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Abstract

Local Radon-like transforms are examples of Fourier integral operators which appear in

many areas of harmonic analysis and integral geometry. These transforms integrate a

function along a family of submanifolds of Rd, and as such we expect that they exhibit

some smoothing. The (local) Lp-Sobolev regularity of a local Radon-like transform is in

part determined by the geometry of its canonical relation. In almost all cases excluding

averages over hypersurfaces the canonical relation always projects with singularities,

meaning the calculus of Fourier integral operators due to Hörmander does not apply.

In this work we investigate the (local) Lp-Sobolev regularity of local Radon-like trans-

forms with one-sided folds, specifically transforms which integrate over families of curves

in R3. We prove Lp-Sobolev estimates for a class of these local Radon-like transforms

associated to fibered folding canonical relations which are optimal except possibly for

endpoints. The proof of this main result relies on L2 estimates for frequency-localized

oscillatory integral operators, which we prove in all dimensions, and decoupling inequal-

ities by Wolff and Bourgain-Demeter for plate decompositions of thin neighborhoods of

cones.

We investigate applications of these results to two model cases, restricted X-ray

transforms, and Heisenberg convolutions with compactly supported measures on curves

in the Heisenberg group. We also construct a Sobolev space adapted to translations on

the Heisenberg group which permits a global extension of our main result for this second

model case.
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Notation and Symbols

We use x,w, y, z to represent physical variables in Rd. Meanwhile ξ, η and τ will typically

denote frequency variables. In this work we consider families of curves in R3, and use

local coordinates with the last coordinate distinguished, hence we will write x = (x′, x3),

w = (w′, w3), y = (y′, y3), z = (z′, z3), ξ = (ξ′, ξ3), and η = (η′, η3). For ease of reading

the dot · will be reserved for the inner product on R2, and 〈 , 〉 for inner product on R3. In

cases where this choice affects readability we default to 〈 , 〉, but these instances should

be clear from context. In this work we also consider local coordinates on dimension n

submanifolds of Rd, in which case we use local coordinates with the last n coordinates

distinguished, i.e. x = (x′, xd−n+1, ..., xd) ∈ Rd. In these circumstances the dot · will

be used to denote the inner product on Rd−n while 〈 , 〉 will be reserved for the inner

product on Rd. For i = 1, ..., d, ei represent the standard unit basis vectors in Rd. The

Euclidean ball of radius r centered at x ∈ Rd is denoted Br(x) (where the dimension is

implied by the context), and the volume of Br(x) is given by V (d)rd so that V (d) is the

volume of the unit ball in Rd.

In this work C and c will represent positive arbitrary constants. The values of these

constants may change from line to line. If a constant C depends on a parameter ε, we

write Cε to reflect this dependence. Additionally, for non-negative quantities X and Y

we will write X . Y to denote the existence of a positive constant C such that X ≤ CY .

If this constant depends on a parameter such as ε we write X .ε Y . If X . Y and

Y . X then we write X ' Y .
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Generally we denote smooth compactly supported functions by χ, ψ, ζ, and η,

whereas the indicator function of a set E is denoted by 1E. For a real number x the

functions bxc and dxe denote respectively the largest integer less than x and the smallest

integer greater than x, while dxc denotes the closest integer to x (note if x = n + 1
2

for

some integer n then we define dxc = bxc = n).

We write ∂xif to mean the partial derivative of f with respect to xi. A multiindex

α is a tuple α = (α1, α2, ..., αd) with αi ∈ N for all i = 1, ..., d. The length (or order) of

a multiindex is given by |α| = α1 + α2 + ...+ αd. We write

xα = xα1
1 x

α2
2 · · ·x

αd
d

∂αx f = ∂α1
x1
∂α2
x2
· · · ∂αdxd f

for any multiindex α. The dimension of the multiindex may vary within different con-

texts.

The Fourier transform of a function f is denoted

F[f ](ξ) =

∫
e2πi〈x,ξ〉f(x) dx

or more simply f̂(ξ). A partial Fourier transform in only some variables will be denoted

by subscripts; for example given f ∈ L2(R3), the partial Fourier transform of f in the

first two variables is given by

F1,2[f(·, x3)](ξ′) =

∫
e2πix′·ξ′f(x′, x3) dx′.

The inverse Fourier transform of a function f(ξ) is denoted F−1[f ](x) or qf(x).

Below is a non-exhaustive list of spaces used throughout this work.

• N - the natural numbers, 0, 1, 2, ...
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• Z - the integers

• Rd - The Euclidean space of dimension d

• C - The complex plane

• Sd−1 - the (d− 1)-dimensional sphere.

• H - The (first) Heisenberg group, see Section 4.2

• HZ - The discrete Heisenberg group, see Chapter 6

• Md,n - The space of affine n-planes in Rd, see Section 4.1

• Gd,n(Rd) - The Grassmannian; the space of all n-planes through the origin in Rd,

see Section 4.1.

• `p = Lp(Z) - The discrete Lebesgue spaces; for 0 < p ≤ ∞, the space of sequences

a : Z→ C such that

‖a‖`p =
(∑
n∈Z

|a(n)|p
)1/p

<∞.

• Lp, Lp(Rd) - the Euclidean Lebesgue spaces; for 1 ≤ p ≤ ∞, the space of functions

f : Rd → C such that

‖f‖p =
(∫
|f |p
)1/p

<∞.

• Lpcomp(Rd) - The space of compactly supported functions f ∈ Lp(Rd)

• Lploc(Rd) - The space of functions f such that f |K ∈ Lp(Rd) for any compact set

K ⊂ Rd.

• C∞(Rd) - The space of functions f : Rd → C which are infinitely differentiable
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• C∞0 (Rd) - The space of functions f : Rd → C which are infinitely differentiable

such that lim|x|→∞ f(x) = 0.

• C∞c (Rd) - The space of compactly supported functions f : Rd → C which are

infinitely differentiable

• S(Rd) - The Schwartz space; the space of functions f : Rd → C such that for any

multiindices α, β

sup
x∈Rd
|xα∂βxf | <∞.

• Hp,Hp(Rd) - The Hardy spaces; for 0 < p ≤ ∞ and Φ ∈ S(Rd), the space of

tempered distributions f such that the maximal function

MΦf(x) = sup
t>0

∣∣f ∗ Φt(x)
∣∣

is in Lp(Rd), where Φt(x) = t−dΦ(x/t).

• Lps, L
p
s(Rd) - The Sobolev or Bessel potential spaces; for 1 ≤ p ≤ ∞ and s ∈ R,

the space of functions f : Rd → C such that

(I −∆)s/2f ∈ Lp(Rd).

• Lps(H) - The Heisenberg Sobolev spaces, see Definition 6.1

• F p,q
s (Rd) = F p,q

s - The Triebel-Lizorkin spaces, see Definition 8.7

• Bp,q
s (Rd) = Bp,q

s - The Besov spaces, see Definition 8.7.
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Chapter 1

Introduction

The classical Radon transform maps a function defined on the plane to a function defined

on the space of lines in the plane by taking its integral over each line. More specifically,

given a smooth compactly supported function f : R2 → C, the Radon transform of f is

defined for each line ` ⊂ R2 by integration of f over `, i.e.

Rf(`) =

∫
`

f.

The Radon transform was introduced over 100 years ago by Johann Radon [47], who

was interested in recovering f from its Radon transform. See [34] for a more detailed

introduction to the classical Radon transform in Rd.

Any line ` in the plane can be defined as the solution set of an equation y · θ = s,

where θ ∈ S1 and s ∈ R. Note that the pairs (θ, s) and (−θ,−s) are associated to the

same line `, hence the map ϑ : (θ, s)→ ` is a double covering of S1×R onto the space of

lines. We can furnish the space of lines with a canonical manifold structure with respect

to which ϑ is differentiable and regular [34]. Indeed, we may identify Rf(`) with an even

function on S1 × R given by

J(θ, s) =

∫
y·θ = s

f(y) dσ(y),

where σ is Lebesgue measure on the line y · θ = s. If f(x) = O(|x|−N) for N > 2 then
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we can recover f from Rf by the formula

f(x) = 2(−∆)1/2

∫
`3x

Rf(`) dµx,

where µx is the unique probability measure on the compact set {` : x ∈ `} invariant

under rotations about x [47]. This inversion formula has a more concrete presentation

as

f(x) = (2π)−1(−∆)1/2

∫
S1
J(θ, 〈θ, x〉) dθ (1.1)

where dθ is the 1 dimensional Hausdorff measure on the unit circle S1 [34].

Using a coordinate patch on the space of lines, we can view the Radon transform

locally as an operator acting on smooth functions compactly supported in R2, which

integrates over a certain family of curves parametrized by x ∈ R2. For example, by

parametrizing the circle S1 by the map x1 7→ (cos(x1), sin(x1)) and utilizing the projec-

tion ϑ, we see that for x1 near 0 we have

Rf(ϑ(x1, x2)) =

∫
f(x2 sec(x1)− y2 tan(x1), y2) dy2.

thus we see that in a certain coordinate patch on the space of lines, the Radon transform

integrates over the family of non-horizontal lines {y ∈ R2 : y1 = x2 sec(x1)−y2 tan(x1)}

parametrized by x ∈ R2 near the origin.

This perspective leads to a natural and well-studied local variant: given open sets

ΩL,ΩR ⊂ Rd, suppose we have a family of n-dimensional submanifolds Mx ⊂ ΩR

parametrized by and smoothly varying with x ∈ ΩL. A local Radon-like transform

R : C∞c (ΩR)→ C∞(ΩL) associated to this family of manifolds is defined for f ∈ C∞c (ΩR)

by

Rf(x) =

∫
Mx

f(y)χ(x, y)dσx(y), x ∈ ΩL, (1.2)
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where χ ∈ C∞c (ΩL × ΩR) and dσx is the restriction of Lebesgue measure onto Mx. For

convenience, let n′ = d− n, the codimension of the manifolds Mx.

Local Radon-like transforms appear in many areas of harmonic analysis and integral

geometry; we will see a few examples in Chapters 3 and 4. Due to their appearance in

many different contexts, local Radon-like transforms have been studied from a variety

of perspectives. In integral geometry questions of inversion are common, and have been

investigated for restricted X-ray transforms and the classical Radon transform in Rd, to

name a few examples (see [27] and also [34, Ch. II]). The Lp-improving properties of

local Radon-like transforms are related to a well-studied problem in harmonic analysis,

the Lp-improving properties of convolutions with measures supported on curves (see

[12, 54, 13]). More generally, the Lp-improving properties of local Radon-like transforms

have been studied by Gressman (see for example [30, 31, 32]), Greenleaf and Seeger [23],

and many others in more specific contexts.

In this work we focus on analyzing the regularity properties of R - how does the

smoothness of Rf compare to the smoothness of f? To measure the smoothness of f

and Rf we use Lp-Sobolev norms; however, to define Sobolev norms on an open set like

ΩL using Bessel potentials would require careful consideration of the boundary. The

choices of the particular open sets ΩL and ΩR are arbitrary, so to avoid assumptions

about the regularity of the boundaries of ΩL and ΩR and to emphasize the local nature

of our analysis we will investigate conditions under which R extends to a continuous

operator

R : Lpcomp(ΩR)→ Lps,loc(ΩL)

for certain 1 < p < ∞ and s ∈ R. An estimate of this form means that for any C∞
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function v0 compactly supported in ΩL and for any compact set K ⊂ ΩR we have for all

Lp functions f supported in K,

‖v0Rf‖Lps(Rd) ≤ Cp(v0, K)‖f‖Lp(Rd).

Here Lps(Rd) is the standard Sobolev space consisting of tempered distributions g on Rd

such that (I −∆)s/2g ∈ Lp(Rd).

In this work we will often use local changes of variables to transform general operators

into a model case locally. Thus it is helpful to note that changes of variables leave the

local Sobolev spaces defined above invariant. We present this result below for s between

0 and 1, but applying Leibniz rule and chain rule we can prove the same result for local

changes variables for Sobolev spaces of integer order, then apply interpolation to obtain

the equivalence for all s.

Lemma 1.1. If ψ : ΩL → Ω′L is a C∞ diffeomorphism then for 0 ≤ s ≤ 1 f ∈ Lps,loc(Ω
′
L)

if and only if f ◦ ψ ∈ Lps,loc(ΩL), and ‖f‖Lps,loc(ΩL) ' ‖f ◦ ψ‖Lps,loc(Ω′L) with constants only

depending on p, s and | det Jψ|.

Proof. Let Jψ denote the Jacobian matrix of ψ. Suppose f ∈ Lp0,loc(Ω
′
L). Then by a

change of variables f ◦ ψ ∈ Lp0,loc(ΩL) since for any compactly supported v ∈ C∞(Ω′L)

(∫
|f(x)v(x)|p dx

)1/p

=
(∫
|(f ◦ ψ)(y)(v ◦ ψ)(y)|p| det Jψ(y)| dy

)1/p

,

| det(Jψ)|1/p is bounded above and below on ΩL, and v ◦ ψ is a compactly supported

function in C∞(ΩL). Note that this implies

inf
y∈ΩL
| det(Jψ(y))|1/p‖f ◦ ψ‖Lp0,loc(ΩL) ≤ ‖f‖Lp0,loc(Ω′L) ≤ sup

y∈ΩL

| det(Jψ(y))|1/p‖f ◦ ψ‖Lp0,loc(ΩL)
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Next, suppose that f ∈ Lp1,loc(Ω
′
L). By chain rule ∇(f ◦ ψ) = ((∇f) ◦ ψ)ᵀJψ. Thus for

any compactly supported v ∈ C∞(Ω′L)

(∫
|(v ◦ ψ)∇(f ◦ ψ)|p| det Jψ|1−p

)1/p

=
(∫ ∣∣(v ◦ ψ)

(
(∇f) ◦ ψ

)ᵀ
Jψ
∣∣p| det Jψ|1−p

)1/p

≤
(∫
|(v ◦ ψ)|p|(∇f) ◦ ψ|p| det Jψ|

)1/p

=
(∫
|v∇f |p

)1/p

.

Repeating the same argument with ψ−1 and using the uniform bounds on | det Jψ|, we

see that

inf
y∈ΩL
| det Jψ(y)|

1
p
−1
(∫
|(v∇f) ◦ ψ|p

)1/p

≤
(∫
|vf |p

)1/p

(∫
|vf |p

)1/p

≤ sup
y∈ΩL

| det Jψ(y)|
1
p
−1
(∫
|(v∇f) ◦ ψ|p

)1/p

.

Interpolation between Lp0(Rd) = Lp(Rd) and Lp1(Rd) implies the desired equivalence

with a constant depending on v0.

Suppose T is an integral operator of the form Tf(x) =
∫
K(x, y)f(y) dy such that T is

bounded from Lp0s0,loc(ΩR)→ Lp1s1,loc(ΩL) where 0 ≤ s0, s1 ≤ 1 and 1 ≤ p0, p1 ≤ ∞. If σ :

Ω′R → ΩR and η : Ω′L → ΩL are C∞ diffeomorphisms, by the above lemma the operator

T̃ with Schwartz kernel K(η(x), σ(y)) is also bounded from Lp0s0,loc(Ω
′
R) → Lp1s1,loc(Ω

′
L)

with operator norm C‖T‖, where C depends only on p0, p1, s0, s1, | det Jσ|, and | det Jη|.

Thus we may freely apply local changes of variables in x and y separately to integral

operators throughout this work. Because we typically are free to change our open sets

ΩL and ΩR freely we may even suppose that σ and η are only local diffeomorphisms.



6

1.1 Outline

In Chapter 2 we review the microlocal analysis of local Radon-like transforms and more

general Fourier integral operators. We begin with a review of the work of Hörmander,

who developed a calculus of Fourier integral operators associated to so-called “nondegen-

erate” canonical relations. In the context of local Radon-like transforms this condition is

equivalent to the notion of nonvanishing rotational curvature, due to Phong and Stein.

As we will see, local Radon-like transforms cannot satisfy the nonvanishing rotational

curvature condition unless the dimension of the ambient space and codimension of the

manifolds Mx satisfy a very restrictive number theoretic relation; in particular, rota-

tional curvature must vanish for local Radon-like transforms over families of curves in

R3. From here we introduce the definitions of folding canonical relations and fibered

folding canonical relations.

In Chapter 3 we give a brief history of Lp-Sobolev regularity results to date, beginning

with results on L2. Results on L2 are the most well-studied, and depend on the associated

microlocal geometry. Sharp Lp-Sobolev regularity was not established for p 6= 2 until

2007, with a result by Pramanik and Seeger [45] about convolutions with measures

supported on curves in R2. The novel method in the proof of sharp Lp-Sobolev regularity

for large p is the use of Bourgain-Demeter-Wolff decoupling of thin plates associated to

a general cone with one non-vanishing principal curvature. Pramanik and Seeger were

later able to generalize this method of proof to a class of local Radon-like transforms

associated to folding canonical relations, which we present as an introduction to our

main results, Theorems 3.14 and 3.15, which further generalize this method of proof to

include sharp Lp-Sobolev estimates for all p for a class of local Radon-like transforms
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associated to fibered folding canonical relations.

In Chapter 4 we introduce two examples of local Radon-like transforms associated

to families of curves in R3, and analyze the microlocal geometry associated to each

operator. First, we introduce restricted X-ray transform, which have been studied in

integral geometry for decades to model problems in tomography. Greenleaf and Uhlmann

proved nonlocal inversion formulas for a class of restricted X-ray transforms in [27],

and we show that transforms in this class are associated to fibered folding canonical

relations, and generically satisfy the conditions of the main theorem. We also introduce

a noncommutative version of a convolution with a measure supported on a curve, in

this case set on the Heisenberg group. We characterize the microlocal structure of this

operator, and use it as an example to show the sharpness of the main theorem in Chapter

5. We also can use the geometric structure of the “Heisenberg convolution” to extend

the the local Lp-Sobolev regularity to Lp regularity on an analogue of the global Sobolev

space which is adapted translations on the Heisenberg group, which we introduce in

Chapter 6.

In Chapter 7 we begin the proof of Theorem 3.15 by proving using Hardy space

estimates to interpolate Lp-Sobolev regularity for small values of p. This result is general,

relying only on local L1 boundedness and some L2 regularity.

We begin the proof of Theorem 3.14 in Chapter 8. Here, we decompose our local

Radon-like transform using Littlewood-Paley theory and the techniques of Phong and

Stein in order to formulate an oscillatory integral estimate which is the essential estimate

needed to prove Theorem 3.14. We also outline the structure of the proof of Theorem

3.14, which involves three main parts, constituting the next four chapters. In Chapter 9
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we prove an L2-Sobolev estimate using a similar argument to the proof of the Calderón-

Vaillancourt Theorem for a general class of oscillatory integral operators.

The heart of the proof lies in Chapters 10 and 11, where we relate Lp regularity to

decoupling inequalities via a microlocal analysis. A model case is introduced in detail in

Chapter 10 and families of changes of variables are introduced in Chapter 11 to reduce

the study of the general case to the model case. Finally, in Chapter 12 we use a Calderón-

Zygmund type estimate to relate the oscillatory integral estimates in Chapter 8 to the

Lp-Sobolev estimates in Theorem 3.14, finishing the proof of Theorems 3.14 and 3.15.

This work is in part based on results from preprints of the author [6, 7]. In particular,

Section 4.2 and Chapters 5-7 draw from [6] while Section 4.1 and Chapters 9-11 draw

from [7].
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Chapter 2

The Microlocal Picture for Local

Radon-like Transforms

The formula (1.1) for inverting the Radon transform involves two dual forms of integra-

tion, an integration over all the points x in a given line `, and an integral over all lines `

containing a given point x. These dual integrals suggest two operators which integrate

over dual fibers of the same manifold; this construction is known as the double fibra-

tion formalism [22]. Let’s assume that (x,Mx) are fibers of a manifold known as an

incidence relation ; more specifically, assume that

Mx = {y ∈ ΩR : (x, y) ∈M},

where M⊂ ΩL × ΩR has codimension d− n, and the natural projections

M

ΩL ΩR

ρL ρR (2.1)

are submersions. By shrinking ΩL,ΩR we can additionally assume that ρL, ρR are surjec-

tive. We can define a local Radon-like transform directly from this manifold M. Since

we assume that the natural projections ρL :M→ ΩL and ρR :M→ ΩR are surjective

submersions, by an application of the implicit function theorem we have that for each
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x ∈ ΩL

Mx = ρRρ
−1
L ({x}) = {y ∈ ΩR : (x, y) ∈M}

is a smooth immersed n-dimensional submanifold of ΩR, depending smoothly on x.

Indeed, since dρL has rank d near x, locally we can pick coordinates in ΩR such that

ρ−1
L ({x}) = {(x, y1, ..., yn, g(y1, ..., yn)), (y1, ..., yn) ∈ U}

for some smooth function g : Rn → Rd−n. In these coordinates

ρRρ
−1
L ({x}) = {(y1, ..., yn, g(y1, ..., yn)), (y1, ..., yn) ∈ U},

hence Mx is locally a n-dimensional manifold in ΩR.

Helgason [34] observed that we can construct a dual operator associated toM by the

same argument; My = ρLρ
−1
R ({y}) are also smooth immersed n-dimensional manifolds

smoothly depending on y ∈ ΩR. This perspective gives rise to two operators,

Rf(x) =

∫
Mx

f

and its adjoint

R∗g(y) =

∫
My

g. (2.2)

These two operators, integrating over dual fibers of the same incidence relation, allowed

Helgason to develop inversion formulas for more general Radon-like operators over ho-

mogeneous spaces which satisfy this double fibration condition (see for example [34]).

For our purposes, the fact that R and R∗ share the same incidence relation will be

important in relating the microlocal behaviors of R and R∗, a relationship observed by

Hormander in [35].
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A local Radon-like transform R can be related to an oscillatory integral by writing

the Schwartz kernel of R as an oscillatory integral distribution. Since M is embedded

in ΩL×ΩR ⊂ R2d, in a neighborhood of some reference point P ◦ = (x◦, y◦) ∈M we can

use the implicit function theorem to find a smooth Rd−n-valued function Φ such that

near P ◦

M = {(x, y) ∈ ΩL × ΩR : Φ(x, y) = 0}.

The Schwartz kernel of R is then given by the measure χδ ◦ Φ, where δ is the Dirac

measure on Rd−n, and χ is C∞ and compactly supported near P ◦ ∈ ΩL ×ΩR, which we

can take to be the origin in Rd × Rd. Thus by the Fourier inversion formula in Rd−n

Rf(x) =

∫
{y∈Rd : Φ(x,y)=0}

f(y)χ(x, y) dy

=

∫
χ(x, y)δ ◦ Φ(x, y)f(y) dy

=

∫
Rd

∫
Rd−n

e2πiτ ·Φ(x,y)χ(x, y)f(y) dτ dy, (2.3)

where τ ·Φ(x, y) =
∑d−n

i=1 τiΦ
i(x, y). The formula (2.3) reveals that R is an example of a

Fourier integral operator (FIO), the theory of which we will discuss in the next section.

First, we note that the assumption that ρL, ρR are submersions implies that R is locally

a bounded operator on L1(Rd) and L∞(Rd), and hence all Lp(Rd), 1 ≤ p ≤ ∞.

Lemma 2.1 ([25, p. 4]). Suppose that R and M are defined as above and the natu-

ral projections ρL : M → ΩL, ρR : M → ΩR are submersions. Then R extends to

continuous operator

R : Lpcomp(ΩR)→ Lploc(ΩL), 1 ≤ p ≤ ∞.

Proof. Let v0 ∈ C∞c (ΩL) and K ⊂ ΩR be a compact set; let H = supp v0. Let η ∈

C∞c (Rd−n) such that 0 ≤ η ≤ 2V (d−n)−1,
∫
η = 1, and supp η ⊂ B1(0), where V (d−n)
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is the volume of the ball of radius 1 in Rd−n. Then ε−(d−n)η
(
x
ε

)
converges in the sense

of distributions to the Dirac delta function on Rd−n as ε → 0+. Thus for f ∈ C∞c (ΩR)

supported in K,

Rf(x) = lim
ε→0+

∫
χ(x, y)ε−(d−n)η

(Φ(x,y)
ε

)
f(y) dy.

To prove that R is bounded on L1, we estimate∫ ∣∣∣ lim
ε→0+

∫
v0(x)χ(x, y)ε−(d−n)η

(Φ(x,y)
ε

)
f(y) dy

∣∣∣ dx.
By Fatou’s Lemma this is bounded by

lim inf
ε→0+

∫ ∫ ∣∣v0(x)χ(x, y)ε−(d−n)η
(Φ(x,y)

ε

)
f(y)

∣∣ dy dx
Interchanging the order of integration and applying Hölder’s inequality to pull out ‖f‖L1 ,

it suffices to estimate the expression

sup
y∈K

∫ ∣∣v0(x)χ(x, y)ε−(d−n)η
(Φ(x,y)

ε

)∣∣ dx.
uniformly in ε. As η is supported in the unit ball, for fixed y ∈ K the function

v0(x)χ(x, y)η
(Φ(x,y)

ε

)
is supported in the set

Ey = {x ∈ H : |Φ(x, y)| < ε}.

Since ρR is a submersion, Ey is the ε-neighborhood of the immersed n-dimensional

manifold My. Applying the implicit function theorem we can represent My locally as

the graph of a Rd−n-valued C1 function in a neighborhood U = U × V ⊂ ΩL × ΩR of a

fixed point (x0, y0) ∈ M. On this set we see that |Ey ∩ U | ≤ Cεd−n uniformly in y. As

H×K ⊂ ΩL×ΩR is compact, we can cover H×K by finitely many such neighborhoods

U ; thus by a partition of unity we see that

sup
y∈K

∫ ∣∣v0(x)χ(x, y)ε−(d−n)η
(Φ(x,y)

ε

)∣∣ dx ≤ Cd,n‖v0χ‖L1
xL
∞
y
.
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Thus

lim inf
ε→0+

∫ ∫ ∣∣v0(x)χ(x, y)ε−(d−n)η
(

Φ(x,y)
ε

)
f(y)

∣∣ dy dx ≤ C‖χ‖L1(H)L∞(K) ‖f‖L1(ΩR)

Next we prove the estimate on L∞. For fixed x ∈ H, v0(x)χ(x, y)η
(Φ(x,y)

ε

)
is sup-

ported in the set

Ex = {y ∈ K : |Φ(x, y)| ≤ ε}.

Again, since ρL is a submersion, Ex is the ε-neighborhood of the immersed n-dimensional

manifold Mx. Applying the implicit function theorem we can represent Mx locally as

the graph of a Rd−n-valued C1 function in a neighborhood U = U × V ⊂ ΩL × ΩR of a

fixed point (x0, y0) ∈M. On this neighborhood we see that |Ex∩V | ≤ Cεd−n uniformly

in x. Applying a partition of unity on the finite cover of H ×K obtained by the same

argument as in the L1 case, we see that∣∣∣ lim
ε→0+

∫
v0(x)χ(x, y)ε−(d−n)η

(Φ(x,y)
ε

)
f(y) dy

∣∣∣ ≤ Cd,n‖f‖L∞(ΩR)‖χ‖L∞(H×K).

Interpolating between L1 and L∞ yields the desired Lp estimates for 1 ≤ p ≤ ∞.

2.1 Fourier Integral Operators

Let X, Y be open sets of Rd. A Fourier integral operator F is locally given by a

sum of oscillatory integral operators of the form

Ff(x) =

∫ ∫
e2πiφ(x,y,θ)a(x, y, θ)f(y) dy dθ,

where θ ∈ RN for some N , x ∈ X, y ∈ Y , φ, a ∈ C∞(X×Y ×RN), ∇φθi are independent

at {φθ = 0}, and φ satisfies a homogeneity condition φ(x, y, tθ) = tφ(x, y, θ) for |θ| = 1
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and t � 1. We say F is a FIO of order µ if a ∈ Sµ+(d−N)/2, the standard symbol class

of order µ+ (d−N)/2, for each F . The canonical relation associated to F is locally

given by

C = {(x, φx, y,−φy) : φθ = 0},

and we assume that C ⊂ T ∗X \ 0× T ∗Y \ 0, where T ∗X \ 0 = {(x, ξ) ∈ T ∗X : ξ 6= 0}.

Staying away from the zero-sections in T ∗X and T ∗Y implies that

|φx(x, y, θ)| ≈ |θ| ≈ |φy(x, y, θ)|

when φθ is small, hence C is conic (in the (ξ, η)-variables) [25]. If σX and σY are the

canonical 2-forms on T ∗X and T ∗Y respectively, then C is Lagrangian with respect to

the symplectic form σX −σY [20, § 3.6]. As explored in the work of Hörmander [35] and

the general theory of FIOs, the L2-Sobolev regularity of a Fourier integral operator F

depends on the geometry of its canonical relation, more specifically the geometry of the

natural projections

C

T ∗ΩL T ∗ΩR

πL πR (2.4)

If C is locally the graph of a canonical transformation, meaning that πL and πR are

locally diffeomorphisms, then we have the following theorem, due to Hörmander [35] as

a consequence of his work developing a calculus for FIOs.

Theorem 2.2 ([35], cf. [25, p. 4]). Suppose F is a Fourier integral operator of order µ

associated to a canonical relation which is locally the graph of a canonical transformation.

Then for all s ∈ R, F extends to a continuous operator from L2
s,comp(Y ) into L2

s−µ,loc(X).

If the canonical relation associated to F is locally the graph of a canonical transfor-

mation, we say that F is associated to a local canonical graph.
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2.2 Applications to Local Radon-like Transforms

Given this context, R, as described in (2.3), is a FIO of order −n/2 (as χ(x, y) is a

symbol of order 0), and the canonical relation associated to R is given by

(N∗M)′ =
{

(x, (τ · Φ)x, y,−(τ · Φ)y), : Φ(x, y) = 0
}
. (2.5)

The set (N∗M)′ is related to the conormal bundle of the incidence relation M (hence

the notational similarity) by

(N∗M)′ =
{

(x, ξ, y,−η) : (x, y, ξ, η) ∈ N∗M
}
,

hence we refer to (N∗M)′ as the twisted conormal bundle ofM. Recall the conormal

bundle of a manifold M is given by

N∗M = {(x, y, ξ, η) ∈ T ∗(ΩL × ΩR) \ {0} : (ξ, η) ⊥ T(x,y)M}

Note that the diagram (2.4) corresponds to a refinement to the cotangent spaces of the

double fibration formalism (2.1). Note that since the adjoint (2.2) shares an incidence

relation with R, the canonical relation associated to R∗ is the inverse image of (N∗M)′

under the map T ∗ΩR × T ∗ΩL → T ∗ΩL × T ∗ΩR, interchanging the two factors. This in

turn interchanges the projections πL and πR between R and R∗. This symmetry allows

us to state theorems with assumptions on πL without loss of generality, as we can treat

the adjoint to interchange to the projections.

Since the projections in (2.1) are submersions, we can choose local coordinates to

parametrize M as a graph so that

Φ(x, y) = S(x, y′′)− y′
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with y′ = (y1, ..., yn′), y
′′ = (yn′+1, ..., yd), and S = (S1, ..., Sn

′
). Recall that n′ = d − n

is the codimension of Mx ⊂ ΩL. This process is described in detail in [46] in the case

d = 3, n = 1, and is presented below for general d and n.

Indeed, since ρL is a submersion the n′ × d matrix Φy has rank n′, so by a linear

change of variables in y we can find coordinates y′ (defined above) so that det(∇y′Φ) 6= 0

near a reference point y◦. Then by the implicit function theorem, we can choose (x, y′′)

as local coordinates on M so that the equation Φ(x, y) = 0 is equivalent to

yi = Si(x, y′′), i = 1, ..., n′ (2.6)

near y◦. Thus we can write

Φ(x, y) =
n′∑
i=1

(Si(x, y′′)− yi)Bi(x, y), (2.7)

where

Bi(x, y) = −
∫ 1

0

Φyi

(
x, S(x, y′′) + s(y′ − S(x, y′′)), y′′

)
ds.

Since Φy has rank n′, Φyi are linearly independent onM, hence if we choose χ supported

sufficiently close toM we can ensure that Bi are linearly independent as well. Thus we

can rewrite (2.7) as

Φ(x, y) = B(x, y)
(
S(x, y′′)− y′

)
,

where B(x, y) is a n′ × n′ invertible matrix whose column vectors are Bi. Additionally,

since ρR is a submersion the gradients {Six(x, y′′)}i=1,..,n′ are linearly independent as well,

so through a change of variables we can rewrite (2.3) as∫
χ(x, y)δ ◦ Φ(x, y)f(y) dy =

∫
χ(x, y)

| det(B(x, y))|

∫
e2πiτ ·(S(x,y′′)−y′) dτf(y) dy. (2.8)

By redefining χ we have parametrized M as the graph y′ = S(x, y′′).
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Given these changes of variables, the twisted conormal bundle associated to R is

given by

(N∗M)′ =
{

(x, ξ, y, η) : y′ = S(x, y′′), ξ =
n′∑
i=1

τiS
i(x, y′′),

η =
(
τ,−

n′∑
i=1

τiS
i
y′′(x, y

′′)
)}
.

Thus parametrizing (N∗M)′ by the coordinates (x, τ, y′′), the projection πL is identified

with the map

π̃L : (x, τ, y′′) 7→
(
x,

n′∑
i=1

τiS
i
x(x, y

′′)
)

(2.9)

and the projection πR is identified with the map

π̃R : (x, τ, y′′) 7→
(
S(x, y′′), y′′, τ,−

n′∑
i=1

τiS
i
y′′(x, y

′′)
)

(2.10)

From these identifications we can see that the rank of the differentials of πL and πR must

be equal; this is a more general consequence of the canonical relation being Lagrangian

(see [35]). Since we can identify the differential of πL and πR with the Jacobians of π̃L

and π̃R respectively, we see that

corank dπL = corank

 Id×d 0d×n′ 0d×n

(τ · S)xx Sx (τ · S)xy′′


= corank

(
Sx (τ · S)xy′′

)
(2.11)
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and

corank dπR = corank



(Sx)
ᵀ 0n′×n′ (Sy′′)

ᵀ

0n×d 0n×n′ In×n

0n′×d In′×n′ 0n′×n

(τ · S)y′′x Sy′′ (τ · S)y′′y′′


= corank

 (Sx)
ᵀ

(τ · S)y′′x

 . (2.12)

This implies in particular that πL is a local diffeomorphism if and only if πR is a local

diffeomorphism.

2.3 Inherent Singularities

In the case of local Radon-like transforms over families of hypersurfaces the local canon-

ical graph condition of Theorem 2.2 coincides the notion of nonvanishing rotational

curvature [53], given by the invertibility of the matrixτ · Φxy Φy

Φᵀ
x 0

 .

However, if the codimension of Mx exceeds 1 then the local canonical graph condition

does not generically hold. In fact, as noted by Gressman in [32] (using the language of

rotational curvature), the projections πL and πR must be singular unless d and n satisfy

a strict number-theoretic relation. We reproduce his result below.

Lemma 2.3 ([32, Theorem 3]). Suppose that R,M, and the projections πL, πR are

defined as above. Suppose that n (the dimension of the manifolds Mx) factors into the
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form 24q+rs for integers q, r, s, such that s is odd and 0 ≤ r ≤ 3. Then if d − n (the

codimension of the manifolds Mx) exceeds 8q + 2r, then R is not associated to a local

canonical graph. Specifically, for every point (x, y) ∈ M there is a P = (x, ξ, y, η) ∈

(N∗M)′ such that (dπL)P and (dπR)P are singular.

Proof. Fix (x, y) ∈ ΩL × ΩR. As discussed above, it suffices to check whether (dπL) is

invertible at a point P = (x, ξ, y, η). As noted above, we can identify πL with the map

(2.9), so by (2.11), dπL is invertible if and only if the matrix(
S1
x(x, y

′′) · · · Sn
′

x (x, y′′)
∑

i τiS
i
xyn′+1

(x, y′′) · · ·
∑

i τiS
i
xyd

(x, y′′)

)
is invertible. Since {Six}i are linearly independent, dπL is invertible if and only if

rank

(∑
i τiS

i
xyn′+1

(x, y′) · · ·
∑

i τiS
i
xyd

(x, y′′)

)
= n.

By renaming and possibly reordering coordinates, this is equivalent to invertibility of

∑
i

τi


Sixn′+1yn′+1

(x, y′′) · · · Sixn′+1yd
(x, y′′)

...
. . .

...

Sixdyn′+1
(x, y′′) · · · Sixdyd(x, y

′′)

 .

Since τ may be any nonzero vector in Rd−n, for fixed x, y′ we are asked to find a family

of d− n real matrices of dimension n× n such that every linear combination of them is

invertible. If such a family of matrices exists then it is easy to construct S(x, y′′), linear

in x and y′′, for which the associated projections πL and πR are local diffeomorphisms;

if no such family exists then for every choice of S(x, y′′) and every (x, y′′) we can find

some τ 6= 0 such that πL (and hence πR) is singular at (x, y′′, τ).

The existence of such families of matrices has been completely characterized for some

time, originally due to Adams, Lax, and Phillips in [1, 2] (see also a minor correction in
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[3]). In particular, the maximal number of n×n real matrices for which every nontrivial

linear combination is invertible is given by the Radon-Hurwitz function ρ(n) = 8q + 2r,

where q and r are defined as in the statement of this lemma.

The possible values of d and n′ which admit examples of R associated to a local

canonical graph are few and far between. A table of such pairs (n′, d) is shown in Figure

1.

n′\d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 X X X X X X X X X X X X X X X

2 × X X X X X X X

3 × × X X X

4 × × × X X X

5 × × × × X

6 × × × × × X

7 × × × × × × X

8 × × × × × × × X

Figure 1: Pairs (n′, d) which admit local Radon-like transforms R satisfying the condi-

tions of Lemma 2.2

For example, if n is odd then for the local canonical graph condition to hold n′ must

equal 1 (This phenomenon is essentially the observation made by Christ in [10] in the

setting of Fourier restriction). In general, one can only expect to find examples of local

Radon-like transforms over families of manifolds of large codimension which satisfy the
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conditions of Theorem 2.2 if n is divisible by a large power of 2, and even then the

possible codimension n′ only grows logarithmically with n. This severely restricts the

application of Theorem 2.2; in particular, local Radon-like transforms over families of

curves in Rd must have singular projections πL and πR unless d = 2.

We can observe this degeneracy directly for averages over curves in Rd, d ≥ 3 by

parametrizing the projections πL and πR. Recalling our definition of Φ from (2.8), after

a change of coordinates we can parametrize M as a graph

Φ(x, y) = S(x, yd)− y′

with y′ = (y1, ..., yd−1) ∈ Rd−1 and S = (S1, ..., Sd−1). Then the condition that πL is

locally diffeomorphic is equivalent to the nonvanishing of the determinant

det

τ · Φxy Φx

ᵀΦy 0

 = (−1)n det
(
τ · Sxyd Sx

)
for all τ ∈ Sd−2. This determinant is a linear functional in τ , and thus for each fixed

(x, y) vanishes for all τ in a hyperplane.

2.4 Classification of Singularities

In light of Lemma 2.3, it is unsurprising that many local Radon-like transforms encoun-

tered in the literature are associated to canonical relations with singular projections.

Recall that in view of the symplectic structure of T ∗ΩL × T ∗ΩR we always have

rank dπL = rank dπR,

but the behavior of the singularities of πL and πR may differ. In this section we explore

different notions of singularities which can and do occur in the projections πL and πR.
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Here we focus on the case corank dπL(R) ≤ 1, which is the situation when the manifolds

Mx are curves.

Let X, Y be smooth d-dimensional manifolds, and π : X → Y a smooth map between

them. We call a smooth vector field V on a neighborhood U of P ∈ X a kernel field

of π if V is not identically zero, is smooth on U , and if there exists a smooth vector

field W on π(U) so that dπPV = det(dπP )Wπ(P ) for all P ∈ U . Note that this definition

implies VP ∈ ker dπP for every P ∈ X such that det dπP = 0, hence why these vector

fields are called kernel fields. As shown by Greenleaf and Seeger in [26], on the set

L = {P ∈ X : det(dπ)P = 0} (2.13)

kernel fields are unique up to scaling by smooth functions.

Lemma 2.4 ([26, pp. 2-3]). If corank (dπ)P ≤ 1 then there is a kernel field of π defined

in a neighborhood of P . Moreover, if V and Ṽ are both kernel fields on U , then Ṽ =

αV − det(dπ)W for some smooth function α and smooth vector field W .

Proof. Following [26], assume corank (dπ)P ≤ 1, and P ∈ X. Then we can pick coor-

dinates (x′, xd) on X and (y′, yd) on Y vanishing at P and π(P ) respectively so that

(dπ)P =
(
A p
qᵀ r

)
, where A is an invertible (d − 1) × (d − 1) matrix, p and q are vectors

in Rd−1, r ∈ R, and A, p, q, and r depend smoothly on x. Define a vector field V =

∂xd−〈A−1p, ∂x′〉. We see that dπ(V ) = (r−qᵀA−1p)∂yd , and det dπ = (r−qᵀA−1p) detA;

thus V is a kernel field.

Furthermore, assume that Ṽ = 〈β′, ∂x′〉+ βd∂xd is also a kernel field of π near P , i.e.

dπ(Ṽ ) = det(dπ)W̃ , where W̃ = 〈σ′, ∂y′〉 + σd∂yd , and β = (β′, βd) and σ = (σ′, σd) are

smooth functions of x and y respectively. Then, at any x, Aβ′ + pβd = det(dπ)σ′; since
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A is invertible this implies that β′ = det(dπ)A−1σ′ − A−1pβd, and therefore

Ṽ = βdV + det(dπ)〈A−1σ′, ∂x′〉.

We say π drops rank simply at a point P if rank (dπ)P = d−1 and d(det dπ)P 6= 0.

By an application of the implicit function theorem we see that if π drops rank simply at

P , then L is locally a hypersurface near P . If we assume π drops ranks simply whenever

it is singular then we can classify many types of singularities that π may exhibit using

kernel fields. The first type is called a Whitney fold, introduced by Whitney in [57].

Definition 2.5. We say π has a Whitney fold at P ∈ X if π drops rank simply at P

and V det(dπ)P 6= 0 for any (and therefore every) kernel field V .

The prototypical example of a map with a Whitney fold is f : (x, y) 7→ (x, y2). This

is also in some sense the only example of a Whitney fold, since in local coordinates every

Whitney fold can be expressed as the graph of a parabola in the final two coordinates.

We can see the “fold” more clearly if we consider f as a composition of the maps

(x, y) 7→ (x, y, y2) 7→ (x, y2),

illustrated in Figure 2. The map f “folds” the lower half plane onto the upper half

plane, and the crease of this fold is the line y = 0. Unsurprisingly, this crease is also

the set on which f exhibits a Whitney fold. Indeed, the differential of f at (x, y) is the

2 × 2 matrix
(

1 0
0 2y

)
, which drops rank by 1 when y = 0, and the determinant of the

differential of f vanishes to order 1 in the dy direction, which is also the direction of the

kernel of df , along {y = 0}.
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→ →

Figure 2: Prototypical Whitney Fold

In this work we consider local Radon-like transforms for which at least one of the

projections πL, πR has at most fold singularities. For the purpose of simplicity we shall

usually assume that this map is πL, although analogous results can be derived easily

from the mapping properties of the adjoint (2.2).

The essential characteristic of a Whitney fold is the order 1 vanishing of the determi-

nant of dπ in the direction of the kernel of dπ. A natural generalization of this condition

is due to Comech, who proposed the following classification of singularities of finite type.

Definition 2.6 ([15, p. 3]). We say π is of type k at P if π drops rank simply at P

and for all j < k we have V j det(dπ)P = 0, but V k det(dπ)P 6= 0.

We say π has maximal type k if at every point in its domain, π is either nonsin-

gular or is type j with j ≤ k.

From this definition we see that a Whitney fold is equivalent to a type 1 singu-

larity. The Morin singularities (cusps, swallowtails, etc.) are examples of finite type

singularities which are stable under perturbations, but we will not discuss them fur-

ther here (see [33]). An example of a map with a type k singularity is gk : (x, y, z) 7→
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Figure 3: Surface L associated to g3

(x, y, xz + 1
k+1

yzk+1). The differential of gk is given by

dgk
∣∣
(x,y,z)

=


1 0 0

0 1 0

z zk+1 x+ yzk



and gk drops rank simply along the surface L defined by x = −yzk, which contains

the y- and z-axes. This surface is illustrated in Figure 3 in the case k = 3. A kernel

field for gk along this surface is ∂z, and ∂z det(dg) = kyzk−1. This quantity is nonzero

on almost all of L, implying that gk has Whitney folds on almost all of L. However, gk

is of type k along the y- and z- axes, where kyzk−1 = 0.

While there are many exotic singularities which do not fall into the classes described

above, there is arguably one “worst” case, when π is maximally degenerate.

Definition 2.7 (cf. [25, p. 5]). We say π is a blowdown on L if π drops rank simply

on L, but every kernel field V of π, when restricted to L, is everywhere tangential to L.

Note that the blowdown condition implies that V k(det dg)
∣∣
P

= 0 for all k ∈ N and all

P ∈ L. An example of a blowdown is the map h : (x, y, z) 7→ (x, y, yz). The differential
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of h is

dh(x,y,z) =


1 0 0

0 1 0

0 z y


which is singular along the plane y = 0. A kernel field for h along {y = 0} is ∂z, which

lies tangent to the plane y = 0 everywhere.
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Chapter 3

History of Results

3.1 History of Results on L2

The L2-Sobolev regularity of R is well-studied when one of πL, πR projects with only

fold singularities. The first results in this case are due to Melrose and Taylor [37] in

the context of scattering of plane waves. They proved L2-Sobolev results in the case

when both πL and πR project with only fold singularities; a canonical relation with this

property is called a folding canonical relation . Phong and Stein, motivated by the

earlier work of [52] and [17], were instrumental in unifying the subject by introducing a

dyadic frequency decomposition relative to L that became crucial to proving L2-Sobolev

estimates. We will use a modified version of their argument in Chapter 8. We state three

results that will be crucial for this work. First, we describe the L2-Sobolev boundedness

of R associated to a folding canonical relation.

Theorem 3.1 ([37, 40]). Suppose that both πL and πR project with only fold singularities.

Then R extends to a continuous operator

R : L2
s,comp(ΩR)→ L2

s+n
2
− 1

6
,loc

(ΩL).

Greenleaf and Seeger proved a uniform estimate of L2 regularity under the assump-

tion that one of the projections πL, πR has only fold singularities, with no assumption
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on the other projection.

Theorem 3.2 ([23, Theorem 1.1]). Suppose that one of the projections πL, πR has max-

imal type 1. Then for s ∈ R, R extends to a continuous operator

R : L2
s,comp(ΩR)→ L2

s+n
2
− 1

4
,loc

(ΩL).

As was shown in [28, 29], this L2 regularity estimate is sharp for local Radon-like

transforms associated to canonical relations where one projection has at most fold sin-

gularities and the other has a blowdown singularity; a canonical relation with such a

configuration of projections is called a fibered folding canonical relation .

However, when one of the projections has only fold singularities and the other is less

degenerate than a blowdown one might expect better L2 regularity. This was proven in

the finite type case by Comech, who obtained a sharp loss of s(k) = (4+ 2
k
)−1 derivatives

if one of πL and πR has only fold singularities, and the other has maximal type k.

Theorem 3.3 ([15, Theorem 1.1]). Suppose that one of the projections πL, πR has maxi-

mal type 1 and the other has maximal type k. Then for s ∈ R, R extends to a continuous

operator

R : L2
s,comp(ΩR)→ L2

s+n
2
−s(k),loc(ΩL).

Note that for curves in R3 the quantity n
2
− s(k) ranges between 1

3
for folding canon-

ical relations and 1
4

for fibered folding canonical relations, interpolating between the

regularity results in Theorems 3.1 and 3.2.

L2-Sobolev estimates are also known for larger classes of singularities, such as two-

sided and one-sided cusps ([16, 24]), and higher order singularities ([25, 26, 18]). While



29

much progress has been made in L2, sharp Lp-Sobolev regularity has largely been out

of reach for local Radon-like transforms R for arbitrary dimensions d and n.

As a first attempt at Lp-Sobolev regularity we can interpolate the estimates of these

three theorems with the Lp estimates of Lemma 2.1. However, we cannot interpolate

L1 or L∞ with a Sobolev space to obtain Lp-Sobolev estimates; instead we adapt an

analytic interpolation method due to Fefferman and Stein [21] involving Hardy space

estimates.

Proposition 3.4. Let R be a local Radon-like transform. Assume there exists α > 0

such that R extends to a bounded operator

R : L2
comp(ΩR)→ L2

α,loc(ΩL). (3.1)

Then for 1 < p < 2, R is bounded from Lpcomp(ΩR) to Lpα(p),loc(ΩL) where α(p) =

(2α− 2α
p

). Note that α(2) = α.

We will prove Proposition 3.4 in Chapter 7. Applying the result to R and R∗ we

obtain the following Lp regularity estimates.

Theorem 3.5. Suppose that R is a local Radon-like transform such that πL projects

with folds. Let k be the maximal type of πR, with k =∞ and s(∞) = limk→∞ s(k) if πR

does not have maximal type. Then R extends to a bounded operator from Lpcomp(ΩR) to

Lps,loc(ΩL), where (1/p, s) lies within the shaded region of Figure 4.

These Lp-Sobolev estimates are not sharp. Results exist for improvements to this

range which are sharp in the plane [50, 51]. More recently, sharp results on Lp have

been proven for local Radon-like transforms over families of curves in R3, which will be

the focus of this work.
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1/2 1

n
2
− s(k)

1/p

s

0

Figure 4: A priori Lp → Lps mapping for R with one-sided fold singularities

3.2 An Example of Sharp Lp Regularity

We introduce the discussion of sharp Lp regularity with an example. Let γ : [0, 1]→ R3

be smooth and regular (i.e. γ is C∞ and γ′ 6= 0), and let χ be a smooth nonnegative

function supported on [0, 1]. We can define a measure µ supported on γ given by

〈f, µ〉 =
∫
f(γ(t))χ(t) dt. Then the convolution operator

ARf(x) = f ∗ µ(x) =

∫ 1

0

f(x− γ(t))χ(t) dt (3.2)

is an example of a local Radon-like transform associated to the family of curves Mx =

{x − γ(t) : t ∈ [0, 1]} in R3. In [45], Pramanik and Seeger proved that AR satisfies

sharp Lp-Sobolev estimates for sufficiently large p provided AR is associated to folding

canonical relations.

In this section we will investigate which class of curves γ are associated with folding

canonical relations for AR and examine the proof of Pramanik and Seeger’s result, as the

techniques introduced in [45] provide the foundation for later sharp Lp-Sobolev regularity

results.

Since γ′ 6= 0 we may choose coordinates so that locally γ(t) = (γ1(t), γ2(t), t). Then
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the incidence relation associated to AR is given by

M = {(x, y) : Φ(x, y) = 0}

where Φ = (Φ1,Φ2)ᵀ, and Φi(x, y) = xi − yi − γi(x3 − y3) for i = 1, 2. The twisted

conormal bundle of M is then

(N∗M)′ =
{

(x, ξ, y, η) : yi = xi − γi(x3, y3), i = 1, 2,

ξ = η =
(
τ1, τ2,−τ1γ

′
1(x3 − y3)− τ2γ

′
2(x3 − y3)

)}
In the coordinates induced by Φ we can identify the differentials of πL and πR with the

Jacobians of the maps

π̃L : (x, y3, τ) 7→ (x, τ1, τ2,−τ1γ
′
1(x3 − y3)− τ2γ

′
2(x3 − y3))

π̃R : (x, y3, τ) 7→
(
x1 − γ1(x3 − y3), x2 − γ2(x3 − y3), y3

τ1, τ2,−τ1γ
′
1(x3 − y3)− τ2γ

′
2(x3 − y3)

)
respectively. We obtain (dπL)

∣∣
(x,y3,τ)

=
(
I 0
A B

)
, where

B =


1 0 0

0 1 0

−γ′1(x3 − y3) −γ′2(x3 − y3) τ1γ
′′
1 (x3 − y3) + τ2γ

′′
2 (x3 − y3)

 ,

and (dπR)
∣∣
(x,τ,y3)

equals

1 0 −γ′1(x3 − y3) 0 0 γ′1(x3 − y3)

0 1 −γ′2(x3 − y3) 0 0 γ′2(x3 − y3)

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 −τ · γ′′(x3 − y3) −γ′1(x3 − y3) −γ′2(x3 − y3) τ · γ′′(x3 − y3)


.
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Calculating the determinant of both of these matrices, we see that

det(dπL)
∣∣
(x,y3,τ)

= − det(dπR)
∣∣
(x,y3,τ)

= τ1γ
′′
1 (x3 − y3) + τ2γ

′′
2 (x3 − y3).

Thus both πL and πR are singular on the set τ · γ′′(x3 − y3) = 0; if we assume that

γ has nonvanishing curvature (i.e. γ′′(t) 6= 0) then this condition is only satisfied for

a 1-parameter family of τ ∈ R2, specifically (τ1, τ2) = ρ(−γ′′2 (x3 − y3), γ′′1 (x3 − y3)) for

ρ ∈ R. Thus

L = {P ∈ (N∗M)′ : det(dπL)|P = 0}

=
{

(x, ξ, y, η) : yi = xi − γi(x3 − y3), i = 1, 2

ξ = η =
(
τ1, τ2,−τ1γ1(x3 − y3)− τ2γ2(x3 − y3)

)
(τ1, τ2) = ρ(−γ′′2 (x3 − y3), γ′′1 (x3 − y3)), ρ ∈ R

}
. (3.3)

Kernel fields for πL and πR are given by VL = ∂y3 and VR = γ′1(x3− y3)∂x1 + γ′2(x3−

y3)∂x2 +∂x3 respectively. Since det(dπL) and det(dπR) are identical (up to a minus sign)

and are functions of τ and x3 − y3 (in particular they are constant in x1, x2), the types

of πL and πR at a particular point in (N∗M)′ will always be identical. Indeed, for any

k ∈ N

V k
L det(dπL)

∣∣∣
τ ·γ′′(x3−y3)=0

= (−1)kτ · γ(k+2)(x3 − y3)
∣∣∣
τ=ρ
(
−γ′′2 (x3−y3),γ′′1 (x3−y3)

)
= (−1)kρ det

(
γ′′1 (x3−y3) γ′′2 (x3−y3)

γ
(k+2)
1 (x3−y3) γ

(k+2)
2 (x3−y3)

)
(3.4)

V k
R det(dπR)

∣∣∣
τ ·γ′′(x3−y3)=0

= (−1)k+1τ · γ(k+2)(x3 − y3)
∣∣∣
τ=ρ
(
−γ′2(x3−y3),γ′′1 (x3−y3)

)
= (−1)k+1ρ det

(
γ′′1 (x3−y3) γ′′2 (x3−y3)

γ
(k+2)
1 (x3−y3) γ

(k+2)
2 (x3−y3)

)
. (3.5)

Since the absolute value of these two expressions are equal both must vanish on the same

set. Thus we can summarize the conditions on which πL and πR have maximal type k.
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Proposition 3.6. Let I be a compact interval, and suppose γ : I → R3 is a smooth

compactly supported curve such that γ′(t), γ′′(t) 6= 0 for all t ∈ I. For each t ∈ I let

kt ≥ 1 be the smallest integer such that

det
(
γ′(t) γ′′(t) γ(kt+2)(t)

)
6= 0. (3.6)

Suppose that maxt∈I kt = K. Then πL and πR both have maximal type K.

Proof. As above we may assume that γ1(t) = t by a change of variables. This applied to

(3.6) immediately yields the expression (3.4) (and (3.5)) at any point P = P (x, y3, τ) ∈

(N∗M)′ such that x3 − y3 = t and τ · γ′′(x3 − y3) = 0. Thus all that remains is to

check that πL and πR drop rank simply at P . This is not hard to see, as ∇τ det(dπL) =

−∇τ det(dπR) = γ′′(t) 6= 0. Hence πL and πR are type kt at points such that x3−y3 = t,

and have maximal type K if the maximum exists.

In particular, we see that πL and πR have only fold singularities if and only if

det
(
γ′′1 (x3−y3) γ′′2 (x3−y3)

γ′′′1 (x3−y3) γ′′′2 (x3−y3)

)
6= 0.

Note that γ(t) has nonvanishing curvature and torsion if and only if γ′(t), γ′′(t), γ′′′(t)

are linearly independent, or equivalently if

det

(
γ′(t) γ′′(t) γ′′′(t)

)
= det


1 0 0

γ′2(t) γ′′2 (t) γ′′′2 (t)

γ′3(t) γ′′3 (t) γ′′′3 (t)

 6= 0.

Thus the condition that the only singularities of πL (and thus πR) are folds is equivalent

to the condition that γ has nonvanishing curvature and torsion. Under this condition,
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Pramanik and Seeger used the fact that AR is a Fourier multiplier to prove the following

sharp result.

Theorem 3.7 ([45, Theorem 1.1]). If γ is a smooth regular curve with nonvanishing

curvature and torsion then AR is bounded from Lp(R3)→ Lp1/p(R
3) for p > 4.

The proof of Theorem 3.7 relies on an observation about the non-isotropic decay of

the Fourier transform of the measure µ. Let µ̂ be the Fourier transform of µ, given by

µ̂(ξ) =

∫
e−2πi〈ξ,γ(t)〉χ(t) dt. (3.7)

If γ has nonvanishing curvature and torsion then γ′(t), γ′′(t), γ′′′(t) span R3 for each

t ∈ [0, 1]; thus there is a constant c > 0 such that for every ξ ∈ R3 \ 0 at least one of the

inequalities

|〈ξ, γ′(t)〉| ≥ c|ξ| > 0

|〈ξ, γ′′(t)〉| ≥ c|ξ| > 0

|〈ξ, γ′′′(t)〉| ≥ c|ξ| > 0

must hold. Applying the method of nonstationary phase and Van der Corput’s Lemma

to (3.7) shows that µ̂ decays at a uniform rate

|µ̂(ξ)| ≤ C|ξ|−1/3. (3.8)

Since µ̂(ξ) is also bounded by ‖χ‖1 we conclude

(1 + |ξ|2/3)1/2µ̂(ξ)

is a Fourier multiplier on L2(R3), hence by Plancherel’s theorem AR maps L2(R3) →

L2
1/3(R3) boundedly, matching the regularity of Theorem 3.3 in the case of folding canon-

ical relations.
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However, there are many directions in which µ̂ decays faster than the estimate (3.8).

Suppose θ ∈ C∞c (R3) is a smooth cutoff function such that for ξ ∈ supp θ, we have

|〈ξ, γ′(t)〉|+ |〈ξ, γ′′(t)〉| ≥ c|ξ|

for some c > 0 uniformly for all t ∈ [0, 1]. Then by Van der Corput’s Lemma

|θ(ξ)µ̂(ξ)| ≤ C|ξ|−1/2.

By the same argument as above this implies that (1 + |ξ|)1/2θµ̂ is a Fourier multiplier on

L2(R3), meaning that the operator f ∗F−1[θµ̂] is bounded from L2(R3)→ L2
1/2(R3), the

same regularity as Theorem 2.2, when the canonical relation is a local graph. The set

of ξ which do not lie in the support of θ is a neighborhood of the conic set of directions

binormal to γ,

B = {ργ′(t) ∧ γ′′(t) : ρ ∈ R, t ∈ I}. (3.9)

If γ has nonvanishing curvature and torsion B is a cone with one nonvanishing principal

curvature. For example, if γ is the moment curve γ(t) = (t, t2, t3), the set B is given by

B = {ρ(3t2,−3t, 1) : ρ ∈ R, t ∈ I}.

An important observation made by Pramanik and Seeger is that B coincides exactly

with the fibers of πL(L) [45]. Indeed, for each x we define the fibers of πL(L) to be

Σx = {ξ : (x, ξ) ∈ πL(L)}. (3.10)

Then given the parametrization of L from (3.3) we see that

Σx =
{
ρ
( γ′′2 (x1−y1)γ′3(x1−y1)−γ′′3 (x1−y1)γ′2(x1−y1)

γ′′3 (x1−y1)

−γ′′2 (x1−y1)

)
: ρ ∈ R, x1 − y1 ∈ I

}
,
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Figure 5: Section of Binormal Cone B for the Moment Curve γ(t) = (t, t2, t3)

which is exactly the cone B for every x.

By applying a dyadic decomposition of the support of µ̂ in the distance away from

this cone we obtain a sum of functions whose Fourier transforms are supported in a

neighborhood of a curved cone. For ` ∈ N let θ`(ξ) be a smooth cutoff function supported

where dist(ξ,B) ' 2−`|ξ| such that

(1− θ)µ̂(ξ) =
∑
`≥0

θ`(ξ)µ̂(ξ).

Then by an argument in [45, Lemma 3.3] involving Van der Corput’s Lemma and an

almost orthogonal decomposition we see that the decay of µ̂ improves quantitatively as

the distance from B increases. In particular,

|θ`(ξ)µ̂(ξ)| . 2`/2|ξ|−1/2.

When ` = 0, µ̂ is supported far away from B, and |µ̂(ξ)| . |ξ|−1/2, the optimal bound.

On the other hand, once if 2−` is smaller than |ξ|−1/3 the estimate is no better than the

uniform decay of µ̂.
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3.3 `p Decoupling for the Cone

To estimate the Lp boundedness of AR Pramanik and Seeger interpolated the “quanti-

tative” L2 estimates with `p-decoupling estimates , first proven by Wolff [58] for large

p and subsequently extended by Bourgain and Demeter [8] to the optimal range p > 6.

We present the extension of their results for a general cone in R3 with one nonvanishing

principal curvature (cf. [45, Proposition 2.1] and [8, Theorem 1.2]).

Let I ⊂ [−1, 1] be a closed interval and let g : I → R2 define a C3 curve in the plane.

Suppose there are constants c0, c1, c2 > 0 such that

‖g‖C3 ≤ c0,

|g′(b)| ≥ c1,∣∣ det
( g′1(b) g′′1 (b)

g′2(b) g′′2 (b)

)∣∣ ≥ c2,

for all b ∈ I. Then

Cg = {ξ ∈ R3 : ξ = λ(g1(b), g2(b), 1), b ∈ I, λ > 0} (3.11)

is a cone in R3 with one nonvanishing principal curvature. A basis for the tangent space

of Cg at λ(g(b), 1) is given by

u1(b) = (g(b), 1) (3.12)

ũ2(b) = (g′(b), 0),

and a vector normal to Cg at λ(g(b), 1) is given by

u3(b) = u1(b) ∧ ũ2(b) =
(
− g′2(b), g′1(b), g1(b)g′2(b)− g2g

′
1(b)
)
. (3.13)
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Thus Tλ(g(b),1)Cg has an orthogonal basis given by u1(b) and

u2(b) := u1(b) ∧ u3(b). (3.14)

Given this basis, we can define thin plates adapted to the cone Cg at the point (g(b), 1).

Definition 3.8. Let A > 1, 0 < δ < 1, and b ∈ I. Given pairwise orthogonal vectors

u1(b), u2(b), u3(b) ∈ R3, let ΠA,b(δ) be the set of ξ ∈ R3 defined by the inequalities

A−1 ≤
∣∣∣〈 u1(b)
|u1(b)| , ξ

〉∣∣∣ ≤ A∣∣∣〈 u2(b)
|u2(b)| , ξ

〉∣∣∣ ≤ Aδ (3.15)∣∣∣〈 u3(b)
|u3(b)| , ξ

〉∣∣∣ ≤ Aδ2. (3.16)

The sets ΠA,b(δ) are unions of A × Aδ × Aδ2-boxes with long, middle, and short

sides parallel to u1(b), u2(b), and u3(b) respectively. Decoupling inequalities allow one

to efficiently estimate the Lp norm of a sum of functions whose Fourier transforms are

supported on a family of plates ΠA,bν (δ) for a set of separated points bν ∈ I. We

formulate this theorem in terms of `p decoupling for small p for the purposes of our later

proof, but they are equivalent to the typical presentation of `2 decoupling inequalities

for large p.

Theorem 3.9 (cf. [8, Theorem 1.2],[58, Theorem 1], see also [45, Proposition 2.1]). Let

ε > 0 and A > 1. There exists a constant C(ε, A) depending on c0, c1, c2 such that the

following holds for any choice of 0 < δ0 < δ1 < 1. Let M > 1 and let B = {bν}Mν=1 be a

set of points in an interval J ⊂ I of length δ0 such that |bν − b′ν | ≥ δ1 for ν 6= ν ′. Let

2 ≤ p ≤ 6. Let fν ∈ Lp(R3) such that f̂ν is supported in ΠA,bν (δ1) for each ν = 1, 2, ...,M .

Then ∥∥∥ M∑
ν=1

fν

∥∥∥
p
≤ C(ε, A)(δ0/δ1)

1
2
− 1
p

+ε
( M∑
ν=1

‖fν‖pp
)1/p

.
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To apply this method of decoupling to a local Radon-like transform over curves in

R3 there are two obstructions to circumvent. First, the fibers associated to AR are fixed

only because AR is a convolution operator and is thus translation invariant; the fibers of

L associated to a generic local Radon-like transform a priori vary with x. We will deal

with this obstruction using iterations of changes of variables, which we will introduce in

Chapter 10.

Second, the fibers of πL(L) may not in general be curved cones. To ensure that they

are we need an assumption, first formulated in the context of FIOs in [23] and later

characterized for local Radon-like transforms over families of curves in R3 in [46].

Lemma 3.10 ([46, § 3]). Let $ : (N∗M)′ → M be the natural projection. If the

restriction of $ to L

$|L : L →M

is a submersion, then the fibers of πL(L) are curved cones in T ∗xΩL for each x.

3.4 The Surjectivity Condition on $

In this section we examine the assumption on $ in Lemma 3.10, and how it impacts

the geometry of the conormal bundle of M. In this section ΩL,ΩR are 3-dimensional

manifolds, andM⊂ ΩL ×ΩR is a 4-dimensional submanifold such that the projections

ρL, ρR defined in (2.1) are submersions. As discussed in §2.2, in a neighborhood of a

reference point P ∈M,

Rf(x) =

∫ ∫
e2πi
(
τ1(S1(x,y3)−y1)+τ2(S2(x,y3)−y2)

)
χ(x, y)f(y) dτ dy.
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Recall from §2.2 that the canonical relation associated to R is the twisted conormal

bundle of M, given by

(N∗M)′ =
{

(x, ξ, y, η) : yi = Si(x, y3), i = 1, 2 ξ =
2∑
i=1

τiS
i
x(x, y3)

ηi = τi, i = 1, 2 η3 =
2∑
i=1

τiS
i
y3

(x, y3)
}
,

and πL, πR are defined as in (2.4). From (2.11) and (2.12) we see that

det(dπL) = det
(
S1
x(x, y3)S2

x(x, y3)
2∑
i=1

τiS
i
x,y3

(x, y3)
)
.

To see that the fibers of πL(L) are conic, let

∆i(x, y3) = det(S1
x S

2
x S

i
xy3

)
∣∣∣
x,y3

, i = 1, 2.

Then we can rewrite det(dπL) = τ1∆1(x, y3) + τ2∆2(x, y3). Given the parametrization

above, L (see (2.13)) is the subset of (N∗M)′ such that

τ1∆1(x, y3) + τ2∆2(x, y3) = 0.

Let $ be the projection defined in Lemma 3.10. Then we have the following result from

Pramanik and Seeger.

Lemma 3.11 ([46, Lemma 3.1]). If $|L : L →M is a submersion and πL is a fold then

|∆1(x, y3)|+ |∆2(x, y3)| 6= 0

for (x, y) near P .

This lemma implies that for any (x, y3) we can find τ̃ such that (x, y3, τ̃) parametrizes

a point in L; in particular

τ̃ = ±ρ
(
−∆2(x, y3),∆1(x, y3)

)
,
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for some ρ > 0. Although [46] deals with the case of folding canonical relations, Lemmas

3.11 and 3.10 only require a fold condition on one of the projections.

Next we examine the fibers of πL(L), defined by

Σx = {ξ : (x, ξ) ∈ πL(L)}.

Given the parametrization of (N∗M)′ above we see that

Σx = {(τ · S)x(x, y3) : τ ·∆(x, y3) = 0} = {±ρΞ(x, y3) : ρ > 0} (3.17)

where

Ξ(x, y3) = −∆2(x, y3)S1
x(x, y3) + ∆1(x, y3)S2

x(x, y3).

Thus Σx is conic, and we can construct a basis for its tangent and normal spaces. Let

a ∈ ΩL be fixed. We begin with an observation. By an identity for vectors in R3, for

i = 1, 2

∆i(x, y3) = 〈S1
x(x, y3) ∧ S2

x(x, y3), Six,y3(x, y3)〉.

This implies that

〈S1
x ∧ S2

x,∆
1S2

xy3
−∆2S1

xy3
〉 = ∆1〈S1

x ∧ S2
x, S

2
xy3
〉 −∆2〈S1

x ∧ S2
x, S

1
xy3
〉

= ∆1∆2 −∆2∆1

= 0,

implying that −∆2S1
xy3

+ ∆1S2
xy3
∈ Span(S1

x, S
2
x) for fixed (a, y3). The tangent space of

Σa at a point parametrized by (y3,±ρ) is spanned by

T1(a, y3) = Ξ(a, y3) (3.18)

T̃2(a, y3) = Ξy3(a, y3),
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so a normal vector at this point is given by

T1 ∧ T̃2 = Ξ ∧ Ξy3

= (∆1∆2
y3
−∆2∆1

y3
)(S1

x ∧ S2
x)

+ (∆1S2
x −∆2S1

x) ∧ (∆1S2
xy3
−∆2S1

xy3
).

Since −∆2S1
xy3

+∆1S2
xy3
∈ Span(S1

x, S
2
x) the expression in the final line of the calculation

of T1 ∧ T̃2 is either 0 or a scalar multiple of the vector S1
x ∧ S2

x, meaning that a normal

vector to Σx at a point parametrized by (y3,±ρ) is given by

N(a, y3) := S1
x(a, y3) ∧ S2

x(a, y3). (3.19)

Finally, to construct an orthogonal vector in the tangent space to Σa we define

T2(a, y3) := T1(a, y3) ∧N(a, y3). (3.20)

In the proof of Lemma 3.10, Pramanik and Seeger proved in particular that Σx is a

two-dimensional cone that has one non-vanishing principal curvature given by

ρ〈Ξy3,y3 , N〉.

It is useful to construct explicit kernel fields of πL and πR in conic neighborhoods of L.

Note that L splits as a disjoint union of two cones,

L± =
{(
x,±ρ(−∆2S1

x + ∆1S2
x), S

1, S2
xy3
, y3, τ,±ρ(∆2S1

y3
−∆1S2

y3
)
)

: ρ > 0
}
.

Lemma 3.12. A kernel field for πR near L± is given by

VR = 〈N(x, y3),∇x〉.
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Define Γi(x, y3), i = 1, 2 by

Γ1(x, y3) = det(S1
x S

2
xy3

S1
xy3

) (3.21)

Γ2(x, y3) = det(S1
xy3

S2
x S

2
xy3

). (3.22)

Then

V ±L =
±|τ |

|∆(x, y3)|

(
Γ2(x, y3)∂τ1 − Γ1(x, y3)∂τ2

)
+ ∂y3

is a kernel field for πL near L±.

Proof. We begin with VR. Applying the local representation of dπR in (2.12) (which

map coordinates (x, τ, y3)→ (w1, ..., w6)) to VR = S1
x(x, y3) ∧ S2

x(x, y3) we obtain

dπRVR
∣∣
(x,τ,y3)

=



〈S1
x(x, y3) ∧ S2

x(x, y3), S1
x(x, y3)〉

〈S1
x(x, y3) ∧ S2

x(x, y3), S2
x(x, y3)〉

0

0

0

〈S1
x(x, y3) ∧ S2

x(x, y3), τ1S
1
xy3

(x, y3) + τ 2S2
x,y3

(x, y3)〉


=
(
τ1∆1(x, y3) + τ2∆2(x, y3)

)
∂w6

= det(dπR)
∣∣
πL(x,y3)

∂w6 .

Clearly VR is a kernel field for πR. Note this implies that−∆2S1
xy3

+∆1S2
xy3
∈ Span(S1

x, S
2
x).

To show that V ±L is a kernel field for πL near L± we follow the argument in the

proof of [46, Lemma 3.2]. Applying the local representation of dπL in (2.11) (mapping



44

coordinates (x, τ, y3)→ (w1, ..., w6)) to the definition of V ±L above we obtain

dπLV
±
L

∣∣
(x,τ,y3)

=



0

0

0(
±|τ |
|∆|

(
S1
xΓ2 − S2

xΓ1

)
+
(
τ1S

1
xy3

+ τ 2S2
xy3

))∣∣∣
(x,y3)


.

Evaluating at τ = ±ρ(−∆2(x, y3),∆1(x, y3)) it suffices show that

S1
xΓ2 − S2

xΓ1 −∆1S1
xy3

+ ∆2S2
xy3

∣∣∣
(x,y3)

= 0. (3.23)

Let W equal the left hand side of the above equation. To prove (3.23) we note that since

det(S1 S2
x ∆1S1

xy3
+ ∆2S2

xy3
)
∣∣∣
(x,y3)

= |∆(x, y3)|2,

which is nonvanishing by Lemma 3.11, the vectors S1
x(x, y3), S2

x(x, y3), and ∆1S1
xy3

+

∆2S2
xy3

∣∣
(x,y3)

form a basis on R3. This implies that S1
x∧S2

x

∣∣
(x,y3)

, S1
x∧∆1S1

xy3
+∆2S2

xy3

∣∣
(x,y3)

,

and S2
x ∧ ∆1S1

xy3
+ ∆2S2

xy3

∣∣
(x,y3)

also form a basis of R3. We can show that W = 0 by

testing it against these three basis vectors.

First, we test W against S1
x ∧ S2

x to obtain

〈W,S1
x ∧ S2

x〉 = 〈S1
x ∧ S2

x,−∆2S1
xy3
〉+ 〈S1

x ∧ S2
x,∆

1S2
x,y3
〉

= −∆2∆1 + ∆1∆2

= 0.

Next, we test W against S1
x ∧ (∆1S1

xy3
+ ∆2S2

xy3
) and obtain

〈W,S1
x ∧ (∆1S1

xy3
+ ∆2S2

xy3
)〉 = −Γ1∆1〈S2

x, S
1
x ∧ S1

xy3
〉 − Γ1∆2〈S2

x, S
1
x ∧ S2

xy3
〉

− (∆2)2〈S1
xy3
, S1

x ∧ S2
xy3
〉+ (∆1)2〈S2

xy3
, S1

x ∧ S1
xy3
〉.
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By the definition of Γ1,Γ2 this vanishes. An analogous argument can be made to show

〈W,S2
x ∧ (∆1S1

xy3
+ ∆2S2

xy3
)〉 = 0.

We can give an explicit condition that πL is a fold along L by computing for ρ > 0

V ±L
(
τ1∆2(x, y3) + τ2∆2(x, y3)

)∣∣∣
τ=±ρ(−∆2,∆1)

= ρκ(x, y3)

where

κ(x, y3) = Γ2∆1 − Γ1∆2 + ∆1∆2
y3
−∆2∆1

y3

∣∣∣
(x,y3)

. (3.24)

Since we assume πL has fold singularities along L, κ must be nonzero.

3.5 Sharp Lp-Sobolev Estimates

Under the assumption of Lemma 3.10, Pramanik and Seeger were able to prove that the

same 1/p gain in regularity holds on Lp for p > 4 for a large class of local Radon-like

transforms over families of curves in R3 associated to folding canonical relations. Since

R has folding canonical relations if and only if R∗ has folding canonical relations, the

same result can be applied to R and R∗. Interpolating their result with the L2 estimate

from Theorem 3.3 we obtain the following characterization of the Lp-Sobolev regularity

of R with folding canonical relations.

Theorem 3.13 ([46, Theorem 1.1]). Let ΩL,ΩR ⊂ R3 be open sets, and M⊂ ΩL ×ΩR

be a four-dimensional manifold such that the projections M → ΩL and M → ΩR are

submersions. Let R be the local Radon-like transform associated to M. Assume that

the only singularities on πL : (N∗M)′ → T ∗ΩL and πR : (N∗M)′ → T ∗ΩR are Whitney
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folds. Let L be the conic submanifold on which dπL and dπR drop rank by one, and let

$ be the projection of (N∗M)′ onto the base M. Further, suppose that $|L : L → M

is a submersion. Then R extends to a continuous operator

R : Lpcomp(ΩR)→ Lps,loc(ΩL)

for (1/p, s) within the shaded region of Figure 6.

1/4 1/2 3/4 1

1/4
1/3

1/p

s

0

Figure 6: Sharp Lp → Lps mapping for R with folding canonical relations

As the curvature assumption on the fibers of L only requires that πL be a Whitney

fold, it is conjectured that this method of proof could be extended to all local Radon-like

transforms over families of curves in R3 with one-sided folds satisfying the submersion

condition of Lemma 3.10. In this work our main result is to prove one case of this

conjecture, that R still gains 1/p derivatives on Lp for p > 4 when πR is a blowdown.

Theorem 3.14. Let ΩL,ΩR be open sets and let M ⊂ ΩL × ΩR be a four-dimensional

manifold such that the projections ρL :M→ ΩL and ρR :M→ ΩR are submersions. Let

R be the local Radon-like transform associated to M. Let L be the conic submanifold

on which dπL and dπR drop rank by one. Assume that the only singularities on πL :

(N∗M)′ → T ∗ΩL are Whitney folds, and that πR : (N∗M)′ → T ∗ΩR is a blowdown
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on L. Let $ be the projection of (N∗M)′ onto the base M. Further, suppose that

$|L : L →M is a submersion. Then R extends to a continuous operator

R : Lpcomp(ΩR)→ Lp1/p,loc(ΩL), 4 < p <∞.

Theorem 3.14 generalizes the results of [6] and [44]. Interpolating the results of The-

orem 3.14 with the L2-Sobolev estimate in Theorem 3.3 we obtain Lp-Sobolev estimates

for 2 ≤ p ≤ 4. To obtain estimates for p < 2, we apply Proposition 3.4. We combine

the estimates for all p together in the following result.

Theorem 3.15. If R satisfies the conditions of Theorem 3.14 then R maps boundedly

from Lpcomp(R3) into Lps,loc(R3), where (1/p, s) lies within the shaded region of Figure 7.

1/4 1/2 1

1/4

1/p

s

0

Figure 7: Sharp Lp → Lps mapping for R with fibered folding canonical relations

Examples in [44, 6] show that the Lp-Sobolev estimates of Theorem 3.15 cannot be

expanded beyond the boundary of the trapezoidal region of Figure 7, although it may be

possible to extend to the endpoints (i.e. the closure of the trapezoidal region). We will

introduce these examples in Chapter 4 and prove related sharpness results in Chapter

5.

The proof of Theorem 3.14 follows the same basic structure of the proofs of Theorem
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3.7 and of Theorem 3.13, first showing “quantitative” improvements in L2-Sobolev esti-

mates moving away from L, then applying decoupling to cones deriving from the fibers

of πL(L). However, the maximal degeneracy on πR introduces difficulties not present in

the case of folding canonical relations.

First, the dyadic decomposition away from L is halted once the the “quantitative”

estimate is no better than the uniform L2-Sobolev estimate. In the case of fibered folds,

the decomposition continues much closer to L because the uniform L2-Sobolev estimate

of Theorem 3.2 is worse than in the case of folding canonical relations (Theorem 3.1).

Because the support of the decomposed pieces is much closer to the singularities in L,

proving estimates there requires greater care in the analysis.

Second, since πR is a blowdown on L, VR is parallel to L, which implies V k
Rτ ·

∆(x, y3) = 0 on L for all k ≥ 0. Moreover, since VR = 〈N(x, y3),∇x〉 we also have by

definition that VRτ ·Sy3(x, y3) = 0 on L. In other words, the blowdown imposes a flatness

condition in the VR direction which does not permit almost orthogonal decompositions

in the VR direction which were possible in the case of a fold. These difficulties will be

discussed in more detail in Chapters 8, 9, and 10 when we introduce the dyadic frequency

decomposition in distance from L.
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Chapter 4

Examples of Local Radon-like

Transforms

In this chapter we explore and characterize examples arising from problems in harmonic

analysis and integral geometry which motivate our investigations into Lp-Sobolev regu-

larity. In the study of local Radon-like transforms, model cases are key as the general

picture can usually be seen as a perturbation of one (or more) examples. The notation

in each section is self-contained.

4.1 n-plane transforms and Restricted X-ray trans-

forms

Let Md,n be the bundle of affine n-planes in Rd, and define the n-plane transform

Pd,nf(π) =

∫
π

f(x)dµπ(x), π ∈Md,n.

where dµπ is Lebesgue measure on the n-plane π. The dimension of Md,n is (n+1)(d−n),

and can be illustrated by relating Md,n to the Grassmannian Gn(Rd), the space of all

n-planes through the origin in Rd. The Grassmannian can be realized as a homogeneous
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space by the identity

Gn(Rd) ' O(d)

O(n)×O(d− n)

which also implies that dim(Gn(Rd)) = n(d−n) [38]. We can parametrize Md,n by (θ, y),

where θ ∈ Gn(Rd), and y ∈ θ⊥, the (d − n)-dimensional subspace of Rd orthogonal to

θ. We identify (θ, y) with the n-plane parallel to θ containing the point y in Md,n [11].

This parametrization is one to one, and shows that the dimension of Md,n is indeed

(n+ 1)(d− n).

In the case of hypersurfaces, Pd,d−1 is the higher-dimensional analogue of the Radon

transform introduced at the beginning of this work. At the other extreme, 1-plane

transforms, more commonly referred to as X-ray transforms, have served as a model for

X-ray tomography, where an important problem involves reconstituting f from Pd,1f .

Hence the possibility of inversion is an important question regarding n-plane transforms.

When n < d−1 the dimension of Md,n is strictly larger than Rd, so the problem of finding

f from Pd,nf is overdetermined. Thus it is natural to restrict the domain of Pd,nf to

an d-dimensional submanifold F ⊂Md,n (called an n-plane complex), and ask for which

n-plane complexes F can the associated restricted n-plane transform Pd,nf |F be inverted

(see e.g. [22, 27, 48]).

Local versions of restricted X-ray transforms have served as model examples for both

folding canonical relations [46, § 4.2] and fibered folding canonical relations [27, 44]. We

introduce a concrete example of the latter from [44]. Let I be a compact interval and

suppose that γ : I → R2 is a smooth regular curve with nonvanishing curvature (i.e.

γ′(s), γ′′(s) 6= 0 for s ∈ I). For a Schwartz function f ∈ S(R3) and α ∈ I define

X f(x′, α) =

∫ 2

1

f(x′ + sγ(α), s)χ1(s)χ2(α) ds, (4.1)
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where χ1 and χ2 are smooth real-valued functions supported in the interior of [1, 2] and

I respectively. The family of curves associated to this local Radon-like transform is

parametrized by (x′, α) ∈ R3; for each (x′, α) the restricted X-ray transform integrates

f over the unique line through the point (x′, 0) pointing in the direction (γ(α), 1).

The operator X belongs to a class of restricted X-ray transforms initially formu-

lated in the complex setting by Gelfand and Graev [22] to give an essentially complete

characterization of when inversion of the X-ray transform is possible.

Definition 4.1 (Gelfand Admissibility). Given a three-dimensional line complex F ⊂

M1,3, let ΓP be the conic set generated by lines in F through the point P . We say

that F is Gelfand-admissible if ΓP is a two-dimensional cone for each P , and ΓP is

tangent to ΓQ along the line between the points Q and P for every Q in the cone ΓP .

Additionally, let XF be the restricted X-ray transforms associated to F . We say that XF

is Gelfand-admissible if F is a Gelfand-admissible complex.

Examples of Gelfand-admissible line complexes include the set of light rays in R3

(i.e. all lines which make an angle of π/4 radians with the horizontal plane, see for

example [41]), and the complex of lines (called a Chow variety, see [27]) which intersect

a curve which intersects almost every affine hyperplane (X is the Chow variety of γ and

thus an example). Gelfand-admissible restricted X-ray transforms have been studied

by many authors, including Greenleaf and Uhlmann who, in [27], showed that Gelfand

admissibility, along with the assumption that ΓP is curved for each P , is sufficient for the

inversion of XF , extending the results of Gelfand-Graev to the real setting. Moreover,

generic restricted X-ray transforms which are Gelfand-admissible (including (4.1) if γ

has nonvanishing curvature) satisfy the conditions of Theorem 3.14.
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Proposition 4.2. Suppose that F is Gelfand-admissible and that for each point Q the

cone ΓQ of lines in F through Q is curved. Then (XF)∗ satisfies the assumptions of

Theorem 3.14.

4.1.1 Jacobi Fields and the Canonical Relation

We begin by showing that the assumption on $ from Theorem 3.14 holds under a basic

nondegeneracy condition on the sets ΓP . The presentation of the canonical relation

associated to XF in this section is due to Phong in the survey paper [41]; see also [27].

Lemma 4.3. Let $ and L be defined as in Theorem 3.14. Suppose that for each P ∈ R3

the set ΓP is a locally a conic submanifold of dimension 2 away from P . Then $|L is a

submersion.

As in the case of the classical Radon transform in the introduction, we can locally

identify each line l in F ⊂M1,3 with a point P ∈ R3 and a direction γ ∈ R3 with |γ| = 1

via the map (P, γ) 7→ {P + sγ : s ∈ R} = l. As a consequence we can view M1,3 locally

as a submanifold of TR3. For each line l ∈ F XF integrates over all points Q ∈ l, hence

the incidence relation for XF is given by

Z = {((P, γ), Q) : (P, γ) ∈ F , Q ∈ l} = {((P, γ), Q) : (Q− P ) ∧ γ = 0} ⊂ F × R3.

Note that (Q − P ) ∧ γ = 0 if and only if Q lies on the line parametrized by (P, γ). As

Q ∈ l, there is some t ∈ R such that Q− P = tγ.

At this point we use Jacobi fields (see [19, Ch. 5]) to make a more concrete character-

ization of TlF and TlM1,3. We omit some details in the construction of Jacobi fields as
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we only focus on Jacobi fields for Euclidean spaces, which avoids much of the necessary

Riemannian geometry. We refer to [19] and [27] as general references for Jacobi fields

and their connection to X-ray transforms respectively.

Definition 4.4 ([19]). Let (M, g) be a Riemannian manifold with curvature tensor R

defined in [19, Ch. 4]. Let l(s) be a geodesic on M parametrized by s. Note that l′(s) is

then a vector field along l. A vector field J(s) along l(s) is called a Jacobi field if it

satisfies

D2

ds2
J(s) +R(J(s), l′(s))l′(s) = 0, (4.2)

where D
ds

is the covariant derivative along l(s) arising from the Levi-Civita connection

(see [19, pp.50-56]).

Jacobi fields describe the difference between a given geodesic and infinitesimally close

geodesics, meaning that we can use Jacobi fields to form a basis for the tangent space at

a geodesic l in the space of geodesics on (M, g) (cf. [27, § 2]). In the case of Euclidean

spaces the geodesics are lines, the curvature tensor R is uniformly 0, and D
ds

coincides

with the usual derivative with respect to s. Thus (4.2) implies that Jacobi fields J(s)

on a given line l ⊂ Rd are precisely the vector fields along l that are linear in s.

Returning to the X-ray transform restricted to F ⊂ M1,3, we fix l0 = (P0, γ0) ∈ F .

Letting u0 = γ0 we can pick u1, u2 such that u0, u1, u2 form an orthonormal basis of

vectors on R3. Then the set of J of solutions to (4.2) for the line l0 ∈ F is a 6-

dimensional vector space which splits as J ᵀ ⊕ J ⊥, where J ᵀ is spanned by u0, su0 and

J ⊥ is spanned by u1, u2, su1, su2. Informally, we see that TlM1,3 can be identified with

J ⊥ by considering perturbations of l0. The line l0 can be deformed to another line in
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M1,3 by

P0 + sγ0 7→ P0 + sγ0 + (a1s+ b1)u1 + (a2s+ b2)u2,

where ai, bi are any constants, giving a basis for Tl0M1,3 in terms of the Jacobi fields

u1, u2, su1, su2. The formal proof of the statement that Tl0M1,3 is canonically isomorphic

to J ⊥ is given in [27, p. 209]. Given a Jacobi field X(s) = (a1s + b1)u1 + (a2s + b2)u2,

we can view the deformation above using the identification l = (P, γ) ∈ TR3 as

(P0, γ0) 7→ (P0 +X(0), γ0 +X ′).

Thus a tangent vector in Tl0M1,3 can be identified as a pair (X(0), X ′) lying in T ∗(TR3)

where X(0), X ′ ∈ span(u1, u2).

Since we identify M1,3 as a subset of T (R3) we can identify ((P, γ), Q) 7→ (Q−P )∧γ

with a defining function Φ : (R3 × R3) × R3 → R3 where we let P, γ,Q each vary in

R3; we then restrict the domain of Φ to ((P, γ), Q) ∈ F × R3, and the output of Φ will

be thus restricted to the two-dimensional space orthogonal to γ. Using this scheme the

restriction (Q − P ) ∧ γ = 0 is equivalent to Φ = 0 for (P, γ) ∈ F . Let γ′, P ′ be the

projections of the variables γ, P to the plane spanned by u1, u2; these are the directions

of Tl0M1,3 coming from the Jacobi fields in J ⊥. Then covectors (Γ, ξ) in N∗(P0,γ0)Z are

given by the restriction of

(Γ, ξ) =
((
∇P ′(τ · Φ),∇γ′(τ · Φ)

)∣∣
Tl0F

,∇Q(τ · Φ)
)∣∣∣

((P,γ),Q)=((P0,γ0),P0+tγ0)

=
((
τ2u1 − τ1u2, t(τ1u2 − τ2u1)

)∣∣
Tl0F

, τ ∧ γ|γ=γ0

)
.

Thus we can use (2.5) to define the twisted conormal bundle N∗(l0,Q)Z
′

{(
(P0, γ0),

(
τ2u1 − τ1u2, t(τ1u2 − τ2u1)

)∣∣
Tl0F

, P0 + tγ0, τ ∧ γ|γ=γ0

)
: t ∈ R, τ ∈ R2 \ 0

}
(4.3)
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4.1.2 The Proof of Lemma 4.3

Suppose that for each Q ∈ R3 the set ΓQ is a cone. We can pick u1, u2 such that for

some constants a, b1, b2 ∈ R the Jacobi field X4(s) = au1 + s(b1u1 + b2u2) ∈ T(P0,γ0)M1,3

is normal to F at (P0, γ0). We remark that if b1 = b2 = 0 the set ΓP0 contains all lines

in M1,3 through P0 for γ in a neighborhood of γ0, contradicting our assumption that

ΓP0 forms a cone. Thus we may assume that b2
1 + b2

2 6= 0. Applying the Gram Schmidt

process, the Jacobi fields

X1(s) = u2

X2(s) = s(−b2u1 + b1u2)

X3(s) = (b2
1 + b2

2)u1 − sa(b1u1 + b2u2)

form an orthogonal basis for T(P0,γ0)F . Let Ψi be the dual basis to Xi in T ∗(P0,γ0)F , i.e. let

Ψi ∈ T ∗(P0,γ0)F such that the pairing 〈Ψi, Xj〉 = δij for each i, j = 1, 2, 3. Then projecting

our expression in (4.3) to T ∗(P0,γ0)F we obtain

N∗(l0,Q)Z
′ =
{(

(P0, γ0); (−τ1Ψ1 + t(b2τ2 + b1τ1)Ψ2 + (at(b2τ1 − b1τ2) + τ2(b2
1 + b2

2))Ψ3);

P0 + tγ0; τ ∧ γ|γ=γ0

)}
.

Let πL : N∗Z ′ → T ∗F be the natural projection as in (2.4). The differential (dπL)((P0,γ0),t,τ)

is given in the local coordinates induced by ({Xi}3
i=1, t, τ) by the matrix

(
I 0
A B

)
, where

B =


0 −1 0

b1τ1 + b2τ2 b1t b2t

ab2τ1 − ab1τ2 tab2 (b2
1 + b2

2)− ab1t

 . (4.4)

The determinant of this matrix is (b2
1 + b2

2)(τ1(b1 − at) + τ2b2). Since b2
1 + b2

2 6= 0 for

sufficiently small t (or equivalently for Q sufficiently near P ) the set Ll0 = {(Γ, ξ) ∈
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N∗l0Z
′ : det dπL = 0} is the subset of N∗l0Z

′ such that (τ1, τ2) ⊥ (b1 − at, b2).

Our analysis of Tl0F can be repeated for each l in a neighborhood of l0, leading to the

definition of smooth functions ui(P, γ), i = 0, 1, 2, such that ui(P0, γ0) = ui for i = 0, 1, 2,

{ui(P, γ)}i=0,1,2 is an orthonormal basis for R3 for each (P, γ), u0(P, γ) = γ, and u1(P, γ)

is normal to the cone ΓP at the line l = {P + sγ}. Using these smooth functions

we obtain for each line l local coordinates Ψi(P, γ) of T ∗(P,γ)F which depend smoothly

on (P, γ) near (P0, γ0). The normal Jacobi field X4(s) =: X
(P,γ)
4 (s) also varies with

(P, γ), hence the parameters a, b1, b2 in (4.4) also vary smoothly with (P, γ). Repeating

the argument above, for each l in a sufficiently small neighborhood of l0 and Q in a

neighborhood of P , L∩N∗l Z is the subset of N∗l Z
′ such that (τ1, τ2) ⊥ (b1− at, b2) 6= 0,

i.e. (τ1, τ2) = ±ρ(b2, at− b1) for any ρ > 0.

The projection $ : N∗Z ′ → Z from Theorem 3.14 maps

((P, γ), (−τ2Ψ1(P, γ) + t(b2τ1 − b1τ2)Ψ2(P, γ) + (at(b1τ1 + b2τ2)− τ1(b2
1 + b2

2)))Ψ3(P, γ),

P + tγ, τ ∧ γ) 7→ ((P, γ);P + tγ),

where a, b1, b2 smoothly depend on (P, γ). By plugging in the restriction in τ , the

restriction of $ to L near l0 and Q near P is then defined for ρ > 0

(
(P, γ),±ρ((b1 − at)Ψ1(P, γ) + t(b2

2 + b2
1 − ab1t)Ψ2(P, γ) + b2((at)2 − (b2

1 + b2
2))Ψ3(P, γ),

P + tγ,±ρ
(
(at− b1)u1(P, γ)− b2u2(P, γ)

)
7→ ((P, γ);P + tγ).

Thus we see that $|L is still a projection in the first and last coordinates to Z near l0

and is thus a submersion.
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4.1.3 The Proof of Proposition 4.2

The implication that the canonical relations of Gelfand admissible restricted X-ray trans-

forms are fibered folds is shown in [41, § II.3]; we present the proof below giving more

detail. Pramanik and Seeger also gave an explicit parametrization of the fibered folding

canonical relation for a model restricted X-ray transform in [46, § 4.2]. In addition to

implying the conditions of Lemma 4.3, the Gelfand admissibility condition (Definition

4.1) allows us additional control over the Jacobi field X4(s). It states that along the line

l0, the normal space to F is proportional to a fixed vector in R3. Given our previous

choice of u1, u2 the Gelfand admissibility condition implies that X4(s) = au1 + b1su1

with b1 6= 0, and therefore by rescaling

X1(s) = u2

X2(s) = su2

X3(s) = b1u1 − sau1

X4(s) = au1 + sb1u1

form an orthogonal basis for T(P0,γ0)M1,3 while X1(s), X2(s), X3(s) form an orthogonal

basis for T(P0,γ0)F . Repeating the argument above and applying the additional constraint

b2 = 0 to (4.4) we see that det dπL|((P0,γ0),t,τ) = τ1(b1 − at), which implies that for (P, γ)

near (P0, γ0) and Q near P , L is the subset of N∗Z ′ such that τ1 = 0.

We also see from (4.4) that the kernel field for πL at ((P0, γ0), P0 + tγ0) is given

by VL|((P0,γ0),P0+tγ0) = τ1∂τ2 . Since L has no restriction on τ2, VL is tangent to L at

((P0, γ0), P0+tγ0). Repeating this same argument for each l we see that πL is a blowdown

along L.
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Next we examine the projection πR. Note that given our discussion above we may

rewrite πR(N∗Z) = (P+tγ, τ2u1(P, γ)−τ1u2(P, γ). We use u0 = γ0, u1 = u1(P0, γ0), u2 =

u2(P0, γ0) as a basis for R3 near P0 and for T ∗P0
R3. Then we can identify the differential

of πR at ((P0, γ0), t, τ) in the local coordinates induced by ({Xi(s)}3
i=1, t, τ) as

dπR
∣∣
((P0,γ0),t,τ)

=



0 0 0

0 0 b1 − at

1 t 0

1 0 0

0 0 0

0 0 0

A

0 0 0

0 0 1

0 1 0


where A describes the derivatives of τ2u1(P, γ) − τ1u2(P, γ) with respect to the vari-

ations of (P, γ) within F (i.e. the Jacobi fields X1(s), X2(s), X3(s)). For an element∑2
i=0 βi∂Xi(s) + c∂t + d1∂τ1 + d2∂τ2 to lie in the kernel of dπR|((P0,γ0),t,τ) it must be that

β3 = c = 0 and β2 = −tβ1. We know that τ1 = 0 on L, so finding the kernel of

dπR|((P0,γ0),t,τ) on L amounts to determining the variation of u1(P, γ) with respect to

X2(s), i.e. varying γ in the u2 direction leaving P fixed at P0. To make this more con-

crete we give a parametrization of ΓP0 and relate the variation of u1 to a projection of a

derivative of a curve on the cone. Recall that u1 is normal to the cone ΓP0 at the line l0

and u2 is tangent to ΓP0 at the line l0, and that ΓP0 has nonvanishing curvature. Thus

for some ε > 0 we can find a smooth map g : (−ε, ε)→ R2 such that |g|2 = g2
1 + g2

2 = 1,

g is parametrized by arc length, γ0 =
√

2
2

(g(0), 1), and

ΓP0 = {P0 + s(g(α), 1) : s ∈ R, |u| < ε}.

Then if (P0, γ) is is sufficiently near (P0, γ0) we can find α ∈ (−ε, ε) such that γ =
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√
2

2
(g(α), 1) =: u0(α), u2(P0, γ) = (g′(α), 0) =: u2(α), and

u1(P0, γ) = γ∧u2(P0, γ) =
√

2
2

(
−g′2(α), g′1(α), g1(α)g′2(α)−g2(α)g′1(α)

)
=: u1(α). (4.5)

Thus {ui(α)} forms an orthonormal basis of R3 adapted to the cone ΓP0 so that u1(α) is

normal to the cone at P0 + s(g(α), 1), and u2(α) is the horizontal tangent vector at the

same point. Then the variation of u1(P, γ) in the X2(s) direction at (P0, γ0) is equivalent

to the projection

〈u′1(0), u2(0)〉 =
〈√

2
2

(
− g′′2(0), g′′1(0), g1(0)g′′2(0)− g2(0)g′′1(0)

)
, (g′1(0), g′2(0), 0)

〉
=

√
2

2
(g′′1(0)g′2(0)− g′1(0)g′′2(0)),

which is proportional to the principal curvature of ΓP0 along u2(0) = u2(P0, γ0). This im-

plies that elements of ker dπR|((P0,γ0),t,τ) must have d1 6= 0, implying that VR is transversal

to L. Additionally, since det(dπR)|((P0,γ0),t,τ) is linear in τ1 we conclude that πR has a

fold singularity at ((P0, γ0), t, 0, τ2).

4.2 Convolution-type Operators on the Heisenberg

Group

The Heisenberg group H can be defined as R3 with the group law

(x1, x2, u)� (y1, y2, v) =
(
x1 + y1, x2 + y2, u+ v +

1

2
(x1y2 − x2y1)

)
.

Note that with this presentation the group inverse of an element is its negative (i.e.

x−1 = −x), and the center of H is the x3-axis.
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Let γ : [0, 1] → R3 be a smooth regular curve (e.g. C∞ and γ′ 6= 0) and let µ be

a smooth measure supported on γ([0, 1]). Then we can define a family of curves by

translating γ (or rather γ−1) by x ∈ H via the group law,Mx = {γ(t)−1 � x ∈ H : t ∈

[0, 1]}. The local Radon-like transform associated to this family of curves is

AHf(x) =

∫
f(γ(t)−1 � x)χ(t) dt. (4.6)

The definition of AH is very similar to the definition of AR in §3.2, as both operators

average over families of curves generated by group translation, one by Euclidean transla-

tion and one by Heisenberg translation. In other words, both operators are convolutions

in their respective groups with measures supported on curves. This perspective in part

suggests that the behavior of both operators may share some similarities. In particular,

we may expect that curves in H obeying some group-invariant notion of nonvanishing

curvature and torsion would correspond to AH being associated to a two-sided fold.

Secco, in [49] provided such a notion of curvature and torsion. The derivative γ′(t) is an

element of Tγ(t)H, so it is natural to compare higher derivatives of γ by first mapping

γ′(t) to the tangent space at the origin.

Let Rγ(t) : H→ H be right translation by γ(t) (i.e. x 7→ x�γ(t)). Then the pullback

dRγ(t) is a map from Tγ(t)H → T0H. Similarly, let Lγ(t) : H → H be left translation by

γ(t) (i.e. x 7→ γ(t) � x). Then the pullback dLγ(t) is also a map from Tγ(t)H → T0H.

Since H is noncommutative this choice of pullbacks results in two distinct notions of

nonvanishing curvature and torsion.

Definition 4.5 (Secco ’99). Given the definitions of dLγ(t) and dRγ(t) above, we define
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the left-invariant derivatives and right-invariant derivatives of γ

γ′L(t) = dL−1
γ(t)γ

′(t) γ′R(t) = dR−1
γ(t)γ

′(t)

γ′′L(t) = d
dt
γ′L(t) γ′′R(t) = d

dt
γ′R(t)

γ′′′L (t) = d
dt
γ′′L(t) γ′′′R (t) = d

dt
γ′′R(t).

We say that γ has left- (resp. right-) invariant nonvanishing curvature and

torsion at t if γ′L(t), γ′′L(t), γ′′′L (t) (resp. γ′R(t), γ′′R(t), γ′′′R (t)) are linearly independent.

Since we assume γ′ 6= 0, we may change variables so that either γ′1(t) = t, γ′2(t) = t,

or γ′3(t) = t. However, because the center of H is the x3-axis, we split our analysis

into two cases: first when γ is nowhere vertical and second when γ is near vertical.

In the second case we see that the notions of left and right invariant derivatives of γ

coincide since γ is parallel to the center of H. Indeed, suppose that γ′2(t0) = γ′3(t0) = 0

and γ3(t0)′ = c > 0. Via Definition 4.5 we see that the nonvanishing left- and right-

invariant curvature and torsion is equivalent to the nonvanishing of the determinants

det
(
γ′L γ

′′
L γ
′′′
L

)
|t=t0 =

∣∣∣∣∣ 0 γ′′1 (t0) γ′′′1 (t0)

0 γ′′2 (t0) γ′′′2 (t0)

c
1
2

(
γ′′1 (t0)γ2(t0)−γ′′2 (t0)γ1(t0)

)
+γ′′3 (t0)

1
2

(
γ′′′1 (t0)γ2(t0)−γ′′′2 (t0)γ1(t0)

)
+γ′′′3 (t0)

∣∣∣∣∣
= c
(
γ′′1 (t0)γ′′′2 (t)− γ′′2 (t0)γ′′′1 (t0)

)
and

det
(
γ′R γ

′′
R γ

′′′
R

)
|t=t0 =

∣∣∣∣∣ 0 γ′′1 (t0) γ′′′1 (t0)

0 γ′′2 (t0) γ′′′2 (t0)

1 −1
2

(
γ′′1 (t0)γ2(t0)−γ′′2 (t0)γ1(t0)

)
+γ′′3 (t0) −1

2

(
γ′′′1 (t0)γ2(t0)−γ′′′2 (t0)γ1(t0)

)
+γ′′3 (t0)

∣∣∣∣∣
= c
(
γ′′1 (t0)γ′′′2 (t)− γ′′2 (t0)γ′′′1 (t0)

)
respectively. Since these quantities are identical when γ is vertical, γ must either have

non-vanishing left- and right-invariant curvature and torsion in a neighborhood of t0 or
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both must vanish at t0. Therefore we do not expect to see asymmetric behavior of the

projections πL and πR when γ is near vertical.

Thus we assume that γ is nowhere vertical, i.e. (γ′1, γ
′
2) 6= 0. Then without loss

of generality (though possibly with a reordering of the first two coordinates) we can

write γ(t) = (t, γ2(t), γ3(t)), where γ2, γ3 ∈ C∞(R). Given this parametrization of γ, we

can again relate nonvanishing left- and right-invariant curvature and torsion of γ to the

nonvanishing of the determinants

det
(
γ′L γ

′′
L γ
′′′
L

)
=

∣∣∣∣∣ 1 0 0
γ′2(t) γ′′2 (t) γ′′′2 (t)

γ′3(t)−1
2

(tγ′2(t)−γ2(t)) γ′′3 (t)−1
2
γ′′2 (t) γ′′′3 (t)−1

2
(γ′′2 (t)+tγ′′′2 (t)

∣∣∣∣∣
= det

(
γ′′2 (t) γ′′3 (t)

γ′′′2 (t) γ′′′3 (t)

)
+ 1

2
(γ′′2 (t))2 (4.7)

and

det
(
γ′R γ

′′
R γ

′′′
R

)
=

∣∣∣∣∣ 1 0 0
γ′2(t) γ′′2 (t) γ′′′2 (t)

γ′3(t)+
1
2

(tγ′2(t)−γ2(t)) γ′′3 (t)+
1
2
γ′′2 (t) γ′′′3 (t)+

1
2

(γ′′2 (t)+tγ′′′2 (t)

∣∣∣∣∣
= det

(
γ′′2 (t) γ′′3 (t)

γ′′′2 (t) γ′′′3 (t)

)
− 1

2
(γ′′2 (t))2 (4.8)

respectively. If γ′′2 6= 0 then these quantities differ, and therefore at least one of them

must be nonzero. When we compare these notions of torsion and curvature of γ to the

microlocal behavior of AH we see very similar behavior to the Euclidean operator of

§3.2. Indeed, when γ exhibits both left- and right-invariant nonvanishing curvature and

torsion then both πL and πR have at most fold singularities. However, if γ only satisfies

one of these conditions then only one of the projections has folds. Thus we can find

examples of curves in H where the associated projections πL and πR have asymmetric

behavior, unlike in the Euclidean case.
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4.2.1 One-Sided Fold Conditions for AH

First we give a characterization of the curves for which AH satisfies the conditions of

Theorem 3.14. Specifically, this case occurs when (4.7) is nonzero, but (4.8) is uniformly

zero, or equivalently, if γ′′2 never vanishes, but (4.8) is uniformly zero.

Proposition 4.6. Suppose that γ(t) = (t, γ2(t), γ3(t)) is a smooth regular curve in H

for t ∈ [0, 1]. If γ′′2 (t) 6= 0 and

det
(
γ′′2 (t) γ′′3 (t)

γ′′′2 (t) γ′′′3 (t)

)
= 1

2
(γ′′2 (t))2

for all t ∈ [0, 1] then AH satisfies the conditions of Theorem 3.14. On the other hand, if

γ′′2 (t) 6= 0 and

det
(
γ′′2 (t) γ′′3 (t)

γ′′′2 (t) γ′′′3 (t)

)
= −1

2
(γ′′2 (t))2

for all t ∈ [0, 1] then A∗H satisfies the conditions of Theorem 3.14.

The conditions of Proposition 4.6 restrict the class of admissible curves γ quite

significantly, as we can rewrite the conditions

det
(
γ′′2 γ′′3
γ′′′2 γ′′′3

)
= ±1

2
(γ′′2 )2

as (γ′′3/γ
′′
2 )′ = ±1

2
. This implies the existence of constants C1, C2, C3 ∈ R such that

γ′′3 (t) = (±1
2
t+ C1)γ′′2 (t)

γ′3(t) = (±1
2
t+ C1)γ′2(t)∓ 1

2
γ2(t) + C2

γ3(t) = (±1
2
t+ C1)γ2(t)∓ Γ(t) + C2t+ C3, (4.9)

where

Γ(t) =

∫ t

0

γ2(s) ds. (4.10)



64

A concrete example which satisfies each of the two conditions is given by γ(t) =

(t, t2,±1
6
t3).

We can additionally characterize the curves γ for which AH is associated to fold and

finite type conditions.

Proposition 4.7. Suppose that γ′′2 (t) 6= 0 for t ∈ [0, 1]. Let

hLk (t) = det
(

γ′′2 (t) γ′′3 (t)

γ
(k+2)
2 (t) γ

(k+2)
3 (t)

)
+ k

2
γ′′2 (t)γ

(k+1)
2 (t), k = 1, 2, ...

hRk (t) = det
(

γ′′2 (t) γ′′3 (t)

γ
(k+2)
2 (t) γ

(k+2)
3 (t)

)
− k

2
γ′′2 (t)γ

(k+1)
2 (t), k = 1, 2, ...

Then for each t ∈ [0, 1] at least one of hL1 (t), hR1 (t) is nonzero. Further:

1. Suppose hL1 (t) 6= 0 and hR1 (t) 6= 0 for all t ∈ [0, 1]. Then the only singularities of

πL and πR are Whitney folds.

2. Suppose hL1 (t) 6= 0 for all t ∈ [0, 1], but that hR1 (t) vanishes at finitely many isolated

points tj, j = 1, ..., N . For each point tj, suppose that there is kj > 1 such that

hRkj(tj) 6= 0, and hRi (t0) = 0 for all 1 ≤ i < kj. Let k = max{kj : j = 1, ..., N}.

Then πL has at most Whitney folds and πR has maximal type k.

3. Suppose hR1 (t) 6= 0 for all t ∈ [0, 1], but that hR1 (t) vanishes at finitely many isolated

points tj, j = 1, ..., N . For each point tj, suppose that there is kj > 1 such that

hLkj(tj) 6= 0, and hLi (t0) = 0 for all 1 ≤ i < kj. Let k = max{kj : j = 1, ..., N}.

Then πR has at most Whitney folds and πL has maximal type k.

Note that hL1 and hR1 are equal to (4.7) and (4.8). An example of a curve that satisfies

condition (1) is γ(t) = (t, t2, αt3), where α 6= ±1
6
. An example of a curve that satisfies
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condition (2) is γ(t) = (t, t2, 1
6
t3 + tk+2). An example of a curve that satisfies condition

(3) is γ(t) = (t, t2,−1
6
t3 + tk+2).

4.2.2 The Proof of Propositions 4.6 and 4.7

The incidence relation M associated to AH is the zero locus of Φ = (Φ2,Φ3)ᵀ, defined

by

Φ2(x, y) = x2 − y2 − γ2(x1 − y1)

Φ3(x, y) = x3 − y3 − γ3(x1 − y1) + 1
2
(x1γ2(x1 − y1)− x2(x1 − y1)). (4.11)

We change variables to rewrite Φ3 so that it no longer depends on x2. First, we rearrange

Φ3(x, y) = (x3 − 1
2
x2x1)− y3 − γ3(x1 − y1) + 1

2
x1γ2(x1 − y1) + 1

2
x2y1.

Next, on M = {Φ(x, y) = 0} we may substitute x2 = y2 + γ2(x1 − y1) and rearrange to

obtain

Φ3(x, y) = (x3 − 1
2
x2x1)− y3 − γ3(x1 − y1) + 1

2
x1γ2(x1 − y1)− 1

2
y1(y2 + γ2(x1 − y1))

= (x3 − 1
2
x2x1)− (y3 − 1

2
y1y2)− γ3(x1 − y1) + 1

2
(x1 + y1)γ2(x1 − y1).

By a smooth change of variables x̃3 = x3 − 1
2
x1x2 and ỹ3 = y3 − 1

2
y1y2 (and abusing

notation slightly by rewriting x̃3 and ỹ3 as x3 and y3 respectively) we can define M as

the zero locus of Φ̃(x, y) = (x′ − y′ − S(x1, y1)), where

S2(x1, y1) = γ2(x1 − y1) (4.12)

S3(x1, y1) = γ3(x1 − y1)− 1
2
(x1 + y1)γ2(x1 − y1). (4.13)
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In the coordinates induced by the defining function Φ̃, the twisted conormal bundle is

given by

C :=
{(
x, (τ · Φ̃)x, y,−(τ · Φ̃)y

)
: Φ̃(x, y) = 0

}
.

We define L ⊂ C as in (2.13).

Note that Φ̃ can be expressed as the graph of an R2-valued function F (x, y1) = x′ −

S(x1, y1), hence the differentials of the projections πL and πR at a point P (x, y1, τ) ∈ C

can be expressed as the Jacobians of the functions πΦ̃
L : (x, y1, τ) 7→ (x,−τ ·Sx1(x1, y1), τ)

and πΦ̃
R : (x, y1, τ) 7→ (y1, x

′−S(x1, y1), τ ·Sy1(x1, y1), τ), respectively. Thus dπL|P (x,y1,τ) =(
I3×3 0

(τ ·Φ̃)xixj B

)
where

B =


−τ · Sx1y1(x1, y1) −S2

x1
(x1, y1) −S3

x1
(x1, y1)

0 1 0

0 0 1

 .

Thus we see that det(dπL) = −τ · Sx1y1(x1, y1). Then in the coordinates induced by Φ̃,

L = {P (x, y1, τ) ∈ C : τ2 = ±ρ(γ′′3 (x1 − y1)− 1
2
(x1 + y1)γ′′2 (x1 − y1))

τ3 = ∓ργ′′2 (x1 − y1), ρ > 0}. (4.14)

Let the restriction of τ in L be denoted τ = ±ρτ̃(x1, y1). In these coordinates the

restriction of the projection $|L : L →M defined in Theorem 3.14 maps

(
x,∓ ρτ̃(x1, y1) · Sx1(x1, y1),±ρτ̃(x1, y1), y1, x

′ − S(x1, y1),

± ρτ̃(x1, y1) · Sy1(x1, y1),±τ̃(x1, y1)
)
7→
(
x, y1, x

′ − S(x1, y1)
)
.

Clearly the restriction of $ to L is still a projection and therefore a submersion.
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We also see that πL and πR drop rank simply on L. Indeed, since γ′′2 (t) 6= 0 for all t,

∂τ2 det(dπL(R)) = γ′′2 (x1 − y1) 6= 0.

Next we characterize the various finite type conditions possible for πL and πR. Fol-

lowing the procedure in Lemma 2.4, we see that a kernel field for πL is given by VL = ∂y1 ;

thus for any point P (x, y1, τ) ∈ L and any k ≥ 1

V k
L det dπL

∣∣∣
P

= −τ · Sx1yk+1
1

(x1, y1)
∣∣∣
τ ·Sx1y1 (x1,y1)=0

= ρ(−1)k
(

det
(

γ′′2 (x1−y1) γ′′3 (x1−y1)

γ
(k+2)
2 (x1−y1) γ

(k+2)
3 (x1−y1)

)
+ k

2
γ′′2 (x1 − y1)γ

(k+1)
2 (x1 − y1)

)
(4.15)

A similar calculation yields that det(dπR)|P = − det(dπL)|P . Again following the proce-

dure of Lemma 2.4 we can construct a kernel field for πR, given by

VR = ∂x1 + S2
x1

(x1, y1)∂x2 + S3
x1

(x1, y1)∂x3 .

As above, for P (x, y1, τ) ∈ L and any k ≥ 1 we have

V k
R det dπR

∣∣∣
P

= τ · Sxk+1
1 y1

(x1, y1)
∣∣∣
τ ·Sx1y1 (x1,y1)=0

= ρ(−1)k
(

det
(

γ′′2 (x1−y1) γ′′3 (x1−y1)

γ
(k+2)
2 (x1−y1) γ

(k+2)
3 (x1−y1)

)
− k

2
γ′′2 (x1 − y1)γ

(k+1)
2 (x1 − y1)

)
.

(4.16)

Note that (4.15) and (4.16) correspond to the definitions of hLk and hRk respectively. In

particular, if hLj (t0) = 0 for 1 ≤ j < k but hLk (t0) 6= 0, then we see that πL is type k at

points in L where x1 − y1 = t0, and we can make an analogous statement for πR. Thus

we have proven Proposition 4.7.

Finally we prove Proposition 4.6. Suppose γ′′2 (t) 6= 0 and hR1 (t) = 0 for all t. Then

hL1 (t) 6= 0 for all t ∈ [0, 1] and πL is Whitney fold. As in (4.9) there are constants
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C1, C2, C3 ∈ R such that

γ3(t) = (1
2
t+ C1)γ2(t)− Γ(t) + C2t+ C3,

where Γ(t) is given by (4.10). This implies that

S3
x1y1

(x1, y1) = −(1
2
(x1 − y1) + C1)γ′′2 (t) + 1

2
(x1 + y1)γ′′2 (t) = (y1 − C1)γ′′2 (x1 − y1).

This in turn implies that det(dπL) = 0 when

(τ2, τ3) = ρ(y1 − C1, 1)γ′′2 (t)

for any ρ ∈ R. Since γ′′2 (t) 6= 0 this implies that L is given by the set

L = {P (x, y1, τ) ∈ C : (τ2, τ3) = ρ(y1 − C1, 1), ρ ∈ R}

Since VR lies in the span of {∂xi}i=1,2,3, VR is clearly tangent to L everywhere along L,

implying that πR is a blowdown. On the other hand, if γ′′2 (t) 6= 0 and hL1 (t) = 0 for all

t, an almost identical argument shows that πR is a fold and πL is a blowdown.
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Chapter 5

Sharpness Results on the

Heisenberg Group

In this chapter we prove that Theorem 3.15 is sharp for examples, meaning that there

exist examples of local Radon-like transforms R which satisfy the conditions of Theorem

3.15 but for which Lp-Sobolev estimates cannot be improved past the boundary of the

shaded region in Figure 7. Since Theorem 3.14 is implied by Theorem 3.15 we will

consequently establish the sharpness of Theorem 3.14. The sharpness of the region in

Figure 7 was observed for the restricted X-ray transform (4.1) in [44], where Pramanik

and Seeger proved the following proposition.

Proposition 5.1 ([44, Proposition 1.1]). Suppose that X is defined as in (4.1) such

that γ has nonvanishing curvature. Suppose that X ∗ : Lpcomp → Lps,loc. Then s ≤

min
{

1
p
, 1

2

(
1− 1

p

)
, 1

4

}
.

The proof of the necessity of s ≤ 1
4

is closely related to the sharpness of decoupling

inequalities. A general correspondence between Lp-Sobolev estimates for averages over

curves and decoupling inequalities is established in [5] in the case of translation invariant

operators. Unfortunately that link is less transparent in the variable coefficient setting,

where the fibers of πL(L) may vary with x (recall our discussion of the fibers of πL(L)
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and their relation to decoupling in §3.3).

However, we can adapt techniques from [44] to establish the first two of these neces-

sary conditions also hold in the case of Heisenberg convolutions with measures supported

on curves satisfying the conditions of Proposition 4.6 (see [6]). In addition, we establish

the third necessary condition (s ≤ 1/4) for the case of the moment curve γ(t) = (t, t2, 1
6
t3)

through a change of variables which renders the associated fibers of πL(L) fixed in x.

Proposition 5.2. Let AH be defined as in (4.6). If γ satisfies the conditions of Propo-

sition 4.6 and AH extends to a continuous operator from Lpcomp → Lps,loc then

s ≤ min
{

1
p
, 1

2

(
1− 1

p

)}
.

Additionally, if γ(t) = (t, t2, 1
6
t3) then we may also conclude s ≤ 1

4
.

To prove this proposition we recall the oscillatory integral representation of AH,

where after a change of variables

AHf(x) =

∫ ∫
e2πiτ ·(x′−y′−S(x1,y1))χ(x1, y1)f(y) dτ dy,

where S(x1, y1) is given by (4.12),(4.13) and χ is smooth and compactly supported.

Then the adjoint of AH is given by

A∗Hg(y) =

∫
e−iτ ·(x

′−y′−S(x1,y1))χ(x1, y1)g(x) dx.

For simplicity, the sharpness examples will be proven on the adjoint of AH.

Consider a Fourier multiplier mk in R2 of order 0 which vanishes for |ξ′| ≤ c2k. Then

identifying ξ′ = (ξ2, ξ3) when ξ = (ξ1, ξ
′) ∈ R3 we can let mk act on functions on R3 via

mk(D
′)f(x) = F−1[mk(ξ

′)f̂(ξ)](x).
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Observe that A∗H (and AH) commutes with mk(D
′) since A∗H is translation invariant in

y′, i.e.

A∗Hg(y1, y
′ − ỹ′) = AH[g(·, · − ỹ′)](y).

This implies that mk(D
′) commutes with A∗H. Indeed, applying Fourier inversion,

mk(D
′)A∗Hg(y) =

∫
e2πiy′·ξ′mk(ξ

′)

∫
e−2πiz′·ξ′A∗Hg(y1, z

′) dz′ dξ′

=

∫
e2πiτ ·(S(x1,y1)−x′)

(∫ ∫
e−2πiz′·(ξ′−τ)e2πiy′·ξ′mk(ξ

′)dξ′ dz′

)

× χ(x1, y1)g(x) dx dτ

=

∫
e2πiτ ·(S(x1,y1)−x′)e2πiy′·τmk(τ)χ(x1, y1)g(x) dx dτ

=

∫
e2πiτ ·(S(x1,y1)−x′+y′)mk(τ)χ(x1, y1)g(x) dx dτ.

On the other hand,

A∗H[mk(D
′)g](y) = A∗H

[ ∫
e2πix′·ξ′mk(ξ

′)

∫
e−2πiξ′·w′g(x1, w

′) dw′ dξ′
]
(y)

=

∫
e2πiτ ·(S(x1,y1)+y′)

(∫ ∫
e2πix′(ξ′−τ)e−2πiξ′·w′mk(ξ

′) dξ′ dx′

)

× χ(x1, y1)g(x1, w
′) dx1 dw

′ dτ

=

∫
e2πiτ ·(S(x1,y1)−w′+y′)mk(τ)χ(x1, y1)g(x1, w

′) dx1 dw
′ dτ.

If AH : Lpcomp → Lps for some p ∈ (1,∞) it follows that A∗H : Lp−s,comp → Lp
′
, and thus

that

‖mk(D
′)A∗Hg‖p′ = ‖A∗H[mk(D

′)g]‖p′ ≤ Cp′‖mk(D
′)g‖

Lp
′
−s
≤ Cp′2

−ks‖g‖p′

for any compactly supported g ∈ Lp′(R3).
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5.1 The Necessity of s ≤ 1/p

Let ζ1 be supported in {ξ′ : 1/2 ≤ |ξ′| ≤ 2} with ζ̂1(0) = 1. Let mk be the Fourier

multiplier acting on functions in R3 by mk(D
′)f(x) = F−1[ζ1(2−kξ′)f̂(ξ)]. Then

mk(D
′)A∗Hg(y1, y

′) =

∫
22kζ̂1(2k(x′ − y′ − S(x1, y1)))g(x)χ(x1, y1) dx. (5.1)

Let y1 be fixed for now and let x0 ∈ [−1/2, 1/2] such that χ(x0, y1) > 0. Choose k large

enough that χ(x1, y1) > c > 0 for |x1 − x0| ≤ 2−k. Let gk be the indicator function

of a ball of radius 2−k centered at (x0, 0, 0), and let cy1 be the curve {S(x1, y1) : x1 ∈

suppχ(·, y1)} ⊂ R2. For small ε > 0 let Ey1 be the set of all y′ such that dist(y′, cy1) ≤

ε2−k. Since γ′′2 6= 0 on [−1, 1] we can conclude that S(·, y1) is a regular curve in R2 on a

neighborhood of (x0, y1) that has diameter at least 1/2, hence we estimate |Ey1| ≈ 2−2k

for each fixed y1. As ζ̂1 is positive near the origin we see that the integrand in (5.1) is

bounded below by c22k if y′ ∈ Ey1 , whence we can bound the integral (5.1) below by

2−k. After integrating in y′ over the size of Ey1 and in y1 over a fixed compact set, we

see that ‖mk(D
′)A∗Hgk‖p′ & 2−k2−2k/p′ . On the other hand, ‖gk‖p′ . 2−3k/p′ , hence by a

scaling argument we must have s ≤ 1− 1/p′ = 1/p.

5.2 The Necessity of s ≤ 1
2(1− 1

p)

Notice that since γ′′ 6= 0 the direction of the vector Sx1y1(x1, y1) = γ′′2 (x1 − y1)(1,−y1)

does not depend on x1. Let T (y1) = (1,−y1) and let N(y1) = (y1, 1). Let ζ2 ∈ S(R)

be such that ζ̂2 is non-negative everywhere and is positive in [−1/2, 1/2]. Let ζ3 be

supported in {1/2 ≤ |t| ≤ 2} with ζ̂3 ≥ 1/2 on [−C,C]. Pick b such that χ(b) > 0 and
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define the Fourier multiplier mk by

mk(τ2, τ3) = ζ2(2−k/2〈τ, T (b)〉)ζ3(2−k〈τ,N(b)〉).

Again, mk acts on functions in R3 as

mk(D
′)f(x) = F−1

[
mk(τ2, τ3)f̂(ξ1, τ2, τ3)

]
.

Since mk(τ) vanishes for |τ | ≤ c2k we have ‖mk(D
′)A∗Hg‖p′ ≤ 2−ks‖g‖p′ , and that

mk(D
′)A∗Hg(y) =

∫
23k/2ζ̂2(2k/2〈x′ − y′ − S(x1, y1), T (b)〉) (5.2)

× ζ̂3(2k〈x′ − y′ − S(x1, y1), N(b)〉)g(x)χ(x1, y1) dx.

Let gk(x) be the indicator function of the set defined by the equations

|〈x′ − S(x1, b), T (b)〉| ≤ 2−k/2

|〈x′ − S(x1, b), N(b)〉| ≤ 2−k

|x1| ≤ 1/2.

Let Pk be the set of y such that |〈y′, T (b)〉| ≤ 2−k/2, |〈y′, N(b)〉| ≤ 2−k, and |y1 − b| ≤

2−k/2. For x ∈ supp gk and y ∈ Pk we see that since |y1 − b| ≤ 2−k/2,

|〈x′ − y′ − S(x1, y1), T (b)〉| ≤ C2−k/2.

However, we have better decay in the N(b) direction, as S(x1, ·) vanishes to second order

in the N(b) direction. Indeed, a Taylor expansion reveals

|〈S(x1, y1)− S(x1, b), N(b)〉| = |(y1 − b)2(−γ′2(x1 − b)) + |y1 − b|2R1(x1, y1)| ≤ C2−k,

where R1(x1, y1) is smooth and uniformly bounded. Thus

|〈y′ − x′ − S(x1, y1), N(b)〉| ≤ C2−k,
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implying by the conditions on ζ̂2 and ζ̂3 that the integrand in (5.2) is greater than c23k/2,

implying that mk(D
′)A∗Hgk(y) is bounded below by a positive constant for all y ∈ Pk.

Thus ‖mk(D
′)A∗Hgk‖p′ ≥ c2−2k/p′ . On the other hand, ‖gk‖p′ ≤ 2−3k/2p′ , implying that

s ≤ 1
2p′

= 1
2
(1− 1

p
).

5.3 The Necessity of s ≤ 1/4 for the Moment Curve

In the case γ(t) = (t, t2, 1
6
t3), we can make a change of variables to transform AH

into the restricted X-ray transform (4.1). This allows us to give another example of

a local Radon-like transform which cannot map Lp → Lps locally unless s ≤ 1/4. Let

η(y) = (y2 +y2
1, y3− 2

3
y3

1− 1
2
y1y2, y1). Note η is a smooth function whose Jacobian always

has determinant 1. We apply the operator AH to f ◦ η to obtain

AH(f ◦ η)(x) =

∫
f(x2 + x2

1 − 2x1t, x3 − 2
3
x3

1 − 1
2
x1x2 + 2x2

1t− x1t, x1 − t)χ(t)dt

Next, we change variables (x̃1, x̃2, x̃3) = (x1, x2 − x2
1, x3 − 1

2
x1x2 + 1

3
x3

1) to get

AH(f ◦ η)(x̃) =

∫
f(x̃2 + 2x̃1(x̃1 − t), x̃3 − x̃1(x̃1 − t)2, x̃1 − t)χ(t)dt.

The map x → x̃ is also smooth with Jacobian always equal to 1. Finally, letting

y3 := x̃1 − t we see that our operator has been transformed into the adjoint of (4.1),

associated to the curve y3 7→ (−2y3, y
2
3).

Given this transformation, we can directly apply the third sharpness constraint of

Proposition 5.1, that s ≤ 1/4.
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Chapter 6

An Extension to the

Heisenberg-Sobolev Space

Convolution operators like (3.2) commute with translation on R3; thus we can bootstrap

local results like Theorem 3.13 to global results for convolution operators by translating

and stitching together compactly supported functions into a global function. Suppose

that R is a local Radon-like transform that is also a convolution operator such that

Rf is supported in BC(0) whenever f is supported in B1(0) for some uniform constant

C ≥ 1. Suppose also that R extends to a continuous operator

R : Lpcomp(ΩR)→ Lpα,loc(ΩL) (6.1)

for some α ∈ R. Then let V ⊂ R3 be a countable collection of points such that

{B1(ν)}ν∈V covers R3 and {BC(ν)}ν∈V is finitely overlapping. Using a partition of

unity we split f =
∑

ν∈V fν(x), where fν(x) are supported in B1(ν) for each ν. Since R

is translation invariant, Rfν(x−ν) = R[fν(·−ν)](x), and therefore Rfν(x) is supported

in BC(ν) for each ν ∈ V . Thus {Rfν(x)}ν∈V is a collection of functions with bounded

overlap. By applying (6.1) to each Rfν and using this observation of bounded overlap

we see that

‖Rf‖Lpα ≤
∑
ν

‖Rfν‖Lpα ≤
∑
ν

C‖fν‖p ≤ C‖
∑
ν

fν‖p = C‖f‖p.
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This argument can be adapted to other operators which are not invariant under

Euclidean translation. For example the averaging operator AH from Chapter 4 can be

viewed as a Heisenberg convolution with a measure supported on the curve γ; thus AH

commutes with the action of the Heisenberg group on itself (which we call Heisenberg

translation). Hence we can prove via an adaptation of the above argument that AH is

bounded from Lp(R3) to an analogue of the space Lp1/p(R
3) adapted to translations on

the Heisenberg group, which we now introduce.

Define the discrete Heisenberg group HZ := {(x1, x2, x3 + 1
2
x1x2) : xj ∈ Z} ⊂ H.

As in §4.2, let Rλ denote right (Heisenberg) translation by λ ∈ HZ and R∗λ the associated

translation operator defined by R∗λf(x) = f(x � λ−1). The discrete Heisenberg group

acts as a discrete approximation of H, as Z3 is a discrete approximation of R3, and we

can use its integer-like properties to construct a partition of unity adapted to HZ (this

construction is an example of a uniform partition of unity on a locally compact

group, see [36]). HZ is a uniform lattice on H, meaning that we can find a compact

set C ⊂ H such that H =
⋃
λ∈HZ

C�λ. This condition is satisfied by C = {(a, b, c+ 1
2
ab) :

−1
2
≤ a, b, c ≤ 1

2
} ⊂ B1(0). Indeed, given (x, y, z) ∈ H we can find a discrete translate of

C that contains (x, y, z). Let d·c denote the nearest integer function, so that x = dxc+a,

y = dyc+ b, and z = dzc+ c, where |a|, |b|, |c| ≤ 1
2
. Then defining

λ =
(
dxc, dyc,

⌈
z − 1

2
xy + bdyc

⌋
+ 1

2
dxcdyc

)
∈ HZ,

we see that (x, y, z) = (a, b, c) � λ, implying that (x, y, z) ∈ C � λ. Also note that the

interiors of C�λ for every λ ∈ HZ are mutually disjoint. Moreover, B2(0) ⊃ B1(0) ⊃ C

contains finitely many elements of HZ. Thus we can pick ψ ∈ C∞c (B2(0)) with uniformly

bounded derivatives such that 0 ≤ φ ≤ 1, and define translates φλ(x) = φ(x � λ−1) =
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R∗λφ so that
∑

λ∈HZ
φλ ' 1 with finitely overlapping support. Then since the sum∑

λ∈HZ
φλ is locally finite the functions

ψλ =
φλ∑

λ′∈HZ
φλ′

form a C∞ partition of unity. Moreover, the family of functions is still generated by the

group action of HZ as

ψλ(x) =
φ(x� λ−1)∑

λ′�λ∈HZ
φ
(
(x� (λ′)−1 � λ−1)� λ

) = Rλ
φ(x)∑

λ′∈HZ
φλ�λ′

,

implying ψλ = R∗λψ(0,0,0) =: R∗λψ. Given this partition of unity, we define the following

norm.

Definition 6.1. Let ψ ∈ C∞c (B2(0)) such that 0 ≤ ψ ≤ 1 with uniformly bounded

derivatives and
∑

λ∈HZ
R∗λψ ≡ 1 with finitely overlapping supports. We define Lps(H) to

be the space of functions in Lp(R3) such that the norm

‖f‖Lps(H) :=
∥∥∥ ∑
λ∈HZ

R∗λ(I −∆)s/2ψR∗λ−1f
∥∥∥
Lp(R3)

is finite.

By an adaptation of the argument above, Theorem 3.14 and Proposition 4.6 imply

the following.

Theorem 6.2. If γ satisfies the same conditions as in Proposition 4.6, then AH is

bounded from Lp(R3) to Lp1/p(H) for p > 4.

In this chapter we will prove Theorem 6.2 and examine some aspects of the norm

‖ · ‖Lps(H). This norm is a natural choice for a Sobolev space on H for three reasons.

First, the standard (Euclidean) Sobolev norm and the Heisenberg-Sobolev norm are



78

comparable for functions supported near the origin. Given a compact set K containing

the origin there are only finitely many ψλ that are nonzero on K, hence for functions

supported on K we can apply finitely many changes of variables and use the finitely

overlapping support of {ψλ} to conclude

∥∥f∥∥
Lps(R3)

'K
∥∥f∥∥

Lps(H)
.

Second, if we replace Heisenberg translations over HZ with Euclidean translations over

the integers (denote these translations τn) we see that

∥∥∥∑
n∈Z

τn(I −∆)s/2ψτ−nf
∥∥∥
p

=
∥∥∥∑
n∈Z

τn(I −∆)s/2τ−nψnf
∥∥∥
p

=
∥∥∥(I −∆)s/2

∑
n∈Z

ψnf
∥∥∥
p

= ‖(I −∆)s/2f‖p,

assuming that
∑

n∈Z ψn ≡ 1. So the main obstruction between this space and the

standard (Euclidean) Sobolev space is the fact that (I −∆)s/2 does not commute with

Heisenberg translations, making it a natural analogue of the Sobolev space in a non-

commutative setting. Third, this norm is independent of our choice of smooth cutoff

function ψ.

Proposition 6.3. The choice of a different ψ in the definition of the Heisenberg-Sobolev

norm results in an equivalent norm.

We will prove this proposition in Section 6.2. First, we prove Theorem 6.2.
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6.1 The Proof of Theorem 6.2

We use finitely overlapping support of ψλ and the fact that AH commutes with Heisen-

berg translation to show

‖AHf‖Lp
1/p

(H) .
(∑
λ∈Λ

∥∥R∗λ(I −∆)
1
2pψAHR

∗
λ−1f

∥∥p
p

)1/p

.

We first remove the right translation by λ by an affine change of variables. We observe

that for F a fixed dilate of the support of ψ we have ψAHR
∗
λ−1f = ψAH1FR

∗
λ−1f . This

combined with Theorem 3.14 gives(∑
λ∈Λ

∥∥(I −∆)
1
2pψAHR

∗
λ−1f

∥∥p
p

)1/p

.
(∑
λ∈Λ

‖1FR∗λ−1f‖pp
)1/p

. ‖f‖p,

finishing the proof.

6.2 Independence from ψ

We now prove Proposition 6.3. Suppose {ψ̃λ}λ∈HZ is another partition of unity satisfying

the conditions in Definition 6.1. Observe that there is a finite set B ⊂ HZ contained in

the Euclidean ball B4(0) (independent of ψ̃ and ψ) such that

ψ = ψ
(∑
σ∈B

ψ̃σ

)
.

Next, for each σ ∈ B and λ ∈ HZ we have

ψψ̃σR
∗
λ−1f = ψR∗σψ̃R

∗
σ−1R∗λ−1f

= R∗σψσ−1ψ̃R∗(σλ)−1f.



80

Since the supports of ψλ are finitely overlapping and B is finite, we obtain∥∥∥ ∑
λ∈HZ

R∗λ(I −∆)s/2ψR∗λ−1f
∥∥∥
p

=
∥∥∥ ∑
λ∈HZ

R∗λ(I −∆)s/2
∑
σ∈B

ψψ̃σR
∗
λ−1f

∥∥∥
p

=
∥∥∥ ∑
λ∈HZ

∑
σ∈B

R∗λ(I −∆)s/2R∗σψσ−1ψ̃R∗(σλ)−1f
∥∥∥
p

'
( ∑
λ∈HZ

∑
σ∈B

‖R∗λ(I −∆)s/2R∗σψσ−1ψ̃R∗(σλ)−1f‖pp
) 1
p
. (6.2)

Let gλ,σ = ψσ−1ψ̃R∗(σλ)−1f . We prove that ‖(I − ∆)s/2R∗σgλ,σ‖p ' ‖R∗σ(I − ∆)s/2gλ,σ‖p

uniformly in σ and λ. To show this we need some technical details from the definition

of Triebel-Lizorkin spaces (cf. [55, 56]).

Definition 6.4. Let Ω be the collection of all sequences {ωj}∞j=0 ⊂ S(R3) with the

properties

1. there exist positive constants A,B,C such that

suppω0 ⊂ {ξ : |ξ| ≤ A}

suppωj ⊂ {ξ : B2j−1 ≤ |ξ| ≤ C2j+1}, j = 1, 2, 3, ...

2. for every multi-index α there exists cα > 0 such that

sup
x∈R3

sup
j∈N

2j|α||∂αωj(ξ)| ≤ cα,

3. for every ξ ∈ R3

∞∑
j=0

ωj(ξ) = 1.

For a sequence {ωj} ∈ Ω we define the Triebel-Lizorkin norm

‖f‖F p,qs =
∥∥∥( ∞∑

j=0

|2jsqωj ∗ f |q
)1/q∥∥∥

Lp
.

We remark that a different choice of {ωj} results in an equivalent norm.



81

Let {ωj} ∈ Ω with associated constants A,B,C, cα. Recall that ‖R∗σgλ,σ‖Lps '

‖R∗σgλ,σ‖F p,2s
. A direct calculation reveals that

R∗σg
∧

(ξ) = e−2πi〈σ,ξ〉ĝ(ξ1 + σ2
2
ξ3, ξ − σ1

2
ξ3, ξ3)

We define ϑ(η) = (η1 − σ2
2
η3, η2 + σ1

2
η3, η3). Then by a linear change of variables

qωj ∗R∗σgλ,σ =

∫
e2πi〈x,ξ〉ωj(ξ)e

−2πi〈σ,ξ〉ĝλ,σ(η(ξ)) dξ∫
e2πi(〈x�σ−1),η〉ωj(ϑ(η))ĝλ,σ(η) dη

= R∗σ

[
­ωj ◦ ϑ ∗ gλ,σ

]
.

The smooth cutoff ωj ◦ ϑ, j = 1, 2, 3... is supported where

B2j−1 ≤ |ϑ(η)| ≤ C2j+1.

Since |σj| ≤ 4 for all σ ∈ B these inequalities imply that

suppωj(ϑ(η)) ⊂
{
η : B

5
2j−1 ≤ |η| ≤ 5C2j+1

}
.

The same argument also implies that suppω0(ϑ(η)) ⊂ {η : |η| ≤ 5A}. Next, since ϑ(η)

is linear and |σj| ≤ 4 for j = 1, 2, 3 we can conclude that for any multi-index α

sup
η∈R3

sup
j∈N

2j|α||∂αωj(ϑ(η))| ≤ 3|α|cα.

Since clearly
∑∞

j=0 ωj(ϑ(η)) = 1 for every η we conclude that {ω̃j}∞j=0 = {ωj ◦ϑ}∞j=0 ∈ Ω,

hence

‖(I −∆)s/2R∗σgλ,σ‖p '
∥∥∥( ∞∑

j=0

|2jsqωj ∗R∗σgλ,σ|2
)1/2∥∥∥

p

=
∥∥∥R∗σ( ∞∑

j=0

|2js­ωj ◦ ϑ ∗ gλ,σ|2
)1/2∥∥∥

p
' ‖R∗σ(I −∆)s/2gλ,σ‖p.
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Plugging this into (6.2) we obtain

∥∥∥ ∑
λ∈HZ

R∗λ(I −∆)s/2ψR∗λ−1f
∥∥∥
p
' C

( ∑
λ∈HZ

∑
σ∈B

‖R∗σλ(I −∆)s/2ψσ−1ψ̃0R
∗
(σλ)−1f‖pp

) 1
p

≤ C
( ∑
λ̃∈HZ

∑
σ∈B

‖R∗
λ̃
(I −∆)s/2ψσ−1ψ̃R∗

λ̃−1f‖pp
) 1
p

'
∥∥∥ ∑
λ̃∈HZ

R∗
λ̃
(I −∆)s/2ψ̃

(∑
σ∈B

ψσ−1

)
R∗
λ̃−1f

∥∥∥
p

= C
∥∥∥ ∑
λ̃∈HZ

R∗
λ̃
(I −∆)s/2ψ̃R∗

λ̃−1f
∥∥∥
p
,

proving that the Heisenberg-Sobolev norm is equivalent for different choices of cutoff

function.
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Chapter 7

The Proof of Proposition 3.4

In this chapter we present an analytic interpolation argument for local Radon-like trans-

forms of arbitrary dimensions d and n with a given L2-Sobolev estimate. Let ΩL,ΩR be

n-dimensional manifolds, and let M ⊂ ΩL × ΩR be a (d + n)-dimensional submanifold

such that the projections ρL, ρR defined in (2.1) are submersions. Then as in (2.3) we

can express M locally as the zero locus of a smooth Rd−n-valued function Φ, and we

can write

Rf(x) =

∫
Rd

∫
Rd−n

e2πiτ ·Φ(x,y)χ(x, y)f(y) dτ dy.

Recall that ∇xΦ
j(x, y) are linearly independent, as are ∇yΦ

j(x, y) for j = 1, 2, ..., d−n.

By the implicit function theorem we can find C0 > 0 such that for (x, y) ∈ suppχ

4C−1
0 |τ | ≤ |(τ · Φ)x| ≤ C0/4|τ | (7.1)

4C−1
0 |τ | ≤ |(τ · Φ)y| ≤ C0/4|τ |. (7.2)

We now introduce a dyadic partition of unity which we will use many times throughout

the remainder of this work. Let χ0 ∈ C∞c (R) be nonnegative such that χ0 = 1 on [−1, 1]

and is supported on [−2, 2]. For k ≥ 1 define χ̃k(x) = χ0(2−kx) − χ0(21−kx). Thus

χ1 ∈ C∞c (R) is supported where 1 ≤ |x| ≤ 4, χk(·) = χ1(21−k·) is supported where

2k−1 ≤ |x| ≤ 2k+1, and
∑

k≥0 χk ≡ 1. We can use this dyadic partition of unity to
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dyadically decompose R as follows. For k ≥ 0 and f ∈ S(Rd) define

Rkf(x) =

∫
Rd

∫
Rd−n

e2πiτ ·Φ(x,y)χ(x, y)χk(|τ |)f(y) dτ dy.

For k ≥ 0 let Pk and P̃k be any standard Littlewood-Paley multipliers such that F[Pkf ]

and F[P̃kf ] are supported where |ξ| ' 2k for k ≥ 1 and F[P0f ] is supported where

|ξ| . 1. We introduce a lemma about Littlewood-Paley decompositions of local Radon-

like transforms.

Lemma 7.1. Suppose C0 > 0 is such that (7.1) and (7.2) hold. For each k ∈ N let

Dk = {(k′, k′′) ∈ N2 : |k − k′| > C1} ∪ {(k′, k′′) ∈ N2 : |k − k′′| > C1}, (7.3)

where C1 depends on C0. Let v0 ∈ C∞c (ΩL) and v1 ∈ C∞c (ΩR). Then for any k ∈ N and

any (k′, k′′) ∈ Dk

‖Pkv0Rk′v1P̃k′′‖Lp→Lp ≤ C min{2−kN , 2−k′N , 2−k′′N}.

Proof of Lemma 7.1. This integration by parts argument is essentially due to Hörmander

[35], based on the fact that the canonical relation stays away from zero sections (cf. [50,

Lemma 2.1]). Note that the Schwartz kernel of the operator Pkv0Rk′v1Pk′′ is given by∫ ∫ ∫ ∫ ∫
e2πi[〈x−w,η〉+τ ·Φ(w,z)+〈z−y,ξ〉]χk(|η|)χk′(|τ |)χk′′(|ξ|)

× χ(x, y)v0(x)v1(y) dw dz dτ dη dξ.

Our assumption on Φ implies that if max{|k − k′|, |k′ − k′′|} > C1 we have

∇(z,w) [〈x− w, η〉+ τ · Φ(w, z) + 〈z − y, ξ〉] ≥ cmax{2k, 2k′ , 2k′′}.

We integrate by parts many times in the (w, z) variables and use the compact support

of the kernel and Minkowski’s integral inequality to obtain the desired bound on Lp.
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Suppose there exists α ∈ R such that R extends to a bounded operator from

L2
comp(ΩR) → L2

α,loc(ΩL), and define α(p) as in Lemma 3.1. We first construct an

analytic family of operators. As before, let v0 ∈ C∞c (ΩL), v1 ∈ C∞c (ΩR), and define

Tzf = v0R[v1(I −∆)
z
2 f ]. Then we prove

‖Tzf‖2 ≤ C‖f‖2, Re z = α (7.4)

‖Tzf‖L1 ≤ Cy‖f‖H1 , Re z = 0, (7.5)

where Cy depends at most polynomially on y. Here H1 = H1(Rd) refers to the Hardy

space on Rd. Since (I − ∆)iy/2 is a Calderon-Zygmund operator, it is bounded from

L2 → L2 and H1 → L1 with constants depending at most polynomially on y. Thus the

estimate (7.4) follows from the assumption (3.1) and the L2 boundedness of (I −∆)iy;

note that (3.1) still holds for R with χ(x, y) replaced by v0(x)χ(x, y)v1(y). On the other

hand, (7.5) follows from the local L1-boundedness of R and the H1 → L1 boundedness

of (I −∆)iy. Thus we can use an analytic interpolation theorem of Stein found in [21,

§ 5] to deduce that the operator Tα(p) extends to a bounded operator

Tα(p) : Lp(Rn)→ Lp(Rn)

for 1 < p < 2. Since R is not translation-invariant we cannot directly commute R and

(I −∆)α(p)/2 to conclude that R is bounded from Lpcomp(ΩR)→ Lpα(p),loc(ΩL). However,

we can use Littlewood-Paley theory and Lemma 7.1 to achieve the same result. Suppose

that v1 ≡ 1 in a neighborhood of the origin. For f ∈ Lp supported in the set {v1 ≡ 1}
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we can write

‖v0Rf‖Lp
α(p)

=
∥∥∥(∑

k≥0

|2kα(p)Pkv0Rv1f |2
)1/2∥∥∥

Lp
.

Note that since Pk
(
2−kα(p)(I −∆)

)α(p)/2
is also a Littlewood-Paley multiplier of order k,

for each k ≥ 0

Pkv0Rv1f = Pkv0

( ∑
(k′,k′′) 6∈Dk

R′kv1Pk′′
(
2−k

′′α(p)(I −∆)α(p)/2
)
f

+
∑

(k′,k′′)∈Dk

R′kv1Pk′′
(
2−k

′′α(p)(I −∆)α(p)/2
)
f

)

= Pkv0

( ∑
|s1,|s2|≤C1

Rk+s1v1Pk+s2

(
2−k+s2α(p)(I −∆)α(p)/2

)
f

+
∑

(k′,k′′)∈Dk

R′kv1Pk′′
(
2−k

′′α(p)(I −∆)α(p)/2
)
f

)
.

Thus by the triangle inequality and an application of Lemma 7.1, we can estimate

∥∥v0Rf
∥∥
Lp
α(p)

≤
∥∥∥∥(∑

k≥0

∣∣∣ ∑
|s1|,|s2|≤C1

2−s2α(p)Pkv0Rk+s1v1Pk+s2(I −∆)α(p)/2f
∣∣∣2)1/2∥∥∥∥

p

+ C‖f‖p

≤ 2C1α(p)

∥∥∥∥(∑
k≥0

∣∣∣ ∑
|s1|,|s2|≤C1

Pkv0Rk+s1v1Pk+s2(I −∆)α(p)/2f
∣∣∣2)1/2∥∥∥∥

p

+ C‖f‖p.

Note that by the triangle inequality∣∣∣∣ ∑
|s1|,|s2|≤C1

Rk+s1v1Pk+s2

∣∣∣∣ =

∣∣∣∣ ∑
k′,k′′≥0

Rk′v1Pk′′ −
∑

(k′,k′′)∈Dk

Rk′v1Pk′′

∣∣∣∣
≤
∣∣∣∣ ∑
k′,k′′≥0

Rk′v1Pk′′

∣∣∣∣+

∣∣∣∣ ∑
(k′,k′′)∈Dk

Rk′v1Pk′′

∣∣∣∣
= |Rv1|+

∣∣∣∣ ∑
(k′,k′′)∈Dk

Rk′v1Pk′′

∣∣∣∣.
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Thus by another application of Lemma 7.1∥∥∥∥(∑
k≥0

∣∣∣ ∑
|s1|,|s2|≤C1

Pkv0Rk+s1v1Pk+s2(I −∆)α(p)/2f
∣∣∣2)1/2∥∥∥∥

p

≤ C
∥∥∥(∑

k≥0

|PkTα(p)f |2
)1/2∥∥∥

p

+ C‖f‖p

≤ ‖Tα(p)f‖p + C‖f‖p

≤ C‖f‖p

finishing the proof thatR extends to a bounded operator from Lpcomp(ΩR)→ Lpα(p),loc(ΩL)

for 1 < p < 2.
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Chapter 8

The Structure of the Proof of

Theorem 3.14

In this chapter we begin the proof of Theorem 3.14 by relating Lp-Sobolev estimates

to estimates on oscillatory integral operators. Recall the definitions of χk for k ≥ 0

from Chapter 7. We decompose dyadically in |τ | as in §7, then dyadically in the size

of | det(dπL)|, following the ideas of Phong and Stein in [42]. Since πL is a fold the

decomposition in | det(dπL)| also decomposes dyadically in the distance away from L,

locally in the direction of VL. As the Schwartz kernel of R is compactly supported in

(x, y), we have a uniform bound |∆(x, y3)| ≤ 2−C2 for some C2 ∈ R. Let ε > 0 be a

small constant to be determined and let `◦ = `◦(k, ε) =
⌊

k
2+ε

⌋
. Then for C2 ≤ ` ≤ `◦ let

ak,`,±(x, y3, τ) = χ1(2`+1−k(±τ ·∆(x, y3))) C2 ≤ ` < `◦

ak,`◦(x, y3, τ) = χ0(2`◦+1−k|τ ·∆(x, y3)|).

For C2 ≤ ` ≤ `◦ we then define

Rk,`,±f(x) =

∫
e2πiτ ·(S(x,y3)−y′)χ(x, y)f(y)χk(|τ |)ak,`,±(x, y3, τ) dy dτ. (8.1)

By our assumption on ∆ and the definitions of χk,
∑
±
∑

k≥0

∑
C2≤`≤`◦(k,ε)Rk,`,± = R.

We will suppress the dependence of R on ± as we deal with Rk,`,+ and Rk,`,− identically,

and we will suppress the dependence of `◦ on k and ε when clear from context.
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8.1 Oscillatory Integral Estimates

The main estimate we prove for our decomposed operator is the following.

Proposition 8.1. For p > 4 there exists ε0(p) > 0 such that for all C2 ≤ ` ≤ `◦,

‖Rk,`‖Lp→Lp ≤ Cp2
−(k+`ε0)/p.

This proposition follows by interpolation with L2 estimates, L∞ estimates, and a

decoupling inequality. Let I be a collection of intervals of length 2−` with disjoint

interiors intersecting a small neighborhood of 0. Then for a function f : R3 → C

supported in small enough neighborhood of the origin and any I ∈ I, let fI(y) :=

f(y)1I(y3), so that f =
∑

I∈I fI almost everywhere, with almost disjoint supports in y3.

We also define the operator

RI
k,`f(x) = Rk,`[1If ](x)

for each I ∈ I. Note that Rk,`fI(x) = RI
k,`fI(x).

The decomposition in distance from L allows us to quantitatively estimate the im-

provement in L2 estimates as we move away from L. This observation is analogous to

the nonisotropic Fourier decay of measures supported on curves in R3 away from the

binormal cone, illustrated in §3.2.

Proposition 8.2. For every k > 0, every ε > 0 and C2 ≤ ` ≤ `◦

‖Rk,`‖L2→L2 . 2
`−k
2

+`ε. (8.2)

Moreover, by almost disjoint supports of the functions fI ,(∑
I∈I

‖RI
k,`fI‖2

L2

)1/2

. 2
`−k
2

+`ε
(∑
I∈I

‖fI‖2
L2

)1/2

. (8.3)
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We will prove a more general version of Proposition 8.2 in Chapter 9, following

methods of almost-orthogonality found in the proof of the Calderón-Vaillancourt theorem

(see [39], § 9.2). The foundation of this method was originally introduced into this

context by Phong and Stein [42], Cuccagna [18], and Comech [14]. The general version

of Proposition 8.2 (Theorem 9.1) drops the assumption on $ and on dimension, and

applies to all FIOs associated to fibered folding canonical relations.

The main estimate in the proof of Theorem 3.14 is the decoupling inequality.

Proposition 8.3. If ` ≤ `◦, for every ε > 0

∥∥∥∑
I∈I

Rk,`fI

∥∥∥
Lp

.ε 2`(
1
2
− 1
p

+ε)
(∑
I∈I

‖Rk,`fI‖pLp
)1/p

+ 2−10k‖f‖Lp

for 2 ≤ p ≤ 6.

Following a similar approach to [4] and [46], we prove Proposition 8.3 using an induc-

tive argument, at each step combining lp decoupling with suitable changes of variables.

We first prove one step in this inductive argument for a model case in Chapter 10, then

reduce the general case to the model case and perform the induction in Chapter 11.

To show that Propositions 8.2 and 8.3 imply Proposition 8.1 we interpolate with an

easy L∞ estimate.

Proposition 8.4. For every k ≥ 0 and ` ≤ `◦

sup
I∈I
‖RI

k,`fI‖∞ . 2−` sup
I∈I
‖fI‖∞ (8.4)

‖Rk,`f‖∞ . ‖f‖∞. (8.5)

Interpolating the estimates (8.4) with (8.3) for the vector-valued operator {RI
k,`}I∈I
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applied to {fI} we obtain(∑
I∈I

‖Rk,`fI‖pp
)1/p

.ε 2`(
3
p
−1+ε)2−k/p

(∑
I∈I

‖fI‖pp
)1/p

, 2 ≤ p ≤ ∞. (8.6)

Combining this estimate with Proposition 8.3 we obtain

‖Rk,`f‖p .ε 2`(ε+
2
p
− 1

2
)2−k/p

(∑
I∈I

‖fI‖pp
)1/p

+ 2−10k‖f‖p, 2 ≤ p ≤ 6. (8.7)

Note that the power of 2` in (8.7) is negative if 4 < p ≤ 6 and ε is sufficiently small. A

further interpolation with the L∞ estimate (8.5) yields Proposition 8.1 for p > 4.

8.2 Integration by Parts and Nonstationary Phase

Arguments

Each of these propositions relies on integration by parts estimates, with careful consid-

eration of the derivatives applied to the various symbols. We begin by stating a general

integration by parts estimate, which we will apply many times throughout the next four

chapters.

Lemma 8.5. Suppose φ ∈ C∞(Rd), and define the differential operator L = 〈 ∇φ|∇φ|2 ,∇·〉.

Suppose g ∈ C∞c (Rd) and there exists D > 0 such that for every derivative ∂j of order

j ∈ N, |∂jg| ≤ Dj. Assume that there exists some E > 0 such that |∇φ| ≥ E and

|∂jφ| ≤ CjD
j−1E for j ≥ 2. Then for every N > 0,

|(L∗)N(g)| .N,d

(
D

E

)N
. (8.8)

Proof. This lemma is a special case of [4, Lemma A.2], which describes the structure of

(L∗)Ng.
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Definition 8.6 ([4, Definition A.1]). 1. The term g is of type (A, 0). A term is of

type (A, j) for some j ≥ 1 if it is ∂jg/|∇φ|j where ∂j is a derivative of order j.

2. A term is of type (B, 0) if it is equal to 1. A term is of type (B, j) for some j ≥ 1

if it is of the form ∂j+1φ/|∇φ|j+1 where ∂j+1 is a derivative of order j + 1.

Let N = 0, 1, 2, .... Then per [4, Lemma A.2], we can write

(L∗)Ng =

K(N,d)∑
ν=1

cN,νgN,ν .

Each gN,ν is of the form

P
( ∇φ
|∇φ|

)
αA

M∏
m=1

βm

where P is a polynomial of d variables (independent of g and φ), αA is of type (A, jA) for

some jA ∈ {0, ..., N} and the terms βm are of type (B, κm) so that jA +
∑M

m=1 κm = N .

Our assumptions on the derivatives of φ and g imply that terms of type (A, j) and

terms of type (B, j) are both bounded by CjD
j/Ej. Then we have for each N, ν

|gN,ν | ≤ ‖P‖L∞(B1(0))

(D
E

)N
,

implying that

|(L∗)Ng| ≤ CN,d

(D
E

)N
.

8.2.1 The Proof of Proposition 8.4

To prove (8.4) we estimate the Schwartz kernel of Rk,`,

Rk,`(x, y) = χ(x, y)

∫
e2πiτ ·(S(x,y3)−y′)χk(|τ |)ak,`,±(x, y3, τ) dτ
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by integrating by parts in the τ variables. For fixed x, y we integrate by parts in the

distinguished directions (∆1(x, y3),∆2(x, y3)) and (−∆2(x, y3),∆1(x, y3)). Here our sub-

mersion assumption of $ comes into play, implying via Lemma 3.11 that both (∆1,∆2)

and (−∆2,∆1) are nonzero. Since τ · (S(x, y3)− y′) is linear in τ ,

∣∣∣(∆1(x, y3)∂τ1 + ∆2(x, y3)∂τ2
)j

[χk(|τ |)]
∣∣∣ ≤ Cj2

−kj∣∣∣(∆1(x, y3)∂τ1 + ∆2(x, y3)∂τ2
)j

[ak,`,±(x, y3, τ)]
∣∣∣ ≤ Cj2

(`−k)j,

and

∣∣∣(−∆2(x, y3)∂τ1 + ∆1(x, y3)∂τ2
)j

[χk(|τ |)]
∣∣∣ ≤ Cj2

−kj∣∣∣(−∆2(x, y3)∂τ1 + ∆1(x, y3)∂τ2
)j

[ak,`,±(x, y3, τ)]
∣∣∣ = 0,

for any j ≥ 1, we can apply Lemma 8.5 in the (∆1,∆2) direction and then the (−∆2,∆1)

direction to obtain

|Rk,`(x, y)| ≤ CN
(
2k−`|∆1(y1−S1)+∆2(y2−S2)|

)−N(
2k|−∆2(y1−S1)+∆2(y2−S2)|

)−N
.

On the other hand, for fixed x, y the symbol of Rk,`(x, y) is supported in a rectangle

which has length 2k−` in the (∆1,∆2) direction and length 2k in the (−∆2,∆1) direction.

This shows that |Rk,`(x, y)| ≤ CNU1(x, y)U2(x, y), where

U1(x, y) =
2k−`

(1 + 2k−`|∆1(y1 − S1) + ∆2(y2 − S2)|)N

U2(x, y) =
2k

(1 + 2k| −∆2(y1 − S1) + ∆2(y2 − S2)|)N

We integrate the kernel in y′ first, then over y3 ∈ I, which is an interval of length 2−`.

To prove (8.5) we apply the same argument, but integrate over a larger interval in y3.
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8.3 Recombining into Lp-Sobolev estimates

As in [44, 45, 46, 6], we prove Theorem 3.14 from Proposition 8.1 by estimating the

Triebel-Lizorkin norm of

R` =
∑

k≥(2+ε)`

Rk,`

First, we introduce the definitions of global and local Triebel-Lizorkin and Besov norms.

Definition 8.7 ([55], cf. [46, pp.33-34]). For k ∈ N let Pk be standard Littlewood-Paley

multipliers on Rd. For 0 < p, q <∞ and s ∈ R the Triebel-Lizorkin norm ‖ · ‖F p,qs (Rd) is

given by

‖f‖F p,qs (Rd) =
∥∥∥(∑

k

|2ksPkf |q
)1/p∥∥∥

Lp(Rd)

and the Besov norm ‖ · ‖Bp,qs (Rd) is given by

‖f‖Bp,qs (Rd) =
(∑

k

‖2ksPkf‖qLp(Rd)

)1/q

.

Given open sets ΩL,ΩR ⊂ Rd we say a linear operator T is bounded from
(
Bp0,q0
s0

)
comp

(ΩR)

to
(
F p1,q1
s1

)
loc

(ΩL) if for any v0 ∈ C∞c (ΩL) we have for all f ∈ Bp0,q0
s0

(Rd) which are sup-

ported in a compact set K ⊂ ΩR

‖v0Tf‖F p1,q1s1
(Rd) ≤ Cp(v0, K)‖f‖Bp0,q0s0

(Rd).

Proposition 8.1 implies the following local estimate on Triebel-Lizorkin and Besov

spaces.

Proposition 8.8. For f ∈ C∞c (ΩR) and v0 ∈ C∞c (ΩL)

‖v0R`f‖F p,q
1/p
≤ 2−`ε(p)‖f‖Bp,p0

, 0 < q ≤ 2 < 4 < p <∞. (8.9)
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The decay in ` allows us to sum in ` with q ≥ 1, and conclude that

R :
(
Bp,p

0

)
comp

(ΩR)→
(
F p,q

1/p

)
loc

(ΩL), q ≤ 2 < 4 < p <∞.

Since Lps = F p,2
s ↪−→ Bp,p

s for p > 2 and F p,q
1/p ↪−→ F p,2

1/p = Lp1/p for q ≤ 2, this implies the

asserted Lp-Sobolev bounds for R.

We will prove Proposition 8.8 in Chapter 12 by applying [43, Theorem 1.1], a now-

standard argument previously used in [44, 45, 46] and [6].
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Chapter 9

L2 Estimates for Oscillatory Integral

Operators

In this chapter we prove an L2-Sobolev estimate for a general class of oscillatory integral

operators which implies Proposition 8.2. These oscillatory integral operators are related

to FIOs associated to fibered folding canonical relations (see [23, § 2]), in particular the

local Radon-like transforms considered in Theorem 3.14. As in §2.1, let X, Y be open

sets in Rd, and define for k ∈ N

Akf(x) =

∫
e2πi2kΦ(x,y)f(y)σ(x, y)dy, (9.1)

where x ∈ X, y ∈ Y , Φ ∈ C∞(X × Y ), and σ ∈ C∞0 (X × Y ).

We define the canonical relation associated to an oscillatory integral operator of the

form (9.1) to be

CA = {(x,Φx, y,−Φy) : x ∈ X, y ∈ Y } ⊂ T ∗X × T ∗Y.

We will see this set is directly related to the canonical relation for related FIOs [25]; in

particular CA again has natural projections πL : CA → T ∗X and πR : CA → T ∗Y which

we associate with the maps (x, y) 7→ (x,Φx) and (x, y) 7→ (y,−Φy) respectively. Let

h(x, y) = det Φxy and let L be the subset of CA on which h(x, y) vanishes. We assume

that the only singularities of πL are folds.
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9.1 Reductions

By a partition of unity we may choose the support of σ small enough such that we can

choose coordinate x = (x′, xd), y = (y′, yd) in Rd−1 × R vanishing at a reference point

P ◦ = (x◦, y◦) ∈ X × Y such that πL is a fold at P ◦, and in these new coordinates

Φx′y′(0, 0) = Id−1 (9.2)

Φxdy′(0, 0) = 0 (9.3)

Φx′yd(0, 0) = 0 (9.4)

Φxdyd(0, 0) = 0 (9.5)

and for (x, y) in a small neighborhood of the origin

max{|Φx′yd(x, y)|, |Φxdy′(x, y)|} < ε. (9.6)

We present the proof of this statement from [23, § 2]. Let e1, ..., ed denote the standard

orthonormal basis vectors in Rd. First, suppose that 0 6= a ∈ cokerΦxy(x
◦, y◦) and that

0 6= b ∈ ker Φxy(x
◦, y◦). Set φ(x, y) = Φ(x◦ + B1x, y

◦ + B2y) where B1, B2 ∈ GL(d,R)

have the properties

B1ed = a

B2ed = b

B2ej ⊥ ∂2
y〈a,Φx〉b, j = 1, ..., d− 1.

The fold condition on πL at P ◦ implies that the quadratic form η 7→
〈
∂2
y〈a,Φx〉η, η

〉
is

nondegenerate on ker dπL, which in turn implies that B2 can be made invertible. Clearly

ed ∈ cokerΦxy(0, 0) and ed ∈ ker Φxy(0, 0); this implies (9.3) and (9.4), which in turn
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implies (9.6) if we shrink the support of σ accordingly. The fold condition on πL implies

(9.2) and (9.5). Applying a linear change of variables we can thus assume our phase is

φ(x, y) and σ is supported in a small neighborhood of the origin.

Let φx
′y′ = φ−1

x′y′ . Then using the construction from Lemma 2.4 we can define the

kernel fields

VR = ∂xd − φxdy′(φx
′y′)ᵀ∂x′

VL = ∂yd − φx′ydφx
′y′∂y′

for πR and πL respectively. The assumption on πL implies that that there is a fixed

constant cL > 0 such that

h(x, y) = 0 =⇒ |VLh(x, y)| ≥ cL > 0.

Note that if πR is a blowdown VR is tangent to the singularity surface L, implying

h(x, y) = 0 =⇒ |V j
Rh(x, y)| = 0 ∀j ≥ 0.

Note that (9.6) additionally implies

|(VL − ∂yd)h(x, y)| ≤ ε‖φ‖C3

for (x, y) in the support of σ.

Through the loss of a constant we may assume that |h(x, y)| ≤ 1. Then we decompose

dyadically in the size of h(x, y), which in view of πL having only fold singularities, is

also a decomposition in the distance to L. For 0 ≤ ` < `◦ =
⌊

k
2+ε

⌋
let

Ak,`f(x) :=

∫
e2πi2kφ(x,y)f(y)σ(x, y)χ1(2`h(x, y))dy,
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and for ` = `◦ define

Ak,`◦f(x) :=

∫
e2πi2kφ(x,y)f(y)σ(x, y)χ0(2`◦h(x, y))dy.

We prove the following decay estimate.

Theorem 9.1. Suppose that πR is a blowdown on the set {h(x, y) = 0}. Then for all

k ≥ 0, all ε > 0 and all 0 ≤ ` ≤ `◦

‖Ak,`f‖2 ≤ Cε2
`−dk

2
+`ε‖f‖2. (9.7)

9.2 Connections to Local Radon-like Transforms

For local Radon-like transforms we can derive L2-Sobolev estimates directly from the rate

of decay of associated oscillatory integral operators via the Fourier transform. Indeed,

let Rk,` be defined as in (8.1)

Rk,`f(x) =

∫ ∫
e2πiτ ·(S(x,y3)−y′)χ(x, y)f(y) dy dτ,

where S ∈ C∞ and χ ∈ C∞c . As seen in §3.4, the canonical relation associated to Rk,`

is given by

C =
{(
x, τ · Sx(x, y3), S(x, y3), y3, τ,−τ · Sy3(x, y3)

)
: (x, y3) ∈ suppχ, τ ∈ R2},
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We will assume for now that χ(x, y) = χ̃(x, y3)η2(y′). Then if we apply a partial Fourier

transform to f in the y′ variables we see that

Rk,`f(x) =

∫ ∫
e2πiτ ·(S(x,y3)−y′)χ̃(x, y3)η2(y′)f(y)χk(|τ |)ak,`(x, y3, τ)f(y) dy dτ

=

∫ ∫
e2πiτ ·S(x,y3)χ̃(x, y3)χk(|τ |)ak,`(x, y3, τ)

∫
e−2πiτ ·y′f(y′, y3)η2(y′) dy′ dy3 dτ

=

∫ ∫
e2πiτ ·S(x,y3)χ̃(x, y3)χ1(21−k|τ |)a1,`(x, y3, 2

1−kτ)Fy′ [fη2](τ, y3) dy3 dτ

= 22k

∫ ∫
22πi2kµ·S(x,y3)χ̃(x, y3)χ1(2|µ|)a1,`(x, y3, 2µ)Fy′ [fη2](µ, y3) dy3 dµ,

with obvious modifications via the definition of Rk,` (8.1) if k = 0 or ` = `◦ =
⌊

k
2+ε

⌋
.

Thus Rk,` is directly related to the oscillatory integral operator Ak,` with φ(x, y) =

y′ · S(x, y3), h(x, y) = y′ · ∆(x, y3), and σ(x, y) = χ̃(x, y3)χ1(2|y′|). In addition, the

canonical relation associated to Ak,` is given by

{(
x, y′ · Sx(x, y3), y,−S(x, y3),−y′ · Sy3(x, y3)

)
: (x, y3) ∈ supp χ̃, 2|y′| ∈ χ1

}
,

which by rearranging the coordinates is the subset of the canonical relation associated

to Rk,` such that |τ | ' 1. In particular, if Rk,` is associated to a fibered folding canon-

ical relation, then so is the canonical relation associated to Ak,`. Additionally, since

‖Fy′ [fη2]‖L2 = ‖fη2‖L2 ≤ C‖f‖L2 by Plancherel we can prove Proposition 8.2 from

Theorem 9.1 by this same argument.

To reduce to the case where χ(x, y) = χ̃(x, y3)η2(y′) we first assume by scaling

and translating to the origin that χ is supported in [1
4
, 3

4
]6. Then applying the Fourier

inversion formula on the unit interval six times there exist constants cr,s for r, s ∈ Z3

such that for x, y ∈ [0, 1]3

χ(x, y) =
∑
r∈Z3

∑
s∈Z3

cr,se
2πi〈r,x〉e2πi〈s,y〉



101

and for any N > 0

|cr,s| ≤ CN(1 + |r|+ |s|)−N .

Let η ∈ C∞c (R4), and η1 ∈ C∞c (R2) such that η(x, y3)η1(y′) = 1 on the support of χ and

is supported in the unit cube. Then χ(x, y) = χ(x, y)η(x, y3)η1(y′), and thus

χ(x, y) =
∑
r∈Z3

∑
s∈Z3

cr,se
2πi(〈r,x〉+s3y3)η(x, y3)e2πis′·y′η1(y′).

Fix r, s ∈ Z3 and let

χ̃(x, y3) = 2
3
cr,se

2πi(〈r,x〉+s3y3η(x, y3)

η2(y′) = 1
3
cr,se

2πis′·y′η1(y′)

Each of these functions is smooth and compactly supported. Since the coefficients cr,s

are rapidly decaying we can apply Theorem 9.1 for each choice of r, s ∈ Z3 then sum in

r and s.

9.2.1 Connections to L2-Sobolev Estimates of FIOs

The L2-Sobolev estimates introduced in §3.1 are also typically deduced from estimates

on oscillatory integral operators such as Ak. In particular, [23, Theorem 2.1] states that

if πL has at most fold singularities

‖Ak‖L2→L2 . 2
k
4
− dk

2 , (9.8)

while [15, Theorem 1.2] states that if both πL and πR have at most fold singularities

‖Ak‖L2→L2 . 2
k
6
− dk

2 . (9.9)
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However, as seen in Theorem 9.1, if the kernel of Ak is supported away from L the

estimates on L2 improve quantitatively, analogous to the nonisotropic Fourier decay

of measures supported on curves with nonvanishing curvature and torsion, as in §3.2.

Indeed, the estimate (9.7) is better than (9.8) until ` = `◦ =
⌊

k
2+ε

⌋
. The estimate (9.7)

is also proven in [15] in the case of folding canonical relations, but for a reduced range

of `. The reason for this reduction is that (9.7) matches the uniform bound (9.9) when

` = k/3 in the case of folding canonical relations, whereas (9.7) doesn’t equal the uniform

bound until ` = `◦. This increased range in ` makes the estimates harder to prove than

in the case of folding canonical relations. Additionally, our proof of (9.7) relies on the

uniform bound (9.8) for the case ` = `◦, so it cannot be used to reprove (9.8).

9.3 The Proof of Theorem 9.1

Let ε > 0. We note that by global estimates of Ak proven in [23], if Theorem 9.1

holds for ` < `◦ then it also holds for ` = `◦. Indeed, since Ak =
∑

C2≤`≤`◦ Ak,` =∑
C2≤`< k

2+ε
Ak,` +Ak,`◦ , we can estimate by (9.7)∥∥∥Ak,`◦∥∥∥

L2→L2
≤ ‖Ak‖L2→L2 +

∑
C2≤`<`◦

‖Ak,`‖L2→L2

. 2
k
4
− dk

2 + Cε
∑

C2≤`<`◦

2
`−dk

2
+`ε

≤ Cε
(
2
k
4
− dk

2 + 2
`◦−dk

2
+ε`◦
)
.

Since k ≤ (2 + ε)`◦, we see k
4
≤ `◦

2
+ ε `◦

2
, hence

‖Ak,`◦f‖2 . 2
`◦−dk

2
+`◦ε‖f‖2,

proving Theorem 9.1 for this case.
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In the rest of this section we assume that ` < `◦ =
⌊

k
2+ε

⌋
. In this range we decompose

the support of σ(x, y) using methods of the proof of the Calderon-Vaillancourt theorem

on the L2 boundedness of pseudodifferential operators [9], following the ideas of Phong

and Stein [42], Comech [14], and Cuccagna [18].

Let m ∈ Zd, nd ∈ Z, and let ψ ∈ C∞c (R) supported in [−2, 2] such that 0 ≤ ψ ≤ 1

and
∑

k∈Z ψ(· − k) = 1. We decompose the support of σ(x, y) along 2−` diameter boxes

in y-space, by way of smooth cutoffs

ψm(y) =
d∏
j=1

ψ(2`yj −mj)).

We also decompose the support of σ(x, y) in xd into much larger 2−`ε length intervals

with smooth cutoffs ψ̃nd(xd) = ψ(2`εxd−nd). Because of the flatness in the xd direction

introduced by the blowdown condition on πR, we will not show orthogonality in the xd

decomposition, instead summing in nd loss of a large (but controlled) constant depending

on ε. This loss (as well as our restricted range of ` < `◦) introduce constants 2`ε in our

estimates which are too large to prove endpoint L2-Sobolev estimates with this method

of proof.

We fix k, ` for now and let Am,ndk,` := Ak,`[ψm(y)ψ̃nd(xd)·]. Then Am,ndk,`

(
Am̃,ndk,`

)∗
has

Schwartz kernel

KAA
∗

m,m̃,nd
(x,w) =

∫
e2πi2k(φ(x,y)−φ(w,y))σm,m̃,nd(x,w, y) dy,

where

σm,m̃,nd(x,w, y) = σ(x, y)χ1(2`h(x, y))ψm(y)ψ̃nd(xd)

× σ(w, y)χ1(2`h(w, y))ψm̃(y)ψ̃nd(wd).
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Similarly, the Schwartz kernel for
(
Am,nk,`

)∗Am̃,nk,` is given by

KA
∗A

m,m̃,n(y, z) =

∫
e2πi2k(φ(x,y)−φ(x,z))σ̃m,m̃,n(x, y, z) dx,

where

σ̃m,m̃,n(x, y, z) = σ(x, y)χ1(2`h(x, y))ψm(y)|ψ̃nd(xd)|2

× χ1(2`h(x, z)σ(x, z)ψm̃(z).

By splitting Ak,` into a finite number of collections of {Am,ndk,` } we may assume that if

mj 6= m̃j then |mj − m̃j| > max{ 15
cL
, 2
√
d}. We first prove two lemmas.

Lemma 9.2. There exists a constant C > 0 such that for every m ∈ Zd, nd ∈ Z

‖Am,ndk,` ‖L2→L2 ≤ C2
`−dk

2 .

Lemma 9.3. For every N > 0 and every nd ∈ Z the following estimates hold.

(a) If m 6= m̃ then

‖Am,ndk,`

(
Am̃,ndk,`

)∗‖ = 0.

(b) If m 6= m̃ and |m′ − m̃′| ≤ cL
10‖φ‖C3

|md − m̃d| then

‖
(
Am,ndk,`

)∗Am̃,ndk,` ‖ = 0.

(c) If m 6= m̃ and |m′ − m̃′| ≥ cL
10‖φ‖C3

|md − m̃d| then

‖
(
Am,nk,`

)∗Am̃,nk,` ‖ .N 2`−dk
(
2k−2`|m− m̃|

)−N
.

We state a few remarks. First, the estimates in Lemma 9.3 rely on neither the de-

composition of the support in xd nor the blowdown assumption; they essentially reprove
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results of Comech in [14], albeit through different approaches. Second, the separation

of ` from k/2 is only necessary for part (c) of Lemma 9.3; in particular, it is not needed

to prove Lemma 9.2.

We prove Theorem 9.1 using the Cotlar-Stein Lemma.

Lemma 9.4 (Cotlar-Stein Lemma). Consider a family of operators Tj, j ∈ N, such that

Tj is a bounded linear operator on L2(Rd). Define

aj,k = ‖TjT ∗k ‖2, bj,k = ‖T ∗j Tk‖2.

We say that the family of operators {Tj}j∈N is almost orthogonal if

A = sup
j

∑
k

√
aj,k <∞ B = sup

j

∑
k

√
bj,k <∞.

If Tj are almost orthogonal then ∥∥∥∑
j

Tj

∥∥∥
2
≤
√
AB.

Lemmas 9.2 and 9.3 prove that for each nd the family of operators {Am,ndk,` }m∈Zd are

almost orthogonal, and by choosing N large enough (depending on ε) we can ensure that

A ≤ C2
`−dk

2 and B ≤ Cε2
`−dk

2
+`ε uniformly in nd. Additionally, since σ is compactly

supported inside the unit ball, we see that Am,ndk,` f(x) = 0 for |nd| ≥ C2`ε. Thus

‖Ak,`‖L2→L2 ≤ C2`ε sup
|nd|≤C2`ε

∥∥∥ ∑
m∈Zd

Am,ndk,`

∥∥∥
L2→L2

,

which by an application of the Cotlar-Stein Lemma, gives the desired result.

9.3.1 The Proof of Lemma 9.2: Individual Box Estimates

We prove this lemma by noting that ‖Am,ndk,` ‖2
L2→L2 = ‖Am,ndk,` (Am,ndk,` )∗‖L2→L2 and esti-

mating the Schwartz kernel KA,A
∗

m,m,nd
(x,w) uniformly in m and nd. We wish to apply the
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differential operator

Ly =
〈 ∇y

(
φ(x, y)− φ(w, y)

)∣∣∇y

(
φ(x, y)− φ(w, y)

)∣∣2 ,∇y ·
〉

using Lemma 8.5 to integrate by parts many times in the y variables, which requires us to

find a lower bound for ∇y(φ(x, y)−φ(w, y)). We investigate estimates for ∇y′(φ(x, y)−

φ(w, y)) and ∂yd(φ(x, y)− φ(w, y)) separately.

Since |φx′y′| > c > 0 the set of equations ∇y′(φ(x, y)−φ(w, y)) = 0 is solved uniquely

by x′ = x′(w, xd, y). By the implicit function theorem we see that

1

4
|x′ − x′(w, xd, y)| ≤ |φy′(x, y)− φy′(w, y)| ≤ 4|x′ − x′(w, xd, y)|.

This implicit function also helps us to find a lower bound for φyd(x, y)−φyd(w, y). Note

that

x′(w,wd, y) = w′, (9.10)

and by the implicit function theorem,

∂xdx
′(w, xd, y) = −(φx

′y′)ᵀ(x′(w, xd, y), xd, y)(φxdy′)
ᵀ(x′(w, xd, y), xd, y)

= −
(
φxdy′φ

x′y′
)ᵀ

(x′(w, xd, y), xd, y). (9.11)

These two statements imply that

∂xd [φyd(x
′(w, xd, y), xd, y)]

∣∣
xd=wd

= φxdyd(w, y)− φydx′(w, y)
(
φxdy′φ

x′y′
)ᵀ

(w, y)

= φxdyd(w, y)− φxdy′φx
′y′φx′yd(w, y)

= h(w, y) detφx
′y′(w, y). (9.12)

Furthermore, the definition of x′ allows us to exchange ∂xd for VR.
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Lemma 9.5. Suppose g ∈ C1(Rd × Rd). Then we have the identity

∂xd [g(x′(w, xd, y), xd, y)]
∣∣∣
xd=wd

= VR[g](w, y).

Proof. Applying chain rule,

∂xd [g(x′(w, xd, y), xd, y)] = gxd(x
′(w, xd, y), xd, y) + 〈gx′(x′(w, xd, y), xd, y), ∂xdx

′(w, xd, y)〉.

Applying (9.11) and evaluating at xd = wd we obtain

∂xd [g(x′(w, xd, y), xd, y)]
∣∣
xd=wd

= gxd(w, y)−
〈(
φxdy′φ

x′y′(w, y)
)
, gx′(w, y)

〉
= VR[g](w, y).

Using Lemma 9.5 along with (9.10) and (9.12), we can apply a Taylor expansion

about xd = wd to φyd(x
′(w, xd, y), xd, y)− φyd(w, y) to obtain

φyd(x
′(w, xd, y), xd, y)− φyd(w, y) =

N∑
j=0

V j
R[h detφx

′y′ ](w, y)
(xd − wd)j+1

(j + 1)!

+ E(w, xd, y)(xd − wd)N+2,

where E ∈ C∞ has bounded derivatives independent of k and `, and N ' 1
ε

is large

enough that |xd − wd|N+1 ≤ C2−`.

Since πL is a fold and VL
∣∣
(0,0)

= ∂yd , we see that h(w, y) = 0 is solved uniquely by

yd = yd(w, y
′) near 0. Again from the implicit function theorem,

1

4
|yd − yd(w, y

′)| ≤ |h(w, y)| ≤ 4|yd − yd(w, y
′)|.
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Because πR is a blowdown and |h(w, y)| ' 2−` on the support of σm,m,nd we see by an

application of Taylor’s theorem that

|V j
Rh(w, y)| = |V j

Rh(w, y′, yd(w, y
′)) + (yd − yd(w, y

′))∂ydV
j
Rh(w, y′, zd)| ≤ C2−`

implying by the properties of differentiation of products

|φyd(x′(w, xd, y), xd, y)− φyd(w, y)| ≥ c2−`|xd − wd|.

On the other hand, we know that

|φyd(x, y)− φyd(x′(w, xd, y), xd, y)| ≤ ‖φx′yd‖
∣∣x′ − x′(w, xd, y)

∣∣ . ε|x′ − x′(w, xd, y)|.

Thus by the reverse triangle inequality

|φyd(x, y)− φyd(w, y)| ≥
∣∣∣|φyd(x, y)− φyd(x′(w, xd, y), xd, y)|

− |φyd(w, y)− φyd(x′(w, xd, y), xd, y)|
∣∣∣,

and therefore,

∣∣∇y

(
φ(x, y)− φ(w, y)

)∣∣ ≥ C max
{

2−`|xd − wd|, |x′ − x′(w, xd, y)|
}
.

With these estimates in place we apply Lemma 8.5 to Ly, noting that for any multi-index

α

|∂αy σm,m,nd | ≤ C|α|2
`|α|

and that for |α| > 1,

|∂αy φ| ≤ C|α||x− w|.

As |σm,m,nd | . 1 and is supported (in y) on the set {y : |2`y−m| ≤ 1} and noting that

(1 + max{A,B})2 ≥ (1 + A)(1 +B) for any A,B ≥ 0 we obtain

|KAA∗m,m,nd
(x,w)| .N

∫
|2`y−m|≤1

1

(1 + 2k−`|x′ − x′(w, xd, y)|)N
1

(1 + 2k−2`|xd − wd|)N
dy.
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Integrating in x we see that∫
|KAA∗m,m,nd

(x,w)| dx .N,ε

∫
1

(1 + 2k−2`|xd − wd|)N
dxd

× sup
xd,y

2−d`
∫

1

(1 + 2k−`|x′ − x′(w, xd, y)|)N
dx′

. 22`−k2−d`2(d−1)(`−k)

. 2`−dk.

Repeating the entire argument switching the roles of x and w yields the same estimate

for
∫
|KAA∗m,m,nd

(x,w)| dw uniformly in x. Thus the lemma follows by Schur’s test.

9.3.2 The Proof of Lemma 9.3: Almost Orthogonality Esti-

mates

Part (a) follows immediately since the supports of ψm(y) and ψm̃(y) are disjoint when

m and m̃ are sufficiently separated.

The kernel KA
∗A

m,m̃,nd
(y, z) vanishes under the assumption in (b) because πL has a fold

singularity on L. To see why, note that since |h(x, y)| and |h(x, z)| are both bounded

above by 2−`+1, their sum is bounded by 2−`+3. Expanding the difference about y = z
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we see

h(x, y)− h(x, z) = (yd − zd)∂ydh(x, z)

+ (y′ − z′) · ∇y′h(x, z) +R1(x, y, z)|y − z|2

= (yd − zd)[∂yd − VL]h(x, z)

+ (yd − zd)VLh(x, z)

+ (y′ − z′) · ∇y′h(x, z) +R2(x, y, z)|y − z|2

|h(x, y)− h(x, z)| ≥ cL
3
|yd − zd|

≥ 5(2−`),

where R1, R2 are C∞ with derivatives uniformly bounded independently of k and `. We

see there are no y, z that satisfy these conditions, hence

χ1(2`h(x, y))χ1(2`h(x, z)) = 0.

To prove (c) we will apply Lemma 8.5 with the differential operator

Lx′ =
〈 ∇x′

(
φ(x, y)− φ(x, z)

)∣∣∇x′
(
φ(x, y)− φ(x, z)

)∣∣2 ,∇x′

〉
.

To do so requires (among other things) a lower bound on ∇x′
(
φ(x, y)− φ(w, y)

)
. Using

a Taylor approximation we see

∇x′ [φ(x, y)− φ(x, z)] = φx′yd(x, z)(yd − zd) + φx′y′(y
′ − z′) +R3(x, y, z)|y − z|2, (9.13)

where R3 ∈ C∞ has uniformly bounded derivatives independent of k and `. Since

| detφx′y′ | ≥ c > 0 we see that |φx′y′(x, z)(y′−z′)| ≥ Cd|y′−z′|, and |φx′yd(x, z)(yd−zd)| .

ε|yd − zd|. By assumption

|y′ − z′| ≥ cL
3‖φ‖C3

|yd − zd| ≥ 10ε
Cd
|yd − zd|.



111

Thus

|∇x′ [φ(x, y)− φ(x, z)]| ≥ c|y − z|

for some small constant c > 0 independent of k, `, or ε. We also have for each multi-index

α

|∂jx′σ̃m,m̃,nd(x, y, z)| ≤ Cj2
`j

and

|∂jx′
(
φ(x, y)− φ(x, z)

)
| ≤ Cj|y − z|

Thus we can apply Lemma 8.5 with Lx′ to obtain

|KA∗Am,m̃,nd
(y, z)| ≤ CN

∫
1

(2k−`|y − z|)N
1supp σ̃m,m̃,nd

dx.

Since k > 2` and |y − z| ' 2−`|m− m̃| ≥ 2−` on the support on σ̃,

1

2k−`|y − z|
≤ min

{ C

1 + 2k−`|y − z|
,

C

2k−2`|m− m̃|

}
.

Integrating in y (or z)∫
|KA∗Am,m̃,nd

(y, z)| dy ≤ CN,d

∫
1

(1 + 2k−`|y − z|)d+1

1

(2k−2`|m− m̃|)N
dy

≤ CN,d2
d(`−k)(2k−2`|m− m̃|)−N .

Since k − 2` > `ε, if we let N = d−1
ε

then by Schur’s test

‖A∗m,ndAm̃,nd‖2→2 ≤ C(ε, d)2(`−dk)|m− m̃|−N ,

proving part (c) of Lemma 9.3.
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Chapter 10

Decoupling in a Model Case

In this chapter we begin the proof of Proposition 8.3. The decoupling inequality is based

on the idea that the Fourier support of Rk,` should be concentrated in a neighborhood

of a cone related to the fibers of πL(L). In the case of translation invariant local Radon-

like transforms, such as AR and X (see (3.2) and (4.1) respectively), this concentration

actually occurs because the fibers of πL(L) are fixed for each x [44, 45]. In general the

fibers vary with x and this argument is no longer possible. To explain how to work

around this obstruction we return to our model case on the Heisenberg group.

10.1 A First Example

Let us consider AH (see §4.2) with γ(t) = (t, t2, 1
6
t3) the moment curve. We additionally

assume that χ(x1, y1) = χ(x1)χ̃(y1) as an example. Then

(
AH
)
k,`
f(x) = χ(x1)

∫ ∫
e2πiτ ·(x′−y′+S(x1,y1))χ̃(y1)χk(|τ |)ak,`(x1, y1, τ)f(y) dy dτ,

where as in (4.12) and (4.13),

S1(x1, y1) = −(x1 − y1)2 = −x2
1 + 2x1y1 − y2

1

S2(x1, y1) = y1(x1 − y1)2 + 1
3
(x1 − y1)3 = 1

3
x3

1 + 2
3
y3

1 − x1y
2
1.
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Recall from (3.10) the fibers of πL(L) associated to AH are given by

{
ρ
(

(x1−y1)2
y1
1

)
: ρ ∈ R, y1 ∈ suppχ

}
,

which vary with x1. However, through a nonlinear change of variables

σ(x) =
(
σ1(x), σ2(x), σ3(x)

)
=
(
x1, x2 + x2

1, x3 − 1
3
x3

1

)
and

η(y) =
(
η1(y), η2(y), η3(y),

)
=
(
y1, y2 + y2

1, y3 + 2
3
y3

1

)
we are able to freeze the fibers so they no longer vary with x. Note that the Jacobians

of each of these maps is 1. Incorporating the above changes of variables

(
AH
)
k,`

(
f ◦ η

)
(σ(x)) = χ(x1)

∫ ∫ ∫
e2πiτ ·(x′−y′−S̃(x1,y1))χk(|τ |)ak,`(y1, τ)χ̃(y1)f(y) dy dτ,

where S̃(x1, y1) = (S̃2, S̃3) = (−2x1y1, x1y
2
1). After these changes of variables, (N∗M)′

is given by

{
(x, ξ, y,−η) : ξ1 = τ · S̃x1 , η1 = τ · S̃y1 , y′ = x′ − S̃(x1, y1), ξ′ = η′ = τ

}
,

and L consists of points in (N∗M)′ such that τ · S̃x1y1(x1, y1) = −2τ2 + 2y1τ3 = 0. The

fibers of πL(L), defined in (3.10), are thus given by

Σ̃x = {ξ ∈ R3 : ξ = ρ(y2
1, y1, 1), ρ ∈ R},

which no longer varies with x. As such, we can prove that the Fourier transform of(
AH
)
k,`
f(x) essentially lies in a 2k−2` neighborhood of Σx. Thus we can apply The-

orem 3.9 directly to
(
AH
)
k,`
f(x) to decouple down to plates adapted to that 2k−2`-

neighborhood.
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Indeed, applying a Fourier transform we can rearrange the order of integration

F
[(
AH
)
k,`
f
]
(ξ) =

∫
e−2πi〈x,ξ〉χ(x1)

∫ ∫
e2πiτ ·(x′−y′−S̃(x1,y1))f(y)

× χk(|τ |)χ1(2`−k+2|τ3y1 − τ2|)χ̃(y1) dy dτ dx

=

∫
e−2πix1ξ1χ(x1)

∫
χ̃(y1)f(y)

(∫ ∫
e−2πix′·(ξ′−τ)

× e−2πiτ ·(y′+S̃(x1,y1))χk(|τ |)χ1(2`−k+2|τ3y1 − τ2|) dτ dx′
)
dy dx1.

Evaluating the innermost two integrals applies Fourier and inverse Fourier transforms

in x′ and τ respectively to obtain

F
[(
AH
)
k,`
f
]
(ξ1, ξ

′) =

∫
e−2πix1ξ1χ(x1)

∫
e−2πiξ′·(y′+S̃(x1,y1))χ̃(y1)f(y)

× χk(|ξ′|)χ1(2`−k+2|ξ3y1 − ξ2|) dy dx1.

Evaluating the Fourier transform in y′ we obtain

F
[(
AH
)
k,`
f
]
(ξ1, ξ

′) =

∫
e−2πix1ξ1χ(x1)

∫
e−2πiξ′·S̃(x1,y1)χ̃(y1)χk(|ξ′|)χ1(2`−k+2|ξ3y1 − ξ2|)

×
∫
e−2πiξ′·y′f(y) dy′ dy1 dx1

=

∫
e−2πix1ξ1χ(x1)

∫
e−2πiξ′·S̃(x1,y1)χ̃(y1)χk(|ξ′|)χ1(2`−k+2|ξ3y1 − ξ2|)

× F2,3

[
f(y1, ·)

]
(ξ′) dy1 dx1.

Note that S̃(x1, y1) is linear is x1, implying that

e−2πiξ′·S̃(x1,y1) = e2πix1(ξ3y21−2ξ2y1).
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Finally, interchanging the order of integration and evaluating the integral in x1 we obtain

F
[(
AH
)
k,`
f
]
(ξ1, ξ

′) =

∫
χ̃(y1)χk(|ξ′|)χ1(2`−k+2|ξ3y1 − ξ2|)F2,3

[
f(y1, ·)

]
(ξ′)

×
(∫

e−2πix1(ξ1+ξ3y21−2ξ2y1)χ(x1) dx1

)
dy1

=

∫
χ̂(ξ1 − 2ξ2y1 + ξ3y

2
1)χ̃(y1)χk(|ξ′|)χ1(2`−k+2|ξ3y1 − ξ2|)

× F2,3

[
f(y1, ·)

]
(ξ′) dy1. (10.1)

In view of the smoothness of χ, χ̂(ξ1 − 2ξ2y1 + ξ3y
2
1) decays rapidly off of the set {|ξ1 −

2ξ2y1 + ξ3y
2
1| ' 1}. By an error term argument [44, p. 11] we may replace χ̂(·) with

χ0(2k−2`(1−ε)| · |)χ̂(·) so that integrand of (10.1) vanishes unless

|ξ| ' 2k∣∣∣〈 ξ
|ξ| ,
(

0
1
−y1

)〉∣∣∣ . 2−`∣∣∣〈 ξ
|ξ| ,
( 1
−2y1
y21

)〉∣∣∣ . 2−2`(1−ε).

Let g(t) = (t2, t) and recall the definition of u1, u2, u3, and Cg from (3.12),(3.14),(3.13),

and (3.11) respectively. These inequalities imply that for each y1 the integrand of (10.1)

vanishes outside the the set ΠC2k,y1(2
−`) (recall Definition 3.8) associated to the orthogo-

nal vectors u1(y1), u2(y1), u3(y1) (note that (0, 1,−y1) is orthogonal to u1(y1) = (g(y1), 1),

so the second inequality implies the analogous result for u2(y1)). Thus F
[(
AH
)
k,`
f
]
(ξ)

vanishes outside a C2−2` neighborhood of the cone Cg. Because of this support re-

striction, decoupling for the cone (i.e. Theorem 3.9) can be applied immediately to(
AH
)
k,`
f(x), proving Proposition 8.3 for AH when γ is the moment curve.

In general it cannot be hoped that we can apply just one nonlinear change of variables

to fix Σx in x. However, if we cut up the support in x into small boxes and apply local
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changes of variables on each box to partially “freeze” the variation of the cone Σx with

x, we can apply decoupling to each decomposed piece separately. We cannot expect to

be able to decouple down to the 2−` scale immediately because of the variation in Σx

even over this small box of x, but by decoupling many times to smaller and smaller

boxes, changing variables at each step to further “freeze” the cone Σx depending on the

decoupling step, we can recover the same estimate as in the model case above, with a

large constant depending on ε.

In this chapter we show this iterative method works in a model case, then in Chapter

11 we reduce the general case to the model case by families of changes of variables. In

the model case, the functions Si are replaced by Si satisfying simplifying assumptions

at the origin. The fold and blowdown conditions imply additional assumptions near the

origin.

10.2 The Model Case Setup

Because the decoupling inequality involves a constant which depends on ε > 0, and is

only proven for ` in the range C2 ≤ ` ≤ `◦(k, ε) = k
2+ε

, we may choose a large enough

constant Cε such that the decoupling inequality holds for small k, and also small `.

Hence we may assume that 2k � 1� 2−` > 0.

Let w = (w′, w3) ∈ R3, z = (z′, z3) ∈ R3, and κ0 > 0 be a constant (κ0 will stand in

for our fold assumption, i.e. the nonvanishing of κ(x, y3) in §3.4, where κ is defined as

in (3.24)). Consider C∞ maps (w, z3) 7→ Si(w, z3) defined on a neighborhood of [−r, r]4
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for some r ∈ (0, 1). For n ∈ N define Mn > 0 such that

Mn ≥ 2 + ‖S1‖Cn+5([−r,r]4) + ‖S2‖Cn+5([−r,r]4), (10.2)

where the Cn norm is the supremum of all derivatives orders 0 to n. We assume that

for w ∈ [−r, r]3,

(S1,S2,S1
z3

)
∣∣∣
(w,0)

= (w1, w2, w3); (10.3)

we also assume

S2
w,z3

(0, 0) = 0, (10.4)

and

S2
w3z23

(0, 0) = κ0. (10.5)

As the functions S1,S2 play the part of S1, S2 in our model case, we can analyze the

geometry of the conormal bundle associated to S1,S2, given by

CS = {(w, ξ, z,−η) : z′ = S(w, z3), ξ = µ ·Sw(w, z3), η = (µ1, µ2, µ ·Sz3(w, z3)}.

The projections πL, πR defined in (2.4) will be identified with the maps

π̃L : (w, µ, z3) 7→
(
w, µ1S

1
w(w, z3) + µ2S

2
w(w, z3)

)
π̃R : (w, µ, z3) 7→

(
S(w, z3), z3, µ,−(µ1S

1
z3

(w, z3) + µ2S
2
z3

(w, z3))
)
.

Define ∆i
S = det(S1

w S2
w Si

wz3
) for i = 1, 2. Then the submanifold LS ⊂ CS on which πL

and πR are singular is given by the restriction µ1∆1
S(w, z3)+µ2∆2

S(w, z3) = 0. Note that

(10.3) and (10.4) imply that LS contains the point P parametrized by (w, z3) = (0, 0),

and (10.5) implies that πL has a fold at that point.

A kernel field for πR at a point P parametrized by (w, µ, z3) is given by

VR(w, z3) = 〈S1
w(w, z3) ∧S2

w(w, z3),∇w〉.
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Our final assumption on S1,S2 is that πR has a blowdown singularity along LS, i.e.

that VR(w, z3) lies in the tangent space of LS whenever (w, µ, z3) parametrizes a point

in LS. This blowdown assumption implies that

V N
R [µ1∆1

S + µ2∆2
S]
∣∣∣
µ⊥∆S(w,z3)

= 0

for all N ≥ 0. Since S1
w(w, 0) = e1 and S2

w(w, 0) = e2, we see that VR(w, 0) = ∂w3 . The

above conditions imply that

∂Nw3
S2
w3z3

(w, 0) = 0, ∀N ≥ 1 (10.6)

∂Nw3
∆2

S(w, 0) = 0, ∀N ≥ 1. (10.7)

Now that we have introduced the assumptions on our model functions S1,S2 we

can define our model Radon-like operators. Let (w, z3) 7→ α(w, z3) be a C∞ function

satisfying for |(w, z3)|∞ < r and any multi-index β,

M−1
0 ≤ |α(w, z3)| ≤M0 (10.8)

|∂βwα(w, z3)| ≤M|β| (10.9)

Let (w, z, µ) 7→ ζ(w, z, µ) belong to a bounded family of C∞ functions supported where

|(w, z)|∞ ≤ r and 1/4 ≤ |µ| ≤ 4. For k � 1 and 1 < ` < `◦(k, ε) let Tk,`,± be an operator

with Schwartz kernel

22k

∫
e2πi2kµ·(S(w,z3)−z′)χ1

(
± 2`α(w, z3)µ ·∆S(w, z3)

)
ζ(w, z, µ) dµ, (10.10)

and let Tk,`◦ be an operator with Schwartz kernel

22k

∫
e2πi2kµ·(S(w,z3)−z′)χ0

(
2`◦
∣∣α(w, z3)µ ·∆S(w, z3)

∣∣)ζ(w, z, µ) dµ. (10.11)
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The operators Tk,`,±, Tk,`◦ will play the role of Rk,` after a nonlinear change of vari-

ables, while α(w, z3) is introduced in the localization as a byproduct of those changes of

variables. As in our analysis of Rk,`,±, we will drop the dependence on ± as the same

techniques apply for Tk,`,+ and Tk,`,−. The inductive step in our iterated decoupling

method is the following estimate.

Proposition 10.1. Let 0 < ε ≤ 1, k � 1, 0 ≤ ` ≤ `0,

δ0 ∈ [2−`(1−ε), 2−`ε],

and

δ1 ∈ [max{2−`(1−ε/2), δ02−`ε/4}, δ0).

Define ε1 = (δ1/δ0)2. Let J be an interval of length δ0 containing 0, and IJ be a

collection of intervals of length δ1 with disjoint interior and whose interiors all intersect

J . Let σ ∈ C∞c (R3) be supported (−1, 1)3 and define σ`,ε1(w) = σ(2`w1, 2
`w2, ε

−1
1 w3).

Let 2 ≤ p ≤ 6, let g ∈ Lp(R3) and define gI(y) = g(y)1I(y3). Then

∥∥∥σ`,ε1 ∑
I∈IJ

Tk,`gI
∥∥∥
p
.ε (δ0/δ1)

1
2
− 1
p

+ε

(∑
I∈IJ

∥∥∥σ`,ε1Tk,`gI∥∥∥p
p

)1/p

+ C(ε)2−10k2−2`ε1‖g‖p.

The idea behind this proposition is to show that the Fourier transforms of σ`,ε1Tk,`gI

are concentrated on thin plates in the neighborhood the plates ΠA,bI (δ1) for some bI ∈ I

and some large enough A > 1, and thus decoupling applies.

Recall from (3.10) that the fibers of πL(LS) are given for fixed w by

Σ̃w = {µ1S
1
w(w, z3) + µ2S

2
w(w, z3) : µ1∆1

S(w, z3) + ∆2
S(w, z3) = 0}

= {±ρΞS(w, z3) : ρ > 0, |z3| ≤ r},
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where ΞS(w, z3) = −S1
w(w, z3)∆2

S(w, z3)+S1
w(w, z3)∆1

S(w, z3). Narrowing our perspec-

tive to the origin, Σ̃0 is a cone parametrized by (ρ, z3) given by

Σ̃0 = {±ρΞS(0, z3) : ρ > 0, |z3| ≤ r}.

Analogous to (3.19), we can define N(z3) := S1
w ∧S2

w(0, z3), the vector normal to Σ̃0 at

the point P parametrized by (ρ, b). Analogous to (3.18) and (3.20), the tangent space

of Σ̃0 at a point parametrized by (ρ, z3) is given by the vectors

T1(b) = ΞS(0, b) (10.12)

T2(b) = T1(b) ∧N(b). (10.13)

Given these three pairwise orthogonal vectors, we consider the plates ΠA,b(δ) for A > 1

and 0 < δ < 1 associated to T1(b), T2(b), N(b) from Definition 3.8. These plates cover a

δ2-neighborhood of Σ̃0, and because Σ̃0 is curved we can apply Theorem 3.9 to sums of

functions whose Fourier transforms are supported on these plates ΠA,b(δ).

10.3 Derivatives of S and ∆

Before we proceed with the proof of Proposition 10.1, we write some approximations of S

and ∆i
S derived from the simplifying assumptions at the origin. For the rest of Chapter

10.2 we omit the subscript dependence on S. Because of (10.3) we may conclude that

for any multi-index β of length at least 1,

∂βwS
1
w

∣∣
(w,0)

= 0 (10.14)

∂βwS
2
w

∣∣
(w,0)

= 0 (10.15)

∂βwS
1
wz3

∣∣
(w,0)

= 0. (10.16)
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For w ∈ [−r, r]3,

∆1(w, 0) = 1 (10.17)

∆2(w, 0) = S2
w3z3

(w, 0) (10.18)

∆1
z3

(0, 0) = S1
w3z23

(0, 0) (10.19)

∆2
z3

(0, 0) = S2
w3z23

(0, 0) = κ0 (10.20)

and by applying these identities

Ξ(w, 0) = −∆2(w, 0)S1
w(w, 0) + ∆1(w, 0)S2

w(w, 0) = e2 −S2
w3z3

(w, 0)e1 (10.21)

Ξwn3
(0, 0) = −S2

wn+1
3 z3

(0, 0)e1 = 0, n ≥ 1 (10.22)

Ξz3(0, 0) = −κ0e1 + S1
w3z23

(0, 0)e2. (10.23)

Let e1, e2, e3 be the standard basis vectors in R3. We use Taylor expansions with appro-

priate remainders. Therefore, as in Chapter 9, for any i ∈ N let Ri(w, z3) denote C∞

functions which are bounded by a uniform constant. Using the above identities on Ξ

and S and appropriate Taylor expansions, we can approximate

T1(b) = Ξ(0, b) (10.24)

= Ξ(0, 0) + bΞz3(0, 0) + b2R1(0, b)

= −κ0be1 + (1 + bS1
w3z23

(0, 0))e2 + b2R2(0, b) (10.25)

and

N(b) = S1
w(0, b) ∧S2

w(0, b) (10.26)

= (e1 + be3 + b2R3(0, b)) ∧ (e2 + b2R4(0, b))

= −be1 + e3 + b2R5(0, b). (10.27)
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Applying these approximations to the definition of T2(b) we see

T2(b) = T1(b) ∧N(b) = (1 + bS1
w3z23

(0, b))e1 + κ0be2 + be3 + b2R6(0, b). (10.28)

Let β = (βw1 , βw2 , βw3 , βz3) be a multi-index and let ∂β(w,z3) denote a derivative of

order |β| = βw1 + βw2 + βw3 + βz3 in the variables w, z3. By using the upper bounds Mn,

trilinearity of determinants, and differentiation rules for products we can additionally

estimate

|∂β(w,z3)∆
i| ≤ 3|β|M3

|β|. (10.29)

Similarly, by differentiating products,

|∂β(w,z3)Ξ| ≤ 4|β|M4
|β|. (10.30)

10.4 Plate Localization

We show in this section that under certain assumptions the w-gradient of the phase of

Tk,` is contained in the plate ΠA,b(δ1) given a large enough A. This will later be used to

apply an integration by parts argument in Section 10.5.

Lemma 10.2. Let ε > 0, and δ0, δ1, ε1 be as in Proposition 10.1. Let ` ≤ `◦ such that

2−` � r, M02−` ≤ 2−10, and let 1
4
≤ |µ| ≤ 4, |w′| ≤ 2−`, |w3| ≤ ε1, |b| ≤ δ0, and

|z3 − b| ≤ δ1.

If

|µ1∆1(w, z3) + µ2∆2(w, z3)| ≤M02−`, (10.31)

then there exists A(ε) > 1 such that

µ1S
1
w(w, z3) + µ2S

2
w(w, z3) ∈ ΠA(ε),b(δ1).
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More specifically,

A(ε)−1|T1(b|) ≤ |〈T1(b), µ1S
1
w(w, z3) + µ2S

2
w(w, z3)〉| ≤ A(ε)|T1(b)| (10.32)

|〈T2(b), µ1S
1
w(w, z3) + µ2S

2
w(w, z3)〉| ≤ A(ε)|T2(b)|δ1. (10.33)

|〈N(b), µ1S
1
w(w, z3) + µ2S

2
w(w, z3)〉| ≤ A(ε)|N(b)|δ2

1. (10.34)

Note that the constant A(ε) does not depend on δ0, δ1.

Proof. The estimate in (10.32) is clearly true for some A > 1 independent of ε. Through-

out the remainder of this proof we use Taylor expansions. Because we will be taking

large numbers of derivatives to prove estimates we must be careful to track the appropri-

ate Taylor remainders. Therefore, as in the previous section for any i ∈ N the function

Ri(w, µ, z3) is C∞ and uniformly bounded by 1.

10.4.1 The Normal Direction

We start with the proof of (10.34). Let G = d3ε−1e. We employ an order G Taylor

expansion of 〈N(b), µ · Sw(w, z3)〉 about (w, z3) = (0, b). Since |z3 − b|2 ≤ δ2
1, |w′|2 ≤

2−2` < δ2
1, and |w3|G ≤ εG1 ≤ δ2

1, we can estimate the remainder

〈N(b), µ ·Sw(w, z3)〉 =
G∑
n=0

G−n∑
|α|=0

Cn,α(z3 − b)nwα〈N(b),∇w

(
(∂z3)

n(∂w)α[µ ·S]
)

(0, b)〉

+MGδ
2
1R1(w, µ, z3).
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We can rearrange the terms of the Taylor expansion to see that

〈N(b), µ ·Sw(w, z3)〉 = 〈N(b), µ1S
1
w + µ2S

2
w(0, b)〉

+ (z3 − b)〈N(b), µ1S
1
wz3

+ µ2S
2
wz3

(0, b)〉

+
2∑
i=1

wi〈N(b), µ1S
1
wwi

+ µ2S
2
wwi

(0, b)〉

+ I + II + III +MGδ
2
1R2(w, µ, z3), (10.35)

where

I =
G∑
n=1

wn3
n!
〈N(b), µ1S

1
wwn3

+ µ2S
2
wwn3

(0, b)〉

II =
G∑
n=2

wn−1
3 (z3 − b)

n!
〈N(b), µ1S

1
wwn−1

3 z3
+ µ2S

2
wwn−1

3 z3
(0, b)〉

III =
G∑
n=2

2∑
i=1

wn−1
3 wi
n!

〈N(b), µ1S
1
wwn−1

3 wi
+ µ2S

2
wwn−1

3 wi
(0, b)〉.

The first term in (10.35) vanishes by the definition of N(b) (see (10.26)). The second

term in (10.35) is

(z3 − b)〈N(b), µ1S
1
wz3

+ µ2S
2
wz3

(0, b)〉 = (z3 − b)(µ1∆1(0, b) + µ2∆2(0, b)).

Now, since |w′|, |z3 − b| ≤ δ1, and |w3|G ≤ δ2
1, we can apply a Taylor expansion about

(w, z3). Using trilinearity of determinants and differentiation of products we get

µ1∆1(0, b) + µ2∆2(0, b) =
G∑
n=0

wn3
n!

(
µ1∆1

wn3
(w, z3) + µ2∆2

wn3
(w, z3)

)
+ 3GM3

Gδ1R3(w, µ, z3).

By (10.31) the first term is bounded by M02−`. For each 1 ≤ n ≤ G, from (10.7) and

(10.17) we have ∆i
wn3

(w, 0) = 0 for i = 1, 2, and so by trilinearity of determinants, and
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differentiation of products, expanding about z3 = 0 we get

|∆i
wn3

(w, z3)| ≤
∣∣∣∆i

wn3
(w, 0) + 3nM3

nz3

∣∣∣ ≤ 3nM3
nδ0.

Thus

|µ1∆1(0, b) + µ2∆2(0, b)| ≤M02−` + 3GM3
Gε1δ0 + 3GM3

Gδ1 ≤ 3G+1M3
Gδ1,

and the second term in (10.35) is bounded by 3G+1M3
Gδ

2
1.

Next we deal with the first order w′-derivatives in (10.35). We approximate about

z3 = 0. For i = 1, 2, using the estimates (10.14) and (10.15), we get

|wi〈S1
w(0, b) ∧S2

w(0, b), µ ·Swwi(0, b)〉| ≤ |wi|
[∣∣〈S1

w(0, 0) ∧S2
w(0, 0), µ ·Swwi(0, 0)

〉∣∣
+ 3M3

0 bR4(0, µ, b)
]

≤ 2−`(0 + 3M3
0 δ0).

Note that the condition δ1 ≥ max{M2
0 220−`(1−ε/2, 2−`ε/4δ0} from Proposition 10.1 implies

that 2−`δ0 ≤ δ2
1.

Finally, we estimate I, II, and III. The estimates of all three sums rely on the

blowdown condition at the origin. We begin with the estimate of I. For all n ≥ 1, we
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employ a Taylor expansion about z3 = 0 to obtain

〈S1
w(0, b) ∧S2

w(0, b), µ1S
1
wwn3

(0, b) + µ2S
2
wwn3

(0, b)〉

= 〈S1
w(0, 0) ∧S2

w(0, 0), µ1S
1
wwn3

(0, 0) + µ2S
2
wwn3

(0, 0)〉

+ b
[

det(S1
wz3

S2
w µ1S

1
wwn3

+ µ2S
2
wwn3

)
∣∣∣
(0,0)

+ det(S1
w S2

wz3
µ1S

1
wwn3

+ µ2S
2
wwn3

)
∣∣∣
(0,0)

+ det(S1
w S2

w µ1S
1
wwn3 z3

+ µ2S
2
wwn3 z3

)
∣∣∣
(0,0)

]
+ 32M3

nb
2R5(0, µ, b)

Using the estimates (10.14), (10.15), (10.26), (10.16), and (10.6), we observe

〈S1
w(0, 0) ∧S2

w(0, 0), µ1S
1
wwn3

(0, 0) + µ2S
2
wwn3

(0, 0)〉 = 0

det(S1
wz3

S2
w µ1S

1
wwn3

+ µ2S
2
wwn3

)
∣∣∣
(0,0)

= 0

det(S1
w S2

wz3
µ1S

1
wwn3

+ µ2S
2
wwn3

)
∣∣∣
(0,0)

= 0

det(S1
w S2

w µ1S
1
wwn3 z3

+ µ2S
2
wwn3 z3

)
∣∣∣
(0,0)

= µ1S
1
wn+1

3 z3
(0, 0) + µ2S

1
wn+1

3 z3
(0, 0) = 0.

This implies

|I| ≤ 32M3
G

G∑
n=1

εn1δ
2
0

n!
≤ 33M3

Gε1δ
2
0 ≤ 33M3

Gδ
2
1.

Next we estimate II. For n ≥ 2, we expand about z3 = 0 again to obtain

〈S1
w ∧S2

w, µ ·Swwn−1
3 z3
〉
∣∣
(0,b)

= det(S1
w S2

w µ ·Swwn−1
3 z3

)
∣∣
(0,0)

+ 3M3
GbR6(0, µ, b).

Thus by the calculation from the estimate on I, this determinant vanishes, and

|II| ≤ 3M3
G

G∑
n=2

εn−1
1 δ1δ0

n!
≤ 3M3

Gε1δ1δ0 ≤ 3M3
Gδ

2
1.
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Finally we estimate III. Again using the calculations from I, for n ≥ 2 and i = 1, 2

〈S1
w ∧S2

w, µ ·Swwn−1
3 wi

〉
∣∣
(0,b)

= 〈S1
w(0, 0) ∧S2

w(0, 0), µ ·Swwn−1
3 wi

(0, 0)〉

+ 3M3
GbR7(0, µ, b)

= µ ·Swiwn3
(0, 0) + 3M3

GbR7(0, µ, b)

= 3M3
GbR7(0, µ, b).

This implies that

|III| ≤ 3M3
G

G∑
n=2

εn−1
1 2−`δ0

n!
≤ 3M3

Gε12−`δ0 ≤ 3M3
Gδ

2
1.

Since |N(b)| ≥ 1/2 this proves (10.34) with any A(ε) ≥ 3d
3
ε
e+2M3

d 3
ε
e.

10.4.2 The Tangential Estimate

Having proven (10.34), we prove (10.33). Using (10.28), define

T ∗2 (b) = (1 + bS1
w3z23

(0, 0))e1 + κ0be2 + be3

and note that |T2(b)− T ∗2 (b)| ≤M0δ
2
0. Next, we will approximate µ by the projection of

µ1∆1(w, z3) + µ2∆2(w, z3) onto LS. In particular, let

µ◦ = ± |µ|
|∆(w,z3)|(−∆2(w, z3),∆1(w, z3)),

so that µ◦1∆1(w, z3) + µ◦2∆2(w, z3) = 0, |µ| = |µ◦|, and where the sign is picked so that

|µ− µ◦| ≤ 2|µ|M02−`.

This is possible since |µ1∆1 + µ2∆2| ≤M02−` and |∆(w, z3)| 6= 0. Then

µ◦1S
1
w(w, z3) + µ◦2S

2
w(w, z3) = |µ|

|∆(w,z3)|Ξ(w, z3),
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and thus∣∣∣µ1S
1
w(w, z3) + µ2S

2
w(w, z3)− |µ|

|∆(w, z3)|
Ξ(w, z3)

∣∣∣ ≤ |µ− µ◦||Sw| ≤ 8M2
0 2−`.

Thus we have reduced proving (10.28) to proving the estimate

|〈T ∗2 (b),Ξ(w, z3)〉| ≤ A(ε)|T2(b)|δ1.

We approximate 〈T ∗2 (b),Ξ(w, z3)〉 by an order G Taylor expansion about (w, z3) = (0, 0).

Since |z3|2 ≤ δ2
0 ≤ δ1 |w3||z3| ≤ ε1δ0 ≤ δ1, |w′| ≤ 2−` ≤ δ1, and |w3|G ≤ εG1 ≤ δ2

1 ≤

δ1, we can estimate the remainder of this Taylor expansion by 4GM4
Gδ1R8(w, z3) using

differentiation of products. Reorganizing, we obtain

〈T ∗2 (b),Ξ(w, z3)〉 =
G∑
n=0

G−n∑
|α|=0

Cn,αw
αzn3 〈T ∗2 (b), (∂z3)

n(∂w)αΞ〉
∣∣∣
(0,0)

+ 4GM4
Gδ1R8(w, µ, z3)

= 〈T ∗2 (b),Ξ(0, 0)〉+ z3〈T ∗2 (b),Ξz3(0, 0)〉

+
G∑
n=1

wn3
n!
〈T ∗(b),Ξwn3

(0, 0)〉+ 4GM4
Gδ1R9(w, µ, z3).

Using (10.21), (10.22), and (10.23)

〈T ∗2 (b),Ξ(0, 0)〉 = κ0b

〈T ∗2 (b),Ξz3(0, 0)〉 = −κ0(1 + b(S1
w3z23

(0, 0)−S1
w3z23

(0, b)))

〈T ∗2 (b),Ξwn3
(0, 0)〉 = 0, n ≥ 1.

Thus using the assumption b ≤ δ0,

|〈T ∗2 (b),Ξ(w, z3)〉| ≤ κ0δ1 + κ0M0δ
2
0 + 4GM4

Gδ1

and therefore we can estimate

|〈T2(b), µ1S
1
w(w, z3) + µ2S

2
w(w, z3)〉| ≤M0δ

2
0 + 8M2

0 2−` + κ0δ1 + κ0M0δ
2
0 + 4GM4

Gδ1

≤ κ0(1 + 4G+2M4
G)δ1.



129

Thus picking

A(ε) ≥ max{3d
3
ε
e+2M3

d 3
ε
e, κ0(1 + 4d

3
ε
e+2M4

d 3
ε
e)} (10.36)

the lemma is proven.

10.5 Proof of Proposition 10.1

Now that we have shown that the phase function of the Schwartz kernel of Tk,` lies in

ΠA(ε),b(δ1) whenever |z3−b| ≤ δ1 we can begin the proof of the decoupling step. For each

I ∈ IJ pick bI ∈ I. Note that since bI ∈ J and J si an interval of length δ0 containing

the origin, |bI | ≤ δ0. Let mA,bI ,δ1 be a multiplier equal to 1 on Π2A,bI (δ1) which vanishes

on Π3A,bI (δ1). Let

Pk,A,bI ,δ1f
∧

(ξ) = mA,bI ,δ1(2
kξ)f̂(ξ).

Then by Bourgain-Demeter decoupling on the cone (Theorem 3.9),

∥∥∥σ`,ε1∑
I

Pk,A(ε),bI ,δ1Tk,`gI
∥∥∥
p
≤ C(ε, A(ε))(δ0/δ1)

1
2
− 1
p

+ε
(∑

I

∥∥σ`,ε1Tk,`gI∥∥pp)1/p

,

for 2 ≤ p ≤ 6 and any sufficiently small ε > 0. Thus it suffices to estimate the remainder

∥∥σ`,ε1∑
I

(
Id− Pk,A(ε),bI ,δ1

)
Tk,`gI

∥∥
p
≤ C2−10k2−2`ε1‖g‖p.

Note that since ` ≤ k
2+ε

and ε1 ≥ 2−`ε/2, 2−2`ε1 ≥ 2−k23`ε/2 ≥ 2−k, so it suffices to prove

the above estimate with 2−10k replaced by 2−11k.

For each I ∈ IJ the Schwartz kernel of the operator f 7→
(
Id − Pk,A(ε),bI ,δ1

)
Tk,`f is

given by a sum of kernels
∑∞

n=0Kn,k,`,bI (w, z), where

Kn,k,`,bI (w, z) = 22k

∫ ∫ ∫
e2πiΨ(w,v,z,µ,ξ)σ1(v, z, µ)σn,2(ξ) dv dξdµ,
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the phase function Ψ is given by

Ψ(w, v, z, µ, ξ) = 〈w − v, ξ〉+ 2kµ · (S(v, z3)− z′)

and the symbols σ1, σn,2 are given by

σ1(v, z, µ) = σ`,ε1(v)χ1

(
2`α(v, z3)µ ·∆(v, z3)

)
ζ(v, z, µ),

σn,2(ξ) =
(
1−mA(ε),bI ,δ1(2

kξ)
)
χn(|ξ|)

with χ1(2`α(v, z3)µ ·∆(v, z3)) replaced by χ0(2`α(v, z3)µ ·∆(v, z3)) if ` = `◦. Note that

the symbol of Kn,k,`,bI is supported where |ξ| ' 2n for n ≥ 1 (and |ξ| ≤ 4 if n = 0),

|µ| ' 1, |v| + |z| ≤ r, and a priori unbounded w. We prove the following lemma to

reduce to the case when |ξ| ' 2k.

Lemma 10.3. Let C1 > 0 be the necessary constant from Lemma 7.1 applied to Tk,`.

Suppose that |k − n| > C1. Then for N > 1

|Kn,k,`,bI (w, z)| ≤ CN,ε
1

(1 + |w|)4
2−N(k+n)

1[−r,r](|z|). (10.37)

If |n−k| < C1 we can apply integration by parts using the fact that 2−kξ is bounded

away from the plate ΠA(ε),bI (δ1) while µ ·Sw lies in ΠA(ε),bI (δ1) to obtain lower bounds

on |Ψv|. In particular, we prove the following estimate.

Lemma 10.4. If |n− k| < C1 then

|Kn,k,`,bI (w, z)| ≤ Cε2
−11k 1

(1 + |w|)4
1[−r,r](z).

Together the estimates in Lemmas 10.3 and 10.4 along with the compact support of

Kn,k,`,bI (w, z) in z imply

sup
z

∫ ∣∣Kn,k,`,bI (w, z)
∣∣ dw + sup

w

∫ ∣∣Kn,k,`,bI (w, z)
∣∣ dz ≤ Cε2

−11k−n.
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Thus

∥∥∥∑
I∈IJ

(
Id− Pk,A(ε),bI ,δ1

)[
σ`,ε1Tk,`gI

]∥∥∥
p

=
∑
I∈IJ

∑
n≥0

∥∥∥∫ Kn,k,`,bI (·, z)gI(z) dz
∥∥∥
p

and applying Young’s inequality and the almost disjoint support of {gI}I∈IJ∑
I∈IJ

∑
n≥0

∥∥∥∫ Kn,k,`,bI (·, z)gI(z) dz
∥∥∥
p
≤
∑
I∈IJ

∑
n≥0

Cε2
−11k−n‖gI‖p

≤ Cε2
−11k‖g‖p.

This will complete the proof of Proposition 10.1.

10.5.1 The Proof of Lemma 10.3: Large and Small ξ

First, we introduce the details of integration by parts in the ξ variables with the differ-

ential operator

Lξ = 〈 w−v
|w−v|2 ,∇ξ·〉

which will give the desired decay in w. Note that ∇ξΨ = w − v, so ∂βξ Ψ = 0 for any

multi-index β with |β| ≥ 2, and

|∂βξ σn,2| ≤ C|β|min{A(ε)−1δ2
12k, 2n}−|β| ≤ C|β|A(ε)|β|

for any multi-index β with |β| ≥ 1. Applying Lemma 8.5 gives a bound of

∣∣(L∗ξ)Nσn,2(ξ)
∣∣ ≤ CNA(ε)N

|w − v|N

for any N > 0. Since σn,2 is bounded and supported where |ξ| ' 2n, we obtain an

estimate ∣∣∣ ∫ e2πiΨ(w,v,z,µ,ξ)σn,2(ξ) dξ
∣∣∣ ≤ CN

23n

(1 + A(ε)−1|w − v|)N
, (10.38)
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allowing us to later integrate in w.

Suppose that |n−k| > C1. Then since Si
w(w, z3) are linearly independent for i = 1, 2

|∇vΨ| =
∣∣− ξ + 2k∇v(µ ·S(v, z3))

∣∣ ≥ ∣∣|ξ| − |2k∇v(µ ·S(v, z3))|
∣∣ ≥ C0 max{2k, 2n}

by the implicit function theorem. We also see that |∂βvΨ| ≤ A(ε)2k for any multi-index

β with |β| ≥ 2, and |∂βv σ| ≤ C|β|2
`|β| for any multi-index β with |β| ≥ 1. Since ` < k/2,

integrating by parts in the v variables with the differential operator Lv = 〈 ∇vΨ
|∇vΨ|2 ,∇v·〉

and Lemma 8.5 gives the estimate

∣∣(L∗v)Nσ1(v, z, µ)
∣∣ ≤ CN

A(ε)2`

C0 max{2k, 2n}
≤ CNA(ε) max{2k/2, 2n/2}−N .

Combining this estimate with (10.38), we obtain

|Kn,k,`,bI (w, z)| ≤
∫ ∫ ∣∣∣ ∫ e2πiΨ(w,v,z,µ,ξ)σn,2(ξ) dξ

∣∣∣∣∣(L∗v)2Nσ1(v, z, µ)
∣∣ dv dµ

≤ CN

∫ ∫
A(ε)

max{2k, 2n}N
1

(1 + A(ε)−1|w − v|)N
dv dµ.

As σ1(v, z, µ) is supported where |v| + |z| + |µ| ≤ 6 by loss of a constant depending on

ε we can integrate in v and µ to obtain (10.37).

10.5.2 The Proof of Lemma 10.4: Off Plate Estimates

In view of the support of (1−MA(ε),bI ,δ1(2
kξ)), one of four inequalities

∣∣〈 T1(bI)
|T1(bI)| , ξ

〉∣∣ ≥ 3A(ε)2k (10.39)∣∣〈 T1(bI)
|T1(bI)| , ξ

〉∣∣ ≤ 1
3
A(ε)−12k (10.40)∣∣〈 T2(bI)

|T2(bI)| , ξ
〉∣∣ ≥ 3A(ε)2kδ1 (10.41)∣∣〈 N(bI)

|N(bI)| , ξ
〉∣∣ ≥ 3A(ε)2kδ2

1 (10.42)
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must hold. Since we know that |ξ| ' 2n and |n− k| < C1 we may assume (if necessary

by making A(ε) larger) that (10.41) or (10.42) must hold. Thus we apply integration

by parts in the tangential and normal directions, as in the proof of Lemma 10.2. Also

similar to the proof of Lemma 10.2, the normal direction will require much more careful

estimates.

Suppose that (10.41) holds. Define the one-dimensional differential operator ∂T2(bI) =

〈T2(bI),∇v·〉. Then by Lemma 10.2 (specifically (10.33))

|∂T2(bI)Ψ| ≥ 2A(ε)2kδ1.

We can also estimate for j ≥ 1

|∂jT2(bI)σ1| ≤ CjA(ε)2`j,

and for j ≥ 2

|∂jT2(bI)Ψ| ≤ CjA(ε)2k ≤ CjA(ε)2`(j−1)2kδ1.

Thus applying Lemma 8.5 to the operator LT2(bI) = 1
∂T2(bI )Ψ

∂T2(bI) and applying the

estimate (10.38), we obtain

|Kn,k,`,bI (w, z)| ≤
∫ ∫ ∣∣∣ ∫ e2πiΨ(w,v,z,µ,ξ)σn,2(ξ) dξ

∣∣∣∣∣(L∗T2(bI))
Nσ1(v, z, µ)

∣∣ dv dµ
≤ CN

∫ ∫
23k

(1 + A(ε)−1|w − v|)4

1

(2k−`δ1)N
dv dµ.

Since 2k−`δ1 ≥ 2kε/2, integrating by parts in the T2(bI) direction ' 10/ε times and

integrating over the compact support of σ1 in v, µ gives the required estimate.

Next we assume that |〈N(bI), ξ〉| ≥ 3A(ε)2kδ2
1. Define ∂N(bI) = 〈N(bI),∇v〉. We will

apply Lemma 8.5 to the one-dimensional differential operator LN(bI) = 1
∂N(bI )

Ψ
∂N(bI).
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First, (10.34) implies

|∂N(bI)Ψ| ≥ 2A(ε)2kδ2
1. (10.43)

We claim that

|∂jN(bI)σ1(v, z, µ)| ≤ CjA(ε) max{2`δ0, ε
−1
1 }j (10.44)

for every j ≥ 1. To see this, we use the approximation N(bI) = −bIe1 + e3 + C(bI)b
2
I ,

where |C(bI)| < M0, from (10.27). From the definition of σ1 we see for every j ≥ 1 and

every multi-index β with |β| ≤ j that∣∣(bI∂v1)j−|β|C(bI)
|β|b

2|β|
I ∂βv σ1(v, z, µ)

∣∣ ≤ Cj
(
2`δ0

)j−|β|(
2`δ2

0

)|β|
≤ Cj

(
2`δ0

)j
. (10.45)

Thus it suffices to check that (10.44) holds for mixed derivatives of the form

|bI ||β|∂j−|β|v3
∂βv′σ1(v, z, µ),

where v′ = (v1, v2), and β is a 2-dimensional multi-index such that |β| < j. Note that∣∣|bI ||β|∂j−|β|v3
∂βv′σ`,ε1(v)

∣∣ ≤ Cj(2
`δ0)|β|ε

|β|−j
1∣∣|bI ||β|∂j−|β|v3

∂βv′ζ(v, z, µ)
∣∣ ≤ Cjδ

|β|
0 ,

so it suffices to estimate

|bI ||β|∂j−|β|v3
∂βv′χ1(2`α(v, z3)µ ·∆(v, z3)),

with χ1(·) replaced with χ0(·) if ` = `◦. Note that terms for which no derivative hits

µ ·∆(v, z3) will be negligible since |µ ·∆(v, z3)| ' 2−`. Using (10.17), (10.7), and a Taylor

expansion about z3 = 0 we see that∣∣|bI ||β|∂j−|β|v3
∂βv′µ ·∆(v, z3)

∣∣ ≤ δ
|β|
0 ∂βv′µ ·∆vj3

(v, 0) + A(ε)δ
|β|+1
0

= A(ε)δ
|β|+1
0 .
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Thus we see by differentiation of compositions and products

∣∣|bI ||β|∂j−|β|v3
∂βv′σ1(v, z, µ)

∣∣ ≤ CjCjA(ε) max{2`δ0, ε
−1
1 }j, (10.46)

and by combining (10.45) and (10.46) the claim (10.44) is proven.

To apply Lemma 8.5 we also need to show that for j ≥ 2

|∂jN(bI)Ψ| ≤ CjA(ε)2k max{2`δ0, ε
−1
1 }j−1δ2

1.

In fact, we claim that

|∂jN(bI)Ψ| ≤ CjA(ε)2kδ2
0 (10.47)

for j ≥ 2. We use (10.27) again to see that

∂jN(bI)Ψ = 〈bIe1 + e3 + C(bI)b
2
I ,∇v〉jΨ

where again |C(bI)| ≤ M0. Rearranging terms using the fact that |∂βvΨ| ≤ A(ε)2k for

any multi-index β with |β| ≥ 2 we obtain

∂jN(bI)Ψ = bIΨv1v
j−1
3

+ Ψvj3
+ A(ε)2kb2

IR10(v, z3).

Next, we estimate via a Taylor expansion about z3 = 0,

Ψv1v
j−1
3

(v, z3) = µ ·Sv1v
j−1
3

(v, 0) + 2Mjz3R11(v, z3)

Ψvj3
(v, z3) = µ ·Svj3

(v, 0) + z3µ ·Svj3z3
(v, 0) + 2Mjz

2
3R12(v, z3).

From (10.14), (10.15), and (10.16) we see that

µ ·Sv1v
j−1
3

(v, 0) = 0,

µ ·Svj3
(v, 0) = 0,

S1
vj3z3

(v, 0) = 0.
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Moreover (10.6) ensures that

S2
vj3z3

(v, 0) = 0, j ≥ 2.

Hence for j ≥ 2

|∂jN(bI)Ψ| ≤ CjA(ε)δ2
0 ≤ CjA(ε)ε−j+1

1 δ2
1,

satisfying the claim (10.47).

Now that we have verified the conditions (10.43), (10.44), and (10.47), we can apply

Lemma 8.5 with LN(bI) = 1
∂N(bI )

Ψ
∂N(bI) to obtain for every M > 0

|(L∗N(bI))
M ≤ CM min{2k−`δ2

1/δ0, 2
kδ2

1ε1}−M . (10.48)

Combining (10.48) with (10.38) we can estimate

|Kn,k,`,bI (w, z)| ≤ CM,ε

∫ ∫ ∣∣∣ ∫ e2πiΨ(w,v,z,µ,ξ)σn,2(ξ) dξ
∣∣∣∣∣(L∗N(bI))

Mσ1(v, z, µ)
∣∣ dv dµ

≤
( 1

min{2k−`δ2
1/δ0, 2kδ2

1ε1}

)M ∫ ∫ 1

(1 + A(ε)−1|w − v|)4
dv dµ.

Since δ1 ≥ 2−`(1−ε/2) and δ1 ≥ 2−`ε/4δ0, we have

2k−`δ2
1/δ0 ≥ 2k−2`+`ε/4 ≥ 2kε/8

2kδ2
1ε1 ≥ 2k−2`+`ε/2 ≥ 2kε/4.

So if M ' 50/ε and we integrate over the compact support of σ1 in v and µ we obtain

the desired estimate.
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Chapter 11

Decoupling in the General Case

Let P ◦ = (a◦, y◦) ∈M, with y◦ = (S1(a◦, b◦), S2(a◦, b◦), b◦). For r > 0 let

Q(r) = {(x1, x2, x3) : |x− a◦| ≤ r}

and

I(r) = {y3 : |y3 − b◦| ≤ r}.

For i = 1, 2, let Si be smooth functions in a neighborhood of Q(2r0)× I(2r0), for some

r0 > 0. After possibly permuting the variables y1, y2 we may assume in light of Lemma

3.11 that ∆1(x, y3) = det(S1
x, S

2
x, S

1
xy3

) 6= 0 on Q(2r0)× I(2r0). Choose M > 0 so that

M > 2 + ‖S‖C5(Q(2r0)×I(2r0)) + max
(x,y3)∈Q(2r0)×I(2r0)

|∆1(x, y3)|−1.

We now will consider (a, b) close to (a◦, b◦) and construct changes of variables so that

in the new coordinates the model case decoupling theorem in Proposition 10.1 can be

applied at the suitable scale. These changes of variables were constructed in [46] to

prove variable coefficient decoupling theorems in the case of folding canonical relations.

However, since the canonical relation is invariant under changes of variables, we can use

the same changes of variables with the additional assumption of a blowdown on πR for

our work.
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11.1 Families of Changes of Variables

Let Γ1,Γ2 be defined as in (3.21),(3.22), and for a ∈ Q(2r0), b ∈ I(2r0) let ρ(a, b) ∈ R3

be defined by

(ρ1, ρ2, ρ3) :=
1

∆1(a, b)
(−Γ2(a, b),Γ1(a, b),∆2(a, b)).

For x, a ∈ Q(r0) and b ∈ I(2r0), consider the map

(x, a, b) 7→ w(x, a, b) ∈ R3

given by

w1(x, a, b) = S1(x, b)− S1(a, b)

w2(x, a, b) = S2(x, b)− ρ3(a, b)S1(x, b)− S2(a, b) + ρ3(a, b)S1(a, b)

w3(x, a, b) = S1
y3

(x, b)− S1
y3

(a, b).

Then

det(Dw/Dx) = det
(
S1
x(x, b), S

2
x − ρ3(a, b)S1

x(x, b), S
1
xy3

(x, b)
)

= ∆1(x, b) 6= 0.

By the implicit function theorem, there exists r1 ∈ (0, r0) such that for |w|∞ < 2r1,

a ∈ Q(2r1), and b ∈ I(2r1) the equation w(x, a, b) = w is solved by a unique C∞

function x = x(w, a, b). Note that

|ρi(a, b)| ≤ 6M4, a ∈ Q(2r0), b ∈ I(2r0), i = 1, 2, 3.

By the definition of w and the mean value theorem this implies |w(x, a, b)|∞ ≤ 3M(1 +

6M4)|x − a|∞ for x, a ∈ Q(2r0) and b ∈ I(2r0). Hence for any r2 < r1 if |x − a|∞ < r2

and |a− a◦| < r2 then |w(x, a, b)|∞ ≤ 42M5r2. If we define

r2 = (50M5)−1r1
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then we get |w(x, a, b)| < r1 for x, a ∈ Q(r2), b ∈ I(2r1). Thus by the uniqueness of the

function x we therefore have x(w(x, a, b), a, b) = x for x, a ∈ Q(r2) and b ∈ I(2r1).

Note that w(a, a, b) = 0, implying x(0, a, b) = x(w(a, a, b)) = a. We also see that

det(Dx(w, ab)/Dw) = 1
∆1(x(w,a,b),b)

.

We also change variables in y. Define z : R2 × I(2r0)×Q(2r0)× I(2r0)→ R3 by

z1(y, a, b) = y1 − S1(a, y3)

z2(y, a, b) = y2 − S2(a, y3)− ρ3(a, b)(y1 − S1(a, y3))− (y3 − b)
2∑
i=1

ρi(a, b)(yi − Si(a, y3))

z3(y, a, b) = y3 − b.

The Jacobian of this map is given by

det(Dz/Dy) = (1− ρ2(a, b)(y3 − b)), (11.1)

which by the bound on |ρi| on lies between (1/2, 3/2) if z3, b ∈ I(r3), a ∈ Q(2r0), where

r3 < min{r1, (24M4)−1}. For |z3| ≤ r3, b ∈ I(r3), and a ∈ Q(2r0) we can define the

inverse z 7→ y(z, a, b) explicitly by

y1(z, a, b) = z1 + S1(a, b+ z3)

y2(z, a, b) =
z2 + z1(ρ3(a, b) + ρ1(a, b)z3) + (1− z3)S2(a, b+ z3)

1− ρ2(a, b)z3

y3(z, a, b) = b+ z3.

Notice that y(0, a, b) = (S1(a, b), S2(a, b), b). Other properties of these changes vari-

ables are contained in the following lemma, proven in [46].

Lemma 11.1 ([46, Lemma 7.1]). The function x, y defined above have the following

properties.
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1. Let ρ = ρ(a, b), and let

B(z3, a, b) =
(

1 0
−ρ3−ρ1z3 1−ρ2z3

)
.

Then for |z3| ≤ r3, a ∈ Q(r2), |w| ≤ r2

B(z3, a, b)
(
S1(x(w,a,b),b+z3)−y1(z,a,b)

S2(x(w,a,b),b+z3)−y2(z,a,b)

)
=
(

S1(w,z3,a,b)−z1
S2(w,z3,a,b)−z2

)
,

where Si are C∞ satisfying

(S1,S2,S1
z3

)
∣∣
(w,0,a,b)

= w

and S2
wz3

(0, 0, a, b) = 0.

2. Let

∆i
S(x, y3) = det(S1

x, S
2
x, S

i
xy3

)
∣∣
(x,y3)

∆i
S(x, y3, a, b) = det(S1

w,S
2
w,S

i
wz3

)
∣∣
(w,z3,a,b)

.

Then for (τ1, τ2) = (µ1, µ2)B(z3, a, b),

2∑
i=1

τi∆
i
S(x(w, a, b), b+ z3) =

∆1
S(x(w, a, b), b)

1− ρ2(a, b)z3

2∑
i=1

µi∆
i
S(w, z3, a, b).

3. Let κ(x, y3) be defined as in (3.24). Then

S2
w3z3z3

(0, 0, a, b) =
κ(a, b)

(∆1
S(a, b))2

.

11.2 Decoupling in the General Case

We begin by proving one step of the induction in the general case by using the above

changes of variables to reduce to the model case in Proposition 10.1. After applying
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a partition of unity in x, y3 to the symbol of Rk,` we may assume that the support of

χ(x, y) in (x, y3) lies within Q(r2)× I(r3), which will allow us to apply Lemma 11.1.

Proposition 11.2. Let 0 < ε < 1
10

, k � 1, 1 < ` ≤ `◦(k, ε). Let δ0 ∈ (2−`(1−ε), 2−`ε],

and let δ1 ∈ (0, δ0) such that

max{2−`(1−ε/2), δ02−`ε/4} < δ1 < δ0.

Define ε1 = (δ1/δ0)2. Let J be an interval of length δ0 such that dist(b, b◦) ≤ r3 for any

b ∈ J , and let IJ be a collection of intervals I of length δ1 which have disjoint interior

and intersect J . For each I ∈ IJ , define fI(y) = f(y)1I(y3). Then given a compactly

supported function v0 ∈ C∞c (ΩL), for 2 ≤ p ≤ 6∥∥∥∑
I∈IJ

v0Rk,`fI

∥∥∥
p
≤ Cε(δ0/δ1)

1
2
− 1
p

+ε
(∑
I∈IJ

‖v0Rk,`fI‖pp
)1/p

+ Cε2
−10k‖f‖p.

Proof. Fix b ∈ J . For each a ∈ supp v0 ∩Q(r2) define the connected open set

Ua,b =
{
x ∈ R3 : |w1(x, a, b)| ≤ 2−`, |w2(x, a, b)| ≤ 2−`, |w3(x, a, b)| ≤ ε1

}
.

Because Ua,b are open sets which contain a neighborhood of a, {Ua,b}a∈supp v0∩Q(r2) is

an open cover of the compact set supp v0 ∩ Q(r2), which thus admits a finite subcover

{Uaλ,b}λ∈Λ. Moreover, because det(Dw/dx) = ∆1(a, b) 6= 0, each set Ua,b contains a,

has measure ' 2−2`ε1, and is the image of a 2−` × 2−` × ε1 rectangle under a C∞ map

smoothly varying with a; thus we may further assume |Λ| . 22`ε−1
1 r3

2 and each point x

is covered by a uniformly bounded number of sets Uaλ,b by the support of χ in x.

Let {ς`,ε1,aλ,b(x)}λ∈Λ be a smooth partition of unity adapted to Uaλ,b. Then since

|x|, |aλ| < r2/2 and |b| < r1 we have for each λ ∈ Λ that

σ`,ε1,aλ,b(w) := v0(x(w, a, b))ς`,ε1,aλ,b(x(w, aλ, b))
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is a smooth function supported on the set {w : |w′| < 2−`, |w3| < ε1}. By Hölder’s

inequality

∥∥∥∑
I∈IJ

v0Rk,`fI

∥∥∥
p

=
∥∥∥∑
I∈IJ

∑
λ∈Λ

v0ς`,ε1,aλ,bRk,`fI‖p

≤ Cp

(∑
λ∈Λ

∥∥∥∑
I∈IJ

v0ς`,ε1,aλ,bRk,`fI

∥∥∥p
p

)1/p

.

Fix a ∈ {aλ}λ∈Λ. Write g(z, a, b) = f(y(z, a, b)), noting that fI(y(z, a, b)) = g−b+I(z, a, b)

since y3(z, a, b) = b + z3. Next, we apply changes of variables y = y(z, a, b) and τ =

2kBᵀ−1(z3, a, b)µ, noting from (11.1) and the definition of B that

det(Dy/dz) detB = 1,

so that

Rk,`fI(x) = 22k

∫ ∫
e2πi2kµ·(S(w(x,a,b))−z′)χ̃k,`(x, z, µ, a, b)g−b+I(z, a, b) dµdz,

where

χ̃k,`(x, z, µ, a, b) = χ1

(
2` ∆1(x)

1−ρ3(a,b)z3

(
µ1∆1

S(w(x, a, b), z3, a, b) + µ2∆2
S(w(x, a, b), z3, a, b)

))
× χ(x, y(z, a, b))χ1(|Bᵀ−1(z3, a, b)µ|)

Thus applying the change of variables x = x(w, a, b) we see that

v0(x(w, a, b))ς`,ε1,a,b(x(w, a, b))
∑
I∈IJ

Rk,`fI(x(w, a, b)) = σ`,ε1,a,b(w)
∑
I∈IJ

Tk,`,a,bg−b+I(w),

where Tk,`,a,b ≡ Tk,` from (10.10) in the model case. Define

Mn(a, b) ≥ 2 + ||S1(·, a, b)||Cn+5([−r0,r0]4) + ||S2(·, a, b)||Cn+5([−r0,r0]4)

Ã(ε) = sup
a,b∈[−r0,r0]4

max{3d
3
ε
e+2Md 3

ε
e(a, b), κ0(a, b)(1 + 4d

3
ε
e+2M4

d 3
ε
e(a, b))};
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these are the uniform versions of (10.2) and (10.36) respectively. We can then write

∥∥∥v0ς`,ε1,a,b
∑
I∈IJ

Rk,`fI

∥∥∥
p

=
(∫ ∣∣∣v0ς`,ε1,a,b

∑
I∈IJ

Rk,`fI

∣∣∣
x=x(w,a,b)

∣∣∣p| det( Dx
Dw

)| dw
)1/p

≤ Cp

∥∥∥σ`,ε1,a,b∑
I∈IJ

Tk,`,a,bg−b+I
∥∥∥
p

by the uniform upper bound on | det( Dx
Dw

)|. This inequality allows us to apply Proposition

10.1 with A(ε) = Ã(ε) to get

∥∥∥σ`,ε1,a,b∑
I∈IJ

Tk,`gI
∥∥∥
p
≤ Cε(δ0/δ1)

1
2
− 1
p

+ε
(∑
I∈IJ

∥∥σ`,ε1,a,bTk,`gI∥∥pp)1/p

+ Cε2
−10k2−3`‖g‖p.

Undoing the changes of variables above (and again applying the uniform lower bounds

on | det( Dx
Dw

)|) we may bound this by

C ′ε(δ0/δ1)
1
2
− 1
p

+ε
(∑
I∈IJ

∥∥ς`,ε1,a,bRk,`fI
∥∥p
p

)1/p

+ Cε2
−10k2−3`‖f‖p.

Finally, we recombine our partition of unity in x using the fact that |Λ| . 22`ε−1r3
3 to

get

∥∥∥∑
I∈IJ

v0Rk,`fI

∥∥∥
p
≤ Cp

(∑
λ∈Λ

∥∥∥∑
I∈IJ

v0ς`,ε1,aλ,bRk,`fI

∥∥∥p
p

)1/p

≤ CpCε(δ0/δ1)
1
2
− 1
p

+ε
(∑
λ∈Λ

∑
I∈IJ

∥∥v0ς`,ε1,aλ,bRk,`fI
∥∥p
p

)1/p

+
∑
λ∈Λ

Cε2
−3`2−10k‖f‖p

≤ Cp,ε(δ0/δ1)
1
2
− 1
p

+ε
(∑
I∈IJ

‖v0Rk,`fI‖pp
)1/p

+ Cε2
−10k‖f‖p.
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11.3 Iteration of the Decoupling Step

Let v0 ∈ C∞c (ΩL) and let f ∈ Lp(ΩR) be compactly supported. Let δ0 = 2−`ε, and define

δj = δj−12−`ε/4 for j = 1, 2, ... Note that this implies ε1 = (δ1/δ0)2 = 2−`ε/2. We will

iterate the estimate in Proposition 11.2 until δj ≤ 2−`(1−ε). Let j∗ be the smallest j such

that δj < 2−`(1−ε). Clearly j∗ ≤ 4/ε and 2−`(1−ε/2) ≤ δj∗ ≤ 2−`(1−ε).

To iterate the decoupling argument we construct a nested family of intervals which

at each level have disjoint interior. Let J = [b◦ − r3, b
◦ + r3] and for each j = 0, 1, 2, ...

tile J by a family of intervals IJ,j such that each Ij ∈ IJ,j intersects J and has length

δj, and such that all intervals in IJ,j have mutually disjoint interiors. For an interval

Ij ∈ IJ,j, let IIj denote the collection of intervals Ij+1 ∈ IJ,j+1 which intersect Ij. Then

since r3 < 1 and δ0 = 2−`ε, using Hölder’s and Minkowski’s inequalities we have

‖v0Rk,`f‖p . 2`ε/p
′
( ∑
I0∈IJ,0

∥∥∥v0Rk,`fI0

∥∥∥p
p

)1/p

. (11.2)

The function and operator Rk,`fI0 now satisfy the conditions of Proposition 11.2. We

claim that for each 0 ≤ j ≤ j∗,

‖v0Rk,`f‖p . C(ε)j2`ε/p
′
(δ0/δj)

1
2
− 1
p

+ε
( ∑
Ij∈IJ,j

‖v0Rk,`fIj‖pp
)1/p

+ j22`C(ε)j2−10k‖f‖p. (11.3)

The case j = 0 follows immediately from (11.2). Assume (11.3) holds for some j. Then
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by applying Proposition 11.2 we get

( ∑
Ij∈IJ,j

‖v0Rk,`fIj‖pp
)1/p

≤
( ∑
Ij∈IJ,j

[
C(ε)

( δj
δj+1

) 1
2
− 1
p

+ε
( ∑
Ij+1∈IIj

‖v0Rk,`fIj+1
‖pp
)1/p

+ C(ε)2−10k‖f‖pp
]p)1/p

≤ C(ε)
( δj
δj+1

) 1
2
− 1
p

+ε
( ∑
Ij+1∈IJ,j+1

‖v0Rk,`fIj+1
‖p
)1/p

+ C(ε)δ
−1/p
j 2−10k‖f‖p. (11.4)

Plugging the above estimate into (11.3) gives us

‖Rk,`f‖p ≤ C(ε)j+12`ε/p
′( δ0
δj+1

) 1
2
− 1
p

+ε
( ∑
Ij+1∈IJ,j+1

‖v0Rk,`fIj+1
‖pp
)1/p

+ C(ε)j2`ε/p
′( δ0
δj

) 1
2
− 1
p

+ε
C(ε)δ

−1/p
j 2−10k‖f‖p

+ j22`C(ε)j2−10k‖f‖p.

Using the fact that δ0 = 2−`ε, δj ≥ 2`(1−ε/2) for j ≤ j∗, and 2 ≤ p ≤ 6, the last two terms

of the above inequality are bounded by

(j + 1)C(ε)j+122`2−10k‖f‖p,

proving the claim.

We apply (11.3) for j = j∗ and use the fact that j∗ ≤ 4/ε as well as the assertion

ε

p′
− ε

2
+
ε

p
− ε2 − ε

4
+

ε

2p
+
ε2

2
≤ ε
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to deduce

‖v0Rk,`f‖p ≤ C(ε)4/ε2`ε/p
′
2−`ε

(
1
2
− 1
p

+ε
)
2`(1−ε/2)

(
1
2
− 1
p

+ε
)( ∑

Ij∗∈IJ,j∗

‖v0Rk,`fIj∗‖
p
p

)1/p

+ 4
ε
C(ε)4/ε2−10k+2`‖f‖p

.ε 2`
(

1
2
− 1
p

+2ε
)( ∑

Ij∗∈IJ,j∗

‖v0Rk,`fIj∗‖
p
p

)1/p

+ C(ε)2−9k‖f‖p. (11.5)

Picking ε′ = 2ε completes the proof.
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Chapter 12

The Proof of Proposition 8.8

In this chapter we prove Proposition 8.8 using Littlewood-Paley theory and a Calderón-

Zygmund estimate, the main result of [43]. Let v0 ∈ C∞c (ΩL) and let f ∈ Lp be supported

in a compact set K ⊂ ΩR. Let 0 < q < 2 < 4 < p < ∞. By an application of Lemma

7.1 we can reduce the proof of (8.9) to the estimate

∥∥∥( ∑
k+C1≥(2+ε)`

∣∣2k/pPkv0Rk+s1,`v1Pk+s2f
∣∣q)1/q∥∥∥

Lp
≤ C2−`ε(p)

∥∥∥(∑
k>0

|Pk+s2f |p
)1/p∥∥∥

Lp

(12.1)

where v1 ∈ C∞c (ΩR) is equal to 1 on the support of f , and |s1|, |s2| ≤ C1, where C1 is

the necessary constant from Lemma 7.1. Indeed, by expanding the definition of R` and

applying a similar argument to the proof of Proposition 3.4, we see for every k ≥ 0

Pkv0R`f = Pk

( ∑
k′≥(2+ε)`

v0Rk′,`

(∑
k′′

v1Pk′′f
))

= Pk

( ∑
|s1|,|s2|≤C1

Rk+s1,`v1Pk+s2f +
∑

(k′,k”)∈Dk

Rk′,`v1Pk′′f

)
.

Note that terms in the first sum vanish if k+s1 < (2+ε)`. Applying Hölder’s inequality

‖v0R`f‖F p,q
1/p
≤ 2

1
q
−1
∥∥∥( ∑

k+C1≥(2+ε)`

∣∣∣2k/pPk( ∑
|s1|,|s2|≤C1

v0Rk+s1,`v1Pk+s2f
)∣∣∣q)1/q∥∥∥

Lp

+ 2
1
q
−1
∥∥∥(∑

k

∣∣∣ ∑
(k′,k′′)∈Dk

2k/pPkv0Rk′,`v1Pk′′f
∣∣∣q)1/q∥∥∥

Lp
,
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where Dk is defined as in (7.3). Applying Hölder’s inequality a second time we can break

‖v0R`f‖F p,q
1/p

into pieces for which (12.1) apply, and a remainder

Ep,qf =

(∑
k≥0

∣∣∣ ∑
(k′,k′′)∈Dk

2k/pPkv0Rk′,`v1Pk′′f
∣∣∣q)1/q

.

Indeed,

‖v0R`f‖F p,q
1/p
≤ (8C2

1)
1
q
−1

∑
|s1|,|s2|≤C1

∥∥∥∥( ∑
k+C1≥(2+ε)`

∣∣2k/pPkv0Rk+s1,`v1Pk+s2f
∣∣q)1/q∥∥∥∥

Lp

+ 2
1
q
−1‖Ep,qf‖Lp .

We next show that the remainder Ep,q is bounded from Bp,p
0 → Lp. This holds due to

Lemma 7.1 after several applications of Hölder’s inequality, which we present below.

Note that since ` ≤ k+s1
2

Lemma 7.1 still applies even though the symbol of the kernel

of Rk+s1,` depends on `. For any ε > 0 by applying Hölder’s inequality several times we

obtain

‖Ep,qf‖Lp ≤
∑

k′,k′′≥0

∥∥∥∥∥
( ∑

k≥0
(k′,k′′)∈Dk

2−kεq
∣∣2kε+k/pPkv0Rk′,`v1Pk′′f

∣∣q)1/q∥∥∥∥∥
p

≤
∑

k′,k′′≥0

(∑
k≥0

2−kεq
)1/q

sup
k≥0

(k′,k′′)∈Dk

2kε+k/p
∥∥Pkv0Rk′,`v1Pk′′f

∥∥
p

≤ Cq,ε
∑

k′,k′′≥0

2−k
′ε2k

′ε sup
k≥0

(k′,k′′)∈Dk

2kε+k/p
∥∥Pkv0Rk′,`v1Pk′′f

∥∥
p

≤ Cq,ε
∑
k′′≥0

(∑
k′≥0

2−kε
)

sup
k,k′≥0

(k′,k′′)∈Dk

2(k+k′)ε+k/p
∥∥Pkv0Rk′,`v1Pk′′f

∥∥
p

≤ Cq,ε
∑
k′′≥0

2−k
′′ε2k

′′ε sup
k,k′≥0

(k′,k′′)∈Dk

2(k+k′)ε+k/p
∥∥Pkv0Rk′,`v1Pk′′f

∥∥
p

≤ Cq,ε

(∑
k′′≥0

2−kεp
′
)1/p′

(∑
k′′≥0

sup
k,k′≥0

(k′,k′′)∈Dk

2(k+k′+k′′)εp+k
∥∥Pkv0Rk′,`v1Pk′′f

∥∥p
p

)1/p

.
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Since Pk′′ is a Littlewood-Paley multiplier Pk′′f =
∑
|s|.1 Pk′′Pk′′+sf . By Lemma 7.1 we

can thus estimate for each k′′ ≥ 0

sup
k,k′≥0

(k′,k′′)∈Dk

2(k+k′+k′′)ε+k/p
∥∥Pkv0Rk′,`v1Pk′′f

∥∥
p
≤ Cp

∥∥∥∑
|s|.1

Pk′′+sf
∥∥∥
p
,

where Cp does not depend on k′′. The claim holds by one last application of the triangle

inequality and rearrangement of the sum.

To prove (12.1) we apply the main result from [43].

Theorem 12.1 ([43, Theorem 1.1]). Let Tk be a family of operators on Schwartz func-

tions by

Tkf(x) =

∫
Kk(x, y)f(y) dy.

Let φ ∈ S(R3), φk = 23kφ(2k·), and Πkf = φk ∗ f . Let ε > 0 and 1 < p0 < p < ∞.

Assume Tk satisfies

sup
k>0

2k/p‖Tk‖Lp→Lp ≤ A (12.2)

sup
k>0

2k/p0‖Tk‖Lp0→Lp0 ≤ B0. (12.3)

Further let A0 ≥ 1, and assume that for each cube Q there is a measurable set EQ such

that

|EQ| ≤ A0 max{|Q|2/3, |Q|}, (12.4)

and for every k ∈ N and every cube Q with 2kdiam(Q) ≥ 1,

sup
x∈Q

∫
Rd\EQ

|Kk(x, y)| dy ≤ B1 max
{(

2kdiam(Q)
)−ε

, 2−kε
}
. (12.5)

Let

B = B
q/p
0 (AA

1/p
0 +B1)1−q/p.
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Then for any q > 0 there is a C depending on ε, p, p0, q such that

∥∥∥(∑
k

2kq/p|ΠkTkfk|q
)1/q∥∥∥

p
≤ CA

[
log
(
3 + B

A

)] 1
q
− 1
p

(∑
k

‖fk‖pp
)1/p

. (12.6)

We apply this theorem on the family of operators Tk := Rk,` for k ≥ (2 + ε)` (here

` is fixed). By Proposition 8.1 the assumptions (12.2) and (12.3) are satisfied with

A . 2−`ε(p) and B0 . 2−`ε(p0). We next check assumptions (12.4) and (12.5). For a given

cube Q with center xQ let

EQ = {y : |S(xQ, y3)− y′| ≤ C2`diam(Q)}

if diam(Q) < 1, and a cube centered at xQ of diameter C2`diam(Q) if |Q| ≥ 1. By an

integration by parts argument in the τ variables we derive the bound

|Kk(x, y)| .N
22k

(1 + 2k−`|S(xQ, y3)− y′|)N
.

Then clearly assumptions (12.4) and (12.5) are satisfied with A0 . 23` and B1 . 22`

respectively. Theorem 12.1 then implies (12.1) with Πk = Pk+s1 and fk = Pk+s2f ,

finishing the proof of Proposition 8.8.
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