, for Vx.
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Lemma 9.5. Suppose g € C*(R? x RY). Then we have the identity

Dual9(d' (0, 24, y), T4, Y)] = Vrlgl(w, y).

Tq=wWq

Proof. Applying chain rule,

8xd [gQ:,(wv T, y)’ Xd, ?J)] = Gz, (2:/<w7 Xd, y)a XTd, ?J) + <gl" (;l(w7 Td, y)7 Xd, y)a al‘d?/(wy Xd, y)>

Applying (9.11) and evaluating at x4 = wy we obtain

Doy lo (¥ (w, 20, 9), 20, 9)]] o = oW, y) = ((Suay 8™ (w,9)), gur(w, y))

= Vrlgl(w,y).

]

Using Lemma 9.5 along with (9.10) and (9.12), we can apply a Taylor expansion

about x4 = wy to ¢y, (Y (W, x4,vy), Ta,y) — ¢y, (w,y) to obtain

N
Qbyd (z:'(w, Lq, y)a L, y) - gbyd (wv y) = Z V}J%[h det ¢x’y’](w’ y)

=0

($d—wd)j+1
(7 4+ 1)!

+ E(w7 Lq, y) ('xd - wd)N+27

where F € C* has bounded derivatives independent of k£ and ¢, and N ~ é is large
enough that |zg — wg|V*t! < 027°.
Since 7y, is a fold and VL|(0,0) = 0,,, we see that h(w,y) = 0 is solved uniquely by

Ya = Va(w,y’) near 0. Again from the implicit function theorem,

1 / !
Z|yd —a(w,y)| < |M(w,y)] < 4ys — va(w,y')|.
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Because 7p is a blowdown and |h(w,y)| =~ 27¢ on the support of ., m., We see by an

application of Taylor’s theorem that
ViEh(w,y)| = [Vh(w, ', va(w, y) + (ya = va(w, y')dy,VEh(w,y', za)] < C27°
implying by the properties of differentiation of products
|6 (' (0, 2, Y), 2, y) — Gya(w, y)] > 27" |2g — wy.
On the other hand, we know that
|ya (2, y) = 0y, (' (0, 24, ), 2a, y)| < NGyl |2 — ' (w, 2a,9)| S elz’ — ¥ (w, 24, 9)].
Thus by the reverse triangle inequality

|¢yd(‘r7 y) - ¢yd (wa y)’ > “Qbyd (ZE, y) - gbyd (p'(w, Ld, y)v Td, y>|

- |¢yd <w7 y) - Qbyd (x/<w7 Ld, y)> Ld, y)' ’

and therefore,

‘Vy(¢($,y) - (b(UJ, y))‘ > C'max {2iz|$d - wd': |I/ - xl(wv ZLd, y)’}

With these estimates in place we apply Lemma 8.5 to L,, noting that for any multi-index
o

« J4re1
|8y O-m’m’nd| S Cla‘2 | ‘

and that for |a| > 1,

10, 0] < Clajlz —wl.

As |0mmm,| S 1 and is supported (in y) on the set {y : |2y —m| < 1} and noting that

(1 + max{A, B})? > (1+ A)(1 + B) for any A, B > 0 we obtain

KA (2, w)] < / dy.
KGNS J o T+ 2T = o, aa DY (L 2 aa — wa)”
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Integrating in x we see that

1
X Su 2_‘”/ dz’
oy (1 + 252 — v (w, 20, y) )V

< 22€—k2—d€2(d—1)(f—k‘)

5 2£—dk.

Repeating the entire argument switching the roles of x and w yields the same estimate
for [|K2% (2, w)| dw uniformly in z. Thus the lemma follows by Schur’s test.

m,m,nq

9.3.2 The Proof of Lemma 9.3: Almost Orthogonality Esti-

mates

Part (a) follows immediately since the supports of 1,,(y) and ¥ (y) are disjoint when

m and m are sufficiently separated.

The kernel K74 2 (y, z) vanishes under the assumption in (b) because 7 has a fold

singularity on £. To see why, note that since |h(x,y)| and |h(x, z)| are both bounded

above by 271 their sum is bounded by 273, Expanding the difference about y = 2
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we see
h(z,y) — Wz, 2) = (ya — 2a) 9y, Mz, 2)
+(y —2') - Vyh(z,2) + Ri(z,y, 2)|y — 2|
= (ya — 2a)[0y, — Vi]h(z, 2)
+ (Ya — 2a) Vih(z, 2)
+(y = 2) - Vyh(z, 2) + Ra(w,y, 2)|y — 2
[h,y) = i, 2)] = Floa— =l
> 5(27Y),

where Ry, Ry are C* with derivatives uniformly bounded independently of £ and ¢. We

see there are no y, 2z that satisfy these conditions, hence
x1(2°h(z, y))x1(2(x, 2)) = 0.

To prove (c) we will apply Lemma 8.5 with the differential operator

I, — < vx’ (gb(x,y) o ¢($, Z)) Z,Vx’>-
To do so requires (among other things) a lower bound on V. (qﬁ(a:, y) — o(w, y)) Using

a Taylor approximation we see

v$’[¢(x7 y) - ¢(I7 Zﬂ = ¢z’yd(x7 Z)(yd - Zd) + ¢$’y’(y, - Zl) + Rg([t, Y, Z)ly - Z|27 (913)

where R3 € (C* has uniformly bounded derivatives independent of & and ¢. Since
| det ¢pryy| > ¢ > 0 we see that |y (z, 2)(y —2")| > Cyly'—2'|, and | @y, (2, 2)(Ya—24)| S

€lya — z4|. By assumption

' — 2| = gpeh—1Ya — zal = T lya — 2dl.
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Thus

Var[¢(x,y) — ¢, 2)]] = cly — 2|

for some small constant ¢ > 0 independent of &, £, or e. We also have for each multi-index

o
180, Gmina (.Y, 2)] < €29
and
103 (6(z,y) — é(z,2))| < Cjly — =]
Thus we can apply Lemma 8.5 with L, to obtain

* 1
K'A A
| m,fn,nd(yv Z)| < ON/ (Zk_qy _ Z|)Nﬂ'supp&m,7h,nd dx.

Since k > 2¢ and |y — z| ~ 27¢|m — m| > 27¢ on the support on &,

1 < i { C C }
————— < min :
2=y — 2| — 14264y — 2| 26=2m — )|

Integrating in y (or z)

. 1 1
KA dy < C / d
/ ‘ m,m,nd<y7 Z)‘ Y=~ UnNyd (1 i 2k_Z’y _ Z|)d+1 (2k_2£|m — ﬁl|)N Yy

< COna2"H (2 m —m|) 7.
Since k — 20 > (e, if we let N = % then by Schur’s test
1A Ainallz—2 < Cle, )2 |m — | =,

m,nq

proving part (c) of Lemma 9.3.
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Chapter 10

Decoupling in a Model Case

In this chapter we begin the proof of Proposition 8.3. The decoupling inequality is based
on the idea that the Fourier support of Ry ¢ should be concentrated in a neighborhood
of a cone related to the fibers of 7 (£). In the case of translation invariant local Radon-
like transforms, such as Ag and X (see (3.2) and (4.1) respectively), this concentration
actually occurs because the fibers of 7, (L£) are fixed for each x [44, 45]. In general the
fibers vary with x and this argument is no longer possible. To explain how to work

around this obstruction we return to our model case on the Heisenberg group.

10.1 A First Example

Let us consider Ag (see §4.2) with y(t) = (¢, %, £¢*) the moment curve. We additionally

assume that y(z1,y1) = x(21)X(y1) as an example. Then
(Aa)y o Fla) = xlan) [ [ S gy arlanston, . 10F ) dy
where as in (4.12) and (4.13),

S x1,y1) = — (@1 —n1)* = —27 + 22101 — U3

52(1'17@1) = y1(r1 — y1)2 + %(xl - 91)3 = %95? + %yi’ - xlyf.
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Recall from (3.10) the fibers of 7. (L) associated to Ay are given by

21—y )2
{p<( lylf”) ) : pER,ylesupr},

which vary with z;. However, through a nonlinear change of variables

o(x) = (01(x), 02(x), 03(2)) = (21,22 + 27, 25 — 377)

and
n(y) = (m@) ). m3(),) = (y1, 2 + vi, ys + 347)

we are able to freeze the fibers so they no longer vary with z. Note that the Jacobians

of each of these maps is 1. Incorporating the above changes of variables

(), (Fomo@) =xtmn) [ [ f =S o 7)) S0

where S(z1,y1) = (5%, 5%) = (—2z1y1, 21y7). After these changes of variables, (N* M)’
is given by

{(‘T7£’y7_n) : 61 :T'gxu m :T'Syu y/ZZL'/—S(IL’l,yl), 5/:"7/:7'}7

and £ consists of points in (N*M)" such that 7 - S;,,, (x1,y1) = =27 + 2y;73 = 0. The

fibers of 77,(L), defined in (3.10), are thus given by

S, ={€eR® : &=p(ylyi,1),p € R},

which no longer varies with x. As such, we can prove that the Fourier transform of

2k=2¢ neighborhood of ¥,. Thus we can apply The-

(Ag), ,f(x) essentially lies in a
orem 3.9 directly to (.AH) wol (x) to decouple down to plates adapted to that 2¢F~2-

neighborhood.
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Indeed, applying a Fourier transform we can rearrange the order of integration

§(Ae), 1] (€ = [ rmetngay [ [ emrtsSem g

x Xk(|T)x1(2F 2 sy — |)X(y1) dy dr da

e

> e—27ri7-(y’+$(x1,y1))xk(|7-|)X1(2€_k+2|7‘3y1 — 7‘2|) dr d:lfl) dy dﬂfl-

Evaluating the innermost two integrals applies Fourier and inverse Fourier transforms

in 2’ and 7 respectively to obtain

5[(Aw), 7] 60 ) = [ermmennga) [ermewsmmi) )

x Xk (1€ )x1 (252 |&y1 — &) dy day.

Evaluating the Fourier transform in y’ we obtain

3"[(AH),€’KJC} (&,¢) :/6_%”1&)((351)/6_2m§,'g(x1’y1)>~((yl)>(k(\f/‘)Xl(2#’“2\53?/1 — &)
X /e%igl'y/f(y) dy' dy, dxy
= / e 2ty (z,) / e~ @ gy )y (1) xa (26772 — &)

X Fas[f(y1, )] (&) dyr day.

Note that S(z1,y,) is linear is x, implying that

6—2“5"5(1‘171/1) _ 6271'%1(532/%—252?11)
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Finally, interchanging the order of integration and evaluating the integral in x; we obtain

5[(AH)k7Zf] (61,¢) = /)Z(yl)xk(|§'|)X1(2£_k+2|£3y1 —&)T2s[f(y1, )] (€)
« (/6—27riz1(§1+£3y%—2§2y1)x(x1)dxl) dy:
N /92(51 — 281 + &)X WO xR(1€ ) xa (27 & — &)

X §2,3 [f(yh )} (5/) dys. (10.1)

In view of the smoothness of x, ¥(& — 2&y; + &yi) decays rapidly off of the set {|& —
2861 + &3yi| ~ 1}. By an error term argument [44, p. 11] we may replace x(-) with

Xo(2F720=9)| . )¢ (-) so that integrand of (10.1) vanishes unless

€] = 2°

& (9 < 9t
‘<|€\’(%)>’~2

1
£ _9 —20(1—¢)
(& ( y?1)>‘52 :

Let g(t) = (t*,¢) and recall the definition of uy, us, u3, and C, from (3.12),(3.14),(3.13),
and (3.11) respectively. These inequalities imply that for each y; the integrand of (10.1)
vanishes outside the the set I ,, (27¢) (recall Definition 3.8) associated to the orthogo-
nal vectors uq (41 ), u2(y1), us(y1) (note that (0, 1, —y;) is orthogonal to u; (y1) = (9(v1), 1),
so the second inequality implies the analogous result for us(y;)). Thus § [(AH) ht f] €)
vanishes outside a C272¢ neighborhood of the cone C,. Because of this support re-
striction, decoupling for the cone (i.e. Theorem 3.9) can be applied immediately to

(An) ..o/ (z), proving Proposition 8.3 for Ay when 7 is the moment curve.

In general it cannot be hoped that we can apply just one nonlinear change of variables

to fix X, in x. However, if we cut up the support in x into small boxes and apply local
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changes of variables on each box to partially “freeze” the variation of the cone >, with
x, we can apply decoupling to each decomposed piece separately. We cannot expect to
be able to decouple down to the 27¢ scale immediately because of the variation in ¥,
even over this small box of x, but by decoupling many times to smaller and smaller
boxes, changing variables at each step to further “freeze” the cone ¥, depending on the
decoupling step, we can recover the same estimate as in the model case above, with a

large constant depending on ¢.

In this chapter we show this iterative method works in a model case, then in Chapter
11 we reduce the general case to the model case by families of changes of variables. In
the model case, the functions S¢ are replaced by &¢ satisfying simplifying assumptions
at the origin. The fold and blowdown conditions imply additional assumptions near the

origin.

10.2 The Model Case Setup

Because the decoupling inequality involves a constant which depends on £ > 0, and is

k

712> we may choose a large enough

only proven for ¢ in the range Cy < £ < lo(k,e) =
constant C. such that the decoupling inequality holds for small %k, and also small /.

Hence we may assume that 28 > 1> 27¢ > 0.

Let w = (w',ws) € R3, 2 = (2/,23) € R?, and k¢ > 0 be a constant (ko will stand in
for our fold assumption, i.e. the nonvanishing of x(z,ys3) in §3.4, where « is defined as

in (3.24)). Consider C* maps (w, 23) +— &*(w, 23) defined on a neighborhood of [—r, r]*
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for some r € (0,1). For n € N define M,, > 0 such that
M, > 2+ |’61”C“+5([—r,r]4) + H62||C”+5([—r,r]4)a (10.2)

where the C™ norm is the supremum of all derivatives orders 0 to n. We assume that

for w € [—r,r]?,

(6',6%,6)) o) (w1, we, w3); (10.3)
we also assume
&,.2,(0,0) =0, (10.4)
and
6303Z§(0, 0) = Ko. (10.5)

As the functions &', &? play the part of S*,S? in our model case, we can analyze the
geometry of the conormal bundle associated to &, &2, given by
Q:G = {(waéu Z, _7]> : Z/ = 6(’(1],23), g = M- Gw(w723)7 n= (Mlu,u%,u : 623(w723)}-
The projections 7y, g defined in (2.4) will be identified with the maps
7 (W, 23) = (w, 1Sy (w, 23) + 6l (w, 23))
T :(w,p,23) = (S(w, 23), 23, 1, — (1S, (w, 23) + &2, (w, 23))).

Define A = det(&), &2 &) for i = 1,2. Then the submanifold Lg C € on which
and 7p are singular is given by the restriction pu; Ag(w, 23) + 2 A% (w, z3) = 0. Note that
(10.3) and (10.4) imply that Lg contains the point P parametrized by (w, z3) = (0,0),

and (10.5) implies that 77, has a fold at that point.

A kernel field for 7 at a point P parametrized by (w, u, z3) is given by

Vr(w, z3) = (G%U(w, 23) A va(w, 23), V).
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Our final assumption on &', &? is that 7z has a blowdown singularity along Le, i.e.
that Vg(w, z3) lies in the tangent space of Lg whenever (w, p, z3) parametrizes a point

in Lg. This blowdown assumption implies that

=0

VN AL A2 =
r [11As + 112AG] L A (a0,20)

for all N > 0. Since &} (w,0) = ¢; and &2 (w,0) = ey, we see that Vz(w,0) = d,,,. The

above conditions imply that

oN.62 . (w,0)=0, VN >1 (10.6)

w3z3

On A& (w,0) =0, VN > 1. (10.7)

Now that we have introduced the assumptions on our model functions &', &? we
can define our model Radon-like operators. Let (w,z3) — a(w, z3) be a C* function
satisfying for |(w, 23)|e < 7 and any multi-index /3,

My < a(w, z3)| < My (10.8)
|0n(w, z3)| < My (10.9)
Let (w, z, 1) — ((w, z, 1) belong to a bounded family of C*° functions supported where

|(w, 2)]oo <rand1/4 <|u| <4. Fork>1and 1< ¢ < {ly(k,e) let Tge+ be an operator

with Schwartz kernel
g[Sy, (4 dalw s Aew, )z ) i (1010

and let T4, be an operator with Schwartz kernel

22’“/@2”i2ku-(6(w,zs)Z')XO (2% c(w, z3)p - As(w,23)|)C(w, 2, ) dpu. (10.11)
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The operators Ti ¢4, Tre, Will play the role of Ry, after a nonlinear change of vari-
ables, while a(w), 23) is introduced in the localization as a byproduct of those changes of
variables. As in our analysis of Ry s+, we will drop the dependence on + as the same
techniques apply for 7y, and 7i,_. The inductive step in our iterated decoupling

method is the following estimate.

Proposition 10.1. Let 0 <e <1, k> 1,0 <1 < ¥,
50 c [2—5(1—8)’2—58]’

and

(51 S [maX{Q*Z(lfs/Q), 502765/4}, 50)

Define ey = (61/00)%. Let J be an interval of length 0y containing 0, and Z; be a
collection of intervals of length 01 with disjoint interior and whose interiors all intersect
J. Let 0 € CX(R®) be supported (—1,1)* and define ap.,(w) = o(2°wy, 2w, &7 ws).
Let 2 < p <6, let g € L*(R?) and define g;(y) = g(y)1:(y3). Then
) 1/p
loees 32 Tiean| <- (@oron)es+ (2 e Tosan ) + C(e)27%2 ey gl
I1€Ty P 1€z, P

The idea behind this proposition is to show that the Fourier transforms of oy ., i ¢gr
are concentrated on thin plates in the neighborhood the plates I14;,(d1) for some by € I

and some large enough A > 1, and thus decoupling applies.

Recall from (3.10) that the fibers of 7 (Lg) are given for fixed w by

Yo = {6l (w, 23) + 12G2 (w, 23) : A (w, 23) + AL (w, 23) = 0}

= {£p=e(w,2z3) : p>0, [z3] <7},
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where Eg(w, 23) = —6L (w, 23) A% (w, z3) + &L (w, 23) Ag (w, z3). Narrowing our perspec-

tive to the origin, ¥ is a cone parametrized by (p, z3) given by
SO = {:l:pEg(O,Z;;) Dop> 07 ‘zgl < 7’}.

Analogous to (3.19), we can define N(z3) := &L A &2(0, z3), the vector normal to ¥ at
the point P parametrized by (p,b). Analogous to (3.18) and (3.20), the tangent space

of ¥y at a point parametrized by (p, z3) is given by the vectors

T (b) = Z6(0,0) (10.12)

Ty(b) = T1(b) A N (b). (10.13)

Given these three pairwise orthogonal vectors, we consider the plates I14,(0) for A > 1
and 0 < 6 < 1 associated to T1(b), T5(b), N(b) from Definition 3.8. These plates cover a
62-neighborhood of g, and because ¥ is curved we can apply Theorem 3.9 to sums of

functions whose Fourier transforms are supported on these plates I14(9).

10.3 Derivatives of © and A

Before we proceed with the proof of Proposition 10.1, we write some approximations of &
and Al derived from the simplifying assumptions at the origin. For the rest of Chapter
10.2 we omit the subscript dependence on &. Because of (10.3) we may conclude that

for any multi-index S of length at least 1,

0060 (40 =0 (10.14)
00670 0y = 0 (10.15)
06| wo) = 0- (10.16)
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For w € [—r, 73,

Al(w,0) =1 (10.17)
A*(w,0) =&, (w,0) (10.18)
Al (0,0) = 611”3%(0, 0) (10.19)
A2 (0,0) = vagzg(o, 0) = Ko (10.20)

and by applying these identities

E(w,0) = —A*(w,0)8,,(w,0) + Al (w,0)&% (w,0) = e; — &, (w,0)e;  (10.21)
Zup(0,0) = =&}pir, (0,001 =0, n>1 (10.22)
Z.,(0,0) = —rpe; + 6;323(0, 0)es. (10.23)

Let ey, e, e3 be the standard basis vectors in R3. We use Taylor expansions with appro-
priate remainders. Therefore, as in Chapter 9, for any i € N let R;(w, z3) denote C'*
functions which are bounded by a uniform constant. Using the above identities on =

and & and appropriate Taylor expansions, we can approximate

T1(b) = Z(0,b) (10.24)
= Z(0,0) + b=,,(0,0) + bR, (0, )
= —kobey + (1 4+ bG}USzg(o, 0))es + b*Ry(0,b) (10.25)
and
N(b) =6&L(0,b) A&2(0,b) (10.26)

= (61 + b€3 + b2R3(O, b)) AN (62 + b2R4<O, b))

= —be; + e3 + b*R5(0,b). (10.27)
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Applying these approximations to the definition of T(b) we see

Tg(b) = T1 (b) A N(b) = (1 -+ 66,}03232‘ (0, b))@l + /ﬁ)gb@g + b€3 + b2R6(O, b) (1028)

Let B8 = (Buw,, Buss Bws, Bzs) be a multi-index and let 8(ﬁw723) denote a derivative of
order |B| = Bu, + Buw, + Buws + Bz, in the variables w, z3. By using the upper bounds M,
trilinearity of determinants, and differentiation rules for products we can additionally
estimate

1002 A'] < 3V (10.29)

(w,23

Similarly, by differentiating products,

8 - B 4
102 EI < 40, (10.30)

10.4 Plate Localization

We show in this section that under certain assumptions the w-gradient of the phase of
Tk is contained in the plate I14,(d;) given a large enough A. This will later be used to

apply an integration by parts argument in Section 10.5.

Lemma 10.2. Let € > 0, and 6y, 91,€1 be as in Proposition 10.1. Let { < {, such that
270 <, M2t < 2719 and let 3 < |p| < 4, W] <275 Jws| < eq, |b] < 6o, and

|Z3 — b| S 51.

If
| A (w, 23) + A% (w, z3)| < M2, (10.31)

then there exists A(e) > 1 such that

116, (w, z3) + 1265, (w, 23) € Mae)p(61).
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More specifically,

A(e)HTa(]) < UT1(b), 116y, (w, 23) + 11263, (w, 23))| < A(e)|Ta(b)] (10.32)
[(T2(b), 116y, (w, 23) + 11263, (w, 23))| < A(e)|Ta(b)[01. (10.33)
(N (D), 116, (w, 23) + 1267, (w, 23))| < A()|N(b)]67. (10.34)

Note that the constant A(e) does not depend on oy, 1.

Proof. The estimate in (10.32) is clearly true for some A > 1 independent of e. Through-
out the remainder of this proof we use Taylor expansions. Because we will be taking
large numbers of derivatives to prove estimates we must be careful to track the appropri-
ate Taylor remainders. Therefore, as in the previous section for any ¢ € N the function

Ri(w, p, z3) is C*° and uniformly bounded by 1.

10.4.1 The Normal Direction

We start with the proof of (10.34). Let G = [3e7']. We employ an order G Taylor
expansion of (N (b), 1 - S, (w, 23)) about (w,23) = (0,b). Since |23 — b]* < 67, [w']* <
2720 < 62, and |w3|® < e < 0%, we can estimate the remainder

G G—n

<N(b)7 - Gw(wa 23)> - Z Z Cn,a(z3 - b)nwa<N(b)v Vy <(azs)n(aw>a[:u ) 6]) (07 b)>

n=0 |a|=0

+ MG&%Rl (w7 s Z3)'
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We can rearrange the terms of the Taylor expansion to see that

(N(D), 11+ Su(w, 23)) = (N(b), 1n&,,, + 1267,(0, b))

+ (23 = )(N(), 1B, + 1265, (0,))

+ ) wi(N(b), 1S, + 1267, (0,b))
i=1

+ I+ 11+ I1T + Mgd? Ry(w, p, 3), (10.35)

where

] <N(b)7 ,ulglluwg + /’626’[21)’11}51' (07 b))

~
I
M=

s |5

n=1

wy ™" (23 — b)

n!

~
~

Il
M@

(N(0), 16, ., + 1126, or, (0,0))

C}H
2

wy wl
”]‘ZZ LN ) 11y, + 128501, (0.0).

n=2 i=1

The first term in (10.35) vanishes by the definition of N(b) (see (10.26)). The second

term in (10.35) is
(23 = D)(N (D), 1B, s T M26wZ3(0a b)) = (23 — b) (1 AY(0,D) + p124%(0, ).

Now, since |w'|,|z3 — b] < &1, and |ws|¥ < 62, we can apply a Taylor expansion about
(w, z3). Using trilinearity of determinants and differentiation of products we get

G n
1 A0, b) + s A%(0,b) = Z = (NIA o (w, 23) + po Al o (w, Zs))

n=0

+ 3GM?;(51R3<U}, 1, Zg).

By (10.31) the first term is bounded by M2~*. For each 1 < n < G, from (10.7) and

(10.17) we have A, p(w,0) =0 for i = 1,2, and so by trilinearity of determinants, and
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differentiation of products, expanding about z3 = 0 we get

3
Thus
|1 AY(0,0) + 1aA%(0,b)] < M2 + 39 MZe1dp + 39 M5, < 39T ME6,,

and the second term in (10.35) is bounded by 3¢T1M3§2.

Next we deal with the first order w’-derivatives in (10.35). We approximate about

z3 = 0. For i = 1,2, using the estimates (10.14) and (10.15), we get

[wi(6,,(0,0) A &7,(0,), 1+ S, (0,0))] < Jwil [K%(O,O) NG5 (0,0), 1 S, (0,0))|
+ 3MEbR,(0, 11, b)
< 2790 + 3M6).
Note that the condition d; > max{M2220~¢(1=/2 2=2/45,} from Proposition 10.1 implies
that 2745 < 6.

Finally, we estimate I, I1, and III. The estimates of all three sums rely on the

blowdown condition at the origin. We begin with the estimate of I. For all n > 1, we
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employ a Taylor expansion about z3 = 0 to obtain
(61,(0,6) A G2(0,0), 116, (0, ) + 12620, )
= (6,(0,0) A &7,(0,0), t116,,,2(0,0) + 1257, (0,0))

wzs3

+b] det(SL,, &%yl + 11267,

(0,0)

+ det(Gllu 6311,23 :ulgllvwg + :U’2612uw§1)

0,0)
+det(6,, &5 1Sy, + 1260,

(0,0)}
+ 32M2* R5(0, 1, b)

Using the estimates (10.14), (10.15), (10.26), (10.16), and (10.6), we observe

det(6! &2 St + u &2 =0
( wz3 w :ul wWwsg 2 'wwg) (0’0)

det(6! &2 St n =+ U &2 =0
( w wz3 :ul wWws 2 wws) (0’0)

det(&} &2 mwa 2 +M26ww 2)

_ 1 1 _
©0.0) = M16M;+123 (O, 0) + 'u26w§+1z3 (O, O) =0.
This implies

n62
1] < 3203 Z L0 < B Me,53 < B MES,

Next we estimate 1. For n > 2, we expand about z3 = 0 again to obtain

(GLANGE -6, n =det(&, &2 - &,

3> | (0,b) 23) } (0,0)

+ 3MZbRg(0, 11, b).

Thus by the calculation from the estimate on I, this determinant vanishes, and

G
11] < 3MEY

n=2

16,4
T” < 3MEe10100 < 3ME6Y.
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Finally we estimate 1. Again using the calculations from I, forn > 2 and i = 1,2

<611u A 6121;7 M- wag_lwi” 6%1;(()7 O) A 6121;(07 0)7 H 6ww§_1wi<07 O)>

o) =
+ 3MEbR(0, 11, b)
= 41+ Suun (0,0) + 3MEDR7(0, 41, b)

= 3MZbR7(0, i, b).

This implies that

€n_12_£(50

1
n!

G
111 <3MEY

n=2

< 3MPe12700 < 3ME?.

Since |N(b)| > 1/2 this proves (10.34) with any A(e) > 3[21+2)/3

[

10.4.2 The Tangential Estimate

Having proven (10.34), we prove (10.33). Using (10.28), define

T3(b) = (1 + 06, .2(0,0))er + robes + bey

w3z

and note that |Ty(b) — Ty (b)| < Mydz. Next, we will approximate u by the projection of

1A (w, z3) + paA%(w, 23) onto Lg. In particular, let

so that puSANw, 23) + ugA?(w, z3) = 0, || = |°|, and where the sign is picked so that

| — | < 20p|Mo27"

This is possible since |1 Al + pua A% < M2 and |A(w, 23)| # 0. Then

M‘;G}U(w’ z3) + ,uSGfu(w, z) = ‘A(L’i'%)'a(w, 23),
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and thus

|1

L =, )] < = 0|6 < SM227C
|A(w,23)] ( 3) |:u 2 H ’ 0

116, (w, 23) + 12 &y (w, 23) —
Thus we have reduced proving (10.28) to proving the estimate
[(T5 (), E(w, 23))| < A(e)|T2(b)[01.

We approximate (75 (b), Z(w, z3)) by an order G Taylor expansion about (w, z3) = (0, 0).
Since |23]> < 62 < 8y |wsllzs] < 109 < 0y, Jw!| < 278 < 6y, and Jws]© < ef < 67 <
81, we can estimate the remainder of this Taylor expansion by 4% MZd; Rg(w, z3) using

differentiation of products. Reorganizing, we obtain

G G—n
% : n a= G 4
(T5(b), E(w, z3)) nz%zl:[) Craw®z5(T5 (D), (02)" (0w)“E) 00) + 4% M0, Rs(w, i, z3)
(T5(),=(0,0)) + 23(T5(b), Z.,(0,0))
G n
w *
+ ;ﬁ@ (), Eug (0,0)) + 49 MAS Ry (w, 11, 23)

Using (10.21), (10.22), and (10.23)
(T5(6),2(0,0)) = rob

(T5(6), E2,(0,0)) = —ro(1+b(&,,,.2(0,0) — &,,,.2(0,b)))

(T5(0), Zuy (0,0)) = 0, n>1.
Thus using the assumption b < dy,

(T3 (D), ZE(w, 23))| < Kody + KoMobZ 4 4% MAd,
and therefore we can estimate
(To(b), 1 BL (w, 23) + 112G (w, 23))| < MooZ + 8MZ27" + kody + roMyd2 + 49 Mo,

§ lio(l + 4G+2Mé)61.
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Thus picking
Ale) 2 max{3V2My (1 -+ 412 ) (10.36)

the lemma is proven. O

10.5 Proof of Proposition 10.1

Now that we have shown that the phase function of the Schwartz kernel of 7y, lies in
ITa(o)p(01) whenever |23 —b| < 07 we can begin the proof of the decoupling step. For each
I € T; pick by € I. Note that since by € J and J si an interval of length d, containing
the origin, |b;| < 0. Let mayp, 5, be a multiplier equal to 1 on Iy ,(d1) which vanishes
on I344,(01). Let

Prnvyon J(€) = man, s, (25€) f(€).

Then by Bourgain-Demeter decoupling on the cone (Theorem 3.9),

HUe,el Zpk,A(e),b,,alﬁ,ngHp < Cle, A())(80/61)2 <Z |oter Troegi ||, >
i

for 2 < p < 6 and any sufficiently small € > 0. Thus it suffices to estimate the remainder

oz, Z (Id — Pk,A(s),bI,al)ﬁ,engp < C271%2 22 9]l
T

Note that since ¢ < % and g, > 27e/2 272, > 97k93le/2 > 9=k g4 it suffices to prove

the above estimate with 271% replaced by 2711¥,

For each I € Z; the Schwartz kernel of the operator f +— (Id — Pk,A(a),b”;l)ﬁ,gf is

given by a sum of kernels >~ ° | K, 4o, (w, 2), where

Ky gup, (w0, 2) = 2%///62”i‘1’(w’”’z’“’5)01(v,z,,u)anvg(f) dv dédy,
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the phase function W is given by

\IJ(U)?U? Z,M,f) = <w - U>§> + QkPJ ’ (6<Ua ZS) - Z,)

and the symbols o, 0,2 are given by

o1(v, 2, 1) = 00 (V) X1 (2504(11, z3)p - A(v, zg))C(v, 2, 1),
0n2(8) = (1= mage) b6, (27)) xn(€])

with x1(2%a(v, z3)u - A(v, 23)) replaced by xo(2°a(v, 23)p - A(v, 23)) if £ = {,. Note that
the symbol of K, ks, is supported where |{] ~ 2" for n > 1 (and || < 4 if n = 0),
ln| ~ 1, |v| + |z| < r, and a priori unbounded w. We prove the following lemma to

reduce to the case when || ~ 2*.

Lemma 10.3. Let C; > 0 be the necessary constant from Lemma 7.1 applied to T..
Suppose that |k —n| > Cy. Then for N > 1

1

K, w,z)| < Cyerr——
‘ ,k,é,b;( )’ N, (1+ |w‘)4

27N (12)). (10.37)

If |n — k| < C; we can apply integration by parts using the fact that 27%¢ is bounded
away from the plate I14.) s, (01) while p1 - &, lies in IT4()4,(01) to obtain lower bounds

on |¥,|. In particular, we prove the following estimate.

Lemma 10.4. If |n — k| < C; then

_ 1
|Kn,k7€,b1 (’UJ,Z)’ < 052 11k )41[7“7«}(2).

(1+ |wl
Together the estimates in Lemmas 10.3 and 10.4 along with the compact support of

Kn7k72,b1 (’UJ, Z) in z lmply

Sllp/ ‘Kn,k,f,bl (w7 Z)‘ dw + Sup/ |Kn,k,€,b1 (w7 Z)’ dz S 052*11]6777,'
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Thus

H Z (Id = Prage).6.) 00,1 Tre91] H Z Z H /Knk£b1 ,2)g1(z )dZ

IeT, I€T; n>0

and applying Young’s inequality and the almost disjoint support of {gr}rez,

S5 [ Kosan )| IR

I1€Z; n>0 1€Ty

< C.27"| gl

This will complete the proof of Proposition 10.1.

10.5.1 The Proof of Lemma 10.3: Large and Small ¢

First, we introduce the details of integration by parts in the & variables with the differ-
ential operator

Le = (o

[w—o]2’

Ver)

which will give the desired decay in w. Note that V.U = w — v, so 8? ¥ = 0 for any

multi-index § with |3] > 2, and
|0F 02| < Clgymin{A(e) ~'672%, 2"} < G A(e)?
for any multi-index § with |$| > 1. Applying Lemma 8.5 gives a bound of

(L) ona(€)| < T— 5

for any N > 0. Since 0,5 is bounded and supported where || ~ 2", we obtain an

estimate
23n
(1+A(e) Hw — )N

‘/€2m'\11(w,v7z,u,£)an72(£) d& SCN (1038)
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allowing us to later integrate in w.

Suppose that |n—k| > C;. Then since &, (w, z3) are linearly independent for i = 1,2
V0] = | = €+ 2, (1 S (0, 20))| = [[€] — [V, (1 - 60, 20)]| = Coma{2, 27}

by the implicit function theorem. We also see that |07¥| < A(g)2* for any multi-index
B with |8] > 2, and |9%0| < C12° for any multi-index 3 with |3] > 1. Since ¢ < k/2,
integrating by parts in the v variables with the differential operator L, = <\VV U‘I?P , Vi)

and Lemma 8.5 gives the estimate

A(e)2*
Comax{2+ 2} —

(L) Vo1 (v, 2, 1)| < Cn < Oy A(e) max{2"/?,2/2) N

Combining this estimate with (10.38), we obtain

Kowea(w.2)| < [ [] [femmteesnio,€) de]|(L27 or(v. 2000 | do
1

g
< .
3 CN/ / max (25, 20N (14 A@) w —o)¥ @

As 01(v, z, 1) is supported where |v| + |z| + |u| < 6 by loss of a constant depending on

£ we can integrate in v and p to obtain (10.37).

10.5.2 The Proof of Lemma 10.4: Off Plate Estimates

In view of the support of (1 — Ma) s, .4, (25€)), one of four inequalities

|
(e )] < 3A(e) 2" (10.40)

(
(
(g, )] > 3A(8)2’“51 (10.41)
16

s €)] > 34(e)2" (10.39)

G, €)| > 3A(e)2" 7 (10.42)
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must hold. Since we know that || ~ 2" and |n — k| < C; we may assume (if necessary
by making A(e) larger) that (10.41) or (10.42) must hold. Thus we apply integration
by parts in the tangential and normal directions, as in the proof of Lemma 10.2. Also
similar to the proof of Lemma 10.2, the normal direction will require much more careful

estimates.

Suppose that (10.41) holds. Define the one-dimensional differential operator O,y =

(T5(br), Vy+). Then by Lemma 10.2 (specifically (10.33))
0r,01) V| > 2A(2)2%9;.
We can also estimate for j > 1
107, 01| < CiA(£)27,

and for j > 2
|8%2(b,)‘1’| < C;A(e)2F < C;A(e)20 12k,

Thus applying Lemma 8.5 to the operator Lp,4,) = mam]) and applying the
201

estimate (10.38), we obtain
Kaen(w,2) < [ [ [ermeeando, o) e (L3, o020 do

23k 1
< .
= On / / L+ AG) o — o)t @ta,)x W

Since 2¢7%5; > 2*/2 integrating by parts in the Ty(b;) direction ~ 10/ times and

integrating over the compact support of oy in v,y gives the required estimate.

Next we assume that [(N(br),&)| > 3A(g)2%61. Define Oy, = (N (br), V,). We will

apply Lemma 8.5 to the one-dimensional differential operator Ly, = mgml”)'



134
First, (10.34) implies
O U] > 2A()2457. (10.43)
We claim that
|(9Jj\,(b1)01 (v, 2, )| < CjA(e) max{2°6,e7 1} (10.44)

for every j > 1. To see this, we use the approximation N(b;) = —bre; + ez + C(b)b?,

where |C(br)| < My, from (10.27). From the definition of oy we see for every j > 1 and
every multi-index g with |3] < j that

(018, 1C(01) P67 000, (v, 2, )| < C;(260)" 7 (2053)”

&

2£
(2°60). (10.45)

IN

Thus it suffices to check that (10.44) holds for mixed derivatives of the form
(b7 P05 7118001 (v, 2, 1),
where v/ = (v1,v7), and f is a 2-dimensional multi-index such that |5| < j. Note that
[1br| 107170002, (0)] < C5(200) 7™
o905, P05¢ (v, 2, 1)] < €565,
so it suffices to estimate
|b1|‘6|6’gg—|ﬁlaf’xl (2405(7}7 Z3)M . A(U’ 23))7

with x1(+) replaced with xo(:) if £ = ¢,. Note that terms for which no derivative hits
w-A(v, z3) will be negligible since |p- A(v, z3)| ~ 27¢. Using (10.17), (10.7), and a Taylor
expansion about zz3 = 0 we see that

[1611105,19105 11 - Av, 23)| < 65 Ay (0,0) + A(e)dy ™!

= A(e)ag,



135
Thus we see by differentiation of compositions and products
Hb[]‘ﬂ|85;|f3|85,01 (v, 2, u)} < C;C;A(¢e) maX{Qe&], eV, (10.46)

and by combining (10.45) and (10.46) the claim (10.44) is proven.

To apply Lemma 8.5 we also need to show that for j > 2

Do V] < CiA(e)2" max{2°6g, &7}~ 7.

br)
In fact, we claim that
O Y| < CjA(2)25; (10.47)
for j > 2. We use (10.27) again to see that
O

(bI)\Ij = <b[€1 +e3 + C(b[)b%, Vv>j\IJ

where again |C(b;)| < M,. Rearranging terms using the fact that [0°W| < A(g)2* for

any multi-index 8 with || > 2 we obtain

RV =01V, o1+ Wy + A(£)2°57 Rig (v, 25).

U1

Next, we estimate via a Taylor expansion about z3 = 0,

\I}v1v§_1(v7 Z3) =K levg_l (U7 0) + 2MjZ3R11(vv 23)
\vag(v, 23) = [+ 61% (v,0) + 23 - 6U§z3 (v,0) + 2M;25 Ria(v, 23).

From (10.14), (10.15), and (10.16) we see that

E 61}11}?,;71(@’ 0) = 0,
iE 6v§(v,0) =0,

&Y (v,0)=0.
V323
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Moreover (10.6) ensures that
Gijzg(vao) = 07 .7 Z 2.
3
Hence for j > 2
o ¥l < CiA(e)d5 < CiA(e)e; a7,
satisfying the claim (10.47).

Now that we have verified the conditions (10.43), (10.44), and (10.47), we can apply

Lemma 8.5 with Ly, On;) to obtain for every M >0

_ 1
o 8N(b1)\11
(L))" < Cy min{2767 /60, 28671}, (10.48)

Combining (10.48) with (10.38) we can estimate

K (0,2)] < Cure [ [ [[8ee9,€)de] (L3 Vo 0,2 0)] o

< ( L )M// ! dvd
= \Inin{2k162 /8, 2622, } L+ Ae)|w—o))a "

Since §; > 270=¢/2) and 6, > 27t/%§,, we have

2k—f(5%/6o 2 2k—2€+€€/4 Z 2k6/8

2/65%81 2 2k72f+55/2 Z 2]65/4.

So if M ~ 50/e and we integrate over the compact support of 7 in v and p we obtain

the desired estimate.
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Chapter 11

Decoupling in the General Case

Let P° = (a°,y°) € M, with y° = (51(a®,b°), S*(a®,1°),0°). For r > 0 let
Q(r) = {(x1, x3,23) : [ —a®| <71}

and
I(r) ={ys : |ys —0°| < r}.

For i = 1,2, let S* be smooth functions in a neighborhood of Q(2rg) x I(2ry), for some

ro > 0. After possibly permuting the variables v, 72 we may assume in light of Lemma

3.11 that Al(z,ys) = det(S}, S2, 5L ) # 0 on Q(2ry) x I(2ry). Choose M > 0 so that

TY3

M>2+|S . o)) T max Az, ys)| 7t
H HC5(Q(2 0)xI(2ro)) (%,y3)€Q(2r0) xI(210) ‘ ( yg)’

We now will consider (a,b) close to (a°,b°) and construct changes of variables so that
in the new coordinates the model case decoupling theorem in Proposition 10.1 can be
applied at the suitable scale. These changes of variables were constructed in [46] to
prove variable coefficient decoupling theorems in the case of folding canonical relations.
However, since the canonical relation is invariant under changes of variables, we can use
the same changes of variables with the additional assumption of a blowdown on 7g for

our work.
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11.1 Families of Changes of Variables

Let I'1, Ty be defined as in (3.21),(3.22), and for a € Q(2r¢), b € I(2r¢) let p(a,b) € R?

be defined by

1

(p1, P2, p3> = m(_FZ(% b)> F1<CL, b)? A2(CL, b))

For z,a € Q(r) and b € I(2ry), consider the map
(z,a,b) — 1o(z,a,b) € R?
given by
i (z,a,b) = S*(z,b) — S'(a,b)
1y(z,a,b) = S?(z,b) — ps(a,b)S*(x,b) — S*(a,b) + ps(a,b)S*(a,b)
w3 (z,a,b) = S;3 (x,b) — S;S(a, b).
Then

det(Dw/Dz) = det (Sh(z,b), S2 — ps(a,b)Ss(z,b), S, (z,b)) = Al(x,b) # 0.

TY3

By the implicit function theorem, there exists r; € (0,79) such that for |w|, < 2ry,
a € Q(2ry), and b € I(2r) the equation r(z,a,b) = w is solved by a unique C'*

function x = r(w, a,b). Note that
lpi(a,b)] < 6M*, a€ Q(2ry), b€ I(2ry), i=1,2,3.

By the definition of v and the mean value theorem this implies |to(x, a,b)|o < 3M(1+
6M*)|x — a|s for z,a € Q(2ry) and b € I(2ry). Hence for any ry < 7y if |2 — afoe < 7o

and |a — a®| < 7y then |w(x,a,b)|s < 42M°ry. If we define

o = (50M5)_1T1
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then we get [ro(z,a,b)| <7 for z,a € Q(ry), b € I(2r1). Thus by the uniqueness of the

function ¢ we therefore have r(to(x,a,b),a,b) =z for x,a € Q(ry) and b € I(2r).

Note that w(a,a,b) = 0, implying r(0,a,b) = r(w(a,a,b)) = a. We also see that

det(Dr(w,ab)/Dw) = _Al(p(u},a,b),b) :

We also change variables in y. Define 3 : R? x I(2rq) x Q(2r9) x I(2r9) — R? by
31('3/’ a, b) =Y — Sl(aa y3)
2
52(:% a, b) =Y2 — 52((1, 93) - p3(a7 b)(yl - Sl(av y3)) - (y3 - b) Zpi(a’7 b)(yl - Si(a7y3))
i=1

53(:% a, b) = Y3 — b.

The Jacobian of this map is given by

det(D3/Dy) = (1 — ps(a, b)(ys — b)), (11.1)

which by the bound on |p;| on lies between (1/2,3/2) if z3,b € I(r3), a € Q(2r), where
r3 < min{ry, (24M*)7}. For |23 < rs3, b € I(r3), and a € Q(2ry) we can define the

inverse z — (2, a, b) explicitly by

91(2,a,0) = 21 + Sl(a,b + 23)

29 + 21(p3(a, b) + p1(a,b)z3) + (1 — 23)5%(a, b + 23)
1 - p2(a7 b)ZS

92(z,a,b) =
D3(z,a,b) = b+ z3.
Notice that 1(0, a,b) = (S*(a,b), S*(a,b),b). Other properties of these changes vari-
ables are contained in the following lemma, proven in [46].

Lemma 11.1 ([46, Lemma 7.1]). The function r,y defined above have the following

properties.
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1. Let p = p(a,b), and let
B<Z3’ a, b) = <—P3—10123 1—2223 )
Then for |z3] <13, a € Q(ra), |w| < ry

ST (x(w,a,b),b+23)—v1(z,a,0) \ __ [ & (w,z3,a,b)—2
B(237 a, b) < 52(;(w,a,b),b+zz)*‘);(Zyayb) > - (62(w,z2,a,b)fz; ) )

where & are C™ satisfying

1 =2 1
(6 ’ S ’ 623>‘(w,0,a,b) —w
and &2,,.(0,0,a,b) = 0.
2. Let
AL(z,y3) = det(S:, S S;% |(I’y3)

AL (x,y3,a,b) = det(&), 62 &'

wz3) ‘ (w,z3,a,b)"

Then fOT’ (Tl, 7'2) == (//L17 M2)B(237 a, b>7

2 ; AL(x(w,a,b),
ZTiAS(I(w7a7 b),b—f—Zg) Z,uz U) , 23, Q, b)
=1

1 — po(a,b)zs

3. Let k(x,ys3) be defined as in (3.24). Then

k(a,b)

&2 . (0,0,a,b) = AL DP

W32z323

11.2 Decoupling in the General Case

We begin by proving one step of the induction in the general case by using the above

changes of variables to reduce to the model case in Proposition 10.1. After applying
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a partition of unity in z,ys to the symbol of Ry, we may assume that the support of

X(z,y) in (z,ys3) lies within Q(ry) X I(r3), which will allow us to apply Lemma 11.1.

Proposition 11.2. Let 0 < ¢ < %, E>1,1< (< l(ke). Let & € (27401=9) 27¢],

and let 6, € (0,80) such that
H’l&X{Qié(liE/Z), 502765/4} < (51 < (50.

Define €1 = (01/60)?. Let J be an interval of length 6y such that dist(b,b°) < rs for any
be J, and let Z; be a collection of intervals I of length 61 which have disjoint interior
and intersect J. For each I € T;, define fi(y) = f(y)11(ys). Then given a compactly
supported function vy € C(Qy), for2 <p <6

1/

H > wRiefi = 05(50/51)%_%%( > ||UoRk,efI||§> T2 g

IeT, IeT,

Proof. Fix b € J. For each a € suppvg N Q(ry) define the connected open set
Upy = {x R : |roy(z,a,b) <278, walw,a,b)| < 27, [ws(z,a,b)| < gl}.

Because U, are open sets which contain a neighborhood of a, {Uavb}a@uppvm@(m) is
an open cover of the compact set supp vy N Q(rz), which thus admits a finite subcover
{U,, b}ren. Moreover, because det(Dro/dz) = Al(a,b) # 0, each set U,; contains a,
has measure ~ 27%c;, and is the image of a 27¢ x 27 x £, rectangle under a C*™ map
smoothly varying with a; thus we may further assume |[A| < 221“/51_17“523 and each point x

is covered by a uniformly bounded number of sets U,, ;, by the support of x in x.

Let {Srey.a30(%)}aea be a smooth partition of unity adapted to U,, ». Then since

|z], |ax| < r2/2 and |b] < r; we have for each A € A that

U&sl,ak,b(w) = Uo(zﬁ(ﬂ% a, b))%,el,ak,b(zc(w, Qax, b))
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is a smooth function supported on the set {w : |w/| < 27 |ws| < &;}. By Holder’s
inequality

H Z UORka]H = H Z Zvoggel ax s Ruefilly

I€T; AeA

(Z H > 00Steran bRt

]EI]

>1/p

Fix a € {a)}ren. Write g(z,a,b) = f(y(z,a,b)), noting that f;(y(z,a,b)) = g_p+1(2,a,b)

since 93(z,a,b) = b+ z3. Next, we apply changes of variables y = y(z,a,b) and 7 =

28 BT (23, a,b) i1, noting from (11.1) and the definition of B that
det(Dy/dz)det B =1,
so that

Riefr(x) = 2%//eka“'(G(m(x’“’b))Zl))Zk,g(:c,z,,u,a, b)g_pi1(2,a,b)dudz,

where

1—p3(a,b)zs

)zk,f(xu Z7M7a’b) = X1 (2€L(N1Al ( (x,a,b), Zg,CL,b) + ugAé(m(x,a,b),z?,,a, b))>

X X(.T, U(zv a, b))Xl(lBTil(z& a, b),LL|)

Thus applying the change of variables = = r(w, a, b) we see that

vo (2w, @, 0))ste,.a0 (X (w, 0,0) > Riefr(®(w, a,b)) = 00, ap(w) Y Trtasg—per(w),

IeT, I€T,

where Tgpap = Tre from (10.10) in the model case. Define

My (a,b) > 2+ |6 (-, a, b)||cnts((—rgsropty + 1167+, @, )| cnts (=g o))

Ae) = sup  max{3/F1"2M s (a,b), o(a, b)(1 + 412 RN (a,0));

a,be[—ro,ro]*
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these are the uniform versions of (10.2) and (10.36) respectively. We can then write

‘ </‘UO§€,€1,a,b E Riefr
IeTy

p||Oter,a,b E 77c€abg b+1”

1€y

1/
‘ | det(£ )|dw> '

Uogé,al,a,bg Riefr|| =
1€, P

z=r(w,a,b)

by the uniform upper bound on | det(D—I) |. This inequality allows us to apply Proposition
10.1 with A(e) = A(e) to get
Hffe e1,ab Z ﬁzng < C:(00/61) %7% ( Z |oter.anTr eng ) + C.271%273 g |,
=3 1€z,
Undoing the changes of variables above (and again applying the uniform lower bounds
on | det(5)[) we may bound this by

C!(80/61)2 " (Z \[t.erasRonefr|] ) + C27 1R £,

IeTy

Finally, we recombine our partition of unity in = using the fact that |A| < 227173 to

get

)"

< C,C.(60/01) “**‘S(Z > vosecranoRee [} >

H Z Vo Rk efIH <C <Z H Z V0St.e1 a3 b Rk ST

I€T,

ANeA I€Ty
+) Ca Ok 1,
AEA
l,l _
Coelo0/00 (3 fooRuatill) ” + 27 1],
Iely
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11.3 Iteration of the Decoupling Step

Let vg € C°(;) and let f € LP(2R) be compactly supported. Let dy = 27, and define
§; = 0;127%/* for j = 1,2,... Note that this implies &; = (0,/d)? = 27%/2. We will
iterate the estimate in Proposition 11.2 until §; < 27¢1-2)  Let j* be the smallest j such

that 6; < 274179 Clearly j* < 4/e and 27/15/2) < g, < 270(1=2),

To iterate the decoupling argument we construct a nested family of intervals which
at each level have disjoint interior. Let J = [b° — r3,b° + r3] and for each j = 0,1,2, ...
tile J by a family of intervals Z;; such that each I; € Z;; intersects J and has length
d;, and such that all intervals in Z;; have mutually disjoint interiors. For an interval
I, €1;;, let 1 denote the collection of intervals I € Z; ;41 which intersect I;. Then
since r5 < 1 and &, = 27, using Holder’s and Minkowski’s inequalities we have

[voRk.efllp S Zeg/pl( Z HUORk,éflo

0€LJ0

p)l/p. (11.2)

The function and operator Ry ¢f;, now satisfy the conditions of Proposition 11.2. We

claim that for each 0 < j < j*,

. / 11, 1/p
JoRae s S CE2 (63595 (3 ool )

1i€1y,

+322C Y27 f1l,. (11.3)

The case j = 0 follows immediately from (11.2). Assume (11.3) holds for some j. Then
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by applying Proposition 11.2 we get

(X loreats )" < (2 [e@GE) (X lReddialy)

IjeIJyj ]jEIJ’j Ij+1€[]j

roE2 ) r)") "

<O Y uRefal)”

J+1
Ij+1€lsj1

+C(e)d; P21k £, (11.4)
Plugging the above estimate into (11.3) gives us

. ) 1.1 1/p
IRieflly < Ce 127 ()75 (ST JugRaefiy,alh)

Tj+1€Z5,5+1

+ Oy ()3 0 )5, P2 M ],
+§2%C ()1 271 1|1,

Using the fact that dy = 27, §; > 261=%/2) for j < j* and 2 < p < 6, the last two terms

of the above inequality are bounded by
(7 + 1Oy 12227 f]l,,

proving the claim.
We apply (11.3) for j = j* and use the fact that j* < 4/e¢ as well as the assertion

e _f.c o €—|—6+82<5
p 2 p 4 2p 2~
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to deduce
) 1/
JoiRueflp < Cle) 2ol g0 (o) (50 Ry, )
I+ €Ty«
+ §0(5)4/€2_10k+2€”f||p
11 1/p _
< 2652 (O R I2) T+ @21 (11.5)

Ij* GI‘],]'*

Picking &' = 2z completes the proof.
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Chapter 12

The Proof of Proposition 8.8

In this chapter we prove Proposition 8.8 using Littlewood-Paley theory and a Calderén-
Zygmund estimate, the main result of [43]. Let vy € C°(€2,) and let f € LP be supported
in a compact set K C Q. Let 0 < ¢ <2 <4 < p < oco. By an application of Lemma
7.1 we can reduce the proof of (8.9) to the estimate

k/p g\ 14
H( Z |2%P Prog Ry sy 001 Prces, f | >
k+C1>(2+4¢)!

< 2 tep)
Y

1/p
(D 1Pessaf1?)
k>0

L Lr

(12.1)
where v; € C°(€2g) is equal to 1 on the support of f, and |s1],|s2] < C4, where C} is
the necessary constant from Lemma 7.1. Indeed, by expanding the definition of R, and

applying a similar argument to the proof of Proposition 3.4, we see for every k > 0

PoogRof = P ( Z Vo R ¢ ( Z U1Pk”f>)

k> (24e) K
= P E Rissr o1 Prgs, [+ E Rk',ﬂhpk"f)-
[s1],]s2|<C1 (k' k") €Dy,

Note that terms in the first sum vanish if k+s; < (2+¢)¢. Applying Holder’s inequality
q> 1/q

Y
Lp

1_
[voRef || ppa < 2 1H( > ‘Qk/ppk< > UORk+s1,ZU1Pk+szf>

k+C1>(24€)¢ [s1],]s2|<C1
q) 1/q

(] > 2 PR Pof
ko (

k' k")EDy,

Lp

1+ 93!
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where Dy, is defined as in (7.3). Applying Holder’s inequality a second time we can break
|lvoRef]| Frs into pieces for which (12.1) apply, and a remainder
p

g\ /4
Epaf = (Z‘ Z Qk/pPkUORk’,Evlpk“f‘ ) :

k>0 (K k")EDy

Indeed,

1/q
( Z }Zk/pPkUORk+sl,€U1Pk+82f|q>

k+C1>(2+4¢)0

looRefllpre < (8CT)7™" Y

[s1],]s2]<C1

Lp

1
+ 20 |Ep o f e

We next show that the remainder &, , is bounded from Bj?” — LP. This holds due to
Lemma 7.1 after several applications of Holder’s inequality, which we present below.
Note that since ¢ < ’”% Lemma 7.1 still applies even though the symbol of the kernel
of Ri+s,,¢ depends on £. For any € > 0 by applying Holder’s inequality several times we

obtain

ng,qf”LP < Z

k' k'">0

1/q
( Z 2qu|2k5+k/pPkUORk/7[U1Pk”f‘q)

k>0
(K'\k")EDy,

< > (Z 2]@)1/(; sup 2k6+k/pHpk'UORk’,évlpk“pr

K k7>0 - k>0 W ,’j,,z)oepk

p

ot ’
S Cq7€ E 2 k €2k ¢ sup 2k€+k/pHPkU(]Rk/,ﬂ)lPkufHp
k>0
k' k">0 (k/,k//)EDk

< Ce Z (Z 24%) sup 2(k+k,)6+k/pHPkaRk',eka”pr
K'>0 k>0 Kk 20
(k' ,k") €Dy,

< Cq,s Z 2—k//€2k”5 sup 2(k+k/)5+k/pHPkUORk’,ZUIPk”pr

k,kE'>0
II> El -
K20 (K} €Dy
_kep! /v (k+k'+k"Yep+k p e
S Cq,g( E 2 p> E sup 2 p HPRUORR’,EUIPM’JCHP .
k">0 k>0 k,k/ZO

(K',E") €Dy
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Since Py is a Littlewood-Paley multiplier Py f = Z\s\<1 P Penysf. By Lemma 7.1 we

can thus estimate for each k” > 0

sSup 2(k+k/+k”)£+k/pHPk:UoRk’,eUlPk"f |p <G Z Perysfl|
E,k' >0 IsI<1
(k/)kl!)eDk ~

where C), does not depend on £”. The claim holds by one last application of the triangle

inequality and rearrangement of the sum.
To prove (12.1) we apply the main result from [43].

Theorem 12.1 ([43, Theorem 1.1]). Let T}, be a family of operators on Schwartz func-

tions by
T (@) = [ Kelo,) ) dy

Let ¢ € S(R?), ¢p = 2%6¢(2%.), and Ty f = ¢p* f. Lete > 0 and 1 < py < p < oo.

Assume T}, satisfies

sup 2577 || Ty || oo < A (12.2)
k>0
sup 2k/pOHTkHLPO~)LP0 < B(]. (123)
k>0

Further let Ay > 1, and assume that for each cube Q) there is a measurable set Eg such
that

|Eql < Aomax{|Q**,|Q}, (12.4)

and for every k € N and every cube Q with 2¢diam(Q) > 1,
Sup/ |Ki(z,y)|dy < By max{(2kdiam(cg))’€ , 2*’“8} . (12.5)
zeQ Rd\EQ

Let

B = BYP(AAY? + By) /P,
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Then for any q > 0 there is a C' depending on e, p, po,q such that
k) 1/q By1i-1 1/p
(X2 ormns) | <cafog+8)] 7 (S IAdz) - (126)
ko P k

We apply this theorem on the family of operators T}, := Ry, for k > (2 + ¢)¢ (here
¢ is fixed). By Proposition 8.1 the assumptions (12.2) and (12.3) are satisfied with
A <270 and By < 270, We next check assumptions (12.4) and (12.5). For a given

cube ) with center z¢ let
Bq={y : [S(z%y3) — /| < C2'diam(Q)}

if diam(Q) < 1, and a cube centered at 29 of diameter C2°diam(Q) if |Q| > 1. By an
integration by parts argument in the 7 variables we derive the bound

22k
(1+28718(29, y3) =y

’Kk(xa y)' SN

Then clearly assumptions (12.4) and (12.5) are satisfied with Ay < 2% and B; < 2%
respectively. Theorem 12.1 then implies (12.1) with Iy = Piys, and fr = Prys,f,

finishing the proof of Proposition 8.8.
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