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“When the present determines the future, but the approximate present does not

approximately determine the future.”

– Edward Norton Lorenz, On Chaos
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Abstract

Many ubiquitous phenomena in nature and engineering, such as turbulent flows, global

weather patterns, and reaction-diffusion systems, can be described by dissipative infinite

dimensional partial differential equations. Despite their prevalence, these systems often

remain the source of engineering challenges when it comes to modeling and control. Specif-

ically, generalizable and automated frameworks for reduced-order modeling and control re-

main an obstacle due to a number of systemic challenges such as complex spatiotempo-

ral chaotic dynamics, high-dimensionality, and costly data generation. While many deep

learning frameworks have experienced dramatic success in their fields of origin, their direct

application towards our target systems can often be unsatisfactory or even intractable with-

out innovation. Motivated by this disconnect, the main objective in this thesis is therefore

to develop data-driven frameworks that combine concepts from dynamical systems theory,

such as symmetries and manifolds, with deep learning, such as deep reinforcement learning

(RL) and representation learning, to efficiently and automatically find control strategies and

low-dimensional representations for complex dynamical systems.

In Chapter 1, we motivate our systems of interest from a dynamical systems perspective

and provide background on core concepts. From here, we branch out into two themes

of discussion–control and data representations. The primary theme, which is focused on

the control of chaotic flows, overviews existing control methods, their successes, and their

deficiencies. In particular, these deficiencies motivate us to turn to data-driven control via

modern deep reinforcement learning, which we review in-depth. We then shift our attention
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to the second theme of learning representations, which is motivated by challenges encountered

in data-driven reduced-order modeling of our complex high-dimensional systems. Here, we

provide a review of dominant dimensionality reduction methods with an emphasis on deep

autoencoders.

In Chapter 2, we explore standard deep RL’s (practical) inability to learn a truly op-

timal policy for dynamical systems with symmetries. We demonstrate this issue using the

Kuramoto-Sivashinsky equation (KSE) equipped with 4 synthetic jets and a control objective

of minimizing energy dissipation and power input. We showcase that the representation of

the learning problem is critical and introduce a framework that reduces the symmetry com-

plexity of the state representation. From a dynamical systems perspective, this framework

effectively moves the RL problem into a symmetry-reduced subspace of state-action space.

As a result, this framework not only guarantees controller equivariance but also substantially

boosts data-efficiency and network capacity utilization.

We shift gears in Chapter 3 and demonstrate the feasibility of using manifold models

inspired by dynamical systems theory to efficiently train RL agents. In this chapter we

develop a model-based RL framework we call “Data-driven Manifold Dynamics for RL” or

DManD-RL. The development of this framework is largely motivated by dynamical systems

that are too expensive to apply RL to in the traditional sense (e.g. turbulent flows!). Notably,

the RL agent learns in a low-dimensional manifold coordinate representation instead of the

high-dimensional ambient space. We demonstrate the feasibility of this framework again on

the Kuramoto-Sivashinsky equation.

We make the leap of faith in Chapter 4 and apply DManD-RL to a high-fidelity simulation

of turbulent flow in the plane Couette geometry. Here we tackle all of the listed challenges:

high-dimensional data, costly data generation, and highly complex chaotic dynamics. We

demonstrate that our DManD-RL model is able to learn a state-of-the-art drag-reducing

control strategy compared to existing heuristic-based strategies. We highlight our framework

enabled a ∼ 400× training speedup compared to a traditional application of RL.
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In Chapter 5, we shift our focus purely onto representation learning, largely motivated

by challenges that remain in reduced-order modeling and forecasting. In this chapter, we

demonstrate a modified application of implicitly regularized autoencoders to develop a frame-

work that automatically: 1) estimates the underlying dimensionality of the manifold the data

lives on, 2) provides a working orthogonal manifold coordinate system, and 3) provides the

mapping functions between the ambient representation and manifold representation. We

demonstrate the viability of this framework on a number of example systems and showcase

its natural extension to time-series forecasting. We conclude this chapter with an investiga-

tion of how our framework achieves these properties automatically.

In Chapter 6, we conclude this thesis with a summary of our insights and layout the

foundation of potential future work. These future directions focus on 1) feasibly extending RL

to significantly larger spatial domains via hierarchical distributed systems, and 2) extending

learning representations to take advantage of the unique properties of dynamical systems

data by considering geometric and graphical properties in the latent space.
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General introduction

The works presented in this thesis are aimed at leveraging ideas from dynamical systems

theory and machine learning to develop data-driven frameworks that efficiently find control

strategies and reduced-order representations for complex dynamical systems. We are pri-

marily interested in dissipative, chaotic, “infinite-dimensional” systems described by partial

differential equations (PDEs). These systems describe ubiquitous phenomena in physics and

engineering, such as reaction-diffusion systems, weather patterns, and turbulent fluid flows.

In this thesis, turbulent flows are our white-whale system for a number of industrially

and academically motivated reasons. Industrially, the reason is simply economical–turbulent

flows incur turbulent drag which incur energy losses. Wall-bounded turbulent flows dissipate

approximately 25% of the energy expended in commerce and industry–on a global scale, this

accounts for about 5% of the global carbon emission footprint [95]. On such a large scale, the

economical and ecological savings that could be enabled by advancements in drag-reduction

(i.e. flow control) is not trivial. Academically, turbulent flows and their dynamics remain

far from fully understood. Advancements in the control and modeling of turbulent dynamics

may allow us to glean insight into the hidden structure of this complex dynamical system–

which in turn may inform us about other similar systems.

From a high level, many of these systems present a number of common, nontrivial chal-

lenges: complex spatiotemporal chaotic dynamics, high-dimensionality, and resource-costly
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data generation. In the context of turbulent flows, which are known to be governed by

the Navier-Stokes Equations (NSE), these properties have made traditional/heuristic-based

control and high-fidelity modeling a significant challenge at best.

In recent years accessibility to powerful computing, data, and machine learning have

blossomed, making data-driven approaches not just appealing but increasingly practical.

While many deep learning frameworks have experienced extensive success in their fields of

origin, their application towards our systems of interest can often be unsatisfactory or even

intractable due to the above challenges. In the works presented in this thesis, we will tackle

these challenges by specifically building upon deep reinforcement learning for data-driven

control and regularized deep autoencoders for automated dimensionality reduction. Our

end goal is to develop and demonstrate the effectiveness of these frameworks for dynamical

systems as complex as turbulent flows.

The following introduction is set-up as a primer for key concepts in nonlinear dynamical

systems theory and deep learning, which is focused on reinforcement learning and represen-

tation learning. The introduction is laid out as follows: In Sec. 1.1 we define the dynamical

systems we are interested in and their properties. In Sec. 1.2 we review classical methods

that have been developed to control these dynamical systems. In Sec. 1.3 we provide a brief

review of neural networks, weight optimization, and a statement on what we can expect from

our networks. In Sec. 1.4 we overview core concepts and derive equations of reinforcement

learning that are necessary to understand modern deep reinforcement learning algorithms.

In Sec. 1.5 we describe these deep reinforcement learning algorithms. We then deviate from

our discussion of data-driven control to discuss representation learning in Sec. 1.6 in the

context of dimensionality reduction and forecast modeling. We complete our discussion with

a brief overview of data-driven forecasting methods in Sec. 1.7 and provide an outline of the

remaining chapters in Sec.1.8.
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1.1 Dynamical Systems

1.1.1 Formalizing our Dynamical Systems

In this thesis, we are concerned with the modeling and control of “infinite-dimensional”

dynamical systems, which are described by a system state, v(x, t), that evolves in space, x,

and time, t. The system can be formalized as a partial differential equation whose right-

hand-side (RHS) is generically defined as F and an initial condition,

dv

dt
= v̇ = F(v)

v(t = 0) = v0

(1.1)

For practical purposes, such as computational modeling and analyses, these systems are

often “approximated” in a finite, high-dimensional form that represents v as time-varying

modal coefficients on some orthonormal basis. For example, we can describe v(x, t) as the

sum of the time varying modes:

v(x, t) =
∞!

i=1

ui(t)φi(x) ≅
du!

i=1

ui(t)φi(x), (1.2)

where ui(t) are the time varying modal coefficients and φi(x) are the orthonormal spatial

basis. Naturally, given F(v) and the above relationship, we can perform Galerkin projection,

duj

dt
=

"
F
"

du!

i=1

ui(t)φi(x)

#
,φj(x)

#
, (1.3)

to obtain what is known as the full-order model (FOM) or full system,

du

dt
= u̇ = f(u), (1.4)

where u ∈ Rdu is in the ambient space of finite dimension du. For a system with control
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inputs, a, we can describe the FOM as the following when control is affine,

du

dt
= f(u) + b(u)a, (1.5)

where b maps control inputs to the RHS contribution. For control that is non-affine, which

is common in many real-world applications, we can describe the FOM as,

du

dt
= f(u, a). (1.6)

We narrow the scope of our focus onto systems described by f that are deterministic

and nonlinear. The time evolution and future states of a deterministic system is dependent

only on u (i.e. independent of the history of u). While many physical phenomena can be

described by linear dynamics (e.g. small angle undamped pendulum, flow over a cylinder

with a periodic oscillatory wake), the bulk majority of complex systems we are interested in,

such as turbulent flows, are highly nonlinear.

These deterministic nonlinear dynamical systems can often give rise to chaos. Chaotic

dynamical systems are systems that possess deterministic, aperiodic long-time dynamics

coupled with an extreme sensitivity to initial conditions [185]. These systems exhibit extreme

sensitivity to initial conditions, where states starting arbitrarily close together evolve apart

exponentially onto radically different paths. This property, when coupled with the long-

time aperiodic dynamics, gives chaos the appearance of disorder and randomness. However,

underlying the apparent disarray, there is structure in the form of embedded patterns, self-

similarity, and organization.

Two dynamical systems concepts that are important are invariant solutions and mani-

folds. Invariant solutions are special states or sets of states that if the system were to begin

on them, they would remain in them. These include fixed points, periodic orbits, relative

periodic orbits, etc [185]. Invariant solutions can have stable and/or unstable directions

around them, influencing the dynamics when the system passes near them. This influence
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Figure 1.1: Cartoon of long-time dynamics approaching the M manifold embedded in the Rdu

ambient space.

leads to the dynamics self-organizing about these solutions. From this perspective, invariant

solutions can be viewed as the underlying “skeleton” of the dynamics we observe.

Many physical phenomena in physics and engineering also have long times dynamics

that reside on a lower-dimensional manifold, illustrated as a caricature in Fig. 1.1. For

example, at low Reynolds numbers a flow past a cylinder will eventually develop Kármán

vortex shedding, where the unsteady separated flow behind the cylinder oscillates regularly.

Here the long time dynamics converge onto a rather trivial manifold–a periodic orbit. In

this example, the manifold also happens to be a single invariant solution. However, for

more complex systems, the manifold can be organized about multiple solutions, taking on

complicated, nontrivial forms that are aperiodic. For the interested reader, a more rigorous

discussion of manifolds is provided in Sec. 1.1.2. Our white-whale system, turbulent flow, is

also a dissipative chaotic dynamical system. Like other dissipative dynamical systems, they

exhibit dynamics that are organized about invariant solutions, called Exact Coherent States

[66], that take on the forms of equilibriums, traveling waves, periodic orbits, etc. For these

reasons, turbulent flows are strongly suspected to also have dynamics that live on a lower-

dimensional manifold [190]. Through this dynamical systems lens, we are able to disconnect

this outward appearance of randomness and disorder from our system, giving us clear hope

that they can be modeled and controlled.
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1.1.2 A More Formal Description of Manifolds

As defined by Lee [110], a topological manifold, M, of dimension dm is a topological space

that holds the following three properties:

1. M is a Haussdorff space

2. M is second-countable

3. M is locally Euclidean of dimension dm

The first property states that for every pair of distinct points, p, q ∈ M, there are disjoint

open sets (i.e. the intersection of these sets is empty) U, V ⊆ M such that p ∈ U and q ∈ V .

The second property states that there exists a countable basis for the topology of M and

implies that the space is separable. The final property states that each point in M has a

neighborhood that is homeomorphic to an open subset of Rdm , which means for each p ∈ M

we can obtain 1) an open subset of U ⊆ M that contains p, 2) an open subset Û ⊆ Rdm ,

and 3) a homeomorphism φ : U → Û .

There are several important implications these properties leave us: 1) by definition the

manifold has a specific integer dimension and 2) a homeomorphism between M and Rdm

is only required locally. For the purposes of dimensionality reduction, this means that if

we seek to find a global map between M and Rdm , it is not guaranteed to exist. However,

while a global map to Rdm may not always exist, a global map will exist for R2dm where

2dm is the upperbound [212]. If such a mapping were insufficient, an alternative route can

be taken. Mappings from M to Rdm can be achieved by assembling local patches of the

manifold, called charts, where each chart locally maps their portion of the manifold to Rdm

[46]. A collection of charts can then be assembled into what is called an atlas to cover the

entire manifold.

Connecting these ideas back to our discussion of dynamical systems, we can treat the set

of states at long-times as belonging to a manifold. Because the manifold is finite-dimensional

of dimension dm, we can infer that the underlying dynamics that represent our “infinite-
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dimensional” PDE systems are also finite and of dimension dm. For the purposes of finding

minimal representations, reduced-order modeling, and control, we have a lower-bound on

the dimensionality we can work with.

1.2 Classical Control of Chaotic Systems and Flows

1.2.1 Chaos Control

As the systems we seek to control are chaotic dynamical systems, it is worth first discussing

the pioneering works in chaos control. These strategies can be classified into closed-loop

(feedback) or open-loop (non-feedback). We first briefly overview non-feedback methods.

These methods are desirable for the practicality of their application–requiring no online

monitoring, live computations, or knowledge of fixed points. These control methods aim to

suppress chaos by driving the chaotic dynamics toward periodic dynamics. This is accom-

plished by applying weak perturbations in the form of constant, periodic, or quasiperiodic

signals to some control variable [159]. However, because these methods are not optimized in

the sense that they require continuous energy expenditure, estimations of resonant frequen-

cies, and are not reactive to disturbances, we will focus our attention to the latter class of

methods.

We now turn our attention to feedback methods. Feedback methods require some ob-

servation of the system and calculating a proper control perturbation to achieve a desired

evolution of the system. We will first overview methodologies pioneered by the chaos com-

munity first, which characteristically require a target state or orbit known a priori. We will

then broaden the scope of methodologies to frameworks developed by the fluid dynamics

and machine learning communities.

The pioneering feedback chaos control method, devised by Ott, Grebogi, and Yorke (OGY

method)[145], takes advantage of two properties of chaotic dynamical systems: 1) a chaotic

system has embedded within it a large number of unstable periodic orbits meaning trajec-
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tories will eventually visit the neighborhood of targeted or desirable states due to ergodicity

and 2) the high sensitivity of trajectories to the current state indicates that the behavior of

the system can be largely influenced with just small perturbations. The resulting method-

ology consists of the following steps. First, one identifies a set of low-period periodic orbits

(or fixed points). From this set, a solution with desirable properties is chosen by evaluating

the stability in space (via linearized poincaré maps). Using a small control perturbation, the

target orbit is stabilized by perturbing the trajectory onto the stable direction of the solu-

tion when the system approaches sufficiently close to the neighborhood of the target orbit.

In the event the controlled trajectory is lost, control is removed until the system naturally

returns to the target neighborhood. Naturally, there is a trade off between how large of a

perturbation is available (i.e. the neighborhood of control) and the average “wait” time for

the system to naturally approach the neighborhood.

The OGY method requires the identification of solutions with desirable properties, as well

as the identification of the unstable and stable directions along each point of the solution,

which can be practically difficult and prohibitively expensive for arbitrary high-dimensional

systems. This becomes even more difficult when perturbations are physically and practically

constrained such as in turbulent flows. Furthermore, because the linear controller only acts

when the trajectory is within the target neighborhood, systems with dynamics that are slow

or intermittent may require waiting for unacceptable lengths of time. For a more thorough

discussion on the OGY method, the interested reader is referred to Boccaletti et al. [8], Ott

et al. [145].

Another notable feedback control method is the delayed feedback method introduced by

Pyragas [151], whereby a feedback perturbation, U(t), acts on one of the state variables. The

underlying assumption is that there exists a scalar variable in x (here as an abuse of notation

we use x as the state variable to be consistent with the original work) that is available for
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measurement and perturbation. The form of the feedback control perturbation is as follows,

U(t) = K(x1(t− T )− x1(t)) (1.7)

where K is a parameter weighting the perturbation, x1 is the observable/perturbable vari-

able, and T is the period of the target orbit. Generally, the choice of T is fixed once a

target orbit is determined, with K being determined by sweeping over various values until

desirable performance is achieved. Note that this controller is essentially a time-delayed

feedback controller that attempts to drive the system to follow some predetermined unstable

periodic orbit. Various improvements and renditions to this method have been introduced

since, which are covered in a review by Boccaletti et al. [8].

These classical methods demonstrated that chaotic dynamics, despite all their complexity

and sensitivity, could be controlled. Practically, these control solutions are far from ideal as

they provide no globally optimized control solution, require a priori knowledge of invariant

solutions, cannot address arbitrary control tasks, and are not very generalizable.

1.2.2 Flow Control

As turbulent flows are some of the most complex high-dimensional dynamical systems, they

have stood as long-time engineering and industrial economic challenges. The main engineer-

ing challenge we are interested in is drag induced by turbulence (which incurs significant

energetic losses in industrial transport) and how to develop strategies to mitigate it. In this

introduction and throughout this thesis, we use the phrase flow control synonymously with

strategies that promote drag reduction.

Here we dedicate a section to overview notable control strategies developed in the flow

control community along with their advantages and their deficiencies. We first narrow our

scope of turbulent flows to those bounded by no-slip walls, such as plane Couette and

plane Poiseuille flow, simulated in high-fidelity as direct numerical simulations (DNS). These
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canonical flows are an important point of study as they isolate the characteristic flow bounded

by surfaces (such as air over an airplane wing or a liquid in a transport pipe) in a relatively

tractable domain. Within these flow geometries, we begin our flow control overview by first

narrowing the class of flow control to reactive flow control methods, which are methods that

require energy expenditure for control and react in response to the system state (i.e. closed-

loop, feedback). These methods are generally superior in performance over non-feedback

methods, which do not consider the state of the system. Non-feedback methods can appear

as passive, which do not expend energy for control, or active, which do. Several notable

passive non-feedback examples include riblets and other surface modifications [3, 21, 62],

and active non-feedback examples such as wall-oscillations [153, 154]. Notable reactive flow

control methods include opposition control [23, 78] and model-predictive control [6].

Opposition control, introduced by Choi et al. [23], is a reactive flow control method

which manipulates the wall-normal velocity at the wall using a simple opposition control

law to reduce drag. More precisely, opposition control sets the wall-normal velocity, v, at

the wall to be equal to the opposite of v (up to a constant of φ) at some x − z detection

plane located at ys in the interior of the flow. In other words, the control law is defined

as v(x, y = ±1, z) = −φv(x, y = ±ys, z). Performance of course is dependent on ys and φ,

which are optimized empirically.

The main drawbacks of this method are its need for high-resolution actuation and its

dependence on heuristics. The first drawback is a practical one: the ability to freely control

the wall-normal velocity at the boundary at such a high resolution requires sensor and

actuator array densities that are impractical. The second drawback is the method is based on

physical heuristics and intuitions. The idea is if one can disrupt the near wall flow dynamics,

the structures that lead to drag are also disrupted. If one were interested in adjusting the

physical form of control, it is unclear how the control law should change. Thus, heuristics can

only go so far. Opposition control can only disrupt some near-wall flow structures–without

any real optimization, this method cannot address the problem at a global scale.
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In terms of optimization-based flow control, several works have highlighted the value

and efficacy of applying optimal control theory frameworks to choose control responses. A

notable application of model-predictive control is implemented by Bewley [6]. In this work,

the authors controlled a turbulent DNS simulation by optimizing a future sequence of control

actions by running forward simulations and solving an adjoint problem backwards. In this

work, the authors manipulate the wall-normal velocity at the wall. While achieving notable

drag reduction, the caveat of this method is the compute and memory cost required on-the-

fly. Because each action requires a forward solve of the DNS (and solving an adjoint system

backwards), this method cannot be practically implemented. While turbulent structures

appear and disappear in a fraction of a second, it would take on the order of minutes to hours

to optimize a single action. Furthermore, the velocity fields obtained from the NSE must

be stored for all time–these storage requirements can be prohibitive for three-dimensional

long-time horizon optimization problems. For a more comprehensive review of variations of

these flow control methods, we refer the reader to Scott Collis et al. [175].

The deficiencies outlined here motivate us to look for a control strategy framework that

is globally optimized for reducing drag but can also be “front-loaded” ahead of time so that

determining a control output during deployment is quick. Furthermore, it is ideal that the

framework is agnostic to the form of the actuators and sensors and can be automated without

relying on heuristics. In the following sections, we will overview the choice method for many

of the works described in this thesis, deep reinforcement learning, which will allow us to

obtain control strategies while avoiding the issues mentioned above.

1.3 Deep Learning Basics and a Practical Perspective

1.3.1 The Basics

The majority of the frameworks developed in this thesis utilize artificial Neural Networks

(NNs), which are excellent at approximating nonlinear functions from data. Similar to
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biological neurons, artificial NNs are composed of many interconnected units. These inter-

connected units are commonly organized into layers, which together form a neural network.

The term “deep” simply refers to architectures with more than two layers.

The most basic architecture is a feed-forward network or multi-layer perceptron (MLP).

As input data pass through each layer, they are transformed or activated via nonlinear func-

tions. The intermediate layers of the network are often called hidden layers and the interme-

diate representation of the data, z, is often called a latent representation. The representation

at layer i can be computed as the following,

z(i) = f (i)(W⊤(i)z(i−1) + b(i)), (1.8)

where W⊤(i) is the weight matrix at layer i, b(i) is the bias at layer i, and f (i) is the

nonlinear activation function applied point-wise at layer i. The free parameters sought

for optimization are the set of weights W and b which are often referred to collectively as

parameters θ. Weights are optimized to reduce some user-defined loss function, L, which is

an equation or relationship the network aims to minimize. Weights are updated iteratively

in fitting batches, where forward passes are used to compute the loss, and back propagation

(essentially applying chain-rule in reverse) is used to compute the gradient of the weights

with respect to the loss. Using some gradient descent method, the weights are then adjusted

and the cycle repeats until the desired performance is reached [64]. Here we have detailed

the most basic practical NN formulation, the MLP. There are many different formulations

NNs can take-on, which is generally dictated by the task or data. A more detailed review of

these can be found in Goodfellow et al. [64].

1.3.2 A Healthy, Practical Perspective on Neural Networks

In this section, we share an important opinion on what a healthy perspective one should

have when working with network-based methods in terms of expectations and limitations.
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NNs, like the multitude of other modeling frameworks, are tools used to approximate func-

tions. They have found applications within nearly every research field due to their flexibility,

shockingly good performance, and news-worthy accomplishments. However, in terms of our

fundamental knowledge on them, their constant successes and new developments far out-

run our concrete understandings. This can dangerously lead to our expectations outrunning

our understandings of their limitations. It is important to remind ourselves that they are

practically just approximators.

While there have been several universal approximation theorems developed that high-

light the potential power of NNs, it is important to note that many of these are proofs

on existence [33, 87, 88]–they do not guarantee that any network will perform well, espe-

cially in practical applications with finite practical datasets and finite available compute.

NN performance is dictated by an astronomical number of parameters we can control (e.g.

data/learning representation, layers depth/width, layer types, activation functions, optimiz-

ers, data-preprocessing, prior distribution assumptions, weight initializations, architecture,

batching, normalizations, sampling, etc.) as well as many we cannot control (e.g. how much

data we have, the underlying structure/distribution of the data, the quality of our data,

compute limits). While each of these can significantly impact performance, the field has not

developed a concrete theoretical understanding of the interplay between all of these proper-

ties and the limitations they impose (and it is unclear the field will ever be able to). The

inherent challenges of noise, imperfect optimization, and stochasticity loosen these expecta-

tions further. Just because a NN theoretically could (under specific conditions) approximate

your desired function, does not exclude the hundreds of practical reasons why it might not.

This notion caries over to frameworks developed based on heuristics. For example, SimCLR

uses a projection head layer to transform its latent representation because it performed bet-

ter based on the authors’ observations [18]. There is no concrete reason this design choice

should be expected to be optimal for all datasets.

A healthy, practical perspective of NNs is that they are simply function approximators
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that are powerful yet still poorly understood. To the date of this thesis, researchers are

still trying to understand the internal mechanisms in deep learning on a theoretical level

that lead to performance, generalizability, and feature formation. At the same time, NNs

suffer from a wide array of practical deficiencies and they should not be viewed as infallible

perfect approximators when subjected to arbitrary data, heuristic design choices, and ill-

defined objective functions. It is therefore important we stay wary of the many underlying

limitations of NNs and to exercise caution with our expectations of them when we are

applying or designing frameworks.

1.4 Reinforcement Learning

In this section we briefly outline the core concepts and fundamentals of reinforcement learning

[186]. These fundamentals are quite important to understand in order to appreciate and

implement modern reinforcement learning algorithms, which are the frameworks utilized

throughout this thesis. We will first begin with some basic terminology, a description of the

general problem, and derive the core functions that are ubiquitous in deep RL. We refer the

interested reader to Sutton and Barto [186] for additional background and its interesting

connections to neuroscience and psychology.

1.4.1 Reinforcement Learning Basics

In the simplest terms, reinforcement learning (RL) is concerned with learning the mapping

function between system states and actions that maximizes the cumulative sum of a re-

ward signal through repeated interactions. Fundamentally, RL is analogous to the biological

learning process–we learn through observation of the cause and effects of our actions on our

surroundings as well as the impact they have on our goals. RL is thus the computational

embodiment of this learning process. RL divides the world into two domains: the agent and

the environment. The agent is the learner tasked with decision making, while the environ-
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Figure 1.2: The basic reinforcement learning cycle.

ment is everything exterior of the agent. Between the agent and the environment are several

important subcomponents. These are the state, action, policy, reward signal and value func-

tion. As the name suggests, the environment state, s ∈ S, is an observation made by the

agent on state of the environment. Importantly, s is not necessarily equivalent to the full

state of the dynamical system, u, and can be a partial observation of the state. The action,

a ∈ A, is the control response implemented by the agent to manipulate the environment.

Here and throughout, we denote the concept of time or sequence with the subscript t, e.g.

st represents the observation of the state made at time t. The choice of action is determined

by the (deterministic) policy, µ, which is the mapping between st and at,

at = µ(st). (1.9)

The policy is the functional form of the control “strategy” or stimulus-response rules and

can be stochastic (as we will see later). Note here that the agent is the embodiment of the

policy and that these terms are often used interchangeably in literature. In RL, policies are

optimized to maximize the reward signal, r ∈ R, over the future horizon. r is a scalar valued

function that relays how well the agent is behaving immediately and if evaluated over the

interval at t, we denote it as rt. The reward is defined by the user and dictates the control

objective and is generally a function of the environment state and action, r = r(s, a). Finally,

the value function, Vµ, quantifies how much reward the agent can expect to accumulate in
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the future starting from a given state i.e. how good is this state if we follow the control

policy µ from here on out.

Classically, a policy is optimized through repeated cyclic interactions, shown in Fig. 1.2.

Given an observation, st, the agent will execute an action, at, based on its current policy µ.

When at is applied to the environment, it will influence how the system evolves, resulting

in the following state st+1. As we are interested in systems that are continuous in time,

we generalize the nomenclature of the “next state” to st+τ where τ is the time to between

steps. The generalized notation for “next” in the absence of time indexing is ·′ (e.g. the next

state is s′). How favorably at impacted the environment from st to st+τ is then quantified

by rt. This constitutes a learning cycle tuple, [st, at, rt, st+τ ], while the repeated sequence of

interactions, [s0, a0, r0, sτ , aτ , ...], constitutes a trajectory, T . These pieces of information are

used to update and improve µ. In the following, we will overview the underlying theory and

core equations in RL that utilize this information to update µ.

Stochasticity and Reinforcement Learning

A few important distinctions to make at this point are related to stochasticity. Often times

when we consider classical controllers we think of deterministic functions–a given input yields

a consistent output response. In RL theory, the policy is often generalized as a stochastic

function, π(s|a), which describes the probability of at = a given st = s,

!

a

π(a|s) = 1. (1.10)

To consolidate our nomenclatures of deterministic policy µ and our new generalized

stochastic policy π, we relate these via the following assuming Gaussian probability distri-

butions,

at ∼ π(·|st)

at = µ(st) + σ(st)⊙ ξ

(1.11)
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where σ(s) is the standard deviation and z is a vector of noise sampled from a Gaussian

(ξ ∼ N (0, I)). In this generalized form, the implemented at is sampled from a ∈ A, based

on the probability distributions set by π given s. For a deterministic policy, the probability

of at given st = s is effectively one and zero for all other a, i.e. σ(st) = 0. Note this is not

to be confused with a greedy policy, which will be discussed later.

Another point of stochasticity is in the RL framework the environment is idealized to be

a Markov Decision Process (MDP). Under this assumption, the environment’s dynamics can

be completely captured by the probability distribution p,

!

s′∈S

!

r∈R

p(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A. (1.12)

This means that the probabilities of s′ (which we recall is the generalized time-index free

notation of st+τ ) and r solely depends on s and a. In other words, the environment is Markov,

where only the current state captures all necessary information to describe the future. In

this thesis, we are interested in chaotic dynamical systems which are not only Markov but

also deterministic. A deterministic interpretation of the above probability distribution is

that given a specific st and at, there is a st+τ , rt pair with probability one, with all else

having probability zero.

Returns, Value Functions, and Bellman Equations

The objective of the agent is to maximize the total cumulative reward, or more formally, we

seek to obtain a π that maximizes the expected cumulative sum of rewards. We can define

this discounted cumulative reward as the return, Rt,

Rt =
∞!

k=0

γkrt+kτ , (1.13)

where 0 ≤ γ ≤ 1 is the discount factor. This discount factor weights rewards toward the

immediate future more heavily compared to distant future rewards. The closer γ is to 1,
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the more farsighted the agent becomes. Furthermore, for γ < 1, Rt has a finite value,

assuming the sequence is bounded. An important theme in RL (and dynamic programming)

is recursion. Successive instances of the return can be related to each other,

Rt = rt + γRt+τ . (1.14)

This type of relationship is foundational to much of the theory in RL. With our definition

of the return, we can now explore value functions, which underpin all RL algorithms. The

state-value function, Vπ(s), of a state s following policy π is the following,

Vπ(s) = Eπ [Rt|st = s] , (1.15)

where Eπ[·] is the expected value under the policy π. The intuitive interpretation of this

function is if you were to begin at state s, how much reward would you expect to collect over

the future by following the rules set by π? States with larger values are more desirable than

those with lesser values. The natural extension of the state-value function is the action-value

function, Qπ(s, a), which is the expected return starting from s and implementing action a,

and thereafter following π,

Qπ(s, a) = Eπ [Rt|st = s, at = a] . (1.16)

The intuitive interpretation of Qπ is if you were to begin at state s, and you were forced

to take action a (regardless of how “good” it is), how much reward would you then expect

to collect over the future following π? An s paired with a “good” a will yield a larger

action-value, while an a that is detrimental to the goal will yield a lower action-value.

Naturally, the state-value function and the action-value function are related to one an-

other,

Vπ(s) =
!

a∈A

π(a|s) ·Qπ(s, a). (1.17)
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Furthermore, Vπ and Qπ are also sometimes related by the advantage function,

Aπ(s, a) = Qπ(s, a)− Vπ(s). (1.18)

The advantage function has quite a literal and intuitive meaning–how much of a quantitative

advantage does taking a particular action have over the distribution imposed by π at a given

state? If the action is extremely detrimental, the value of Qπ will be less than that of Vπ,

yielding a negative advantage value and vice-versa. The advantage function is utilized in

several modern RL frameworks. Similar to the return function, value functions can also be

expressed recursively. For example, by combining Eq. 1.10, Eq. 1.12, Eq. 1.13, Eq. 1.14, and

Eq. 1.15 we can represent Vπ recursively:

Vπ(s) = Eπ [Rt|st = s]

= Eπ [rt + γRt+τ |st = s]

=
!

a

π(a|s)
!

s′∈S

!

r∈R

p(s′, r|s, a) [r + γEπ [Rt+τ |st+τ = s′]]

=
!

a

π(a|s)
!

s′∈S

!

r∈R

p(s′, r|s, a) [r + γVπ(s
′)]

(1.19)

This is known as the Bellman Equation for the value function, which describes the rela-

tionship between the value of a state and its successive states. The Bellman equation here

describes that the value of a state is equal to the immediate reward and the discounted

expected value of the next state. The Bellman equation is the foundation for how RL algo-

rithms compute and approximate Vπ. We can extend this naturally to Qπ to arrive at the

Bellman equation for the action-value function:

Qπ(s, a) =
!

s′∈S

!

r∈R

p(s′, r|s, a)
$
r + γ

!

a′

π(a′|s′)Qπ(s
′, a′)

%
(1.20)
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Optimal Policies, Optimality Equations

Now that we have established the connections between the policy, return, and value functions

through the Bellman equations, we can now develop relationships between these functions

for the optimal policy, π∗, which yields expected returns greater than or equal to all other

policies for all states.

π∗ = argmax
π

Vπ(s), ∀s ∈ S (1.21)

Obtaining, estimating, or learning π∗ is the goal of reinforcement learning and often this is

achieved by first acquiring the optimal state value function, V∗(s), and the optimal action

value function, Q∗(s, a), which are our value functions under π∗:

V∗(s) = max
π

Vπ(s), ∀s ∈ S (1.22)

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A (1.23)

The relationship between these two are similar to Eq. 1.17,

V∗(s) = max
a

Q∗(s, a). (1.24)

From here, we can derive the Bellman optimality equation for the state value function,

V∗(s) = max
a

Q∗(s, a)

= max
a

Eπ∗ [Rt|st = s, at = a]

= max
a

Eπ∗ [rt + γRt+τ |st = s, at = a]

= max
a

Eπ∗ [rt + γV∗(st+τ )|st = s, at = a]

= max
a

!

s′∈S

!

r∈R

p(s′, r|s, a) [r + γV∗(s
′)]

(1.25)
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which tells us that following the optimal policy, the value of a state is equal to the expected

return for applying the best action to that state. The Bellman optimality equation for the

action value function can be derived similarly,

Q∗(s, a) = Eπ∗

&
rt + γmax

a′
Q∗(st+τ , a

′)|st = s, at = a
'

=
!

s′∈S

!

r∈R

p(s′, r|s, a)
&
r + γmax

a′
Q∗(s

′, a′)
' (1.26)

For finite MDPs, the Bellman optimality equations for V∗ and Q∗ each have a unique

solution [186], where each recursive set of relationships form a system of equations (i.e. one

equation for each state). These two sets can each be solved (in principle) for V∗ and Q∗. The

reason one would want to obtain V∗(s) is it easy to determine the optimal action at any given

state by performing a one-step-ahead search that maximizes Bellman optimality equation.

This is possible because the one-step evaluation of V∗ after an action already considers the

optimal long-term return. Utilizing Q∗(s, a) is even simpler, as the action, for a given state,

that maximizes Q∗ must be the optimal action, a∗.

a∗ = argmax
a

Q∗(s, a) = µ∗(s) (1.27)

This is extremely desirable because we can determine the best action immediately for a given

state without relying on one-step-ahead searches nor do we need to know about successive

states, their values, and the dynamics underlying them.

Practical considerations regarding the RL problem

Although we can define recursive equations describing optimality, analytically solving

the underlying system of equations is entirely a different problem. For simple systems with

small, finite state sets and action sets, it is possible to compute the solutions. However, for

complex or continuous systems where the set of states is large or infinite, analytically solving

for the optimal policy is intractable as we simply lack the computational power and memory

capable of solving and storing the solutions for every possible state that exists. Tabular
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methods have attempted to address this using tables with each entry corresponding to a

state or state-action pair [186] (for continuous systems states and actions are discretized)

but practically there simply are no tables big enough to record every possibility underlying

the dynamics of the environment. Thus, the overwhelming majority of RL methods attempt

to approximate the functions of π∗, V∗, and/or Q∗ with network-based models.

1.5 Deep Reinforcement Learning

We now turn our attention to recent advances in RL made by the deep learning community.

This section will briefly overview the algorithms, accomplishments, and challenges of deep

RL. We will then review their application to controlling chaotic dynamical systems and fluid

flows. For the reader unfamiliar with neural networks (NNs), a brief overview is provided in

Sec. 1.3 and highly recommended.

The term “deep” RL refers to the reinforcement frameworks that utilize deep (albeit

often a liberal usage of the term) NNs to approximate policies and/or value functions. These

methods are divided into two general categories: on-policy and off-policy. On-policy methods

characteristically require all data at the time of fitting to be generated with the current

policy. Once the network parameters are updated, effectively updating the policy, all data

must be discarded and new data must be generated. Broadly speaking, the “data” here

refers to the recorded trajectories i.e. the repeated cyclic sequence of interactions between

the agent and environment. Off-policy methods, in contrast, can utilize data that has been

generated from any policy, including those from previous iterations of the policy or even

data from completely unrelated policies.

In the following discussion we overview two “model-free” deep RL algorithms, deep Q-

learning [136] and (vanilla) policy gradients [187], as they establish precursor framework

components many of the more modern deep algorithms utilize. We will then overview the

modern algorithms used in this thesis, Deep Deterministic Policy Gradients (DDPG) [119]
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and Soft Actor Critic (SAC) [76], and briefly acknowledge others.

Before diving in, it is important to discuss a universal dilemma all practical RL frame-

works deal with: exploration vs exploitation. RL algorithms seek to learn action values

that are conditional on optimal behavior, but in order to find optimal actions they need to

explore, which requires behaving non-optimally. There are several nonexclusive ways this

issue is addressed. Some methods balance exploration and exploitation as a trade-off during

learning–the extent of the policy’s exploration decreases as it approaches near-optimality.

Many on-policy methods implicitly achieve this via stochasticity as they slowly optimize

their distributions. Others utilize two policies, one which is attempting to capture the policy

(target policy) and another that is more exploratory that generates data (behavior policy).

This strategy is a hallmark of off-policy methods. Finally, some algorithms explicitly intro-

duce randomized actions to encourage state-action exploration. These are most common in

deterministic off-policy methods.

1.5.1 Deep Q-Learning

We will begin our dive with Q-Learning in the form of deep Q-networks (DQN), which is

the simplest deep off-policy method. Developed by Mnih [136], this method set a precedent

for the potential of NN-based RL. Utilizing only a single NN, this framework was able to

autonomously learn and play at a “superhuman”-level classical video games such as Video

Pinball, Breakout, and Star Gunner [136]. The main idea in DQNs is to construct a NN to

approximate Qπ ≈ Qπ(s, a; θ) with NN parameters θ, hence the name. The input to this

NN is the state observation and output is the estimated Q value for each possible action.

The action that is selected for a given state is then simply the one that corresponds with the

largest predicted Q value, i.e. a greedy policy. The network is fit with the following loss,

L = E
())

ri + γmax
a′

Qπ(s
′, a′; θ)

*
−Qπ(s, a, ; θ)

*2
+
. (1.28)
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Note that this loss is the Bellman equation which we derived in Eq. 1.26. As this policy is

greedy/deterministic, the algorithm needs a way to explore. The authors address this by

having a small probability ε of choosing a random action at each step during training.

Importantly, the loss can be evaluated for any interaction cycle, and as a result the

training data can simply consist of tuples of [st, at, rt, st+τ ] experiences. DQNs also utilize a

“replay buffer” or “experience replay”, which stores previously generated tuples in a rolling

buffer. As new experiences are generated during training, they are added to the buffer.

During fitting, the ensemble of tuples are sampled from this replay buffer. For improved

training stability, the buffer is generally quite large to avoid over-fitting. However, it is not

necessarily better or practical to store every experience so often times older experiences are

slowly dequeued as training progresses.

Because the output of the NN are discrete nodes, the actions themselves must come

from a finite discrete set. This is disadvantageous as it is impossible to produce actions

from a continuous range. One could finely discretize the output layer, but this leads to

massive NNs and poor learning. Nonetheless, this framework is able to map states from a

continuous state space to finite discrete actions, addressing the tractability issues of value

function approximation on the state-space side. The challenge of implementing continuous

actions are addressed in more modern RL algorithms.

1.5.2 Policy Gradients

Policy gradients, specifically the vanilla policy gradient (PG) [187], is the simplest on-policy

deep RL framework. In PGs, the goal is still the same–to obtain a policy that maximizes

the long-time return J(πθ) = ET ∼πθ
[R(T )] (recall here T is the trajectory sampled following

policy πθ). However, unlike deep Q-learning, PGs seek to directly optimize the policy π by

gradient ascent,

θi+1 = θi + α∇θJ(πθ)|θi . (1.29)
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In other words, PGs directly optimize the policy by iteratively estimating the gradient of

performance with respect to the parameters of the model. This type of approach is called

policy optimization. Below is a brief derivation,

∇θJ(πθ) = ∇θ E
T ∼πθ

[R(T )]

= ∇θ

,

T
P (T |θ)R(T )

=

,

T
∇θP (T |θ)R(T )

=

,

T
P (T |θ)∇θ logP (T |θ)R(T )

= E
T ∼πθ

[∇θ logP (T |θ)R(T )]

= E
T ∼πθ

$
T!

t=0

∇θ log πθ(at|st)R(T )

%

= E
T ∼πθ

$
T!

t=0

∇θ log πθ(at|st)
"

T!

t′=t

γt′−tr(st′ , at′ , st′+τ )

#%

(1.30)

where P (T |θ) is the probability of trajectory T occurring,

P (T |θ) = ρ0(s0)
T-

t=0

P (st+τ |st, at)πθ(at|st), (1.31)

and ρ0(s0) is the distribution of initial states. This derivation utilizes several “math tricks”

which include the “log-derivative” trick (the derivative of log(x) with respect to x is 1/x),

P (T |θ)∇θ logP (T |θ), (1.32)

and that the product of a sequence of probabilities can be written as the summation of the

log of their probabilities,

logP (T |θ) = log ρ0(s0) +
T!

t=0

(logP (st+τ |st, at) + log πθ(at|st)). (1.33)
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An important note is that the gradient of the environment-dependent functions are zero

(i.e. ρ0(s0), P (st+τ |st, at), R(T )) which greatly simplifies the derivation. This derivation

formulates the gradient as an expected value, which means it can be estimated from data

via ensemble averages. This is the foundation for the REINFORCE algorithm by Williams

[213], which has an update rule of:

∇θJ(πθ) ≈
1

N

N!

i=1

$
T!

t=0

∇θ log πθ(ai,t|si,t)
"

T!

t′=t

γt′−tr(si,t′ , ai,t′ , si,t′+τ )

#%
(1.34)

Note that unlike Q-learning, which could be trained on ensembles of unrelated tuples of

[st, at, rt, st+τ ], here in PGs we must estimate the gradient over multiple trajectories and we

cannot utilize replay buffers as we cannot optimize using off-policy data.

An aside on baselines: Many practical applications of policy gradients utilize whats

known as a baseline [174], b(s),

∇θJ(πθ) = E
T ∼πθ

$
T!

t=0

∇θ log πθ(at|st)
"

T!

t′=t

γt′−tr(st′ , at′ , st′+τ )− b(st)

#%
. (1.35)

This modification is possible via the “Expected Grad-Log-Prob” Lemma, which states that

the expected value of a grad-log-prob over a random variable is zero. In the context of our

problem, it allows modification to the policy gradient without altering the expected value

so long as the function is not dependent on a. Baselines are implemented because policy

gradients easily suffer from high variance–trajectories must always be generated on policy

and can vary greatly. Increasing batch sizes can help, but they also significantly reduce

sample efficiency. Baselines have been empirically shown to reduce this variance in addition

to faster and more stable function learning [174]. A commonly use baseline is the on-policy

state value function, Vπ(s), which is parameterized by a second network with weights φ. This
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leads to the advantage-based formulation,

∇θJ(πθ) = E
T ∼πθ

$
T!

t=0

∇θ log πθ(at|st)
"

T!

t′=t

γt′−tr(st′ , at′ , st′+τ )− Vπ(st;φ)

#%

= E
T ∼πθ

$
T!

t=0

∇θ log πθ(at|st) (Qπ(st, at)− Vπ(st;φ))

%

= E
T ∼πθ

$
T!

t=0

∇θ log πθ(at|st)Aπ(st, at;φ)

%
,

(1.36)

which in addition to improving variance is also more conceptually intuitive. Finally, as we

have introduced a baseline value network, Vπ(s;φ), this network is updated with a standard

MSE loss,

L = E
st,Rt∼πθ

.
(Vπ(st)−Rt)

2/ . (1.37)

1.5.3 Modern deep RL Algorithms

Here we provide a review of modern deep RL algorithms with an emphasis on the Deep

Deterministic Policy Gradient (DDPG) [119] and Soft-Actor Critic (SAC) [76] algorithms,

as they appear in the works later discussed in this thesis. Alternative modern methods will

be briefly discussed afterwards.

Deep Deterministic Policy Gradients (DDPG)

Deep Deterministic Policy Gradients (DDPG), developed by Lillicrap et al. [119], combines

Q-learning with policy optimization, forming a framework that can input states from a

continuous state space and output actions from a continuous range. To summarize, this

algorithm simultaneously aims to learn an approximation to Q∗(s, a; θQ) and a deterministic

optimal policy a∗ = µ∗(s; θµ). Similar to DQNs, the Q function is learned using off-policy

data and updated via the Bellman equation. However, unlike DQNs where the Q network

inputs s and outputs the Q value for every possible action (i.e. Qµ(s, ai) for all ai) the Q

network in DDPG inputs both s and a and outputs only that particular Qµ(s, a) value. In
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doing so, during the evaluation of Bellman loss, Eq. 1.28, we can make the approximation

maxa Qµ(s, a) ≈ Qµ(s, µ(s)). This Q function is then simultaneously used to learn the policy.

In this context, DDPG can be thought of as deep Q-learning for continuous action spaces.

For stability, DDPG also utilizes a replay buffer in addition to target networks, where

target refers to the comparison term r+ γmaxa′ Qµ(s
′, a′; θQ) in Eq. 1.28. However, because

this loss seeks to make the Qµ(s, a; θQ) network equal to the target, the learning problem

can become very unstable because both sides of the loss depend on the same parameters θQ.

Target networks address this subtlety by being a time-delayed copy of all the networks with

weights θ·,targ which is slowly updated via polyak averaging,

θtarg ← αpθtarg + (1 + αp)θtarg, (1.38)

where 0 < αp < 1 is generally close to 1. Thus, the mean-squared Bellman error with target

networks is,

L(θQ) = E
&
((ri + γQµ(s

′, µ(a′; θµ,targ); θQ,targ))−Qµ(s, a, ; θQ))
2
'
. (1.39)

To optimize the policy network, µ(s; θµ), we simply seek the parameters θµ that maximize

the expected Q value,

max
θµ

E [Qµ(s, µ(s; θµ); θQ)] , (1.40)

which is a policy gradient ascent problem. Thus, µ is updated with the ascent of the following

gradient,

∇θµJ ≈ 1

N

N!

i=1

∇aQµ(s, a; θQ)|s=si,a=µ(si)∇θµµ(s; θµ)|si . (1.41)

Similar to DQNs, DDPG is a deterministic framework which requires it to address the

issue of training exploration. In the original implementation of DDPG, the authors choose

to add a temporally correlated noisy signal, the Orstein-Uhlenbeck noise [119], to encourage

a more correlated exploration.
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Soft Actor-Critic

The Soft Actor-Critic (SAC) algorithm, developed by Haarnoja et al. [76], fuses the DDPG-

style (i.e. actor-critic) framework with stochastic policy optimization principles. Similar to

DDPG, SAC learns a policy that maps state observations to actions from a continuous action

space. However, unlike DDPG which optimizes a deterministic policy a = µ(s; θ), SAC opti-

mizes a stochastic policy a ∼ π(s; θ). Both DDPG and SAC learn critic networks to estimate

Qπ. SAC takes this actor-critic structure one step forward by learning two critic networks

concurrently, and uses the more conservative Qπ value estimate during evaluation. This has

been found to aid policies from over-correcting when the critic network overestimates values

during the learning [51, 76]. Like policy gradients, the original implementation of SAC also

utilizes an approximation of the state value function Vπ as an additional point of consistency

(an updated version of SAC without this has been developed). Finally, like DDPG, SAC

also makes use of target networks (for the value network) to address the brittleness of value

function learning.

The most unique feature of SAC is the incorporation of entropy regularization, which

forces the stochastic agent to strike a balance between maximizing expected return and

entropy i.e. randomness in the policy. For a random variable, x, with probability density

P (x), the entropy, H, is described,

H(P ) = E
x∼P

[− logP (x)] . (1.42)

Note that H decreases as the probability density tightens or as the distribution becomes

“more” deterministic. By incentivizing entropy in the policy, the agent is encouraged to

explore more widely which can often lead to accelerated learning. Furthermore, if there

are multiple avenues or strategies that are equally optimal, the algorithm can commit to

exploiting both, as committing to both strategies is more entropic than a policy that learns

to only exploit a single strategy. In other words, the agent can learn multiple modes of
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approximately optimal behaviors. The incorporation of entropy as a regularization term in

the return modifies the RL objective from Eq. 1.21 to the following,

π∗ = argmax
π

E
T ∼π

$ ∞!

t=0

γt (rt + αH (π(·|st)))
%
, (1.43)

where 0 < α is the regularization coefficient. An important practical comment regarding this

coefficient is while the entropic term is commonly scaled in theory (e.g. above and below),

practical implementations (e.g. code bases) choose to absorb this scaling into the reward

instead, making the scale of the reward larger or smaller relative to the entropic term. From

here on, the coefficient is omitted. Regardless, the modification propagates to our Vπ and

Qπ functions, which we defined in Eq. 1.15 and Eq. 1.16, respectively. Importantly, the state

value and action value equations, when considering this modification, become the following,

Vπ(s) = E
a∼π

[Qπ(s, a) +H(π(·|s))]

= E
a∼π

[Qπ(s, a)− log π(a|s)]

≈ (Qπ(s, ã)− log π(ã|s))

(1.44)

Qπ(s, a) = r(s, a, s′) + γ E
st+τ

[Vπ(st+τ )]

≈ r(s, a, s′) + γVπ(st+τ )

(1.45)

To learn NN function approximations of Vπ, Qπ, and π, these approximate equations will be

used as loss equations for Vπ(s; θV ) and Qπ(s, a; θQ), respectively:

L(θV ) = E

$
1

2

0
Vπ(s; θV )−

0
min
j=1,2

Qπ(s, a; θQ,j)− log π(s, a; θπ)

112
%
, (1.46)

L(θQ,j) = E
(
1

2
(Qπ(s, a; θQ, j)− (r(s, a, s′) + γVπ(s

′; θV,targ)))
2

+
. (1.47)

Note that Vπ is updated with the conservative estimate made between the two critic networks,
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and the critic networks are updated with the target value network. As the policy is stochastic,

a subtlety we must account for is how to parameterize the policy in a way we can compute

the gradient for, i.e. in the form of Eq. 1.11,

a = f(z, s; θπ), (1.48)

where z is a noise vector sampled independent of θπ. With this formulation, we can update

the policy by ascending the gradient of our objective,

∇θπJ ≈ 1

N

N!

i=1

(
min
j=1,2

Qπ(s, f(z, si; θπ); θQ,j)− log π(f(z, si; θπ)|si)
+
. (1.49)

where actions are sampled from the current iteration of the policy.

A Comment on State-of-the-Art On-Policy Algorithms

So far we have only scraped the surface of deep RL in our overview. We primarily focus on

deep off-policy type algorithms as they are the algorithms used in the works of this thesis,

but there are several powerful policy optimization frameworks that are worth mentioning.

These methods include Asynchronous Actor-Critic Agent (A3C) [137], Proximal Policy Op-

timization (PPO) [173], Trusted-Region Policy Optimization (TRPO) [172].

1.5.4 Challenges of Deep RL

Deep RL, while extremely powerful, has its own set of challenges and limitations. A thorough

discussion of the challenges RL experiences in the real world is detailed in Dulac-Arnold

et al. [40]. But to summarize, the main challenges RL experiences in real world usage

are: 1) limited or sparse samples, 2) large or unknown delays in sensing or actuating, 3)

high-dimensional state-action spaces, 4) hard constraints, 5) partially observable systems, 6)

multi-objective rewards 7) extremely low latency requirements 8) utilizing only data from

an external policy, and 9) providing explainable policies.
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Each of these challenges is its own facet of RL research and warrants its own spotlight.

However, for the applications we are interested in (e.g. controlling a turbulent flow), the im-

mediate challenges we are concerned with are challenges 1, 4, and 8 with the first as our main

concern. When the systems sought to be controlled are computationally or experimentally

costly (e.g. high-fidelity turbulent flow simulations), generating enough experiences from the

environment to learn a sufficient policy can quickly become an intractable endeavor.

1.5.5 Model-Based Reinforcement Learning

In the previous sections, we overviewed modern “model-free” deep RL frameworks that

learned purely from interactions with the environment. In the following section, we will

overview an alternative, model-based RL algorithms, which utilize a model of the environ-

ment in some form factor. The purpose of the model is to simulate the environment to

produce synthetic experiences. These models can be distribution models, which output all

the probabilities of all possible state transitions, or sample models, which outputs a single

sampled state transition. As our systems of interest are deterministic and continuous, our

models will be the latter for practicality,

s′, r = model(s, a). (1.50)

An important concept in RL literature is planning, which refers to the use of a model

as input to improve or produce a policy for the target environment. There are many ways

models can be utilized to assist in learning the policy. Here we will outline a few notable

model-based archetypes including dyna [186] and world models [75]. There are other notable

frameworks such as Model-based Value Expansion [45], and Imagination-Augmented Agents

(I2A) [157] but we will focus on discussing the aforementioned.

The most basic dyna-style algorithm involves fitting a model online. At each step, the

real environment interaction is used to fit the policy and the model. Before the next step,



33

the model is used to additionally fit the policy with simulated experiences. These simulated

experiences can be chosen uniformly from state-action sweeps, smarter prioritized sweeps,

or as entire sampled simulated trajectories.

Planning can also be utilized at decision-time, which philosophically heavily overlaps

with model-predictive control (MPC). For example, a model can be learned concurrently

with MPC, where the MPC optimized actions serve as the policy [26]. For a given state

observation, MPC optimizes over the current model for the best action and implements

it. The resulting transition is used to update the model, thereby updating the solutions

optimized by MPC and thus the policy.

On the other end of the spectrum, a model can be first generated and then used to solely

update the policy. World models [75] utilize low-dimensional models to fully replace the en-

vironment. The models are trained on trajectories of the original environment experiencing

a random policy. The objective is to capture the low-dimensional underlying dynamics of

the system and their response to control perturbations accurately enough for an algorithm to

learn and exploit. This avenue is quite attractive for RL applications for high-dimensional,

computationally (or experimentally) expensive environments as it front-loads the data gen-

eration step to a one-time fixed-cost. In the limit of slow or costly data-generation, this can

be the most time-efficient way of estimating a policy.

Importantly, many of the working concepts of world models thematically overlap with

concepts of our dynamical systems of interest–primarily the assumption that beneath the

high-dimensional ambient space lie a low-dimensional yet equally information rich represen-

tation. Intuitively, we can apply our dynamical systems knowledge of manifolds to make

data-driven (world) models of our system in the lower-dimensional manifold representation

rather than the costly high-dimensional ambient representation–a schematic of this is pre-

sented in Fig. 1.3.
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Figure 1.3: Model-based reinforcement learning cycle which uses a reduced-order model (ROM)
learned from data as a surrogate environment to accelerate training.

1.6 Representation Learning for Data Dimensionality

Reduction

In the following section we will depart from our overview of reinforcement learning and

discuss another “RL” known as representation learning (or sometimes learning representa-

tions). Representation learning is a branch of artificial intelligence and machine learning

concerned with unsupervised learning of a representation function from raw data that is use-

ful for downstream learning tasks. Ideally, the representation function captures and isolates

characteristics that are fundamental to the dataset, such as symmetries, geometric distances,

energies, etc., to provide features or inputs that are richer in information and provide greater

discriminative power (i.e. a more separable representation). The intuition is that these trans-

formations of the data make downstream tasks more conducive. Representation learning is

extremely powerful; it unlocks a pathway to reducing unneeded complexity in downstream

models, reducing the amount of data and compute needed to train said models, or even

giving insight into the underlying structure of the data.

Representational learning, like reinforcement learning, is its own immense field of study
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with an exponentially growing community and broad interests. In this review, we will only

be able to focus on a fraction of the frameworks to contextualize some concepts and tools

that are utilized in this thesis. To avoid confusion in this thesis and to maintain consistency

in nomenclature described thus far, we will generically define ambient data snapshots as u

(whereas it is more commonly defined in the learning community as x). These snapshots

are collected or observed from trajectories of our target system. We will primarily focus on

representation learning methods that achieve dimensionality reduction. In otherwords, we

are interested in utilizing frameworks that can compress information into fewer degrees of

freedom while avoiding information loss for our mapping functions and world models.

1.6.1 PCA, Nonlinear Embeddings, Contrastive Learning

We first acknowledge the ubiquitous linear method Principle Component Analysis (PCA),

which is also known as Proper Orthogonal Decomposition and Karhunen-Loève. PCA seeks a

linear transformation that projects the data onto an orthogonal coordinate system organized

by variance. Intuitively, one can imagine this as fitting an n-dimensional ellipsoid onto the

data, where each axis corresponds to a principal component–the larger the axis, the larger

the variance of the data in that direction. The computation behind PCA is simple–only

requiring one to compute the singular value decomposition of the mean centered data matrix,

X = [u1 − ū, ..., ul − ū], which has l snapshots and mean ū. The left singular vectors, U ,

provide the orthogonal basis while the singular values, S, yield the corresponding variance

for each respective direction of the basis. Dimensionality reduction via PCA is accomplished

by projecting u onto the truncated leading singular vector basis, Û , which are often chosen

by trends in the singular value spectra. The reconstruction of the ambient representation

of the snapshot, ũ, can be recovered by projection onto Û⊤. PCA alone however is often

insufficient at achieving dramatic dimensionality reduction for our systems of interest.

Several nonlinear dimensionality reduction methods have become ubiquitous in the data-

visualization community. These embedding methods include isometric feature mapping
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(ISOMAP) [191], Locally Linear Embedding (LLE) [166], t-distributed stochastic neighbor

embedding (tSNE) [193], Laplacian Eigenmaps [5], and Uniform Manifold Approximation

and Projection (UMAP) [134] to name a few. At a high level, many of these methods

are similar in that they aim to find a lower-dimensional representation that captures some

geometric distance or distribution relationship found in the ambient data. Without modifica-

tions, most of these methods are only able to project ambient data into the lower-dimensional

representation–they do not provide a way to recover the ambient representation given the

compressed representation. Furthermore, many of these methods are unable to project new

out-of-sample data and scale poorly with high-dimensional data. These qualities can be

disadvantageous for dynamics modeling when new unseen initial conditions are introduced.

We now turn our attention to nonlinear network-based representation learning methods

such as contrastive learning and autoencoders. We will first discuss contrastive learning

here and dedicate the following section to autoencoders as they are what we utilize in this

thesis. Contrastive learning aims to find a latent representation that is similar for inputs

that are the “same”–you can imagine two augmented versions of the same image of a cat. A

powerful method that utilizes this idea is SimCLR [18], which utilizes two networks. The

first network maps or encodes each of the paired inputs to a latent representation. A second

dense network then maps that latent representation to a vector representation, z, via a

projection head. The vector representations are then compared with a contrastive loss. The

idea of the contrastive loss is that a positive sample pair (e.g. two augmented versions of

the sample image) should be closely aligned or similar in the vector representation while a

negative sample pair (e.g. another unrelated image from the training pool) should not. Given

a set of inputs that includes a positive pair of augmented examples ũi and ũj, the contrastive
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loss function aims to identify ũj in the set for a given ũi:

L =
1

2N

N!

k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)]

l(i, j) =− log
exp(si,j/τ)22N

k=1 [k ∕=1] exp(si,k/τ)
, si,j = z⊤i zj/(‖zi‖‖zj‖)

(1.51)

Here, N is the batch size, k is the snapshot index, si,j is the pairwise similarity, and τ is a

constant. The reason why a projection head is used to transform the latent representation

to the vector representation for the final contrastive comparison rather than just using the

latent representation is based on empirical performance [18]. Successful contrastive learning

generally requires heavy data augmentation, large batch sizes, and strong negative data sets.

The first and last requirement is generally not a difficulty for image-based problems, as most

images are easily augmented and labeled. However, for dynamical systems data, what type

of data augmentation and labels the data should have is not as obvious. Furthermore, if

one were interested in recovering the ambient representation from the latent vector, this

would need to be addressed in a separate learning task. Several other notable contrastive

frameworks in addition to SimCLR include Barlow Twins [216] and and Bootstrap Your Own

Latent (BYOL, which doesn’t need negative samples!) [71].

1.6.2 Autoencoders and More Autoencoders

Autoencoders (AE) are unsupervised representation learning neural networks composed of

two neural networks: an encoder network, z = E(u; θE) and a decoder network, ũ = D(z; θD).

Here z ∈ Rdz is the latent representation and u ∈ Rdu is the target data. The task of these

networks is to satisfy that their composition yields the identity function (i.e. the autoassoci-

ation task), ũ = D(E(u; θE); θD), in addition to any constraints imposed. These constraints

largely depend on the AE framework and are generally motivated in constraining or regu-

larizing the intermediate latent representation z to have specific useful properties such as

dimensionality, distributional densities, isotropy, etc. In this regard, AEs are powerful and
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Figure 1.4: A standard autoencoder framework.

customizable unsupervised tools that can be used to obtain or “discover” more useful rep-

resentations of data. A standard autoencoder is shown in Fig. 1.4 and a more thorough

discussion on these regularizations is provided later in this section.

As alluded to earlier, a particularly powerful application of AEs is data dimensionality

reduction. The most straight forward way this can be accomplished is by simply constructing

an undercomplete AE, where dz < du. As the architecture aims to learn the identity,

the network is forced to learn a lower-dimensional representation that is informationally

lossless to the original data u while still being able to reconstruct the original input data.

This is an attractive method as the practitioner not only obtains an approximately lossless

lower-dimensional representation, the trained networks E(u) and D(z) also provide mapping

functions to and from the original representation and the new latent representation. This

is especially useful for two reasons: the first is these architectures are easily incorporated

into larger tasks and frameworks. Second, these allow mapping of new data to and from the

latent space, which is not immediately possible for many other methods.

Like all other network-based approaches, many variants have been developed by (tired)

graduate students and eager PIs with seemingly limitless machine learning funding. A far

from exhaustive list of variants include Variational AEs (VAEs) [103], Wasserstein AEs

(WAEs) [192], Contractive AEs (CAEs) [165], Sparse AE (SAEs) [142], and implicit rank

minimizing AEs (IRMAEs) [97]. Autoencoders, like RL algorithms, can be formulated as

probabilistic or deterministic models.

We will first review probabilistic frameworks–these include VAEs and WAEs. Compared
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to vanilla undercomplete AEs, VAEs have two unique characteristics. The first is the model

is based on ideas of Bayesian modeling and aims to learn a probabilistic latent space pa-

rameterized by priors and noise distributions. This latent space is practically implemented

using the same “reparameterization trick” as the RL algorithm SAC i.e. z ∼ µ + σ ⊙ ξ,

where σ = h(u) and µ = g(u). The second unique characteristic is in addition to the au-

toassociation task, there is an additional goal of maximizing the marginal log-likelihood of

the training data (or minimizing the Kullback-Leibler divergence, DKL(P‖Q)). For priors

approximated with Gaussians (as is often the practical case) the loss becomes,

L = cLMSE(u) +DKL(N (g(u), h(u))‖N (0, 1)) (1.52)

Many renditions of the VAE have been developed over the years: β-VAEs [80], Informa-

tion maximizing VAE (InfoVAE) [222], Hierarchically Factorized VAEs (HFVAE) [43], and

Variational-Graph AE (VGAE) [104] to name a few. Like VAEs, WAEs also aim to param-

eterize its latent space with distributions and have an additional regularization loss term.

However, unlike VAEs, WAEs aim to minimize the Wasserstein distance between the model

distribution and target distribution (for those familiar, the 1-Wassertein distance is also

known as the “Earth Moving Distance” [167]). Another point of view is the WAE aims to

minimize the optimal transport distance between two probabilities for a cost function c.

We now discuss deterministic AEs, which include CAEs, SAEs, and IRMAEs to name

a few. CAEs utilize a regularization term imposed on the Jacobian of the encoder network

with respect to the inputs, JE(u). The intuition is by minimizing the squared Jacobian norm,

the latent representations of the input will be more similar to each other and less sensitive

to perturbations.

L = LMSE(u) + λ‖JE(u)‖2F (1.53)

An interesting connection is for a linear encoder, the squared Frobenius norm of the CAE

penalty is equivalent to L2 weight-decay regularization. In a similar vein, SAEs utilize a
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regularization term that penalizes weights with the L1 norm, which drives “excess” weights

to zero. The intuition is reducing weight redundancies in the network will lead to sparser

activations and thus more unique latent features. SAEs can also be formulated as a KL-

divergence based regularization loss–driving each layer’s j-th neuron to have an activation

distribution ρ
(l)
j equal to a target distribution mean, ρ.

L =LMSE(u) + λ
!

i

|wi|2 or

L =LMSE(u) + β
!

l

!

j

DKL(ρ‖ρ̂(l)j )

(1.54)

Here l is the layer index, β and λ are tuning parameters. Finally, IRMAE, which unlike the

above methods that utilize an explicit regularization term, utilizes implicit regularization [2].

Implicit regularization is a phenomenon observed in the optimization of sequential linear

layers via stochastic gradient descent having a tendency to learn low-rank representations.

IRMAE utilizes this in the architecture to automatically drive the latent space towards a

low-rank space. This idea is the foundation of the the work presented in Chapter 5.

1.7 Data-Driven Forecasting Frameworks

Several works in this thesis related to reinforcement learning and representation learning use

or are motivated by data-driven forecasting models. Here we (very) briefly give mention to

some of the available data-driven modeling frameworks and motivations.

The least complex data-driven frameworks are linear models–these include dynamic mode

decomposition and its variants (DMDc, etc) [150, 170]. While requiring only solving a linear

problem to find a linear dynamics operator, these methods can only capture decaying or

regular dynamics, which is insufficient for the systems we are interested in. Koopman-based

methods [146], which also revolve around finding a linear operator, fundamentally assume an

infinitedimensional operator, which for the purposes of model reduction and implementation,
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are unfavorable and impractical. Other regression methods, such as Sparse Identification

of Nonlinear Dynamical Systems (SINDy) [11] and its variants, make use of a library of

candidate functions and attempt to sparsely fit coefficient values to each of them from RHS

data.

Network-based forecasting models are diverse in complexity and formulation. Simple feed-

forward networks have been shown to be capable of forecasting complex chaotic dynamics

[122]. A subclass class of networks, known as recurrent networks, are designed for handling

sequence-based tasks such as time-series forecasting and natural language processing. This

type of network utilizes some form of internal historical memory of previous inputs to assist

in computing the output and have been shown to be promising performance wise. These

include reservoir computers, such as Echo State Networks [132] and Liquid-State Machines

[132], which have an extremely high-dimensional non-trainable nonlinear internal state that

is dependent on previous inputs. Other recurrent frameworks include gated networks and

long-short-term-memory (LSTM) networks [82], which have an explicit internalized memory

representation that is repeatedly passed through the network.

Notably all the above recurrent methods rely on a history of inputs, making them non-

Markov by construction. Our dynamical systems of interest are Markovian, and while it is

by no means a sin to model them via non-Markov methods, the need for warm-up sequences

is non-ideal and a history dependent internal state greatly obfuscates the dynamics and

interpretability.

In this thesis we have chosen to use Neural ordinary differential equations (Neural ODEs)

[17] for forecasting tasks. Neural ODEs are neural networks that aim to model the RHS of

the sequential data they are given, rather than learn the discrete-time map from one snapshot

to another.
du

dt
= F (u(t); θ) (1.55)

This is ideal in that a Neural ODE can be paired with a choice numerical integration scheme

and forecast for arbitrary time horizons. Nearly every method described above cannot do
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this as they take the form of a discrete time-stepper,

u(t+ τ) = F (u(t); θ) (1.56)

Finally, as all forecasting tasks described in this thesis pertain to physical systems, modeling

the dynamics as a set of ODEs is the most natural formulation. For dynamical systems

modeling, our implementation of Neural ODEs will follow closely to Linot and Graham

[123], in which the dynamics are evolved on a discovered manifold.



43

1.8 Outline of this work

The main objective in this thesis is to develop data-driven frameworks that combine ideas

from dynamical systems theory, learning representations, and reinforcement learning to ef-

ficiently find control strategies and representations for complex dynamical systems such as

turbulent flows. These systems exhibit the challenges of spatiotemporal chaotic dynamics,

high-dimensionality, and compute-costly data generation.

The remainder of this thesis is divided into five chapters, each addressing aspects of these

challenges. In Chapter 2, we demonstrate with the Kuramoto-Sivashinsky equation (KSE)

that the representation in the RL problem is important and introduce a framework that

reduces the symmetry complexity of the state representation, substantially boosting data

efficiency and guaranteeing controller equivariance. In Chapter 3, we tackle the challenge

of limited data generation, which is commonly the bottle-neck for practical applications of

RL. Here we develop a model-based RL framework we call Data-driven Manifold Dynamics

for RL (DManD-RL) and demonstrate its ability again with the KSE. In Chapter 4 we

apply DManD-RL to a turbulent plane Couette flow and achieve state-of-the-art control

performance compared to existing methods while avoiding the data bottle-neck problem.

Motivated by the open challenges remaining in DManD modeling and reduced-order

modeling in general, in Chapter 5, we shift our focus purely onto representation learning

and develop a new data-driven framework that automatically 1) estimates the underlying

dimensionality of the manifold the data lives on, 2) provides a working orthogonal manifold

coordinate system, and 3) provides the mapping functions between the ambient representa-

tion and manifold representation. Finally, in Chapter 6 we summarize our key findings in

this thesis and pose interesting and promising future directions of research.
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2

Symmetry reduction for deep

reinforcement learning 1

Deep reinforcement learning (RL) is a data-driven, model-free method capable of discovering

complex control strategies for macroscopic objectives in high-dimensional systems, making

its application towards flow control promising. Many systems of flow control interest possess

symmetries that, when neglected, can significantly inhibit the learning and performance

of a naive deep RL approach. Using a test-bed consisting of the Kuramoto-Sivashinsky

Equation (KSE), equally spaced actuators, and a goal of minimizing dissipation and power

cost, we demonstrate that by moving the deep RL problem to a symmetry-reduced space,

we can alleviate limitations inherent in the naive application of deep RL. We demonstrate

that symmetry-reduced deep RL yields improved data efficiency as well as improved control

policy efficacy compared to policies found by naive deep RL. Interestingly, the policy learned

by the symmetry aware control agent drives the system toward an equilibrium state of the

forced KSE that is connected by continuation to an equilibrium of the unforced KSE, despite

having been given no explicit information regarding its existence. I.e., to achieve its goal,

the RL algorithm discovers and stabilizes an equilibrium state of the system. Finally, we

1The text of this chapter is adapted from the publication by K. Zeng and M. D. Graham Physical Review
E., 104, 2021



45

demonstrate that the symmetry-reduced control policy is robust to observation and actuation

signal noise, as well as to system parameters it has not observed before.

2.1 Introduction

The recent explosive growth in machine learning research has led to a large set of data-driven

algorithms that map inputs to outputs by learning patterns and building inferences from the

data without the need to hardcode explicit instructions. A subset of these methods are

called semi-supervised learning algorithms, which learn under partial supervision through

feedback from the environment. This subset is dominated by deep reinforcement learning

(RL) algorithms, which, with the aid of neural networks, are particularly well-suited for

tackling complex control problems with elusive optimal policies. In the past few years, deep

RL has garnered the spotlight by solving complex, high-dimensional control problems and

defeating the best human players in the world in games such as Go [177] and DOTA II [144],

which were once thought to be too high-dimensional to feasibly solve.

Using a model system, the Kuramoto-Sivashinsky equation (KSE), that has chaotic dy-

namics as well as continuous and discrete symmetries analogous to those found in wall

turbulence, the present work takes a step toward application of deep RL to control of spa-

tiotemporally complex fluid flow problems, with the ultimate aim being to reduce energy

losses in turbulent flows.

Deep RL offers a potential avenue for discovering active flow control policies for several

reasons. Designing a complex active flow controller via analytical means is, in general,

intractable. Given an array of sensor readings and actuators, no obvious strategy exists to

analytically develop a concerted control scheme between the two sets [41]. Furthermore, the

nonlinear complexity and high dimensionality of turbulent flows render real-time predictive

simulations of potential possible actuations impractical. The bulk of existing active flow

control policies are relatively simple, relying on oscillatory or constant actuation [171]. These
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open-loop control policies are suboptimal in that they do not leverage the full potential of

their action space. Model-based approaches can also face difficulties. As noted, in many

settings solving the governing equations is too slow for any prediction-based method to be

practical. Reduced-order models aimed to expedite the modeling process face difficulties

in accurately modeling the non-stationary dynamics caused by the introduction of control,

which can lead to unwanted behavior when far from the target state [6]. In fact, a well

described model of the system may not always be readily available.

Finally, deep RL offers the ability to discover control strategies for macroscopic goals,

such as minimizing drag over the entire system, as opposed to traditional control methods

that focus on microscopic goals, such as suppressing certain vortex motions. Indeed an

outstanding challenge in flow control is the identification of ideal control targets achievable

in specific flow problems [6].

Although current deep RL methods do not provide explicit performance guarantees, they

may discover non-trivial novel control strategies that when paired with dynamical insight can

serve as guides for the development of more robust novel controls. In this regard, Deep RL

can also be viewed as a control strategy discovery tool in addition to a data-driven controller.

Although we are ultimately interested in controlling the drag in wall-bounded turbulent

flows, the application of deep RL toward fluid dynamics and spatiotemporal chaotic systems

in general still remains in its nascent stages, with a handful of advancements sprouting

from various niche domains. Deep RL has been utilized to control simple chaotic dynamical

systems such as the Lorenz system [73, 195]. Recently, [12] demonstrated the deep RL control

of the Kuramoto-Sivashinsky equation by directing the flow from one fixed point of the

system to another with a series of artificial jets. Other applications of RL involve learning

the collective motion of fish [53, 196], maximizing the range of robotic gliders [163], and

optimizing the motion of microswimmers [29]. With regard to fluid flow control, two recent

works have explored the application of RL in two-dimensional simulations of fluid flowing

over bluff bodies [73], [156]. Using data from velocity sensors, these algorithms learned
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control policies to reduce skin-friction drag over the bluff body by actuating jets located

on the cylinders. The flows in these studies however, were performed at laminar Reynolds

numbers, where the dynamics are simple and low-dimensional. Recently, [44] demonstrated

the viability of deep RL to learn flow control strategies experimentally. In this work, the

algorithm used data from a series of towing experiments to learn an efficient control strategy

for spinning a pair cylinders downstream of a larger cylinder to reduce the drag on the entire

assembly. Although promising, many of these approaches considered flow problems that

exhibit low-dimensional dynamics, lack the rich system symmetries found in wall-bounded

turbulent flows such as translational and reflection symmetries, and do not aim to explicitly

control the time-averaged energy dissipation rate. Furthermore, these works do not focus on

understanding dynamically the learned controlled strategies.

Many systems of interest for flow control have symmetries. Deep learning approaches

that respect these symmetries automatically rather than learn to approximate them from

data are likely to have superior performance, and within the deep-learning community is

a growing body of work demonstrating the importance of incorporating symmetries of the

learning domain into the deep neural-network (NN) models. For example, it has been ob-

served by [113] that the state-of-the-art AlexNet NN image classifier [106] spontaneously

learns redundant internal representations that are equivariant to flips, scalings, and rota-

tions when trained on ImageNet data. Other works, described later in this section, have

found that directly incorporating system symmetries can yield improved learning and per-

formance results. As many flow geometries of interest possess a range of system symmetries,

it is natural to incorporate these symmetries into the deep RL model, which to our knowl-

edge, has not been demonstrated in deep RL flow control. Because the state of many flow

systems can appear in a number of symmetric orientations, it is in our interest to ensure that

these dynamically equivalent states are mapped to dynamically equivalent actions for dy-

namical and performance consistency. Fundamentally, this implies that we seek deep models

that are functionally invariant/equivariant to the state-action symmetries of the system.
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Typically, for a feedforward NN to obtain an invariant/equivariant functional form, it

will need to implicitly learn weight-sharing constraints [160, 176]. It is generally accepted

that these invariances can be learned given sufficient training data [160] and capacity [33].

However, a consequence of symmetry preserving weight constraints is the substantial de-

crease in the number of effective free parameters [160, 168]. This lowers the overall network

capacity, which means that for an arbitrary feedforward NN, one will need larger networks

and by extension more training data and computing time to obtain desired performance and

functional properties. This exacerbates an existing challenge in deep RL algorithms in that

they can be expensive in terms of training data needs. For perspective, some of the most

impressive successes, such as OpenAI 5, the deep RL model that defeated the best profes-

sional teams in the world in the game DOTA II, required 10 months of 770 Petaflops/s per

day of training [144].

To ensure that the invariances/equivariances of the domain are respected in the learning

task, there are primarily three solution types. The first solution type, data augmentation,

is the simplest. This approach augments the training data to include additional symmetric

permutations of the original training data with the goal of pressuring the model to implicitly

learn equivariant representations [34, 106]. However, this method does not guarantee that

the model will generalize, nor does it address the issue in a principled method.

The second solution type is to hard-code the symmetries into the network architecture

itself. Some now ubiquitous architectures, such as convolutional NNs and recurrent NNs,

have demonstrated success in improving performance by accounting for translational symme-

tries. However, for systems with complex or collections of symmetry groups, this hard-coding

method requires carefully tailoring proper weight-constraints, designing non-dense connec-

tions, or incorporating new novel NN architectures [101, 160, 168, 211].

The third solution type is accounting for system symmetries by applying symmetry trans-

formations to the input prior to the network or to its encoding features [35, 91, 121]. [121]

demonstrated for learning models of systems with symmetry/invariance properties, such as
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turbulence and crystal elasticity, these models perform better when invariance properties are

embedded into the training features compared to when training features were synthetically

augmented with additional symmetric data.

In the present work, we opt for the third solution type, building the symmetries explic-

itly around the NN model, in favor of simplicity while still obtaining explicit symmetric

properties. Although there is a growing number of works seeking to ensure invariance by

hard-coding novel architectures, there is yet to be a general method of applying these into

arbitrary concerted network designs (e.g. how does one handle networks that feed into each

other or have multiple input-types such as Actor-Critic networks?). We will demonstrate

that for the control task of minimizing system dissipation and power cost for the Kuramoto-

Sivashinsky equation in a parameter regime exhibiting chaotic dynamics, symmetry-reduced

deep RL yields improved data efficiency, control policy efficacy, and dynamically consistent

state-action mappings compared to naive deep RL. We further observe that the symmetry-

reduced control policy learns to discover and target a forced equilibrium, related to a known

equilibrium of the system, that exhibits low dissipation and power input cost, despite having

been given no explicit information of its existence.

The remainder of this chapter is divided into the following: In Section 3.2 we introduce

the Kuramoto-Sivashinsky equation and the control task, as well as providing a brief review

of deep RL and a discussion of the implications of the symmetries of the state-action space

on the learning problem. We then conclude this section with an outline of our method of

reducing the symmetry of the deep RL problem. In Section 3.3 we compare the performance

of our symmetry-reduced deep RL to naive deep RL approaches, investigate the learned

control strategy through a dynamical systems lens, and probe the robustness of the policy.

Finally, we summarize our results in Section 3.4 and provide a discussion of the extension of

this work towards more realistic problems.
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2.2 Formulation

2.2.1 The Kuramoto-Sivashinsky Equation and Controls

The Kuramoto Sivashinsky Equation (KSE) is given by,

ut = −uux − uxx − uxxxx + f(x, t). (2.1)

Here f is a spatio-temporal forcing term that will be used for control actuation. We

consider the KSE in a domain of length L = 22 with periodic boundary conditions as this

system has been extensively studied and exhibits analogous symmetries to flow systems of

interest. The uncontrolled KSE, f = 0, exhibits rich dynamics and spatio-temporal chaos,

which has made it a common toy problem and proxy system for the Navier-Stokes Equations.

The equation is time evolved with a time step of ∆t = 0.05 using the same numerical method

and code as [12] with a third-order semi-implicit Runge-Kutta scheme, which evolves the

linear second and fourth order terms with an implicit scheme and the nonlinear convective

and forcing terms with an explicit scheme. Spatial discretization is performed with Fourier

collocation on a mesh of 64 points. We primarily consider the domain size L = 22.

Importantly, the KSE possesses translational and reflection symmetries, which are also

present in higher dimensional fluid systems of fluid control interest. Due to the periodic

boundary conditions, the KSE can be naturally expressed in terms of Fourier modes,

u(x, t) =
!

k

Fk exp

0
i2πkx

L

1
. (2.2)

The real-valued Fourier state space vector of the system can be described as the following,

F = [b0, c0, b1, c1, . . . ], (2.3)

where Fk = bk + ick. The dynamics of the unforced KSE with periodic boundary conditions
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are equivariant under translations: i.e. if u(x, t) is a solution, then so is

u(x+ δx, t) ≡ Tδxu(x, t) (2.4)

for any spatial shift δx [13]. In Fourier space, for an arbitrary state F , its translationally

symmetric state differing by a phase angle of θ can be described by the following operator,

τ (θ, Fk) = exp(−ikθ)Fk. (2.5)

Here the phase angle and spatial shift is related by δx = Lθ/2π. The KSE also has no

preferred “drift" direction. That is, there is a reflection symmetry across x = L/2 such that

if u(x, t) is a solution, then so is

− u(L− x, t) ≡ Σu(x, t). (2.6)

Note the sign change in both position and amplitude. Indeed, because of the translation

symmetry and periodicity, one can reflect across any value of x. We say that any two states

that are related by the symmetry operations Tδx and/or Σ are “dynamically equivalent". In

Fourier space, reflection symmetric states are related by a complex conjugation followed by

negation, resulting in a sign change in the real component bk, yielding the operator,

σ(F ) = [−b0, c0,−b1, c1, . . . ] (2.7)

[13]. For a flow system with no preferred drift direction or spatial localization, it is nat-

ural to choose identical and uniformly spaced actuators for control. Spatially localized

control is implemented in the KSE with N = 4 equally spaced Gaussian jets located at
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X ∈ {0, L/4, 2L/4, 3L/4} as done in [12],

f(x, t) =
4!

i=1

a(t)i√
2πσs

exp

0
−(x−Xi)

2

2σ2
s

1
. (2.8)

To serve as an analogue to energy-saving flow control problems, we are interested in

the minimization of the integral quantities of dissipation and total power input (required

to power the system and jets) of the KSE system, which are described by D = 〈u2
xx〉 and

Pf = 〈u2
x〉 + 〈uf〉, respectively. Here 〈·〉 is the spatial average. The presence of actuators

at fixed positions in the domain modifies the symmetries of the system; we describe these

changes in Section 2.2.3.

2.2.2 Deep Reinforcement Learning

Reinforcement learning is a model-free, data-driven, method to learn the mapping function

between an observed state, st, of the environment, and the action, at, that maximizes the

cumulative reward, Rt, by experiencing the consequences of these state-action pairs. The

basic RL process is cyclic: at time, t, the agent samples the state, st, of the environment and,

in Markovian fashion, outputs an action, at, which belongs to a prescribed range of actions.

This action is applied to the environment for a duration of T = 0.25 and the environment is

evolved forward in time to state, st+1. We note here the subscript st+1 is equivalent to st+T ,

but we maintain the st+1 nomenclature for consistency with RL literature. How desirably

the environment evolved from st to st+1 under the influence of action at is then quantified

by the scalar reward, rt, and the process repeats. The cumulative reward, Rt, is the sum of

discounted individual reward returns of state-action pairs,

Rt = rt + γrt+1 + γ2rt+2 + . . .+ γn−1rn. (2.9)

The discount factor, γ, is chosen to be 0 < γ < 1, as events further into the future are

more uncertain than those nearer the current instant. Here the instantaneous reward, rt,
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Figure 2.1: Graphical schematic of the KSE flow control problem using deep RL.

computed for each observed state-action pair, was chosen to achieve our aim of minimizing

the energy dissipation rate,

rt = −(D + Pf ), (2.10)

where · is the time average over the duration of an actuation time interval of T .

In our work the environment is the KSE, the state observation is the state of the KSE,

st = u(t), and the action output is the control signal to the Gaussian jets, at = a. An

arbitrary state-action mapping function is called the policy function, P(st) = at, whereas

the optimal policy that maximizes reward is denoted as P∗. The P∗ learning problem is

illustrated in Fig. 2.1, which shows the mapping between st and at to maximize Rt through

principles of RL which will be described later this section.

In this work we use the Deep Deterministic Policy Gradient (DDPG) algorithm [119],

which takes on an Actor-Critic structure and serves as the baseline deep RL algorithm from

which we will introduce symmetry-reducing modifications later on. The DDPG algorithm

aims to approximate two key functions with NNs: the aforementioned optimal policy, P∗,

and the optimal state-action value function, Q∗(s, a). In order to understand how to learn

these two functions, it is necessary to understand the Q function, which quantifies the

expected cumulative reward when action at is performed on state st given the current policy

P,

Q(s, a) = E[Rt|st = s, at = a,P]. (2.11)
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We seek the policy P∗ that yields the largest state-action value Q∗(s, a). I.e.:

Q∗(s, a) = max
P

E[Rt|st = s, at = a,P]. (2.12)

Importantly, Q∗(s, a) obeys the Bellman Equation [136]:

Q∗(st, at) = rt + γmax
at+1

Q∗(st+1, at+1). (2.13)

Obtaining Q∗ by explicitly evaluating all possible state-action pairs in a continuous state-

action space is intractable. DDPG resolves this difficulty by utilizing NNs to approximate

the Q∗ function and the optimal policy P∗(s), which are also known as the “Critic" and

“Actor" networks, respectively [119]. The Critic and Actor networks are parameterized by

weights φ and ψ, respectively,

Q∗(s, a) ≈ Q(s, a,φ), (2.14)

P∗(s) ≈ P(s,ψ). (2.15)

The Actor network is generically referred to as the “agent" in this method. Shown in Fig.

2.2 is a schematic of the Actor-Critic learning cycle. During training, the Actor network

attempts to map the state observation to the optimal action. The output action along with

the state observation are then passed to the Critic network, which attempts to estimate the

Q-value of the state-action pair. Note that once training is complete, the Critic network

may be discarded and closed-loop control is performed between the Actor network and the

environment only.

During training the weights of the Critic network are updated with the following loss

function,

Li(φi) = [(r(st, at) + γQ(st+1, at+1,φi))−Q(st, at,φi)]
2, (2.16)

which will be minimized when the Bellman Equation, Eq. 2.13, is satisfied, signaling that the
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Figure 2.2: Actor-Critic learning scheme: During training the Actor and Critic Network train
simultaneously (dashed, solid lines). Once training is complete, the Actor network interacts with
the environment independently as the feedback controller (solid lines).

optimal policy has been approximated. This loss is used for back-propagation through the

Critic network and the resulting gradient is utilized in updating the Actor network [119]. The

optimization algorithms implemented in training assume that samples are distributed inde-

pendently and identically, which is generally untrue for data generated from our exploratory

trajectories. To mitigate this, the algorithm is trained on minibatches of experience tuples,

et = (st, at, rt, st+1), selected randomly from a memory cache of past experience tuples. This

memory cache technique is called experience replay and is implemented to combat the insta-

bilities in Q-learning caused by highly correlated training sets [136]. The DDPG algorithm

used is shown in Algorithm 1.

We utilize Actor-Critic networks each with dense two hidden layers of size 256 and 128

with ReLU activation functions. The output layer of the Actor and Critic networks are

composed of tanh and linear activation functions, respectively. Increasing the hidden layer

size did not appear to strongly influence overall performance. We employ a rolling experience

replay buffer of generated training data, (st, at, rt, st+1), of size 500,000 experiences and

update with batch sizes of 128. We trained each agent for 4000 episodes, with each episode

initialized randomly on the unforced KSE attractor and lasting 100 time units (400 actions).

For exploration of state-action space during training we employ Ornstein-Uhlenbeck noise,

N , [119] to encourage action exploration.
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Algorithm 1: Deep Deterministic Policy Gradient with Experience Replay
1 Initialize Critic network Q(s, a,φ), Actor network P(s,ψ) with random weights φ,

ψ; Initialize target networks Q′,P ′ with weights φ′ ← φ, ψ′ ← ψ;
2 Initialize β = 1.0 ;
3 for episode = 1, M do
4 Initialize s1 ;
5 Initialize OU process, N , for action exploration;
6 for t = 1, T do
7 Select action at = P(st,ψ) + βNt;
8 apply action at to environment, observe rt, st+1 ;
9 store memory tuple (st, at, rt, st+1) in replay memory cache update st = st+1;

10 sample random minibatch of ej=(sj, aj, rj, sj+1) from mem. cache;
11 set yj = rj + γQ′(sj+1, aj+1,φ

′) ;
12 Update critic network: L = 1

N

2
j(yj −Q(sj, aj,φ))

2, Eq. 2.16 ;
13 Update actor network with learning rate αψ:

ψ ← ψ + αψ
1
N

2
j ∇aQ(si, ai,φ)∇ψP(si,ψ) [119] ;

14 update target networks with learning rate αT : φ′ ← αTφ+ (1− αT )φ
′,

ψ′ ← αTψ + (1− αT )ψ
′;

15 β ← Dβ β;
16 end
17 end

2.2.3 State-Action Space Symmetries and the Deep RL Problem

It is important to now consider the symmetry of the overall controlled system. As mentioned

earlier, the KSE possesses a continuous translational symmetry and a discrete reflection

symmetry. The presence of N equally spaced actuators breaks the continuous translation

symmetry, leaving only equivariance with respect to shifts of integer multiples of L/N . The

symmetry of the overall controlled system is the intersection of the symmetry group opera-

tions, which in this problem are simply the discrete translational shift τN (defined precisely

below) and reflection operations. Thus any state of the system is 2N -fold degenerate, or

equivalently any state can appear in 2N dynamically equivalent forms. The impact this

degeneracy has on learning the optimal policy is twofold. First, the P function should map

dynamically equivalent states to dynamically equivalent actions, which requires the Actor

network to learn to be an equivariant function with respect to the total controlled system’s

2N symmetries, e.g. τN(P(s,ψ)) = (P(τN(s),ψ)). Second, the Q function should be in-
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variant to discrete translations and reflections of the state-action input, which requires the

Critic network to learn to be an invariant function of dynamically equivalent state-action

pairs, e.g. Q(s, a,φ) = Q(σ(s), σ(a),φ).

Because NNs are not intrinsically equivariant nor invariant, naive NNs must learn and

internally approximate the optimal policy 2N times, one for each of the 2N dynamically

equivalent sectors of state-action space. The implications of this are twofold. First, this

requirement to learn redundant policies within the same network can be viewed as an implicit

weight constraint that not only exhausts network capacity, but also requires an ergodic

exploration of all of state-action space to generate sufficient training data. Inaccuracies in

properly estimating the Q function lead to poor approximations in the optimal policy, and

ultimately poor training and control performance. Second, in tow with control performance,

if the policy approximation is unable to map dynamically equivalent states to dynamically

equivalent actions, the policy cannot be the optimal policy. An illustration of this in a

cartoon-world example is shown in Fig. 2.3, which possess a τ4 (discrete translational shift)

symmetry. Note that given dynamically equivalent states, the optimal policy, shown in

Fig. 2.3a, should produce dynamically equivalent trajectories as a consequence of producing

dynamically equivalent actions. A sub-optimal approximation of the optimal policy that does

not respect symmetry, shown in Fig. 2.3b, yields dynamically nonequivalent actions, and

thus dynamically nonequivalent trajectories and final states despite being given dynamically

equivalent initial conditions.

Our method to circumvent these limitations is to move the deep learning problem to a

symmetry-reduced subspace. We accomplish this by reducing the translational symmetry of

the state observation via a modification of the method of slices [13], followed by a reflection

symmetry reduction operation in order to obtain a discrete translational and reflection-

reduced state. This symmetry-reduced state is then passed to the agent, which then outputs

the corresponding optimal symmetry-reduced action. The previously removed symmetries

are then reintroduced to the output actions prior to implementation to ensure that they
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Figure 2.3: (a) For the initial condition s0, the optimal controlled trajectory following the optimal
policy P∗ leads to state sf . For simplicity, τ4(s) = τ4(π/2, s). Given a translation of the s0 by τ4,
following the optimal policy P∗(s) should yield a dynamically equivalent trajectory translated by
π/2. (b) A policy that does not have symmetry enforced, P(s), yielding dynamically nonequivalent
trajectories.

respect the true orientation of the system.

We first reduce discrete translational symmetries with a modified method of slices. This

operation moves all state observations to the same discrete reference phase while preserving

the relative location of the N actuators to the original and discrete translation-reduced state.

The phase angle of the state can be calculated via Eq.(2.17),

θ1 = arctan2 (b1, c1) , (2.17)

where arctan2(b, c), not to be confused with arctan2(b), is the 2-argument arctangent function

that returns the phase of a complex number and is bounded by −π and π. To preserve the

uniqueness of a state-action pair, i.e. the relative location of the state to the N spatially

fixed actuators, the state phase angle, θ1, is rounded up to the nearest discrete phase, θN ,

θN =
2π

N
ceil

0
θ1

2π/N

1
. (2.18)
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The Fourier state, F , is moved into the discrete translation-reduced subspace via the discrete

translational reduction operator, F̂k = τN (θN , Fk), where

τN (θN , Fk) = exp(ikθN)Fk. (2.19)

In the discrete translation-reduced subspace, F̂ preserves the relative location with respect to

the actuators. The resulting real-valued Fourier state space vector in the discrete translation-

reduced subspace is then,

F̂ =
&
b̂0, ĉ0, b̂1, ĉ1, b̂2, ĉ2, b̂3, ĉ3, . . .

'
. (2.20)

Within the discrete translation-reduced subspace, reflection symmetric states are related

by the following reflection operator with respect to N ,

σN(F̂ ) = exp

0
2π

N
ik

1
σ(F̂ ). (2.21)

For N = 4, the discrete translation-reduced reflection operator is defined as the following

repeating sequence,

σ4(F̂ ) =
&
−b̂0, ĉ0,−ĉ1,−b̂1, b̂2,−ĉ2, ĉ3, b̂3, . . .

'
. (2.22)

We note that the sign of ĉ2 is the first unique value that can distinguish between two

reflection symmetric states within the discrete translation-reduced subspace and thus con-

struct a reflection indicator function ρ = sign(ĉ2). The reflection operator, σ4, is then applied

if the indicator value ρ < 0 to collapse reflection symmetric states into a common half of the
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discrete translation-reduced subspace:

˘̂
F =

3
445

446

σ4(F̂ ), if ρ < 0.

F̂ , otherwise.
(2.23)

The resulting discrete translational and reflection-reduced Fourier state, ˘̂
F , is then Fourier

transformed back to the real domain and passed to the deep RL agent as the state observa-

tion. A schematic of this symmetry reduction process is shown in Fig. 2.4. By performing

the appropriate transformations to the state, the deep RL agent learns purely within a

discrete symmetry-reduced subspace, and thus outputs discrete symmetry-reduced actions,

˘̂a. As a result, the agent trains with symmetry-reduced experiences, ˘̂et = (˘̂st, ˘̂at, rt, ˘̂st+1).

We highlight here that the reward in our particular learning problem is constructed from

quantities that are invariant to the symmetry transformations of the system (e.g. the dissi-

pation of a particular state is the same regardless of its discrete-translational orientation).

However, if one were interested in specifically targeting a state, utarget, and wanted to use

a distance metric as the reward, r = −||u − utarget||, then that calculation must also be

performed in the transformed space as well, ˘̂r = −||˘̂u − ˘̂utarget||. Importantly, because the

output actions are symmetry-reduced actions, we must ensure they respect the orientation

of the true state of the system before we apply them to the environment. This requires that

the reverse symmetry operations that were applied to the state be applied to the actions

prior to actuation. The control signal generated by the agent is therefore reflected if ρ < 0,

then rotated by NθN/2π, before being applied to the system. This ensures that dynamically

equivalent states receive dynamically equivalent actions. Note that in this work the Actor-

Critic deep RL model is inserted in “training domain", but generally any deep RL model

may be chosen. Additionally, because the RL agent is isolated within the reduced space in

this reformulated learning problem, the networks can be updated without back-propagating

through the transform functions and these functions can be thought of as simply pre-/post-
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Algorithm 2: Deep Deterministic Policy Gradient with Symmetry Reduction
1 Initialize Critic network Q(s, a,φ), Actor network P(s,ψ) with random weights φ,

ψ; Initialize target networks Q′,P ′ with weights φ′ ← φ, ψ′ ← ψ;
2 Initialize β = 1.0 ;
3 for episode = 1, M do
4 Initialize s1 and compute ˘̂s1;
5 Initialize OU process, N , for action exploration;
6 for t = 1, T do
7 Select action ˘̂at = P(˘̂st,ψ) + βNt, compute at;
8 Apply action at to environment, observe ˘̂rt, st+1;
9 Compute ˘̂st+1;

10 Store symmetry reduced memory tuple (˘̂st, ˘̂at, ˘̂rt, ˘̂st+1) in mem. cache;
11 update st = st+1, ˘̂st = ˘̂st+1;
12 sample random minibatch of ej=(˘̂sj, ˘̂aj, ˘̂rj, ˘̂sj+1) from mem. cache;
13 set yj = ˘̂rj + γQ′(˘̂sj+1, ˘̂aj+1,φ

′) ;
14 Update critic network: L = 1

N

2
j(yj −Q(˘̂sj, ˘̂aj,φ))

2, Eq. 2.16 ;
15 Update actor network with learning rate αψ:

ψ ← ψ + αψ
1
N

2
j ∇aQ(˘̂sj, ˘̂aj,φ)∇ψP(˘̂sj,ψ) [119] ;

16 update target networks with learning rate αT : φ′ ← αTφ+ (1− αT )φ
′,

ψ′ ← αTψ + (1− αT )ψ
′;

17 β ← Dβ β;
18 end
19 end

processing mechanisms around the Actor-Critic network ensemble. The symmetry-reduced

DDPG algorithm is shown in Algorithm 2.

2.3 Results

Section 2.3.1 presents a quantitative comparison between a naive (i.e. “symmetry-unaware")

agent, a naive agent trained with augmented data, and a symmetry-reduced agent. The

learned control strategy and its dynamical significance are characterized in Section 2.3.2 while

Section 2.3.3 examines a classical LQR approach to control for this problem. Comparison

with the RL results provides some insight into why the RL algorithm learns the policy

that it did. Finally, in Section 2.3.4, the robustness of the agent to input-output noise and
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Figure 2.4: Flow diagram of discrete-symmetry reduced deep reinforcement learning. State ob-
servations have discrete translational symmetries reduced by τ4, followed by a reflection symmetry
reduction by σ4. The symmetry reduced state is then passed to the agent, which outputs a symmetry
reduced action. The previously removed reflection and translational symmetries are reintroduced
to the output action before being implemented in the environment.

perturbations to system parameters is evaluated.

2.3.1 Performance Comparison

To illustrate the importance of discrete symmetry reduction, the naive and symmetry-

reduced agents are tested with dynamically equivalent initial conditions, which are related

by a translation of half the domain and a reflection operation. That is, we use initial con-

ditions u0(x) and TL/2Σu0(x). The resulting trajectories controlled by the naive agent are

shown in Fig. 2.5a and 2.5b, which exhibit distinctly different structures between the two.

The dynamically nonequivalent trajectories are a product of the naive agent being unable to

map dynamically equivalent states to dynamically equivalent actions. This dynamic inequal-

ity is due to the inherent difficulty for the NNs to consolidate and learn identical optimal

sub-policies for each symmetric sector of state-action space (i.e. it is unable to become equiv-

ariant to symmetry-related state-action pairs), which is further exacerbated by the system’s

chaotic nature.

To aid the implicit learning of dynamically equivalent state-action mappings, we also
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trained naive agents with additional synthetic training data, produced by applying symme-

try operations to the originally generated data. Agents trained with this augmented data

set will be called augmented naive agents. Shown in Fig. 2.5c and Fig. 2.5d are trajectories

controlled by an augmented naive agent beginning with dynamically equivalent initial con-

ditions. This augmented naive agent also produces dynamically nonequivalent trajectories,

which indicate that it fails to learn dynamically equivalent state-action mappings.

In contrast, the symmetry-reduced agent, given dynamically equivalent initial conditions,

will produce dynamically equivalent actions and therefore dynamically equivalent controlled

trajectories, which are shown in Fig. 2.5e and Fig. 2.5f. We highlight here that the two

controlled trajectories are identical and only differ by the symmetry-orientations of their

initial conditions. As the initial conditions were reflected, the blue regions in Fig. 2.5e

correspond to the red regions 2.5f and vice versa. As the initial conditions were also translated

by L/2, the trajectories differ by a spatial shift of L/2. For example, the upward drifting

red region of the transient in Fig. 2.5e corresponds to the downward drifting blue region

of the transient of 2.5f. Note that these equivalent structures appear at the same temporal

location but differ by only a translation and reflection. To further demonstrate this point,

shown in Fig. 2.5g is the invariant quantity of dissipation, D, for the trajectories shown

in Fig. 2.5e and 2.5f. As D does not depend on the orientation of the state, D is the

same for both trajectories. As a result, the symmetry-reduced method inherently yields

improved performance variance and robustness to initial conditions over the naive method,

as the controlled trajectories of the naive agent depends on the orientation of the state while

the symmetry reduced method does not. Additionally, while the dynamics of the naively

controlled system remain chaotic, those with the symmetry-aware controller evolve to a

low-dissipation steady state, a phenomenon that we analyze further in Section 2.3.2.

To demonstrate this improved performance, the naive and symmetry-reduced agent are

tested to control 100 random initial conditions sampled from the attractor of the unforced

KSE. The controlled trajectory duration is extended to 250 time units, 2.5 times the 100
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Figure 2.5: Pairs of controlled trajectories with dynamically equivalent initial conditions (trans-
lated by L/2 and reflected) controlled by the (a),(b) Naive agent, (c),(d) augmented naive agent,
and (e),(f) symmetry- reduced agent. (g) The dissipation of the trajectories of (e) and (f).

time unit duration experienced during training, to examine the robustness of the policies

beyond the training time horizon. The mean and standard deviation of D + Pf of the 100

controlled trajectories are shown in Fig. 2.6 with respect to time. Notably, the addition

of symmetry-reduction yields controlled trajectories with significantly lower mean D + Pf

and tighter variance than compared to the naive and augmented agents. Furthermore, the

symmetry-reduced agent reaches its low D+Pf target state in a much shorter time than the

naive agents.

The advantage of symmetry-reducing the RL problem also appears in training. In Fig.

2.7, the mean reward return of 10 models is shown for each RL method with respect to

training episode. The symmetry-reduced agents not only reaches greater reward returns

than compared to the naive agents given the same amount of training, but they do so in



65

Figure 2.6: Ensemble mean D + Pf of 100 trajectories controlled by: No control (green), Naive
(purple), Augmented naive (blue), and translation+reflection-reduced (red). Each initial condition
is randomly initialized on the KSE attractor. Standard deviation of each ensemble is shaded in its
respective color.

significantly fewer training episodes, demonstrating the enhanced efficiency in training data

usage. This improved training efficiency is a result of the symmetry-reduced agents only

needing to learn one symmetric sector of state-action space, as opposed to the naive agents,

which must rely completely on ergodicity to explore and learn all of state-action space.

Furthermore, the variance in the training reward-return of the symmetry-reduced agents

are much lower than that of the naive agents. This also highlights the improved policy

robustness, as each episode differs in initial conditions and noisy actuation perturbations

(exploration noise).

We also comment that the augmented naive agents with the additional synthetic sym-

metric training data exhibited improved early training performance compared to the naive

agents. However, at the end of training, the augmented naive agents ultimately achieve

similar reward returns as the naive agents without synthetic training data.
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Figure 2.7: Ensemble training reward (10 models each) vs. episode for: Naive (purple), Aug-
mented Naive with synthetic symmetric data (blue), and translation+reflection-reduced (red). The
reward variance of the last 1000 episodes is shown in the inset.

2.3.2 Characterizing the Learned Control Solution

We noted above that the symmetry-aware agent drives the system from chaotic dynamics

to a steady state. Fig. 2.8a illustrates such a controlled trajectory, along with the control

action f(t) in Fig. 2.8b, and the D(t), Pf (t) in Fig. 2.8c. In this figure, control action

begins at t = 100. Qualitatively, the control action occurs in two phases. The first phase,

approximately t = 100 to t = 180, is characterized by complex transient actuations that

navigate the system to the neighborhood of a steady state. The second phase, approximately

t = 180 and onward, is characterized by an essentially constant forcing profile with an

extremely small time dependent residual corresponding with stabilizing the equilibrium state.

We denote this “constant" forcing as f = α22, where α denotes the forcing profile and the

subscript corresponds to the respective domain length L, and the steady state as uα22 . When

control is removed the system returns to its original chaotic dynamics.

To understand the appearance of this steady state in the controlled system, we first note

that at L = 22 in the absence of control, the KSE has a number of unstable steady states,
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Figure 2.8: (a) Symmetry-reduced agent controlled trajectory vs. time. The controller is turned
on at t = 100. (b) Forcing profile vs. time. (c) The dissipation and total power cost as a function
of time. For reference the dissipation of E1 is included.

some of which lie in the vicinity of the chaotic attractor [32]. To investigate the dynamical

connection between the state uα22 found with the RL agent with forcing profile f = α22 and

the uncontrolled KSE, continuation was performed between the final forced system to the

unforced system. We accomplished our forcing continuation by iteratively Newton-solving for

an equilibrium solution that satisfies Eq. (5.5) with initial solution guess of uα22 and forcing

profile f0 = α22. The resulting solution, Eα22 , was then used as an initial guess for a system

with slightly reduced forcing amplitude. The process was repeated until f = 0, where the

solution converged to an equilibrium solution of the unforced KSE. The solutions found for

incremental scalings of f = α22 are shown in Fig. 2.9a, which converge to a known solution

of the KSE denoted by [32] as E1. Interestingly, E1 is the lowest-dissipation solution known

aside from the trivial zero solution, and Eα22 exhibits even lower dissipation and power input

than E1. The discovered Eα22 solution corresponds to the E1 solution modified by the “jets"

in a manner that smooths its peaks, leading to weaker gradients and thus lower dissipation.

Shown in Fig. 2.9b are the leading eigenvalues of the E1 and Eα22 solutions, demonstrat-
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Figure 2.9: (a) Force-continuation solutions from f = α22 (red) to f = 0 (purple), yielding
equilibrium solutions from Eα22 to E1 (dots). (b) The leading eigenvalues of the KSE linearized
around Eα22 and E1.

ing that they are both linearly unstable. As the Eα22 solution is linearly unstable, we note

that the agent maintains this state with oscillatory-like adjustments that are several orders

of magnitude smaller than the mean actuation about f = α22.

Importantly, nowhere in the algorithm was Eα22 explicitly targeted – the algorithm dis-

covers and stabilizes an underlying unstable steady state of the dynamical system, despite

having been given no information about such solutions. Stabilizing an underlying steady

state of the dynamical system is an efficient strategy as it requires less control effort than

brute-forcing the system to a region of state space where it would not naturally reside.

We speculate that this “strategy" of finding and stabilizing an unstable recurrent solution

(steady state, periodic orbit) might arise in RL control of a wide variety of systems displaying

complex dynamics. We contrast this with other recent data-driven control-target identifying

methods, such as [10] which identifies and stabilizes periodic orbits by approximating their

Poincaré mapping, whereas here we seek targets defined by macroscopic properties, and the

learned solution turns out to be a recurrent solution.
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2.3.3 Comparison to Linear Quadratic Regulator

To compare our learned control policy to a conventional control method, we compare to

Linear Quadratic Regulator (LQR) [79] given the same control authority. We now consider

the system state as x and the control signal as u where previously we referred to them as u

and a, respectively, to maintain nomenclature consistency with LQR conventions. The LQR

method seeks to find a gain matrix, K, for a linear state-feedback controller, u = −Kx, that

minimizes the quadratic cost function J ,

J =

, ∞

0

(xTQx+ uTRu)dt. (2.24)

for a system whose dynamics are approximated by a set of linear (or linearized) ODEs

ẋ = Ax + Bu, where x is the state of the system and u the control input. We take Q,

the state cost, and R, the input cost, to be the identity. Importantly, the target state of

LQR i.e. the state about which the dynamical model is linearized must be chosen a priori.

Although the KSE possesses nonlinear dynamics, LQR might in certain situations be able

to control the dynamics toward its target, given sufficiently close initial conditions.

We first consider applying an LQR controller to the trivial zero solution, which in the

interest of minimizing dissipation and power-input cost, is the natural target as it possesses

zero dissipation and zero power input cost. The trivial zero solution is known to be linearly

unstable. Shown in Fig. 2.10a is a trajectory of the trivial zero solution given an infinitesimal

perturbation; it evolves to the chaotic attractor. In this case, we find that LQR cannot

stabilize the zero solution. Given the linearized KSE dynamics and the available control

authority, the LQR approach fails the Popov-Belevitch-Hautus (PBH) controllability test

[79],

rank[A − λI B] = n, ∀λ ∈ C, (2.25)

where n is the number of rows of A. This indicates that LQR is not capable of transferring
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every state to the origin in finite time. Furthermore, it also fails the PBH stabilizability test

[79],

rank[A − λI B] = n, ∀λ ∈ C : Re[λ] ≥ 0, (2.26)

which indicates LQR is not capable of reaching the origin even given infinite time. These

results suggest that the zero solution cannot be controlled by linear means with the current

actuation scheme. We comment that this inability to control the zero solution is further

linked to work performed by [69, 70], which demonstrated that periodically arranged actuator

or sensor sites in systems with translational or reflection invariance can detrimentally impact

controllability.

Shown in 2.10b is a trajectory initialized on the zero solution plus a small random pertur-

bation, and controlled by the LQR controller designed based on the zero solution. We observe

that this controller is unable to stabilize the trivial solution. We further note the immediate

deviation from the zero solution, which is a product of a runaway controller, and emphasize

that the resulting dynamics are a product of the LQR controller reaching the actuator satu-

ration limit (which we set to be 10 times that available to the deep RL agent). We comment

that although the initial short-time trajectory is asymmetric, the resulting symmetry of the

trajectory is the product of the saturated controller actuating symmetrically.

We hypothesize that a RL policy attempting to stabilize the zero solution would likely

meet the same issue as the LQR approach. This may explain why the agent chooses to target

the solution Eα22 . To further investigate, we linearize the KSE, forced with f = α22 around

its steady state Eα22 , and use LQR to find the gain matrix for this system:

aLQR = −K(u− Eα22). (2.27)

Here aLQR are the control signals produced by LQR, which are applied to the KSE via

Eq. 2.8 as fLQR. This linear feedback controller is then applied to the full nonlinear KSE
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Figure 2.10: A trajectory initialized on the trivial solution with an infinitesimal perturbation
with (a) no additional control, fLQR = 0, and (b) with a LQR controller, fLQR, based on the
zero solution. A trajectory initialized on Eα22 with constant forcing f = α22 and an infinitesimal
perturbation with (c) no additional control, fLQR = 0, and (d) with a LQR controller, fLQR, based
on Eα22 .

under constant forcing f = α22,

ut = −uux − uxx − uxxxx + fα22 + fLQR. (2.28)

Shown in Fig. 2.10c is a trajectory initialized on Eα22 with constant forcing f = α22 and

given an infinitesimal perturbation. In the absence of additional control, the linearly unstable

solution Eα22 eventually evolves to the dynamics of the forced attractor. Shown in Fig. 2.10d

is a trajectory initialized on Eα22 under constant forcing f = α22 with the LQR controller

fLQR applied. With the addition of the LQR controller, the perturbed Eα22 solution can be

maintained. These observations indicate that one reason why the agent learns to discover
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and stabilize Eα22 rather than the zero solution is because in the limit of approaching an

equilibrium solution the agent will behave approximately linearly, and in that limit Eα22 can

be controlled by linear means while the zero solution cannot. We reiterate that, while we

have found that an LQR approach can stabilize Eα22 , thus reducing energy consumption,

that approach needed to know the existence and structure of the steady state a priori, while

the RL approach did not.

2.3.4 Robustness

Chaotic systems are characterized by their sensitivity to noise and changes to system param-

eters. To assess the robustness of the agents to measurement and actuation noise, we tested

the performance of our various RL policies, without additional training, on 100 trajectories

of 250 time units with Gaussian measurement and actuation noise with zero mean and stan-

dard deviation 0.1. The ensemble mean and standard deviation of the D+Pf trajectories of

each agent type is shown in Fig. 2.11. Comparison with Fig. 2.6 reveals that all agent have

comparable performance with or without noise. In particular the symmetry-reduced agent

is capable of maintaining its high performance compared to the naive and augmented naive

agents.

For the KSE, altering the domain size parameter, L, can lead to very different dynamics.

These distinct dynamics are shown in Fig. 2.12a and Fig. 2.12b for domain sizes of L =

21 and L = 23, respectively. To assess the robustness of the learned control policy to

changes in L, the symmetry-reduced agent trained in the domain L = 22 is applied, without

additional training, to control the KSE dynamics at L = 21 and 23. In these experiments

we maintain the same actuator jet parameters as was available in L = 22 training (spatial

Gaussian distribution and magnitude range) while maintaining equidistant placement in the

new domain sizes. Shown in Fig. 2.12c and Fig. 2.12d are trajectories with the controller

turned on at t = 100, in domain sizes of L = 21 and L = 23, respectively. We observe that

the agent drives both systems to equilibrium-like states similar to that found in the original
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Figure 2.11: Ensemble D+ Pf vs. Time for 100 initial conditions controlled by: Ensemble mean
D+Pf of 100 trajectories controlled by: No control (green), Naive (purple), augmented naive (blue),
and translation+reflection-reduced (red). All agents experience Gaussian measurement noise and
actuation noise of mean zero and standard deviation 0.1.

domain L = 22. Furthermore, shown in Fig. 2.12e and Fig. 2.12f are D and Pf of these

controlled trajectories; these controlled steady states again exhibit low dissipation and low

power-input. In both L = 21 and L = 23 the targeted states are also unstable, as once

the controller is switched off the systems return to their respective typical dynamics. These

experiments highlight the robustness of the control policy to new unseen dynamics as well

as deviations in relative control authority, as the artificial jets are smaller relative to the

L = 23 domain than in the original L = 22 domain.

To investigate the dynamical connection between the final targeted states of the L =

21, 23 systems and the original L = 22 system, a two-stage continuation was performed.

First, continuation in the magnitude of the forcing was performed to determine the con-

nection between the forced systems yielding Eα21 and Eα23 and their unforced counterparts

(f = 0) of their respective domain size. The solutions found as f is decreased to zero are

shown in Fig. 2.13a and Fig. 2.13b for L = 21 and L = 23, respectively. These results reveal

that Eα21 and Eα23 are the forced counterparts of existing equilibria in the unforced systems,
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Figure 2.12: Typical dynamics for domain sizes of (a) L = 21, (b) L = 23. Controlled trajectory
in which the L = 22 symmetry reduced agent is applied with no additional training at t = 100 in
domain sizes of (c) L = 21, (d) L = 23. Dissipation and total power input as a function of time for
the controlled trajectories in domain sizes of (e) L = 21, (f) L = 23.

which we denote as EL21 and EL23, respectively.

We next perform a second continuation, this time in the domain size, to determine the

connection between EL21, EL23 and the original dynamics of L = 22. Solutions are shown

in Fig. 2.13c and Fig. 2.13d respectively, as the domain size changes. These evolve to the

E1 solution of L = 22. These connections indicate that the symmetry-reduced agent is also

capable of finding and stabilizing the forced E1 solution in domain sizes it has not seen

before. Interestingly, the equilibria found by the agent, Eα21 and Eα23 , are not simply spatial

dilations or compressions of Eα22 , as Eα21 exhibits 4 velocity peaks while Eα21 exhibits only

two. Furthermore, we comment that the long-time mean actuation profiles utilized by the

agent in the two unseen domain sizes are also distinctly different than that utilized in L = 22,

which indicates the agent is not just simply imposing the same long-time control signals it

found in its original domain size of training.
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Figure 2.13: Continuation in forcing and domain size. (a) Forcing continuation from f = α21

(orange) to f = 0 (purple) to yield Eα21 to EL21. (b) Forcing continuation from f = α23 (orange)
to f = 0 (purple) to yield Eα23 to EL23. (c) Domain size continuation from L = 21 (purple) to
L = 22 (blue) to yield EL21 to E1 (dots). (d) Domain size continuation from L = 23 (purple) to
L = 22 (blue) to yield EL23 to E1 (dots).

2.4 Summary

Although deep RL in recent years has demonstrated the capability of controlling systems with

high-dimensional state-action spaces, its naive application towards spatiotemporal chaotic

systems exhibiting symmetry, which encompasses many flow geometries of interest, can be

limited by NN architecture and the cost of exploring the full state-action space. In this

chapter we proposed a modification to the general deep RL learning problem that can bet-

ter learn control strategies for chaotic flow problems exhibiting symmetries by moving the

learning problem into a state-action symmetry-reduced subspace.

Our method alleviates technical demands of NN architectures in existing deep RL meth-

ods such as the need for the Actor and Critic networks in DDPG to learn weight constraints



76

that preserve equivariance and invariance, respectively. From a policy perspective, sym-

metry reduction alleviates the need to learn and consolidate the optimal policy for each

symmetric-subspace within a single network, freeing capacity for approximating the optimal

policy while maintaining a dynamically equivalent state-action mapping. As the learning

problem is performed in the symmetry-reduced subspace, all training data is also generated

within the symmetry-reduced subspace improving training data efficiency, as the agent no

longer requires a complete exploration of the full state-action space as it would in the naive

application of deep RL. Although in this work we utilized the DDPG algorithm, the com-

mentary and conclusions drawn regarding symmetry reduction of the learning space can be

extended to other deep RL methods.

We demonstrated these ideas by controlling the periodic KSE to minimize dissipation, a

spatiotemporally chaotic model system for turbulence that exhibits translational and reflec-

tion symmetries. We show that by reducing the symmetry of the learning problem we can

obtain faster and more consistent learning. Furthermore, we demonstrate that the control

strategy found by the symmetry-reduced agent is robust to input/output noise as well sys-

tem parameter perturbations. Finally, we observe that in order to achieve the objective of

reduced overall power consumption, the symmetry-reduced agent discovers a low-dissipation

equilibrium solution of a nontrivially forced KSE. This observation highlights a potentially

important connection to effective control approaches for drag reduction in turbulent flows,

as the dynamics of turbulence are organized, at least to some extent, by underlying invariant

solutions known as Exact Coherent States [67].

We further emphasize that conventional controllers typically target microscopic objec-

tives, such as a priori known states that exhibit desirable macroscopic properties such as

system dissipation, pressure drop, etc., but these a priori targets may not always be acces-

sible with the available control authority. In our experiments here, the symmetry-reduced

deep RL demonstrates the potential to serve as a discovery tool for alternative solutions with

desirable macroscopic properties. These discovered states might then be utilized as alterna-
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tive control targets for conventional controllers when a priori known states are inaccessible

given the available control freedom.
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3

Reinforcement learning with

model-based control1

Deep reinforcement learning (RL) is a data-driven method capable of discovering complex

control strategies for high-dimensional systems, making it promising for flow control applica-

tions. In particular, the present work is motivated by the goal of reducing energy dissipation

in turbulent flows, and the example considered is the spatiotemporally chaotic dynamics of

the Kuramoto-Sivashinsky equation (KSE). A major challenge associated with RL is that

substantial training data must be generated by repeatedly interacting with the target sys-

tem, making it costly when the system is computationally or experimentally expensive. We

mitigate this challenge in a data-driven manner by combining dimensionality reduction via

an autoencoder with a neural ODE framework to obtain a low-dimensional dynamical model

from just a limited data set. We substitute this data-driven reduced-order model (ROM)

in place of the true system during RL training to efficiently estimate the optimal policy,

which can then be deployed on the true system. For the KSE actuated with localized forcing

(“jets”) at four locations, we demonstrate that we are able to learn a ROM that accurately

captures the actuated dynamics as well as the underlying natural dynamics just from snap-

1The text of this chapter is adapted from the publication by K. Zeng, A. J. Linot and M. D. Graham
Soc. Royal Proc. A., 478, 2022
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shots of the KSE experiencing random actuations. Using this ROM and a control objective

of minimizing dissipation and power cost, we extract a control policy from it using deep RL.

We show that the ROM-based control strategy translates well to the true KSE and highlight

that the RL agent discovers and stabilizes an underlying forced equilibrium solution of the

KSE system. We show that this forced equilibrium captured in the ROM and discovered

through RL is related to an existing known equilibrium solution of the natural KSE.

3.1 Introduction

In recent years, deep reinforcement learning (RL), a data-driven model-free control method,

has achieved recognition for its ability to learn and discover complex control strategies for

high-dimensional systems. Many of its milestone achievements involve defeating the best

professional players in complex games such as GO [178], DOTA II [144], and Starcraft II

[198], as well as the leading GO, Chess, and Shogi engines [179]. The successes of RL

in these complex and nontrivial systems has made its application towards control of high-

dimensional chaotic dynamical systems, such as turbulent flows, extremely promising. Deep

RL has recently been demonstrated to be able to discover strategies in flow systems that

exhibit nonchaotic dynamics such as reducing the drag in flow over bluff bodies [44, 117, 147,

156, 164] and decreasing convection amplitude in Rayleigh-Benard systems [4]. Using the

Kuramoto-Sivashinsky equation (KSE) as an example, Bucci et al. [12] demonstrated that

RL is able to direct a system with natural chaotic dynamics to a given (i.e. previously known)

equilibrium solution of the system. In another study of the KSE in a chaotic parameter

regime, the present authors [219] demonstrated that an RL policy whose aim is to minimize

dissipation is able to discover and stabilize a nontrivial underlying equilibrium solution with

low dissipation, even when no such information of its existence is given. The aim of the

present work is to combine RL with data-driven reduced-order dynamical models for the

purpose of control of spatiotemporal dynamics, as a step toward the goal of reducing energy
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dissipation in turbulent flows.

Despite all of the successes of deep RL, a major challenge is that it suffers from poor

sampling complexity. For example, recent work by Du et al. [39] showed that even if the

optimal control policy could be perfectly represented by a linear function, the reinforcement

learning agent still requires an exponential number of trajectories to find a near-optimal

policy. Furthermore, the overall practical problem is further exacerbated by the temporal

credit assignment problem, which is the difficulty in parsing out what actions in a long

series of actions actually contributed to the end result–often bottlenecking RL algorithms

attempting to train large models with millions of weights in application [75].

In practice, this issue is often addressed by simply brute-force generating an extraordinary

amount of interaction data from the target system for training. For example, to achieve the

previously mentioned accolades, over 11,000+ years of DOTA II gameplay [144], 4.9 million

self-play games of GO [178], and 200 years of Starcraft II gameplay [198] was required. In the

realm of fluid control, even learning a two-parameter control scheme for reducing drag in an

LES bluff-body simulation required over 3 weeks of training and simulation time [44]. The

default solution of simply generating more data can quickly make deep RL a prohibitively

costly solution when the target flow system is computationally (e.g. via direct numerical

simulations) or experimentally (e.g. via wind tunnel tests) expensive to realize.

Despite these challenges, there are growing efforts toward developing more data-efficient

learning algorithms and work-around techniques. These efforts can be broadly categorized

into three groups: modified RL algorithms with added complexity, true off-policy RL, and

model-based RL. The first group, modified RL algorithms, is a catch-all group comprising

of methods that build upon existing established algorithms with advanced architectures

and formulations and/or incorporate domain knowledge or hierarchy to improve training

stability and data efficiency at the cost of greater implementation and training complexity.

For example, [219] reduced the data-sampling complexity of RL by exploiting the natural

symmetries of the system and [140] found complex behavior tasks could be learned efficiently
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via a hierarchical RL framework. A comprehensive survey of RL combined with attention

mechanisms, transfer learning, and hierarchy can be found in [118]. The second group, true

off-policy or Offline RL, is comprised of methods that reformulate or modify the typical

semisupervised RL problem to extract control strategies from a pre-existing limited data set

of transitions [1, 115]. However, these methods are still in the early stages of development

and it is still unclear how well they perform and generalize in our complex systems of interest.

The last group, model-based RL, are methods that utilize a model of the target environ-

ment. These methods are advantageous in that they can leverage the existing vast classical

modeling principles as well as the newly emerging deep learning techniques. As a result,

model construction, implementation, and degree of data-drivenness vary widely from method

to method. For example, Nagabandi et al. [141] introduced the Model-Based+Model-Free

method, which utilizes a system model and an MPC controller to initialize the RL agent’s

weights. Towards more data-driven approaches, Wahlstrom et al. [204] introduced Deep Dy-

namical Models, which uses an autoencoder to learn a reduced-order representation of the

observation data and a feedforward neural network to learn a discrete time stepping model

in said reduced-order representation to control an inverted pendulum from pixel inputs.

Similarly, Watter et al. [210] also utilized autoencoders and feedforward neural networks

to learn a local linear dynamical representation of the pendulum problem. Feinberg et al.

[45] utilized models to generate short “imagined” trajectories at each training step to bet-

ter estimate the value functions. This so-called “Dyna”-style of model-based RL [186] has

been recently applied in control of spatiotemporally chaotic systems by Liu et al. [129] who

demonstrated with autoencoded recurrent network models containing hardcoded boundary

conditions and soft conservation constraints that the number of real interactions needed with

the target system to achieve control could be greatly reduced. Alternatively, Chua et al. [26]

demonstrated another form of model-based RL wherein a data-driven dynamics model is it-

eratively learned online with model predictive control (MPC) serving as the controller. The

authors demonstrated that this method was able to reach similar asymptotic performance to
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state-of-the-art model-free RL algorithms on benchmark tasks while using much fewer data

samples, although at the expense of requiring real-time model trajectory optimization at

every step during implementation. Finally, Ha and Schmidhuber [75] introduced recurrent

world models, which model the control system of interest with mixture density networks and

recurrent neural networks. In this method, the authors use a data-driven model in place of

the real environment during RL training to estimate a control policy for driving a 2D car

and playing DOOM. We will refer to this style of utilizing a data-driven model as a surrogate

training ground as “model-based RL”.

The learning process of the above-defined model-based RL parallels the classic control

design philosophy [135] which is: 1) create a model for control, 2) design a control policy

based on the model, and 3) simulate based on a high-fidelity model and repeat if needed. In

parallel to these principles, we seek to: 1) learn a model – specifically a reduced-order, but

still highly accurate model – for control from data, 2) learn a control policy based on the

model with RL, and 3) validate based on a high-fidelity model.

A key aspect of this approach is the development of an efficient reduced-order model of

the process, which we will consider to be completely governed by a state space representation

ds

dt
= f(s, a), (3.1)

or its discrete-time version

st+τ = F (st, at), (3.2)

where s ∈ Rd is the state of the system and a ∈ Rda a time-dependent actuation. Our focus

will be the continuous-time case Eq. 3.1, where we will seek a reduced-order representation

dh

dt
= f(h, a), (3.3)

where h ∈ Rdh and dh ≪ d. Before describing our specific approach, we briefly review other
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methods for developing dynamic models from data. A more detailed discussion is given in

[123].

If the governing equations of the process are known, one approach is simply to use a direct

simulation without any model reduction. Here of course none of the efficiency gains enabled

by reducing the dimension of the model are realized. A traditional approach to reducing the

dimension of these problems is the Galerkin projection method [84] and other variants like

nonlinear Galerkin [68, 93, 133] or post-processing Galerkin [52], which have higher accuracy

than the traditional Galerkin approach for given number of unknowns. Additionally, such

approaches can be improved by adding data-driven information. For example, Wan et al.

[206] approximated the unresolved dynamics in nonlinear Galerkin with an LSTM. The

concept of combining first-principles and data-driven models is a widely studied one (see

e.g. “physics-informed neural networks” [158]).

In the present work, however, our focus is data-driven models. The classical approach

is to seek a linear discrete-time model; a specific example of this approach, which has seen

wide use recently even for nonlinear systems, is dynamic mode decomposition (DMD)[107].

We describe and implement an adaption of DMD to closed loop control, known as DMDc,

in Section IIIB. As a linear state space model, at long times, trajectories predicted by DMD

always evolve toward a fixed point or a quasiperiodic orbit with a discrete set of frequencies,

so it cannot faithfully characterize chaotic dynamics, which is our interest here. In principle,

for all nonlinear systems there does exist a linear, albeit infinite-dimensional, operator called

the Koopman operator that describes the evolution of arbitrary observables [14, 108]. We

choose not to take this approach because our aim is to reduce the dimension of our model.

In any case, effective methods for approximation of chaotic long-time dynamics with data-

driven Koopman operator approximations remain elusive.

With the increasing power of neural network representations, nonlinear data-driven mod-

eling methods have received substantial recent attention. Two popular methods include re-

current NN (RNN) [82, 86] and reservoir computing [92, 112]. These approaches are similar



84

in that a hidden or reservoir state rt is used along with the current state st to predict a future

hidden or reservoir state rt+τ . Then a function is used to predict the new state st+τ from

the hidden state. The two approaches are different in how these functions are approximated.

In reservoir computing the functions for evolving the reservoir are chosen a priori, and the

mapping back to st+τ is learned. In RNNs, specific neural networks are trained to learn all

of the functions – two examples are LSTMs [82] and gated recurrent units [27]. Vlachas et

al. [202] shows that both these methods perform well at predicting chaotic dynamics. How-

ever, because they involve hidden variables, these approaches do not reduce the dimension of

the system, but rather increase it: i.e. they do not determine st+τ from st alone, but rather

also use past history stored in rt to make predictions.

A more direct approach to learning dynamical models is to learn the right-hand side

(RHS) of Eq. 3.1 or Eq. 3.2 from data. One way to do this, at least for low-dimensional

systems, is using the “Sparse Identification of Nonlinear Dynamics ” (SINDy) approach [11].

In this method a dictionary of candidate nonlinear functions are selected to approximate f

in Eq. 3.1. Then, by using sparse regression, the dominant terms are identified and kept.

Alternately, one could simply represent f with a neural network [63]. If one does not have

time-derivative data or estimates, then the neural ODE approach [19, 123] can be used.

Now we turn to the issue of dimension reduction. The dynamics of formally infinite-

dimensional partial differential equations describing dissipative flow systems are known to

collapse onto a finite-dimensional invariant manifold [189]–a so-called “inertial manifold”.

In past works, it was shown that one can capture a high-dimensional system’s dynamics

on this lower-dimensional manifold by using a combination of autoencoders, to identify

the manifold coordinates, and Neural ODEs (NODE) [19], to model the dynamics on the

manifold in discrete time [122] or continuous time [123]. Our aim is to adapt this data-

driven, low-dimensional model framework as a data-efficient surrogate training grounds for

model-based RL. Once training is complete, this ROM-based policy is then deployed to the

real system for assessment or further fine-tuning. We refer to our method as Data-driven



85

Manifold Dynamics for Reinforcement Learning, or DManD-RL for short.

Unlike the previous implementations of data-driven models in model-based RL [75, 204,

210], which model the evolution of the controlled system in fixed discrete time steps, our

method models the vector field of the dynamics on the manifold in the presence of control

inputs using neural ODEs [19]. The choice of using neural ODEs has several benefits: 1)

it allows one to utilize the vast and already present array of integration schemes for time-

stepping, 2) it allows one to train the model from data collected from variable time step

sizes as well as make variable time step predictions, which grants one the ability to adjust

the transition time step in RL without resorting to recollecting new data and training a

new dynamics model, 3) it is a natural formulation for the modeling of the dynamics of

our physical flow systems. We highlight that this framework is not limited to fixed time

intervals, can utilize unevenly and/or widely spaced data in time, respects the Markovian

nature of the dynamics of the systems we are interested in capturing, and respects the Markov

environment assumption that underlies RL theory [186], unlike other common data-driven

approaches such as recurrent neural networks [82, 86] and reservoir computing [92, 112].

Finally, we do not impose that the underlying relationship between the control input and

the dynamics is affine in control (i.e. that ds/dt = f(s) + g(s)a where s is the state and

a is the control input), as some past works have done [210]. This is advantageous for

application towards complex flow control systems of practical interest as many, such as

aircraft [9] and underwater vehicles [54], do not have relationships with this affine structure.

We highlight here an important interplay regarding the RL problem and our dissipative

systems of interest. In RL the general algorithm seeks to learn a strategy by exploring

and optimizing the state-action space. At first glance, this may seem hopeless for flow

systems exhibiting high-dimensional ambient spaces. However, an important distinction here

is that although our formally infinite-dimensional flow systems may require O(106+) degrees

of freedom to resolve in the ambient space, the underlying dynamics can be much lower

dimensional. This indicates that the underlying complexity of the problem is independent
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of mesh resolution (assuming the system is already resolved). Assuming we can find a

high-fidelity reduced-order representation of the data, the state-action space that we seek to

optimize and capture in our method is actually only of complexity manifold dimension ×

action dimension, which leaves an optimistic outlook for our method toward application to

larger and more complex flow systems.

The remainder of this chapter is structured as follows: In Section 3.2 we introduce the

Kuramoto-Sivashinsky equation, a proxy system for turbulent flows that displays rich spa-

tiotemporal chaos, and the control objective which serves as a drag reduction analog. We

conclude this section with an outline of our ROM-based RL framework. In Section 3.3 we

examine the performance of our learned reduced-order model, the control strategy extracted

from the model using RL, and the dynamical systems relevancy of the strategy. In Section

3.4 we summarize our findings and discuss applications to more complex systems.

3.2 Formulation

3.2.1 Kuramoto-Sivashinsky Equation

The Kuramoto Sivashinsky Equation (KSE) is given by,

∂v

∂t
= −v

∂v

∂x
− ∂2v

∂x2
− ∂4v

∂x4
+ F(x, t). (3.4)

Here f is a spatio-temporal forcing term that will be used for control actuation. We

consider the KSE in a domain of length L = 22 with periodic boundary conditions as this

is a dynamically well characterized system [32]. The uncontrolled KSE, F = 0, exhibits rich

dynamics and spatio-temporal chaos, which has made it a common toy problem and proxy

system for the Navier-Stokes Equations. Spatially localized control is implemented in the

KSE with N = 4 equally spaced Gaussian “jets” located at X ∈ {0, L/4, 2L/4, 3L/4} as done

by Bucci et al. [12] and Zeng and Graham [219], where ai(t) ∈ [−1, 1] is the control signal
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output by the RL control agent,

F(x, t) =
4!

i=1

ai(t)√
2πσs

exp

0
−(x−Xi)

2

2σ2
s

1
. (3.5)

The system is time evolved with a time step of ∆t = 0.05 using the same numerical

method and code as Bucci et al. [12] with a third-order semi-implicit Runge-Kutta scheme,

which evolves the linear second and fourth order terms with an implicit scheme and the

nonlinear convective and forcing terms with an explicit scheme. Spatial discretization is per-

formed with Fourier collocation on a mesh of 64 evenly spaced points and in our formulation

the state vector u consists of the solution values at the collocation points. To serve as an

analogue to energy-saving flow control problems, we are interested in the minimization of the

dissipation, D, and total power input, Pf required to power the system and jets of the KSE

system, which are described by D = 〈(∂2u
∂x2 )

2〉 and Pf = 〈(∂u
∂x
)2〉+ 〈uF〉, respectively. Here 〈·〉

is the spatial average. These arise from writing an evolution equation of the “kinetic energy”
1
2
〈u2〉 by multiplying (3.4) by u and integrating over the domain to yield the equation

d

dt

1

2
〈u2〉 = Pf −D. (3.6)

3.2.2 Background and Method Formulation

At its core, deep RL is a cyclic learning process with two main components: the RL agent

and the environment. The agent is the embodiment of the control policy and generally a

neural network, while the environment is the target system for control. During each cycle,

the agent makes a state observation of the system, st, and outputs an action, at. The impact

of this action on the environment is then quantified by a scalar quantity, rt, which is defined

by the control objective. During training, the agent attempts to learn the mapping between

st and at that maximizes the cumulative long-time reward and updates accordingly each

cycle. This learning cycle is shown in Fig. 3.1.
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Deep RL’s poor sampling complexity makes this cyclic process costly or even intractable

for learning control strategies when simulations or experiments of the environment are ex-

pensive to realize. We aim to circumvent this issue in a completely data-driven manner

by training the RL agent with a surrogate reduced-order model (ROM) of the target sys-

tem. Our method can be divided into five steps: 1) obtain ROM training data 2) learn a

reduced-order embedding coordinate transformation using an autoencoder 3) learn the RHS

of the controlled system’s dynamics in the reduced-order coordinates using Neural ODEs,

4) extract a control policy from this ROM using deep RL, 5) deploy and assess the control

strategy in the real system. An outline of this process is presented in Fig. 3.2.

Step 1: Training Data Collection: We obtain our training data for our data-driven

model by observing actuated trajectories of the target system. As we assume there is nei-

ther a model nor control strategy available at this stage, the actuations applied are randomly

sampled from a uniform distribution of the available range of control inputs. We comment

here that although the ambient space dimensionality for many flow systems can be extremely

high, the underlying dynamics are generally much lower dimensional. And equally impor-

tantly, we only need to sample the responses of the system to the available actuations, not to

random perturbations in every dimension of the ambient state space. Our approach deter-

mines the total number of degrees of freedom – 12 in the present case – needed to model the

actuated dynamics. This means that when collecting data to sample the state-action space,

we are not concerned with the dimensionality of the ambient input configurations and action

configurations, but rather we need to the sufficiently sample the combinations of manifold

states and actions. In other words, although our formally infinite-dimensional system may

be resolved indefinitely by adding more grid points, the underlying dynamics do not change.

Thus data sampling complexity is independent of mesh resolution (assuming the system is

already resolved and we have a decent reduced-order representation) and the state-action

space complexity is of size manifold dimension × action dimension.

The observed series of states, st, applied actions, at, at time t, and the resulting state
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after τ time units, st+τ are saved as transition snapshots [st, at, st+τ ] for ROM training. In

our demonstration with the KSE, we take the state observable to be the solution of the KSE

at time t, st = u(t), and the coinciding control signals to the jet actuations to be the action,

at = a(t) (where ai(t) is the signal to the ith jet).

Step 2: Learning the Manifold Coordinate System: We utilize undercomplete

neural network autoencoders [64] to learn the coordinate transformation to and from the

lower-dimensional manifold of the actuated dynamics of our system. Undercomplete au-

toencoders are hourglass-shaped neural networks that are composed of two subnetworks,

the encoder and decoder, are connected by a size-limiting bottleneck layer that explicitly

restricts the number of degrees of freedom that the input data must be represented by. This

structure forces the encoder to learn to compress the input data to a representation that

fits through the bottleneck and the decoder to learn to reconstruct the original input from

the compressed representation while minimizing information loss across the network. In our

work, the encoder, ht = χ(st; θE), is tasked with learning the mapping from the full-state

representation, st ∈ Rds , to the manifold representation, ht ∈ Rdh , and is parameterized by

weights θE. Importantly, dh ≪ ds, such that the bottleneck layer explicitly restricts the num-

ber of degrees of freedom representing our data, as our objective is to learn a reduced-order

manifold representation. The decoder, ŝt = χ̃(ht; θD), is tasked with learning the mapping

from the manifold representation to the full-state representation and is parameterized by

weights θD. The autoencoder is trained to minimize the mean squared reconstruction loss

(MSE) LAE = 〈||st − ŝt||2〉 where ŝt = χ̃(χ(st)) using the snapshots of state data obtained

from the previous step and 〈·〉 is the average over a training batch. In our example with

the KSE we also perform an intermediary change of basis from the observed state st to

its projection onto the Principal Component Analysis basis (computed from the training

data) prior to input to χ(st; θE) and a return to the full space post output from χ̃(ht; θD).

This change of basis does not reduce dimension and although NNs are universal function

approximators, we found empirically in [122] that this change of basis results in a lower
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reconstruction error indicating that this change of basis eases the training procedure. We

identify the dimension of the finite-dimensional manifold, dM, by tracking the MSE perfor-

mance of the autoencoders as we vary dh, [122, 123]. We comment that we use a standard

autoencoder here as we and others [123, 203] have found empirically that it performs well

and yields a manifold representation that is conducive to forecasting tasks. [203] found that

variational autoencoders and convolutional autoencoders exhibited no clear advantage over

standard feedforward autoencoders for the KSE system as well as the FitzHugh-Nagumo

equation. However, for systems with more complex underlying dynamics (e.g. intermittent

bursting), a consideration may be warranted for different AE frameworks and latent space

regularization mechanisms. For example, in [46] the authors found that systems with mul-

tiple time-scales could be better captured via a charts and atlases approach of splitting the

manifold dynamics into a collection of autoencoders and time-stepping models. [208] found

improvement in forecasting the Lorenz ’63 system by promoting orthogonality and isotropy

in the latent space while [42] promoted orthogonality with β-VAEs. However, what proper-

ties a latent space should possess for improved forecasting is still an open and active research

question, we opt for simplicity.

Step 3: Learning the Actuated Dynamics along the Manifold: We next develop

a neural-ODE (NODE) model of the dynamics in the manifold coordinates h by learning the

RHS (vector field) of the ODE ḣ = g(ht, at; θM), where θM denotes the neural-network pa-

rameters that are to be determined [19]. To make dynamical forecasts given a manifold state,

ht, and input control action, at, the evolution of the manifold state τ time units forward,

ht+τ , can be computed for a given g(ht, at; θM) with a standard time-integration algorithm.

To train the NODE network, the same dataset generated in step 1, [st, at, st+τ ] can used.

Because the NODE network’s purpose is to model the vector field of the dynamics in the

manifold coordinates, we must first convert the training data to [ht, at, ht+τ ] using χ(st; θE).

This data set can then be used to train the NODE network to minimize the forecasting loss:

LNODE = 〈||ht+τ − ĥt+τ ||2〉 where ĥt+τ is the forecast made by integrating the NODE with
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a numerical integrator forward τ time units. In this work we use the Dormand-Prince 45

numerical scheme [38]. The gradient of the loss with respect to the network parameters, θM ,

can be obtained by either performing back-propagation via automatic differentiation through

all the steps of the time integration scheme (which can be memory intensive for very large

forecasts) or by the adjoint method described by Chen et al. [19]. In this work we opt for

the former as we did not encounter memory issues and past works have demonstrated good

agreement between both options [123]. We highlight that once training is complete, NODE

forecasted trajectories, which are in the manifold coordinates, can be recovered back to the

original ambient space, s, at any point using the decoder, χ̃(ht; θD), obtained in step 2.

Step 4: Learning a control strategy from the NODE-ROM with deep RL: We

differentiate our DManD-RL method from typical RL with two distinctions. First the RL

agent learns by interacting with the learned NODE-ROM, not the true environment. Second,

during training the RL agent learns in the manifold coordinate, h, not the observable space,

s. We point out that the usual RL nomenclatures for state transitions, st+1 or s′, are written

here as ht+τ in the manifold representation and st+τ in the ambient representation, to make

explicit the fact that the time interval τ is in fact a parameter of the system. To train the RL

agent, the NODE-ROM is first initialized with an encoded initial condition. The agent learns

by interacting only with the NODE-ROM: given a state in the manifold representation, ht,

the agent attempts to map it to the optimal control action. This action is then passed back

to the NODE-ROM and the evolution in h subject to the prescribed actions is obtained

by integrating the NODE-ROM forward in time. In this work we aim to lower the total

power consumption D + Pf of the KSE dynamics, so we define the immediate reward for

the RL algorithm as rt = −(D(t) + Pf (t)). The algorithm seeks to maximize the long time

discounted cumulative reward Rt =
2∞

l=0 γ
lrt+lτ where γ = 0.99. The reward return for

this manifold state-action pair ([ht, at]) can be estimated by decoding the resulting manifold

trajectory using χ̃(ht; θD) and estimating rt, which is used to update the agent. The learning

cycle then repeats. In this work we utilize the Deep Deterministic Policy Gradient (DDPG)
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Figure 3.1: Typical reinforcement learning cycle.

RL method [120], but we emphasize that any general RL method can be used with our

framework.

Step 5: Deploying and Validating the DManD-RL Control Strategy: Once

RL training within the NODE-ROM is complete, the learned DManD-RL policy can be

applied to the true system. As the agent was trained in the reduced manifold space, the

encoder obtained in step 2 must be inserted between the environment and agent to map state

observations to the manifold representation prior to input to the agent. The DManD-RL

policy can then be applied in typical closed-loop fashion. If desired, new additional on-policy

data can be collected to further improve the model/agent in an iterative fashion or the agent

can even be simply fine-tuned with real-system training.

3.3 Results

3.3.1 Neural ODE Model Evaluation

Training data was collected by capturing snapshots of the KSE experiencing jet actuations

whose magnitude and direction are randomly sampled from a uniform distribution of the al-

lowable action range described in Section 3.2. We collect 40,000 of these transition snapshots

spanning 10,000 time units for our NODE-ROM training, where τ = 0.25 time units. We

emphasize here that in this study τ is kept constant for simplicity but in practice τ can vary

from snapshot to snapshot. Actuation signals applied during these trajectories and during
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Figure 3.2: Procedure for learning a NODE-ROM from data, combining it with RL to
approximate a control policy, and deploying the approximate policy back to the true system.

control are held constant for the duration of τ (i.e. zero-order hold; see Fig. 3.5a for typical

actuation trajectories).

As the autoencoder serves as the mapping function to and from the manifold represen-

tation ht, we need to estimate the number of degrees of freedom in the manifold, dh, to

accurately capture the dynamics of the system. As dh is generally not known a priori for

complex systems, we empirically estimate it by tracking the reconstruction error as a function

of dh as done by Linot and Graham [122, 123]. In this work our autoencoder networks utilize

encoders and decoders each with a hidden layer of size 500 activated by sigmoid functions.

Before considering actuated data, we first apply the autoencoder analysis to the natural

unactuated KSE. For the domain size L = 22 considered here, the manifold dimension has

been determined to be dM = 8 in past studies [36, 122]. This will aid in validating our pro-

cedure and give insight into the results with the actuated system. To validate our procedure

with the natural KSE, we collect 40,000 snapshots of the KSE where at = 0, to capture

the unactuated KSE dynamics. Shown in Fig. 3.3a are the mean-squared errors (MSE) of
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reconstruction for undercomplete autoencoder networks trained on natural, unactuated KSE

snapshots for bottleneck layers of varying dimension dh. We note that as dh increases from

7 to 8 the MSE exhibits a sharp drop. Here, dh = 8 corresponds to the minimum number

of degrees of freedom required to fully represent the manifold in which the natural KSE

data lives, which agrees with previous studies [36, 122]. We denote this manifold dimension

of dh = 8 as dM. We note that increasing dh beyond dM does not significantly improve

reconstruction error, indicating that the data can be effectively represented in dh = 8 and

additional dimensions are superfluous [122].

Repeating this analysis with the snapshots collected from the randomly actuated KSE

to estimate the dimensionality of the actuated dynamics, we observe a similar phenomenon.

Shown in Fig. 3.3b are the mean-squared errors of reconstruction as dh is changed for un-

dercomplete autoencoders trained with KSE snapshots obtained from trajectories perturbed

randomly by the four jet actuators. We note that compared to the Fig. 3.3a, the sharp drop

in MSE is delayed to dh = 9, with a lesser drop at dh = 11.

To dynamically explain this, shown in Fig. 3.3c is a cartoon of the dM = 8 embedded

manifold M on which the long time dynamics of the unactuated KSE lives, where states that

begin off of the manifold are attracted exponentially to it due to dissipation. When actuations

are applied, the KSE produces states and trajectories that live off of the natural attractor,

effectively giving the manifold “thickness” in additional dimensions, as shown schematically

in Fig. 3.3d. This “thickness” require additional degrees of freedom, i.e. increased dM from

the original system, to accurately capture the dynamics.

To further support this view, shown in Fig. 3.4 is the power spectral density of the

unactuated and actuated data sets u(t) used to train the autoencoders shown in Fig. 3.3.

We note that in the presence of actuations the data exhibits a broadening of the high-

wavenumber tail compared to the unactuated data. Physically, this indicates that there

are additional high-wavenumber spatial features in the actuated data set, which require

additional degrees of freedom to accurately capture. Finally, we highlight in Fig. 3.3a and
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Figure 3.3: Mean squared reconstruction error for autoencoders trained on a) unactuated and
b) actuated KSE data vs. manifold representation dimension, dh. Cartoon illustrations of the
inertial manifolds in which the data lives on for the c) unactuated and d) actuated system.

Fig. 3.3b that our autoencoders outperform dimensionality reduction using only Principal

Component Analysis in reconstruction error by several orders of magnitude once dM has

been reached.

The autoencoder MSE landscape of the actuated KSE data suggests that a manifold

representation of dh = 12 should be sufficient to capture the dynamics of the controlled

KSE. Using the χ, χ̃ mappings learned by the dh = 12 autoencoder, a NODE network with

two hidden layers of size 200, 200 with sigmoid activation was trained to model the actuated

dynamics in the dh = 12 manifold. This NODE was trained using the same data used to

train the autoencoder by simply converting the collected data of [st, at, at+τ ] to [ht, at, ht+τ ]

with ht = χ(st; θE).

To demonstrate the learned NODE-ROM’s predictive capability, shown in Fig. 3.5c

and Fig. 3.5d are two example KSE trajectories experiencing random jet actuation signal

sequences visualized in Fig. 3.5a, Fig. 3.5b, respectively. We also show in Fig. 3.5e and
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Figure 3.4: Power spectral density vs. wavenumber of unactuated and actuated data.

Fig. 3.5f the decoded dh = 12 trajectory forecast by the NODE-ROM beginning from the

same initial condition and following the same actuation signal sequence as its ground truth

trajectory, Fig. 3.5c, Fig. 3.5d, respectively. We note that the forecasted trajectories agree

qualitatively with the ground truth for about 20-30 times units or 1-1.5 Lyapunov times of

the natural system, shown in Fig. 3.5g, Fig. 3.5h. Finally, we show in Fig. 3.5i, Fig. 3.5j

the 12 dimensional manifold representation of these trajectories, h. We highlight that the

learned representation evolves smoothly in time.

To quantitively compare the ensemble performance of the NODE-ROM and the actuated

KSE, an ensemble of 50 actuated forecast/ground truth pairs of trajectories (where the

random actuation sequence and initial conditions between each pair are the same) was used

to compute the spatial and temporal autocorrelation, shown in Fig. 3.6a and Fig. 3.6b,

respectively. We note that the NODE-ROM accurately captures the spatial autocorrelation

of the actuated KSE, while the temporal autocorrelation exhibits good agreement with a

slight temporal dilation. These results indicate that the NODE-ROM is accurately capturing

the distribution of features of the actuated KSE in both space and time.

As the NODE-ROM was trained with only transition snapshots experiencing random

actuations, a natural question is: how well does our model capture the underlying natural

dynamics, i.e. with at = 0? Shown in Fig.3.7a and Fig.3.7b are two example natural KSE

trajectories where at = 0. Accompanying the unactuated ground truth trajectories shown in

Fig.3.7a and Fig.3.7b are the decoded dh = 12 trajectories forecasted by the same NODE-

ROM that was trained on actuated data beginning from the same initial conditions and

with zero actuation signal input, shown in Fig.3.7c and 3.7d, respectively. We note that the
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Figure 3.5: Left column: (a) random actuation sequences ai(t) (c) ground truth KSE trajectory
starting from a random initial condition following actuation sequences in (a), (e) the decoded
NODE-ROM trajectory following actuation sequence (a) and the same initial condition in (c).
The absolute error difference is shown in (g) while the manifold representation, h, is shown in (i).
A second example is shown in the right column: (b), (d), (f), (h) and (j), respectively.

forecasted trajectories agree qualitatively with the ground truth for about 1-1.5 Lyapunov

times. We again assess the spatial and temporal autocorrelations between an ensemble of 50

pairs of ground truth trajectories and NODE-ROM forecasts, shown in Fig. 3.6c and 3.6d,

respectively. We note that the ROM matches the spatial autocorrelation of the KSE very

well while the temporal autocorrelation reveals that the ROM exhibits a more pronounced

but still quantitatively small temporal dilation. We emphasize that despite the training

data for the ROMs were obtained from randomly actuated trajectories and that there is no

substantial unactuated data, the ROMs still recovers the unactuated dynamics well.
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Figure 3.6: a) Spatial and b) temporal autocorrelation computed from an ensemble of
trajectories experiencing random jet actuations. NODE-ROM (dh = 12) forecasts were produced
using the same initial conditions and jet actuation sequences as each respective trajectory
produced from the true KSE. c) Spatial and d) temporal autocorrelation computed from an
ensemble of trajectories with actuations set to zero. NODE-ROM (dh = 12) forecasts were
produced using the same initial conditions as each respective trajectory produced from the true
KSE.

Figure 3.7: Example unactuated trajectories of the KSE in a) and b) and their corresponding
decoded NODE-ROM (dh = 12) forecasts starting from the same initial conditions in c) and d),
respectively.
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3.3.2 Model-Based Control Performance

With this data-driven NODE-ROM, a control agent was trained by interacting only with

the NODE-ROM in the manifold space with rt estimated from the s = χ̃(h; θD) decoded

state. We set the NODE-ROM model transition time to be τ = 0.25 for all experiments.

The control agent was trained with 1000 episodes of 100 time units long (i.e. 400 transitions

per episode), with each episode beginning from a random on-attractor initial condition of

the natural, i.e. unforced, KSE. Jet actuations implemented by the control agent, at, were

maintained constantly from st to st+τ . In this work the DDPG actor and critic networks

utilized ReLU activated hidden layers of size 128 and 64, respectively, followed by tanh and

linear activations to the outputs of size 4 and 1, respectively.

To assess the performance of our DManD-RL policy, the learned control agent was ap-

plied to the NODE-ROM, with an example controlled trajectory shown in Fig. 3.8a. We

note that after a brief control transient, the control agent navigates the NODE-ROM to an

equilibrium(steady) state and stabilizes it. The quantities targeted for minimization, D and

Pf , estimated from the predicted trajectory u(t), are shown in Figure 3.8c, revealing that

this equilibrium exhibits dissipation much lower than the natural unactuated dynamics. To

assess how well this DManD-RL control policy transfers to the original KSE (i.e. the true

system), the same policy is applied to the true KSE with the same initial condition, as shown

in Fig. 3.8b. We note that the controlled trajectory in the KSE yields not only quantita-

tively similar transient behavior but also the same low-dissipation equilibrium state as was

targeted in the NODE-ROM. The transient behaviors between the two are structurally very

similar, although the NODE-ROM displays slightly less strongly damped oscillations as it

drives the trajectory to the steady state. The values of D and Pf computed from the true

system, shown in Fig. 3.8d, are nearly identical to that of the NODE-ROM in Fig. 3.8c.

To demonstrate the robustness of the DManD-RL policy, shown in Fig. 3.8e are the

dissipation trajectories of the true KSE beginning from 15 randomly sampled test initial

conditions that the DManD-RL control agent has not seen before. We highlight that the
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control agent is able to consistently navigate the system to the same low-dissipation state

within ∼ 150 time units, with one initial condition requiring ∼ 200 time units to converge.

Finally we note that although the RL training horizons were only 100 time units long, the

control agent is able to generalize to achieve and maintain control well beyond the horizon

it was trained in.

Here we emphasize that the DManD-RL policy drives the dynamics to an equilibrium

state in both the NODE-ROM and the true KSE, indicating that not only does the NODE-

ROM capture this state, but it captures the dynamics leading to it accurately enough such

that the RL agent could discover it during training and exploit it in a manner that still

translates to the original system. We further emphasize that both the NODE-ROM and

agent were never explicitly informed of this low-dissipation state’s existence. Finally, we

highlight that the discovered low-dissipation state is an unstable state that is stabilized by

the control agent. If control is removed, the system returns to the natural chaotic dynamics.

These observations indicate that the RL policy trained on the model transfers very well to

the true system. We attribute this performance to the fact that both the NODE-ROM and

RL agent operate in Markovian fashion. The agent is not forced to act out a series of actions

based on a forecasted trajectory but rather it is reassessing at every action point in the

true system. Even if the model has slight inaccuracies, so long as the modeled dynamics are

reasonably accurate this does not matter once the agent makes its new state observation. An

example of the policy still succeeding far from the training horizon can be seen in Fig. 3.8e.

Returning to the dynamical significance of the low-dissipation equilibrium state discov-

ered and stabilized by the RL agent, a continuation in mean forcing magnitude was per-

formed. To do so, we Newton-solved for equilibrium solutions to the KSE starting with

the discovered equilibrium state while gradually decreasing the magnitude of the mean ac-

tuation profile to zero, as was done in [219]. Solutions identified by this continuation in

forcing magnitude are shown in Fig. 3.10, which reveals that equilibrium state captured by

the NODE-ROM and discovered by the RL agent is connected to a known existing solution
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of the KSE known as E1 [32]; we obtained a similar result with an RL agent trained on

interactions with the full system [219]. A similar observation was made for RL control of 2D

bluff body flow [117].

We speculate that in systems with complex dynamics, the discovery and stabilization of

desirable underlying equilibrium solutions (or other recurrent saddle-point solutions such as

unstable periodic orbits) of the system may be a fairly general feature of RL flow control

approaches that aim to minimize dissipation while penalizing control action; as was shown in

[117, 219]. The nonlinear and exploratory nature of RL algorithms facilitates the discovery

of such solutions, and since the dynamics are slow near these solutions, little control action

should be required to keep trajectories near them. This is a promising outlook for RL as the

dynamics of even more complex chaotic systems, such as turbulent flows governed by the

Navier-Stokes equations, are also known to be structured around such solutions [66].

To highlight the importance of the type of data-driven model, we compare to Dynamic

Mode Decomposition (DMD), a common data-driven method that has been applied to fluid

flows and dynamical systems. Recently, Qin et al. [152] demonstrated active flow control of

2D cylinder flow with a reward signal targeting the minimization of DMD mode amplitudes.

Here we specifically investigate the performance of using DMDc [150], the extension of DMD

to account for control input, as an alternate data-driven model of the KSE dynamics for RL

policy learning. The DMDc model takes the following form,

st+τ = Ast +Bat, (3.7)

where A is the state transition matrix and B is the control input matrix. Using the same

training data as our NODE-ROM, [st, at, st+τ ], , we obtained a full state DMDc model by

simultaneously fitting the two matrices with the [st, at, st+τ ] data as described in [150]. This

model was then used as the environment for the RL policy training.

Shown in Fig. 3.9a is the DMDc-based RL control agent applied to the DMDc model it
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Figure 3.8: ROM-based RL agent applied to the same initial condition in the a) true KSE and
b) data-driven reduced-order model (decoded, dh = 12). The corresponding invariant quantities of
dissipation and total input power for the c) true KSE and d) learned reduced-order model. The
dashed black line represents the system average of the natural KSE dynamics. e) Controlled
dissipation trajectories of the true KSE beginning from 15 randomly sampled test initial
conditions of the KSE.

was trained in. We show in Fig. 3.9c that the agent is able to rapidly minimize the DMDc

model values of D,Pf . We highlight that the DMDc-based strategy accomplishes this by

exploiting the unphysical dynamics of the DMDc model. To elaborate, shown in Fig. 3.9b

is the same strategy applied to the true KSE with the same initial condition as the DMDc

trajectory in Fig. 3.9a. The DMDc-based RL strategy fails to minimize the control objective

when applied to the true KSE. Furthermore, the strategy even results in performance that

is even worse than the time-averaged uncontrolled system, which can be seen in the above

average D,Pf values at long times in Fig. 3.9d, where the controller appears to get trapped

in a high energy region of the KSE. This mismatch in performance is due to the inability of

the linear model to describe the nonlinear dynamics of the KSE.
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Figure 3.9: DMDc control policy applied to the same initial condition in the (a) DMDc model
and (b) True KSE. Corresponding dissipation and total input power for the (c) DMDc model and
(d) KSE. The dashed black line represents the average of the natural KSE dynamics.

Figure 3.10: Forcing continuation from the forced equilibrium state (under forcing f = α22)
discovered by NODE-ROM based RL policy (orange, dashed) to the unactuated KSE system
(purple). The known equilibrium E1 of the KSE system is also provided (dots).
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3.4 Summary

In this chapter, we introduce our NODE-ROM-Based RL method, DManD-RL, that main-

tains an end-to-end data-driven method of learning control policies from a limited data set.

The governing equations and control term do not need to be known or specified–we only

assume that the system’s actuated dynamics can be represented by some governing system

of ODEs in the manifold coordinate. Furthermore, we do not impose any structural rela-

tionship between the control input and the dynamics of the systems as previous methods

have done in the past. This is advantageous for many complex flow control systems as the

relationship between the dynamics and the control inputs are not simple linear relation-

ships [9, 54]. We exploit the notion that many nominally high-dimensional systems actually

display low-dimensional dynamics and aim to capture and model these actuated dynamics

from data using a combination of autoencoders and Neural ODEs. Then, with deep RL,

we extract control policies from our data-driven ROMs. Importantly, our method does not

require RL to directly interact with the target system nor does it require great modification

of standard RL algorithms.

Our method identifies the lower-dimensional manifold the actuated dynamics live on

with autoencoders and models the dynamics with neural ODEs, which are capable of mak-

ing predictions for arbitrary time intervals [19] and have been demonstrated to produce good

predictions of spatiotemporal chaotic systems [123]. Neural ODEs are also a natural formu-

lation and deep architecture for the systems we are attempting to model and control. Our

method also respects the Markovian nature underlying many RL frameworks as well as those

of our target dynamical systems, unlike other common data-driven methods such as reservoir

computing and recurrent neural networks. The use of high-fidelity low-dimensional models

allows for faster interaction simulations (or even running multiple surrogate environments in

parallel) compared to costly simulations or experiments.

By using a more informative and compact state space representation than a high-dimensional

sensed state, the RL policy training load is lessened. In naive applications of RL, a portion
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of the agent’s network capacity is exhausted in learning to transform the raw inputs to more

useful internal representations [75]. Similar to Ha and Schmidhuber [75], in our method, we

also explicitly separate the agent’s learning of the control policy and the task of learning a

useful state representation into two discrete tasks.

We apply our DManD-RL RL method to the KSE, a proxy system for turbulent flows

that exhibits rich spatiotemporal chaotic dynamics. From a limited data set generated

from trajectories of the KSE under random actuations, we are able to find a reduced-order

mapping between the full state and the reduced low-order dynamics of the actuated KSE, as

well as to successfully model the dynamics in this reduced space. We find that our NODE-

ROM has good forecasting ability and captures ensemble characteristics of the KSE well for

not only actuated predictions but also unactuated predictions, for which it was not given

training data. In this work, it was found that NODE-ROM training data obtained from

snapshots of the KSE experiencing random jet actuations was sufficient. With even more

complex systems, it may be possible that this sampling approach is insufficient. If necessary,

the NODE-ROM can be iteratively improved by applying the learned control strategy to

the true system, collecting additional data, and fine-tuning the NODE-ROM with the new

data. Using the updated NODE-ROM, the RL agent can then be updated. Together the

control agent and model can be improved in a cyclic training fashion. We highlight that our

model could be alternatively trained and used in the “Dyna”-style [186] for improved online

learning. We comment that, in the scope of this article, the manifold coordinate is learned

from the full state. However, in many systems of interest, this information may not be readily

available. In the absence of full-state observations, a combination of sensor measurements

and time-delays should suffice so long as they satisfy Whitney’s Embedding Theorem. While

we demonstrate in this article that this framework can achieve similar performance compared

to past studies utilizing direct applications of RL [219], other systems of interest may exhibit

much higher dimensional action spaces or greater dynamic complexity, which may require

smarter data collection and successive model updates.
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Finally, we acknowledge here that although we do not obtain substantial speed up in

per-step computation time between the semi-implicit KSE solver and the NODE-ROM, we

emphasize that for flow systems of increasing complexity and Re, the time to solve O(106)

or more degrees of freedom in a direct numerical simulation is much greater than that

of solving a system of ODEs O(101 − 102). For example, in [220] we show preliminary

results of this method on turbulent plane Couette flow at Re = 400 in a minimal flow unit

[77]. In that work, we accurately modeled the dynamics with O(10) degrees of freedom

resulting in simulations running several orders of magnitude faster. Applying reinforcement

learning to the full system, with jet actuators on one wall, yields a control policy that can

relaminarize the flow. However, learning this policy took 3+ weeks. With the DManD model,

an equivalently effective policy was learned in hours. Aside from the computational speed

up, we also emphasize that our method greatly reduces the data generation burden, as we

successfully obtained a control strategy for the KSE using only 40,000 transition snapshots,

while a naive application of RL directly on the KSE required generating approximately 1.6

million transition snapshots [219].

Utilizing this NODE-ROM in place of the environment, the RL agent is able to discover

a low-dissipation equilibrium state and learns to exploit it to minimize D,Pf . When the

DManD-RL control policy is deployed to the true KSE, we observe that not only are the same

equilibrium states targeted, but the performance is nearly indistinguishable from our learned

NODE-ROM. This indicates that not only does the NODE-ROM capture the existence of

the forced equilibrium, but it also captures the dynamics sufficiently well such that the agent

could find it during training and exploit it in a manner that still translates in the original

system. We emphasize that we accomplished this with a 12-dimensional NODE-ROM while

the full state is 64- dimensional. A continuation in the magnitude of the forcing profile

reveals that the RL discovered equilibrium state is connected to an existing equilibrium

solution of natural KSE. The naturally occurring RL optimization about underlying solutions

of the system has been observed in the KSE [219] as well as bluff-body flows [117], which
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is promising, as more complex dissipative systems, such as the turbulent dynamics of the

Navier-Stokes equations, are also known to be organized about various types of invariant

solutions [66].
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4

Model-based reinforcement learning

for turbulent Couette flow 1

The high dimensionality and complex dynamics of turbulent flows remain an obstacle to the

discovery and implementation of control strategies. Deep reinforcement learning (RL) is a

promising avenue for overcoming these obstacles, but requires a training phase in which the

RL agent iteratively interacts with the flow environment to learn a control policy, which can

be prohibitively expensive when the environment involves slow experiments or large-scale

simulations. We overcome this challenge using a framework we call “DManD-RL" (data-

driven manifold dynamics-RL), which generates a data-driven low-dimensional model of our

system that we use for RL training. With this approach, we seek to minimize drag in a

direct numerical simulation (DNS) of a turbulent minimal flow unit of plane Couette flow at

Re = 400 using two slot jets on one wall. We obtain, from DNS data with O(105) degrees of

freedom, a 25-dimensional DManD model of the dynamics by combining an autoencoder and

neural ordinary differential equation. Using this model as the environment, we train an RL

control agent, yielding a 440-fold speedup over training on the DNS, with equivalent control

performance. The agent learns a policy that laminarizes 84% of unseen DNS test trajectories

1The text of this chapter is adapted from the publication by A. J. Linot, K. Zeng and M. D. Graham
The International Journal of Heat and Fluid Flow 101, 2023
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within 900 time units, significantly outperforming classical opposition control (58%), despite

the actuation authority being much more restricted. The agent often achieves laminarization

through a counterintuitive strategy that drives the formation of two low-speed streaks, with

a spanwise wavelength that is too small to be self-sustaining. The agent demonstrates the

same performance when we limit observations to wall shear rate.

4.1 Introduction

Energy loss due to turbulent drag is ubiquitous in many industrial and commercial processes,

ranging from air flowing over a plane wing, a ship in the ocean, or oil pumped through a

pipe. In total, turbulent drag accounts for 25% of the energy used in industry and commerce,

resulting in 5% of all man-made CO2 emissions [95]. Even small reductions in this drag can

yield massive savings in energy, which has long motivated the search for better flow control

strategies.

Many control types for reducing turbulent drag exist, including, but not limited to,

polymer/surfactant drag reduction [65, 200], riblets [182], wall oscillations [155], plasma

actuators [25], and synthetic jets [61]. Due to the complexity of reducing drag, it has been

most common to apply these control methods in an open-loop manner where the control

policy at any given time is independent of the flow state [24]. However, application of

feedback control on a turbulent system could yield far better performance in controlling

drag.

Unfortunately, the complexity of the problem has typically limited applications of feed-

back control to methods based on heuristics. A well-studied heuristic method is opposition

control [22]. Here the wall-normal velocity at the wall is set to have the opposite sign as

the wall-normal velocity at some detection plane in the channel, a straightforward actuation

in simulations. This method has been applied in simulations [22, 28, 78, 89] and experi-

ments (with some modifications) [20, 162], and extensions exist to use just wall observations
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[109, 148]. When heuristics are replaced with methods from optimal control theory, like

model predictive control (MPC), the drag reduction far outperforms opposition control [6]

while using the same actuation scheme. However, the real-time implementation of MPC on

DNS still remains infeasible because it involves solving the DNS forward over a time horizon

(preferably a long one) and then solving an adjoint backwards in time for every actuation

[6].

A potential approach to overcome the high computational cost of real-time optimization

of a control strategy is deep reinforcement learning (RL) [186]. Deep RL gained significant

traction when it was used to defeat the best professional players in GO [178], DOTA II [144],

and Starcraft II [198], in addition to the best engines in GO, Chess, and Shogi [179]. In deep

RL, a neural network (NN) control agent is trained through iterative interactions with the

environment (i.e. the system to be controlled) to maximize a scalar total reward (i.e. control

objective) that includes present as well as discounted future reward values. Once trained,

the control agent can be deployed in real time without the need for online optimization.

In recent years, RL has been applied in fluids simulations to reduce the drag experienced

in flow around a cylinder [116, 156, 194], to optimize jets on an airfoil [207], and to find

efficient swimming strategies [196]. RL has even been applied to experimental flow systems

[44]. Recently multi-agent deep RL has been explored for the control of pressure-driven

turbulent channel flow [72, 183] in a problem formulation similar to opposition control [22].

In these works, an RL policy is trained to map local detection plane observables to a wall-

normal velocity response at the walls to reduce drag. Notably, the same RL policy is locally

implemented at each wall grid point. We differentiate the control problem addressed from

the previously mentioned works in that we limit the control authority to just two spatially

localized jets on a single wall, with a zero-net-flux constraint, as opposed to full spatial

control of both walls. We feel that this is much closer to experimental realizability than an

approach with control authority everywhere on the wall. For a more thorough review of the

application of RL applied to fluid mechanics we refer the reader to Viquerat et al. [199] and
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Vignon et al. [197].

In these active flow control problems, deep RL possesses the advantageous property of

being completely data-driven, allowing it to discover novel and nontrivial control strategies

in complex systems from just data alone without the need to analytically derive or hard-

code system properties into the method. However, the training portion of RL is a major

bottleneck, requiring a tremendous number of interactions with the target environment to

find an approximately optimal policy [40]. Practically speaking, this can correspond to

running an enormous number of high-resolution simulations or flow experiments, both of

which may be prohibitively expensive.

In the present work, we apply RL to control a minimal flow unit (MFU) (the smallest

domain that sustains turbulence) [96] of plane Couette flow at Re = 400 using a pair of

streamwise-aligned slot jets at one wall, with a zero-net-flux constraint. Therefore there is

only one degree of freedom for actuation. We select this system because the unactuated flow

isolates the self-sustaining regeneration cycle of wall-bounded turbulence [77, 90]. This case

is well-studied for tasks such as reduced-order modeling [55, 125, 138, 205], finding invariant

solutions [57, 201], and applying opposition control [89].

In order to overcome the high computational cost of RL training in this environment, in

this work we replace the high-resolution simulation with an accurate low-dimensional sur-

rogate model, aiming to dramatically reduce the time required to train the control policy.

We showed in [221] that this data-driven model-based RL approach, which we refer to as

“Data-Driven Manifold Dynamics" RL (DManD-RL), works well for controlling spatiotem-

poral chaotic dynamics in the Kuramoto-Sivashinksy Equation. For further discussion on

the various types of model-based RL, we refer the reader to Zeng et al. [221]. In Sec. 4.2 we

introduce the control environment and the DManD-RL framework. Then, in Sec. 5.3.1 we

describe the data used for training the DManD model, the performance of the model, and

the results of applying RL to the DManD model and to the DNS environment. Finally, we

conclude in Sec. 5.4 with a summary of the key results.
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Figure 4.1: Schematic of the Couette flow domain with two slot jets on one wall.

4.2 Framework

4.2.1 Navier-Stokes Equation with Slot Jets

The environment we consider is a direct numerical simulation (DNS) of the Navier-Stokes

Equations (NSE)
∂u

∂t
+ u ·∇u = −∇p+ Re−1∇2u, ∇ · u = 0. (4.1)

The velocities in the streamwise x ∈ [0, Lx], wall-normal y ∈ [−Ly/2, Ly/2], and spanwise

z ∈ [0, Lz] directions are defined as u = [ux, uy, uz], and the pressure is p. Here we have

nondimensionalized velocity by the speed U of the walls, length by the channel half-height

(h = Ly/2), time with h/U and pressure with ρU2, where ρ is the fluid density. The

Reynolds number is Re = Uh/ν, where ν is the kinematic viscosity. The boundary conditions

for this setup are periodic in x and z (u(0, y, z) = u(Lx, y, z),u(x, y, 0) = u(x, y, Lz)),

no-slip boundary conditions at the walls (ux(x,±Ly/2, z) = ±1, uz(x,±Ly/2, z) = 0), no

penetration at the top wall (uy(x, Ly/2, z) = 0), and finally, the actuation on the bottom

wall (uy(x,−Ly/2, z) = fa(x, z)), as we now describe.

The actuation on the bottom wall is in the form of two slot jets that are Gaussian in z
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and travel the length of the channel:

uy(x,−Ly/2, z) = fa(x, z) = a(t)Vmax

0
exp

0
−(z − Lz/4)

2

2σ2

1
− exp

0
−(z − 3Lz/4)

2

2σ2

11
.

(4.2)

We set σ ≈ 0.16 so that the jets act “locally", and the velocity of the jet is dictated by

a(t)Vmax, where a(t) ∈ [−1, 1] is the instantaneous actuation amplitude scaled by a maximum

velocity Vmax = 0.05. For perspective, the root-mean-squared wall-normal velocity at the

channel centerline for turbulent unactuated flow is ∼ 0.063. We chose this small velocity

to evaluate how the agent performs with limited control authority. In Fig. 4.1 we show a

schematic illustrating this system. Due to only having two jets the zero-net-flux constraint

is easily satisfied in this case. However, as it may be useful for practitioners, we present

a method for achieving a zero-net-flux constraint with an arbitrary number of jets in the

Appendix.

The complexity of the flow increases as the Reynolds number and the domain size Lx

and Lz increase. Here we chose the same setup as Hamilton et al. [77], Re = 400 and

[Lx, Ly, Lz] = [1.75π, 2, 1.2π]. These parameters isolate the “self-sustaining process" (SSP)

that drives wall-bounded turbulence. In the SSP, low-speed streaks that have been lifted

from the wall become wavy, this waviness leads to the breakdown of the streaks, generating

streamwise rolls, and, finally, these rolls lift low-speed fluid off the wall to regenerate streaks,

completing the cycle. By working in this well-studied domain that is dominated by the SSP,

we can better identify the means by which a control strategy can disrupt or suppress this

process.

In this work, the control strategy is to minimize the turbulent drag averaged between

both walls

D =
1

2

, Lx

0

, Lz

0

"
∂ux

∂y

7777
y=1

− 1

#
+

"
∂ux

∂y

7777
y=−1

− 1

#
dxdz, (4.3)

subject to a quadratic penalty on actuation amplitude a. (If the relation between the pressure

drop and actuation velocity for pumping fluid into/out of the domain is linear, then this
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penalty is proportional to the power consumption of the actuation.) Further details are

described in Sec. 4.2.2. We report drag in this fashion because this quantity goes to 0 when

the flow laminarizes.

We simulate the flow using a Fourier-Chebyshev pseudo-spectral code we implemented in

Python [127], which is based on the Channelflow code developed by Gibson et al. ([56, 58]).

Linear terms are treated implicitly and the nonlinear term explicitly. The specific time inte-

gration schemes we use are the multistage SMRK2 scheme [184] for the first two timesteps af-

ter every actuation, and the multistep Adams-Bashforth Backward-Differentiation 3 scheme

[149] until the next actuation. The multistep scheme is more computationally efficient, but,

because actuations change instantaneously, using previous steps with the incorrect bound-

ary condition would lead to incorrect results. For all trials we evolve solutions forward using

∆t = 0.02 on a grid of [Nx, Ny, Nz] = [32, 35, 32] in x, y, and z from random divergence-free

initial conditions that we evolve forward 100 time units so initial conditions are near the

turbulent attractor.

While most of this approach is standard, here we include some details on the simulation

procedure to highlight explicitly how we set the jet actuation boundary condition. At each

time step, the approach involves solving the expression

Re−1
d2ûi+1

kx,kz

dy2
− λûi+1

kx,kz
− ∇̂p̂i+1

kx,kz
= −R̂i

kx,kz , (4.4)

where i is the timestep and ·̂ = Fx,z(·) denotes the Fourier transform in x and z. The

variable λ includes the timestep ∆t and the x and z components of the diffusive term and

R encompasses all the remaining explicit terms (for a multistep method this includes ûkx,kz

multiple steps back). We refer the reader to [56] for a more detailed discussion. Upon taking

the divergence of Eq. 4.4, and accounting for incompressibility, we isolate the problem down

to 4 sets of one-dimensional Helmholtz equations (for conciseness we suppress indices kx, kz,

and i):
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Re−1d
2ûx

dy2
− λûx −

2πikx
Lx

p̂ = −R̂x ûx(±1) = ±δkx,0δkz ,0 (4.5)

Re−1d
2ûz

dy2
− λûz −

2πikz
Lz

p̂ = −R̂z ûz(±1) = 0 (4.6)

Re−1d
2ûy

dy2
− λûy −

dp̂

dy
= −R̂y ûy(−1) = Fx,z(fa), ûy(1) = 0 (4.7)

d2p̂

dy2
− 4π2

0
k2
x

L2
x

+
k2
z

L2
z

1
p̂ = ∇̂ · R̂ dûy

dy
(±1) = 0. (4.8)

These equations can be solved for every wavenumber pair kx and kz. The challenge

in solving these equations is due to the coupling in Eq. 4.7 and Eq. 4.8. The pressure

is coupled to the wall-normal velocity because an explicit boundary condition is unknown.

Instead, from incompressibility, we know dûy/dy(±1) = 0, which we substitute for the

pressure boundary condition. To solve these coupled equations we use the influence matrix

method and tau correction developed by Kleiser and Schumann [105]. Although we set the

wall-normal boundary condition in Eq. 4.7 by the slot jets in Eq. 4.2, we note that it is

simple to replace this boundary condition with any shape of actuation.

4.2.2 Data-driven framework

The objective in deep RL is to train an agent, commonly a neural network, to approximate

the optimal control policy a = π∗(s), which given a state observation s, outputs the optimal

control action a. The optimal policy seeks to maximize the expected long time discounted

cumulative reward,

π∗ = argmax
π

E

$ ∞!

l=0

γl(rt+lτ )

%
, (4.9)

where 0 < γ < 1 is the discount factor, τ is the time between control actions, and rt is the

reward, a scalar-valued control objective function decided by the user evaluated at time t.

As our objective in this work is to minimize the drag of our turbulent Couette system while

simultaneously avoiding the use of superfluous control actions, we define the reward function



116

as the following,

rt = −
8
D(t) + c‖a(t)‖2

9
τ
, (4.10)

where c is a scalar and 〈·〉τ is the average from t to t + τ . We note here that our actuation

penalty is proportional to the power required for actuation. In deep RL π∗ is learned via

repeated cyclic interactions between the agent and the environment i.e. the target system.

A typical cycle consists of the following: given a state observation of the system at time

t, st, the control agent outputs its estimated best control response at. This control action

is then applied to the environment. The system is allowed to evolve for τ time units, and

then the impact of the action is quantified by observing the resulting system state, st+τ , as

well as the reward signal, rt. This iterate of data, [st,at,rt,st+τ ], is then stored and used for

updating the control agent for the next time interval.

4.2.3 DManD Modeling Framework

Applications of deep RL often require repeating this cycle O(106+) times. Because deep

RL conventionally requires an online realization of the target system during training, the

practicality of training an RL agent for systems that are computationally or experimentally

expensive to realize online, e.g. a DNS of turbulent channel flow, is especially bottlenecked

by the expense of the environment itself [40].

To circumvent this bottleneck, we employ a method denoted “Data-driven Manifold Dy-

namics for RL" [221], or “DManD-RL" for short, with some modification. This framework

consists of two main learning objectives, which can be broken down into five steps, illus-

trated in Fig. 4.2. The first objective is to obtain an efficient and accurate low-dimensional

surrogate model of the underlying dynamics of the turbulent DNS, which we refer to as the

DManD model. This objective is achieved via the first three steps outlined in Fig. 4.2: 1)

collect data tuples of the target system experiencing random control actions, 2) obtain a

low-dimensional representation of the environment’s dynamics, 3) model the dynamics of
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Figure 4.2: Schematic of the DManD-RL framework. After step 3, ·̃ is omitted for clarity.

the environment and its response to control inputs. We note here that this first objective

is philosophically similar to producing a black-box forward model from data in the field of

systems identification [143]. Here we highlight that, unlike methods such as ARMAX, we do

not assume any functional form for the dynamics, nor do we assume that the controller is

affine. We further distinguish here that we are interested in approximating the RHS of the

controlled dynamics without using historical data (i.e. lags or delays).

The second objective is to use this DManD model for RL training to quickly and effi-

ciently obtain an effective control agent. This objective is achieved via the remaining two

steps outlined in Fig. 4.2: 4) perform deep RL with the DManD model, and 5) deploy the

control agent to the original environment. In the following sections we discuss the details

for generating the DManD model in Sec. 4.2.3 and the method for training and deploying

the DManD-RL agent in Sec. 4.2.4.

As this framework is completely data-driven, the first step involves collecting sufficient
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data to learn an accurate surrogate model. This model must capture the underlying flow

system, the response of the dynamics to control inputs, and the impact the control inputs

have on the objective. Generating this model requires that we have a large dataset that

includes the cycle of data described above ([st,at,rt,st+τ ]). In RL training actions are chosen

by the policy, however, for training the model we do not necessarily have any policy to

generate this data. As such, we instead chose to randomly actuate the flow to generate the

original dataset used in training the DManD model. Details on the specifics of the dataset

are included in Sec. 4.3.1.

With this data, the second step of the DManD-RL framework involves finding a low-

dimensional representation of the state. For many dissipative systems, there is either

proof or evidence that the long-time dynamics collapse onto a finite-dimensional invariant

manifold[37, 48, 49, 190, 217]. We can define a mapping to coordinates parameterizing this

manifold

ht = χ(st), (4.11)

where ht ∈ Rdh is the manifold coordinate system and an inverse mapping back to the state

st = χ̌(ht). (4.12)

When the data lies on a finite-dimensional invariant manifold then the finite-dimensional

manifold coordinate representation ht contains the same information as the state st. Thus, if

we know χ and χ̌ we can simply use ht in place of st for training the RL agent, which requires

far fewer degrees of freedom. One subtlety that we gloss over here is that a dM-dimensional

manifold may require a set of overlapping local representations called charts if one wants

to represent the manifold with dM parameters [47, 50, 110]. However, a manifold with a

topological dimension dM can be embedded in R2dM [169, 212]. So, in the worst case, as

long as dh ≥ 2dM, a single global coordinate representation can be used, as we do here.

In this work we will approximate χ and χ̌ using an undercomplete autoencoder. This
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consists of two NNs: an encoder (χ) that reduces the dimension and a decoder (χ̌) that

expands it. Here we train an autoencoder to find the correction from the linear map given

by the proper orthogonal decomposition (POD) [122, 123]. As such we define the state

observation s to come from projecting the flow field u onto a set of POD modes (i.e. s is the

POD coefficients). Sec. 4.3.1 includes details on our POD implementation.

For the encoding, we sum the leading dh POD coefficients with a correction from a NN

that is a function of all the POD coefficients:

ht = χ(st; θE) = st,dh + E(st; θE), (4.13)

where st,dh is the first dh components of st and E is a NN. For the decoding, we want to

reconstruct all 500 POD coefficients from the dh values we have from the encoding. These dh

values are approximately the leading POD coefficients so we can again just add these values

to a NN that corrects the leading dh POD coefficients and reconstructs the remaining POD

coefficients:

s̃t = χ̌(ht; θD) = [ht, 0]
T +D(ht; θD). (4.14)

Here, [ht, 0]
T represents ht padded with zeros to the correct size, and D is a NN. The notation

·̃ indicates that this is an approximation of st. We refer to this autoencoder structure as

a hybrid autoencoder, in contrast to the standard approach of simply treating χ(st; θE)

and χ̌(ht; θD) as NNs. We take this approach because it can achieve lower reconstruction

errors [122] than the standard approach and the variables h, and is more interpretable, as a

nonlinear correction to POD.

The NNs E and D are trained to minimize

L =
1

dK

K!

i=1

||sti − χ̌(χ(sti ; θE); θD)||22 +
1

dhK

K!

i=1

ξ||E(sti ; θE) +Ddh(hti ; θD)||22, (4.15)

where Ddh is the first dh components of the decoder, ξ is a scalar, and K is the batch size. In
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this loss, the first term is the reconstruction mean-squared error (MSE), and the second term

promotes the accurate reconstruction of the leading dh POD coefficients. We include this

second term because it must go to zero if the reconstruction is perfect. This is because the

modification that the NN makes in the encoder must be removed by the NN in the decoder.

In Sec. 4.3.2 we provide details on autoencoder training.

Now that we have a low-dimensional representation of the state observation, in step three,

we train a model to predict the evolution of h and the reward rt. To predict the evolution of

h (from ht to ht+τ ) we train a “stabilized" neural ordinary differential equation (ODE) [126]

dh

dt
= g(h, a; θg) + Ah, (4.16)

which can be integrated forward in time to predict

h̃t+τ = ht +

, t+τ

t

g(h, a; θg) + Ahdt, (4.17)

where g is a NN and A is a matrix that can be learned from data or fixed. We chose to

find an ODE instead of a discrete timestepping method because it allows us to evolve this

equation to arbitrary times that may not align with the sampling rate of our data. This is a

highly desirable trait as it means we can freely vary the time between actions after training

the DManD model, which could not be done if we found a discrete time map from ht to ht+τ .

The linear term in Eq. 4.16 is important for stability. Without this term, small errors in

the dynamics can lead to linear growth at long times, which a linear damping term prevents

[123, 125, 126]. In this work, we set the linear term

Aij = −βδijσi(h), (4.18)

where β = 0.1, δij is the Kronecker delta, and σi(h) is the standard deviation of the ith

component of h. This term acts as a damping, preventing trajectories from moving far away
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from the training data. In [125] we show in Couette flow without actuation that this term

prevents models from becoming unstable. We note that the addition of this damping term

does not negatively impact the accuracy of the vector field in the region of state space where

there is data, because the damping term is present when we train the NN. This allows the

NN to compensate for the damping term in the region where the data lies. We train the NN

g to minimize

J =
1

dhK

K!

i=1

||hti+τ − h̃ti+τ ||22. (4.19)

We describe in more detail how the gradient of this loss is computed in [125].

The final piece of the algorithm is computing the reward. We could to this directly by

mapping h back to u and computing the corresponding drag. However, this is undesirable

because it is computationally expensive, and, in general, it may not be possible to directly

compute the reward from the state. To overcome this difficulty, we use a NN to compute an

estimate D̃ of the drag from h:

D̃ = R(h; θR), (4.20)

which we train to minimize JD = 1/K
2K

i=1 ||Dti − D̃ti ||22. Then, we compute the reward

r̃t = R(ht, at; θR) by inserting D̃ into Eq. 4.10.

4.2.4 Reinforcement Learning using DManD

With our DManD model of the underlying dynamics, we can now proceed to step four

and efficiently obtain a control policy by training an RL agent to interact with the low-

dimensional DManD model rather than the expensive DNS. Rather than learning at =

π(st; θA), our goal shifts to learning

at = π(ht; θA), (4.21)
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where θA are the network parameters of the RL agent. In this work, we employ the Soft Actor-

Critic (SAC) RL algorithm [76] but we emphasize that the DManD-RL framework works

with any general RL algorithm. SAC was chosen in this application because it possesses

several advantageous characteristics including the ability to output control signals from a

continuous range, an off-policy formulation that allows the “reuse" of previously generated

data, and twin critic networks to aid the brittleness commonly associated with many off-

policy deep RL algorithms. Distinctively, SAC has a stochastic actor with an additional

entropy-maximizing formulation. Here, as a slight abuse of notation, we redefine π as the

probability distribution of actions,
2

a π(a|s) = 1, to match the nomenclature of the SAC

framework. This means that during training, actions are not deterministically output, but

rather sampled at ∼ π(·|s). In SAC, this is practically achieved by having the agent output

the mean, µ(s), and standard deviation, σ(s), of this distribution as a function of the observed

state. The output action is sampled with noise ξ ∼ N (0, 1): at = µ(st) + σ(st) ⊙ ξ. Post

training, a deterministic policy can be recovered by setting σ to zero. This formulation

modifies the typical RL objective of Eq. 4.9 to the following

π∗ = argmax
π

E

$ ∞!

l=0

γl (rt+lτ + αH(π(·|st)))
%
, (4.22)

where the entropy of the policy, H, is defined as

H(π(·|st)) = − log(π(·|st)). (4.23)

Here α is the trade-off coefficient, which is set to 1.0. This entropy-regularized objective

promotes wider state-action exploration and the ability to invest in multiple modes of near-

optimal strategies in addition to maximizing the cumulative reward. In this work, the agent

is trained stochastically but deployed deterministically during testing. Our implementation

of SAC utilizes NNs to approximate the policy function (i.e. agent) π, the two critic func-

tions, Q1 and Q2, and the value function V . For more details regarding the derivation and
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implementation of SAC, we refer the reader to Haarnoja et al. [76].

With a trained DManD-RL agent, we can proceed to the fifth and final step and deploy

the control agent to the original turbulent channel DNS for application. As the RL agent

learned its control strategy by observing the low dimensional manifold coordinate system,

we must map the high-dimensional state observations made in the DNS to the proper input

by using the previously obtained encoder function, χ,

at = π(χ(st)). (4.24)

The trained agent can now be deployed in a closed-loop control fashion.

4.3 Results

4.3.1 Description of Data

The first step in DManD-RL is to generate a data set for training models. Our data set

consists of 500 different initial conditions, which we evolved forward 300 time units with a

random actuation chosen every 5 time units. We sample the random actuations uniformly

between −1 and 1. Every 1 time unit we record the velocity field u and the action a,

yielding 1.5 · 105 snapshots of data. We use 80% of this data to train the models, and the

remaining 20% to test performance on the data never previously seen by the model. In the

training data 2.5% of trajectories laminarize over the 300 time units resulting in ∼ 0.7% of

snapshots with a drag below 10. The inclusion of this data allows the DManD model to

capture laminarization events.

Due to the high-dimensional nature of the data, learning a manifold coordinate system

using the velocity field on the grid as the state is challenging. As such, we first preprocess

the data using the proper orthogonal decomposition (POD) to reduce the dimension from

O(105) to 500 and treat these 500 POD coefficients as the state observation s. In the POD,
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we find modes Φ, which we project onto to maximize

8
|(u′,Φ)|2

9

||Φ||2 , (4.25)

which uses the fluctuating velocity u′ = u − 〈u〉 (〈·〉 denotes the average). As shown in

[83, 181], these modes can be found by solving the following eigenvalue problem:

3!

j=1

, Lx

0

, 1

−1

, Lz

0

〈u′
i(x, t)ūj (x

′, t)〉Φ(n)
j (x′) dx′ = λiΦ

(n)
i (x), (4.26)

where ·̄ is the complex conjugate. Näive implementation of POD requires solution of a

computationally expensive d × d eigenvalue problem after approximating these integrals.

This formulation also fails to respect the streamwise translation invariance of our system.

We account for this translational invariance, and make the problem tractable, by exploit-

ing the fact that in translation invariant directions POD eigenfunctions take the form of

Fourier modes [83]. Note that the fixed position of the slot jets breaks translation invariance

in z. This turns the eigenvalue problem in Eq. 4.26 into

Lx

3!

j=1

, 1

−1

, Lz

0

8
û′
i(kx, y

′, z′, t)¯̂u′
j(kx, y

′, z′, t)
9
ϕ
(n)
jkx

(y′, z′) dy′dz′ = λ
(n)
kx

ϕ
(n)
ikx

(y, z). (4.27)

This is a 3NyNz × 3NyNz eigenvalue problem for every wavenumber kx. We speed up the

computation of this eigenvalue problem by evenly sampling 5, 000 snapshots of training data.

Solving the eigenvalue problem in Eq. 4.27 results in eigenvectors

Φ
(n)
kx

(x) =
1√
Lx

exp

0
2πi

kxx

Lx

1
ϕ

(n)
kx

(y, z), (4.28)

and eigenvalues λ(n)
kx

. We then project u onto the leading 305 modes, sorted according to the

magnitude of λ, giving us the state observation s. This results in a 500-dimensional state

because a majority of the modes are complex. Figure 4.3a shows the sorted eigenvalues. The
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Figure 4.3: (a) Eigenvalues from the POD. (b) and (c) Snapshots of the centerline streamwise
velocity (ux(y = 0)) from the DNS at representative low-drag (left) and high-drag (right) instants.
(d) and (e) POD reconstruction with 500 modes of the DNS results in (b) and (c). (f) and (g)
Autoencoder reconstruction of (d) and (e). Solid contour lines are positive and dotted contour lines
are negative.

eigenvalues drop off quickly resulting in the first 305 modes containing 99.8% of the energy.

4.3.2 Manifold Coordinate System

Now that we reduced the dimension of the state observation s, we train an autoencoder as

described in Sec. 4.2.3 to find h. In Linot and Graham [125] we varied dh for the unactuated

Couette flow system and found the DManD models to be highly accurate with fewer than 20

degrees of freedom. In the present system, additional degrees of freedom will be excited by

the actuations, so we increased dh slightly, to dh = 25. For training, we first normalized s by

subtracting the mean and dividing by the maximum standard deviation. We then trained

four autoencoders until the training error stopped improving. We selected the autoencoder

based on which yielded the best forecasting performance when coupled to a neural ODE

described in the following section. The selected autoencoder had a test MSE of 1.45 · 10−4.

The architecture and parameters of the autoencoders are reported in Table 4.1.

In Figs. 4.3b-4.3g we compare the centerplane streamwise velocity of two flowfields –

one in a bursting state (high-drag) and the other in a hibernating (low-drag) state – to
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Table 4.1: Architectures of NNs. “Shape" indicates the dimension of each layer, “Activation" the
corresponding activation functions, and “sig" is the sigmoid activation.“Learning Rate" gives the
learning rate for the Adam optimizer [102]. When multiple learning rates are noted, the value was
changed from one value to the next at even intervals during training.

Function Shape Activation Learning Rate
E 500/1000/dh sig/lin [10−3, 10−4]
D dh/1000/500 sig/lin [10−3, 10−4]
g dh/200/200/200/200/dh sig/sig/sig/sig/lin [10−2, 10−3, 10−4]
R dh/100/100/1 sig/sig/lin [10−3]
O 1024/100/100/dh sig/sig/lin [10−3]
π dh/256/128/128/2/1 ReLU/ReLU/ReLU/lin/Tanh [3 · 10−4]
Q1 dh/256/128/128/1 ReLU/ReLU/ReLU/lin [3 · 10−3]
Q2 dh/256/128/128/1 ReLU/ReLU/ReLU/lin [3 · 10−3]
V dh/256/128/128/1 ReLU/ReLU/ReLU/lin [3 · 10−3]

their reconstruction with 305 POD modes and their reconstruction from the autoencoder

with dh = 25. When reconstructing the simpler hibernating state the reconstruction from

POD and the autoencoder match almost exactly. In the case of the bursting snapshot, both

the POD and the autoencoder still match the full high-dimensional state well, accurately

capturing the magnitude and location of the streamwise velocity. In the case of POD, some

error is introduced as it distorts the details in the DNS, and then the autoencoder further

smooths some of these details. However, considering that we reduced the dimension of

the problem from O(105) to 25, the reconstruction is excellent. It is important to note that

extending these results to different Reynolds numbers requires training a new model at every

Reynolds number. Extending to higher Reynolds numbers, and/or stronger actuations, may

require two modifications: 1) The number of latent variables must increase to account for

the higher-dimensional manifold on which the data lies and 2) the amount of data must

increase to sample this higher-dimensional space. Unfortunately, it remains unclear how the

manifold dimension of a minimal flow unit scales with Reynolds number. Now that we can

represent the state s in the manifold coordinate system as h, the next step is learning a time

evolution model to control.
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Figure 4.4: Comparison of snapshots from a randomly actuated trajectory from the DNS (top)
with the DManD reconstruction (bottom). Times are given at the top right of each image.

4.3.3 DManD Performance

We now describe the neural ODE training and performance of the resulting model. Be-

fore training, we normalize h by subtracting the mean and dividing each component by its

standard deviation. In Table 4.1 we show the architecture for the neural ODEs used in

this section. We trained four neural ODE models for each of the four autoencoders. Then

we selected the autoencoder and neural ODE pair that best reconstructed the statistics we

report below. Again, we trained the neural ODEs until we no longer saw an improvement

in performance.

The first statistics we investigate validate the ability of the model to track the true dy-

namics over short times. In Fig. 4.4 we show an example of a randomly actuated trajectory

from the DNS and reconstructed with the DManD model. In the first two snapshots, the

trajectories are in quantitative agreement, after which the trajectories still appear qualita-

tively quite similar. Both the DNS and the DManD model exhibit the streak breakdown and

regeneration cycle over this series of snapshots. At t = 0 rolls are forming, at t = 35 these

rolls lift low-speed fluid off the wall forming streaks, at t = 70 the streaks become wavy,

and, finally, at t = 105 the streaks have broken down.
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Figure 4.5: (a) Ensemble averaged tracking error and (b) temporal autocorrelation of kinetic
energy for the DNS, the DManD model, and the autoencoder. “Auto" represents putting the DNS
trajectories through the autoencoder without any time prediction: i.e. this represents the error of
just reducing, then expanding the dimension.

Next, we consider model performance when averaged over many trajectories. In all of

these cases we show both the error from time evolving with the DManD model, and the error

incurred due to the autoencoder. We compute the error due to the autoencoder by inputting

the true DNS solution through the autoencoder and computing the relevant statistic. Figure

4.5a is a plot of the normalized ensemble-averaged tracking error as a function of time. We

compute this error by finding the difference between s(t) and s̃(t) from the DManD model for

100 initial conditions. Then, we normalize this error by computing the difference between two

states on the attractor at random times ti and tj N =
8
||sti − stj ||

9
. With this normalization,

the long-time dynamics of two slightly perturbed initial conditions with different random

actuation sequences should approach unity. The error at t = 0 represents the discrepancy

between the full state and its reconstruction when passed through the autoencoder. The

ensembled-averaged tracking error rises steadily at one slope for the first 50 time units and

then at a lower slope after that. Once the curve levels off, the true and model trajectories have

become uncorrelated. Based on these results, the model tracks well for ∼ 50 time units. For

reference, the Lyapunov time (inverse of the Lyapunov exponent) for the unactuated system

is τL = 48 time units [90].

In addition to the tracking error, we also check the ability of the DManD model to capture
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the temporal autocorrelation of the kinetic energy. To compute this autocorrelation we take

the instantaneous kinetic energy of the flow

E(t) =
1

2LxLz

, Lz

0

, 1

−1

, Lx

0

1

2
u · u dx, (4.29)

and subtract the mean to yield k(t) = E(t) − 〈E〉. Figure 4.5b shows this temporal au-

tocorrelation computed from the DNS, the DManD model, and the autoencoder. We see

the temporal autocorrelation of the model matches the true temporal autocorrelation closely

over the first ∼ 30 time units.

Due to the chaotic nature of this system, short-time tracking is limited by the Lyapunov

time. Nevertheless, a good model should still be able to capture the long-time statistics of

the original system. In Fig. 4.6 we show the four components of the Reynolds stress for the

DNS, the DManD model, and the autoencoder. We computed these statistics by averaging

over the entire testing dataset (100 trajectories 300 time units in length). For all these

quantities, the DManD model is in excellent agreement with the DNS. In the cases of
8
u2
y

9

and 〈u2
z〉, surprisingly, the autoencoder appears to perform worse than the DManD model at

matching the DNS. With perfect prediction of the DManD model, it would exactly match

the autoencoder. This slight disagreement indicates that some of the states in the manifold

coordinates (h) are driven somewhat outside the expected range of values.

All of the statistics shown so far indicate that the DManD model accurately captures

the dynamics of the randomly actuated DNS with only dh = 25 degrees of freedom. The

last step before using this model in the RL framework is training the reward network as

described in Sec. 4.2.3. We trained a NN with the architecture in Table 4.1. In Fig. 4.7a

we show a PDF of the parity plot between the true and predicted drag on test data, and

report the MSE on the normalized data. The excellent agreement indicates we can compute

accurate values of the reward directly from h.

Finally, although we computed the manifold coordinate system directly from the state,
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Figure 4.6: Four components of the Reynolds stress for the DNS, the DManD model, and the
autoencoder.

a natural extension of this work is to use a more limited set of observations. As a first step

in this direction, we trained a NN O(·) to map 32 × 32 wall shear rate observations at the

bottom wall to the manifold coordinate system:

h̃ = O(∂yux|y=−1; θO). (4.30)

The details of this NN are included in Table 4.1. This mapping allows us to test if it is

possible to directly use wall observables that are experimentally realizable with our control

policy. In Fig. 4.7b we show the parity plot of reconstructing h from wall observables and

report the MSE for normalized data. While the parity plot is not as sharply peaked as we

might like, note that it is shown on a logarithmic scale.
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Figure 4.7: (a) Joint PDF of the true (D) and predicted drag (D̃) from the reward network,
Eq. 4.20. (b) Joint PDF of the true (h) and predicted (h̃) low-dimensional state from the observation
network, Eq. 4.30. Note the logarithmic scales. The cyan line indicates perfect reconstruction, and
the MSE is for D and h with the mean subtracted and divided by the standard deviation.

4.3.4 DManD-RL Performance

Now with an efficient and low-dimensional model of the underlying dynamics of the turbulent

flow in hand, we can quickly obtain a control agent by performing deep RL on the DManD

model rather than the original costly DNS. In this work, we employ the Soft Actor-Critic

(SAC) RL algorithm [76], which requires training a policy function (i.e. agent) π, two critic

functions, Q1 and Q2, and a value function V . The RL networks are trained for 10,000

episodes, with each episode consisting of DManD model trajectories of 300 time units. The

initial condition for each episode is selected at random from our training data that consists

of 1.2 · 105 time units and snapshots of data. The selection of 10,000 initial states from this

dataset ensures the RL has a wide variety of trajectories to learn a general policy. Here we

choose the action time to be τ = 5.0 and γ = 0.99. Accordingly, the discount factor over

one Lyapunov time τL ≈ 48 of the unactuated system is γτL/τ ≈ 0.9.

Once trained, we apply the DManD-RL agent to the original turbulent DNS, with which

it has never directly seen or interacted. To deploy the agent for control, we insert the already-

trained encoder, χ, between the agent and the environment to map state observations of the

turbulent DNS to the manifold representation, h, as this is the observation space where the
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DManD-RL agent was trained.

Shown in Fig. 4.8 are times series, of length 900, of the drag in various cases from DNS

trials using 25 different unseen initial conditions. Here we define the % drag reduction,

DR =
D0 −D

D0

· 100%, (4.31)

where D0, and D is the time averaged drag experienced for the 25 test trajectories over 900

time units under no control and control, respectively. In Fig. 4.8a we plot the drag of the

25 test trajectories in the absence of control and highlight that the system predominately

remains turbulent, with a few laminarizations. In Fig. 4.8b we show that utilizing a random

jet actuation policy does not reduce drag and even results in increased drag DR = −4%

across the 25 trajectories over the 900 time unit window. In Fig. 4.8c we show that our

DManD-RL agent is able to significantly reduce the drag of the turbulent DNS and laminarize

21/25 turbulent initial conditions, yielding DR = 48%. In comparison, we show in Fig.

4.8d that the conventionally trained RL agent, which was trained directly on the turbulent

DNS, results laminarization of 23/25 test trajectories with DR = 56%, similar to that of

the DManD-RL method. We highlight here, however, that the DManD-RL control agent

was obtained at a small fraction of the computational cost compared to its conventional

counterpart. For reference, the DManD-RL agent required ∼ 3.7s per training episode,

while a conventional application of deep RL required ∼ 1630s per episode, on a 2.40GHz

Intel Xeon CPU E5-2640 v4. This corresponds to a 440 times speedup in training time.

Finally, we now limit the state observation of the DManD-RL agent to information ob-

servable at the wall i.e. wall shear rate, by pairing the DManD-RL agent trained for Fig.

4.8c with the observation network (O(∂yux|y=−1; θO)). We demonstrate in Fig. 4.8e that the

agent with only access to wall observations, at = π(O(∂yux|y=−1; θO); θA), performs just as

well as its counterparts, with 20/25 test trajectories laminarizing and DR = 50% over the

900 time unit window. Here we note that DR is influenced by how many and how quickly
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Figure 4.8: Trajectories beginning from test initial conditions with (a) no control, (b) random
actuations, (c) DManD-RL control, (d) DNS-based RL control, and (e) DManD-RL control using
wall observations. Each figure shows 25 test trajectories.
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test trajectories laminarize, as well as how turbulent transient trajectories are attenuated

by the various controllers and we emphasize that all of the RL controllers perform simi-

larly. Furthermore, there is nothing particularly notable about the trajectories that failed

to laminarize over this time window, and, given sufficient time, the controller would likely

laminarize these trajectories too.

Interpretation of the mechanism of drag reduction

Given the observed effectiveness of the control policy discovered by the RL algorithm, it

is desirable to understand how the controller is modifying the flow. In this section, we

describe two sets of observations that may shed some light on this issue. The first focuses

on the control action in the time preceding a laminarization event. Shown in Fig. 4.9a is

a time series depicting the drag and left actuator control signal of a DNS controlled by

the DManD-RL agent. Fig. 4.9b shows the wall actuation and an isosurface of streamwise

velocity illustrating the streamwise streak structure at t = 149, indicated by the first red dot

on the drag time series in fig:Mechanism1-a. Here the left slot jet is sucking, and the right

blowing, drawing the fluid (and low-speed streak indicated by the isosurface) to the left. At

t = 179 (second red dot and Fig. 4.9c), the streak is now located over the left jet. Once

the streak is above the left jet, the agent executes a series of actions that destabilize the

low-speed streak, causing it to break down, shown in Fig. 4.9d. In the wake of the collapse,

the agent initiates a strong actuation that leads to the formation of two low-speed streaks,

shown in Fig. 4.9e. This double low-speed streak structure then proceeds to decay to the

laminar state, with the agent applying weak, attenuating control actions to expedite the

process.

A DNS initialized with this double-streak structure flow field in the absence of control

results in the natural laminarization of the flow. In wall-bounded turbulence, streaks take on

a characteristic spacing of 100 wall units [180], which is approximately the width of the MFU

cell [77, 96]. The two-streak state has a spanwise length scale that is too small and thus too
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Figure 4.9: (a) Time series of drag (red) and actuation signal of the left jet (black) for an example
DNS trajectory controlled by the DManD-RL agent. (b)-(e) snapshots of the trajectory at times
marked in (a). These snapshots include an isosurface of ux = −0.35 and the jet actutations (red is
fluid injection, blue is fluid suction).
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dissipative to self-sustain, leading to breakdown in the SSP and laminarization of the flow.

In approximately half of the trials that laminarized, this double-streak structure appeared

before laminarization. We comment the reason why every trajectory does not laminarize this

way is likely due to the RL agent learning multiple approximately optimal strategies–which

is one of the advantages of the SAC framework. While advantageous for performance, The

underlying mechanistic strategy behind the other half of the laminarizations is not currently

clear.

This is a very interesting and counterintuitive strategy, particularly because it is intrin-

sically nonlinear. At any given instant, the two-jet system can only drive a wall-normal flow

with the same fundamental wavelength as the domain. But here the RL agent implements a

time-dependent policy that ends up generating a flow structure with, roughly speaking, half

the wavelength of the domain. I.e. it has figured out a way to drive structure to a smaller

scale, where viscosity can take over and drive the flow to laminar.

The second set of observations we highlight addresses the relationship between the RL

control policy and a flow control strategy, widely-studied with simulations, that we mentioned

in Sec. 4.1 – opposition control. In opposition control, the entire wall-normal velocity field at

both walls is set to have the opposite sign as the wall-normal velocity at an x− z “detection

plane" located at some y near the wall. We highlight that this method possesses much

greater control authority than in the present work, as it has full spatial control at both walls

whereas here we only actuate two spatially localized slot jets on a single wall. Furthermore,

our controller holds a constant actuation for multiple time units, whereas opposition control

updates on the time scale of a time step.

With these differences in mind, we investigate trajectories controlled by the DManD-RL

policy in the context of potential similarities to opposition control. To make this comparison,

we first must characterize the wall-normal velocity at the detection plane, but because the

jets span the length of the channel this velocity varies. We take a characteristic detection-

plane velocity to be the wall-normal velocity averaged over a jet weighted by the shape of
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Figure 4.10: Joint PDF of max jet velocity and average wall-normal velocity at (a) y+ ≈ 10 and
(b) y+ = 33 (the cyan dotted line is vJ = −〈uy〉J).

the jet, denoted 〈uy〉J .

In Fig. 4.10 we plot a PDF of the maximum jet velocity vJ and the wall-normal velocity

〈uy〉J (for both jets separately) at a detection plane of y+ ≈ 10 (Fig. 4.10a) and y+ = 33 (Fig.

4.10b). We remove laminarization events from this dataset by omitting states with a drag

less than 10 because we are interested in the control behavior while the flow is still turbulent.

In these plots, we denote opposition control with a unit gain (vJ = −〈uy〉J) with the cyan

line. If the agent performs opposition control, the joint PDF should show a tight distribution

with a negative slope. At the detection plane y+ ≈ 10 that has been reported to be optimal

for opposition control, [22] the RL agent behaves like an anti-opposition controller because

there is a positive slope in the PDF. However, at a higher detection plane of y+ = 33,

the control agent has a high probability of actuating with sign opposite to 〈uy〉J , as in

opposition control. We highlight that the PDF is quite broad, which indicates although the

control is opposition-like, the control response is much more complex and diverse than that

of opposition control.

Furthermore, we can directly compare our results to Ibrahim et al. [89], who applied

standard opposition control to this same Couette domain. In their work, the authors selected

a detection plane of y+ = 10 and varied the wall-normal velocity scale φ = [0.1, 0.2, 0.5, 1].

For these parameters, the authors found that the probability of the flow remaining turbulent
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after 900 time units of control, the length of our test trajectories shown in Fig. 4.8, to be

approximately [0.77, 0.72, 0.69, 0.42]. For comparison, with 21/25 trajectories laminarizing,

our DManD-RL agent’s probability of turbulence is 0.16. This improvement is extremely

promising for the future use of RL in controlling turbulent flows, especially as the DManD-RL

agent had major and realistic restrictions placed on its control authority when compared to

opposition control. We also note that this improvement in control further supports the claim

that the agent learned a much more complex and diverse control strategy than opposition

control.

In addition to these results we can also compare the dynamics before laminarization

between our results and Ibrahim et al. [89]. Notably, Ibrahim et al. [89] found that the

phase space portraits of opposition control show much lower power input (proportional to

drag) at φ = 1 compared to the unactuated system. Distinctively, opposition control does

not appear to exhibit any high-drag bursting events resulting in a 45% reduction in the

r.m.s. fluctuation of the power input. In contrast, we highlight that the DManD-RL agent

frequently exhibits high-drag behavior prior to laminarization. For example, in Fig. 4.8c,

we observe many high-drag “spikes” preceding laminarization. These spikes are of equal or

greater drag relative to the uncontrolled flow, shown in Fig. 4.8a. This highlights a major

distinction between opposition control and the strategy learned by the DManD-RL agent,

which is the ability to captilize on pathways that momentarily increase drag, but lead to

laminarization at later times. Opposition control does not exhibit these high-drag excursions

on its path to laminarization.

4.4 Summary

In this chapter, we efficiently obtained a control strategy from a limited data set to reduce

the drag in a turbulent Couette flow DNS via the control of two streamwise slot jets using

the DManD-RL framework. Using a combination of POD and autoencoders, we extracted
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a low-dimensional manifold representation of the data, whose dynamics we modeled using

a neural ODE. We show that our 25-dimensional DManD model qualitatively captures the

turbulent self-sustaining process and has good short-time predictive capabilities, matching

the kinetic energy temporal autocorrelation for 30 time units. Furthermore, our DManD

model excellently captures long-time statistics such as Reynolds stress. In order for this

DManD model to be viable for RL, we added an additional reward network to predict the

system drag, D, given the low-dimensional manifold state, h.

We then obtained a control strategy from our DManD model using deep RL, which

successfully transferred to and controlled the original DNS. We were able to expeditiously

train an RL agent using DManD-RL 440 times faster than a direct application of deep RL

to the DNS.

We additionally emphasize here that the data generation and DManD model training in

this framework is a fixed one-time cost that is greatly exceeded by the cost of conventional

DNS-based RL training. For reference, we found the DNS-based RL training required over

a month of training to accomplish 1,000 training episodes, while all steps of the DManD-RL

framework (data generation, dynamics model training, 10,000 episodes of RL training) were

accomplished within two days.

We find that our DManD-RL agent can consistently drive unseen turbulent initial condi-

tions in the original DNS to the laminar state, despite never having any direct observations

or interactions with the DNS. We also demonstrate that there exists a mapping between wall

observables and the manifold state, which allowed us to apply the DManD-RL agent with

equal effectiveness using only wall shear rate observations.

When investigating the mechanistic nature of the learned control strategy, we observed

multiple control strategies executed by the DManD-RL agent. One novel strategy the agent

appears to employ consists of manipulating the low-speed streak to a preferred location,

causing the breakdown of the streak, and in the wake of the break-down forming two low-

speed streaks in its place. These two low-speed streaks are unsustainable within the domain,
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breaking the SSP and resulting in laminarization.

When comparing the ensemble behavior of our control agent to opposition control, we

find that the controller behaves anti-oppositionally at the commonly-used detection plane

location of y+ = 10. At a detection plane of y+ = 33, we find that the ensemble behavior

is opposition-like, however, the broadness of the control action distribution, as well as the

observation of the two-streak structure, leads us to conclude that the learned controller

behavior is much more complex and diverse than a simple opposition feedback rule. We also

compare our DManD-RL agent’s control performance to that of opposition control and we

find that our control agent out-performs opposition control by a notable margin (16% vs.

42% probability of remaining turbulent after 900 time units of control) despite our control

set-up and agent possessing much greater restrictions on it spatial and temporal control

authority (fixed time intervals of control and localized jets on only the lower wall) compared

to opposition control.

Appendix

In this section we present a method for generating a set of actions between -1 and 1 with

equal probability that satisfy a zero-net-flux constraint. In order to satisfy this constraint

for an arbitrary number of actions ai from i = 1, ..., N , we set aN = −
2N−1

i=1 ai with the

constraint that ai from i = 1, ..., N − 1 is drawn from a region that guarantees aN ∈ [−1, 1].

The region that guarantees this constraint is the set of all points that lie inside and on an

(N − 1)-dimensional cross-polytope [31], which is equivalent to the L1 ball (
2N−1

i=1 |ai| ≤ 1)

[30]. Thus, if we can uniformly sample points within the cross-polytope we can guarantee

that all actions lie between -1 and 1 and we do not introduce bias towards specific actions.

A useful way of viewing this problem is to consider what transformation takes us from

uniformly sampling a hypercube of untransformed actions defined by a′i ∈ [−1, 1] for i =

1, ..., N − 1 to the cross-polytope defined by vertices {±ei}, where ei is a vector with 1 at
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Figure 4.11: The transformations required to uniformly sample a section of a cross-polytope in (a)
two dimensions and (b) three dimensions. In three dimensions, you first perform the transformation
shown in (b) and then in (a).

the ith location and 0 elsewhere. For 3 actions this corresponds to mapping a′i uniformly

sampled in a square with vertices {[1, 1], [1,−1], [−1, 1], [−1,−1]} to ai uniformly sampled in

a square (diamond) with vertices {[1, 0], [−1, 0], [0, 1], [0,−1]}. For 4 actions this corresponds

to mapping a′i uniformly sampled in a cube to ai uniformly sampled in an octahedron. The

two-dimensional case is symmetric across four quadrants and the three-dimensional case is

symmetric across eight octets, so, without a loss of generality, we discuss how to sample

a right isosceles triangle and a trirectangular tetrahedron shown in Fig. 4.11a and 4.11b,

respectively. This is equivalent to only considering the absolute values of a′i

In Fig. 4.11a we present the idea behind uniformly sampling points in the right isosceles

triangle. We uniformly sample the right isosceles triangle by first sampling the y-axis with

a higher probability of points lying on the bottom than on the top (i.e. |a2| = 1 −
:

|a′2|).

Then we sample uniformly along the line segment parallel to the base of the triangle with

length
:

|a′2|, such that a1 = (1 − |a′1|)
:

|a′2|. This is a specific case of uniformly sampling

points in a triangle which is presented in Glassner [60]. Fig. 4.11b shows how to extend this

idea to the trirectangular tetrahedron. In this three-dimensional case, we must sample the

base with a higher probability such that |a3| = 1 − 3
:

|a′3|. Instead of a line segment, this

results in a right isosceles triangle with two edges of length 3
:

|a′3|. Computing the remaining
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actions then simply requires performing the same steps as in the two-dimensional case (Fig.

4.11a).

Based on this principle of sampling each dimension one at a time with the appropriate

weighting, we can write a general (N − 1)-dimensional mapping from a′i to ai, where we

simply multiply by the sign of a′i to allow all values of the cross-polytope. To perform these

operations for N ≥ 3, first choose N − 1 untransformed actions between a′i ∈ [−1, 1] (e.g.

actions output from an agent with tanh activations), then transform these actions such that:

ai = sgn(a′i)(1− |a′i|1/i)ΠN−1
j=i+1|a′j|1/j, i = 1, ..., N − 2 (4.32)

aN−1 = sgn(a′N−1)
;
1− |a′N−1|1/(N−1)

<
(4.33)

aN = −
N−1!

i=1

ai (4.34)

This mapping results in a set of actions that satisfy a zero-net-flux constraint and all actions

are sampled with equal probability when sampling untransformed actions uniformly.
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5

Isolating the manifold with implicit

weight-decay autoencoders 1

While many phenomena in physics and engineering are formally high-dimensional, their long-

time dynamics often live on a lower-dimensional manifold. The present work introduces an

autoencoder framework that combines implicit regularization with internal linear layers and

L2 regularization (weight decay) to automatically estimate the underlying dimensionality of

a data set, produce an orthogonal manifold coordinate system, and provide the mapping

functions between the ambient space and manifold space, allowing for out-of-sample projec-

tions. We validate our framework’s ability to estimate the manifold dimension for a series of

datasets from dynamical systems of varying complexities and compare to other state-of-the-

art estimators. We analyze the training dynamics of the network to glean insight into the

mechanism of low-rank learning and find that collectively each of the implicit regularizing

layers compound the low-rank representation and even self-correct during training. Analysis

of gradient descent dynamics for this architecture in the linear case reveals the role of the

internal linear layers in leading to faster decay of a “collective weight variable" incorporating

all layers, and the role of weight decay in breaking degeneracies and thus driving convergence

1The text of this chapter is adapted from the prepublication by K. Zeng and M. D. Graham on arXiv,
submitted to Machine Learning: Science and Technology, 2023
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along directions in which no decay would occur in its absence. We show that this frame-

work can be naturally extended for applications of state-space modeling and forecasting by

generating a data-driven dynamic model of a spatiotemporally chaotic partial differential

equation using only the manifold coordinates. Finally, we demonstrate that our framework

is robust to hyperparameter choices.

5.1 Introduction

Nonlinear dissipative partial differential equations (PDEs) are ubiquitous in describing phe-

nomena throughout physics and engineering that display complex nonlinear behaviors, out-

of-equilibrium dynamics, and even spatiotemporal chaos. Although the state space of a PDE

is formally infinite-dimensional, the long-time dynamics of a dissipative system are known

or suspected to collapse onto a finite-dimensional invariant manifold, which we will denote

M. [85, 189, 218]. The same idea holds for high-dimensional dissipative systems of ordinary

differential equations (or discretized PDEs), and in any case, data from any system under

consideration will be finite-dimensional, so we will consider manifolds of dimension dm em-

bedded in an ambient space Rdu , where often dm ≪ du. That is to say, in order to accurately

describe the manifold, and thus the underlying dynamics of the system, only dm independent

coordinates are needed (at least locally). In general, no global coordinate representation of

dimension dm is available, but Whitney’s theorem guarantees that a global representation

with embedding dimension de ≤ 2dm can be found. Alternately, in principle, an atlas of

overlapping charts with dimension dm can be constructed to provide local dm-dimensional

representations [46, 111]. For the most part, we address the task of learning minimal global

manifold representations (although we will show that our work can be extended into local

representations), and consider cases where de = dm.

Obtaining a minimal manifold coordinate description for these systems based on an anal-

ysis of data from that system is ideal for a number of dynamical applications such as state-
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space identification, reduced-order modeling and control, and system interpretability, as well

as many other downstream tasks such as classification. However, estimating the underlying

dimensionality of a data set and obtaining the manifold coordinate transformations is gener-

ally a nontrivial task. Given access only to data represented in the high-dimensional ambient

space of a system, the challenge becomes the following: 1) determining dm, 2) construct-

ing a coordinate system describing points in M, and 3) obtaining the mapping functions

E : Rdu → Rdm and D : Rdm → Rdu . In the interest of identifying and modeling the under-

lying core dynamics of these systems, our aim is to address these three challenges using a

single framework trained on high-dimensional ambient data alone.

These three challenges have been tackled by an extensive variety of methodologies, but

we emphasize that rarely are all three challenges addressed simultaneously in a single frame-

work –often only the first challenge of identifying the manifold dimension is attempted. For

complex dynamical systems, many of these methods developed in systems theory rely on high-

precision analyses and access to the underlying equations. For example, Yang and Radons

[214], Yang et al. [215] estimated the manifold dimension of the Kuramoto-Sivashinsky equa-

tion (KSE), a formally infinite-dimensional system with finite-dimensional dynamics, for a

range of parameters using covariant Lyapunov vectors, monitoring when the Lyapunov spec-

trum of the system begins to rapidly fall. Ding et al. [36] corroborated the dimension

of invariant manifold containing the long time dynamics of the KSE for a domain size of

L = 22 via a Floquet mode approach applied to organized unstable periodic orbits identified

in the system. These methods require high precision solutions of the governing equations and

access to very specific dynamical data (e.g. periodic orbits) that for more complex systems

such as the Navier-Stokes equations are nontrivial or even intractable tasks. Furthermore,

these methods are not applicable when the governing equations are not known or when data

is collected from general time series rather than precisely prescribed trajectories. For these

reasons, these methods will not be the focus of this work.

Towards more generalized and data-driven approaches, the task of estimating the number
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of degrees of freedom required to represent a set of data without loss of information has been

explored in the fields of pattern recognition, information sciences, and machine learning.

These methods produce estimates of dm (or some upper bound) either using global or local

analyses of the dataset.

Global approaches tackle this challenge in several ways. Linear global projection meth-

ods, such as Principal Component Analysis (PCA) [98] and its variants (e.g. Sparse PCA

[223] and Bayesian PCA [7]), determine a linear subspace in which the projection of the

data minimizes some projection error. These methods are useful in that not only are they

computationally tractable, they also directly provide the mapping functions to the low di-

mensional representation. However, as they are linear methods, they generally overestimate

dm, since representing data on a curved manifold of dimension dm will require at least dm+1

coordinates.

Nonlinear PCA, or deep autoencoders in general, deal with nonlinearity using neural net-

works tasked with autoassociation [99]. Autoencoders can be used to estimate dm by tracking

the mean squared reconstruction error (MSE) as a function of the bottleneck dimension dz of

the networks. If the MSE significantly drops above a threshold value of dh, one can infer that

the minimum number of degrees of freedom needed to represent the system data is reached.

In applications toward complex high-dimensional dynamical systems including discretized

dissipative PDEs, Linot and Graham [122, 123] and Vlachas et al. [203] used undercomplete

autoencoders to estimate the manifold dimension of data from the KSE this way. However,

as system complexity and dimensionality increase, the MSE drop off becomes less and less

sharp [16, 94, 122, 124]. Additionally, a practical drawback of this type of approach is it

requires training separate networks with a range of dz.

Towards more automated autoencoder-based frameworks, several works have incorpo-

rated the heuristic false-nearest neighbor algorithm (FNN) [100] to target the embedding

dimension for state-space reconstructions of a time-series signal that come from systems

with manifolds with dm = 3. Specifically, Gilpin [59] incorporated an additional loss based
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on the FNN metric to penalize the encoder outputs. This formulation, however, penalizes

both redundant latent variables as well as those capturing the manifold, leading to high

sensitivity to the regularization term [209]. To address this, Wang and Guet [209] incorpo-

rated an attention map to explicitly mask superfluous latent variables based on the FNN

metric. Practically, these frameworks require repeatedly computing Euclidean distances be-

tween training data points for a range of embedding dimensions at each iteration of training,

which is not ideal for systems of increasing complexity and dimensionality. Furthermore, the

FNN targets the embedding dimension, which is often higher than the manifold dimension.

Several notable methods of dimensionality reduction tools utilize local computations. A

large portion of these methods belong to the class of methods known as multidimensional scal-

ing (MDS), which are concerned with preserving some local or pairwise characteristics of the

data. These include Laplacian Eigenmaps [5], t-distributed stochastic neighbor embedding

[193], ISOMAP [191] and Locally Linear Embeddings [166]. However, a major distinction

between these methods and the goals of this chapter is these methods require choosing a

manifold dimension beforehand to embed the data into, and are generally applied towards

data visualization applications. ISOMAP [191], while capable of providing an “eyeballed”

estimate of dm via error curves, struggles to handle higher dimensionality data [15]. Several

other principled dm estimation methods, such as the Levina-Bickel method [114] and the

Little-Jung-Maggioni method (multiscale SVD) [128], estimate dm by averaging estimates

made over neighborhoods of data points. Multiscale SVD and the Levina-Bickel methods

are further discussed below. Importantly, all of these local methods lack one or more of the

following features: the ability to estimate dm, project new out-of-sample data points into

manifold coordinates, or provide a coordinate system for the dm-dimensional representation.

In this work, we address the three aforementioned challenges using a deep autoencoder

framework that drives the rank of the covariance of the data in the latent representation

to a minimum. This rank will be equal to the dimension dm of the manifold where the

data lies. Our framework utilizes two low-rank driving forces. The first is known as implicit
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regularization, which is a phenomenon observed in gradient-based optimization of deep linear

networks (i.e. multiple linear layers in series) leading to low-rank solutions [74]. Although

a series of linear layers is functionally and expressively identical to a single linear layer,

the learning dynamics of the two are different. The mechanisms of this phenomenon are

an ongoing area of research with primary focus in matrix [2, 74] and tensor factorization

[161]. Importantly, it has been observed that implicit regularization does not occur for

unstructured datasets such as random full-rank noise [2], indicating that the phenomenon

depends on the underlying structure of the data. Recently, implicit regularization has been

extended to autoencoders (Implicit Rank Minimizing autoencoders, IRMAE) to learn low-

rank representations, improving learning representations for image-based classification, and

generative problems by Jing et al. [97], whose observations form the foundation in this work.

The second low-rank driving force is L2 regularization, often referred to by its action

when combined with gradient descent: weight-decay. Weight-decay is a popular weight

regularization mechanism in deep learning that forces the network to make trade-offs between

the standard loss L of the learning problem with properties of the weights of the network, θ,

L = L+
λ

2
‖θ‖2p. (5.1)

Recently, Mousavi-Hosseini et al. [139] showed that in two-layer neural-networks the first

layer weights converge to the minimal principal subspace spanned by a target function only

when online stochastic gradient descent (SGD) is combined with weight decay. The au-

thors found that weight-decay allowed SGD to avoid critical points outside the principal

subspace. Here we demonstrate a similar synergistic result when weight-decay is combined

with implicitly-regularized autoencoders.

The goal of the present work is to demonstrate that implicit regularization combined

with weight-decay in deep autoencoders, an approach we call Implicit Rank Minimizing

Autoencoder with Weight-Decay or IRMAE-WD, can be applied toward datasets that lie on
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a manifold of dm < du, to 1) estimate the dimension of the manifold on which the data lie, 2)

obtain a coordinate system describing the manifold, and 3) obtain mapping functions to and

from the manifold coordinates. We highlight that IRMAE-WD produces by construction an

orthogonal manifold coordinate basis organized by variance, and does not rely on extensive

parameter sweeps of networks [122, 203] or external estimators [59, 209] – only a good upper-

bound guess of the manifold dimension is needed. (And if this guess is not good, the results

of the analysis will indicate so.) These properties make the IRMAE-WD framework a natural

first step for data-driven reduced-order/state space modeling and many other downstream

tasks.

The remainder of this chapter is organized as follows: In Sec. 5.2 we describe the IRMAE-

WD framework. In Sec. 5.3.1 we apply it to a zoo of datasets ranging from synthetic data sets

to physical systems that exhibit complex chaotic dynamics including the Lorenz system and

the Kuramoto-Sivashinsky equation. In Sec. 5.3.2 we overview performance sensitivity to

hyperparameters. In Sec. 5.3.3 we compare the framework’s ability to estimate the underlying

dimensionality of complex datasets against several state-of-the-art estimators. In Sec. 5.3.4,

we demonstrate how this framework can be naturally extended for downstream tasks such

as state-space modeling and dynamics forecasting in the manifold coordinates. Finally, in

Sec. 5.3.5, we examine the training dynamics of IRMAE-WD to isolate the origins of low-

rank in both “space” (i.e. how the data representation is transformed as it passes through

the architecture) and “time” (i.e. how the data representation is transformed as training

progresses). We glean insight into network learning and, with an analysis of a special case

of a linear autoencoder, provide a rationale for how implicit regularization and weight decay

achieve a synergistic effect. Appendix 5.5 provides a summary of our architectures, Appendix

5.6 details an application to the MNIST handwriting dataset, and Appendix 5.7 contains

the analysis of the linear autoencoder that provides some theoretical understanding of the

observed performance of the method.
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5.2 Formulation

Our proposed framework uses an autoencoder architecture. Autoencoders are composed of

two subnetworks, the encoder and decoder, which are connected by a latent hidden layer. For

dimensionality reduction problems, this latent hidden layer is often a size-limiting bottleneck

that explicitly restricts the number of degrees of freedom available to represent the input

data. This architecture, which we will denote as a standard autoencoder, forces the encoder

network, z = E(u; θE), to compress the input data, u ∈ Rdu , into a compact representation,

z ∈ Rdz , where dz < du. The decoder, ũ = D(z; θD), performs the inverse task of learning to

reconstruct the input, ũ ∈ Rdu , from the compressed representation, z. The autoencoder is

trained to minimize the mean squared error (MSE) or reconstruction loss

L(u; θE, θD) = 〈||u−D(E(u; θE); θD)||22〉 (5.2)

Here 〈·〉 is the average over a training batch and θi corresponds to the weights of each

subnetwork. We then deviate from the standard autoencoder architecture by adding an

additional linear network, W(·; θW ), between the encoder network and decoder: i.e. z =

W(E(u; θE); θW ), where W(·; θW ) is composed of n trainable linear weight matrices denoted

as Wj (i.e. linear layers) of size dz ×dz in series, as was done in Jing et al. [97]. Although W

adds additional trainable parameters compared to a standard autoencoder, it does not give

the network any additional expressivity, as linear layers in series have the same expressivity

as a single linear layer. Thus, the effective capacity of the two networks are identical. Impor-

tantly we train the framework with weight-decay shown in Fig. 5.1a with the autoassociation

task,

L(u; θE, θW , θD) = 〈||u−D(W(E(u; θE); θW ); θD)||22〉+
λ

2
‖θ‖22. (5.3)

Here we contrast IRMAE-WD from typical autoencoders tasked with finding minimal or low-

dimensional representations with two distinctions. First, rather than parametrically sweep

dz, as is usually done with standard autoencoders, we instead guess a single dz > dm, and
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rely on implicit regularization and weight-decay to drive the latent space to an approximately

minimal rank representation. If this rank is found to equal dz, then dz can be increased and

the analysis repeated.

Once the regularized network is trained, we perform singular value decomposition on the

covariance matrix of the latent data matrix Z (i.e. the encoded data matrix) to obtain the

matrices of singular vectors U and singular values S, shown in Fig. 5.1b. Here, the number

of significant singular values of this spectrum gives an estimate of dm, as each significant

value represents a necessary coordinate in representing the original data in the latent space.

(More precisely, we get an estimate of de, although as we illustrate below, the analysis can

be performed on subsets of data to find dm in the case dm < de.)

Shown in Fig. 5.1c, we can naturally project z onto UT to obtain UT z = h+ ∈ Rdz where

each coordinate of h+ is orthogonal and ordered by contribution. As UUT = I, we can

recover the reconstruction of z, z̃, by projecting h+ onto U . Importantly, as the framework

automatically discovers a latent space in which the encoded data only spans dm (reflected

in the number of significant singular values), the data only populates the latent space in

the directions of the singular vectors corresponding to those significant singular values. In

other words, the encoded data does not span in the directions of the singular vectors whose

corresponding singular values are approximately zero and UUT z ≈ Û ÛT z holds, where

Û are the singular vectors truncated to only include those whose singular values are not

approximately zero.

This observation allows us to isolate a minimal, orthogonal, coordinate system by sim-

ply projecting z onto Û to obtain our minimal representation ÛT z = h ∈ Rdm , which

we refer to as the manifold representation, shown in Fig. 5.1d. As UUT z ≈ Û ÛT z and

u ≈ D(W(E(u; θE); θW ); θD), we can transform between between our manifold representa-

tion, h, and the ambient representation, u with minimal loss.

To glean insight into the learning mechanism of autoencoders with implicit regularization

and weight-decay in a tractable manner, in Appendix 5.7 we analyze the dynamics of gradient
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Figure 5.1: Our implicit and λ weight-decay regularized deep autoencoder framework a) network
architecture with regularization mechanisms, b) singular value decomposition of the covariance of
the learned latent data representation Z, c) projection of latent variables onto manifold coordinates
d) isolated projection of latent variables onto manifold coordinates.
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descent for a linear autoencoder acting on data whose covariance has rank r(= dm). For

this case, there is a family of solutions for the weight matrices in which they all have rank

r. For gradient descent near convergence to these low-rank solutions, implicit regularization

drives the weights exponentially fast toward a low-rank solution. The analysis shows that

there is a “collective" mode of decay toward the low-rank solution family in which all of the

weight matrices are coupled. The decay rate for this mode scales as 2 + n, where n is the

number of internal (square) linear layers. In the absence of weight decay, there are directions

with eigenvalues of zero that do not decay with training. When weight decay is added, these

formerly zero eigenvalues become negative, allowing decay from all directions to the low-rank

solution. In Sec. 5.3.5, we empirically observe the gradient updates and weight matrices of

the linear layers of our nonlinear network exhibiting this behavior.

An important practical detail during application of the present method is the choice of

optimizer for the SGD process. We found that it is very important to use the AdamW opti-

mizer [131] rather than the standard Adam optimizer. This distinction is important because

direct application of weight decay (L2 regularization) in the commonly used Adam optimizer

leads to weights with larger gradient amplitudes being regularized disproportionately [131].

AdamW decouples weight decay from the adaptive gradient update. We have found that

the usage of the base Adam optimizer with L2 regularization can lead to high sensitivity to

parameters and spurious results.

5.3 Results

5.3.1 Manifold Dimension Estimates: Example Systems

We now investigate IRMAE-WD applied to a zoo of datasets of increasing complexity, rang-

ing from linear manifolds embedded in finite-dimensional ambient spaces to nonlinear man-

ifolds embedded in formally infinite-dimensional ambient spaces.
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Data linearly embedded in a finite-dimensional ambient space

We first benchmark IRMAE-WD against a simple data set consisting of 5-dimensional noise

linearly embedded in an ambient space of 20 dimensions. Because this dataset exactly spans

5 orthogonal directions and is linearly embedded, Principal Component Analysis (PCA) is

able to extract dm from the data, which can be identified via the singular value spectrum

of covariance of the data matrix. Shown in Fig. 5.2a are the singular values obtained from

PCA, from the learned latent variables of IRMAE without and with weight-decay, and a

standard AE that is architecturally identical to IRMAE-WD without any regularization (i.e.

no W and λ = 0). For the standard autoencoder, while the singular values σi drop slightly

for index i > 5, the spectrum is broad and decays slowly, indicating that the learned latent

representation is essentially full-rank. In other words, the standard autoencoder, when given

excess capacity in the bottleneck layer, will utilize all latent variables available to it. In

contrast, for IRMAE-WD, the singular values for i > 5 drop to ∼ 10−16, just as in the case

of PCA. This indicates that IRMAE-WD is able to automatically learn a representation that

isolates the minimal dimensions needed to represent the data.

We further highlight here two important observations: 1) an autoencoder with weight

decay alone is insufficient in learning a sparse representation – it behaves very similarly

to the standard autoencoder, and 2) an autoencoder with implicit regularization alone, as

applied in Jing et al. [97], yields a sharp drop in σi for i > 5, but not nearly so dramatic as

when both linear layers and weight decay are implemented. This phenomenon is addressed

in Sections 5.3.5 and Appendix 5.7.



155

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

Figure 5.2: Normalized singular values, σi, of latent data covariances of various AE methods
applied to a) a 5-dimensional linear manifold embedded in R20 and b) a 3-dimensional nonlinear
manifold embedded in R4. The spectra obtained from PCA and a standard AE with no regular-
ization are provided. The value of dm is marked by the vertical red guide line.

Nonlinearly embedded finite-dimensional system: The Archimedean Spiral Lorenz

We now turn our attention to data from nonlinear finite-dimensional dynamical systems with

nonlinear embedded manifolds. Specifically, we take the Lorenz ‘63 system [130],

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(5.4)

which exhibits chaotic dynamics in R3 and embed this system nonlinearly in R4 by wrapping

the data set around the Archimedean spiral using the following mapping:

[x, y,αz cos (αz),αz sin (αz)] → [u1, u2, u3, u4],

with α = 0.2.

For parameters σ = 10, ρ = 28, β = 8/3, the Lorenz ‘63 exhibits chaotic dynamics. In
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Figure 5.3: Dynamics of the a) 3-dimensional Lorenz ‘63 equation and b) the 4-dimensional
Archimedean Lorenz equation. The color corresponds to the variable, u2 in the embedding, while
the spatial coordinates correspond to u1, u3, and u4.

other words, the underlying dynamics of this system live on a nonlinear 3-dimensional man-

ifold that is nonlinearly embedded in a 4-dimensional ambient space. We show in Fig. 5.2b

that IRMAE-WD correctly determines that this system can be minimally represented by 3

latent variables. In contrast, the application of PCA fails to identify the underlying struc-

ture of the data. Here, the PCA spectrum does not give a correct estimate of dm because

inherently a linear method cannot minimally capture the nonlinearity/curvature of the man-

ifold. Finally, a standard AE with dz > dm also fails to automatically learn a minimal

representation as it finds a full-rank data covariance in the latent space.

Global manifold estimates vs local estimates: quasiperiodic dynamics on a 2-

torus

We now turn our attention to a trajectory in R3 traversing the surface of a 2-torus with

poloidal and toroidal speeds that lead to quasiperiodic dynamics, as visualized in Fig. 5.4a.

Given infinite time, the particle will densely cover the surface of the torus. Although this

system lives on a two-dimensional manifold, the topology of this manifold is nontrivial and

a single global representation is not possible to obtain [46]. Here we apply IRMAE-WD

to this dataset, which consists of snapshots of the three coordinates along a trajectory.
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Figure 5.4: Quasiperiodic dynamics on a torus: a) global b) local patches.

In this example, we also use an overcomplete network design, z ∈ R10, to highlight that

even when dz > du, excess degrees of freedom are still correctly eliminated. We show in

Fig. 5.5a that when IRMAE-WD is tasked with learning a global representation by training

over the entire dataset, it (correctly) obtains a 3-dimensional latent space – the embedding

dimension of the manifold is de = 3. However, as described by Floryan and Graham [46], by

decomposition of the manifold into an atlas of overlapping charts, the intrinsic dimension

of the manifold containing the data can be captured. In Fig. 5.5b, we show IRMAE-WD

applied to the same dataset after being divided into patches found using k-means clustering,

illustrated in Fig. 5.4b. We show that for each subdomain, IRMAE-WD automatically

learns a minimal 2-dimensional representation of the data while simultaneously discarding

the remaining superfluous degrees of freedom. In this manner, IRMAE-WD can be deployed

on local regions of data to make estimates of the intrinsic dimension.
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Figure 5.5: Normalized singular values, σi, of learned latent spaces from IRMAE-WD applied to
the a) global torus dataset and b) local patches of the torus dataset. Results for a standard AE
latent space is shown in black. The value of dm is marked by the vertical red guide line.

Nonlinear manifold in an “infinite-dimensional" system: The Kuramoto-Sivashinsky

Equation

We now turn our attention to dissipative nonlinear systems that are formally “infinite” di-

mensional. Here, we investigate the 1D periodic Kuramoto-Sivashinsky equation (KSE):

∂v

∂t
= −v

∂v

∂x
− ∂2v

∂x2
− ∂4v

∂x4
(5.5)

in a domain of length L with periodic boundary conditions. For large L, this system exhibits

rich spatiotemporal chaotic dynamics which has made it a common test case for studies of

complex nonlinear systems. To analyze this formally “infinite” dimensional system, state

snapshots will consist of sampled solution values at equidistant mesh points in the domain.

We apply IRMAE-WD to extract the dimension of the underlying manifold for dynamics

for a range of domain sizes, focusing first on L = 22, which exhibits spatiotemporal chaotic

dynamics and has been widely studied. An example trajectory of this system is shown in

Fig. 5.6a. This system, although formally infinite-dimensional, has dynamics dictated by a
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Figure 5.6: Typical evolutions for the KSE in domain sizes of a) L = 22, b) L = 44, c) L = 66,
and d) L = 88.

nonlinearly embedded 8-dimensional manifold, as indicated by a variety of methodologies

[36, 122, 188, 215]. Using a data set comprised of 40,000 snapshots sampled on 64 mesh

points, and choosing a bottleneck layer dimension dz = 20, we show in Fig. 5.7a that the

singular values coming from IRMAE-WD drop dramatically above an index of 8, indicating

that we have automatically and straightforwardly learned a latent space of dimension dm = 8.

By contrast, neither PCA nor a standard AE leads to a substantial drop in singular values

over the whole range of indices.

For increasing domain sizes of of the KSE, the spatiotemporal dynamics of the system

increases in complexity. Fig. 5.6b-d show space-time plots of the dynamics for L = 44, 66, and

88, sampled on a uniform spatial mesh of 64, 64, and 128 points, respectively. Fig. 5.7b-c show
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Figure 5.7: Singular values, σi, of IRMAE-WD learned latent spaces for the KSE a) L = 22, b)
L = 44, c) L = 66, and d) estimate of dm averaged over 5 randomly initialized models as a function
of L, with the standard deviations represented by the error bars. In a)-c), the spectra obtained
from PCA and a standard AE with no regularization are also shown, and the value of dm is marked
by the vertical red guide line.
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the singular value spectra of the latent space covariances for L = 44 and 66, again showing a

drop of > 10 orders of magnitude at well-defined index values, indicating manifold dimensions

dm = 18 and 28, respectively. We highlight here that previous autoencoder methods [122,

123], using the trend in MSE with dz to estimate dm, struggle to make distinctions in the

manifold dimension for these domain sizes, while IRMAE-WD yields a well-characterized

value. Prior works relying on high-precision analyses of the dynamics based on detailed and

complex trajectory analyses have suggested that the manifold dimension for the KSE scales

linearly with the domain length L [188, 215]. In Fig. 5.7d we show the trend in dm vs. L

as determined with IRMAE-WD: we are able to very straightforwardly recover the linear

scaling without access to the underlying governing equations or periodic solutions.

5.3.2 Robustness and Parameter Sensitivity

In the following section we overview parametric robustness of IRMAE-WD, focusing on the

KSE L = 22 dataset. We choose this dataset as it comes from a nonlinear, high-dimensional

system governed by dynamics on a nonlinear manifold and is considerably more complex

than typical benchmark systems.

We first investigate the accuracy of the estimate of dm, where the correct value, based on

consistent results from many sources, is taken to be dm = 8. Fig. 5.8a shows the dimension

estimate as a function of number of linear layers n and weight decay parameter λ, with the

bottom row of the plot corresponding to the case n = 0 of a standard autoencoder with L2

regularization. We highlight that for a broad range of n and λ the framework is capable

of accurately estimating dm. It is not until there is significant regularization in terms of

both n and λ that the framework begins to fail. In the absence of implicit regularization

with linear layers the autoencoder cannot predict dm at all. Shown in Fig. 5.8b is the same

parameter sweep characterized by test MSE performance. This quantity is also relatively

insensitive to choice of parameters, and the regularized models operating with effectively

dm degrees of freedom in the representation achieve comparable reconstruction errors to
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Figure 5.8: Parametric sweep in n and λ of models trained over the KSE L = 22 dataset with
various degrees of implicit and weight regularization. The colors correspond to: a) average deviation
from dm over 3 models, b) average test MSE over 3 models, c) lowest fraction of trailing singular
values of 3 models (lower is better). In the leftmost column, labeled NA, λ = 0. The lower left
corner in each plot corresponds to a standard autoencoder.

standard autoencoders (bottom left corner). Finally, for an ideal regularized model, singular

values with indices greater than dm are zero, but practically this is not the case. In Fig. 5.8c,

we quantify the fraction of total variance in the representation coming from singular values

from the tail of the spectrum, i.e. with index greater than dm: σ+ =
2dz

i=dm+1
σi/

2dz
j=1 σj.

We highlight here that for a broad range of n and λ, the trailing singular values contribute on

the order of 10−9 of the total variance or energy, while the unregularized models contribute

a nontrivial 10−1. Finally, we comment that we did not observe strong dependence of the

choice of dz on the results, as long as dz > dm.

5.3.3 Comparison to other methods

In this section, we compare IRMAE-WD to two state-of-the-art estimators: Multiscale SVD

(MSVD) [128] and the Levina-Bickel method [114] as these methods are designed to provide

a direct estimate of the manifold dimension from data. We first compare to the MSVD

method, as it is also completely data-driven and also relies on analyzing singular value

spectra of the data. MSVD estimates dm by tracking the ensemble average of singular value

spectra obtained from a collection of local neighborhoods of data as a function of the size of
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the neighborhood radius, r. Development of gaps in the singular value spectra as r increases

coincides with a separation between directions on the manifold and those due to curvature.

A gap in the spectrum is presumed to indicate the manifold dimension, as PCA does for data

on a linear manifold. We revisit the KSE L = 22 and L = 44 datasets as they are nontrivial

complex systems with nonlinear manifolds. In Fig. 5.9a and Fig. 5.9b we show the MSVD

method applied to these datasets. We highlight here that MSVD, given these datasets, is

unable to unambiguously identify dm; Rather than one gap, there are multiple gaps in the

spectra, as indicated by the arrows. This is likely due to a key limitations of MSVD, which is

that it requires data in small enough r neighborhoods to accurately approximate the highly

nonlinear manifold as flat. I.e. in order to work in the limit of very small neighborhoods,

MSVD requires an ensemble of data points to have a sufficient number of neighboring points

at very small r. In our MSVD application, we were unable to access small values of r

without encountering neighborless point cloud samples. Many complex dynamical systems

do not uniformly populate their underlying manifolds, resulting in regions of high and low

density – indeed, data points on a chaotic attractor will be fractally, rather than uniformly,

distributed. As a result, it is difficult to collect dynamical data in which the manifold is

represented with uniform density or to collect enough data such that low probability regions

are dense when natural occurrences in these regions are low. IRMAE-WD does not suffer

from these limitations.

We also apply the Levina-Bickel method to these same datasets. This method utilizes

a maximum likelihood framework in estimating the dimensionality of the data from local

regions [114]. In our application we fix the number of neighbors, as suggested by Levina

and Bickel [114], rather than fixing the neighborhood radius. This method also fails to

provide reliable estimates given our datasets. We summarize this section with our findings

in Table 5.1. For the datasets considered, the Levina-Bickel method appears to underestimate

the dimensionality while MSVD tends to give ambiguous estimates.
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Figure 5.9: Ensemble MSVD singular values, Si, as a function of sampling neighborhood radius
r on the KSE a) L = 22 dataset and b) L = 44 dataset. The color of the lines corresponds to the
modal index of the spectra. The arrows mark the gaps that appear in the spectra, providing an
estimate of underlying dimensionality.

Table 5.1: Estimates of dm with various methods.

Dataset dm Multiscale SVD Levina-Bickel IRMAE-WD
Arch. Lorenz 3 2 2.09 3
KSE L = 22 8 6-8 3.99 8
KSE L = 44 18 8-20 7.00 18

5.3.4 Reduced-order state-space forecasting in the manifold coor-

dinates

As noted above and illustrated in Fig. 5.1, projection of the latent space data z onto the

first dm singular vectors of its covariance yields the manifold representation h ∈ Rdm . We

can map data snapshots in the ambient space to this manifold coordinate representation by

simply extending our definitions of encoding and decoding to h:

h := Eh(u; θE, θW , ÛT ) = ÛTW(E(u; θE); θW )

ũ := Dh(h; θD, Û
T ) = D(Ûh; θD)

(5.6)
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Figure 5.10: Schematic for extending the IRMAE-WD framework for forecasting in the manifold
coordinate system using a Neural ODE (pink section).

where Eh and Dh simply subsume the intermediate linear transformations required to map

between h and u. With our extended definitions of encoding and decoding, we now have 1)

found an estimate of dm, 2) obtained the coordinate system h parameterizing the manifold,

and 3) determined the explicit mapping functions Eh and Dh back and forth between the

ambient space and data manifold. With access to these three, a natural application is state-

space modeling and forecasting. We show a schematic of this extension in Fig. 5.10; the pink

internal box contains a time-evolution module to integrate an initial condition u0 that has

been transformed into manifold coordinate representation h0 forward in time.

We briefly demonstrate this natural application using the KSE, where we train a neural

ODE [19], ḣ = g(h; θg), to model the time evolution of h as done by Linot and Graham [123].

In other words, we simply insert a forecasting network trained to evolve the dynamics of the

system in the manifold coordinate representation, h. Shown in Fig. 5.11a, is an example

trajectory from the KSE. Fig. 5.11b is the Eh encoded manifold representation of the same

trajectory. From a single encoded initial condition in the ambient space, we can perform

the entire systems forecast in the manifold space. This forecasted trajectory, for the same

initial condition used to generate Fig. 5.11a, is shown in Fig. 5.11d. Naturally, the ambient

representation of this trajectory can be completely recovered via Dh, shown in Fig. 5.11c.

Comparison of the top and bottom rows shows that the time-evolution prediction in the

manifold coordinate system is quantitatively accurate for nearly 50 time units. We emphasize

that because the KSE is a chaotic dynamical system, the ground truth and forecast will

eventually diverge. Nevertheless, the relevant time scale (the Lyapunov time) of this system
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Figure 5.11: Example ground truth trajectory of the KSE in the a) ambient space and b) projected
onto the learned manifold coordinate representation. A time series forecast made using a Neural
ODE in the d) manifold coordinate beginning from the same initial condition. c) The ambient
space reconstruction decoded from the Neural ODE forecasted manifold trajectory.

is ∼ 20 time units and we achieve quantitative agreement for about two Lyapunov times.

From this result, we highlight that our learned manifold coordinate system is conducive for

forecasting, and our mapping functions produce good ambient space reconstruction. This

approach to development of data-driven reduced-order models will be further applied and

assessed in future work.

5.3.5 The Dynamics of Low-Rank Representation Learning

We now turn our attention towards understanding the automatic learning of an approxi-

mately minimal representation. We glean insights by framing our network as a dynamical

system, where “space” corresponds to layer depth in the network and “time” corresponds to

training epoch/iteration. In this manner, we elucidate “when” and “where” low rank behavior

appears in our network.

More precisely, we will compute and track the singular value spectra for a range of

intermediate latent representations, weight matrices, and update gradients as a function of

model layer and epoch. We will use these spectra to estimate the rank (based on the position
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of a substantial gap in the singular value spectrum of the matrix under investigation). The

following analyses are performed on a framework with n = 4,λ = 10−6, trained on the

KSE L = 22 dataset, which has a 64-dimensional ambient space with a nonlinear invariant

manifold with dm = 8.

We first define several key weights, Wj, and representations, zj, in the model from input

to output, where j is a placeholder for the position in the network. Starting from the encoder,

we define the nonlinearly-activated representation immediately output from the nonlinear

portion of the encoder, EN , as zEN = EN(u). This representation is then mapped to Rdz

by a linear layer WE to result in representation zE = E(u) = WEEN(u). From here, the

representation passes through n square linear layers: W1, ...,Wn. The representation output

after each of these layers is then z1, ..., zn. Note that zn is equal to z in the nomenclature of

the previous sections. Finally, before arriving at the nonlinear decoder, DN , zn is mapped

via WD to the proper size: D(zn) = DN(WDzn). To summarize, a fully encoded and decoded

snapshot of data is ũ = D(W(E(u))) = DN(WDWn...W1WEEN(u)).

We first perform space-time tracking of the rank of the latent representation, shown in

Fig. 5.12, by computing the singular spectrum of the covariance of the data representation,

zj, at various intermediate layers of the network and various epochs during training. As we

traverse our model in space (layer), we find that the nonlinear encoder produces a full-rank

representation and is not directly responsible for transforming the data into its low-rank

form, shown in Fig. 5.12a. However, we observe that as the data progresses from the nonlin-

ear encoder and through the non-square linear mapping to W1, the learned representation

is weakly low-rank, shown in Fig. 5.12b. As the data progresses through each of the square

linear blocks W1, ...,Wn, we observe that the unnecessary singular values/directions of the

representation are further attenuated (equivalently the most essential representation direc-

tions are amplified), transforming the latent representation towards a true minimal-rank

representation.

As we traverse our model in time (i.e. epoch), we observe that the rank of the learned
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representation for zEN is stagnant. In contrast, we observe for each of the sequential linear

layers the rank of the representation begin as essentially full-rank, but then collectively decay

into low-rank representations. We note that the representation during the early epochs “over-

correct” to a representation that is too low of a rank to accurately capture the data, but the

network automatically resolves this as training progresses.

To further understand what is happening, we now perform a similar space-time analysis of

our model to track the rank of the gradient updates of the weights at each layer, Jj = ∇Wj
L,

shown in Fig. 5.13. Here we follow the same layer indexing convention described above. We

observe in Fig. 5.13 that in early training the sequential linear layers begin with update gra-

dients that adjust all directions in each of the latent representations. As training progresses,

the singular values of the update gradients begin to decay in unnecessary directions, shift-

ing the latent space towards a low-rank representation. Once this is achieved, the gradient

updates are essentially only updating in the significant directions needed for reconstruction.

From the analysis of the gradient updates, we can conclude that the framework collectively

adjusts all linear layers.

As linear layers in sequence can be subsumed into a single linear layer by simply com-

puting the product of the sequence, we also investigate the rank of the effective layer weight

matrix itself, Wj,eff (e.g. W2,eff = W2W1WE) in space and time, shown in Fig. 5.14. We show

in Fig. 5.14 as the linear layers compound deeper into the network, the effective rank of the

layers approaches dm. This coincides with the observation made in Fig. 5.12. We conclude

here that the sequential linear layers work together to form an effective rank dm weight

matrix, projecting the data onto a space of dimension dm. We highlight here that while

the network automatically learns a linearly separated dm representation, the manifold of the

original dataset is nonlinear in nature and is nonlinearly embedded in the ambient space–this

feature is captured by the nonlinear encoding and decoding blocks. Finally, we comment

that when weight-sharing is implemented across the linear blocks Wj (i.e. Wj are equal) we

lose regularization as weight-sharing decreases the effective number of linear layers.
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Figure 5.12: “Space-Time” tracking of the singular spectra of the covariance of the representation
of the data, zj , trained on the KSE L = 22 dataset: a) zEN b) zE c) z1, d) z2, e) z3, and f) z4 (i.e. z)
as a function of training epoch. Note that the spectra for a) and b) are truncated for clarity. The
dm of the dataset is denoted by a vertical red line.
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Figure 5.13: “Space-Time” tracking of the singular spectra of the update gradient, Jj , for a model
trained on the KSE L = 22 dataset for the a) JE b) J1, c) J2, d) J3, e) J4, and f) JD as a function
of training epoch. Note that the spectra for a) and f) are truncated for clarity. The dm of the
dataset is denoted by a vertical red line.
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Figure 5.14: “Space-Time” tracking of the singular spectra of the effective linear layer, Wj,eff, for
a model trained on the KSE L = 22 dataset. The singular spectra for the effective weight matrix
a) WE,eff b) W1,eff, c) W2,eff, d) W3,eff, e) W4,eff, and f) WD,eff as a function of training epoch. Note
that the spectra for a) and f) are truncated for clarity. The dm of the dataset is denoted by a
vertical red line.
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Figure 5.15: “Space-Time” tracking of the singular spectra of the covariance of the representation
of the data, z, trained on the KSE L = 22 dataset: a) an AE with only implicit regularization
(IRMAE) b) an AE with implicit regularization and weight-decay (IRMAE-WD). The dm of the
dataset is denoted by a vertical red line and the final learned latent spectrum is outlined in red
markers.

We conclude this section with a comparison between our proposed framework IRMAE-

WD, which utilizes implicit regularization and weight-decay, and one that only utilizes im-

plicit regularization, IRMAE. We show in Fig. 5.15 the learning dynamics of the data

covariance of the latent representation for each. Fig. 5.15a shows the dynamics in the ab-

sence of weight decay where we observe that the trailing singular values first drift upward

in the first 100 epochs, followed by decay and then growth again as training proceeds. The

addition of weight decay, as shown in Fig. 5.15b, leads to monotonic decay of the trailing

singular values. These observations are consistent with the linear IRMAE-WD analysis in

Appendix 5.7, which, in the absence of weight-decay predicts directions with eigenvalues at

zero in which the training dynamics will drift. Adding weight decay makes these eigenvalues

negative, aiding convergence.
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5.4 Summary

In this chapter, we build upon observations made by Jing et al. [97] and present an autoen-

coder framework, denoted IRMAE-WD, that combines implicit regularization with internal

linear layers and weight decay to automatically estimate the underlying dimensional dm of

the manifold on which the data lies. This framework simultaneously learns an ordered and

orthogonal manifold coordinate representation as well as the mapping functions between the

ambient space and manifold space, allowing for out-of-sampling projections. Unlike other

autoencoder methods, we accomplish this without parametric model sweeps or relying on

secondary algorithms, requiring only that the bottleneck dimension dz of the autoencoder

satisfies dz > dm.

We demonstrated our framework by estimating the manifold dimension for a series of

finite and (discretized) infinite-dimensional systems that possess linear and nonlinear man-

ifolds. We show that it outperforms several state-of-the-art estimators for systems with

nonlinear embedded manifolds and is even accurate for relatively large manifold dimensions,

dm ≈ 40. However, the ambient dimensions of our test systems are still small relative to the

demands of many industrially relevant applications, such as turbulent fluid flows where the

ambient dimension du (number of Fourier modes or grid points) can easily exceed 106 and

dm is suspected to increase very strongly with Reynolds number (flow strength). We aim

with future work to efficiently extend IRMAE-WD to these high-dimensional systems.

We demonstrate that our framework can be naturally extended for applications of state-

space modeling and forecasting with the Kuramoto-Sivashinsky equation. Using a neural

ODE, we learned the dynamics of the dataset in the manifold representation and showed

that the ambient space representation can be accurately recovered at any desired point in

time.

Our analyses of the training process in “space” (layer) and “time” (epoch) indicate that

low-rank learning appears simultaneously in all linear layers. We highlight that the nonlinear

encoder is not directly responsible for learning a low-rank representation, but rather each
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of the sequential linear layers work together by compounding the approximately low-rank

features in the latent space, effectively amplifying the relevant manifold directions and equiv-

alently attenuating superfluous modes. Analysis of a linear autoencoder with the IRMAE-

WD architecture illustrates the role of the linear layers in accelerating collective convergence

of the encoder, decoder, and internal layers as well as the role of weight-decay in breaking

degeneracies that limit convergence in its absence. On the theoretical side, while the linear

autoencoder analysis presented in Appendix 5.7 provides some insight, it is quite limited,

and further, more sophisticated studies are necessary to better understand the method in

the fully nonlinear setting.

Finally, we demonstrate that our framework is quite robust to choices of L2 regularization

(weight decay) parameter λ and number of linear layers n. We show that in a large envelope

of regularization parameters we achieve accurate estimations of dm without sacrificing accu-

racy (MSE). We also show that λ can help reduce the contribution of superfluous singular

directions in the learned latent space.

While the present work is motivated by complex deterministic dynamical systems, we

acknowledge that many practical systems of interest are stochastic or noisy and the data

may only lie near, but not precisely on a finite-dimensional manifold and we aim to robustly

extend IRMAE-WD to these systems in future work.
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5.5 Model Architecture and Parameters

Table 5.2: Here we list the architecture and parameters utilized in the studies of this chapter. For
brevity, the decoders, D, of each architecture is simply mirrors of the encoder, E with activations
ReLU/ReLU/lin. Each network has n sequential linear layers with shape dz × dz between the
encoder and decoder. Learning rates were set to 10−3 and with mini-batches of 128.

Dataset E Activation dz n λ

5D Noise 20/128/64/20 ReLU/ReLU/lin 20 4 10−2

Arch. Lorenz 4/128/64/4 ReLU/ReLU/lin 4 4 10−6

2Torus 3/256/128/10 ReLU/ReLU/lin 10 4 10−2

KSE L = 22 64/512/256/20 ReLU/ReLU/lin 20 4 10−6

KSE L = 44 64/512/256/30 ReLU/ReLU/lin 30 4 10−6

KSE L = 66 64/512/256/50 ReLU/ReLU/lin 50 4 10−6

KSE L = 88 20/512/256/80 ReLU/ReLU/lin 80 4 10−6

5.6 Application to the MNIST Handwriting Dataset

Here we apply IRMAE-WD to the MNIST dataset and compare to Jing et al. [97]. We

utilize the same convolutional autoencoder architecture parameters that they used, with the

following parameters and architecture: 4× 4 kernel size with stride 2, padding 1, a learning

rate of 10−3, and λ = 10−6. Here Conv, ConvT, and FC correspond to a convolutional layer,

transposed-convolutional layer, and fully connected (not activated) layer, respectively.

In Fig. 5.16 we show that IRMAE-WD, which utilizes both implicit and weight regular-

ization, learns a dm = 9 representation for the MNIST handwriting dataset while Jing et al.

[97], which only utilizes implicit regularization, learns a dm = 10 representation. We further

highlight that the trailing singular values from our model sharply decays several orders of

magnitude lower than the Jing et al. [97] model. We finally note that the latent space from

the Jing et al. [97] model exhibits a broader tail, especially near the significant singular

values. We find that despite our model utilizing one fewer degree of freedom to model the

MNIST data, it produces an MSE that is comparable to Jing et al. [97] when trained using

their parameters (1.0 · 10−2 vs. 9.5 · 10−3).
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Figure 5.16: Singular value spectra obtained from models trained over the MNIST handwriting
dataset a) full spectra and b) zoomed in spectra.

Table 5.3: Convolutional autoencoder and architecture for MNIST Handwriting Dataset

Encoder Decoder
x ∈ R32×32×1 z ∈ R128

→ Conv32 → ReLU → FC4096

→ Conv64 → ReLU → reshape8×8×64

→ Conv128 → ReLU → ConvT64 → ReLU
→ Conv256 → ReLU → ConvT32 → ReLU

→ flatten1024 → ConvT1 → Tanh
→ LC128 → z ∈ R128 → x̂ ∈ R32×32×1

5.7 Analysis of linear autoencoders with internal linear

layers and weight decay

5.7.1 Formulation

To gain some insight into the performance of autoencoders with additional linear layers and

weight decay, we present here an analysis of gradient descent for an idealized case of a linear

autoencoder with one or more internal linear layers. We begin with the formalism with a

single internal linear layer. The input is denoted u ∈ Rdu , encoder E ∈ Rdz×du , decoder
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D ∈ Rdu×dz , internal linear layer W ∈ Rdz×dz and output ũ = DWEu ∈ Rdu . We define

the latent variable preceding the linear layer as h = Eu ∈ Rdz and the one following it as

w = Wh = WEu ∈ Rdz . For a conventional autoencoder, W = Idzdz , where the notation

Imm denotes the m×m identity matrix. We will consider the simple loss function

L = 〈||ũ− u||22〉+ λE(||E||2F + ||D||2F ) + λW ||W ||2F ,

where 〈·〉 denotes ensemble average (expected value). First the converged equilibrium solu-

tion of the minimization problem for the loss will be considered, and then the convergence

of the solution to the minimum.

We are particularly interested in the case where the data lies on an r-dimensional subspace

of Rdu , or equivalently rank〈uuT 〉 = r, and we assume that the dimension m of the hidden

layers is chosen so that m > r.

We can write the loss as

L = 〈uT (ETW TDTDWE−(DWE+ETW TDT ))u〉+〈uTu〉+λE(trEET+trDDT )+λW trWW T .

In index notation we can write

L = 〈ukE
T
klW

T
lmD

T
mnDnoWopEpquq〉

− 〈uk(DklWlmEmn + ET
klW

T
lmD

T
mn)un〉

+ 〈ukuk〉+ λE(EklEkl +DklDkl) + λWWklWkl.
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Taking partial derivatives yields

∂L
∂Eij

= 〈2W T
imD

T
mn(DWE − I)no)uouj〉+ 2λEEij = 〈2W T

imD
T
mn(ũn − un)uj〉+ 2λEEij,

∂L
∂Wij

= 〈2DT
ik(DWE − I)klulEjmum〉+ 2λWij = 〈2DT

ik(ũk − uk)hj〉+ 2λEWij,

∂L
∂Dij

= 〈2(DWE − I)ikuk(WE)jlul〉+ 2λEDij = 2(ũi − ui)wj + 2λEDij.

Without loss of generality, we can work in coordinates where 〈uuT 〉 = σ2Irdudu , where Irpq

is an p × q matrix (with p, q > r) whose first r diagonal elements are unity and all others

are zero. Now

∂L
∂Eij

= 2σ2W T
imD

T
mn(DWE − I)no)I

rdudu
oj + 2λEEij,

∂L
∂Wij

= 2σ2DT
ik(DWE − I)klEjmI

rdudu
lm + 2λWWij,

∂L
∂Dij

= 2σ2(DWE − I)ik(WE)jlI
rdudu
kl + 2λEDij.

In matrix-vector notation this becomes

∂L
∂E

= 2σ2W TDT (DWE − I)Irdudu + 2λEE,

∂L
∂W

= 2σ2DT (DWE − I)IrduduET + 2λWW,

∂L
∂D

= 2σ2(DWE − I)Irdudu(WE)T + 2λED.

5.7.2 Equilibrium solutions

At convergence, these derivatives vanish. For the moment, we set λE = 0. We first consider

the solution in absence of the internal linear layer: i.e. when W = Idzdz . Now ∂L
∂E

and ∂L
∂D

will vanish when

(DE − I)Irdudu = DEIrdudu − Irdudu = 0.
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This has “full rank" solution E = DT = Idzdu , which satisfies DE − I = 0, as well as

“rank r" solution E = DT = Irdzdu . This does not satisfy DE − I = 0, but does satisfy

DEIrdudu − Irdudu = 0. If we include a nontrivial linear layer W , we than have

(DWE − I)Irdudu = DWEIrdudu − Irdudu = 0.

it is clear that the rank r solution E = DT = Irdudz , along with the rank r choice W = Irdzdz

continues to be a solution, as does the full rank solution with E = DT = Idzdu with W =

Idzdz .

In the presence of weight decay the situation is more complex, and we will only consider

the case λE = λW = λ. Defining a new parameter ζ = λ/σ2, and taking this parameter to

be small, a perturbation solution of the form

E = Irdzdu(1 + αζ +O(ζ2)),W = Irdzdz(1 + βζ +O(ζ2)), D = Irdudz(1 + γζ +O(ζ2)) (5.7)

can be found. Plugging into the equilibrium conditions ∂L
∂E

= 0, ∂L
∂W

= 0, ∂L
∂D

= 0 and

neglecting terms of O(ζ2) yields in each case

α + β + γ + 1 = 0.

Thus there is a whole family of solutions to the equilibrium problem with weight decay. For

future reference we will write this solution (up to O(ζ)) as

E = aIrdzdu , a = 1 + αζ,

W = bIrdzdz , b = 1 + βζ,

D = cIrdudz , c = 1 + γζ.

(5.8)
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5.7.3 Convergence of gradient descent

Dynamic model

Now we turn to the issue of convergence of gradient descent to an equilibrium solution. Here

we consider a very simple ordinary differential equation model of the process, where t is a

pseudotime representing number of gradient descent steps:

dE

dt
= − 1

2σ2

∂L
∂E

= −W TDT (DWE − I)Irdudu − ζE,

dW

dt
= − 1

2σ2

∂L
∂W

= −DT (DWE − I)IrduduET − ζW,

dD

dt
= − 1

2σ2

∂L
∂D

= −(DWE − I)Irdudu(WE)T − ζD.

(5.9)

This is a high-dimensional and highly nonlinear system; to make progress we consider only

the dynamics near convergence, linearizing the system around the converged solution (5.7).

That is, we set
E = aIrdzdu + εÊ,

W = bIrdzdz + εŴ ,

D = cIrdudz + εD̂,

(5.10)

insert these expressions into (5.9), and neglect terms of O(ε2), to yield

dÊ

dt
= −bc

&
abIrdzduD̂Irdzdu + acIrdzdzŴ Irdzdu + bcIrdudzÊIrdzdz

'
− ζÊ,

dŴ

dt
= −ab

&
abIrdzduD̂Irdzdz + acIrdzdzŴ Irdzdz + bcIrdzdzÊIrdudz

'
− ζŴ ,

dD̂

dt
= −ac

&
abIrdudzD̂Irdzdz + acIrdudzŴ Irdzdz + bcIrdudzÊIrdudz

'
− ζD̂.

(5.11)

We can now make some important general statements about the solutions. First, observe

that the terms in the square brackets will always yield matrices for which only the upper

left r × r block is nonzero. Furthermore for any nonzero ζ, all terms outside this block will

be driven to zero. Finally, observe that (5.11) will have time-dependent solutions of the

form Ê(t) = E(t)Irdzdu , Ŵ (t) = W(t)Irdzdz , D̂(t) = D(t)Irdudz , where E ,D, and W are scalar
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functions of time. The evolution equation for these quantities is

dE
dt

= −bc [abD + acW + bcE ]− ζE ,

dŴ

dt
= −ab [abD + acW + bcE ]− ζW ,

dD̂

dt
= −ac [abD + acW + bcE ]− ζD.

(5.12)

Hereinafter, we will consider solutions in this invariant subspace, where a fairly complete

characterization of the linearized dynamics is possible.

Linear layers speed collective convergence of weights

The situation is simplest when there is no weight decay: ζ = 0. Now a = b = c = 1 and

(5.12) simplifies to
dE
dt

= − [D +W + E ] ,

dW
dt

= − [D +W + E ] ,

dD
dt

= − [D +W + E ] .

(5.13)

Adding these equations together yields that

d

dt
(D +W + E) = −3(D +W + E).

So the “collective" weight C = D +W + E decays as e−ρ1t where ρ1 = 3. More generally ,we

can write (5.13) in matrix-vector form

d

dt

=

>>>>?

E

W

D

@

AAAAB
= A

=

>>>>?

E

W

D

@

AAAAB
, A = −

=

>>>>?

1 1 1

1 1 1

1 1 1

@

AAAAB
. (5.14)
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This has general solution

=

>>>>?

E(t)

W(t)

D(t)

@

AAAAB
= C1e

−3tv1 + C2v2 + C3v3

with

v1 =
1√
3

=

>>>>?

1

1

1

@

AAAAB
, v2 =

1√
2

=

>>>>?

−1

0

1

@

AAAAB
, v3 =

1√
2

=

>>>>?

−1

1

0

@

AAAAB
,

and Ci = [E(0),W(0),D(0)]Tvi. Therefore, while the collective weight D+W + E decays as

e−3t, the quantities D−E and W−E do not decay at all, because of the two zero eigenvalues

of the matrix G. This fact will limit the performance of gradient descent in the absence of

weight decay. (We see below that weight decay breaks the degeneracy of the dynamics.)

Now we proceed to the question of how the number of internal linear layers affects

convergence. To consider the case of no internal linear layers, we simply set Ŵ and thus W

to zero — the matrix W is simply fixed at the identity. Now (5.14) reduces to

d

dt

=

>?
E

D

@

AB = −

=

>?
1 1

1 1

@

AB

=

>?
E

D

@

AB . (5.15)

Now the collective weight variable D + E decays as e−2t, rather than e−3t when we had an

internal linear layer – this added layer accelerates convergence.

What if we add additional linear layers, for a total of n, by replacing W with a product

WnWn−1Wn−2 · · ·W1? Without loss of generality we can take the converged value of each of

these matrices (in the absence of weight decay) to be Irdzdz . In considering the linearized
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dynamics we use the result

WnWn−1Wn−2 · · ·W1 = (Irdzdz + εŴn)(I
rdzdz + εŴn−1)(I

rdzdz + εŴn−2) · · · (Irdzdz + εŴ1)

= Irdzdz + ε(Ŵn + Ŵn−1 + Ŵn−2 + · · ·+ Ŵ1) +O(ε2).

Taking Ŵi = WiI
rdzdz and following the same process as above yields the following set of

equations for the linearized dynamics:

d

dt

=

>>>>>>>>>>>>>>?

E

Wn

Wn−1

...

W1

D

@

AAAAAAAAAAAAAAB

= −

=

>>>>>>>>>>?

1 1 1 · · · 1 1

1 1 1 · · · 1 1

1 1 1 · · · 1 1

... ... ... . . . ... ...

1 1 1 · · · 1 1

@

AAAAAAAAAAB

=

>>>>>>>>>>>>>>?

E

Wn

Wn−1

...

W1

D

@

AAAAAAAAAAAAAAB

(5.16)

By adding these equations together we find that the collective weight for this case C =

D +
2n

i=1 Wi + E decays as e−ρnt, with the decay rate ρn for an n layer network given by

ρn = 2 + n. (5.17)

The origin of this increase in convergence rate for the collective weight variable C is the

basic autoencoder loss structure – for every layer, the combination DWE − I appears, so

the gradients for all layers will have a common structure containing the collective weight C.

The more internal linear layers, the faster this collective weight converges.

Now there are n + 1 zero eigenvalues indicating directions where gradient descent does

not act: D − E and Wi − E , i = 1, . . . n. Thus, while addition of internal linear layer speeds

convergence of the collective weight, these degenerate directions remain, limiting the overall

performance of the gradient descent process.
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Weight decay breaks degeneracy and leads to asymptotic stability

Addition of weight decay complicates the analysis considerably, as illustrated in the results for

the equilibrium solutions presented above. Therefore we will limit ourselves to a perturbative

treatment of the dynamics of the case n = 1 when ζ is small. Inserting the expressions for

a, b and c into (5.12) and collecting like powers of ζ leads to the equation

d

dt

=

>>>>?

E

W

D

@

AAAAB
= (A+ ζB)

=

>>>>?

E

W

D

@

AAAAB
, (5.18)

where A is as in (5.12) and

B = −

=

>>>>?

2(β + γ) + 1 γ − 1 β − 1

γ − 1 2(α + γ) + 1 α− 1

β − 1 α− 1 2(α + β) + 1

@

AAAAB
.

Seeking solutions of the form veξt leads to the eigenvalue problem

(A+ ζB)v = ξv.

This can be solved perturbatively for small ζ [81]. Expressing eigenvectors v = v(0) + v(1) +

O(ζ2) and eigenvalues ξ = ξ(0) + ζξ(1) +O(ζ2) leads to the leading order problem

Ax(0) = ξ(0)x(0) (5.19)

and the O(ζ) problem

(A− ξ(0)I)v(1) = (B − ξ(1)I)v(0). (5.20)
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The leading order problem (5.19) is precisely the no-weight-decay case described above, with

eigenvalues ξ
(0)
1 = −ρ1 = −3, ξ

(0)
2 = 0, ξ

(0)
3 = 0 and eigenvectors

v
(0)
1 =

1√
3

=

>>>>?

1

1

1

@

AAAAB
, v

(0)
2 =

1√
2

=

>>>>?

−1

0

1

@

AAAAB
, v

(0)
3 =

1√
2

=

>>>>?

−1

1

0

@

AAAAB
,

The O(ζ) problem is an inhomogeneous linear system with a singular left-hand side. For a

given eigenvalue-eigenvector pair ξ(0)i , v
(0)
i , this will only have solutions if the right-hand side

lies in the range of (A− ξ
(0)
i I), or equivalently is orthogonal to the nullspace of (A− ξ

(0)
i I)T .

Since (A − ξ
(0)
i I) is symmetric, for eigenvalue ξ(0) = ξ

(0)
i , the nullspace of (A − ξ

(0)
i I) is

spanned by v
(0)
i , and solutions exist if

)
v
(0)
i

*T

(B − ξ(1)I)v
(0)
i = 0. The O(ζ) correction ξ

(1)
i

to the ith eigenvalue is determined by solving this equation:

ξ
(1)
i =

)
v
(0)
i

*T

Bv
(0)
i

)
v
(0)
i

*T

v
(0)
i

. (5.21)

Evaluating this yields ξ
(1)
1 = 3, ξ

(1)
2 = ξ

(1)
3 = −1 (for any choice of α, β, γ that satisfies

α + β + γ + 1 = 0), so with an error of O(ζ2) we have

ξ1 = −3 + 3ζ, ξ2 = ξ3 = −ζ. (5.22)

Addition of weight decay has a very small detrimental effect on the collective convergence

rate −ξ1, but more importantly converts the eigenvalues at zero to negative eigenvalues,

leading to decay toward the equilibrium in all directions – the equilibrium solution becomes

asymptotically stable.
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6

Conclusions

6.1 General summary

In this thesis, we developed deep reinforcement learning and learning representation frame-

works for the application of control and reduced-order modeling of dissipative PDEs with

complex dynamics such turbulent flows. Motivated by the open challenges in automated

and generalizable frameworks for the control and reduced-order modeling of these systems,

we leveraged our understandings of dynamical systems, deep reinforcement learning, and

learning representations to develop two RL-based control frameworks, symmetry-reduced RL

and DManD-RL, as well as one manifold learning framework, IRMAE-WD.

In Chapter 2 we developed the first control framework, symmetry-reduced RL, which

we demonstrated on the KSE system. Although many systems of interest possess natural

symmetries, we show that standard RL algorithms do not learn equivariant policies. The

framework we developed not only guarantees equivariant behavior, but also significantly

improves data efficiency and performance. The core idea in this framework is reducing

the redundant symmetries from the representations the agent learns and operates in or

equivalently the learning problem is moved to a symmetry-reduced subspace.

In Chapter 3 we developed the second control framework, DManD-RL, which we again

demonstrate on the KSE system. The DManD-RL framework is a model-based RL frame-
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work that utilizes surrogate data-driven manifold models to efficiently train RL agents. In

this framework, we isolate the underlying dynamics of our target system and its dependen-

cies to control input from entirely off-policy generated data. We demonstrate that an agent

trained on these low-dimensional isolated dynamics via our DManD model leads to excellent

performance in the true system despite the agent never having directly interacted with it.

In Chapter 4 we extended DManD-RL to our white-whale system–turbulent plane Cou-

ette flow with slot jets located on a single wall. We again demonstrate that an agent, trained

by interacting only with a low-dimensional DManD model, performs just as well as perform-

ing RL directly on the main system. In this chapter, we highlight the accelerated training

speed gains we achieved ∼ 400×. Additionally, we dramatically out-perform opposition

control in terms of drag reduction despite having significantly limited control authority.

In Chapter 5 we pivoted our attention from control to data representation, motivated

by one of the less rigid steps in DManD modeling and reduced-order modeling in general–

identifying and isolating the manifold in an automated fashion from just data. In this chapter

we introduce our regularized autoencoder framework which automatically 1) estimates the

underlying dimensionality of the data 2) provides an orthogonal coordinate system for the

manifold, 3) learns the mapping functions between the ambient representation and the man-

ifold representation. In this chapter we demonstrate the viability of this framework for a zoo

of systems, its advantages over other estimators, and we shed light on the origins low-rank

representations in a deep learning context.

In the following sections, we deliver several future directions of research. While there

are many natural directions for control and control applications (i.e. different systems etc.),

we choose to focus on addressing the challenge of large domains. The remainder of future

directions then focus upon designing latent spaces that leverage the graphical nature of

dynamical systems data. These directions focus upon developing less agnostic latent or

manifold representations and incorporating more task-relevant properties.
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6.2 Future work

In this section we outline several potential extensions of the work described in this thesis.

These ideas and preliminary results are motivated by remaining challenges in the field, recent

advances in adjacent fields, or are just interesting.

6.2.1 Distributed Hierarchical Controllers

Distributed and templated controllers

In many industrially relevant settings, such as the surface of an airplane wing or hull of a

tanker ship, it is infeasible to train a single global RL agent to control the countless number of

sensor arrays and actuators needed. One natural exploitation of turbulent flows (and many

other flows) is that the structures/dynamics at the small/local scale are similar regardless

of global location (assuming the same flow conditions). One natural extension of the work

in this thesis is that a policy developed in a minimal working unit can be replicated or

templated in space to form a distributed system, where each spatial patch is controlled by

the same policy. One could imagine training an array of locally distributed agents (that

share the same policy) in the large domain, but often times even this is not feasible.

Here we demonstrate in Fig. 6.1 that our KSE symmetry-reduced agent trained in a

small domain (L = 22) when extended to control a larger KSE system (L = 66), is capable

of controlling the flow and reducing the dissipation/power-input cost. This is quite promising

as these collective clone agents have never interacted with the larger KSE domain or with

each other but still manages to achieve an acceptable control performance.

It is important to discuss several limitations of this extension. While it is the most

resource efficient, the lack of direct interaction with the target system means that the trans-

ferred policy will not know of possible exploitations that could have been found via direct

training. In otherwords, because the policy is replicated, the agents have no “experience”

working together and thus are likely to perform sub-optimally as each only focuses on ac-



189

Figure 6.1: Symmetry-reduced KSE L = 22 agent applied to a KSE domain of L = 66 in three
L = 22 subdomains marked by the dashed line. Control is implemented at t = 100 to t = 400. The
L = 66 domain dissipation and power input cost is shown in blue and red, respectively.

complishing their task locally. This can be addressed by fine-tune training the collective

together in the large domain. Finally, our symmetry groups in the small domain are subject

to breakdown when extrapolating to patches in larger domains. Despite these challenges,

the preliminary results are still promising!

6.2.2 Dynamically Regularized Latent Spaces

Thus far we have generally assumed that it is advantageous (or at least conservatively not

disadvantageous) to perform downstream tasks with the reduced-order latent/manifold rep-

resentation produced by our autoencoder networks. There is empirical evidence that this is

advantageous compared to using the high-dimensionl ambient representation [123], but it is

not obvious what properties, if any, our latent representation should possess to be conducive

for specifically the downstream tasks of forecasting and control. Below is a discussion of some
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Figure 6.2: Reproduced from Chapter 5: a) Lorenz systems b) the R4 Archimedean Spiral Lorenz
governed by the Lorenz system.

ideas and preliminary frameworks toward latent spaces for dynamical systems that may have

some intuitive advantages. Although all of these preliminary results were produced from a

standard regularized AE, they can all be extended to the AE framework we developed in

this thesis.

Arc-length regularized latent space

Our systems of interest often exhibit a variety of local dynamics. There are regions that are

slow and quiescent and others that are fast and explosive. For example, our system can be

quiescent for many time units–shadowing a slow periodic orbit before making a quick leap

to another region of state space. An example of this behavior can be observed in the Lorenz

(butterfly) system, shown in Fig. 6.2a. The relative “speed” (i.e. absolute euclidean distance

over time) the system is “moving” in the ambient representation is different depending on if

it is in a slow or fast region. For numerical solvers, this problem appears in stiff problems,

where we need to be cautious of our spatial and temporal resolution in order to accurately

resolve fast dynamics. Analogously, for data-driven state-space/reduced-order modeling,

these same issues can equally affect downstream forecasting models.

Generally speaking, the majority of encoding functions are agnostic to disparities in the

magnitude of the vector fields that arise for dynamics in the latent space. Consequently, a
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latent space that is learned only for the purpose of being information rich has no guarantee

its manifold is suitable for data-driven forecasting.

One intuitive property that may be advantageous for the latent space is to push the

underlying representation to be shaped in such a way that the magnitude of the vector field

of the latent dynamics is approximately uniform. This can be accomplished simply with an

additional regularization loss, generically described for an autoencoder as:

L(u; θE, θD) = ‖u−D(E(u; θE); θD)‖2 + Larc (6.1)

Practically, we can accomplish this by taking advantage of several properties of having

deterministic time-series data. Because our systems are deterministic, our consideration for

neighbors/graphs are simple as they only lie on a line. We only need to consider the data

points preceding and following our data point in a time-series to approximate its speed. For

data evenly spaced/sampled in time, we can reduce the problem down to simply regularizing

the latent arc-length between consecutive time-series points to be uniform. For example, the

arc-length of the dynamics at each encoded latent representation, zt, can be estimated using

just two neighbors in time and computing the arc-length of the circumcircle the three points

lie on in Rdz . To compute the arc-length, Larc = φarcRarc, we need to compute φarc and

Rarc, the central angle and radius of the circumcircle, respectively,

Rarc =
‖zt+1 − zt−1‖
2 sin(φz)

, φz = arccos

0
(zt+1 − zt) · (zt − zt−1)

‖zt+1 − zt‖‖zt − zt−1‖

1
. (6.2)

Here we make use of the inverse of the mengar curvature relationship to compute Rarc.

Furthermore, we note that the relationship between the central angle and an inscribed angle

is related by a factor of 1/2, allowing us to compute φarc = 2π − 2φz. An overview of this

idea is presented in Fig. 6.3.
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Figure 6.3: Schematic for estimating the distance traversed by a trajectory in Rdz using an
arc-length approximation.

Thus, we can devise the following arc-length penalty,

L(xt−1, xt, xt+1; θ) = ‖xt −D(E(xt; θE); θD)‖2 + βarc [L0 − Larc(zt−1, zt, zt+1)]
2 , (6.3)

where L0 is a target arc-length and βarc is the regularization scalar. This penalty holds for

data that comes from a trajectory sampled evenly in time.

We demonstrate this regularization on the 4-D Archimedean Spiral Lorenz systems,

shown in Fig. 6.2b. As a reminder, this system’s underlying manifold is the 3D Lorenz

system, which lives in R3. Shown in Fig. 6.4 and Fig. 6.5 are example standard and arc-

length regularized autoencoders trained over this dataset, respectively. Notably, the standard

autoencoder learns a manifold that twists and contorts the “butterfly”, with many regions on

the manifold having much larger or smaller arc-lengths (i.e. vector field of different magni-

tudes). The arc-length regulated autoencoder learns a manifold that dilates the slow centers

of the wings and contracts the fast moving edges into a “heart”-like shape that yields ap-

proximately uniform arc-lengths–i.e. the underlying vector field is approximately uniform in

value.
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Figure 6.4: Standard latent space learned for the Archimedean Lorenz: a) trajectory b) trajectory
colorized by curvature.

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

Figure 6.5: Arc-length regularized latent space (βarc = 0.1, L0 = 0.5) learned for the Archimedean
Lorenz: a) trajectory b) trajectory colorized by curvature.

Curvature regularized latent space

In a similar vein to the above consideration for arc-length, another property to consider is

curvature. While forcing the latent dynamics to have uniform speed may be beneficial for

time-steppers, it may also be good to have dynamics on a manifold that does not have high

curvatures or cusps. We can target curvature by regulating the angle between consecutive

points in the latent space. This is just a simple modification of the above formulation,

L(xt−1, xt, xt+1; θ) = ‖xt −D(E(xt; θE); θD)‖2 + βangle [φ0 − φz(zt−1, zt, zt+1)]
2 , (6.4)
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Figure 6.6: Standard latent space learned for the Archimedean Lorenz: a) trajectory b) trajectory
colorized by curvature.

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

Figure 6.7: Curvature regularized latent space (βangle = 1.0,φ0 = π) learned for the Archimedean
Lorenz: a) trajectory b) trajectory colorized by curvature.

where φ0 is a hyperparameter that sets the target angle between points in the manifold.

As φ0 approaches π, the loss targets a manifold with no curvature. Shown in Fig. 6.6 and

Fig. 6.7 are example manifolds learned by standard and curvature regularized autoencoders

trained on the same 4D Archimedean Lorenz data, respectively. Notice that the curvature-

regularized autoencoder learn manifolds that appear unraveled without sharp twists or cusps

compared to the standard autoencoder, which learns a contorted manifold.
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Contrastive manifold coordinates

Finally, we note here the possibility of utilizing contrastive learning to develop manifold

representations that are well separated. Contrastive learning can be easily extended to an

autoencoder framework by simply adding a decoder to reconstruct the latent representation

and an additional MSE loss. As contrastive methods require data augmentation, the natural

augmentations to consider are naturally occurring symmetry groups–translations, reflections,

etc. Other augmentations can include, noise or data corruption to promote learning of a

robust latent space. Finally, a natural application is learning a latent space that captures

multiple Reynolds numbers. The Reynolds numbers can serve to distinguish positive and

negative sample pairs and allow us to learn a latent space that better separates multiple sets

of dynamics.
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