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From the Editor 

As the editor of Transactions it is my pleasure to introduce our readers to the 1990 volume. 

This issue reflects not only a broad range of topics, but readers will be happy to see the return 

of the photography section which this year features the work of Alfred Charles Bonanno. 
This volume presents subjects as diverse as Wisconsin lakes, hummingbirds, tornadoes of 

fire, and the discovery of a new station for a rare plant. Of course the regular poetry section 

has been included. Once again I think readers will appreciate the high quality of the work 

about Wisconsin and by Wisconsin authors. 

It is hoped that future volumes of Transactions or some other component of the Academy 

will reflect the work being done by the recipients of the awards given at the annual meeting. 

We are currently exploring ways to present work dedicated specifically to poetry and pho- 

tography. The anthology of Wisconsin poets that was announced in the 1989 volume will be 

published early in 1991. People who attended the 1990 meeting of the Academy held in 

Platteville were introduced to some of the poems at an afternoon reading by our poetry editor, 

Bruce Taylor. 

For over a hundred years the Wisconsin Academy of Sciences, Arts and Letters has presented 

the vigorous intellectual life of people in our state. We who currently work on Transactions 

are dedicated to continuing that tradition, and in that spirit are happy to commend this volume 

to our readers. 

Comments, suggestions, and submissions should be addressed to the Editor. 

Carl N. Haywood 

Announcement 

Transactions will be featuring in its next issue a section called ‘‘Mi- 

nority Voices’’ and especially encourages submission of five to ten 

pages of previously unpublished poetry from Wisconsin poets who 

represent as wide and diverse a scope as possible of racial, cultural, 

ethnic, and esthetic diversity. 
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A Quantitative Survey of the Submersed 
Macrophytes in Devil’s Lake, Sauk County, with 

a Historical Review of the Invasion of Eurasian 
Watermilfoil, Myriophyllum spicatum L. 

Richard A. Lillie 

Abstract. Quantitative surveys of the aquatic macrophytes of Devil’s Lake, Devil’ s Lake State 

Park, Sauk County, were conducted July 29-31, 1987, in an effort to assess historical changes 

in the lake’s macrophyte community. Above-ground biomass and frequency of occurrence 

data were obtained from 28 transects spaced 200 m apart. Biomass samples (0.1 m?* quadrats) 

were collected and frequencies of occurrence (0.8 m? quadrats) were recorded at 5 m intervals 

along transects from shore to a water depth of 9 m. Macrophytes occupied 78% of the 0-9 m 

littoral zone at an average biomass of 187 g/m? (within vegetated areas). Potamogeton robbinsii 

Oakes and Elodea canadensis Michx. were dominant, accounting for almost half of the 

39,000 kg of total plant biomass. Myriophyllum spicatum L., an introduced species that 

accounted for an additional 22% of the total biomass, formed three distinctive surface canopy 

beds 25—50 m wide by up to 300 m long in water 1.5-3.0 m deep. Milfoil distribution 

increased dramatically between 1979 and 1987 but showed some indication of declining in 

1988 and 1989. Native macrophytes also increased in abundance and distribution. Mecha- 

nisms responsible for the growth dynamics of milfoil in Devil’ s Lake were not identified, but 

climatic fluctuations and insect disturbances may be significant. 

D evil’s Lake State Park, Sauk County, nological investigations to identify possible 

has a rich and diverse flora that has causes and mechanisms responsible for de- 

received attention by botanists since the mid- teriorating water quality (Lillie and Mason 

nineteenth century (Lange 1984). However, 1986; Lillie 1986; WDNR 1988). Because 

most botanical collections were of terrestrial some rooted submersed macrophytes can ef- 

species, and relatively little is known about fectively translocate nutrients from sedi- 

the aquatic flora of Devil’s Lake (exceptions ments to the surrounding water column (Barko 

include Baker 1975; Lillie 1986). Recently, and Smart 1980; Nichols and Keeney 1976; 

| the Wisconsin Department of Natural Re- Prentki 1979; Smith and Adams 1986), 

sources (WDNR) conducted a series of lim- changes in the abundance or community 

———7_[,1!__. composition of submersed macrophytes may 

Richard A. Lillie has been a research biologist (Lim- influence lake water quality (Landers 1982; 
nologist) with the Wisconsin Department of Natural Re- Carpenter 1983; Carpenter and Lodge 1986). 
sources, F ltchburg, Wisconsin, for the past sixteen years. Consequently, the WDNR conducted macro- 

During this time, he has been involved in a wide variety . “4p . 

of lake and stream investigations throughout the state. phyte surveys in Devil s Lake in 1984 and 

Dick has a B.S. in Zoology from UW-Oshkosh and a 1987. Specific objectives of these surveys 
MS in Entomology from UW-Madison. were: (1) to document the composition, 
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standing crop biomass, and distribution of 0.1 m? quadrats (three-sided aluminum frame) 

the submersed macrophytes in Devil’s Lake at the sediment-plant interface (Table 1). In 

and (2) to compare current distributions with some dense stands, sampling intervals were 

available historical data. These data, com- extended to 10 m (linear distance); standing 

piled and summarized in this paper, represent crop data were interpolated for intermediate 

a significant contribution to the knowledge quadrats. Biomass samples were collected 

of the flora of Devil’s Lake and should serve from every fourth sparse and rare quadrat 

as the basis for monitoring future long-term beginning with the first encounter of each day 
changes in the lake’s aquatic plant commu- of field collections. All samples were bagged, 

nity. Likewise, the documented history of the labeled, placed in a iced-cooler, and trans- 

introduction, expansion, and growth dynam- ported to the laboratory where they were sorted 

ics of Myriophyllum spicatum L. in Devil’s by species and dried at 106°C for 48 hours. 
Lake may provide information useful in the A spikerush, Eleocharis acicularis R. & S., 

management of this exotic invasive species. _ was harvested with roots intact. Because it 
was not possible to distinguish between Po- 

Methods ‘amogeton illinoensis Morong and Potamo- 

Devil’s Lake is a relatively small (151 ha), geton amplifolius Tuckerm. in the field, data 

moderately soft water (total alkalinity 22 mg/ for these two species were combined (P. il- 

L), thermally stratified (maximum depth linoensis was the more common species based 

14 m), seepage lake with generally very good on laboratory examinations). Likewise, Ni- 

water quality (Lillie and Mason 1986). Sur- tella spp. and filamentous algae (Cladophora 

veys of the submersed macrophytes of Dev- spp.) were often physically intertwined and 

il’s Lake were conducted July 30—August 1, impossible to separate; hence data for these 

1984 and July 29-31, 1987. Methods em- taxa were also combined. 

ployed in the 1984 survey were described Taxonomy was based on Fassett (1972) 

earlier (Lillie 1986) and were generally sim- and Voss (1972). Voucher specimens were 

ilar to those used in 1987 as described here. prepared and taxonomy verified by T. Coch- 

In 1987, macrophyte surveys were conducted ran and H. Iltis of the University of Wisconsin- 

via SCUBA along 28 transects spaced 200 m Madison Herbarium and, in the case of pond- 

apart around the shoreline (Fig. 1). Two dive- weeds, by S. G. Smith of the University of 

teams, consisting of one diver and two top- Wisconsin- Whitewater. 

side assistants each, were required to com- Average dry weight biomass for each plant 

plete the field collections. Presence or ab- taxon was computed for each 1.5-m depth 
sence of all macrophyte species were re- _ interval along each transect. Average bio- 

corded from 644 (646 in 1984 survey) circular © mass was multiplied by the area of each rep- 

quadrats (0.8 m2) spaced at 5 m intervals resentative cell (inshore and offshore bound- 

(linear distance) along each transect from shore aries of cells were defined by water depth 
to a water depth of 9 m. These data were limits; lateral boundaries were defined by 

used to compute frequencies of occurrence § common boundaries half-way between ad- 
| for each macrophyte species. Divers also vis- | jacent transects. (See Fig. 1 to obtain areal- 

ually classified total macrophyte, above- | weighted biomass values.) These values were 
ground, standing crop biomass at each quad- § summed to derive estimates of total standing 
rat as either absent, rare, sparse, or dense. crop of each taxon by transect, region, depth 
Above-ground biomass samples were col- zone, and entire lake. For purposes of dis- 
lected for dry weight determinations from a _—cussion, results will be presented in terms of 

representative number of each subjective bi- these four areas, or combinations thereof. 
omass class (i.e. rare, sparse, or dense) by Inasmuch as this method of calculating 

harvesting all plant shoots and stems within standing crop biomass did not permit an un- 
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| Fig. 1. Hydrographic map of Devil’s Lake, Sauk County, Wisconsin with accompanying maps 

depicting the locations of macrophyte survey transects and boundaries used in estimating 

plant biomass (see text for further explanation). 

biased computation of variance (values were crop was made using only the data from the 

interpolated for intermediate quads and un- rare, sparse, and dense quads that were ac- 

sampled sites; a few cells contained only 1 tually sampled (see Table 1). Average bio- 

quadrat), a second estimate of total standing — mass of each subjective plant-biomass class 
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Table 1. Distribution of biomass samples by Actual dry-weight biomass data were com- 
visual biomass class. Data represent the pared with the subjective plant-biomass classes 

percent of quadrats in each visual biomass as assigned by divers to derive objective plant- 
class within which plants were collected for biomass classification (Table 2). Dense stands 

dry weight measurements. of macrophytes were defined as areas with 

Visual Biomass Class 1984 1987 _ Standing dry-weight crops exceeding 30 g/m’, 
—_—_—__—. sparse biomass ranged from 15 to 29 g/m’, 
“Dense” 79% 84% and quads classed as rare had < 15 g/m?. A 

parse ; ee fifth class, very dense, was arbitrarily set at 
“None” : ; > 99 g/m. 

All vegetated sites 47 61 Aerial photographs were taken each sum- 

All quadrats 56 68 mer from 1984 to 1989 and, in conjunction 
Hh dafinitinn NO LL —~C«é“‘éWWith: groun-trutth measurements, snorkeling 
by definition - No plants; total biomass zero; no 

collection necessary. surveys, and the transect data, were used to 

map the distribution of macrophytes. 
was multiplied by the area occupied by each Subtle differences in the placement of tran- 
class (based solely on frequency of occur- sects and water level changes occurring be- 

rence) to derive estimates of standing crop _ tween the 1984 and 1987 surveys influenced 

for each region. This latter method of cal- sample sizes and areas surveyed (see Table 3). 

culation overestimated standing crop bio- — These differences compromised the validity 
mass by about 33% but permitted an esti- of detailed statistical analyses of biomass data 

mation of biomass variance. Coefficients of | between regions and depth-zones between 

variation of total standing crop using this sec- years but did not seriously affect direct com- 

ond method of calculation were 6.8% and __ parisons of summary data for each species. 

6.3% for 1984 and 1987 data, respectively. Changes in frequencies of occurrence of the 

These variances may be roughly applied to major species were evaluated using chi-squared 

| the more accurate areal-weighted tests. Plant associations and community 

biomass data. structure of the 1987 data were explored uti- 

Table 2. Plant biomass distribution in Devil’s Lake based on (A) subjective plant classification | 
assigned by divers (visual estimates) and (B) objective dry weight biomass measurements 
(quantitative). Data represent percent of total quadrats in each classification. 1984 N = 646; 
1987 N = 644. 

(A): Subjective Relative Plant Year 
Biomass Classification 1984 1987 

“Dense” 48% 51% 

“Sparse” 23% 19% 

“Rare” 12% 13% 

“Absent” 17% 17% 

(B): Objective Plant Biomass Year 

Biomass Classification (g/m) 1984 1987 

Very Dense > 99 29% 29% 
Dense 30-99 14 19 
Sparse | 15-29 26 14 
Rare 1-15 14 21 
Absent 0 17 17 
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lizing principal component analysis, Pearson eight percent of the total biomass of sub- 
correlation coefficients, and similarity in- mersed vegetation in Devil’s Lake (39,000 kg 

dices. The degree of association between dry wt) was contained in dense beds. Eighty- 
species was based on common co-occurrences five percent of the total plant biomass was 

(Marvan and Komarek 1978) adjusted for confined to water less than 4.5 m deep; vir- 

random chance co-occurrence. The later tually no plants grew at depths deeper than 
analysis was more informative than chi- 9 m. Highest average total biomass (313 g/m’) 
squared tests in elucidating plant associations. within a particular depth-region zone was in 

the 1.5—3 m Inlet region. Sixteen species of 

Results and Discussion plants were recorded (Table 4). Potamoge- 
Doe eg ton robbinsii Oakes and Elodea canadensis 

General distribution in 1987 Michx. were dominant in water less than 4.5 m 
Macrophytes occupied 78% of the 0-9 m deep, and a mixture of Nitella spp. and fi- 

littoral zone of Devil’s Lake at an average lamentous algae (mostly Cladophora spp.) 

dry weight biomass of 83 g/m? (Table 3). was dominant in deeper water. Myriophyllum 

Dense macrophyte stands covered 21 ha (48— spicatum L. was less common but still com- 

51% by frequency of occurrence; see Table 2) prised 22% of the lake’s total biomass 

at an average biomass of 187 g/m?. Another (Table 5). Ceratophyllum demersum L., Val- 

16 ha of lake bottom was sparsely vegetated lisneria americana Michx., Potamogeton 

(14-19% frequency of occurrence). Ninety- diversifolius Raf., and a mixture of Pota- 

Table 3. Regional macrophyte distribution within 0-9 m depth in Devil's Lake during 1987. 

Comparable data for 1984 are given in ()s (recomputed from Lillie 1984°). 

Parameter Inlet North Southeast Total 

Bottom area* 10.3 (9.4) 22.3 (21.1) 14.7 (15.0) 47.4 (45.5) 

in hectares 

Densely Vegetated area** 5.2 (4.3) 10.1 (9.8) 5.7 (7.2) 21.0 (21.4) 

in hectares 

Coverage’ 50 (46) 45 (47) 39 (48) 44 (47) 
% Of total area 

Standing Crop’ 15.3 (10.0) 12.7 (12.3) 11.1 (11.9) 39.2 (34.2) 

in thousands of kg 
Average Biomass 148 (106) 57 (58) 76 (79) 83 (75) 
g/m? 

Average Stand Biomass: 289 (257) 132 (140) 188 (177) 187 (174) 

g/m? 

* excludes 2.9 ha of unvegetated, steeply—sloped, rocky, bottom area adjacent to the east and west shore- 

lines. Differences between 1984 and 1987 bottom areas arise from slight positional differences in 
placement of transects and subsequent definition of cell boundaries. 

*“frequency of occurrence of quadrats with total biomass > 30 g/m? within each regional depth zone multi- 

plied by the total area within the zone. 
* total densely vegetated area divided by total bottom area within region. 
> average total dry wt biomass (g/m*) within each transect-depth zone (cell) multiplied by the area of each 

cell; products summed within each region; data represent all vegetation. 
° total standing crop dry wt biomass within region divided by total area; data represent all sites, including 

unvegetated areas within regions. 
“sum of dry wts of all quadrats with biomass > 30 g/m? within a region divided by number of quadrats. 
"Data in Lillie 1986 were computed using WDNR’s 1955 hydrographic map; these data were recomputed 
and are summarized for this publication using the more detailed hydrographic base map prepared from 

depth soundings made in January 1985 (see Lillie and Mason 1986). 
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Table 4. Macrophyte community composition of Devil's Lake (1987) listed 

Taxa Freq. of Occurrence Relative Importance Rank 

Absolute* Relative | Abundance Value (IV)** Order 

% % (% Biomass) (as %) 
ee 

Potamogeton robbinsii Oakes 34.1 18.3 34.5 26.4 1 (1) 

Elodea canadensis Michx. 34.6 18.5 15.5 17.0 2 (3) 

Myriophyllum spicatum L. 19.0 10.2 21.5 15.8 3 (2) 

Nitella & Cladophora (mixed) 32.1 17.2 12.0 14.6 4 (6) 

Ceratophyllum demersum L. 18.1 9.7 8.4 9.0 5 (5) 

Vallisneria americana Michx. 9.0 4.8 2.6 3.7 6 (8) 

Potamogeton diversifolius Raf. 8.3 4.4 1.1 2.8 7 (10) 

Potamogeton illinoensis 
Morong mixed with 

Potamogeton amplifolius Tuckerm. 8.2 4.4 0.8 2.6 8 (4) 

Others/unidentified** 5.7 3.1 0.7 1.9 9 (14) 

Eleocharis acicularis 

(L.) Rostk. & Schmidt 4.0 2.1 1.5 1.8 10 (7) 

Najas flexilis (Willd.) R. & S. 5.5 3.0 0.6 1.8 11 (12) 

Isoetes echinospora Durieu 4.0 2.1 0.5 1.3 12 (9) 

Chara sp. 2.0 1.1 0.1 0.6 13 (13) 

Potamogeton crispus L. 2.0 1.1 0.1 0.6 14 (11) 

Megalodonta? beckii (Torr.) 0.1 tr, tr. 0.1 15 (-) 

* Absolute frequency of occurrence based on presence/absence at 601 quadrats within 0-9 m (excludes 

rocky, unvegetated, east and west quartzite-talus slopes); Relative Abundance represents % of total dry 

wt biomass; IVs computed by averaging Relative Frequency of Occurrence and Relative Abundance. 

**Others include Ranunculus spp., Potamogeton pusillus sensu lato, and P. gramineus. 

4( )s indicate 1984 ranking. 
’now Bidens beckii Torr. 

mogeton illinoensis and Potamogeton am- shelf in 2.5—3.5 m (the lake bottom descends 

plifolius (hereafter referred to as P. ill/amp.) sharply beyond this point). A mixture of Ni- 

were also relatively common. Biomass dis- tella spp. and Cladophora spp. formed the 

tribution of most taxa was depth dependent deep-water community. 

(Figs. 2 and 3). Based on depth distribution, ae . 

co-occurrences (Fig. 4), and visual obser- Distribution of major taxa in 1987 

vations, four relatively distinct communities Potamogeton robbinsii, or Robbin’s pond- 

were distinguishable. A diverse assemblage weed, was the dominant macrophyte in Dev- 

of relatively small, short-stemmed plants il’s Lake, accounting for 34% of the total 

consisting of Najas flexilis (Wild.) R. & S., standing crop biomass. Dense stands, aver- 

E. acicularis, Potamogeton crispus L., P. aging 173 g/m?, occupied 7.2 ha (18% of all 

diversifolius, Chara spp., Isoetes echinos- quadrats sampled). Potamogeton robbinsii 

pora Durieu, and V. americana comprised was distributed in relatively broad, primarily 

the shallow-water community. A mixture of | monotypic, distinct bands at 1.5—4.5 m ad- 

P. robbinsii and E. canadensis, with lesser _jacent to the North and Southeast shorelines 

amounts of P. ill/amp. and V. americana, (Fig. 2 and Appendix A). However, highest 

formed a distinct community at 2-3 m. My- average stand biomass (280 g/m?) was lo- 

riophyllum spicatum, often accompanied by cated in shallow water (1-3 m) adjacent to 

C. demersum at edges of beds, formed very the Inlet region. Frequency of occurrence (56— 

dense beds at the outer edge of the littoral 70%) was similar in all three regions. The 
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largest areal distribution of P. robbinsii and Inlet regions. Elodea co-occurred pri- 

(2.8 ha) was in scattered beds located off the marily with P. robbinsii and C. demersum 

North shore. Potamogeton robbinsii was most (Fig. 4). Elodea leaves were very short and 

commonly associated with E. canadensis confined to the margins of the stems (<1.5 m 

(Fig. 4). At the time of the survey, P. rob- in length), which were weakly rooted. Very 

binsii appeared to be at the peak of its growth, dense stands of Elodea may interfere with 

with strong, well-rooted plant stems. P. rob- fishing, but generally the plant does not cre- 

binsii harbored many aquatic fauna, partic- ate a problem in Devil’s Lake. 

ularly large numbers of dragonfly and cad- Myriophyllum spicatum, or milfoil, com- 

disfly larvae. Despite its extensive distribution prised 21.5% of the total standing crop. While 

and dense growths, P. robbinsii was rela- less extensive in coverage than P. robbinsii 

tively unnoticed by the average park user due or E. canadensis (only 3.1 ha of dense beds), 

to the plant’s low growth form (<1 m height) average milfoil stand biomass (270 g/m?) was 

and moderately deep-water habitat (the beds more than 50% higher than either competitor. 

in the Inlet region were an exception). Po- A maximum biomass of 1100 g/m? was re- 

tamogeton robbinsii has a much narrower __ corded at 1 quadrat. Milfoil distribution was 

ecological niche than that of C. demersum concentrated in three distinct beds, 50 m wide 

or M. spicatum (Pip 1988), and hence its by 300 m long, located 50-70 m directly 

dominance in Devil’s Lake reflects the rel- offshore from high-recreation-use areas 

atively low concentration of inorganics (Fig. 2). Average biomass in the Southeast 

present. and Inlet beds were identical (314 g/m?) and 

Elodea canadensis, or waterweed, was higher than that of the North bed. Milfoil 

equally as common but less abundant than beds generally were confined to 1.5—3 m with 

P. robbinsii (16% of total plant standing crop), deeper extensions to 4.5 m in the Southeast 

ranking second in overall relative impor- and Inlet beds (Appendix A). Frequencies of 

tance. Where abundant (4.0 ha), Elodea stand occurrence were highest in the Inlet region 

biomass averaged 142 g/m’. Elodea formed (60—73%) and lowest in the North bed (15-— 

weakly continuous patches (relatively irreg- 21%). Milfoil was commonly associated with 

ular clumps less than 10 m across) with av- C. demersum (Fig. 4); however, biomass was 

erage biomass up to 152 g/m? in the North not significantly correlated within milfoil beds 

Table 5. Regional distribution, average biomass, and total standing crop of the five major plant 
taxa in Devil’s Lake. Total biomass (kg dry wt*) estimates include sparsely vegetated sites. 
Average densities (g/m?; = sum of dry weights/number of quads) and distributional area are 
given for densely vegetated sites only (i.e., those quads with biomass in excess of 30 g/m’). 

Taxa Inlet North Southeast All Regions 
a 

Dist Aver. Total Dist. Aver. Total Dist. Aver. Total Dist. Aver. Total # 

Area Biomass Mass Area Biomass Mass Area Biomass Mass Area Biomass Mass Quads 

ha** g/m? 10° ha g/m? 10% ha g/m’ 10°k ha g/m 10°k 

P. robbinsii 2.0 280 65 28 127 3.3 2.4 139 3.7 7.2 173 13.5 116 

F. canadensis 1.5 146 2.2 2.1 152 3.6 0.5 66 0.2 4.0 142 6.1 62 

M. spicatum 1.0 314 3.2 0.7 106 0.7 1.5 314 45 3.1 270 8.4 52 

Nitella/Cladoph. 1.1 55 0.9 3.0 84 26 1.5 49 12 56 £469 47 72 

C.demersum 0.6 160 1.1 07 136 10 04 232 12 1.7 168 3.3 31 

* derived by multiplying average biomass (g/m?) within each transect-depth zone cell by the area of each 

cell; products summed to derive total biomass within each region. 
** sum of totals exceeds that given in Table 3 due to overlap between species. 
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Fig. 2. Generalized distributional map of submersed macrophytes in Devil’s Lake. The map 
denotes areas dominated by particular species; other species may be present as well, but in 
lesser amounts. 
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| V. americana 
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INDEX OF COMMON CO- OCCURRENCE 

Fig. 4. Plant associations of the more abundant plant taxa based on common co-occurrence. 

(p>.05). Milfoil biomass was inversely re- shore in 7.5—9 m where frequencies of oc- 

lated to E. canadensis biomass within milfoil currence were close to 90% (Appendix A). 

beds (p=.05), but the standing crop of P. Few macrophytes were associated with the 

robbinsii (the other species from inhabiting —Nitella/Cladophora community. Because these 

similar depths) was not significantly affected plants grow in relatively deep water and their 

(p>.50). Milfoil stems often exceeded 3m _ _ stems are narrow and weak, they do not pres- 

in length, and dense stands formed nearly _ ent a nuisance to people fishing on the lake. 

impenetrable masses at the lake’s surface. As = Most filamentous algae problems in Devil’s 

such, the beds created a severe nuisance to _ Lake are due to other algae that develop on 

all users and a particularly dangerous threat _ plants or other substrates in shallower water. 

to swimmers. Other than small beds of P. Little is known of the fauna associated with 

ill/amp and Ranunculus spp., milfoil was the the deep-water Nitella/Cladophora commu- 

only submergent plant in Devil’s Lake that __ nity in Devil’s Lake. 

was commonly visible from shore. Ceratophyllum demersum, or coontail, had 

Nitella spp., a muskgrass or member of _a total standing crop of over 3,000 kg that 

the Characeae, and Cladophora spp., a fi- __ was relatively evenly distributed among all 

lamentous green algae, formed the dominant three regions. Average stand biomass was 

deep-water community accounting for 12% ___ relatively high (168 g/m?), approaching that 

of the total standing crop in Devil’s Lake __ of milfoil in the Southeast bed. The irregular 

(82% of the biomass of all plants at 4.5— distribution of coontail in Devil’s Lake (Fig. 3, 

9 m). Distribution was continuous to patchy, Appendix A) may be related to this species’ 

with highest biomass (84 g/m?) off the North close association with milfoil (Fig. 4); coon- 
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tail and milfoil were most strongly correlated Nichols and Shaw 1986). While the invasion 

at the margins of milfoil beds (p = .008). While and subsequent expansion of milfoil in Dev- 

coontail develops rootlets, it does not become il’s Lake have been fairly well documented 

firmly attached to the sediments. Hence, (Lillie 1986), it has not been possible to iden- 

coontail may drift about until it becomes en- tify the mechanism responsible for the intro- 

tangled within the inner and outer edges of duction nor the exact year that the introduc- 

the milfoil beds. tion occurred. Best estimates place the time 

The distributions of the remaining, less of the infestation around the early 1960s (Lil- 

common species were primarily patchy. Val- lie and Mason 1986), although Meier and 

lisneria americana, P. diversifolius, P. ill/ Ensign (1967) make no mention of milfoil in 

amp., P. crispus, and I. echinospora were their field notes during two fish survey seine 

commonly found at 1.5—4.5 m mixed with hauls of the Southeast beach area during 1967. 

P. robbinsii and E. canadensis. Interspecific Baker (1975) described milfoil (possibly mis- 

competition between many of these ecolog- identified as M. verticillatum) in the South- 

ically similar species was reduced via spatial east bed area during a 1974 SCUBA survey 

(depth) separation or by virtue of life-form as ‘‘very scattered, at 1.2 to 4.5 m depth 

structure (see Pip 1988). The rosulate quill- contributing little to the population of the 

wort, J. echinospora, was almost exclusively total community.’ The distribution and area 

restricted to a very narrow band between 1.5- of the three milfoil beds changed dramati- 

2.1m. Potamogeton ill/amp. occasionally cally from 1979 to 1983 based on rake-survey 

formed relatively dense beds with plant stems data (Southeast bed shown in Fig. 5a) col- 

reaching to the lake surface. Other plants lected by the WDNR (Bale and Molter 1979, 

were of relatively short stature and formed a 1980, 1981; Schlesser et al. 1982; Molter 

varied understory. Najas flexilis, Chara spp., and Schlesser 1983). In 1979, the North mil- 

E. acicularis, and Ranunculus spp. formed foil bed was quite extensively developed, while 

the bulk of the shallow-water community that the Southeast bed was just becoming estab- 

undoubtedly received a great deal of human lished. The Inlet bed appeared to be slightly 

disturbance. Eleocharis acicularis was ex- smaller than at present (referring to 1987). 

tremely short and often formed contiguous, _ By 1983, the Inlet bed was similar or slightly 

grass-like mats in the interstitial spaces on larger than at present, and the North-shore 

the lake bottom between the larger macro- _ bed extended slightly farther to the west than 

phytes. Megalodonta beckii (Torr.) (= Bi- its present distribution. The Southeast bed 

dens beckii Torr.) is a relatively rare plant in extended considerably farther to the west along 

Devil’s Lake (only found in one biomass __ the south shoreline, but it was much less 

quadrat) and could easily be mistaken for abundant along its northern extension than at 

milfoil or coontail. This species was confined _ present. Despite a significant decrease in fre- 

to a few widely scattered patches in3—4.5 m — quency of occurrence of milfoil between 1984 

off the North shore. and 1987 (p<0.05), the general configura- 

tion of the three milfoil beds remained rel- 

atively stable. Transect data suggest that the 

North-shore milfoil bed decreased in both 

Historical Perspective | size and average biomass; the Inlet bed bi- 

. omass increased 140%, primarily due to in- 

Milfoil invasion creases in both size and stand biomass within 

The pattern of invasion of Eurasian wa- the 1.5—4.5 m zone; and the Southeast bed 

termilfoil in other lakes has been character- | remained stable except for a moderate in- 

ized as one of introduction, rapid expansion, crease in biomass. 

subsequent die-off, and resurgence, not nec- Aerial photography suggests that the dis- 

essarily to previous maxima (Carpenter 1979; tribution of milfoil in the Inlet bed expanded 
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75% from 1984 to 1987, the Southeast bed —_ recovered in 1989, but the major portion of 

expanded very slightly, and the North-shore _ the bed remained unvegetated (except for some 

bed declined slightly (Table 6, Fig. 5b). very scattered sparse growths of native spe- 

However, during the 1987 survey, tops of cies). While such asynchronous variations in 
milfoil stems were 0.5 and 1 m below the — milfoil have been observed in other lakes 

lake surface at the Inlet and North beds, re- | (Carpenter 1979), the mechanism responsi- 

spectively, and at the surface in the Southeast ble for these fluctuations has not been clearly 

bed. Because milfoil growth had not reached _ identified. 
the surface at the North and Inlet beds, other While historical records of milfoil inva- 
submersed plants may have been mistaken _ sions in some lakes suggest that milfoil out- 
for milfoil; thus milfoil distribution may have competes and displaces native macrophytes 

been overestimated in those two beds. Bio- (Nichols and Mori 1971; Adams and Prentki 

mass estimates presented in Table 5 are be- 1982), some data suggest that milfoil invades 
lieved to be the more accurate, suggesting § disturbed areas or denuded sediments 
that milfoil biomass increased by approxi-  (Keast 1984). While milfoil now occupies 
mately 20% between 1984 and 1987. areas in Devil’s Lake that were formerly oc- 

While the transect data (1984 and 1987)  cupied by E. canadensis and P. robbinsii, 
Suggest an overall increase in milfoil biomass _ the historical record is inadequate to deter- 

| (frequency of occurrence decreased), changes = mine whether milfoil aggressively displaced 
in biomass within individual beds were asyn- _ the native species or whether milfoil simply 
chronous; the Inlet bed expanded and the _filled the void created when the native species 
North-shore bed contracted. It appears that succumbed to some other disturbance 
the North-shore milfoil bed reached a peak _— (Lillie 1986). Of particular note in this re- 
in size in 1983 or 1984 and then experienced _ spect is the recent report by Devil’s Lake 
a gradual die-off. The expansion of the Inlet State Park staff of an unusual amount of na- 
bed in 1987 may have represented a reestab- _ tive macrophytes accumulating along the 
lishment following a period of decline ex- _ park’s beaches during the summer of 1989. 
perienced in the early 1980s. The size of the — Further investigations by the author revealed 
Southeast bed increased substantially from that an enormous number of caddisfly (Tri- 
1974 to 1984 and then remained relatively | choptera: Leptoceridae) larvae had con- 
stable through 1987. However, continued structed their cases from Elodea plant frag- 
aerial photography and snorkeling surveys ments. Whether the large masses of free- 
revealed a dramatic die-off of milfoil in the —_ floating Elodea resulted from the mechanical 
northern half of the Southeast bed between _ fragmentation by the caddisfly larvae or from 
1987 and 1988 (Fig. 5b). Part of this bed increased wave-action intensity accompa- 

Table 6. Estimated distributional coverage (ha) of Myriophyllum spicatum in Devil's Lake 
1984-1989 based on aerial reconnaissance photography. 

Bed Location 1984 1985 (*) 1986 1987 1988 1989 

Southeast 1.3 1.4 (1.6) 1.3 1.5 0.5 0.7 
North 1.1 0.8 (0.8) 0.9 1.0 0.6 0.4** 
Inlet 0.7 11 (1.2) 0.9 1.3 0.7 0.9 

Totals 3.1 3.4 (3.6) 3.1 3.8 1.8 2.0** 

“based on ground-truth data collected August 1985. 
“much of the North shore milfoil bed was hand-harvested on 24 September 1988 by teams of SCUBA- 
divers. 
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Fig. 5.(a) Generalized configuration and extent of SE milfoil bed based on summer WDNR | 

rake surveys 1979-83 (unpublished WDNR studies—Bale and Molter 1979, 1980, 1981; 

Schlesser et al. 1982; Molter and Schlesser 1983). Numbers indicate distance (cm) from lake 

surface to top of plant beds (d = deep, not measured). 

(b) Configuration and extent of SE milfoil bed based on aerial photography taken in mid- 

summer 1981, 1984-1989. 

nying a moderately severe drop in lake water Excluding the deep-water Nitella/Clado- 

level (0.75 m since 1984) was not deter- phora community, the combined standing crop 

mined. However, it was clear that large areas of all native plants increased only 4% from 

formerly occupied by Elodea were rapidly 1984 to 1987. Nitella/Cladophora biomass 

becoming denuded. Whether milfoil invades doubled and frequency of occurrence in- 

these areas in the future remains to be seen. creased significantly during the same time 

. ; span. Coverage (area) of dense macrophytes 

Native plant community (all species combined) differed very slightly 
In addition to the recent changes in Elodea from 1984 to 1987 based on visual obser- 

noted above, other changes have occurred in vations by divers and biomass measurements 

the native plant community of Devil’s Lake. (Table 2). Total standing crop increased 15- 

Biomass of P. robbinsii and P. ill/amp. de- 16% during the same period (including mil- 

creased and E. canadensis, C. demersum, foil). With the exception of a possible decline 

and Nitella/Cladophora biomass increased in Elodea and an increase in coontail, the 

during the short period from 1984 to 1987. distributions and biomass of native species 
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in the Southeast bed during 1984 and 1987 ion among people who have trolled the lake 

were generally similar to that described by on a regular basis for many years is that sub- 

Baker (1975) in his 1974 survey (Baker’s mersed vegetation has increased greatly dur- 

1974 survey was restricted to only the South- ing the past 30 years. Other subjective ob- 

east area; no other quantitative biomass data servations, such as the milfoil expansion and 

exist for other beds or other years). The rake- the water lily disappearance off the entrance 

surveys conducted by the WDNR during 1979— _ to the North shore boat landing, have been 

1983 documented an increase in the distri- substantiated by hard data. This data further 

bution of E. canadensis from 1979 to 1982 supports the short-term scientific record and 

(down slightly in 1983), and a decline in the conclusion that submersed vegetation has in- 

distribution of P. robbinsii from 1979 to 1983. creased substantially in Devil’s Lake during 

Apparent fluctuations in distribution and rel- the last 30 years. 

ative abundance of Nitella and filamentous 

algae may have resulted from changes in 

sampling methodology. ° Acknowledgments 

Prior to the 1974 Baker survey, only a few Data collections and processing of macro- 
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canadensis, was growing profusely in the area D. Soltis, D. Marshall, B. Dhuey, S. Claas, 
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robbinsii was also listed as common (Meier and review were provided by G. Lange and 
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feeding spot for perch,’’ and “‘there is little and K. Lange. The editorial assistance of D. 
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shore or boat, perceptions that may be grossly reau of Research, Wisconsin Department of 

inaccurate. However, the consensus of opin- Natural Resources. 
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Appendix A: Part 1 
Total plant biomass (kg) distribution of major plant species in Devil’s Lake by year, region and : 

depth (in meters). 
oe 

DEPTH ZONES 

Species Region 0-1.5 1.5-3 3-4.5 4.5-6 6-7.5 7.5-9 SUM 

ALL PLANTS 

1984 Inlet 3,842 5,214 549 114 97 137 9,953 

North 684 7,277 2,982 714 272 342 12,270 

SE 448 = 6 ,8 18 2,701 884 758 328 11,938 

34,161 

1987 Inlet 6,482 5,959 1,958 36 70 814 15,319 

North 759 ~=5,496 3,187 890 665 1,736 12,733 

SE 286 5,895 3,449 429 491 593 11,143 

39,195 

M. spicatum 

1984 Inlet 15 896 421 50 11 0 1,393 

North 128 1,756 14 0 0 0 1,898 

SE 63s 33,231 84 210 0 0 3,588 

6,879 

1987 inlet 0 1,815 1,362 0 2 0 3,220 

North 10 734 4 0 0 0 748 

SE 19 3,131 1,306 10 5 0 4,471 

8,439 

P. robbinsii 

1984 Inlet 2,614 3,220 0 2 7 0 5,843 

North 15 4,172 1,495 18 28 0 5,728 

SE 76 3,044 2,005 103 1 0 5,229 

16,800 

1987 Inlet 3,790 2,553 130 16 0 0 6,489 

North 24 1,765 1,462 50 0 0 3,301 

SE 12 1,828 1,804 82 4 0 3,730 

13,520 

E. canadensis 

1984 Inlet 767 718 5 12 5 0 1,507 

North 121 343 852 447 1 0 1,764 

SE 97 395 168 47 26 0 733 

4,004 

1987 Inlet 1,304 872 18 0 0 1 2,195 

North 285 1,885 1,425 20 11 0 3,626 

SE 76 143 20 1 5 3 248 

6,069 

C. demersum 

1984 Inlet 4 128 63 36 0 1 232 

North 1 67 379 155 25 8 635 

SE 0 44 360 67 32 31 534 

1,401 

cont. 
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Appendix A: Part 1 

| DEPTH ZONES 
Species Region 0-1.5  1.5-3 3-4.5 4.5-6 6-7.5 7.5-9 SUM 

1987 Inlet 8 661 444 19 4 0 1,136 

North 21 136 255 566 2 0 980 

SE 3 665 298 229 0 0 1,195 

3,311 

Nitella-Cladophora community 

1984 inlet 0 0 0 0 71 137 208 

North 2 0 0 66 217 334 619 

SE 0 1 1 459 700 297 1,458 

2,285 

1987 Inlet 0 0 0 0 64 812 876 

North 0 1 12 248 652 1,736 2,649 

SE 0 0 0 101 477 591 1,169 

4,694 
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Appendix A, Part 2 
Frequency of occurrence (% quadrats present*) of major plant species in Devil's Lake by year, 
region, and depth (meters).. 

Species Region 0-1.5 1.5-3 3.4-5 4.5-6 6-7.5 7.5-9 SUM 

ALL PLANTS 
1984 Inlet 84% 92% 77% 71% 73% 71% 81% 

North 69 99 94 95 97 83 91% 

SE 45 95 97 83 87 96 85% 

1987 Inlet 89 98 82 50 61 96 89% 

North 56 95 94 91 92 93 88% 
SE 42 97 97 93 95 87 87% 

M. spicatum 

1984 Inlet 24 49 77 29 14 0 31% 

North 50 42 20 0 0 0 30% 

SE 21 65 39 8 0 0 32% 

1987 Inlet 0 60 73 0 6 0 26% 

North 8 21 15 0 0 0 11% 

SE 15 41 50 7 9 0 26% 

P. robbinsii 
1984 Inlet 52 62 0 7 9 0 30% 

North 7 68 69 26 12 0 42% 

SE 10 60 81 12 4 0 38% 

1987 Inlet 67 56 11 25 0 0 34% 
North 23 59 58 9 0 0 33% 

SE 15 59 70 27 4 0 36% 

E. canadensis 
1984 Inlet 56 67 15 7 4 0 33% 

North 37 56 74 37 3 0 43% 

SE 14 25 52 25 17 0 23% 

1987 Inlet 56 56 11 0 0 4 31% 

North 51 73 79 26 3 0 47% 

SE 19 25 30 7 14 7 19% 

C. demersum 
1984 Inlet 20 20 54 43 0 5 20% 

North 2 12 29 63 38 8 18% 

SE 0 15 39 42 30 22 21% 

1987 Inlet 15 47 27 38 11 0 24% 

North 13 12 51 52 3 0 17% 

SE 4 13 50 27 0 0 15% 

Nitella-Cladophora community 
1984 Inlet 0 0 0 0 50 71 19% 

North 2 1 3 26 84 83 19% 

SE 0 2 3 58 74 96 29% 

1987 Inlet 0 0 0 0 56 96 27% 

North 0 1 12 87 92 93 35% 

SE 0 0 0 53 91 87 29% 
eee 

*allocation of quadrats by regions and years: 
1984 (l=134, N=289, SE=182) total N = 605; 

1987 (l=137, N=278, SE=186) total N = 601. 
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Appendix A, Part 3 
Mean dry weight biomass (g/m?) distribution of major plant species in Devil’s Lake by year, 
region, and depth zones (in meters). 

Species Region 0-1.5  1.5-3 3-4.5 4.5-6 6-7.5 7.5-9 Avg. 

TOTAL PLANTS 
1984 Inlet 164 281 63 17 7 6 106 

North 14 116 174 43 12 11 58 

SE 13 157 154 71 48 13 79 

1987 Inlet 254 313 210 4 5 33 148 

North 12 85 175 50 26 50 57 

SE 8 137 213 —633 32 23 76 

M. spicatum | 

1984 Inlet <1 48 48 7 <1 0 15 

North 2 28 <1 0 0 0 9 

SE 2 74 5 17 0 0 24 

1987 Inlet 0 95 146 0 <1 0 31 

North <1 11 <1 0 0 0 3 

SE <1 73 81 <1 <1 0 30 

P. robbinsii 

1984 Inlet 111 173 0 <1 <1 0 62 

North <1 66 87 1 1 0 27 

SE 2 70 115 8 <1 0 35 

1987 Inlet 149 134 14 2 0 0 54 

North <1 27 80 3 0 0 15 

SE <1 43 111 6 <1 0 25 

E. canadensis 
1984 Inlet 33 39 <1 2 <1 0 16 

North 2 5 50 27 <1 0 8 

SE 3 9 10 4 2 0 5 

1987 Inlet 51 46 2 0 0 <1 21 

North 5 29 78 1 <1 0 16 

SE 2 3 1 <1 <1 <1 2 

C. demersum | 
1984 Inlet <1 7 7 5 0 <1 2 

North <1 1 22 9 1 <1 3 

SE 0 1 21 5 2 1 4 

1987 Inlet <1 35 48 2 <1 0 114 

North <1 2 14 32 <1 0 4 

SE <1 15 18 18 0 0 8 

Nitella-Cladophora community 
1984 Inlet 0 0 0 0 5 6 2 

North <1 <1 <1 4 9 11 3 

SE 0 <1 <1 37 44 12 10. 

1987 Inlet 0 0 0 0 4 33 8 

North 0 <1 <1 14 | 25 50 12 

SE 0 0 0 8 31 23 8 

* derived by summing total kg in each cell (transect by depth) and dividing by total area in each region. 
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Tornadoes of Fire at Williamsonville, 

Wisconsin, October 8, 1871 

Joseph M. Moran and E. Lee Somerville 

Abstract. A small Door County park northeast of Brussels, Wisconsin, is a memorial to sixty 

people who lost their lives when a wildfire destroyed the tiny village of Williamsonville on 

the night of October 8, 1871. The tragedy was compounded by what eyewitnesses described 

as ‘‘tornadoes of fire’’ that accompanied the inferno. Today, we know that large wildfires 

often spawn intense vortices that resemble Williamsonville’s tornadoes of fire. The William- 

sonville fire was one of several major wildfires on the same day that claimed more than 

seventeen hundred lives and destroyed millions of hectares of forest land in the upper Midwest. 

A dry summer coupled with a general disregard of fire prevention strategies contributed to 

the disaster. In southern Door County, the fires meant the end of lumbering and shinglemaking 

as major industries and served as an impetus for development of agriculture. 

OC n the night of October 8, 1871, a wild- changed significantly. In southern Door 

fire swept through the tiny village of County, the fire that destroyed Williamson- 

Williamsonville in Brussels township, south- ville and other settlements was a singular 

ern Door County, Wisconsin (Fig. 1). All but event that marked the end of lumbering and 

seventeen of the settlement’s seventy-seven shinglemaking and spurred the region’s tran- 

inhabitants perished. The Williamsonville sition to agriculture. 

tragedy was one of many that night when 

fires swept into lumber and shinglemill towns Geographic Setting 
located on both sides of the bay of Green In 1871, the Door County peninsula was 

Bay; in all, perhaps thirteen hundred lives _ thickly forested and sparsely populated. The 
were lost and seventy-five hundred people glacial era had shaped a gently rolling terrain 
were left homeless. Most victims were either that was covered by northern mesic forest 

lumberjacks or homesteaders. In addition to species (maple, hemlock, and yellow birch). 

| the tragic loss of life and human suffering, Cedar swamps and tamarack and black spruce 

wildfires so devastated the forests—more than _ bogs occupied moist lowlands. The southern 
a half million hectares were burned—that the half of the county (south of Sturgeon Bay) 

historical course of the region’s economy had been settled in the mid-1850s primarily 

ao C~*éiS SY ‘Bee Qian immmigrrntts. They were mainly 

Joseph MM acival author. is P farmers but the densely forested condition of 

arth Science, College of Envivonmencal Sciences, Uni. their new homeland force d them into logging 

versity of Wisconsin-Green Bay, Green Bay, Wisconsin as their primary occupation at least for a time 

54311-7001. E. Lee Somerville is a graduate of the (Friedman 1989). 
Regional Analysis program at UW-Green Bay. Settlers built small dwellings in isolated 
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Tornadoes of Fire 

settlements in the woods and survived by mill and a large storage barn were located 

shinglemaking, lumbering, and some farm- well away from other buildings presumably 

ing and fishing. At first, poor roads limited as a fire safety measure. Roadside buildings 

the marketing of logs, and no doubt much consisted of a boarding house, store, black- 

valuable timber was wasted during slash-and- smith shop, and eight dwellings (C. I. Martin 

burn clearing of land for crops. Eventually, 1881). The present highway on the map was 

markets opened for wood products including built in the late 1920s and is now State 

lumber, railroad ties, and shingles. Shingles Highway 57. 

were split from pine and cedar logs, shaved Today, the former site of Williamsonville 

by hand, and transported via ox carts or sleighs is marked by a small roadside park on land 

to Green Bay or to boats on the Bay for purchased by the county in 1927 at the sug- 

eventual transport to Milwaukee or Chicago. gestion of the Door County Historical Society 

Later, shinglemills were built. (Holand 1931). Tornado Memorial Park 

Williamsonville, site of one of Door coun- (Fig. 3) is located 6.6 kilometers northeast 

ty’s largest shinglemills, occupied a clearing of Brussels, Wisconsin. Bronze tablets com- 

of about 4 hectares. A sketch map of Wil- memorate the sixty victims who on the night 

liamsonville (Fig. 2) shows a linear pattern of October 8, 1871, burned to death in the 

of settlement along the original stage road ‘tornado of fire’’ that “‘blotted out’’ the 

that linked Sturgeon Bay and Green Bay. The village. 
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Fig. 2. Sketch map of Williamsonville, Wisconsin. On October 8, 1871, this shinglemill village 
was destroyed by a wildfire; only seventeen of its seventy-seven inhabitants survived. (From 
Holand 1931.) 
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Fig. 3. Tornado Memorial Park is the former site of Williamsonville, Wisconsin, and commem- 
tes the sixt le who lost their lives to a “‘t do of fire” on the night of 8 October 1871 orates tne sixty peopie who los eir ives to a tornado of tire’ on the night o ctober . 

The park is 6.6 kilometers northeast of Brussels, Wisconsin, on State Highway 57. (Photograph 
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The Fire wildfires burned over perhaps one million 
. . . 

Ithough the Williamsonville fire is oft hectares of woodland in lower Michigan and 
A g£ msSonvuilie fire 18 orten . . 

‘dered fth fl ‘on th may have claimed another two hundred lives. 
considere part O e same conflagration that . . 
destroved Peshtigo. W; : tuall In all, these were the most destructive wild- 

y esntigo, isconsin, actually sep- . . . 1 
te fi Ifed th 1 fires in United States history. 

arate fires engulfed the two settlements. Ac- . . 
cording to Wells (1968). at least t We are fortunate in having a detailed eye- 

£ CUS , al least (WO major . saat . 
wit t of the William lle fi wildfires ravaged the west side of the bay of MESS account OF the Wiamsonville He. “ate 

Green Bay—one spread from near the Green Thomas Williamson, one of the owners of 
. . . 

ste lien} the mill and village, was startled by the rapid 
ay city limits to just south of Oconto an ° 

another burned north of Oconto into Peshti approach of flames. He reported that as he 
er ourned no O conto into Freshugo . . . . . 

ee sat with several relatives on the stairs of his 
an en on to Michigan’s Upper Peninsula 

. 

family home (Fig. 1). On the less populated east side of 
. 

the Bay, another wildfire spread from south 
: . 

of New Frankin northeastward to near Stur- there came a heavy puff of wind, the trees fell 
. in all directions, and I saw the reflections of a 

con ba ar e greatest 1OSs OF lite ° ° 9 . ° e 

‘n Peshti d neichbori | big fire south of us. I thought it was a mile and 
| was in Feshtigo and neighboring settlements. ; 

The Peshti way: a half off. In less time than it takes to write 
e Peshtigo and Williamsonville fires oc- his. th her h 1 

. this, there came another heavy gale, and the 
curred on the same night as the great Chicago fl lline throuch th d ames came rolling through the woods up to 
fi hich claimed more than two hundred ’ the back of the barn. . . . Then the sparks came 
li di B ives and destroyed 17,450 b - ye , uuidings. be down like a heavy snow-storm... . 
t October 8 and 10, 1871, oth ween October 8 an , , other major (Holand 1931)
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Williamson then describes how he and his a Door County map published only seven 

family tried to save themselves and their pos- years after the fire, Williamsonville was re- 
sessions, but their efforts were to little avail. placed by Tornado, which apparently con- 

The next day, the bodies of thirty-five victims sisted of nothing more than a post office and 

were found huddled together in a potato patch saloon (Fig. 4). 

located about one hundred meters from the Whyv it H d 

charred forest. Two of seven persons who y Wt Tlappene 

sought refuge in a well perished. Of the eleven Although wildfires are largely random and 

members of the Williamson family, only unpredictable events, fire specialists cite fuel, 
Thomas and his mother survived. William- ignition, and weather as key contributing fac- 

sonville was literally erased off the map. On tors. No one of these ingredients alone usu- 
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Fig. 4. On this 1878 map of Door County, “Tornado” marks the former site of Williamsonville, 
Wisconsin. Tornado apparently consisted of nothing more than a post office and saloon. (Map 
from Historical Atlas of Wisconsin, Milwaukee: Snyder, VanVechten and Co., 1878, p. 101; 
courtesy of the American Geographical Society Collection, The University of Wisconsin-Milwaukee 
Library.) 
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ally is sufficient to trigger major wildfires. ern fire prevention practices mean that wild- 

For example, even if the weather is unusually fires typically originate from only a few ig- 

dry for a lengthy period, wildfires are un- nition points. Back then, wildfire was a 

likely unless sufficient fuel (e.g. humus, tolerated hazard, and as long as winds were 

woody debris) has accumulated. light, workers were able to contain the flames 

In his review of wildland fire behavior, whenever they drew close to settlements. 

Albini (1984) notes that wildfires are loosely = Residents of Williamsonville, for example, 

classified on the basis of the type of fuel — vigilantly controlled small fires that flared up 

through which they burn. Ground fires slowly | around their clearing in the woods, and, if 

consume the subsurface organic materials that | winds permitted, they would set protective 

compose peat bogs and swamps; surface fires backfires confident that fire would not burn 

engulf forest litter, fallen trees, and other over the same area twice (Holand 1931). 

vegetation; and crown fires rapidly burn One obstacle in reconstructing the weather 

through tops of standing (usually coniferous) conditions on the day of the wildfires as well 

trees. Eyewitness accounts (e.g. Tilton 1871) | as the months preceding is a lack of reliable 

indicate that the northeastern Wisconsin data. Weather-observing practices were not 

wildfires were unusually intense and in- standardized as they are today, instruments 

volved all three sources of fuel. Forexample, — were less reliable, and weather stations were 

Williamsonville survivors described a °‘sheet few and far between. Nonetheless, available 

of fire that rolled along over the tree tops,’ | data indicate that the summer of 1871 was 

probably indicating a crown fire (C. I. Martin very dry throughout northeastern Wisconsin 

1881). Also, eyewitnesses noted that the fire (Haines and Sando 1969; Haines and Kuehn- 

was so intense that stumps were burned out —_ast 1970). Precipitation records at Embarrass 

and roots were gone (Holand 1931). (about 58 kilometers northwest of Green Bay) 

By early October 1871, the firedangerhad and Sturgeon Bay indicate that rainfall was 

become acute over much of the upper Mid- below average during June, July, August, 
west partially because of the wastefullogging | and September of 1871. 
practices of the day. Lumbering, clear-cutting Although summer dryness likely contrib- 
for farming, and the railroad right-of-way uted to the wildfires of early October, we 
(then under construction between Green Bay would be remiss in assuming that the area 
and Menominee, Michigan) left behind con- _—-was in the grip of a drought of unparalleled 
siderable residue and slash accumulation in severity. Lorimer and Gough (1982) com- 
the woods. The debris fueled numerous small _—_ puted a drought index for northeastern Wis- 
fires that broke out frequently throughout the | consin for each day, May 1 through October 
summer. In fact, newspapers reported that 31, 1864-1979, and tabulated the number of 

smoke blown from the smoldering woods often days per month of moderate and severe 
obscured the midday sun and sometimes was drought. From May through September of 
so thick over the Bay that it slowed ship 1871, moderate drought occurred on 33 days 
traffic. The week before the wildfires, fog and severe drought characterized only one 
horns were sounded continuously and navi- _ day. In the 116 years of record, 22 years had 

gation was done by compass (Pernin 1971). a greater frequency of moderate drought and 

Numerous small fires burning inthe woods 29 years had a greater frequency of severe 
of northeastern Wisconsin in the days prior drought. Furthermore, March and April of 
to the main conflagrations meant many points 1871 were relatively wet at both Embarrass 
of ignition, which is one reason why fire and Sturgeon Bay (Haines and Sando 1969). 

burned so rapidly over such huge areas (Haines § But what may be more important than sum- 
and Sando 1969). Today, wildfires usually — mer drought in contributing to the fire weather 

burn over much smaller areas because mod- _ of early October was the very low relative 
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Fig. 5. Reconstruction of the major features of the synoptic weather pattern on the evening of 
8 October 1871 based on a study by Haines and Kuehnast (1970). Low pressure (L) over 
southwest Minnesota coupled with a slow-moving high pressure system (H) over the mid- 
Atlantic states meant a south to southwesterly flow over the upper Midwest. Fronts stretch 
northeast and southwest of the low center. 

humidity that persisted during the week or The relatively steep pressure gradient be- 
So prior to the wildfires (Haines and Kuehnast — tween the two weather systems gave rise to 
1970). Low relative humidity is known to south to southwesterly winds over portions 
significantly elevate the fire danger by re- of Iowa, northern Illinois, and most of Wis- 
ducing the moisture content of dead logs and consin and Michigan. The strongest winds 
branches. were over southeastern Wisconsin and north- 

We are indebted to Haines and Kuehnast _ ern Illinois; at 2 PM winds at Chicago and 
(1970) for their reconstruction of the synoptic | Milwaukee were from the south/southwest at 
weather pattern of the day of the wildfires a brisk 37 and 52 kilometers per hour re- 
(Fig. 5). On the evening of October 8, 1871, spectively. Winds were weaker over north- 
a slow-moving high pressure system was eastern Wisconsin with Embarras and Stur- 
centered over Virginia and the Carolinas,and = geon Bay reporting winds of only 19 
a deepening Alberta-type low pressure sys- kilometers per hour at 9 pM. Nonetheless, 
tem was over southwestern Minnesota. A winds were sufficiently strong to fan many 
nearly stationary front stretched northeast- small blazes into larger conflagrations. By 
ward from the low center across northwestern —_ late on the evening of October 8, southwes- 
Wisconsin to just north of Lake Michigan. terly winds were driving major wildfires to- 
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ward Peshtigo and Williamsonville. By about Tornadoes of fire were actually fire vor- 

_ 2 AM on October 9, the wildfires were over __ tices, which are frequently spawned by large 

and the burned-over region lay in smolder- _ wildfires (Graham 1955; Haines and Updike 

ing ruin. 1971; Albini 1984). Development of fire vor- 

_ oo. . tices was probably the principal reason for 

Fire Vortices both the rapid pace and destructiveness of 
Although regional winds were only light the wildfires. Fire vortices are of two general 

to moderate over northeastern Wisconsin, by types: fire whirlwinds and horizontal roll vor- 
many eyewitness accounts, wildfires were tices. The Wisconsin wildfires likely gener- 

accompanied by winds strong enough totwist ated both types of vortices. 
and uproot large trees and rip the roofs off Fire whirlwinds are the more common vor- 

barns and other buildings. Also, some sur- tices. They are vertically oriented and vary 

vivors reported that wind and fire whirled in diameter (1 to more than 100 meters) and 
about like a tornado and produced aroar sim- _ height (1 to more than 1000 meters) and range 
ilar to the sound that often precedes a tor- in intensity from weak dust-devil—like whirls 

| nado. In his fascinating report of the fire, to severe tornado-like disturbances. Whirl- 

Tilton (1871), a Green Bay newspaper man, winds develop both within and immediately 

quotes two residents of Sugar Bush, a small downwind of a wildfire and are made visible 

settlement near Peshtigo, who witnessed by swirling smoke and masses of burning 
‘tornadoes of fire.”’ embers.” Horizontal roll vortices, whirls that 

rotate about a horizontal axis, are less com- 

Says Alfred Griffin, of the lower Sugar Bush, | ™on and rotate more slowly than fire whirl- 
‘‘When I heard the roar of the approaching winds (Haines and Smith 1987). If either type 

tornado I ran out of my house and saw a great __ of fire vortex develops at the downwind lead- 

black, balloon-shaped object whirling through ing edge of a wildfire, they can hasten the 
the air over the tops of the distant trees, ap- spread of fire by scattering firebrands (burn- 

proaching my house. When it reached the house ing embers) and igniting spot fires well be- 
| it seemed to explode, with a loud noise, belch- yond the perimeter of the main body of fire. 

ing out fire on every side, and in an Instantmy In controlled burns, for example, fire whirl- 
house was on fire in every part.’ ; .. 

G. H. Brooks makes a similar statement. He winds are known fo ignite spot fires many 

went out of his back door to see the approaching kilometers downwind from the main inferno. 

storm, saw a similar cloud or ball approaching, This is likely what happened as regional 
and then ran into the house and with difficulty southwesterly winds steered wildfires toward 

closed the door, so strong was the wind. The Williamsonville and Peshtigo, for it explains 

ball had by this time reached the house and how objects situated some distance down- 
exploded with a loud noise, filling the air with wind of the main body of the wildfire were 
great sheets of flame. A stream of fire entered quite suddenly consumed by fire. 

his house through the crack under the back In some respects, wildfires that scorched 
door, and swept through the house to the front northeastern Wisconsin in October 1871 may 

door. Of course the house was ablaze in an —_ have resembled the huge fire storms that en- 
instant from foundation to roof, the family barely gulfed hundreds of city blocks during Allied 
escaping with their lives, supremely happy to ; eer 

do that. We visited the place afterwards. The bombing raids on cities in Germany and Ja- 

house stood at a considerable distance from the pan during World War Il. In those fire storms, 
woods—so far, that in any ordinary fire, it would Violent updrafts formed over the fire center 

have been perfectly safe. But here were re- and strong cyclonic (counterclockwise) winds 
maining but the stone walls of the cellar, di- developed at the surface. For example, on 
lapidated stoves, melted stove-pipe and broken July 27-28, 1943, heavy incendiary bomb- 

crockery. . . . (Tilton 1871) ing of Hamburg, Germany, set off a fire storm 
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that engulfed an area of about 12 square kil- the landscape and the local economy. The 
ometers. Surface winds likely exceeded hur- thick forests were gone, replaced by burned- 
ricane strength and the fire storm was ac- over vegetation and tree stumps; the lum- 
companied by intense local vortices bering era had ended. 
(Ebert 1963).° Clearing trees and stumps had always been | 

Models and experimental burns provide a slow and arduous task for settlers living 
some insight on the genesis of fire vortices. independently on isolated plots of land and 
For example, Church et al. (1980) attempted relying on their own muscle power and that 
to model fire whirlwinds during experiments of their sluggish oxen. Ironically, the dev- 
at the Meteotron facility in southern France astating wildfires of 1871 helped farmers to 
near the central Pyrenees. The Meteotron is clear the forest and open the land to crops. 
a 140 by 140 meter square array of 105 fuel Furthermore, when news of the wildfires 
oil burners which, when ignited, produces reached the rest of the state and nation, an 
fires that merge into a highly energetic in- enormous relief effort began which brought 
ferno. A network of weather instruments and food, clothing, money, and farm implements 
cameras continually monitors the fire plume, to the area. Xavier Martin, a prominent Green 
a hot and buoyant mixture of combustion Bay politican and real estate dealer, observed | 
gases and entrained air. Church and his col- that by 1874, only three years after the fire, 
leagues found that vortices of varying inten- the Belgian immigrants of Door County were 
sity develop within the fire plume, and some in better condition and circumstances than 
travel downwind and away from the fire pe- ever before (X. Martin 1895). 
rimeter. Apparently surface winds interact In effect, the fire was a catalyst that ac- 
with the fire plume in such a way that vor- celerated the transition to agriculture in 
ticity (a measure of the rotational tendency southern Door County, a conclusion that is 
of the fluid) is concentrated in a series of supported by area census data that bracket 
anticyclonic (clockwise) and cyclonic the 1871 fire. Censuses of 1870 and 1880 
(counterclockwise) vortices. indicate sharp increases in population, num- 

Haines and Updike (1971) point out that, ber of farmers, and land area in cultivation 
once formed, a fire whirlwind feeds itself. A in the five southern Door County townships 
fire whirlwind occupies an air column that is most severely affected by fire (Tables 1 and 2). 
heated intensely by the underlying burning In fact, the rate of development was much 
ground cover. Intense heating destabilizes the faster than statewide trends during the same 
air, especially close to the ground, and gives period. While population more than doubled 
rise to a strong updraft that draws surface and cultivated land area almost tripled in the 
winds radially inward toward the whirlwind. five southern Door townships, statewide pop- 
In this way, horizontal surface winds trans- ulation increased 25% and farm acerage in- 
port fuel (burning logs and other debris) into creased 31% (Ebling et al. 1948). Census 
the whirlwind. Burning fuel further heats the data also tell us that the number of sawmill 
air enhancing its buoyancy and thereby the or shinglemill workers in the five townships 
whirlwind circulation strengthens. declined from thirty-nine in 1870 to none 

| . . . in 1880. 
Historical Significance Farming in Door County in the 1870s was 

In many of the devastated settlements, in- largely of the mixed or subsistence type with 
cluding Peshtigo, survivors of the wildfires an emphasis on livestock (Ebling et al. 1948). 
stoically tried to put their lives back together. That is, farmers produced primarily for their 
Some saw and shingle mills destroyed by fire family’s essential needs (food, fiber, and 
were rebuilt but not in southern Door County Shelter). Nonetheless, this stage in the re- 
where the wildfires had permanently altered gion’s agriculture was a key step in the even- 
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Table 1. Percent change in population and farm statistics between 1870 and 1880 for the five 

southern Door County townships most severely affected by the 1871 wildfires. 

____Brussels__Forestville___—Gardner_Nasewaupee UNION 

Population + 146% +197% + 50% + 120% + 108% 

Households +141% +181% + 538% + 87% + 87% 

Farmers + 145% + 269% + 100% +115% + 98% 

Farm land* + 167% + 341% + 25% +129% + 156% 

*Tilled plus permanent meadow 

Source: U.S. Census, 1870 and 1880. Population and Agricultural Schedules, Door County, Wisconsin. 

Wisconsin State Historical Society, Madison, Wisconsin. 

Table 2. Change in population and farm sta- But perhaps the most devastating aspect of 

tistics between 1870 and 1880 for the com- _the wildfires was the spawning of intense fire 

bined five southern Door County townships —_— vortices. Based on vivid eyewitness ac- 

most severely affected by the 1871 wildfires. counts, it appears that fire vortices set spot 

Percent fires ahead of the main infernos, thereby ac- 

1870 1880 Change celerating the progress of the wildfires and 

Population 1800. ©4016 «© +128% 1800 A016 + 123% producing isolated pockets of destruction. 

Households 328 692 +111% From an historical perspective, the wild- 

Farmers 273 673 + 147% fires altered the economy of the region— 

Farm land especially in southern Door County where 

(acres) 6614 17799 + 168% the fires meant the end of lumbering and 

‘Tilled plus permanent meadow spurred the development of agriculture. 

Source: U.S. Census, 1870 and 1880. Population Acknowledgments 

and Agricultural Schedules, Door County, Wiscon- 

sin. Wisconsin State Historical Society, Madison, This study benefited greatly from discus- 

Wisconsin sions with Dr. William G. Laatsch, Professor 

tual development (after 1890) of dairy farm- of Regional Analysis, University of Wiscon- 

ing, which remains important today. In 1895, sin-Green Bay. Also, Jennifer M. Tillis and 

Xavier Martin wrote that ‘‘it is a beautiful Debra Anderson of the UW-Green Bay Lt- 

sight to see fine crops of wheat, rye, barley, brary and Mary Jane Herber of the Brown 

and oats covering fenceless and stumpless County Library were very helpful in locating 

fields with an even height along the high- historical documents. 

ways. The wilderness of 40 years ago begins 

to look like the fields of Belgium. . . .”’ (X. Endnotes 

Martin 1895). ‘During the summer of 1988, in perhaps the 

| 
worst wildfires since 1872 (Romme and Despain 

Conclusion 1989), more than two million hectares of U.S. 

Several factors contributed to the outbreak forest land burned including about 290,00 hectares 

of wildfires that destroyed Williamsonville in Yellowstone National Park. By contrast, 1n an 

. . . . average year, 130,000 wildfires burn over about 

and other villages in northeastern Wisconsin way: a: 
. one million hectares of U.S. land (Albini 1984). 

on October 8, 1871: wasteful logging prac- 2The North Central Forest Experiment Station 

tices, summer drought, low relative humid- (East Lansing, Michigan), has produced an ex- 

ities just prior to the fires, and, on the day _ cellent videotape, ‘‘Vortices in Wildland Fires,” 

of the fires, a weather pattern that favored which includes dramatic footage of a variety of 

the region with moderate southwesterly winds. vortices spawned by wildfires. 
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7An important difference between urban fire Haines, D. A. and M. C. Smith. 1987. Three types 

storms and forest fires is the fact that the former of horizontal vortices observed in wildland mass 

tends to be stationary while the latter are in motion. and crown fires. Journal of Climate and Applied 

. Meteorology 26:1624—1637. 
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Spectral confusion by Hummingbirds and the 
Evolution of Red Coloration in their Flowers: A 
New Hypothesis (Millerian mimicry/wavelength 
discrimination/shade/color name) | 

Robert Bleiweiss | 

Abstract. Red is the predominant color among mimetic hummingbird-pollinated flowers in 
North America. Recent experimental studies suggest that the ability of hummingbirds to 
discriminate among different wavelengths is poorest in the long (red) end of the spectrum. I 
propose that red is the best signal for the mimetic flowers precisely because the hummingbirds’ 
poor discrimination of long wavelengths makes them more likely to mistake flowers of slightly 
different shades of red as being subjectively similar; spectral confusion favors both the initial 
convergence and subsequent maintenance of mimicry. Since the effectiveness of floral color 
in attracting pollinators is a function of both the probability that the flower will be seen 
(conspicuousness) and that it will be recognized as a good food source (mimetic advantage), 
the relative conspicuousness of red against green foliage may complement red’s mimetic 
advantage. The hypotheses that red hummingbird flowers have evolved because of an innate 
preference by hummingbirds for red, or because red is inconspicuous to insects, are not 
supported by available evidence. Poor discrimination of long-wavelength signals may also 
explain why red predominates among other mimetic prey of birds, such as in mimicry rings 
of noxious butterflies. 

T he convergent flower structure and red species (Brown and Kodric-Brown 1979). 
coloration of the North American — Grant (1966) proposed that North American 

hummingbird-pollinated flora presents an ev- hummingbird-pollinated flowers are analo- 
olutionary puzzle because it provides an ex- gous to Miillerian mimics and have evolved 
ception to the general pattern that inter- convergent structures and red color because 
specific competition for the services of often than to 590 nm (yellow-orange). They 
pollinators leads to character divergence and tors, hummingbirds, outweigh the advan- 
pollinator specificity among sympatric plant tages of pollinator specificity. Humming- | 

eee birds must learn what plants provide a nectar 

Dr. Robert Bleiweiss received his Ph.D. in Organismic ae F temperate humminabink ve fe, 
and Evolutionary Biology from Harvard University in | 
1983. He was a Chapman Postdoctoral Fellow at the ral convergence beneficial for both bird and 
American Museum of Natural History from 1983 to 1985. plant; a common color would increase the 
Dr. Bleiweiss is currently Assistant Scientist in the De- rate at which hummingbirds learn appropriate | 
partment of Zoology and Adjunct Assistant Curator of food sources in new areas and hence, the 
Birds in the Zoological Museum at the University of wy: . 
Wisconsin, Madison. His research interests include the — probability that any p lant with flowers of the 
evolution of visual signals, speciation, and biochemical same color will be visited and pollinated by 
systematics. a hummingbird (Grant 1966; Grant and Grant 
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1968). Brown and Kodric-Brown (1979) have 1963, 1965, 1967; Swihart and Gordon 1971). 

provided convincing evidence for Grant’s hy- In this report, I suggest a new ‘‘confusion 

pothesis that the similar appearance of the hypothesis’’ for the evolution of common red 

North American hummingbird-pollinated flora color based on a previously unconsidered 

is due to mimetic convergence. property of color vision: wavelength discrim- 

It is less clear why these plants have evolved ination. I summarize evidence that hum- 

red as their typical color. Hummingbirds have mingbirds actually discriminate poorly among 

excellent color vision (Stiles 1976; Gold- long (red) wavelengths, and I argue that poor 

smith and Goldsmith 1979). All previous ex- discrimination of long-wavelength signals fa- 

planations of why red is the predominant flo- cilitates the mimetic advantage of the com- 

ral color in North America incorporate in mon color because hummingbirds are more 

some way the notion that hummingbirds more likely to mistake red flowers of slightly dif- 

readily discriminate red, but each presents ferent shades as being subjectively similar. 

some difficulties. The hypothesis that hum- I assume, as have others (possible reasons 

mingbirds are innately attracted to red be- given in Brown and Kodric-Brown 1979), 

cause of a special property of their neural that the relative benefits of mimetic conver- 

apparatus (Faegri and van Der Pijl 1979) has gence outweigh any costs associated with lack 

been disproved by experimental evidence that of pollinator specificity. My explanation ad- 

hummingbirds learn color preferences through dresses the more specific question: given that 

their experience with the best food sources the plants are selected to converge, what flo- 

(Grant and Grant 1968; Stiles 1976; Bené ral color will be favored? Data available from 

1945; Wagner 1946; Lyerly et al. 1950; Col- studies of hummingbird visual physiology 

lias and Collias 1968; Miller and Miller 1971). and behavior supports my ‘‘confusion 

The hypothesis that red is a good attractant hypothesis.’’ 

color because hummingbirds perceive it as 

conspicuous (i.e. contrasting) against green oes oe 

foliage (Grant 1966) is based on human per- Wavelength Dis crimination 

ceptions, which may not apply to humming- by Hummingbirds 

birds. The currently favored hypothesis that Color discrimination ability is usually 

red color prevents nectar-robbing insects, | measured based on some criterion of relia- 

(which do not pollinate the flowers), from __ bility of discrimination, which, when applied 

finding the plants (Grant 1966; Raven 1972) _ for all wavelengths throughout the spectrum, 

is based on the fact that red is inconspicuous — generates a characteristic function that de- 

to most insects. However, insects may infact scribes how discrimination varies with wave- 

frequent red hummingbird-flowers (Lyonand length. Goldsmith et al. (1981) generated a 

Chadek 1971; Feinsinger 1977; Carpenter spectral discrimination function for black- 

1978; Snow and Snow 1980; Gill et al. 1982; chinned hummingbirds (Archilochus alex- 

Page and Whitham 1985), which often pos- _—_ andri) by first training them to receive a nec- 

sess other structures that appear designed to _ tar reward at feeders illuminated by a mono- 

limit the foraging efforts of insects (Faegri chromatic light, and then testing their ability 

and Van Der Pijl 1979; Gill et al. 1982; Bol- _ to distinguish this light from another such 

ton and Feinsinger 1978; Stiles 1981; Fein- _ light of equal brightness but with a spectral 

singer 1983). Such features would be super- _ separation of 10 nm. They tested the response 

fluous for red hummingbird flowers if insects over the range of the human visual spectrum 

could not find them. Furthermore, at least (410 nm to 650 nm) to generate a discrimi- 

some of these visitors, namely butterflies, are nation function. Although the function does 

obligate nectar-feeders that can distinguish not give information about the minimum 

long wavelengths as a distinct hue (Swihart wavelength difference that the birds can de- 
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Fig. 1. Goldsmith et al’s (1981) wavelength-discrimination function for the black-chinned hum- 
mingbird (Archilochus alexandri). Birds were trained to feed at bottles containing 25% sucrose 
mounted in front of a glass disc illuminated by the training wavelength (x). Birds were then 
presented with two bottles illuminated by the training wavelength, and two bottles illuminated 
by the test wavelength (\ + 10 nm). The function measures the fraction of incorrect choices 
for the two stimuli of monochromatic light separated by 10 nm. In the function, the points along 
the abscissa are plotted midway between the training and test wavelengths. The training 
wavelength lay 5 nm to the shaded side of the data symbol. 

tect (the so-called just-noticeable difference), common color ‘‘red’’ would not be of evo- 
it does provide a relative measure of wave- lutionary significance if hummingbirds dis- 
length discrimination; where the birds make tinguished two or more hues within the re- 
more errors, their wavelength discrimination gion of the spectrum we perceive as red 
is poorer. (Table 1). Although by definition color- 

Surprisingly, Goldsmith et al. (1981) found naming functions cannot be described for non- 
that the birds’ ability to discriminate two | human animals, Goldsmith and Goldsmith 
stimuli was best at shorter wavelengths and (1979) found that, in making spontaneous 
decreased roughly monotonically toward choices, the hummingbirds’ experience with 
longer wavelengths (Fig. 1). In particular, 620 nm (red) was generalized to 650 nm more 
the birds’ ability to discriminate two stimuli often than to 590 nm (yellow-orange). They 
decreased dramatically for wavelengths longer 
than 585 nm, the region in which the human a , 

| sensation of orange-red begins (Jacobs 1981). rable . Spectral limits of human hue “color 
Thus, hummingbirds’ poorest powers of color =§ ————___ 
discrimination are in the orange to red range Wavelengths 
of the spectrum. Data on discrimination also Color Name (nanometers) 
make it possible to evaluate whether hum- _ Violet 400—440 
mingbirds see as a single hue, i.e. a ‘‘color ue “40-500 reen 500-570 
name,’ the range of wavelengths that we call Yellow 570-590 
red. Hues, and the range of wavelengths they Orange 990-610 
encompass, are perceptual categories rather Red 610~700 
than objective physical standards. Thus, the ‘See Begbie, G. H. 1973. 
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concluded that 590 nm probably falls close receiver’ (Turner 1977). Fisher (1927, 1958) 
to a hue border and that hummingbirds de- pointed out that the mimetic advantage can 

limit hues at long wavelengths in a manner depend on the subjective perceptions of the 

similar to primates, whose hue border for signal receiver. I argue that discrimination 

orange begins at 590 nm (Table 1). ability is the key subjective element driving 

In summary, it appears that human ‘’red’’ the evolution of mimetic color among the 

corresponds to a sensation that humming- hummingbird-pollinated plants. 

birds also perceive as a single hue category, According to standard models for the ev- 

and that discrimination among ‘‘red’’ wave- _— olution of mimicry (Turner 1977), a mimic 
lengths by hummingbirds is poorer than that can evolve initially if a mutant phenotype 

among wavelengths of other hues. These re- arises that achieves sufficient resemblance to 

sults are most likely to apply to all of the the model such that it overcomes any 

hummingbird genera that regularly breed in counterselection for other functions (in the 

North America (Archilochus, Selasphorus, present case, distinctness of floral display that 

Calypte, Stellula) because all of them are might serve to reduce competition with other 

closely related (Zusi and Bentz 1982). plants for the services of pollinators). It is 

: evident that the mutant does not have to be 
C onsequences for the an exact physical replica, but only that it must 

| ‘ os fall within the range of phenotypes that the 

Evolution of Mimicr y signal receiver considers subjectively simi- 
In Miillerian complexes of distasteful prey, lar. For hummingbird-pollinated plants, this 

mimicry is advantageous because the prob- stage will be influenced by the visual dis- 
ability that any given individual will be sam- crimination capacities of the hummingbirds. 
pled decreases as the number of mimetic spe- As phenotypes (wavelengths) are more likely 
cies increases. Hummingbird flowers differ to be confused at the long (red) end of the 
from classical Miillerian mimics, of course, spectrum, the production of a mimetic mutant 
in that the flowers advertise their palatability is more likely to occur for red models. In 
so they can be sampled more often. The se- other words, there are more mutant pheno- 
lective basis for mimicry among either nox- types that would confer a mimetic advantage 
ious or palatable prey is the same, however. in the region of poor discrimination. Con- 
In both contexts, convergence increases the versely, the production of mimetic mutants 
rate at which the animal learns to associate of non-red models is less likely. 
the signal with a stimulus. A hummingbird Alternatively, two plants might by chance 
that has sampled a nectar-ladened flower of alone already resemble each other suffi- 
a particular shade will seek out and pollinate —_ciently well that a major mutation would not 
similar-looking flowers. Thus, mimicry ben- _ be necessary to confer some mimetic advan- 
efits the plant by increasing their reproductive tage (Turner 1977). The chance of being con- 
success and benefits the bird by reducing their —_ fused will be greater where the range of suit- 
costs of seeking out and testing potential food able mimetic phenotypes is greater, namely, 
sources. in the region where the signal receiver’s pow- 

I propose that poorly discriminated pheno- __ers of discrimination are poorest. Thus, for 
types will be favored to evolve as mimics, | hummingbird-pollinated plants, the chance 
both during the initial phase when mimetic _for this fortuitous resemblance will again be 
resemblance is first evolving, and during sub- greater in the long (red) region of the spectrum. 
sequent evolution of the complex. In mim- As the Miillerian advantage increases in 
icry, the mimics gain some advantage through direct relation to the abundance of the mimics 
their resemblance to another organism, the (Turner 1977; Fisher 1927, 1958), then the 
model, by exploiting the learning capacities —_ actual advantage conferred through Miiller- 
of some animal, usually termed the ‘‘signal ian resemblance will be inversely related to 
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the discriminatory powers of the signal re- Evidence that insects visit red flowers does 

ceiver. Poor discrimination leads to the con- _ not by itself refute the hypothesis that red 

fusion of more spectral phenotypes, which has evolved to limit nectar-robbing by them, 

therefore make up a greater proportion of the — as the device need not be completely effec- 

total population, and hence should gain pro- __ tive to be selectively favored. Thus, red may 

portionately in mimetic advantage at any stage be a particularly good advertisement for 

in the evolution of mimicry. By these ar- hummingbird flowers under selection to con- 

guments, red facilitates the mimetic function — verge just because it is conspicuous against 

of the common color and should be favored _— green, inconspicuous to insects, and easily 

when the plants are under selection leading | confused with other shades of red. Given the 

to a convergent appearance. suitability of hummingbirds to experimental 

. . | manipulations of behavior, it should be pos- 

Discussion sible to dissect the relative contributions of 

The ‘‘confusion hypothesis’’ predicts that these potential benefits. 
hummingbirds will learn food sources asso- Should poor discrimination of long wave- 

ciated with slightly different shades (wave- _ lengths prove to be typical for insectivorous 
lengths) of red faster than with a similar array birds, then the “‘confusion hypothesis’’ may 
of shades centered in a different hue. Gold- also explain the predominance of red among 
smith and Goldsmith (1979) observed that | aposematic avian prey such as butterflies that 

red (620 nm) and green (546 nm) stimuli are Millerian mimics (Rettenmeyer 1970). 

were learned with equal rapidity. This finding | This would indicate that red’s primary value 
does not refute my prediction because con- _1S aS a mimetic signal. 

fusion should favor rapid learning only among 
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Glaciated Karst Terrain in | 
the Door Peninsula of Wisconsin 

Carol J. Rosen and Michael J. Day 

Abstract. Glaciated karst terrain, which is poorly documented in the United States, is well 

developed in the Door Peninsula of northeastern Wisconsin. The peninsula is a southeastward- 

dipping cuesta developed on the Silurian Niagaran dolomite. Wisconsinan glacial plucking 

east of the escarpment produced glaciokarst features including alternating steps and risers 

(schichttreppenkarst) and extensive dolomite pavements. Pre- and post-glacial karst landforms 

include enlarged crevices (grikes), sinkholes, and caves. Staircases and pavements are pre- 

dominantly south- and east-facing and are particularly well developed on the Brussels Hill 

outlier. Their distribution is as predicted by the general model of northwest-southeast ice 

movement. Many of the smaller karst landforms are postglacial, although shallow features 

may have an important inherited component, and the larger sinkholes and the caves may 

antedate Wisconsinan glaciation. Much of the postglacial karst development is in the Burnt 

Bluff Formation on the western side of the peninsula where the hydraulic gradient is steepest, 

joints are dilated, and the drift is thinnest. Regional joint sets at 25, 70, and 155 degrees 

have strongly influenced cave and sinkhole development. 

A Ithough large areas of carbonate bed- theless, glaciokarst is present in some areas, 

rock in the United States experienced particularly where drift deposits are thin. In 

the effects of Pleistocene glaciation, glacio- this paper we call attention to one major area 

karst—characteristic terrain developed through of glaciated karst terrain developed on do- 

glaciation of karst landscape—is poorly doc- lomites in northeastern Wisconsin and pres- 

umented. In many areas glaciokarst is limited ent some initial results of studies of the karst 

because the limestones or dolomites are man- landforms. 

tled by thick, often carbonate-rich glacial de- 

posits. These mask any preglacial karst, as The Regional Setting 

well as the effects of glacial erosion, and The Door Peninsula, which extends some 
hinder postglacial karst development. Never- 100 km into Lake Michigan and ranges from 

5 to 30 km wide (Fig. 1), 1s a cuesta devel- 

oped on the Silurian-aged Niagaran dolomite 

Carol Rosen is an Assistant Professor of Geography at (Shernll 1978). The Niagaran Series is ap- 
UW-Whitewater. She received her PhD from UW- proximately 107-m thick and consists dom- 

Milwaukee in May, 1990. Her MS Thesis at UW- inantly of light gray, medium to coarse- 
Milwaukee dealt with the Karst geomorphology of the . . “4 
Door Peninsula. grained, thin-bedded, fossiliferous dolom- 

ites. Bioherms are common and are ex- 
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UW-Milwaukee. His research focuses on karst geomor- pressed topographically mm outhers such as 
phology. He received the DPhil from Oxford University Brussels Hill, the highest point on the pen- 
in 1978. insula at 260 m (Thwaites and Bertrand 1957). 
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Fig. 1. Map of Door County (adapted from Sherrill 1978). 

On the western, Green Bay side of the the Porte des Morts channel, and the Ahn- 

peninsula the Niagara Escarpment rises up to apee River Valley (Fig. 1). These probably 

| 79 m above present lake level; the cuesta __ represent preglacial river valleys modified by 

backslope, sloping to the southeast at gen- glacial and meltwater erosion (Deller and 

erally less than one degree, forms the main Stoelting 1986; Johnson 1987). 

body of the peninsula. Headlands, talus-strewn The Door Peninsula was glaciated exten- 

bluffs, and island outliers characterize the sively during the Pleistocene, latterly by two 
| west coast; the eastern coast is gently sloping major advances of the Green Bay Lobe dur- 

and has sandy beaches and dunes. ing the Wisconsinan Stage: the Port Huron 

The peninsula is traversed by a series of | advance during the Woodfordian Substage 

five northwest-southeast-trending lowlands, (22—13ka) and, following the Twocreekan 

the most conspicuous being Sturgeon Bay, _ Interstade, a subsequent advance during the 
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Glaciated Karst Terrain in the Door Peninsula 

30 PAVEMENT A 

CLIFF OR 

ice DEPRESSIONS | 
2 50 ee | pRiFT ,PAVEMENT 

: i CLIFF OR 

S SCAR KARST 
20 = 10 So,DEPRESSIONS KARST 

2&0 / DEPRESSIONS 
DRIFT PAVEMENT 

s ° 200 100 0 

= METERS | 
S 

: 

IF re 
nt Co 
oO 5 B 
Eg 10 Cy KARST 
sé DEPRESSIONS 

fi ' 

z Si 
© aA 

_ O 

E 8% 
> Ke KARST 

DEPRESSIONS 

PAVEMENT 

300 200 100 0 

W METERS E 

Fig. 2. Stepped glaciokarst profiles. A in Yorkshire, England, after Sweeting (1972), B on the 

east side of Brussels Hill. 

Greatlakean Substage (11.5—10ka) (Schnei- contamination (Sherrill 1975, 1978; Wiersma 

der 1981, 1986, 1989). Ice movement was et al. 1984; Johnson 1987). Groundwater is 

predominantly north-south or northwest- calcium-magnesium-bicarbonate dominated, 

southeast (Thwaites and Bertrand 1957; with a mean total hardness (as CaCQ,) of 

McCartney and Mickelson 1982; Schneider 299mg/1 (s= 66.1, n= 23) (Sherrill 1978). 

1981, 1986, 1989; Need 1985). The penin- 

sula is covered by a thin veneer, mostly less . . 

than 1 m thick, of unstratified sandy till, much The Glaciated Karst Terrain 

of which contains more than 25% calcium The Door Peninsula glaciokarst is similar _ 

carbonate (Thwaites and Bertrand 1957). The to that developed on the Niagaran dolomite 

drift thickens towards the southeast, where in the Bruce Peninsula of Ontario (Cowell 

there is a cover of red clayey till and where 1976; Cowell and Ford, 1980, 1983) and has 

there are moraines and some drumlins. Lo- many of the characteristics of the “‘classic’’ 

cally there are lacustrine and fluvial deposits, glaciokarst of western Europe (Williams 1966; 

| plus some outwash, beach, and dune sands Sweeting 1972). The principal diagnostic 

(Deller and Stoelting 1986). features are the numerous nearly horizontal 

Mean annual precipitation is 690 mm, and _ledges and benches alternating with steep steps, 

mean annual daily maximum and minimum _or risers (Fig. 2). The ledges are developed 

temperatures are respectively 11.6 and 1.3 on bedding planes that have been accentuated 

degrees Celsius (Link et al. 1978). Surface _ by intense glacial scouring and plucking on 

water infiltrates into the dolomite aquifer very the down-ice side of the cuesta. East of the 

rapidly, giving rise to serious groundwater escarpment, the main body of the peninsula 
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decreases in elevation via a series of large pavements themselves are of glacial origin, 
benches that attain widths of over 1 km and __ the crevices and sinkholes developed on them 
cover areas up to 10 km’. The benches are _are essentially postglacial in age. Most grikes 
drift mantled, and bedrock is exposed usually terminate at the level of the first or second 
only where drift has collapsed into widened _ bedding plane beneath the surface, but per- 
joints, locally giving rise to sinkholes. Be- —_ haps 25% are deeper, suggesting that in part 
tween the benches, the steps, although gen- they may have been initiated prior to Wis- 
erally obscured by drift, are as much as  consinan glaciation. A certain proportion of 
10 m high. grikes, at least in the master joint set, may 

Superimposed upon the large benches, and _ survive glacial scouring (Ford 1987), and thus 
most evident on steeper east-facing slopes, __ the postglacial pavements may have an im- 
are smaller ledges and steps that together make portant inherited component. 
up distinct staircases—the schichttreppen- Larger karst landforms may also have sur- 
karst of Bégli (1964). These ledges range _ vived glacial action, although the majority 
typically from 5 to 20 m in width, and steps of sinkholes are small enough to have de- 
range from 0.5 to 10 m high. On ledges where veloped entirely during the Holocene. Some 
the drift cover is thin, there are exposed bed- _ larger sinkholes may antedate the last gla- 
rock pavements, some with striations, others ciation, and some may have originated as 
bearing well-defined, dissolutionally-molded glacial scour holes, although there is no firm 
clints and grikes (Rosen 1984; Johnson 1987). evidence of this. Caves too probably antedate 
The ledges also carry a variety of karstic recent glaciations, although it seems unlikely 
depressions, which have been documented ___ that they are strictly preglacial, i.e. devel- 
by Rosen et al. (1987) and by Johnson (1987), oped prior to all episodes of Quaternary gla- 
and in overall morphology the staircase as- _ ciation. As yet there has not been sufficient 
semblages bear a striking resemblance to Eu- analysis of cave deposits to provide a chron- 
ropean examples (Fig. 2). ological framework. 

The staircases are predominantly south- and Postglacial karst development on the stepped 
east-facing and are best developed on the surfaces is influenced strongly by three major 
south- and east-facing sides of hills and val- regional joint sets oriented at 25, 70, and 155 
leys. This distribution provides independent degrees (Sherrill 1978; Rosen 1984). Con- 
evidence that supports the theory that ice sistent joint sets throughout the Michigan Basin 
movement was predominantly from north- _ are attributed by Holst (1982) to Paleozoic 
west to southeast. Particularly well-developed _—_ folding and more recent tectonic stresses. The 
staircases occur on the eastern flanks of the 25-degree joint set is expressed only rarely 
Brussels Hill outlier, along the western mar- on the eastern side of the peninsula. At Brus- 
gin of Sturgeon Bay, and on the eastern coast sels Hill 71% of all sinkholes (n= 61) follow 
of the peninsula, for example at Cave Point a joint trace. Fifty-eight percent of sinkholes 
(See Fig. 1 for locations). At Brussels Hill occur at three-way joint intersections, 21% 
well-defined pavements occupy areas up to at two-way intercepts, and 21% are on a sin- 
0.75 km? and achieve widths over 50 m (Ro- gle joint (Rosen et al. 1987). Caves also show 
sen 1984). Risers, in part near-vertical but this structural control, especially by the 70- 
mostly veneered by talus, are 5 to 10 m in and 155-degree joint sets. Paradise Pit Cave, 
height (Fig. 2B). Pavements on the western at 554 m long, and Horseshoe Bay Cave, at 
side of Sturgeon Bay are up to 20 m wide, 945 m long, are among the longest in Wis- 
with risers 1 to 5 m high. consin (Hennings et al. 1972; Barden 1980). 

Glacier basal bulldozing, plucking, and Brussels Hill Pit Cave, the deepest in the state 
abrasion erases shallow karst features at —28 m, is currently yielding a rich suite 
(Ford 1987) and, since the staircases and of Holocene faunal remains (Kox 1988). 
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Karst depressions on the stepped surfaces — United States. It contains a characteristic suite 

range from 0.6 to 12.0 m wide and from 0.15 of glaciokarst landforms, including staircases 

to 3.0 m deep. At Brussels Hill, mean and pavements, together with postglacial 

depression depth is 0.28 m (s=0.07, n=61). crevices and sinkholes, and probably pre- 

Large scattered depressions are evident in _ glacial caves. Development of the karst mer- 

farm fields, where many have been filled in. its further study particularly because its en- 

In less-altered woodland areas most depres- — vironmental implications are now being fully 

sions are grouped in high-density lattice net- _ realized. Distribution of the glaciokarst agrees 

works that reflect the closely spaced joint — with predictions based upon previous models 

sets. At Brussels Hill densities are up to 8.7/, | of Wisconsinan ice movement. Most of the 

100 m7, and at Ledge Woods, west of Carls- surface landforms are postglacial in age, al- 

ville (Fig. 1), depressions occupy 95% of the | though some may have characteristics inher- 

surface of a 170 m? area. ited from karstification antedating the Wis- 

Other karst features developed throughout —consinan glaciation. Caves and larger karst 

the peninsula include swallets, which take — landforms may have been initiated prior to 

runoff primarily from farm fields, and var- __ the last glaciation, but like the smaller fea- 

ious types of karren (grooves, runnels, and _ tures they too are oriented preferentially along 

solutional basins) (Rosen 1984; Johnson 1987). the regionally dominant joints. | 

| Enlarged joints, which are common where 

surficial deposits are less than 0.6 m thick, Acknowledgments 

range up to more than 10 m in length and 
0.8 m wide. Near Institute (Fig. 1) dissolution- Carol Rosen’s fieldwork and other ex- 

widened crevices occupy about 0.4 km?. Mean ___ penses were funded in part by a University 
spacing of joints on the 70-degree azimuth of Wisconsin-Milwaukee Graduate School 

is 3.1 m and that on the 155 azimuth is 5.1 m. Fellowship. We are very grateful to Kurt Pie- 
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insula are developed on the western side of — able a copy of the latter’s MS Thesis. 
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The Photography of Alfred Charles Bonanno 

‘“A genuine Artist with the compassionate eye’’ is how Studs Terkel has described Al 

Bonanno. The fifteen photographs that follow demonstrate not only that artistry and com- 

passion, but the versatility and range of subject as well. Bonanno has long been known for 

his photographs of American Indians, and no collection of his work would be complete without 

some of them. Sixty-seven of these photographs have been selected by the International Center 

of Photography (New York) for use in its teaching program. Other of his photographs are in 

private collections in Japan, France, Kuwait, and the U.S. In addition, viewers can find his 

work in virtually every regional publication, many national newspapers, and in such magazines 

as Time, Parade, and Sports Medicine. 

| Bonanno’s work is an intellectual and emotional tour de force. Irony, beauty, joy, love, 

celebration, dignity, loneliness, isolation, contentment, struggle, and rejection are leitmotifs 

throughout his photography making it complex and difficult to categorize. The emotional 

range of his work is seen when the joy of children playing with a wheelbarrow, or two 

brothers, or a grandfather with his granddaughter, is followed by the enormous emotions 

swirling around autistic children. And the love of a young girl for a woman in a nursing home 

is a stark contrast to the newly admitted resident who has not been able to remove his hat. 

When a child with a bouquet stands by the three-hundred-mile fence separating the Hopi and 

Navajo reservations, what is captured is more than what many words have conveyed. 

Perhaps it is best to allow the viewer to venture into Bonanno’s world with only this brief 

introduction. It is a journey well worth making, and Transactions is happy to make it possible. 
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A New Station in Door County, Wisconsin, for 
the Rare /ris lacustris Nutt. (Dwarf Lake Iris) 

Charles R. Hart 

Abstract. A new site for Iris lacustris Nutt., the rare Dwarf Lake Iris, in Door County, 
Wisconsin, is described. 

R ecently, a fairly extensive population of one, any and all new stations are of signifi- 

[ris lacustris Nutt. was discovered in cance in terms of recommending habitat 

southern Door County, Wisconsin. Hereto- management or other protection measures. 

fore, the known range for this species in The newly discovered population is lo- 

northeastern Wisconsin was somewhat dis- cated in secs. 27 and 28 of T28N R25E in 

junct, occurring to the south in Brown County the Township of Nawewaupee. It occurs ap- 

and then reappearing north of Sturgeon Bay, proximately 15 miles southwest of the nearest 

Wisconsin, in Door County. reported northerly Door County population 

Iris lacustris Nutt., a Great Lakes en- and approximately 17 miles northeast of the 

demic, is known only from Michigan, On- southerly Brown County population. Rep- 

| tario, and Wisconsin (Guire and Voss 1963: resentative voucher specimens of this pop- 

Voss 1972, p. 431). In Wisconsin this spe- ulation were taken (15 June 1989, Hart-13- 
cies is considered to be threatened and was 89) and are housed in the herbarium/green- 

recently elevated to the same status at the house at the University of Wisconsin Cen- 

federal level as well (Harrison 1988). Prior ter—Manitowoc County. 

to the discovery of the new site, the Dwarf At this locality, the Iris is closely asso- 

Lake Iris had been found at a total of fifteen ciated with Toxicodendron radicans. The , 

sites in two counties on Wisconsin’s Door densest growth occurs in the preferred habitat 

Peninsula (Harrison 1988). The southerly most for this /ris species, which is sandy or grav- 

site, in Brown County, was reported by Trick elly soil (underlain by Niagara dolomite) and 

and Fewless (1984). The other extant sites open, although the plant occurs in partial shade 

are scattered to the north of Sturgeon Bay — of coniferous trees (Thuja occidentalis), in 

and were recorded by Makholm in 1986. For mesic areas at the forest edge and along town- 

indigenous species as rare and local as this ship roads or right-of-ways. The geological 

| location of this population is in keeping with 

EEE the: prior documentation of Dwarf Lake Iris 

Charles R. Hart is an Associate Professor of Biological colonies occurring on land previously oc- 
Sciences at the University of Wisconsin Center- cupied by the postglacial Lake Nipissing 
Manitowoc County. | (Makholm 1986). 

63



Wisconsin Academy of Sciences, Arts and Letters 

Acknowledgments Harrison, W. F. 1988. Endangered and Threat- 

. ened Wildlife and Plants: Determination of 

. The author wishes to acknowledge the as- Threatened Status for Jris lacustris (Dwarf Lake _ 
sistance of Mr. and Mrs. Donald Gadzinski Iris). Federal Register 53 (188): pp. 37972— 
in locating this new population and the sup- 37975. 

port for studies of this species by the UWC ~—_ Makholm, M. 1986. Ecology and Management 

Senate Grants Committee and the Wisconsin of Iris lacustris in Wisconsin, M. S. Thesis, 

Department of Natural Resources—Bureau University of Wisconsin-Madison, Madison, 
of Endangered Resources. Wisconsin. 

Trick, J. A. and G. Fewless. 1984. A New Station 

° for Dwarf Lake Iris (Iris lacustris) in Wiscon- 

Works Cited sin. Michigan Bot. 23:68. 

Guire, K. E. and E. G. Voss. 1963. Distribution Voss, E. G. 1972. Michigan Flora Part I. Gym- 

of distinctive shoreline plants in the Great Lakes nosperms and Monocots. Cranbrook Inst. Sci. 

Region. Michigan Bot. 2:99-114. Bull. 55. 488 pp. 

64



Diel Periodicity of Movement and Feeding 

of Yellow Perch (Perca flavescens) 
in Lake Mendota, Wisconsin 

John P. McCarty 

Abstract. Analysis of the spatial distributions of yellow perch in Lake Mendota, Wisconsin, 

indicated that diel movement patterns are more variable than previously reported. A series 

of gill-net samples from several different stations in the lake showed that a significant movement 

onshore at dusk and offshore at dawn occurs. The movement was more directed inthe morning, 

and closer to the surface. This movement appears to be the result of a dispersal, biased 

towards the offshore areas, from nocturnal concentrations of perch in shallow water. Periods 

of directed movement are interspersed with feeding bouts and forays deeper into the water 

column. In the evening the direction of the movement is reversed and perch tend to concentrate 

inshore, where they can rest on the bottom at night. Diet analysis indicated that perch found 

offshore fed exclusively on Daphnia and Leptodora, but that perch captured in littoral areas 

consumed both planktonic and benthic prey. 

D iel activity cycles have been reported 1986), yet the degree to which individual 

for a variety of freshwater fishes, in- behavior affects population phenomena is not 

cluding such well-studied species as yellow clear. For example, observed diel changes in 

perch (Perca flavescens; Helfman 1981, the spatial distribution of a fish population 

Hanson and Leggett 1986), golden shiner could be due to a small portion of the pop- 

(Notemigonus crysoleucas; Hall et al. 1979, ulation undergoing a highly directed, large 

Helfman 1981), walleye (Stizostedion vi- scale movement or to a large portion of the 

treum; Helfman 1981), and bluegill and population moving in a less directed manner. 

pumpkinseed sunfish (Lepomis macrochirus Diel migrations have been reported for many 

and L. gibbosus; Keast and Welsh 1968, populations of yellow perch (Scott 1955, 

Bauman and Kitchell 1974, Werner et al. Emery 1973, Engel and Magnuson 1976) in- 

1977, Helfman 1981, Hanson and Leggett cluding the population in Lake Mendota, where 

fish move inshore at dusk and offshore at 

dawn (Hasler and Bardach 1949). Yellow 

John P. McCarty is a native of Rice Lake, Wisconsin. perch travel in schools during the day. As in 

While a student at the University of Wisconsin-Madison, many freshwater fish species, these schools 

seem Cie Nad lien ntema break up at dus and reform at dawn the 
Limnology, where the work described in ‘‘Diel Peri- following day (Hergenrader and Hasler 1968, 
odicity of Movement and Feeding of Yellow Perch in Helfman 1981). These patterns are based on 

Lake Mendota, Wisconsin’’ was conducted. At present, observations made in a variety of ways, in- 

he is working on his doctorate at Cornell University in cluding direct observations by divers (Hasler 

I ace ae roe were his current researc Jocuses and Bardach 1949, Helfman 1979), data from 
on tne relationshi etween foraging ecolo a com- . . 

munity ecology, » scifeally hom the foraging decisions echosounding (Hasler and Villemonte 1953, 

of tree swallows influence the communities of insects Engel and Magnuson 1976), and from spatial 

they feed on. 
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Fig. 1. Asimple model of the daily behavior patterns of yellow perch in Lake Mendota, Wisconsin, 
summarized from the work of Hasler and Bardach (1949). This model includes a rapid, pop- 
ulation-wide migration from nocturnal resting areas to day-time feeding areas. Dashed lines 
represent water depth contours. See Figure 2 for approximate horizontal scale. 

distributions derived from gill-net sets (Has- between and within populations (Helfman 

ler and Bardach 1949, Scott 1955, Engel and 1979, Helfman 1981). In addition to finding 

Magnuson 1976). In addition to movement groups of migrating perch, Hasler and Bardach 

patterns, feeding activity cycles are well known (1949) and Scott (1955) both found non- 

in yellow perch, with peaks generally re- migrating groups of perch. Tonn and Pas- 

ported before sunset and after sunrise (Keast kowski (1987) reported non-migrating sub- 

and Welsh 1968, Helfman 1981, Hanson and populations and indicated that some perch 

Leggett 1986). were migrating offshore at dusk. In addition, 

The general picture of perch behavior that some groups of yellow perch are consistently 

emerges from this literature is that perch feed found inshore feeding during the day (Engel 

offshore, in schools, on zooplankton during and Magnuson 1976, Sandheinrich and Hu- 

the day with a feeding peak after dawn and bert 1984). 

another feeding peak before dusk. At dusk In this study I examined the daily behavior 

these schools move rapidly inshore, where cycles of yellow perch in Lake Mendota by 

the schools break up, and the perch settle to catching perch in gill-nets at several stations 

the bottom and remain inactive until dawn. in the lake at different times of the day. Spe- 

At dawn the schools reform and move off- cifically, I have addressed three questions: 

shore again before the fish resume feeding. 1) Is there evidence that the perch are 

This activity pattern (Fig. 1) is commonly undergoing a daily migration? 2) Is segre- 

reported in books and reviews of yellow perch gation by sex and age occurring? 3) Are these 

biology (Maclean and Magnuson 1977, Ney movement patterns reflected in the diet? My 

1978, Brock 1985). There is, however, con- results indicate that perch behavior in Lake 

siderable variability in activity found both Mendota is more complex than is indicated 
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by the classic descriptions by Hasler and Bar- 

dach (1949) and Hasler and Villemonte (1953). 

Methods 

The study site for this project was Lake 

Mendota, Wisconsin (43° 4'37” N, 89° 24’ tem fs 
28” W), a large (area = 39.4 km?) eutrophic ~~ 
lake with an average depth of 12.4 m and a 

maximum depth of 25.3 m (Brock 1985). D 

The physical and biological characters of this C 

lake have been described in detail by Brock aB 

(1985). 

Temperature and Oxygen. Vertical tem- 

perature profiles were obtained with a ther- 

mistor at 1-m intervals, and oxygen concen- 

trations were determined using the Winkler Fig. 2. Lake Mendota, Wisconsin, with loca- 

method on water samples collected every 2m. —_ tions of sampling stations used in this study. 
Samples were taken at the Deep Hole station A = 3-m (inshore) station, B = 6-m station, 

in 23-m of water. Secchi disk depths (a mea- C = 13-m (intermediate) station, D = 23-m 

sure of water clarity) were also recorded at (Deep Hole) station. 

these times (Richard Lathrop, Wisconsin 

DNR. unpubl. data). 
Perch Distribution. Fish samples were taken arated according to which direction they were 

| from four stations in the lake: in 23 m of _ traveling when caught and the depth at which 

water (Deep Hole), in 13 m of water (inter- they were caught. Total length was later mea- 

mediate), in 6 m of water, and in 3 m of sured to the nearest 1 mm and weighed to 

water (inshore) (Fig. 2). Fish were caught the nearest gram. Stomachs were collected 

using vertical gill-nets with a variety of mesh from between 20 and 40 individuals from 

sizes (mesh sizes = 19 mm, 25 mm, 32 mm, each sample and were preserved in a 10% 

38 mm, 52 mm, 64 mm, 89 mm, 127 mm), formalin solution. 

set parallel to shore, during the weeks of 6 Data from all samples were pooled for diet 

July, 30 July, 4 August, and 17 August, 1987. and movement analysis. Catches were ex- 

The two largest mesh sizes were eliminated __ pressed in catch per unit effort (fish-m?-h'') 

from some August samples, because the where the time was determined for the eve- 

maximum size of perch in Lake Mendota ning sets from the time the nets were set until 

were not vulnerable to these mesh sizes (Re- they were pulled and for the morning sets 

gier and Robson 1966, Hamley and Regier from thirty minutes before sunrise until the 

1973). A horizontal net with a similar series nets were pulled. Area was considered the 

of mesh sizes was also used at the shallow area of the gill-net in the water above 13-m 

station for the August sets. Nets were set | depth. Depths below 13 m at the 23-m site 

between two and four hours before sunset — were not considered since the water below 

and emptied between one and two hours after the thermocline was anoxic and catches be- 

sunset for the evening samples. The nets were low this level were negligible. For determin- 

left set overnight after the evening samples ing the direction and magnitude of dispersal 

and were emptied between two and four hours the following vector was calculated: 

after sunrise for the morning samples. Nets 
were set between 0900h and 1400h CDT for DISPERSAL VECTOR = (# OFF - # IN) y 100% 

the day samples. (# OFF + # IN) 

Fish were removed from the nets and sep- 
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where # OFF is equal to the number of perch Perch Distribution. Catch per unit effort 

caught moving towards the offshore areas ranged from 0 for the day samples at the 

and # IN is equal to the number of perch _—6-m station to 265 for the morning samples 

caught moving towards inshore areas. This _at the 13-m station (Table 1). At the 13-m 

gives a vector where the sign indicates the _ station significantly more fish were moving 
direction of movement and the magnitude — offshore in the morning and inshore in the 

gives the strength of that movement, relative evening (Table 2, X?=6.62, P<0.025). The 

to the total catch. magnitude of the dispersal vector is higher 

Perch Diets. Stomach contents were ex- in the morning (15%) than in the evening 

amined using a dissecting microscope at 25x. (7%, Table 2). When the water column is 

The contents were identified to genus and divided into shallow (O—5 m) and deep (6— 

counted. When large numbers of prey or- 12 m) portions, directionality is much 

ganisms were present, two or three 4% sub- higher in the shallow portion than in the deep 

samples were used to estimate total numbers portion (Table 3). This difference between 

present. the total catches in the shallow portion is 

Zooplankton prey available to perch were highly significant (X?=7.87, P<0.01), 

collected from three stations in the lake, at whereas in the deep portion the Dispersal 

the 23-m (Deep Hole), 13-m (intermediate), Vector did not differ from random expecta- 

and 3-m (inshore) stations, using transverse tions (X?=0.07, P>0.09). This trend was 

tows of a Clark-Bumpus metered plankton especially strong in the morning sets where 

sampler affixed with an 80 pm net. Samples the Dispersal Vector equalled 22% in the 

were preserved in a 10% buffered formalin shallow portion and 0% in the deep portion 

solution and later identified to species using of the water column. 

a dissecting microscope at 25x. Samples were Comparisons between depth distributions 

collected on several dates over the period of of 23-m and 13-m stations indicate that the 

gill-netting. Mean abundances of zooplank- horizontal movement between deep and shal- 

ton per liter over all sample dates are reported. low water is accompanied by only minor 

change in depth. Perch at the 6-m station 

Results were located below 4 m (Fig. 4). Perch passed 

Temperature and Oxygen. The thermo- through the 13-m station moving towards the 

cline during the period of this study varied | 23-m (Deep Hole) station at an average depth 
between 7 m on 3 August, 1987, and 12m of4.9m(SE=0.17) in the morning (Fig. 5), 
on 18 August 1987. During the early sam- while at the Deep Hole station they were 

pling dates the thermocline was between 9 m located at an average depth of 5.5m 
and 10 m. The hypolimnion was anoxic dur- (SE=0.31) (Fig. 4). When passing through 
ing the entire study (Fig. 3). Secchi disk depth the 13-m station in the evening towards shal- 

during the period of this study ranged from low water, perch moved at an average depth 

1.7 mto 2.7 m (Richard Lathrop, Wisconsin of 6.1 m (SE=0.19) (Fig. 5). 
DNR, unpubl. data). The size distribution of perch was similar 

Table 1. Number of yellow perch caught at each station and sample time, expressed as catch 
per unit effort, with sample dates combined. Catch per unit effort equals fish*h*m21000. Level 
of effort for each station (hem?) given in parentheses. 

EEE nen 

Station 
Sample Time 23-m 13-m 6-m 3-m 
AM 19 (468) 265 (1404) 172 (180) 178 (342) 
PM no sample 138 (1560) 19 (216) 169 (414) 
DAY 126 (546) no sample 0 (288) 172 (198) 
TOTAL 77 (1014) 198 (2964) 51 (684) 173 (954) me 
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Fig. 3. Sample temperature and oxygen profile for Lake Mendota taken vertically through the 
water column at the Deep Hole station on 20 July 1987. Water deeper than approximately 

10-m depth was anoxic throughout the period of the study. 

at all but the 3-m station where a large num- 1969) indicated that the length distribution 

ber of young-of-year perch were captured of perch at the 3-m site was significantly 

(Fig. 6). The mean lengths of perch caught different from the other sites (D=0.25, 

at the 6-, 13- and 23-m stations were 192, P<0.01; D=0.25, P<0.01; D=0.29, 

192, and 195 mm respectively. The length P<0.01; when compared to the 23-, 12- and 

distribution of perch at the 3-m station was 6-m stations respectively). The absence of 

bimodal. The mean length of perch greater | young-of-year perch at the offshore stations 

than 150 mm at the 3-m station was similar indicates that these fish do not participate in 

to the other sites, but alarge number of perch __ the diel offshore migration observed for the 

less than 150 mm was present as well. A __ older age classes (Fig. 6). 

Kolmogorov-Smirnoff test (Sokal and Rohlf No differences were found to indicate mi- 
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Table 2. Number of yellow perch caught at the 13-m (intermediate) station. The dispersal vector 
is as defined in the text (1). A positive vector indicates movement directed offshore, and a 
negative vector indicates movement directed inshore. X2?=6.62, P<0.025. 

—$$ eee 

Sample Time Direction of Movement Total Dispersal Vector 
Inshore Offshore 

AM 159 213 372 +15 
PM 116 100 216 —7 

Total 275 313 588 eee 

Table 3. Number of yellow perch caught at the 13-m (intermediate) station, separated by time 
of day, depth, and direction of movement when caught. Dispersal vector is defined in the text 
(1). X?=7.87, P<0.01 for depth=0O-—5 m. X2=0.07, P>0.09 for depth =6—12 m. 

Sample Time Direction of Movement Total Dispersal Vector 
Inshore Offshore 

| Depth =0m-5m 
AM 96 150 246 +22 
PM 60 49 109 —10 

Total 156 199 355 

Depth =6m-12m 
AM 63 63 126 0 
PM 56 51 107 —5 

Total 119 114 233 
eee 

gration was selective in regard to sex. Sex _ within the groups, differences in diet be- 
ratios at all stations did not deviate signifi- tween sub-groups were not Statistically sig- 
cantly from 1:1. The ratios of males to fe- _ nificant (Table 6). 
males at the station were: Deep Hole 38 males: In addition to Daphnia and Leptodora, other 
39 females; 13-m (intermediate) 34 males: _ organisms (primarily chironomid fly larvae 
41 females; 6-m 12 males: 22 females; in- and copepods) increased in importance from 
shore 70 males: 72 females (Table 4). 0% at the Deep Hole station, to 4% at the 

Perch Diets. Copepods and other small —_13-m station, and 6% at the 6-m and 3-m 
zooplankton were the most numerous taxa stations (Table 6). The diversity of orga- 
sampled from the lake at all three stations _ nisms also increased from deep to shallow 
(Table 5). Daphnia ranged from 3% at the — water. The stomachs of fish from the Deep 
3-m station to 13% at the 23-m station. Lep- _ Hole contained primarily Daphnia and Lep- 
todora made up less than 1% of the sample _todora, with only three chironomids and one 
at the 23-m and 13-m stations and 1% at the — copepod. Stomachs from the 13-m station 
3-m station. held organisms from seven categories, and 

Although there is a trend for the proportion stomachs from the 3-m station contained or- 
of Daphnia in the lake to decrease from deep —_ ganisms from ten categories (Table 7). 
to shallow water, the proportion increases in The percent of empty stomachs increased 
the perch diets (Table 6). Daphnia make up _ from deep to shallow water. All the stomachs 
34% of the contents of stomachs of perch from the Deep Hole station contained prey, 
caught in the Deep Hole, 72% of the diet at = while 2% were empty at the 13-m station, 
the 13-m station, and 87% of the stomach 12% were empty at the 6-m station, and 33% 
contents from fish from the 3-m station. Be- were empty at the 3-m station (Table 6). 
cause of high variability between individuals 
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Discussion found may be due to a difference in the method 

Th ; ; used in the studies. This study followed a 
ese results support a more variable view . 

method similar to that of Scott (1955), put- 
of perch behavior than is commonly pre- h d path of 

sented. While there are many reports of perch ting gill-nets across the presumed path o 

migrations (Hasler and Bardach 1949, Scott 

1955, Engel and Magnuson 1976, Helfman 

1979), only Scott (1955) gives a comparison NUMBER 

of the numbers of perch moving in each di- , fo 20 = 30S 40.=Ss—iS0_—‘é‘SO 

rection, while the others imply that the mi- Dawn 

gration is a population-wide phenomenon, V/A 

with schools moving en masse in a certain LLL LLL LLL LL A, — 
“ect ALLLLILLLLLLL___| direction. My results correspond to those of WIT 

Scott, who found a significant directional Ts) 

movement but also reported that a large pro- V//// 7) 

portion of the individuals were headed in the V////) 

‘‘wrong’’ direction. The difference in results V//\ | 
i of (J=!INSHORE 

_ [7] = OFFSHORE 

NUMBER =o 
5 10 15 20 25 30 x 

o 10 20 #30 40 #450 60 
Deep hole o 

2 5 Dusk 

4 | VA, 
| V/) | 

‘ Pe VLLILLLLL LL 
(VILL, 

: ULL 
| VL) | 

10 t//L 
: iol VA 
Ei 

‘4 Fig. 5. Top panel: Depth distribution of perch 
from the 13-m (intermediate) station, morning 

'e samples only, with all sample dates com- 
bined. N = 246 fish, D (mean depth) = 5.1 

. fo 5 SSO _  m(SE = 0.13). Cross-hatched areas indicate 
6m perch moving offshore, with N = 145 fish, D 

. = 49 m, and SE = 0.17. Non-crossea- 
hatched areas indicate perch moving in- 

4 shore, with N = 101, D = 5.6m, and SE = 
0.19. 
Bottom panel: Depth distribution of fish from 

Fig. 4. Top panel: Depth distribution of perch the 13-m (intermediate) station, evening sam- 
from the 23-m (Deep Hole) station with all ples only, with all sample dates combined. N 
sample dates and times combined. N = 75 = 190 fish, D = 6.2m, and SE = 0.14. Cross- 

fish, D (mean depth) = 5.5 m (SE = 0.31). hatched areas indicate perch moving _in- 

Bottom panel: Depth distribution of perch from shore, with N = 101, D = 6.1 m, and SE = 
the 6-m station with all sample dates and times 0.19. Non-cross-hatched areas indicate perch 
combined. _ moving offshore, with N = 89, D = 6.3 m, 
N = 35 fish, D = 4.3m (SE = 0.08). and SE = 0.20. 
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Table 4. Sex ratios of yellow perch caught at each station with all sample dates and times 
combined. 
eee 
Station Number of Males Number of Females xX? 
23-m 36 39 0.12 P>0.50 
13-m 34 41 0.66 P>0.10 
6-m 12 22 2.94 P>0.05 
3-m 70 72 0.01 P>0.90 eee 

Table 5. Composition and abundances of zooplankton in Lake Mendota. Samples pooled over 
three sampling dates. %=percent of sample by number, x +SE=mean number per liter plus 
or minus one standard error. 
ee 

Daphnia Leptodora other 
% (x + SE) % (x + SE) % (x + SE) 

NT 
23-m 13% (4.25+ 2.09) <1% (0.04+ 0.04) 87% (27.96 + 4.28) 
13-m 11. (3.44+3.69) | <1 (0.03+0.03) 89 (26.77+5.36) 
3-m 3  (0.90+0.82) 1 (0.25+0.43) 96 (25.05+ 29.4) eee nO eee ee 

Table 6. Diet summary of yellow perch for each sample station and time, with all sample dates 
combined. N=total number of stomachs examined for each group and % empty=percent of 
stomachs with no prey organisms. Results are expressed as percent by number of Daphnia, 
Leptodora and “other”. Prey Items per Stomach=mean number of items found per stomach 
(standard error). Taxa present in the “other” category are listed in Table 7. eee 

Station Time N %Empty %Daphnia %Leptodora % Other Prey ltems/Stomach eee Ee EE Oe eee 
23-m Day 11 0 34 66 a) 170 (161) 
13-m AM 57 2 73 24 3 263 (287) 
13-m PM 48 2 80 15 5 505 (449) 
6-m AM 23 13 79 8 13 11 (13) 
6-m PM 4 0 42 56 2 61 (73) 
3-m AM 35 43 33 2 65 9 (31) 
3-m PM 37 30 54 29 17 64 (127) 
3-m Day 26 23 99 0 1 318 (517) eee 

Table 7. Diversity of organisms found in yellow perch stomachs at each sampling station. % 
Occurrence = number of stomachs where taxa was present/total number of non-empty stomachs 
in sample. N = total number of non-empty stomachs in sample. 

eee 

% Occurrence 
23-m 13-m 6-m 3-m 

Type of Organism N=11 N=103 N=24 N=66 eee 
Daphnia 100% 96% 83% 74% 
Leptodora 100 82 42 27 
Chironomidae 27 38 25 21 
Copepoda 9 24 25 21 
Ceriodaphnia 3 
Pontoporeia 13 23 
Diaphanosoma 3 
Bosmina 1 4 1 
Chydorus 2 
Nematoda 2 21 
Acanthocephala | 1 
Fish sp. 1 eee 
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total, indicates that the movement does not 

50 Deep hole - 23m occur as a rapid, population-wide migration, 

but is a more gradual dispersal. 

49 The extreme variability of individual diets 

$O made comparisons between the groups in 

20 Table 6 difficult. Variability of this magni- 

tude is found in other populations and is ex- 
10 ; : ; 

plained as being due to either an ontogenetic 

0 change, a learned, individual preference for 

50 on certain prey types (Helfman 1979, Mills et 

40 Intermediate=tsm al. 1987), or unknown, complex behavioral 

_ patterns (Chabot and Maly 1986). A com- 

$0 parison of the proportion of different zoo- 

20 plankton in the lake with the proportion found 

10 in stomachs reveals that the perch are feeding 

< | selectively on certain prey types, primarily 

o 0 zooplankton. Daphnia made up between 33% 

u 50 6m and 99% of the diets of perch but accounted 

2% 40 for only 3% to 13% of the zooplankton in 

30 the lake. Likewise Leptodora accounted for 

up to 66% of the diets of the perch but made 

20 up 1% or less of the lake’s zooplankton (Ta- 

10 ble 5 and 6). At the two inshore stations 

0 (3-m and 6-m) where perch had access to the 

sediments, diet consisted of both planktonic 

90 and benthic prey. Feeding habits at the in- 
Inshore-3m . . 

40 shore stations are similar to those reported 

30 for perch in lakes with an oxygenated hy- 

| polimnion (Keast 1977, Hanson and Legget 

20 1986, Mills et al. 1987). 
10 The picture of perch behavior that emerges 

0 from this study indicates more variation among 

140 170 200-230 individuals than previously cited models have 
SIZE (mm) included. It is unlikely that a population-wide 

: migration occurs but rather that the perch 
Fig. 6. Size distribution of fish with all sample start to disperse from their inshore areas at 
dates and times combined, for each station. dawn. The dispersal is in the form of short 

" m7 Onn oun "Deap ‘vole s ain y 9° periods of movement alternating with periods 

583 and TL = 192 mm for the 13-m (inter- of feeding, with changes in direction along 
. = the way. This “‘random walk’’ h t 

mediate) station, N = 35, TL = 192 mm for le Way. MUS fan as a vector 
the 6-m station, and N = 164 and TL = 175 biased towards the offshore areas. The re- 

mm for the 3-m (inshore) station. vised conceptual model presented (Fig. 7) 
accounts for both the offshore movement and 

movement, while the others were based upon __ the large number of fish moving in the op- 

nets set in deep water and in shallow water posite direction. This model also accounts 

and a migration inferred from the differences for the presence of fish at the intermediate 
in total catches at different times of the day. | and 6-m stations during the day. If the choice 
The large percentage of fish moving in the of direction vector after a feeding bout has 

opposite direction in this study, 44% of the —_ onlyaslight bias towards offshore areas, some 
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Fig. 7. Revised model of diel behavioral patterns of yellow perch in Lake Mendota, Wisconsin. 
This model includes a random feeding dispersal at dawn from nocturnal concentrations of 
perch inshore and movement directed towards the shore at dusk to reach night-time refugia 
on the bottom, inshore. Large perch (>230mm) and young-of-year perch remain inshore during 
the day. Movements between inshore and offshore include feeding and may include feeding 
forays to deeper water up to approximately the 13-m contour. Dashed lines indicate water 
depth contours. 

fish will end up in the inshore areas due to __ the largest perch may be influenced by an 

chance alone. This effect would be accen- _ ontogenetic shift in diet towards larger benthic 
tuated if some individuals are biased to turn _— organisms (i.e. amphipods, insect larvae) and 
inshore. An inshore bias could occur if the small fish (including young-of-year perch), 

preferred prey of some individuals was more both of which are more accessible inshore 

abundant or accessible inshore, as is the case (Crowder and Cooper 19872). 

for those individuals feeding on benthic Most studies point to the change in light 

organisms. intensity at dawn and dusk as the proximate 

Two groups of perch do not take part in cause of diel changes in yellow perch be- 

this diel migration. These are the young-of- havior (Hasler and Bardach 1949, Scott 1955, 

year perch and perch larger than 215 mm. Werner et al. 1977). It is likely that perch 

Yearling perch may be influenced by pre- use the reduced light level around dusk as a 

dation pressure to remain close to shore where cue to direct their movements inshore. As 

cover is available as a predation refuge, and individuals move horizontally they intersect 
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the bottom at approximately the 6-m contour Scholarship in Limnology, with additional 

line and settle for the night. The process is funding and support from the Center for Lim- 

reversed with increasing light levels near dawn. nology, University of Wisconsin. 

The ultimate causes of these diel migra- 

tions in perch are less certain. The benefits 

of dispersing long distances on a daily basis Works Cited 

must be high enough to balance the energy = aman, P.C. and JF. Kitchell. 1974. Diel pat- 
expenditure of swimming between the littoral terns of distribution and feeding of bluegill (Le- 
and the pelagic zones. A variety of factors pomis macrochirus) in Lake Wingra, Wiscon- 
influencing the change in distribution can be sin. Trans. Amer. Fish. Soc. 103:255—260. 
identified, including variation in local food Brock, T.D. 1985. A eutrophic lake: Lake Men- 

availability (Hasler and Bardach 1949), dota, Wisconsin. New York: Springer-Verlag. 

avoidance of interspecific (Engel and Mag- Chabot, F. and E.J. Maly. 1986. Variation in diet 

nuson 1976, Werner et al. 1977) and intras- of yellow perch (Perca flavescens) in a Quebec 
pecific competition (Mittelbach 1981, Sand- reservoir. Hydrobiol. 137:117-124. 
heinrich and Hubert 1984, Paszkowski 1985), Crowder, vn ane W.E. oop er 1982. paotat 

: ; structural complexity and the interaction be- 
and avoidance of predation (Maclean and tween bluegill a d their prey. Ecology 63:1802— 

Magnuson 1977, Werner et al. 1977;1983, 1813 

Tonn and Paszkowski 1987). It is likely that Emery, A.R. 1973. Preliminary comparisons of 

a combination of these factors are influencing day and night habitats of freshwater fish in On- 

the perch in Lake Mendota, including in- tario lakes. J. Fish. Res. Board Can. 30:761- 
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Spring Again 

Startled by the bird’s sharp call, little 

| flycatcher whose exultation 

caught my ear, I turned in time to see it 

fly straight for the window, the pane 

smack its sharp smack, bird drop, 

jerk in the dirt, be gone, 

despite my moving its slack 

being from the sunny flag it struck | 

to rain-fresh earth among white violets 

massed at the late-leafing catalpa’s 

trunk. In minutes, drawn back to verify 

the fledgling’s wing bars, its mandible, 

| I watched an ant drink from the open eye. 

Lawrence, behind the Guest House, 

May 1989. 

—Shirley Anders 
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Three Sensations 

1. ‘‘It is still beautiful to feel the heart beat.’ 

—Tomas Transtromer 

You, 

grey premonition, 

emerged 

between two pulsations, 

a vibration 

wearing the rain 

around your neck; 

a heaving 

under the cloth 

so deep 

and consuming 

you frightened away 

the tentacles 

of a candle. 

2. ‘‘To die a tiny noise will do.’ 

—Vicente Aleixandre 

Yes, it is true 

hesitation rises with the dawn 

| Your name is a throb 

throwing itself against a wall 

You were absolute morning 

caught in my throat 
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3. ‘Quiet, for we too are of the night.’’ 

—Yves Bonnefoy 

| Cat, 

how can I name 

the sensation 

of touching you? 

It could be so many things 

When I touch you 

I hide 

in the deepness 

of your teeth | 

I hide 

in the clarity | 
of your extended claw 

I wrap myself 

in the suddenness 

of your white forehead 

I hide in you 

and we chant together - 

as your shadow 

licks its paw | 

The evening, 

quivering in my hand 

would have felt just right 

beneath us 

if only , 

I could hold you 

the way evening 

tilts its head : 

—Howard Frederick Ibach 
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The Wasp and the Secretary 

Split in the thorax by the fat hand 

Of the manila-envelope wielding man, 

Master of rote, who loves his mother: 

‘‘Did you see that? 

Its head flew one way, its body another!’’ 

I hated you, too, I admit to that, 

But I gathered your parts on a yellow sheet 

And in horror saw you were still moving, 

Digging, chewing, 

As if your life were a thing worth saving. 

One long wing, shiny and crisp, 
Remained, a veined, stained-glass wisp, 

The color of smoke, resembling 

A quartz chip, 

Iridescent, transparent, trembling. 

Your legs, hollow broomstraws bent, 

Were signalling without intent. 

On their edges, saw-toothed ridges 

Dragged half of you 

Toward headless dreams of screens and ledges. 

Far away two blister eyes stared, 

Lidless, prehistoric, bare 

As river-bed stone, bone ovals set 

On either side 

Of molded shoulders, clay epaulets. 

Your pieces lay like a broken bowl, 

A brittle little artifact, a ceramic soul, 

The color of dry things, of locust, or carob, 
Of chalcedony, 

Every curve an ivory carving, a scarob. 
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A fallen flower crisply pinched, 

The overturning of a turtle trenched, 

. The shell belly, flown apart. 

Grasping, drinking, 

And nothing but air sucked through the heart. 

Your schismed self, your self apart, 

Your tigery abdomen, glossy and fat, 

Squirmed, a waspish waste, lame 

As a worm in rain, | 

The stinger searing for someone to blame. 

—Beth H. Roney Drennan 
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Weeding: Flowers and Friendships 

Wild greens love all weathers, lap torrents 

that drown more fragile seedlings 

stretch boldly toward the hottest sun — 

plunge deeper through the sparsest soil 

erect against the shrillest wind. 

They own territories: miniature suns border 

trumpeting morning glories 

friendly but not encroaching . 

into wild but neighborly places 

each knowing its soil, its home. 

But the cultivated, no matter how 

loved, fear imaginary enemies 

seek constant tending. Heat shrivels 

sculptured leaves. Rains rot the roots. 

Strangeness settles on the stem, nips 

the fruit, steals every empty space till 

you no longer know which flowers were your own. 

—Laurel Yourke 

84



Wisconsin Poetry 

Compulsories | 

A fine, long, looping line 

etched, then traced 

by a single, sharp, silver 

blade slowly slicing the surface 

of perfect ice made 

more perfect 

by the figure 

skater. 

Her legs are perfect, 

in black tights, black 

leg warmers. 
Her back a study in | 

perfect posture. 

Her whole form perfect 

in baggy 

black and blue and red and 

yellow ski 

sweater. 

No crowd, 

no sound. 

Just eyes to the ice 

and blessed, perfect 

silence. 

—Chris Halla 
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Epithalamion 
for Betty & Steve: 28 July 1990 

On a day like today, the sunlight 

High in the maples startles us awake. 

Praise is our native tongue, but we say 

Little, too numbed by the sales pitch, 

The stock quotation, the body count. 

Even the poet tells us that dark comes down 

, On all we do, but the Mockingbirds’ natter 

Reminds us that we were made to shine, 

To sing. Brightness rifts through pear trees, 

& wind redeploys it on many walls, 

A movable feast of dappled light. 

The world comes clean, & everywhere grackles, 

Elms, & Oklahoma give themselves away. 

On a day like today, the sky is 

A blue so effortless that love 

Becomes more than a possibility, blackbirds 

Rising in pairs, in waves, undulating 

Toward the reeds in Lake Helen to roost. 

—John Graves Morris 
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Charles A. Long 

V oles and bog lemmings of Wisconsin acters. Specimens were aged by fusion of the 

are field mice belonging to the rodent basioccipital-basisphenoid suture and by other 

subfamily Arvicolinae (formerly Micro- useful evidences of maturity (size, breeding, 

tinae). Their resemblances to one another angularity of the cranium). Specimens of both 

prevent easy identifications and they remain sexes were combined because no significant 

an enigma in the well-known fauna of Wis- differences between them were noted. Spec- 

consin. They have not been appraised tax- imens of like age were compared from place 

onomically since Hall and Cockrum’s re- to place to ascertain geographic variation in 

gional study (1952) summarized by Jackson size, cranial characters, and color. Localities 

(1961). Approximately 960 new Wisconsin were plotted on range maps, and by com- 

specimens were studied in this collection parison with Jackson’s (1961) records it was 

(University of Wisconsin Museum of Natural possible to document some expansion or con- 

History). Forty-eight Arvicolines (or ‘‘Mi- traction of geographic ranges. University of 

crotines’’ according to some workers) were Wisconsin-Stevens Point (UW-SP) speci- 

borrowed from neighboring museums. All mens are listed without reference. Specimens 

the Wisconsin species (except the muskrat) from the following museums were listed with 

| are taxonomically revised herein. The char- these abbreviations: United States National 

acteristics of each kind are described. Some Museum (Nat. Hist.), USNM; Chicago Nat- 

natural history information, such as breeding ural History Society Museum (CNHS); Uni- 

data, is reported. The chief aims of this paper versity of Michigan at Ann Arbor (UM); Uni- 

are to report information on the taxonomy, versity Wisconsin-Madison (UWM); and 

geographical and ecological distributions, and University of Illinois (UI). 

to summarize in condensed form some in- Cranial measurements were obtained by 

formation on the environmental status of all dial calipers in millimeters. In mice that all 

the Wisconsin voles and bog lemmings. Where have protruberant upper incisors, the greatest 

relevant, findings from specimens in closely length of the skull, measured between the 

adjacent areas in Illinois, Minnesota, and anteriormost extension or projection of the 

Michigan are also included. incisors and the posteriormost extensions of 

. the exoccipital condyles, is the greatest lon- 

Materials and Methods gitudinal dimension. The supraoccipital oc- 

The kinds of voles and bog lemmings were casionally projects slightly posterior to the 

identified by their external and dental char- condyles, in which case its posteriormost point 
is the posterior measure. The condylobasal 

es sss<pv~T__ dength is the comparable distance between 

Charles A. Long is Professor of Biology, UW-Stevens the condyles and the anteriormost extension 

Point, and is the Curator of the Mammal Collections, or projection of the premaxillary bones (not 

Museum of Natural History. 
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including the incisors). The breadths of the __ voles in the genus Microtus, as is often done. 

skull are the zygomatic breadth, being the 

greatest distance between the outer borders  Pitymys pinetorum (LeConte) 
of the zygomatic arches (at right angles to 1830. Psammomys pinetorum LeConte, in 
the longitudinal axis of the skull) and the Ann. Lyc. Nat. Hist., New York, 3:133, 

narrowest constriction, the interorbital breadth type from Georgia. 
between the orbits. The lambdoid breadth is 1831. Pitymys pinetorum McMurtrie. In 
the distance across the posterior face of the The Animal Kingdom ... by Baron 
skull, including the lambdoid crests border- Cuvier, vol. 1, p. 434, footnote. 
ing the exoccipitals. The length of the nasals 1896. Microtus pinetorum, Miller. N. 

is measured from the anteriormost extension Amer. Fauna, 12:9. 

as the longer distance to either posteriormost The scientific binomen Pitymys pinetorum 

extension. The maxillary tooth-row is the al- _ refers to a mouse taken in pines. It is seldom 

veolar length of the three cheek teeth mea- _taken in pines, and now it is sometimes called 

sured along the maxillary bone. Since there the woodland vole. It is as often referred to 

is no sagittal crest in voles, the cranial depth by the name Pitymys as by any common name, 

measures from the highest point of the cran- _ but by some workers referred to as Microtus. 
ium to either the base of the cranium or to a Description: This vole has slightly reddish 
transverse line tangent to the ventral projec- or walnut brown fur, hair even, short and 

tions of the auditory bullae. When possible, dense as in moles. The venter is grayish over- 

arithmetic means are accompanied by the ob- _lain with ochraceous or buff. The tail is ex- 

served range of variation and in bog lem- _—_ceptionally short. The foreclaws are often 

mings by the standard error. white, exceptionally large (elongated for dig- 
Most cheek teeth are persistent in growth — ging) and much longer than the hind claws. 

(rootless) and develop as prisms of dentine The skull is broad, especially the posterior 

enclosed by angular borders of enamel. The extensions of the nasals, the adjacent pre- 

projecting salients are salient angles, and the —maxillaries, and the interorbital region. The 

indentations between are termed re-entrant _post-rostral part of the skull is rather circular, 
angles. More circular enclosures are called _ the brain case encroaches into the orbits, and 
loops or islands. The patterns are extremely the nasals are short and broad. The upper 

useful in identification of Arvicoline mice. third molar consists of an anterior loop, two | 

enclosed prisms, and a posterior portion with 

Accounts of Species and Races a salient bulge confluent with a lingual loop. 
; The lower first molar has nine angles, but 

Genus Pitymys McMurtrie, 1831 only four closed prisms, with the anterior- 

In Pitymys the teeth are primitive, espe- most part constricted, but not pinched to- 

cially lower first and upper third molars; the gether. The teeth are similar to those of Pi- 

M/1 has the anterior island slightly con- tymys ochrogaster, except the first inner prism 

stricted, with only two to three salient angles of the middle upper molar tends to be quad- 

between it and the posterior loop; the upper _ rate and sharply angled. 

third molar has only two islands (two closed Comparisons: Whereas the prairie vole has 

salient angles) between the anterior and pos- a high, narrow skull, the woodland or pine 

terior loops. vole has a low broad skull. The woodland 

The best treatment I could give the wood- vole has short, dense, fleecy fur of even brown 

land (pine) voles and the prairie voles to em- or reddish brown color, instead of coarse fur 

phasize the similarity in dental characters was in the prairie vole. The hands are broad, the 

to combine them in the genus Pitymys. This foreclaws robust. The very short tail is seen 

| arrangement implies a close evolutionary re- only in this vole and the more grizzled bog 

lationship not as evident when including these lemmings. The acromion process of the scap- 
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ula flares abruptly, so that it diverges from | Pond, Sauk County, are given in Table 1. 

the glenoid socket, and bends terminally to- | The type specimen of P. p. schmidti, not seen 

' ward the head of the humerus. In Microtus by me, measured 128, 24, 18, which resem- 

pennsylvanicus and Pitymys (Pedomys) och- bles the specimens seen in Clark County. 

rogaster the acromion is delicate and the fossa The single specimen of P. p. nemoralis 

between it and the scapula narrow, with the = from Lynxville in western Wisconsin was 

opening at less of an angle. The clavicle in much larger (133, 22, 19), resembling four 

Pitymys pinetorum is more robust. topotypes of nemoralis from Stillwell, Okla- 

The tunnels and dirt piles, unlike those of | homa: 137 (127-144), 24 (20-27), 18.5 

other mammals, are usually found below the (18-19). Skull dimensions of the Lynxville 

tough, dense, and deep leaf litter, rather than pregnant female are also larger than Wis- 

standing above. consin and Illinois kennicotti, measuring 27.1 

Measurements: According to Jackson in greatest length, 16.0 zygomatic breadth, 

(1961) P. p. scalopsoides, referred to herein and 6.8 maxillary tooth row. 

as kennicotti, had weights ranging up to 36 Cranial measurements of a subadult spec- 

grams in old adults. External measurements = imen from Wolf Lake, Cook County, the 

in mm of six specimens from early day Chi- type of schmidti from Clark County, three 

cago (listed under Cook County, Illinois), adults from Wood County, one from Dane 

four adult specimens from Clark County, three County, and three adults from Canton, Illi- 

from Wood County, and one from Klondike _nois are given in Table 2. 

External Measurements in mm for P.p. scalopsoides_ (or kennicotti) 

Jackson Specimens from these Counties: 

(1961) Cook, Ill Clark, WI Wood, WI Sauk, WI 

Number 6 4 3 1 

Hind 

Table 1 

Cranial Measurements in mm for P.p. kennicotti 

Specimens from these Counties: 

Cook, WI Clark, WI Wood, WI Dane, WI Canion, Ill 

Number 1 1 3 1 3 

Length 25.1 25.5 (23.1-26.2) 25.6 (24.8-25.0) 

Mean 25.1 24.9 

Zygomatic 
Breadth 13.9 — (13.7-16.0) 15.4 (14.8-15.1) 

Mean 14.1 14.95 

Inter- 
Orbital 
Breadth 4.05 4.6 (4.5-4.75) 4.5 (4.2-4.5) 

Viean 4.0 4 

Nasals 7.5 — (7.8-8.0) 7.4 (7.3-8.0) 

Mean 7.9 77 

Maxillary 
Tooth Row 5.8 5.9 (5.6-6.2) —— (5.9-6.0) 

Mean 5.9 6.0 

Table 2 
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Distribution: Southern Wisconsin. See Mammals of Illinois and Wisconsin Field 

Figure 1. Mus. XI. p. 222, Also, Hall and Cock- 

Habitats: The pine or woodland vole oc- rum, 1952; Jackson 1961, and others. 

curs in a wide variety of habitats outside Wis- Description: Dark brownish, almost pur- 

consin (Paul 1970). It is most commonly taken __ plish brown, slightly ochraceous in unworn 

in hardwood (maple, hickory, oak) forests — pelage, and decidedly less reddish than either 

(Jackson 1961; Schmidt 1931). In southwest =P. p. nemoralis or P. p. scalopsoides. The 

Wisconsin numerous burrows were found on voles are smaller than in nemoralis, but are 

a dry grassy hillside, and in Clark County, rather large from Wood County. The dark 

burrows ran under maple leaf litter, in the — color is constant throughout the vole’s range 

gray sandy-clay loam soils that roofed the in Wisconsin and northern Illinois. 

burrows without caving in. Abundant meadow Specimens examined: Wisconsin, 12. II- 

voles may replace Pitymys in competition (Paul linois, 20. See Table 3. Jackson (1961) re- 

1970). 

Remark: Litter size varies from 1 to 5, and Kennicott's Woodland Vole 
Pitymys pinetorum kennicotti there are only four teats. 

Western Woodland Vole Specimens Examined: 

Pitymys pinetorum nemoralis V. Bailey Wisconsin: Total - 12 

A single large female is the only specimen County: Number 

reported from Wisconsin. Its size, massive Clark County: 

teeth and chestnut-reddish brown color are ~ Worden Twsp. 4 USNM 

the only distinguishing features. The type of 1 UWM 
. . . Dane County: 

nemoralis is from Sullwell, Adair County, Town of Vermont 1UWM 

Oklahoma, where the color is dark rufescent, Westport 1 UWM 

and the topotypes are large and wide across Sauk County: 

the zygomata. Specimens from Minnesota and Klondike Pond 2 

Iowa have been assigned to nemoralis, and Wood County: 
i, , Powers Bluff 3 

in size and color the Lynxville specimen agrees 

with the type and topotypes. Illinois: Total - 20 

Specimen examined: Lynxville, 1 (USNM). 
County: Number 
Cook County: 

Kennicott’s Woodland Vole Palas Park 3 CNHS 
| Elk Grove 1 CNHS 

Pitymys pinetorum kennicotti Wolf Lake 2 CNHS 
> Baird new combination Orlando Park NHS 

? No Specific Locality 2 CNHS 

1858. Arvicola kennicotti Baird. Mam- Crawford County: 
mals of the Pacific R.R. Survey, DeKalb County: 2 CNHS 

p. 547. This available name was applied Somonauk 1 CNHS 

to Illinois voles, and they are insepara- DuPage County: 

ble from P. p. schmidti Jackson, but Lemont 1 CNHS 
distinctive from reddish P. scalopsoides rue noun: 

found eastward of Illinois. Canton 4Ul 
1941. Pitymys pinetorum schmidti Jack- Massoe County: 

son. Proc. Biol. Soc. Washington, Will Gone 2 CNHS 
54:201, December 8. | N oy tonnox 1 CNHS 

1912. Microtus pinetorum scalopsoides | 
(Audubon and Bachman). In Cory, Table 3 
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Fig. 1. Distribution of Pitymys pinetorum. P. p. nemoralis is known from Crawford County and 
west of the Mississippi. The other race is here regarded as P. p. kennicotti and the record 
from Brown County needs to be confirmed. Upper and lower molar tooth-rows. Open circles, 
Jackson’s (1961) records. 
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ported a specimen from Green Bay, Wis- Comparisons: The prairie vole is a clean, 

consin, in the Neville Public Museum, but it sociable vole, easier to handle in captivity 

was destroyed by insects. Unfortunately no than Microtus pennsylvanicus, and not so vi- 

skull seems preserved, and the locality isnow cious with one another. Xeric habits are re- 

drastically disturbed. The record is question- _ flected by less copius urine and drier feces 

able, but any specimens from northern Wis- in cage and trap. The fur has an ochraceous 

consin may be assigned on geographic grounds _intermixture, usually not seen in walnut brown, 

to kennicotti. blackish and reddish tones of M. pennsyl- 

_ vanicus. Often taken in prairie with penn- 
Prairie Voles sylvanicus, the teeth in adults clearly char- 

Pitymys ochrogaster (Wagner) acterize either species. Young prairie voles 

tend to be remarkable ochraceous-gray 
1842. Hypudaeus ochrogaster Wagner. In —_ whereas young pennsylvanicus (which have 

Schreber, Die Saugethiere . . ., Supple. the characteristic dental patterns often un- 

3:592, type from America, probably New —_ developed) are nearly black, very dark brown, 
Harmony, Indiana (Bole and Moul- without ochraceous showing in the fur. The 
throp, Publs., Cleveland Mus. Nat. Hist., feet of adult ochrogaster are more reddish 

| 5:157, 1942). tan, whereas they are brown-gray in 
1853. Arvicola austerus Le Conte. Proc. pennsylvanicus. 

Acad. Nat. Sci. Philadelphia, 6:405, type Measurements: See accounts of subspecies. 
from Racine, Wisconsin. This name is Distribution: See Figure 2. 

a Junior synonym. Habitats: Thin, dry, sandy prairies, upland 

1898. Microtus (Pedomys) ochrogaster, fields, old fields, and railroad rights-of-way. 
J A. Allen. Bull. Amer. Mus. Nat. Prairie voles occur primarily in grassland in 

Hist., 10:459, November 10. the south and west, and perhaps in relation 

1966. Pitymys (Pedomys) ochrogaster, El- _ to openings in the Southern Deciduous for- 
lermann and Morrison-Scott. Checklist ests. They are not seen in the pine barrens 

of Palearctic and Indian mammals. Brit- and dunes of northwest Wisconsin, but seem 

ish Mus. Nat. Hist., p. 681. associated in northward distribution to the 
The scientific binomen of the prairie voles outwash sands of the Wisconsin glaciers. 

means literally the mouse has an ochraceous Perhaps the Northern pine-hardwoods and 

belly. Some workers refer the species to the wooded hills prevent these voles from ex- 

genus Microtus, and often it is assigned to _panding their geographic range northward. 

the subgenus Pedomys - Prairie and pine voles have approximately 

Description: The prairie vole is brown with similar geographic ranges in Wisconsin, but 
a slight mixture of orange or orchraceous. occupy different habitats. There are six mam- 
On the belly, fur is grayish basally, the tips —s mae and up to seven embryos. 

are richly ochraceous, except in the very 

young. The tail is short in the prairie vole Common Prairie Vole 
but not nearly so short as in pine (woodland) 

voles or bog lemmings (in which the tail ex- Pitymys ochrogaster ochrogaster (Wagner) 

tends only about as far as the hind feet). The This vole is large, nearly as large as Mi- 

skull closely resembles that of Pitymys pi- _ crotus pennsylvanicus. The skull is larger than 
netorum. The upper middle molar has four in P. o. minor, exceeding 26 mm in greatest 
prisms, lacking any fifth posterior loop, and _length in old adults (those with basioccipi- 
the last molar has only four prisms, with __tal-basisphenoid suture closed). The pelage 
posterior portion short, narrowing, and hardly _is darker and less grayish than western spec- 

invaginated (c-shaped) as seen so clearly in —_imens of minor, but not much darker than in 
M. pennsylvanicus. the Wisconsin minor. The belly is on average 
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Fig. 2. Distribution of Pitymys ochrogaster. P. 0. minor is known from thin soil glacial sands to 

the northwestward. The southern race is P. o. ochrogaster. Upper and lower molar tooth-rows. 

Open circles, Jackson’s (1961) records. Racine Co. After Amin. 
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more richly ochraceous. The most constant Common Prairie Vole Pitymys ochrogaster difference between the common and minor 
prairie voles is size, but the common prairie Specimens Examined: Total - 23 
vole has longer and broader nasals, and the conn C 

: : rawtord County: auditory bullae tend to be relatively less Lynxville 3 USNM 
inflated. Dane County: 

Measurements: According to Jackson Beeny, Sec. 18, T8N, R7E 1 UWM 
(1961), the total length varies up to 160 mm, 5 miles N. Cross Plains 1 UWM 
tail to 40 mm, hind foot to 20 mm, total _| Podge County: 
weight to 50 g, and total skull length to 28.1 Rock County: 
mm. The three adult males from Lynxville, Milton 5 UWM 
in extreme southwestern Wisconsin, are clearly Sauk County: 
referable to the larger, nominate race in all Pleasant Valley Road, near 

. Sumpter Church 3 measurements taken (see Table 4). Speci- 1/4 - 3/4 mile S., 2 miles W. 
mens from Beaver Dam and Pleasant Valley Prairie de Sac 2 
Road, in southern Wisconsin, are compara- 3 miles W. Prairie de Sac 3 
bly large. Even the oldest and largest spec- 4 miles W. Prairie de Sac 4 
imens from near Stevens Point are smaller Table 5 
than these specimens. 

Specimens examined: Total, 23. See Table 
5. Other records are in Jackson (1961). See Long (1976) first reported this diminutive 
also, Amin (1974) and Amin and Thompson —_yoje in Wisconsin, extending the known range | 
(1974). 218 miles eastward, in small local popula- 

° ee tions living on railroad rights-of-way and thin 
Minor Prairie Vole outwash sands of brushy, grassy fields. Two 

Pitymys ochrogaster minor (Merriam), _ taxonomists have suggested that M. 0. minor 
1888, new combination. is a species because of its peculiar and dis- 

Arvicola austerus minor Merriam, Amer. tinctive behavior and small size. In Wiscon- 
Nat. 22:600; type from Bottineau, North sin there is no evidence of intergradation of 
Dakota. the two prairie voles, but woodlands separate 

them a distance of 50 miles (between Wau- 

Common Prairie Vole Pitymys ochrogaster shara and Dodge counties) and 40 miles (be- 
tween Juneau and Sauk counties). The minor 

3 Specimens From Lynxville, Wisconsin vole hardly varies in size from central Wis- 
consin into North Dakota, but Swanson (1945) External Measurements in mm: reported intergradation with larse M h- 

Total Length 153 (152 - 155) Pp aleteraca ay halge I. 0. OC Tail Length 39 (38 - 40) rogaster in Southeast Minnesota. Another 
Hind Foot 18.7 (18 - 19) thing to keep in mind is the close similarity 
a of skulls and dentitions of minor and Weight in gm 47 (44-50) 

ochrogaster. 
Cranial Measurements inmm: Measurements: The decidedly small di- 

Length of Skull 26.8 (25.8 - 26.9) mensions of the skull are seen in the means 
wonayippasal 96 05.3 -265) of Old-Adult voles shown in Table 6. eng 3 - 26. ; - Maxillary Tooth Row 6 (5.6 - 6.5) Specimens examined: Total, 29. See 
Zygomatic Breadth 15 (14.9 - 15.1) Table 7. 
Cranial Depth 9.63 (9.6 - 9.7) Status: This vole was never common in 
Interorbital Breadth 4 (3.95 - 4.1) Wisconsin, and in Portage County all known Nasal Length 7.55 (7.5 - 7.6) eas 

localities of occurrence have been so dras- 
Table 4 tically disturbed by plowing and urban de- 
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Measurements of the Minor Prairie Vole Cranial Measurements in mm 

Old-Adult Vole Specimens From: 

Goodall, ND Elk River, MN Ft. Snelling, Mn Clark Co., WI Stevens Point, WI 

Number 5 3 2 1 6 
Greatest 
Length 
Of Skull 24.07 24.33 23.74 25.93 24.6 

(24.1 - 25.6) 
Zygo- 
matic 
Breadth 12.35 13.05 12.88 13.4 13.7 

(13.5 - 13.9) 
Lamb- 
doidal 

Breadth 10.39 10.51 10.31 11.4 11.2 

(10.8 - 11.4) 
Nasals 6.66 6.73 6.75 7.0 6.59 

(6.7 - 7.3) 
Inter- 
Orbital 

Breadth 3.43 3.42 3.7 3.8 3.95 

(3.8 - 4.05) 

Table 6 

velopment that the subspecies may have been 1841. Arvicola fulva. Audubon and Bach- 

extirpated. No specimens have been obtained man. Proc. Acad. Nat. Sci. Philadel- 

for ten years in spite of intensive efforts to phia, 1:96. Type from a western state, 

find them. Efforts should be made to preserve probably Illinois. 

this species and its habitat, perhaps by intro- 

ductions onto sandy upland prairie preserves. os 
| Minor Prairie Vole 

Genus Microtus Schrank Pitymys ochrogaster minor 

| Teeth elaborate, lower first molar with deep Specimens Examined Total - 29 

constrictions forming separate islands or 
. . . County: Number 

prisms, five salient angles between anterior Clark County: 

island and posterior loop, upper third molar Brick Creek, near Owen- 

elaborate, with three closed prisms (salient Withee 1 

angles) between anterior and posterior loops. Foster Twsp. 2 UWM 
No Specific Locality 1 

Juneau County: 
Meadow Vole 4 1/2 mile N., 1 mile W. 

| Necedah 2 
. . . Portage County: 

Microtus pennsylvanicus pennsylvanicus Stevens Point 14 

(Ord) Whiting 2 
1815. Mus pennsylvanica Ord. In Guthrie, Plover 5 

A P a ond A d 1 8 miles S. Stevens Point 1 
new geography, 2nd Amer. ed., vol. Waushara County: 

2, p. 292. Saxeville 1 UWM 
1895. Mlicrotus]. Pennsylvanicus, Rhoads. 

Amer. Nat., 29:940. Table 7 
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1858. Arvicola riparia var. longipilis Baird. No. 1610 pure silvery white; (2) buffy white 

Mammals. Reports Expl. Surv. ... No. 377, (3) whitish buff No. 1089, (4) buff 

8(1)1524, type from West Northfield, No. 947, (5) buffy ochraceous No. 3190 or 

Illinois or Racine, Wisconsin. 2259, all aforementioned specimens from 

The scientific name Microtus pennsylvan- central Wisconsin, and (5) dark ochraceous 

icus means the mouse has small ears and was No. 4579 from Waupaca Co., 4851 from 

found near (‘‘Meadows south of’’) Phila- Vernon Co., or 5024 from Clark County. 

delphia. This vole resembles M. agrestus of From Marathon, Wood, and Portage counties 

Eurasia. a large sample was analyzed and fell into 

Description: Usually the largest, darkest these frequencies: pure silvery white 1; buffy 

vole in Wisconsin, often exceeding 160 mm white, 16; whitish buff, 37; buffy ochraceous 

total length. Long blackish tail, blackish 46; dark ochraceous, 4. The frequencies were 

gray-brown feet, and belly overcast with hardly dissimilar in other parts of Wisconsin. 

whitish, pale buff (occasionally rust, red, or Of course, all ventral pelages were gray bas- 

cinnamon buff). The skull is long, the ros- ally. From this it follows that Microtus penn- 

trum and nasals long and narrow, and the sylvanicus cannot always be distinguished from 

braincase well extended posterior to the zy- _—- Pitymys ochrogaster by the color of the belly 

gomata. The upper third molar consists of an for the color is often ochraceous. However, 

anterior loop, three closed prisms, and a dis- whitish venters are characteristic of 

tinct posterior crescentic loop. In the middle —_ pennsylvanicus. 

upper molar an extra small posterior loop is Jackson (1961:230) described mutants from 

squeezed in, rarely absent in adults. The lower Wisconsin: yellow from Alderly, Dodge 

first molar is pinched in anteriorly, so that County, and two albinos from Madison and 

there are five closed prisms behind the an- _ another from Lake Koshkonong. A pink-eyed 

terior loop. This species is identified with albino in the UW-SP collection (No. 1792) 

certainty by the loop of the middle upper is from Dodge County, and a partial albino 

molar, and the identification confirmed by (No. UWSP-6261) is from Horicon Marsh. 

the extra prisms in upper third and lower first | This vole was normal above except fora faint 

molars. The skull is long (up to 28.6 mm), _intermixture of white hairs below the ears 

the yellow incisors projecting beyond the na- —_ and approaching the vibrissae. The left hind 

sals. The incisive foramina exceed 5mm in _ foot was normal, the other three feet white. 

length. There is a slight reddish (not ochra- _‘ The tail was normal. The venter was pure 

ceous) cast in the dark walnut brown upper- white without gray at the hair bases. 

parts (especially in late summer and fall), Measurements: Total length to 188 mm. 

which are evenly colored and hardly grizzled (but large meadow voles seldom exceed 165 

at all. The dorsal pelage, long and lax in mm), tail 42 to 56 mm, hind foot 20 to 23 

winter, is remarkably constant throughout the mm, ear 20 to 23 mm. Wts. vary to 56 g. 

state. Little individual variation is shown ex- Greatest length of skull varies to 28.6 mm, 

cept in rare albinism in southeastern Wis- — width to 15.8 mm (see Jackson, 1961:231). 

consin and a gray specimen with hairs whi- Distribution: Statewide, but restricted from 

tish basally from Portage County. The black —_ most islands in Lake Michigan and Lake Su- 

eyes seem small, and like the ears are fringed _perior, dense forests, and dry, sandy prairies. 

by coarse guard hairs. See Figure 3. 

In ventral coloration the range of whitish Habitats: Wet, grassy or weedy soils, fields, 

to buff to buffy ochraceous varies remarka- wet meadows, marshes, bogs, riparian grassy 

bly, as can be seen by the following values shores, and grassy glades in open woodlands. 

based on a scale of pale to dark ochraceous, Occasionally in cultivated fields, often on 

one to five. The standards are (1) UW-SP lawns and gardens, and rarely in houses. 
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Fig. 3. Distribution of Microtus pennsylvanicus pennsylvanicus, which occurs in every county 

in the state. Upper molar tooth-row and lower. Open circles, Jackson's (1961) records. 
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Jackson rated the meadow vole as the sec- 5:204. Type from between Toronto and 

ond most abundant mammal in Wisconsin, Lake Simcoe, Ontario. 

exceeded possibly by the short-tailed shrew. 1928. Clethrionomys gapperi gapperi, 

In my field work I find the white-footed mouse Green. J. Mammal., 9:255, August 9. 

to outnumber them both, except in dense for- The scientific name means a swamp alder 

est, wetlands, and the northern counties. mouse, and Gapper was a man’s name. 

Probably the meadow vole is most abundant Description: This small vole has a weakly 

there. The meadow vole is found in every built skull, having delicately and neatly ar- 
county in Wisconsin. Hamerstrom (1986) ranged folds and prisms in the cheek teeth, 

discussed the 4—5 year cycle of abundance and pale yellow incisors. It is easily recog- 

and its profound effects on harriers (Circus nized by its russet or chestnut reddish-brown 

cyaneus). | dorsum, set off by ochraceous (almost yel- 
Microtus can breed every month of the lowish)-grayish-tan sides. The sides are usu- 

year (Jackson 1961:233) and usually con- ally flecked with dark blackish gray, a false 

tinue in central Wisconsin into November, a pattern of guard hairs, but actually the gray 

full month later than in the Peromyscus. The bases of the hairs show through the coarse 

litter size varies from two to nine, and is often pelage. (There are a few brownish guard hairs 

seven. In 27 pregnant Wisconsin specimens in dorsal and lateral pelage evident under the 

observed, the mean was 5.2; modes 4, 6; microscope.) The ventral surface is whitish, 

observed range was 4—8; the peaks of breed- either a pure or grayish white, although from 

ing were April and July; and females were place to place up to 40 percent may have pale 

found pregnant from March to October (lac- ochraceous buff or cinnamon buff (e.g., 

tating to 14 November). UWSP- 1497, 6075, and others). The pale 

The meadow vole prefers black soils and coloration is conspicuous on the throat and 

wet environments due to a need for water. It lower cheeks and extends often as a ventral 

swims well, even diving, and young have line to whitish feet and claws. The general 
been seen running over water surfaces. The effect is a tri-colored mouse, red-brown, 

nest of grasses and leaves is often on the gray-orange, and whitish. The tail is medium 

ground surface, occasionally in a burrow eight in length. There are six tubercles on the hind 
or nine inches below ground. Foods include foot. In juveniles the coloration is not fully 

grass, sedges, grains, seeds, and carrion. developed, so the dorsum and sides are rich 

Specimens examined: Total, 548. See Ta- rusty brown with just a tinge of russet, and 

ble 8. Other records in Jackson 1961: Long the venter is brownish or gray with just a 
1974. The species is widespread in Upper tinge of white. However, in young mice even 

Michigan as well (Baker 1983). the smallest seem to have bright adult col- 

; ae oration in winter. (Apparently the hair pro- 

Genus Clethrionomys Tilesius, 1850 tection develops rapidly, much more so than 

Teeth small and primitive, occasionally in summer.) 

rooted in adults, salient projections less pointed The skull is small and rather circular in 

(more arcuate) then in Microtus or Pitymys, profile. No other arvicoline has such a 

upper third molar elaborate, posterior palate shelf-like or straight posterior border of the 

shelf-like. palate (actually the anterior border of the 

pterygoid fossa or posterior nares). The upper 

Red-Backed Voles third molar has an anterior loop, three closed 

prisms, and a selenodont or crescentic pos- 
Clethrionomys gapperi (Vigors) terior loop, resembling the pattern in Micro- 

tus. However, the more arcuate angles are 

Gappers Red-Backed Vole more even in linear arrangement, and more 
1830. Arvicola gapperi Vigors. Zool. J., delicate, the tiny prisms neatly outlined. The 

98



Voles and Bog Lemmings of Wisconsin 

upper middle molar consists of an anterior — voles tunneled as might moles, short-tailed 

loop and three closed prisms (which is or- shrews, or Pitymys (Long 1978). These voles 

dinary in arvicolines). The lower first molar are less specialized for eating grass, and they 

might be said to terminate with two posterior feed on nuts, seeds, and small arthropods. 

loops in tandem, only two enclosed areas In Wisconsin this forest species does not range 

intervene between the complex anterior part § far into the southern deciduous woods or 

and the last loop. The anterior portion is southern and western prairies. They are 

pinched so that a tiny inner salient angle may —_ thought to be rather solitary, but Pitts (1983) 

occasionally be closed off as well. The third caught six adults in the same tunnel beneath 

lower molar is distinctive in its three similar | a decayed stump. 

and large outer salient angles all in a row, Home range is about 1,000 square meters, 

and three small inner salient angles neatly habits mostly nocturnal, and the females have 

arranged opposite. The teeth are narrow and two to four litters per breeding season, of 

small. three to eight young (Jackson 1961). There 

Colors are highly variable, and large sam- are eight mammae. In only seven observed . 

ples are essential to compare colors from place breeding females some breeding was noted 

to place. Nevertheless, the range of varia- in winter, pregnant specimens observed from 

bility is constant geographically. There is only February to late September (lactation and ju- 

one geographic race in Wisconsin and Upper veniles in November). The mean litter size 

Michigan. was 4.75, two modes 3, 6, and the observed 

Comparisons: The coloration (reddish dor- range 3 to 6. A female from Poverty Island, 

_ sum, whitish venter) and dentition clearly Michigan, had six embryos in August. 

distinguish this species from all other arvi- Status: Abundant in suitable habitats, 

colines in Wisconsin. The longer tail clearly wide-spread in northern and eastern Wiscon- 

sets a red-backed vole apart from the sin, and in no peril. Harmless to man. 

short-tailed (woodland) pine vole and south- Remark: One female specimen (UW-SP 

ern bog lemming. 1040) from 15 mi. E. Stevens Point was belted 

Measurements (Jackson, 1961:225): Total with pure white mid-dorsally, nearly all 

length varies to 150 mm, tail only 32—42 in around, the ventral white extending fairly 

adults, hind foot 18—20, ear 14 to 16. Weights continuously, forward to each manus. | 

vary to 36 grams. Total length of skull varies Specimens examined: Total, 296. See 

only to 24.8 mm, width of cranium 12.0 to — Table 9. : 
13.6 mm. Other Records: See Map. Also see Jackson 

Distribution: Northern woodlands and 1961; Pitts 1983 (Monroe Co.); Johnson 1978 

swampy communities. See Figure 4. (Door Co.); Kewaunee Co., personal corr. 

Habitats: The red-backed voles occur in Neville Museum; Long 1974. The species is 

boreal forests. In Wisconsin they are found widespread in Upper Michigan as well (Baker 

on several islands in Lake Superior and Lake 1983). 

Michigan, and throughout the North Woods . 

(the pine-maple, hemlock, and spruce-fir Genus Synaptomys Baird, 1858 
woodlands), occurring always in the pres- Teeth specialized, entrant angles deeper on 

ence of at least a few trees. They dwell in one side, shallow on the opposite, so that 

swamps, bogs, and marshes as well as on prisms extend as nearly transverse lophs across 

forested hills and the slopes of valleys. They the tooth surface, the salient angles reduced 

live in complex burrows usually below a stump on outerside of lower molars, inner side of 

or dead-fall tree. On Big Summer Island, upper molars, upper incisors slightly grooved 

Michigan, which is in Green Bay, red-backed along outer border. 
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Southern Bog Lemmings 
—-rnr ThRreNra 

Synaptomys cooperi Baird 
Lu e ° 

Bs 8 Synaptomys cooperi Baird. Mammals. Re- 

o > 38 port Explor. and Surveys Railroad to 
3 ® ot © . 

ys LEB an 7 Pacific, Part 1, Mammals. page 558, 
- cx. < oO 
c efs. sé ® 1858. 

8x 5 G S = oz 8 @ © Synaptomys fatuus Bangs. Proc. Biol. Soc. 
Se 8S55=8 -GER Washington, 10:47, 1896. Type from 
Ger rteyeopzgz£avs 
FeEEOZEESZEE Lake Edward, Quebec. 
Ga -+foeont>HsS . 
s S Synaptomys cooperi fatuus, Cory. The 

mammals of Illinois and Wisconsin. Field 

Mus. Nat. Hist. Publ., 153:237, 1912. 

me OREN terre N K ae The name Synaptomys means a mouse link. 

= It links the voles to the boreal lemmings. The 

e5 c _ € g name cooperi honors William Cooper of New 
a 3 s = 25 0 Jersey who gave Fullerton Baird the type 
5 u _ 5 8 Br Eo specimen. The type locality was fixed at 

© 38 g 2 3 O Z $ aa” Jackson, New Hampshire. 

BOE = Le ~«F S80 2". 2 g Description: This chunky mouse has griz- 
Jas Stng5 Og sfc zled, coarse pelage (except in winter), an Sort S5O'AOGZFZBENLZGSL : . . . 
2e0 ECS gEetEes® =€ = extremely short tail as in Pitymys pinetorum, 
® ! OsT 6fF EL OO 3 . 
Onw FOr ANToOnNo un O and ears mostly hidden by the fur. The upper 

parts are a coarse mixture of gray, pale ochra- 

ceous brown and dark brown or black guard 

hairs. The venter has a whitish, grayish, buffy, 

“~s ee or tan ochraceous wash over dark plumbeous 
» gray bases of the hairs. The feet are usually 

c @ ga brownish but sometimes gray. There is usu- 
—_ To . . 

suSe® 58 . oan ally a faint groove on the the anterior face 
in Cu SS 2 s5 x é 3 of each incisor, along the outer edges. The 
Enooz SUyNres§ FSS skull is nearly square (subquadrate) resem- 
SaoNEn_~ SHNESESH _ ene . : . . 
Of -5SLEAL SE 6zZ025 3 ui 5 bling Arctic lemmings, because the braincase 

™ @® . . cFosta gett 3 2 3 £ a= o 8= protrudes into the orbits, encompassed by the 
£t Owr —I WN ®@€ ~eoXZMeu . 
S30 ES or SEqx38 zygomata, and the rostrum is short. The outer 

& 2s 8 re—entrant angles of the upper molars are 

| exceptionally deep, whereas the inner angles 

shallow, so the upper teeth are zagged, but 

- + -— = 4 F OM A not zig-zagged. The lower teeth have the deep 

2 oS re—entrant angles on the inner side of the 

_£ © - teeth. On the middle lower molar is a small 
. Sof i x o outer prism (Fig. 5) ai e22 wu ec . 3 uter prism (Fig. 5). 

se §&§& e@ 2g & = ~w Comparisons: The short tail, coarse griz- 

6r SoSHEoCREB » 2|o led fur, grooved incisors, squarish brain- TC LSSSEMEEOBSLy LOTS a 
S22 = 3 52Z=z0 ce 2Z|.— case, and odd re-entrant angles distinguish 
oT 5 22S BSP 3 S % 3 22p S this species. Externally the bog lemming re- 
c ° = € ec = 3 “— S2£ |o _ sembles Pitymys pinetorum, especially in 

e- §°. “BNE = 2 <"< |2 winter pelage. There is a superficial resem- 
Q oe <  blance (breadth) in their skulls as well. There 
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Fig. 5. Distribution of Synaptomys cooperi. On Washington and Rock islands, S. c. jesseni. 8. 
C. gossii occurs in Crawford County. In Upper Michigan and most northern counties S. c. 
cooperi occurs. Upper and lower molar tooth-rows. Open circles, Jackson 1967. 
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are three races in Wisconsin, the most dis- mens averaged 1.5 (1-2). A vole from Delta 

tinctive of which is the white-footed insular | County was 3. | 

race jesseni. From Bayfield County, Wisconsin, five 

Measurements: See accounts of subspecies.  SPecimens averaged 1.7 (1-2), and another 
Distribution: See Figure 5. with worn pelage (in June) was dark grayish, 

Habitats: In black soils along streams, in Pethaps juvenile. Langlade County speci- 

bogs, wet forests, and in sedge meadows, _™ens were | and 3, mean 2.0; and an Oconto 
red pine plantations, and bouldery ground. | County specimen from Suring was 2. Two 
Runways are seldom seen. Feces are bright | Specimens from Crivitz were each 2. 
pale green. Irruptions sometimes occur, but A specimen from Marathon County was 
are unknown in Wisconsin where this vole |» Portage County 4, and Douglas County 1. 
seems uncommon. Specimens examined: Michigan, 6 UM. 

Wisconsin, 34. See Table 10. 

Cooper’s Southern Bog Lemming Measurements: External measurements of 

four adult males from Drummond and cranial 
Synaptomys cooperi cooperi Baird measurements of four adults from Gogebic 

As defined by Wetzel (1955), the nominate | and Taylor counties, Upper Michigan and 
race for the bog lemming occurs both east Bayfield County (2) are given in Table 11. 
and west of Lake Michigan. It is character- 

ized by a rather narrow, high cranium. All . 
| specimens examined in the University Mu- White-Footed Southern Bog 

seum collection, except those from Wash- Lemming or Jessen’s Bog 
ington and Rock Islands, proved referable to Lemming 

S. c. cooperi, showing little variation in color. _. . 

Some specimens had a rich reddish chocolate Synaptomys cooperi jesseni Long, 1986 

color intermixed with ochraceous, gray, and Synaptomys cooperi jesseni Long, Mam- 

black. Winter specimens were bleached and malia, 51:324, 1986. Holotype, 

less grizzled. Young specimens were darker UW-SP6250, skin and skull from Swen- 

brown. Specimens examined from the Upper son Road, T. Jessen’s Place, Washing- 

Peninsula of Michigan were likewise refer- ton Island, Wisconsin. 

able to cooperi. In dorsal and ventral coloration the spec- 

Using a scale from reddish to grayish brown, imens from Rock and Washington islands 

the dorsal pelage being lined with dark guard (Long and Long 1988) resemble S. c. coop- 

hairs and darkened from below by the un- _ eri, but they have conspicuous white feet. 

derlying basal gray, the most reddish spec- The observed tails and all four feet on the 

imen, a rich reddish-chestnut brown was 5742 specimens are grayish or plumbeous gray, as 

from Portage County, Wisconsin. A shade is common in juveniles elsewhere, but there 

paler is 2197 from Crivitz. Next is 5038 from __is generally pure white distally, of the claws 

Bayfield County, where the light ochraceous and toes. The toes and claws occasionally 

color separates from the dark brown lines of | may be whitish in Synaptomys cooperi coop- 

the guard hairs, and finally the ordinary eri, but they are seldom pure white, the 

coloration—a grayish, ochraceous brown, as whiteness not nearly so extensive, not set off 

in 5626 from Bayfield County. Scaled from so cleanly by dark pelage of the feet, and not 

4 to 1, all the adult and probably mature bog _ so constant. White toes are even fairly con- 

lemmings were compared against this stan- stant on the forefeet in the insular specimens. 

dard, and the color values recorded. Even the hind dew toes are white on the 

A specimen from Fish Hawk Lake, Goge- Rock Island specimen. They are white also 

bic County, Michigan, was reddish (3). From on UW-SP 6548-49. All ten toes are pure 

Menominee County, Michigan, four speci- | white on these specimens. On Washington 
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Cooper's Southern Bog Lemming Cooper's Southern Bog Lemming 

Specimens Examined External Measurements in mm 
4 Adult Males From Drummond: 

Upper Michigan - Total 6 UM 
Total Length 113 (110 - 115) 

UP Counties: Number Tail Length 16 (10 - 19) 

Delta County: Hind Foot 17.6 (17-18) 
2 miles N.W. Fairport 1 Ear from Notch 9 (5-10) | 

Gogebic County: 

Fish Hawk Lake 1 Cranial Measurements in mm 
Menominee County: 4 Adults from Gogebic and Taylor Counties, 

5 miles N. Menominee 1 Upper Michigan and 2 from Bayfield County: 
| 10 miles W. 

Stephenson 1 Condylobasal Length 25.0+-.23 (24.4 - 25.5) 
5 miles S.W. Banat Nasal Length 7.05+-.05 (7.0 - 7.2) 

Meadow Qo Zygomatic Breadth 15.23+-.33 (14.6 - 15.7) 

Lambdoid Breadth 12.25+-.12 (11.9 - 12.45) 

| Wisconsin - Total 34 Cranial Depth 

(with Bullae) 8.54+-.13 (8.2 - 8.8) 
Wisconsin Counties: Number 

Ashland County: | Table 11 
| 6 miles S.E. Clam Lake 9 

Bayfield County: . 
Drummond 42 does. one specimen from Bayfield County, 

Burnett County: Wisconsin, but these, the best marked from 

Crex Meadows 1 the mainland, are less distinctive than the 
Douglas County: least whitish specimens on Washington and 

Wascott 2 Rock Islands 
Langlade County: ; " 

Camp Susan 3 White toes were seldom observed on any 

Marathon County: forefeet of Mainland specimens, but all the 
7 1/2 miles N.E. Athens, front toes were pure white on the Rock Island 

on Big Rib River 1 vole, and toes of the front feet were white 
Marinette County: ? . 

9 miles N.W. Crivitz, on seven from Washington Island. Some toes 

Cnty. A | 3 of the forefeet were white on the others also, 

Oconto County: . except two of the eight specimens had only 
11 miles N.E. Suring 1 dark toes on the forefeet 

Portage County: ; yO . 
Dewey Marsh { White toes seem a sporadically appearing 

Taylor County: character in bog lemmings, but on Washing- 

Near Medford 1 ton and nearby Rock Islands it is ordinary 
Table 10 and in fact constitutes a remarkable and con- 

| spicuous difference allowing the large ma- 

jority of bog lemmings to be identified on 

Island, eight distinctively white hind toes sight. The geographic isolation of these bog 

(excluding dew toes) were seen in eleven lemmings from sedge meadows and fields on 

specimens. Seven white toes were seen in Washington and Rock Islands, with average 

the other two, and even in these there was differences in several cranial dimensions, leads 

at least a trace of white in all eight. In 22 to their recognition as a distinctive geo- 

adult and probably adult bog lemmings from graphic race endemic to these isles. Long ago 

mainland Wisconsin and Upper Michigan, the Door Peninsula was an archipelago of 

white toes were seen only in five specimens. seven islands, when lake levels were higher, 

Some specimens from Menominee County, enhancing geographic isolation of the bog 

Michigan, show several white hind toes, as lemmings (see Kowalke 1946). 
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Cuttings of sedge in the mouth of 
UWSP-6259 were 3. 4. 5. 5. 6 and 8 mm in White Footed Southern Bog Lemming 

7 owe? ‘ . or Jessen's Bog Lemming 
length. Pregnant females were taken in April Synaptomys cooperi jesseni 
(5 embryos) and late September (3 embryos). 

Measurements: External measurements of External Measurements in mm 
six adult males and three females from Wash- 6 Adult Males, 3 Females from 
. . Washington Island: 
ington Island and cranial measurements of 
six adults from Washington and one from Males Females 
Rock Islands are given in Table 12. TotalLength 118 123 

Remark: The race is named in honor of (112 - 122) (119 - 126) 
. Tail Vertebrae 17 18 

Tom Jessen, supervisor of Rock Island State (15-19) (16-20) 
Park, an amateur naturalist who obtained the Hind Foot 19.4 19 
first specimen and has helped on this and (18-21) (17 - 20) 
other natural history studies on the afore- Earfrom Notch 11 1.3 (10-12) (11-12) 
mentioned islands. 

Specimens examined: Total, 14. Rock Is- Cranial Measurements in mm 
land Hq., 1; Washington Island, Swenson 6 Adults from Washington Island, 
Road, Door Co., 6; Airport, on Airport T from Rock Island: 

Road, 7. Condylobasal 

Length 24.63+-.2 (23.8 - 25.2) 
Nasal Length 6.87+-.14 (6.3 - 7.3) 

’ . Zygomatic 
Goss’ Southern Bog Lemming 9 Breadth 15.67+-.03 (15.6 - 15.8) 

Synaptomys cooperi gossii (Coues), 1877 sae en 12.934-.13 (12.6 - 13.4) 

This vole resembles S. c. cooperi also, but Cranial Depth 
it is larger and relatively larger in many di- (with Bulla) 8.62+-.11 (8.3 - 9) 
mensions, especially the higher crania. The Table 12 
Wisconsin specimens, referred by Jackson 

(1961) to gossii, have wider incisors (1.9 

mm) than in cooperi (1.6 mm). Specimens 
in southeast Minnesota and northeast Iowa Summary 
have been referred to gossii. The numbers of specimens and mapping 

This race is known only from Lynxville, of them reveal that of the five species and 
Crawford County, and may occur in other __ nine races of arvicoline mice now recognized 
places on dry hillsides and fields in southern in Wisconsin only Microtus pennsylvanicus 
and southwestern Wisconsin. The habitats is abundant and widely distributed. It may 
seem to be quite different from those in be considered a pest. Clethrionomys is next 
northern Wisconsin. in abundance, harmless, confined to northern 

Measurements (Jackson, 1961:224): No. forests. The other species are uncommon or 
249, 769 USNM, adult male from Lynxville: rare, with limited and local distributions. In 
total length 129, tail 22, hindfoot 19, ear tolerable numbers they are beneficial and in- 
from notch 14 mm, wt. 42 g., cranial length teresting members of Wisconsin ecosystems. 
27.7, width, 17.2, height 10.3 mm. The pine (woodland) vole is listed by the 

Remark: This race was named after the | Wisconsin Bureau of Endangered Resources 
Kansan naturalist B. F. Goss, and the race as rare enough for “special concern’’ (Watch 
occurs southward and westward as far as List). Pitymys ochrogaster minor, P. pine- 
Kansas. torum, Synaptomys cooperi jesseni, and S. 

Specimen examined: Lynxville, 1 (USNM). Cc. gossli seem to be among the rarest of Wis- 
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consin animals. In this study the pine vole adults, posteriormost loop of upper third 
and prairie vole were both assigned to the molar irregular in shape; lower anterior- 
genus Pitymys. Of the nine recognized races, most loop deeply constricted as in M. penn- 

three were not known to Jackson (1961). Two sy 1 oe et wih only three closed prisms 
; and a posterior loop ................... 

of his Wisconsin names are placed in Clethrionomys gapperi Red-backed Vole 

synonymy. | 
4.’ Teeth large or medium; posterior prism of 

middle upper molar terminating abruptly in a 

Acknowledgment shoulder or bulge confluent with salient angle, 
I thank Dr. Sydney Anderson, American posteriormost loop of upper third molar often 

1. spear-shaped (subtriangular), lower anterior 

Museum of Natural History for advice. molar slightly constricted anteriorly and deeply 

K ey constricted posteriorly with three closed prisms 

(and a posterior loop) behind this doubly con- 

Key to Wisconsin Voles and Bog Lem- stricted anterior loop .......... Pitymys 5. 

mings (Adults) All teeth are comprised of 5. Tail exceptionally short; fur fleecy, walnut 
loops and prisms. or reddish brown, forefeet with robust claws; 

1. Upper middle molar with anterior loop, three skull broad, interorbital breadth more than 

closed prisms, and one small posterior loop half the distance between the tips of the 
or islet; posterior upper molar with anterior nasals to posterior extensions of premax- 

| loop, three closed prisms and distinct posterior illaries . Pitymys pinetorum Pine or Wood- 

crescentic loop; anterior lower molar deeply land Vole 

constricted with five closed prisms and a pos- 5.’ Tail not exceptionally short; fur coarse, griz- 
terior loop ....... Microtus pennsylvanicus zled buff or orange-brown, forefeet normal; 

Meadow Vole skull narrow, interorbital breadth about half 

1.’ Upper middle molar with anterior loop and the length from tips of nasals to posterior ex- 
only three prisms; posterior upper molar with tensions of premaxillaries behind the nasals 

two prisms, posterior loop not crescentic; an- ........ Pitymys ochrogaster (= Microtus 

terior lower molar with fewer than five closed ochrogaster) Prairie Vole 
eee een ee ee Works Cited 
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Interspecific Associations of 

Some Wisconsin Lake Plants 

Stanley A. Nichols 

Abstract. Interspecific association was used to group 54 aquatic plant taxa found in 68 

Wisconsin lakes. Three of the four groups formed could be explained by water chemistry, 

substrate preference, and turbidity tolerance. The fourth group appeared to be of intermediate 

preference to the other three groups. A number of species did not commonly associate with 

other species. They were often found in unique habitats. No significant negative correlation 

between species pairs was found. This makes it difficult to speculate about the causes of non- 

| association among species. 

I nterspecific association provides one strate type, fetch, sediment accumulation, light 

method of objectively grouping species. penetration, and water turbulence explain plant 

Positive associations may result from simi- distribution. A second type concentrates on 

larities of adaptation and response to envi- between-lake differences, which generally 

ronmental conditions. They may also result mean differences in water chemistry (Seddon 

from beneficial interactions such as mutual- 1972; Moyle 1945; Swindale and Curtis 1957; 

ism or commensalism, favorable to one or Pip 1979; Olsen 1950; Kadano 1982; and 

both species. Negative associations may re- Lind 1976). Studies describing resource 

sult from species preferring different habitats competition or allelopathy between aquatic 

or from detrimental interaction such as re- plants are more limited and the results are 

source competition or allelopathy. not definitive (Agami and Waisel 1985; En- 

Studies that relate species groupings to gel and Nichols 1984; Nichols 1984; Seddon 

habitat factors generally fall into two types. 1972; McCreary et al. 1983; Titus and Ste- 

One type relates species groups in a single phens 1983). 

lake to within-lake habitat differences (Mirsa Interspecific association was used to group 

1938; Spence 1967; Carpenter and Titus 1984; 54 aquatic plant species found in 68 Wis- 

Nichols 1971; Schmid 1965; Sheldon and consin lakes. This study builds on past stud- 

Boylen 1977; Wilson 1937 and 1941). These ies by using both inlake (ie., substate, depth, 

studies assumed water chemistry is constant, and interspecific interaction) and between- 

and inlake variables such as water depth, sub- lake (i.e., water chemistry and water clarity) 

habitat variation to interpret species groupings. 

Stanley A. Nichols is a Professor of Environmental Sct- 

onces, University of Wiecnsin Extension He is a bi- Methods and Analysis 

ologist at the Wisconsin Geological and Natural History Between 1975 and 1983 detailed macro- 

Survey, and he is associated with the Environmental . 

Resources Center and the Department of Liberal Studies phyte surveys were completed for 68 Wis- 

at UW-Madison. Past articles in Transactions deal with consin lakes (Appendix A). The lakes were 

aquatic plant resources in Wisconsin waters. sampled by Wisconsin Department of Nat- 
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Wisconsin Geological and Natural History 

Survey for identification. Specimens were then 
fie sent to the University of Wisconsin-Madison 

PBR = Gop herbarium as voucher specimens. 

fa) | are “ Analysis 

eo tt + Initially all taxa that were not identified to 
= a eee species except for Chara spp. and Nitella 
Se TE spp. and all taxa that had less than 15 total 

JF 4 LY occurrences in the 8419 quadrats sampled 
= we | Cf were eliminated from further analysis. For 
amitnaess the remaining species the joint occurrence 

=a ar in all quadrats for each species pair was 
> 2 Le et summed, Cole’s index (Cox 1967) of asso- 

ciation was calculated (Appendix B), and chi- 
Cpr ties Square was used to test the significance of 

the association. Bonferroni’s correction 

Fig. 1. Location of sampled lakes showing (Snedecor and Cochran 1980) wa s used to different lake types account for random co-occurrence in the data. 

A chi-square value of 20, corresponding 

roughly to p=0.00001, was used to deter- 
ural Resources (WDNR) field staff or by pri- = mine significance of the association. This en- 
vate consultants for the WDNR Office of In- _ sured an experiment-wise error rate of 0.05. 
land Lake Renewal. The primary purpose of If a species did not have a significant asso- 
the surveys was to design lake-management ciation with at least four species and an ab- 
strategies or to collect benchmark limno- solute sum of Cole’s index values of at least 
logical data. 1.5, it was eliminated from further consid- 

The lakes represent a broad range of Wis- eration. Ward’s minimum variance cluster 
consin lake types with regard to geographic analysis (SAS 1985) was used to group the 
distribution (Fig. 1), chemical and physical remaining 54 species. The absolute value of 
parameters, and human impact. Physical and (Cole’s index-1) was the distance measure 
chemical data were collected during macro- used for clustering. This facilitated calcula- 
phyte sampling or were collected earlier as tions by changing all distances to positive 
part of surface-water resource inventories of values and by assigning larger numbers to 
each county (Appendix A). more dissimilar species. An importance value 

. : for each species in each lake was calculated 
Field methods by multiplying relative species frequency by 

To assure geographic coverage of a lake, average ranked species density. Theoreti- 
sampling points were selected using a grid cally, importance values could range from 0 
system. Grid size and the number of sam- to 500. Only sampling points with vegetation 
pling points per lake varied with lake size; were used when calculating importance value. 
i.e., larger lakes contained more sampling Lakes were also clustered using Ward’s 
points on a larger grid. All plants within a minimum variance cluster analysis. The pa- 
2-m diameter circle around the sampling point rameters compared by cluster analysis were 
were recorded and were assigned a 1—5 den- total alkalinity, pH, total phosphorus, spe- 
sity rank based on criteria established by Jes- cific conductance, water color, secchi depth, 
sen and Lound (1962). Species not identified chloride, free carbon dioxide, water fluctua- 
in the field were collected and sent to the tion, and whether the water body was a lake 
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or reservoir. Lake clusters were comparedto With the greatest number of species 

species clusters to examine patterns that might (Appendix B). It was associated with 38 other 
be attributable to habitat. species. Chara spp., Brasenia schreberi, and 

Correlation of importance values across | Nymphaea odorata were associated with 25 
lakes for all species pairs with a Cole’s index Or more species. C. echinatum, M egalodonta 
greater than + 0.5 was used to determine beckii, P. berchtoldii, P. diversifolius, P. 

whether there might be species interactions  ”0dosus, P. oakesianus, P. pusillus, P. stric- 
shown by differing species abundances. Both _—‘téfolius, P. vaginatus, Ranunculus longiros- 
Cole’s index and correlation analysis test for “ris, Sagittaria latifolia, S. rigida, Typha la- 
association among species. Cole’sindex tests  tifolia, Utricularia geminiscapa, and U. 
association based only on the presence or —_/mtermedia showed only positive association 

absence of two species in a quadrat; corre- With other species. Chara spp. was nega- 
lation analysis tests association based on the _ tively associated with 20 species and had no - 
abundance of two species in lakes where they _ POSitive associations greater than 0.5. 
occur together. 

Species clusters 

Results An analysis of pseudo F/pseudo t? provides 

a guideline for determining optimum cluster 

Species commonness numbers (SAS 1985). This ratio indicates that 
Ceratophyllum demersum is by far the most 45, 32, 11, and 4 clusters might be optimum. 

common species, occurring at nearly twice It seems reasonable that there is more infor- 

as many sampling points as the next most mation about a cluster if the number of clus- 

frequent species (Table 1). Only six other ters is small and the species number per clus- 

taxa—Chara spp., Elodea canadensis, Na- ter is large. Therefore, for most purposes, 

jas flexilis, Potamogeton zosteriformis, Val- four clusters (Fig. 2) were used to determine 

lisneria americana and Myriophyllum exal- what adaptations, interactions, or habitat 

bescens—occurred at more than 10% of the preferences might cause the groups to form. 

sampling points (Table 1). More than one- Each cluster could form for different reasons. 

third or 38 or the 111 taxa identified had less Because of the individualistic nature of spe- 

than 15 total occurrences. These species were cies, each cluster is not a unique entity that 

eliminated from further consideration be- requires the rigid faithfulness of each species. 

cause their Cole’s index could not be ade- Therefore, the clustering dendogram (Fig. 2) 

quately tested using chi-square. is included so that species associations can 

. be examined without the constraint of the 

Cole’s Index of Association four-cluster classification structure. 

Of the remaining 73 species, Cole’s index ; . | 

showed that 19 species did not commonly  A/alyzing the cause of species groups 
associate with many species or at a very high Correlation Analysis. No significant 

level. These species (Table 1) were elimi- negative correlations between species pairs 

nated from the cluster analysis because they were found. Deciding whether a negative 

did not meet the arbitrary criteria of associ- correlation was caused by competition, al- 

ating with four other species and having an lelopathy, or unique and very different hab- 

absolute sum of 1.5 for Cole’s index values. itat requirements is, therefore, a moot point. 

However, it may be significant that they do Because macrophyte community dynamics 

not associate with other species. Potential that appear to be caused by species compe- 

causes for low association are discussed later. tition and replacement of Chara spp. and 

As might be expected from the most com- Najas flexilis have been described (Nichols 

mon species, C. demersum was associated 1984; and Engel and Nichols 1984), and be- 
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Table 1. Species Occurrence 
eee 

% Quads % Lakes 
Species Occur Occur 

eee 

SPECIES OCCURRING SPECIES OCCURRING IN >15 QUADS BUT 
> 10% OF QUADS <1% OF QUADS 
Ceratophyllum demersum 34.1% 66.2% Ceratophyllum echinatum 
Chara spp. 18.5% 52.9% Dulichium arundinaceum 
Potamogeton zosteriformis 16.8% 60.3% Eleocharis acicularis 
Elodea canadensis 16.4% 67.6% * Eleocharis palustris 
Najas flexilis 14.0% 61.8% * Eleocharis robbinsii 
Vallisneria americana 13.8% 64.7% Eriocaulon septangulare 
Myriophyllum exalbescens 11.9% 41.2% * lsoetes echinospora 

lsoetes macrospora 
SPECIES OCCURRING IN 
1%—-10% OF QUADS * Lobelia dortmanna 
Potamogeton richardsonnii 8.9% 45.6% * Myriophyllum tenellum | 
Myriophyllum verticillatum 8.8% 17.6% * Nuphar advena 
Potamogeton amplifolius 8.4% 64.7% Potamogeton diversifolius 
Potamogeton robbinsii 8.2% 29.4% * Potamogeton epihydrus 
Potamogeton pectinatus 8.0% 47.1% ™* Potamogeton filiformis 
Potamogeton praelongus 7A 30.9% Potamogeton nodosus 
Nuphar variegatum 7.0% 57.4% Potamogeton oakesianus 
Nymphaea tuberosa 6.5% 38.2% * Potamogeton obtusifolius 
Myriophyllum spicatum 5.8% 13.2% Potamogeton strictifolius 
Heteranthera dubia 5.7% 38.2% Ranunculus longirostris 
Brasenia schreberi 5.1% 23.5% ™* Ranunculus reptans 
Potamogeton gramineus 4.9% 35.3% * Ranunculus trichophyllus 
Potamogeton crispus 4.7% 26.5%  * Sagittaria graminea 
Nymphaea odorata 4.4% 25.0% Sagittaria latifolia 
Scirpus validus 4.2% 38.2% Sagittaria rigida 
Potamogeton natans 4.2% 41.2% * Scirpus americanus 
Lemna minor 4.2% 20.6% * Sparganium chlorocarpum 
Lemna trisulca 3.8% 14.7% Sparganium eurycarpum 
Potamogeton pusillus 3.3% 22.1% Utricularia intermedia 
Potamogeton foliosus 2.9% 13.2% ™* Zanichellia palustris 
Potamogeton illinoensis 2.4% 22.1% 
Megalodanta beckii 2.0% 13.2% 

* Pontederia cordata 1.9% 29.4% 
Myriophylium heterophyllum 1.7% 2.9% 

* Nitella spp. 1.7% 17.6% 
Wolfia columbiana 1.6% 4.4% 
Typha latifolia 1.5% 27.9% 

Utricularia vulgaris 1.5% 5.9% 
Spirodela polyrhiza 1.4% 8.8% 
Potamogeton berchtoldii 1.4% 7.4% 
Polygonum amphibium 1.3% 8.8% 

* Zizania aquatica 1.2% 13.2% 
Myriophyllum farwellii 1.2% 1.5% 
Utricularia gibba 1.1% 1.5% 

* Najas marina 1.1% 4.4% 
Utricularia geminiscapa 1.0% 2.9% 
Potamogeton vaginatus 1.0% 2.9% 

eee 
TOTAL QUADS 8419 TOTAL 68 

*“ Species deleted from cluster analysis because of low association 
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Fig. 2. Dendrogram of Ward’s Cluster Analysis 
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cause there are a great number of negative IV species. These groups occupy the most 

associations with Chara spp. (Appendix B), —_ alkaline and the highest conductivity waters. 
correlation analysis was further used to test Group I species generally prefer hard sub- 

the hypothesis that competition is the result strates and non-turbid water or they show no 

of the combined importance of other species preference. They are also found in the highest 

with Chara and N. flexilis rather than com- pH water. Group IV species prefer soft sub- 

petition between individual species. The cor- strates, but the turbidity tolerance is mixed. 

relation between the importance of Chara Group IV is found growing in the most shal- 

spp. and all other species in a lake was sig- low water, but the depth range is broad. The 

nificant (p<0.05) but low (r= — 0.29, n= 68); growth depth of the other three groups is 

the correlation between the importance of N. similar. 

flexilis and all other species was not significant. Relating species clusters to lake clus- 

Significant positive correlations were found ters. Various investigators have correlated 

between 23 species pairs (Fig. 3). The ma- _ the distribution of aquatic plant species with 

jority of the species pairs belong to species single environmental gradients (see intro- 

Group III. There are no Group II species duction). Community type is more likely af- 

pairs; one Group I species pair and eight fected by a complex of interacting factors. 

Group IV species pairs showed significant However, analyzing and describing a com- 

correlation. Most of the Group IV species plex habitat is difficult. To approach the 

involve small free-floating plants such as problem, multivariate (i.e., Ward’s) cluster 

Lemna spp., Spirodela polyrhiza, and Wolf- analysis was used to define three lake groups 

fia columbiana. Later discussions will try to (Groups A, B, and C, Fig. 5). The lake groups 

establish whether beneficial interactions or are roughly geographically distributed in the 

similarity in adaptations or habitat preference state (Fig. 1). Total alkalinity and specific 

is the primary cause for positive correlations. conductance are the two parameters that show 

Habitat preference. Median alkalinity, the most unique distribution among the three 

pH, specific conductance, secchi disk, and groups (Fig. 5). 

free CO, values were calculated for each spe- Group A lakes are located in northeast and 

cies that occurred in five or more lakes. These north-central Wisconsin. They are lowest in 

values were compared across species groups total alkalinity and specific conductance. 

(Fig. 4). In addition, species substrate pref- Group B lakes are more scattered geograph- 

erence, turbidity tolerance, and median depth ically, but many are found in northwestern 

of growth (Nichols in prep.) were added to Wisconsin. They are medium in specific con- 

the figure. ductance and alkalinity. Group C lakes occur 

Group III species are found in the lowest most frequently in southeastern Wisconsin. 
alkalinity, pH, and conductivity waters of the They have higher total alkalinity and specific 

four species groups. They are also found in conductance and lower maximum secchi and 

the most clear waters. All species except Po- free CO, levels than the other two lake groups. 

tamogeton oakesianus prefer soft substrate or The average importance value per species — 

show no substrate preference. All species are was compared for each species group in each 

tolerant of turbid water, show no turbidity lake group via a t-test (Table 2). Each species 

preference, or the preference is unknown. group—except for species Group II in lake 

Group II species are found in more alkaline Groups A and B and species Group III in 

water with a higher pH and conductivity. lake Groups A and C—showed significantly 

They show little preference pattern for sub- different average importance in each lake 

strate or turbidity tolerance. group (experiment-wise p<0.05; see pre- 

| There appears to be little difference in the vious reference to Bonferroni’s correction). 

chemical regime between Group I and Group The average importance of species in Groups 
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Chara spp. Scirpus validus 

Utricularia gibba 
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Pp 
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Fig. 3. Species constellations based on positive correlations 
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Fig. 4. Habitat values for species clusters 

I and IV increased from lake Groups A to C. cies are significantly different only in Group B 
The average importance for species Group III lakes. 3 

dropped from Group A to Group B and then This analysis supports results from the pre- 

increased slightly in Group C lakes. The av- vious section. Group III species prefer low 

erage importance of Group II species de- alkalinity, low specific conductance habitats. 

creased in Group C lakes. Species Group I —_ Group II species prefer medium alkalinity and 
and IV never showed significant differences | specific conductance habitats. The water 
between each other within the same lake group. chemistry preference between species Group 
The average importance within Group A lakes I and IV are similar. Both prefer the highest 

is very similar. Group II and Group III spe- _—_ alkalinity and specific conductance habitats. 
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DEPTH OF OCCURRENCE 

GROUP I [----------- (--[==+====) ]--------I 
GROUP II I-- [== (==+==) =====]--------I 

GROUP III [--------[ (=t==) ==] -----------------------1 
GROUP IV I--{ (Gee laniaaainieninizntentententententantantanten Stentententenmntmtantmntanmatmtantamtetatan® ) j----ct 

m IItrtimiIa3ggigegr¢6$riériiriiririiriigiidg}3giy 
0.2 0.5 1.0 1.5 2.0 

TURBIDITY 

NUMBER OF SPECIES 
NO 

TOLERANT PREFERENCE INTOLERANT 

GROUP I 0 2 5 
GROUP II 5 4 7 
GROUP III 5 1 0 
GROUP IV 4 2 2 

SUBSTRATE PREFERENCE 

NUMBER OF SPECIES 
NO 

HARD PREFERENCE SOFT 

GROUP I 4 4 0 
GROUP II 6 4 8 
GROUP III 1 4 9 
GROUP IV 0 3 7 

Boxplot definitions follow Reckow and Chapra, 1983 
I-Minimum or maximum, [-25% quartile, ]-75% quartile, 
()-notch, +-median. 

Fig. 4, continued 

Extreme caution is necessary when inter- to more varied plant growth. 

preting these data. Chara spp. is so important Isoetes echinospora, Lobelia dortmanna, 
in species Group I and C. demersum in spe- Myriophyllum tenellum, Rannunculus rep- 

cies Group IV that the average importance tans, R. trichophyllus, Potamogeton epihy- 

of the group is largely influenced by these drus, and P. obtusifolius are plants of soft, 

two species (Table 3). C. demersum is so sterile water (Moyle 1945; Swindale and Curtis 

pervasive that it is the most important species 1957) and hard bottoms (Nichols in prep.). 

in Group A and B lakes even though it does Because they prefer similar habitats and in 

not reach its maximum importance until lake some cases have a similar growth form, it is 

Group C. Table 3 also shows how faithful surprising they do not associate with each 
each species is to the group preference. other. However, it is not unusual for species 

of comparable growth form and habitat not 

to be found in the same lake (Seddon 1972) 
Discussion and Interpretation and not to associate with each other when 

, ; they are found in the same lake (Carpenter 

Non-associating species and Titus 1984). Colonization pattern, co- 
Species that meet the criteria for com- _lonial growth, or competition are plausible 

monness but show low association with other explanation for this segregation (Carpenter 

species tend to grow in monotypes or clumps and Titus 1984). Seddon (1972) interprets 

in unique habitats that may not be conducive __ this group as having a wide habitat tolerance 
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TOTAL 
ALKALINITY 

GROUP A I-[ (+=) ]--I 
GROUP B I---[ (=+) ]--I 
GROUP Cc I---[ (==+===)=]--------I 

mg/1 I I I It2I2I2f222I I Itidii 
caco, 0 100 200 300 

pH 

GROUP A [--------[ (=+=) ]------------1 
GROUP B IT---[ (==+===) =====] -------------- 1 

GROUP C [------[ (+=) ]------I 

UNITS IIIIIIIIIIIIIIIIIIIIII 
6.0 7.0 8.0 9.0 10.0 

SPECIFIC CONDUCTANCE 

GROUP A I-[ (+) ]-I 

GROUP C T-([=ts=) ]--------------------1 
umos/cm II =f %2I2%tft2I3r 23223 4L i422 i2i23i28Iid2. OF 
25°C 0 200 400 600 800 

SECCHI 

GROUP A I[---- (SSSS== (SSS==+S====]) --------------I 

GROUP B [--------- [= (SSetS==) ===) ---------------- 

GROUP C T---( (===s=+=====) ]-I 

m T I I IF I IF I.mreéimi.3 «zg i. 
| 0 1.0 2.0 3.0 4.0 5.0 6.0 

: FREE CO? 

GROUP A T= ([=¢==) ===] -------------- + -- 
GROUP B IT [= (SS+S==) ====] ner | 

GROUP Cc I[ (+) ]------+--I 

mg/1 I =m I © FT FT F I Iris iy. 
0 10 20 30 40 50 

Boxplot definitions follow Reckow and Chapra,1983 
I-Minimum or maximum, [-25% quartile, ]-75% quartile, 
()-notch, +-median. 

Fig. 5. Limnological characteristics of lake groups 

but being excluded from more productive sites that correlation analysis does not provide an 

by competition rather than physiological lim- adequate test of their behavior. 

itation. Correlation analysis done in this study Zizania aquatica, Eleocharis palustris, E. 

could not confirm competition, but these plants robbinsii, Pontederia cordata and Scirpus 

are so limited in distribution and have such = americanus are emergent species that often 

a low importance value when they are found grow in monotypes, in shallow water, and 
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Table 2 The hypothesis that the positive correlation 

between species is the result of specific hab- 

itat requirements beneficial to both species is 

Lake Group favored, especially for Group III species. 

Species A 3 C Growth in soft water, typical of the habitat 

Group where Group III species are found, is de- 

I 1.1 3.6 7.0 pauperate and localized to areas of more fer- 

| | tile substrate (Moyle 1945). If all species in 

H 7 [ [s a lake are localized to a few areas of suitable 

I 1.4 2 a substrate, their growth will appear corre- 

L | lated. All but one Group III species prefer 

IV 1.5 3.7 5.1 soft sediments. 

A stronger case for a passive mutualism 

Lake Group or commensalism could be made for the pos- 

Species A B C itive correlation between Lemnaceae and other 
Gop K<£==7—— species. Larger species could provide pro- 

I 1.1 36 7.0 tection from wind, waves, and current for 

1 these small, free-floating plants. However, 
i 1.7 2.0 0.8 . . 

bo they are not correlated with species in other 
1 

Il 1.4 0.2 0.6 plant groups that would offer them as much 

i protection as Group IV species, and they are 

IV 15 37 5.1 correlated with each other. One Lemnaceae 

a species does not provide much protection to 

[ "= Experiment-wise t values significant at p<0.05 another species, although they could be dis- 
tributed to the same location by wind or cur- 

TTT rent. Specific habitat requirements, which will 

be discussed later, is the preferred explana- 
on beaches. Najas marina was found in three tion for the correlation among these species. 

southeastern Wisconsin lakes with extremely . . 
high alkalinity and conductivity. Species-habitat groups 

It is possible that non-association could The species groups formed appear to be 

also be an artifact of the sampling procedure. the result of similar habitat preferences. 

Association analysis is sensitive to quadrat Group III species were found in the lowest 

size (Grieg-Smith 1964). The sample area alkalinity, pH, and conductivity waters. Their 

(i.e., a 2-m diameter circle) may not be ap- growth is depauperate and is likely due to 

propriate for studying association in mono- the infertility of the water where they are 

typic or colonial growth patterns. commonly found. They generally prefer soft 

Species interactions substrate. Except for Myriophyllum hetero- 

phyllum and Potamogeton pusillus, Group Il 
Despite laboratory studies (Agami and species show their best growth in Group A 

Waisel 1985) and field observations (Engel lakes. The preferred habitat for P. oakest- 

and Nichols 1984; Nichols 1984; Seddon 1972) anus, the only Group III species to prefer 

that support competition among aquatic spe- hard bottom, is sandy bottom, low alkalinity 

cies, data from this study support observation ponds (Hellquist 1980). The main difference 

by McCreary et al. (1983) and Titus and Ste- between Group III species and the soft-water 
phens (1983), who found little competition species that show no association is the pref- 

among selected aquatic species in transplant erence of Group III species for soft sub- 

experiments. strates. Although pH and water-color data are 
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Table 3. Average Importance Value (IV) of Species by Lake Group 

Group A Group B Group C 
Lakes Lakes Lakes 

Group Chara spp 1.7 7.8 36.0 
| Scirpus validus 0.5 0.5 3.1 

Species Myriophyllum spicatum 1.9 10.6 6.1 
Potamogeton pectinatus 0.0 1.8 4.9 

Potamogeton gramineus 1.6 0.8 0.0 
Najas flexilis 3.2 6.4 5.5 
Potamogeton strictifolius 0.0 0.1 0.0 

Potamogeton illinoensis 0.1 0.6 0.1 
Group Ave. IV 1.1 3.6 7.0 

Group Eleocharis acicularis : 0.3 0.0 0.0 
I Eriocaulon septangulare 0.6 0.0 0.0 

Species lsoetes macrospora 0.5 0.0 — 0.0 

Myriophyllum exalbescens 4.7 7.1 7.8 

Potamogeton praelongus 0.9 1.4 4.5 

Potamogeton amplifolius 3.4 3.0 0.0 
Potamogeton robbinsii | 5.3 4.5 0.0 
Nuphar variegatum 7.8 1.2 1.0 
Nymphaea tuberosa 0.7 1.8 0.6 

Polygonum amphibium 0.2 0.4 0.0 

Heteranthera dubia 0.1 1.7 1.0 
Potamogeton nodosus 0.0 0.0 0.0 

Potamogeton berchtoldii 0.1 0.1 0.0 
Vallisneria americana 4.5 7.2 0.1 
Megalodonta beckii 0.1 0.2 0.0 

Potamogeton richardsonii 1.4 3.8 0.0 
Myriophyllum verticillatum 0.0 4.0 0.1 

Utricularia geminiscapa 0.0 0.0 0.0 
Group Ave. IV 1.7 2.0 0.8 

Group Brasenia schreberi 7.7 0.3 0.0 
tT Potamogeton oakesianus 0.0 0.0 0.0 
Species Myriophyllum farwelli 1.5 0.0 0.0 

Utricularia gibba 1.4 0.0 0.0 
Utricularia intermedia 0.8 0.0 0.0 

Ceratophyllum echinatum 0.1 0.0 0.0 
Utricularia vulgaris 1.7 0.0 0.0 
Nymphaea odorata 5.0 0.0 0.1 

Dulichium arundinaceum 0.2 0.0 0.0 
Sagittaria rigida 0.0 0.0 0.0 
Myriophyllum heterophyllum 0.0 1.6 4.7 

Potamogeton natans 0.3 0.9 0.8 
Potamogeton pusillus 0.3 0.2 3.4 

Sparganium chlorocarpum 0.0 0.0 0.0 
Group Ave. IV 1.4 0.2 0.7 

too scant to confirm it, Group III species ap- highest pH, alkalinity, and conductivity 

pear more characteristic of bog or dystrophic waters. Water chemistry preference between 

conditions than the non-associated, soft-water the two groups is similar, but they are the 

species. . two most dissimilar groups in regard to spe- 

Group I and IV species are found in the cies association. Substrate preference and 

122



Interspecific Associations of Some Wisconsin Lake Plants 

Table 3 (continued). Average Importance Value (IV) of Species by Lake Group 

Group A Group B Group C 
| Lakes Lakes Lakes 

Group Ceratophyllum demersum 12.0 25.0 31.9 
IV Potamogeton vaginatus 0.0 0.0 | 0.8 

Species Potamogeton foliosus 0.2 0.0 9.4 
Potamogeton crispus 0.0 5.8 9.0 
Elodea canadensis" 6.2 12.1 2.9 
Sagittaria latifolia 0.0 0.0 0.2 
Typha latifolia 0.1 0.1 0.4 

| Lemna minor 0.4 0.4 4.5 

Wolffia columbiana 0.2 0.0 2.8 
Potamogeton diversifolius 0.0 0.0 0.3 
Spirodela polyrhiza 0.2 0.2 0.8 

Lemna trisulca 0.0 1.0 0.8 
Potamogeton zosteriformis 2.0 7.8 7.7 

Ranunculus longirostris 0.0 0.0 0.0 
Group Ave. IV 1.5 3.7 5.1 

turbidity tolerance are important differences are not turbidity tolerant. 

between the groups. Certainly there are growth-forms, adap- 

Lemna minor, L. trisulca, Wolffia col- tations, or habitat preference that could be 

umbiana, and Spirodela polyrhiza are asso- used as arguments to subdivide this group. 

ciated with Group IV species. Their free- The Nuphar variegatum, Nymphaea tuber- 

floating habit gives them the ultimate turbid- osa, and Polygonum amphibium are all float- 

ity tolerance; they are found in quiet water ing leaved species that prefer soft substrate. 

over fertile bottoms (Moyle 1945). Potamogeton nodosus, P. berchtoldii, and 

Marl bottoms frequently have a flora of Vallisneria americana prefer hard substrate, 

Chara spp., Najas flexilis, and Potamogeton but show mixed turbidity preference. Perhaps 

pectinatus (Moyle 1945). These three species the best explanation is that Group II is an 

are associated in Group I and may represent intermediate group that fits into the contin- 

the plant community found in the highest pH, uum concept of plant community structure 

alkalinity, and conductivity waters in (Curtis 1959) and is found in other studies 

Wisconsin. of aquatic vegetation (Pip 1979; Moyle 1945). 

The habitat preference of Group II species This study found that only a few taxa were 

are less well defined. They prefer interme- commonly found in sampled lakes; a large | 

diate water chemistries and have mixed sub- number were infrequently found. Species 

strate and turbidity preference. There is no groups can be explained by species adapta- 

consistent pattern of habitat or adaptation that tion and habitat preference. Many unasso- 

provides a good explanation for this group. ciated species are found in low pH, alkalin- 

For example, Eleocharis acicularis, Erio- ity, and conductivity water, and on hard 

caulon septangulare, and Isoetes macros- substrates. One associated group is also found 

pora, which grow best in Group A lakes on in low pH, alkalinity, and conductivity water 

hard substrate, and are often grouped with but is common on soft substrates and is tur- 

the unassociated, soft-water species (Moyle _ bidity tolerant. Two other groups are found 
1945; Swindale and Curtis 1957), are closely in similar water chemistries. They prefer high | 

linked with Myriophyllum exalbescens and pH, alkalinity, and conductivity waters. They 

Potamogeton praelongus, which grow best appear to be separated by substrate prefer- 

in Group C lakes and prefer soft bottom but ence and turbidity tolerance. A final plant 
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Appendix A. Sampled Lakes” 

Lake Name County Lake Name County 

GROUP A LAKES GROUP B LAKES (CONT.) 

Allequash Lake Vilas Little Elkhart Lake Sheboygan 

Amnicon Lake Douglas Moon Lake Marinette 
BearLake Oneida Mount Morris Lake Waushara 

Bear Paw Lake Oconto Mud Hen Lake Burnett 
Chain Lake Chippewa Okauchee Lake Waukesha 
Clear Lake T39 R7 S16 Oneida Pearl Lake Waushara — 
Decorah Lake Juneau Pike Lake Polk 
Devils Sauk Pine Lake Waukesha 
Dowling Lake Douglas Rib Lake Taylor 

Enterprise Lake Langlade Rolling Stone Lake Langlade 
Frank Lake Vilas Round Lake Polk 
Half Moon Lake T47 R8 S17 Bayfield Twin Lake, North Polk 
island Lake Rusk Twin Lake, South Polk 

Little Arbor Vitae Lake Vilas White Ash Lake Polk 
Long Lake T20 ROO S17 Waushara White Ash Lake, North Polk 

Long Lake T32 R8 S8 Chippewa 

McCann Lake Rusk GROUP C LAKES 

Mid Lake Oneida | 
Muskellunge Lake Lincoln Ashippun Lake Waukesha 

Perch Lake T45 R7 S5 Bayfield Black Otter Lake Outagamie 
Pine Lake Forest Como Lake Walworth 

Pine Lake Chippewa Ennis Lake | Marquette 
Post Lake, Upper Langlade Lazy Lake Columbia 

Prong Lake Vilas _ Leota Lake Rock 
Tahkodah Lake Bayfield Oconomowoc Lake, Upper Waukesha 

Town Line Lake Chippewa Ottawa Lake Waukesha 
Pigeon Lake Waupaca 

GROUP B LAKES Pretty Lake Waukesha 
Silver Lake (Anderson) T22 Waupaca 

Anodanta Lake Bayfield Tichigan Lake Racine 
Apple River Flowage Polk Vienna Lake (Honey) Walworth 

Balsam Lake Polk 
Big Butternut Lake Polk 

Big Hills Lake Waushara 
Blake Lake Polk 
Bone Lake Polk 

Cary Pond Waupaca 
Cedar Lake Polk 
Chute Pond Oconto 
Clear Lake Rusk 
George Lake | Kenosha 
Half Moon Lake Polk 

Helen Lake Portage 

* PHYSICAL AND CHEMICAL PARAMETERS AVAILABLE 

FROM WISCONSIN DEPARTMENT OF NATURAL RESOURCES | 
SURFACE WATER INVENTORY FILE 
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Appendix B. Cole’s Index Values* 
ee ene 

APPENDIX B. COLE'S INDEX VALUES 

Species 

no. 1 
994 

Chara spp. 1 1 1801 

Brasenia schreberi 994 -0.85 1 1804 

Ceratophyllum demersum 1801 -0.64 -0.57 1 2515 

Ceratophylium echinatum 1804 0 0.58 0 1 2566 

Dulichium arundinaceum 2515 0 0.52 -1.00 0.39 1 2623 

Eleocharis acicularis 2566 0 0.15 -0.90 0 0.08 1 2800 

Elodea canadensis 2623 -0.58 -0.66 0.35 0 0 0 1 3487 

Eriocaulon septangulare § 2800 0 0.46 -0.95 0 0.10 0.08 0 1 3697 

Heteranthera dubia 3487 054 0040 0 0 0 0 0 1 3937 
lsoetes macrospora 3697 0 0 -0.95 0 0 0 0 0.10 0 1 3943 

Lemna minor 3937 -0.97 0 0.83 0 0 0 0.40 0 0 0 1 4405 

Lemna trisuica 3943 -080 0071 O O 0017 0 027 0014 1 4594 
Megalodonta beckii 4405 0 0028 0 0 0 060 06002 0 0024 1 4597 
Myriophyllum exalbescens 4594 0 0 0.19 0 0 0 0 0 0 0 0 0 0 1 4600 

Myriophyllum farwellii 4597 -1.00 0.43 -0.64 0 0 0 0 0 0 0 0 0 0 0 1 4603 

Myriophyllum heterophyllum4600 -0.96 0 0.81 0 0 0 0 0 0 0 0 0 0 0 0 1 4609 

Myriophyllum spicatum 4603 0-088 0 0 0 0 060 060 0 0 0 6 6 6 060 0 4 4618 
Myriophyllum verticilatum 4609 0-097 035 0 0 0 0 0027 0-084 031 027-074 0 0 0 1 4663 
Najas flexilis 4618 0.09 -0.61 -052 0 O 0-031 0014 0-078 0 017-052 0-100 0013 1 4666 

Nuphar variegatum 4663 0017 0 0 O80 60 0 0 0 60 60 0 6 0 0 60 0 60 0 1 4669 
Nymphaea tuberosa 4666 -045 016 016 0 O O 0018 015 O 0024026 0 0 0 0018 0019 1 5263 
Nymphaea odorata 4669 -0.88 034 0096 051 O 0 0 0 0014 O 60 0 0 - 0-41.00 -1,.00°0-75 0-1.00 1 5383 
Polygonum amphibium = 5263 0.95 0.60 -0.68 0.27035 0 0 0 0 0 0 060 0 060 60 0 0 o © 037 042 027 1 
Potamogeton amplifolius 5383-041 0 0 0 0 060 0 0 06 60 0 0019 0 0 0 0 0 ®© 0 0 O O 1 
Potamogeton berchtoldi 5386 =6 00 037) 0 CN iit CC itisti tit AE LUMO CC 
Potamogeton crispus 5395 058 0047 O 0 0022 0 0 060027 0 60 0 0 0 o 0068 9 O90 O 0 -0.76 
Potamogeton diversifolius 5398 0 0075 0 0 0040 0 0 0073 021 0 6 6 060 060 60 9 9 0 0 oO 0 
Potamogeton foliosus 5404 0 0059 0 OO 0052 0 0 0040 0 6 0 0 0 o-100 9 9 0 006 9 0 
Potamogeton gramineus 5410 0.15 0-041 0 0 0 606 0 6 0 0 0 013-073 0 0 009 0015 0 O09 O O 0 
Potamogeton illincensis 5413 023 «0-068 OF 0 0 0 0 0 0 60 0 6 0 0 0024 90927 0 O09 O O 0 
Potamogeton natans 5416 0 0.06 O 042 013 0 O 0013 O OO 0 010-069 0012 0 029 9 O 0.08 0.10 010 0 
Potamogetonnodosus 5419 0 O08 0 0 060 60 0 0039 0024 0 0 0 0 0 0 90 9 © O09 OG O08 9 
Potamogeton oakesianus 5420 0083 0 08 0 0 0 0 0 6 6 0 0 003 0 0 606 9 ® 09 OG O 9 
Potamogeton pectinatus 5422 0.12 0014 0 0 0 60 000 0 0 0 0010 oO 0 013 0 9 OO 0-083 0 0 
Potamogeton praelongus 5425 0-078 018 O 0 0008 0 0 OO 0015 019 012 0 0-078 o0 9 9 9 O® O 0 
Potamogeton pusillus 5431 0 (0.12 0.25 067 021 O O 0010 0 0 007015 0 0036 Oo21 9% O 018 014 018 0 
Potamogeton richardsonii 5434 -062 0017 O 0 0013 O 0 0-091 0 023 O11 0 017-093 006 9 O 0-088 0 0 
Potamogeton robbinsii «45437 062 0 OF 0 0 0012 0 0 0 6 0013 0 60 0 0-064 9 006 0 O 0 0.17 
Potamogeton strictifolius 5440 0 O08 0 0 0 60 0 60 0 0 0 0 60 0 0 0 029 023930 0 O O 0.09 0.21 
Potamogeton vaginatus 5443 0 0098 O 0 008 0 0 008 0 0 06 606 0 0 0 9 9 0 016 0 0 
Potamogeton zosteriformis 5449 -0.66 -069 035 0 0 0014 #0 017 40 024 030 020 013 O 032-066 0.21 9 0 009-057 0 0 
Ranunculus longirostris 5710 O 0078 O O08 0 0 06 0 003003 0 0 0 0 0 0 °° 09 0 O® oO 0 
Sagittaria latifolia 6088 O 0 O 0014 0049 0 0 004 #0 6 0 0 0 0 0 9 O09 0 025 j9 0 

Sagittaria rigida 6091 0035 0020022 0 0 0 0 0028 0 0 0 0 0 0 0 9 08 0 040 030 0 
Scirpus validus 6304 050 0-063 0 0 0-088 0 0 0 0 0 0-76 0 0 0 o 9007 0 O O68 20 
Sparganium chiorocarpum 6664 0 053 0 028 026 0 0 0 0 0 0 060 0 6 0 60 0 0 ® O 90 063 0.31 0 
Spirodela polyrhiza 6730 -1.00 0086 0 0 0025 0 0 008 022 0 0 0 0 0 o0 9 0 0017 0 90 
Typha latifolia 70778 0 OF 8 0 0 0031 0 0 0041 0 0 6 0 0 0 o 9 OO 0 011 0 90 

Utricularia geminiscapa «71140 i 057 CC COCOtiCiti OS Cti‘i C030 OtCiti ti GCC A 
Utricularia gibba 7117 -100 066-072 0 0 0 0010 0 0 686 0 0 06070 0 0 o 9 O09 O09 0 O08 20 
Utricularia intermedia 71200 0079 0 0 0 0 60 0 60 60 6 0 0 0077 0 0 0 9 9 0 O0 O 9 
Utricularia vulgaris 7132 -0.96 0.70 -0.93 1.00 043 0-100 0 0 0 0 0808 0 0 0 0 0 o0 9 OO 986 082 034 0 
Vallisneria americana 7177, «0-063 OF O 0 OO 0 0 009 0-067 O 0008 oOo oo o 6915 0 0-063 0 0.08 
Wolffia columbiana 7450 -100 0099 0 0 0 G oO oO 0099 027 0 0 0 0 0 0 9 0 0 016 0 0 

SUM ABS. OF COLE'S INDEX** 17.9 14.7 226 48 43 15 78 24 36 15 116 48 40 44 43 37 50 87 72 #18 47 130 52 2.0 
NO. SPECIES ASSOC. WITH** 27 30 382 «9 «613060C«dGCO1ssd0ssd)6 Kd 2 BQ tg 8 B14 7 

eee 

* Experiment wise significance at chi-square p<0.05 

** Columns will not add to these totals because of deleted species 
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Appendix B (continued) 
co ein aa SS SS 

Species 

no. 

5263 5386 
5383 5395 
5386 1 5398 
5395 o 1 5404 
5398 0 o 1 5410 
5404 0055 oOo 1 5413 
5410 0 oOo oOo oO 1 5416 
5413 0 0 0 0 90 1 5419 
5416 0 0 0 0 oO oO 1 5420 
5419 0 0014 O oO 0 oO 1 5422 
5420 0 0 0 60 0 60 0 Oo 41 5425 
5422 0 0 oO 0 0 O11 0 0 oO 1 5431 
5425 0-093 0 0 0 0 0 +O 0-072 1 5434 
5431 0 0 0 0 0 0019 0 0 08 oO 1 5437 
5434 024 40 #0 0 0 0 060 0 60 0007 O 1 5440 
5437 0-088 0 0 0 0 0 0 0-087 O 00.06 1 5443 
5440 0 0 0 0 0026 019 0 0 0 60 606 0 oO 1 5449 
5443 0097 #009 0 0 0 6 6 606 0 60 0 oOo oO 1 5710 
5449 0 003 0 0 0020 0 0 001 0013 0 0035 1 6088 
5710 0 0 0.25 0 0 0 0) ) 0 0 0 0 0 0 0 0 0.42 1 6091 

6088 0 0.49 0 0.47 0 0 0 0 0 0 0 0 0 0 0 0.45 0 0 { 6304 

6091 01440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6664 

6304 a) 0 0 0 0 0 0 0 0 0 -0.89 0 0 -0.86 4) 0 -0.73 ) 0 0 1 6730 

6664 0 0 0 0 0 0 0.36 0 0 86~0 0 0.51 0 ) 0 0 0 fe) 0 0.15 0 1 7078 

6730 0 0 0.55 0 0 0 0 0.12 0 0 0 80 0 0 0 0 0.26 0.32 0 0 0 0 1 7114 

7078 0 0.32 0 0.33 0 0 ) 0) 0.60 (OO 0 ) 0 0 0 0.44 0 0 0.51 0.14 0.13 0 0 1 7117 

7114 0 0 0 606 606 0 0 0 OO 0 024 060023 0 0 0 0 Oo 90 0 0 Oo o 90 1 7120 

"17 =~«“stiCOttt titi Bt BO DDD 718A 

7120 > 0 0 0 0 6 6 0068 0 0 0 0 60 0 0 6 0 0 9 G8 G0 80 G8 0 089 | “77 

7132 0 0 0 0 060 0024 0 0 060 0035 0 0 0 0 -0.91 0 0 038 #+oo058 0 0 O09 0 oOo 1 7450 

7177 037-062 0 0016 0-067 033 0 0 0 0013008 0 0 0 0 Oo 0 -0.67 0 0 0 0 0 Oo oO 1 

7450 0 007 #0 0 0 0017 0 0025 0 0 0 0 0 029 025 0 0 0 0064 0 0 0 Oo oO 9 1 

18 77 44 49 21 18 42 15 28 36 60 44 51 52 16 60 85 27 33 26 6.7 3.7 55 34 44 51 31 86 59 5.6 
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