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ABSTRACT 

With recent advancements in precision livestock farming (PLF) and machine learning 

(ML) techniques, computer vision systems (CVS) have gained popularity as powerful tools for 

individual animal monitoring. CVS can capture phenotypes from multiple individual animals at a 

time using a single device in an automated and non-intrusive manner. These systems require 

individual animal identification to match animals with their corresponding predicted phenotypes, 

which can be done via external identification systems, or using computer vision-based animal 

identification algorithms. Previous studies have proposed the use of computer vision techniques 

for individual identification of dairy cows based on their coat color pattern. However, these 

methods are limited to breeds that present such unique color patterns. Furthermore, no previous 

research has been done on the applicability of such methods in the long term, with animals 

experiencing visual changes due to body growth or different physiological states. 

Chapter 1 introduces current applications of computer vision for animal identification, and, 

in Chapter 2, different methods are explored for using 3-dimensional representations of the dorsal 

surface of dairy calves to perform individual identification without relying on unique coat color 

patterns. Moreover, the proposed methods are evaluated on calves during their growth stage, 

assessing their performance as the animals experience changes in their body shape and size from 

weeks two to eight of life. The trained models achieved accuracies of up to 80.4% for identifying 

individual animals among 38 individuals using exclusively their 3D surface. Additionally, the 

evaluated algorithms were able to identify individuals among a group of five animals in their 

growing period with an accuracy of up to 85.6% even when skipping three weeks between the 

training and testing data. 
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Chapter 3 further explores the animal identification problem, evaluating the potential of a 

semi-supervised learning technique called pseudo-labeling for improving the accuracy of neural 

networks trained for animal identification. Modern computer vision algorithms such as 

convolutional neural networks (CNN) usually require large amounts of annotated data to train and 

generalize well to different environments. Semi-supervised learning techniques can leverage 

information contained in unlabeled datasets to improve the performance of trained models using 

smaller annotated datasets alongside larger amounts of unlabeled data. The results found were 

promising, showing that similar or even superior predictive performance was achieved using just 

a fraction of the annotated data when applying the proposed variation of pseudo-labeling. When 

using only 50% of the original labeled dataset, the final model resulting from pseudo-labeling 

achieved an accuracy of 89.7% for identifying individuals among 59 Holstein cows, exhibiting a 

significant improvement when compared to the 77.5% accuracy achieved when using the full 

dataset without performing pseudo-labeling. In addition, this technique is flexible enough to be 

applied to any previously trained image classification neural network, given that large unlabeled 

image datasets are available. 

In Chapters 4 and 5, the focus is shifted to developing machine learning pipelines that 

integrate data from different domains for phenotype prediction, more specifically the early 

detection of postpartum subclinical ketosis (SCK) using exclusively prepartum data. In Chapter 4, 

multiple computer vision and image processing techniques are explored to extract features from 

depth images taken from a top-down view of the dorsal region of dairy cows. Natural language 

processing (NLP) and modern large language models (LLM) are leveraged to extract text 

embeddings from notes retrieved from farm management software. It was found that both image 

and text features contributed to improving the predictive performance of the trained ML models 
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when compared to using only tabular data containing behavior and cow history extracted from 

wearable sensors and the farm management software. Models incorporating image features 

achieved an average F1 score of up to 0.706, while models incorporating text features achieved an 

average F1 score of up to 0.681. These scores surpassed the average F1 score of 0.655 achieved by 

ML models trained using only tabular data. 

In Chapter 5, a cloud computing-based framework was proposed to automate the 

processing and integration of phenotypic and genotypic data. This framework integrates features 

extracted from genotype data, depth images, data collected from wearable sensors that monitor 

feeding behavior and activity, and historical data retrieved from the farm management software, 

and performs early detection of SCK using data fusion techniques and multimodal machine 

learning. The proposed pipeline follows a modularized approach where independent modules 

extract information from different types of data. From depth and infrared images, a cow body 

segmentation module removes all background pixels, an image quality assessment module 

removes from the pipeline images that do not conform to quality standards, an animal identification 

module identifies the animal present in the image, and a feature extraction module extracts body 

shape information from depth images using a trained neural network for body condition score 

(BCS) classification. From genotypic data, a feature extraction module automatically performs 

data cleaning and reduces the data dimensionality based on a reference genotype dataset. Finally, 

descriptive statistics are calculated from data collected from wearable sensors and farm 

management software and stored for future use. In this study, the features extracted from the 

different data modalities were used to perform early detection of SCK using exclusively prepartum 

data, but some of the implemented modules can be re-used for any phenotype prediction task that 

integrates body shape, genotype, and behavior information. 
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This dissertation highlights the potential of machine learning and computer vision in 

guiding data-driven management decisions in dairy farming, allowing for the implementation of 

practices that can improve farm profitability, productivity, and animal health. Animal 

identification is essential for individual animal monitoring, and CVS can leverage the images 

already being used for phenotype prediction to identify animals without the need for external 

devices. In addition, machine learning pipelines that integrate data from different sources can be 

implemented in cloud-computing platforms to automate and streamline the early detection of 

health issues during the transition period, which could support preventive actions in dairy farms, 

reducing costs associated with diseases, and improving animal health and welfare. 
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CHAPTER ONE: LITERATURE REVIEW – COMPUTER VISION FOR ANIMAL 

IDENTIFICATION AND BODY CONDITION SCORING, AND DATA INTEGRATION VIA 

MULTIMODAL MACHINE LEARNING 

 

INTRODUCTION 

In recent years, precision livestock farming (PLF) technologies have emerged as powerful 

tools for improving the efficiency and productivity of livestock farms. Such technologies empower 

more informed and rapid farm management decisions (Berckmans, 2017) and, by facilitating high-

throughput phenotyping, can enhance the capabilities for genetic selection (Brito et al., 2020; Silva 

et al., 2021). Among PLF technologies, computer vision systems (CVS) have received great 

attention due to their potential for monitoring animals in a highly scalable and non-intrusive way, 

with few devices being able to collect phenotypes from multiple individuals at a time (Borges 

Oliveira et al., 2021). High-throughput phenotyping via CVS requires individual animal 

identification, which can be done either through external identification systems, or via computer 

vision algorithms using the same images collected for phenotyping (Hossain et al., 2022). CVS 

have been proposed to perform body condition score (BCS) evaluation (Qiao et al., 2021) for 

supporting successful transition period management strategies in dairy farms. Health problems 

generally depend on a multitude of factors affecting dairy cows, and the integration of data from 

different sources is imperative for developing robust machine learning models for individual 

animal health monitoring. In this context, multimodal machine learning (Baltrušaitis et al., 2019) 

and cloud computing (Schokker et al., 2022) can be powerful tools for supporting data-driven farm 

management decisions and improving animal health and welfare. 

COMPUTER VISION FOR ANIMAL IDENTIFICATION 
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Individual animal monitoring via CSV requires an automated way to identify the animals 

that are present in the collected images, which can be done through an external identification 

system such as radio-frequency identification (RFID) (Voulodimos et al., 2010), or via algorithms 

implemented in the CVS itself (Qiao et al., 2021; Hossain et al., 2022). Using computer vision 

techniques for both animal identification and phenotyping at the same time can prove beneficial 

by limiting the use of external devices and accessories attached to the animals, which reduce labor 

and time associated with manually installing and maintaining such devices (Adam et al., 2016), 

and animal welfare concerns (Johnston and Edwards, 1996; Chapa et al., 2020). Additionally, CVS 

for animal identification can be used as a tool for advancing traceability in the food supply chain, 

contributing to improved infectious diseases control, food safety, and consumer trust (Awad, 

2016). 

Previous studies proposing CVS for individual cattle identification can be divided 

according to three key characteristics: (1) the part of the animal used for identification, (2) the type 

of image or video captured and processed by the system, and (3) whether it was designed for 

closed-set or open-set identification. Existing approaches have explored the detection of unique 

visual features in the muzzle, retina, iris, face, and body of the animal, along with ear tag and collar 

digit reading, for cattle identification. Such approaches relied either on Red, Green, Blue (RGB), 

Red, Green, Blue, Depth (RGB-D), depth images, or videos. Finally, most methods were designed 

for use with a fixed set of animals, requiring retraining or modifying the algorithms to include a 

new animal for identification, and some proposed techniques can perform open-set identification, 

being able to seamlessly include new individuals in the identification pipeline as new animals are 

added to the herd. 
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Previous works have explored the presence of unique animal biometrics for individual 

identification using CVS. Muzzle print images have been used for cattle identification by 

extracting unique features from the images using feature description and feature extraction 

methods such as Speeded-Up Robust Features (SURF) (Kumar et al., 2017), Local Binary Patterns 

(Kumar et al., 2017; Kusakunniran et al., 2018), Gabor filters (Tharwat et al., 2014; Kusakunniran 

et al., 2018), Principal Component Analysis (PCA) and Euclidean distance classifier (Barry et al., 

2007), and deep neural networks (Kumar et al., 2018). Cattle muzzle patterns are known to be 

unique to each individual (Petersen, 1922), and methods that take advantage of this discovery tend 

to be very accurate (approximately 99% accuracy on datasets containing about 30 animals). 

However, it is often impractical to collect images from the muzzle of the animals in large scale 

commercial operations, as they require the animals to remain still and close to the cameras. 

Similarly, methods that take advantage of the iris and retinal biometric features (Allen et al., 2008; 

Sun et al., 2013a; Lu et al., 2014) achieve high accuracies of around 98% but it is often difficult to 

capture images of the retina or iris of live animals in commercial settings. 

Inspired by human facial recognition and identification technologies, multiple approaches 

have been proposed to identify cattle using images of their whole face. Similarly to previous 

studies applied to muzzle, retina, and iris images, Cai and Li (2013), Kumar et al. (2016), and 

Kumar et al. (2017) performed feature engineering to extract texture-based features from the 

images using feature descriptors such as LBP, SURF and PCA, and achieved accuracies of 

between 92% and 95% on datasets containing 30, 120, and 500 animals, respectively. More 

recently, multiple studies have proposed the use of deep neural networks to automatically extract 

features from the images and perform classification. Yao et al. (2019), Yang et al. (2019), and 

Wang et al. (2020) used convolutional neural networks (CNN) and achieved accuracies between 
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93% and 95% on 200, 1,000, and 36 cows, respectively. Xu et al. (2022) and Li et al. (2022a) 

proposed the application of CNNs specifically designed for use in embedded systems and low 

latency settings and achieved accuracies of 91% and 98% on 90 and 103 cows, respectively. 

Bergamini et al. (2018) used multiple views of the face of each animal to train an embedding CNN 

that was optimized to find similar embeddings for images belonging to the same animal, or 

dissimilar embeddings otherwise. They then applied k-nearest neighbors on the embeddings to 

perform animal identification, achieving an accuracy of 82% on a testing set containing 52 cows. 

The accuracies reported in these studies were calculated in terms of the number of images correctly 

identified in testing datasets usually containing dozens of images per cow. However, the images 

in the testing sets were captured shortly after those in the training sets, often on the same day or 

only a few days apart. This introduces significant temporal biases into the analyses, and the long-

term predictive capabilities of the proposed methods still need to be evaluated in future studies. 

While it might be more manageable to capture images from the face of the animals than 

from their retina, iris, or muzzle, it is still notoriously difficult to collect good quality images of 

the animals facing the camera directly using automated image collection systems. In order to 

collect such images, the cameras must be positioned at a low enough height, which might allow 

the animals to reach them, or rely on the cows to look up at the camera when the images are being 

taken, which is unrealistic. Additionally, only a limited number of phenotypes can be visually 

assessed based on the cow’s face, rendering such CVS ineffective when combined with high-

throughput phenotyping algorithms. However, such approaches can still be helpful in situations 

when humans would handle the animals and are able to take pictures of them using portable 

systems, potentially improving animal traceability in certain scenarios. 
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Using side (Bhole et al., 2019; Shen et al., 2020) and multiple (Hu et al., 2020) views of 

the animal body, previous studies found accuracies of 97%, 97%, and 98% on datasets containing 

105, 136, and 93 cows. The problem with using side view images of the animals is that such 

methods can only be applied in places where the cows walk by themselves in a fixed direction, 

without the possibility of other cows walking next to them and blocking the view. Even in such 

conditions, some occlusion may occur due to the fact the most corridors in dairy farms contain 

metal gates to restrict animal movement. 

Using top-down view images from the dorsal region of Holstein cows, Andrew et al. (2016) 

used local feature descriptors, and Xiao et al. (2022) used shape and color features from binarized 

images to train Support Vector Machines (SVM) for cattle identification, achieving accuracies of 

97% and 99% on groups of 40 and 48 cows, respectively. Zin et al. (2018) and Phyo et al. (2018) 

applied CNNs, which are more robust to lighting conditions and animal pose, and achieved 

accuracies of 97% and 96% on datasets containing 45 and 60 cows. Using sequences of top-down 

view images by combining a CNN for image feature extraction and a Recurrent Neural Network 

(RNN) for capturing temporal information, Andrew et al. (2017), Qiao et al. (2019), and Qiao et 

al. (2020) achieved accuracies of 98%, 91%, and 91% for identifying 23, 41, and 50 Holstein cows, 

finding better accuracies on their datasets than when using single-image approaches. Although the 

authors found better accuracies when performing image sequence classification instead of single 

image classification, the first might be more difficult to apply in farm settings where hardware and 

connectivity limitations make video capturing, processing, and storing prohibitive in large scale. 

Methods that use top-down view images have some clear advantages when compared to 

other methods, as they can make use of cameras positioned close to the farm ceiling, out of reach 

from the animals, and with minimal possibilities for occlusion. In addition, proposed CVS can also 
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use top-down view images of the cows to predict other phenotypes, such as body weight and body 

condition score (Qiao et al., 2021), ribeye area and circularity (Caffarini et al., 2022), and behavior 

(Tsai and Huang, 2014). However, the previously discussed approaches rely on the existence of 

unique coat color patterns, which is only true for certain cattle breeds such as Holstein. Even when 

RGB-D images were used, the depth component was only used to facilitate cow body segmentation 

and the cattle identification was performed using exclusively the RGB channels. 

Drawing from human gait identification studies, Okura et al. (2019) proposed extracting 

gait features from sequences of depth frames capturing cows in motion and found an accuracy of 

76% on a testing dataset comprising 16 cows. Despite this modest accuracy compared to 

alternative methods, this approach’s reliance solely on depth frames enables its application to any 

breed of cattle, rather than being restricted to those with distinct coat color patterns. However, it 

remains unclear whether this method’s performance would be influenced by changes in the cows’ 

gait over time. The evaluation sequences were obtained within three weeks of the training data, 

and the study did not investigate potential impacts from factors such as lameness or other 

conditions affecting gait. 

Without relying on coat color patterns or depth images, Myat Noe et al. (2023) proposed a 

method that uses multi-object tracking algorithms to identify and track black cattle using RGB 

images. They achieved an accuracy of 97% in detecting and identifying 20 animals in a one-hour-

long video captured at 25 frames per second (FPS). However, this method only works well on 

videos with a high frame rate, as it heavily relies on the animals not moving or changing pose too 

much between consecutive frames, since it uses the position and extracted features of bounding 

boxes of cows detected in previous frames to infer the identities of cows in current frames. 
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Shifting from identifying animal biometrics to performing optical character recognition 

(OCR) on identifying accessories (ear tags or collars) attached to the animals, Velez et al. (2013) 

achieved an accuracy of 90%, and Ilestrand (2017) achieved an accuracy of 98% on a manually 

curated image dataset for correctly recognizing digits. Bezen et al. (2020) proposed identifying 

animals based on a collar fitted around their neck and found an accuracy of 94% for correctly 

identifying the cows. Using videos instead of images, Zin et al. (2020a) and Smink et al. (2024) 

found accuracies of 84% and 71% for correctly identifying the cow identification number among 

25 and 550 cows, respectively. Smink et al. (2024) found that only 79% of the ear tags were 

identifiable by human evaluators in any frame of the videos where they appeared, indicating that 

even accurate OCR techniques might struggle to correctly identify the animals based on images of 

their ear tags due to challenging conditions in commercial livestock farms. Ear tag and collar 

recognition approaches are interesting for large scale operations because no extra adjustment to 

the system should be required as new animals are introduced to the herd, and these approaches 

would work for any breed of animal regardless of whether they contain unique visual features or 

not, making it readily applicable to multiple farms and production systems. However, these 

approaches face similar challenges to face recognition methods regarding camera positioning and 

their synergy with other phenotyping algorithms. In addition, these methods still rely on proper 

management of ear tags or other accessories, which might be susceptible to human error, loss, or 

fraud, and raise animal welfare concerns (Johnston and Edwards, 1996). 

Dairy farms are dynamic environments both in the sense that new animals are frequently 

introduced and removed from the herd, and that the animals themselves can change their visual 

characteristics significantly in the span of weeks depending on their growth stage, housing 

conditions, and management practice. Except for the approach proposed by Bergamini et al. (2018) 
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and the OCR-based methods, all the approaches previously mentioned were designed for use in a 

closed-set scenario, meaning that the systems were designed to identify a cow in an image among 

a fixed set of possible cows. This means that every time a new cow is included in the herd, the 

models need to be retrained or fine-tuned again, rendering the proposed methods unfeasible in 

large scale operations. 

Bergamini et al. (2018) proposed a CNN-based approach that extracts embeddings from 

images of cow faces from multiple angles and validated their approach on an open-set setting, 

where some individuals in the testing set were not included in the training set, simulation real-

world situation when a new cow is introduced to the system. However, the Top-1 accuracy found 

(accuracy for predicting the correct cow with the most confidence) among 52 individuals was 56%. 

Andrew et al. (2021) proposed a method based on deep metric learning using top-down view 

images of the dorsal region, on a dataset combining images from 46 cows taken indoors and 

outdoors. Using a combination of supervised softmax loss and reciprocal triplet loss to maximize 

embedding similarities between images of the same cow, and maximize dissimilarities for images 

of different cows, they found accuracies above 90% even when only 20% of the cows were 

included in the training set.  Applying loss functions originally proposed for human facial 

recognition (Deng et al., 2018; Wang et al., 2018), Wang et al. (2024) found an accuracy of up to 

95% on a testing set containing 8 cows, trained on a different set of 62. Combining the benefits of 

open-set animal identification and the use of depth images which potentially allows its application 

for any cattle breed, Sharma et al. (2024) trained deep metric learning networks based on ResNet-

50 (He et al., 2016) using depth images and PointNet (Qi et al., 2016)  using point clouds converted 

from the depth images. Similarly to Andrew et al. (2021), combinations of softmax and reciprocal 

or regular triplet loss (Schroff et al., 2015) were used, and they found an accuracy of 97% when 
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testing on a dataset containing 33 cows also included in the training set, and 66 cows that were not 

included in the training set. 

The main difference between approaches designed for open-set and closed-set 

classification is that, while in closed-set there is a fixed number of classes (in this case, cows) that 

the images must belong to, in open-set scenarios each image is converted to a vector, also called 

embedding, that represents a form of signature of the cow present in the image. When new images 

are collected, their embeddings are extracted and compared to the embeddings of images for which 

the cow identification number is known (training set). If the embeddings are not close enough to 

any other embedding included in the training set, the image is considered as containing a new cow 

that has not been seen before by the model. In this case, a new cluster is formed in the embedding 

space, and future images can be classified as belonging to that same cow, and can be later assigned 

a certain cow identification number. 

Although methods that perform animal identification based on ear tags, or retina would in 

theory be able to identify animals at any point in life since they are either independent of the animal 

itself, or use biometrics that do not change with time (Allen et al., 2008), other methods might be 

prone to errors if the characteristics that they rely on can change significantly as animals grow 

older or move to different locations. None of the previous studies have evaluated the performance 

of their proposed method in the medium or long term. Such methods were applied only to mature 

cows in a span of a few days at most, which is not enough time for significant changes to happen 

on their body, which could potentially affect the results. Many dairy farms introduce animals to 

their herd while they are still calves, meaning that their body will change considerably before they 

reach maturity. Thus, it is important to evaluate the performance of CVS for animal identification 
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in the medium and long term and explore how frequently new images of a calf need to be captured 

in order to maintain adequate prediction accuracy in the first months of life. 

COMPUTER VISION FOR BODY CONDITION SCORING 

During the transition period, dairy cows can experience a negative energy balance (NEB) 

due to reduced feed intake and the high energy demands of early lactation (Grant and Albright, 

1995; Drackley, 1999). Extensive research has been done to better understand the underlying 

metabolic and immune consequences of NEB and guide the development of management and 

nutritional practices aiming to overcome the increased risk of metabolic disorders that occur during 

that period (Grummer, 1995; Overton and Waldron, 2004; LeBlanc, 2010; Cardoso et al., 2020). 

The severity of NEB is associated with several health problems, such as hypocalcemia (Horst et 

al., 1994), retained placenta (Cameron et al., 1998), ketosis (Green et al., 1999), displaced 

abomasum (LeBlanc et al., 2005), metritis (Hammon et al., 2006), and endometritis (Dubuc et al., 

2010). Such problems can cause great economic impact to a dairy farm due to reduced milk 

production and reproductive performance, high treatment costs, and increased culling rates 

(Steeneveld et al., 2020). 

Cows with an elevated prepartum BCS have reduced fertility and milk production, and 

greater risks of developing metabolic disorders during early lactation due to an increased body fat 

mobilization (Buckley et al., 2003; Roche et al., 2009; Barletta et al., 2017; Daros et al., 2020). 

Because of that, monitoring prepartum BCS is crucial for a successful transition period 

management in dairy farms. However, assessing BCS in commercial farms is time-consuming, 

requires trained evaluators, and can lead to inconsistent results due to its subjective nature (Evans, 

1978). CVS have been developed to perform BCS evaluation in a more automated and systematic 

way (Qiao et al., 2021). The approaches for automated BCS evaluation using image analysis and 
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computer vision can be split into methods that use 2-dimensional (2D) or 3-dimensional (3D) 

representations of the cow body shape. 

BCS Prediction Using 2D Images 

Among methods that proposed the use of 2D images for automated BCS assessment, 

Bewley et al. (2008), Battiato et al. (2010), and Azzaro et al. (2011) explored manually detecting 

23 anatomical keypoints on the dorsal region of dairy cows and perform BCS prediction using 

shape descriptors based on those keypoints. They achieved accuracies of up to 93% within 0.25 

deviation and mean absolute error (MAE) of 0.31. However, such methods require manual 

extraction of the keypoints, which might not be feasible in large scale real-time systems. This 

manual approach could be replaced by automated keypoint detection techniques such as the deep 

neural network proposed by Sun et al. (2013b), which could be trained using manually annotated 

images with the corresponding keypoints. 

Halachmi et al. (2008) and Halachmi et al. (2013) proposed using the residuals of the cow 

contour on a fitted parabola to assess BCS based on how much the contour deviated from the 

parabola shape, finding a Pearson correlation coefficient (PCC) of 0.94 between predicted and 

manually assessed BCS. Nevertheless, their method was only evaluated on the training data itself, 

which might lead to overestimating results. An independent test set is necessary not only to more 

realistically validate the BCS prediction accuracy, but also to validate whether the automated 

frame selection pipeline required for the system to function properly performs adequately on 

images collected in different environments. 

Bercovich et al. (2013) proposed automatically extracting 5 anatomical keypoints and a 

vector representing the tailhead contour from top-down view images of the tailhead area. Features 

such as distances and angles between the anatomical keypoints, as well as fourier descriptors of 
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the contour, were used for modeling BCS using linear regression and partial least squares (PLS) 

regression, finding accuracies of 50% and 100% within 0.25 and 0.75 deviation, respectively. The 

images utilized in this study were manually selected to guarantee that they conformed to the 

standards required by the system, which would not be feasible in commercial farms. Automated 

methods for detecting adequate images would be necessary, such as image classification CNNs 

(Li et al., 2022b). 

Huang et al. (2019) and Li et al. (2019) used CNNs to automatically extract features from 

2D RGB images of the tailhead area. Wu et al. (2021) compared multiple CNN architectures with 

Vision Transformers (Dosovitskiy et al., 2021) and Swin Transformers (Liu et al., 2021) for 

predicting BCS using RGB images and found that transformer architectures achieved superior 

performance on their dataset. These methods found impressive accuracies of up to 98% and 99% 

within 0.25 and 0.50 deviation. In those studies, however, the authors did not explicitly account 

for possible temporal biases in their datasets and performed a simple random split to determine 

training and testing sets. Deep neural networks such as CNNs and transformers are prone to overfit 

and perform exceptionally well on images that are too similar to the ones used for training, as they 

contain millions of parameters that can model the training data almost perfectly. Because of that, 

care should be taken to make sure that the trained models are tested on images taken from different 

cows, on different days, or even in different farms, to more realistically evaluate whether they can 

generalize to multiple environments. 

BCS Prediction Using 3D Images 

Salau et al. (2014) proposed a method for extracting 13 body shape traits from depth images 

based on 7 automatically found anatomical keypoints. The authors calculated the correlations 

between each trait and both BCS and backfat thickness (BFT), measured using ultrasound images, 
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but did not perform predictive modeling for BCS. The proposed method required manually 

selecting ideal images that had the anatomical keypoints successfully extracted from. Similarly to 

other methods, an automated way of selecting such images should be implemented for application 

in commercial settings.  

 Kuzuhara et al. (2015) calculated the geodesic distances between 6 pairs of manually 

detected anatomical keypoints located on the coccygeal ligament and on the hook, thurl, and pin 

bones, and trained linear regressions for predicting BCS, body weight, milk yield, milk fat, and 

milk protein, finding a coefficient of determination of up to 0.74 between predicted and observed 

BCS. Fischer et al. (2015) used PCA to project coordinates in normalized 3D surfaces to a common 

space with reduced dimensionality. The 3D surfaces were defined for each depth image based on 

4 manually detected anatomical keypoints, and the trained model achieved root mean square error 

(RMSE) of 0.31 and PCC of 0.89 between predicted and observed BCS. Song et al. (2019) 

proposed a method for automatically identifying anatomical keypoints such as the vertebral 

column, sacral ligament, hook bone, and pin bone, and extracting features related to body shape 

using those keypoints. A trained model using such features achieved overall accuracy of 0.72 for 

predicting exact BCS values. However, their method required manually collecting images from 

the side and back of the cows, which might be challenging to do using automatic image capture 

systems. Liu et al. (2020) calculated 6 areas and volumes based on anatomical keypoints 

automatically detected using empirically defined parameters that worked well on their dataset, and 

found accuracies of 76% and 94% within 0.25 and 0.50 deviation. With all these approaches that 

rely on manually selecting ideal images, manually detecting anatomical keypoints, or empirically 

defining image processing parameters for finding the anatomical keypoints, methods for automatic 
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frame selection and generalized keypoint detection are imperative for application in large scale 

and generalization for diverse image datasets. 

Spoliansky et al. (2016) extracted features from top-down view depth images of the cows’ 

backs by finding the regions in the images with the highest correlations between their depth values 

and BCS. They achieved an accuracy of 91% when considering up to 0.50 deviation. Since the 

proposed method relies on extracting regions of 150 × 200 pixels from the original depth images 

of the cows and calculating features based on exact pixel locations, it is heavily dependent on 

image capture conditions such as image resolution and camera position. 

Hansen et al. (2015) and Hansen et al. (2018) opted to utilize the rolling ball algorithm 

(Lee et al., 2005) instead of detecting predetermined anatomical keypoints. They applied this 

algorithm to calculate the angularity of the 3D surface obtained from a depth image of each cow’s 

back, which was subsequently utilized in predicting BCS. An MAE of 0.21 was found in the 

training data, with 80% of the cows scored within 0.34 of the manual assessment. The authors 

found that their system seemingly presented less inconsistency than human evaluators when 

scoring the cows, but this conclusion was made based solely on manual visual inspection of the 

images. However, the authors also make an important point regarding the reliability of current 

manual BCS evaluation in dairy farms, emphasizing the inconsistencies found in human 

assessments. With current image analysis and computer vision techniques, this raises the question 

of whether the current standards for visually evaluating BCS are still the best way to quantify cow 

fat stores and body shape, as they introduce inconsistencies and human subjectivities into the 

assessment. 

Similarly to Hansen et al. (2018), (Zin et al., 2020b) avoided the use of anatomical 

keypoints and extracted global roughness features from the 3D surfaces of the cows’ backs. They 
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reported an MAE of 0.13 on an independent test set. However, all images used as a testing set 

exhibited BCS values between 3 and 3.75, providing no means to validate the efficacy of the 

proposed method in more extreme cases. 

Rodríguez Alvarez et al. (2018) and Rodríguez Alvarez et al. (2019) trained CNNs using 

depth images with two additional channels: depth image filtered using Fourier transform to remove 

low spatial frequencies, and edges detected by the Canny algorithm (Canny, 1986) They achieved 

accuracies of 82% and 97% within 0.25 and 0.50 deviation, respectively. Similarly, Yukun et al. 

(2019) trained CNNs using images containing depth, gray, and phase congruency channels. Phase 

congruency was used instead of the previously explored Canny edge channel (Rodríguez Alvarez 

et al., 2018) because of the proximity between cows in each image, which caused the boundaries 

between cows to be too weak to be correctly extracted using depth images. Accuracies of 77% and 

98% were found within 0.25 and 0.50 deviation. Zhao et al. (2023) trained CNNs on feature images 

constructed by calculating the vertical distances between each point in a voxelized 3D point cloud 

and the convex hull that surrounds it and achieved accuracies of 91% and 96% within 0.25 and 

0.50 deviation. Finally, Shi et al. (2023) trained a neural network for automatically extracting 

features from 3D point clouds by adding an attention-based mechanism to the PointNet++ 

architecture (Qi et al., 2017), and found accuracies of 80% and 96% within 0.25 and 0.50 deviation, 

respectively. 

Concluding Remarks 

Although some of the proposed models have achieved great success in accurately 

predicting BCS based on 2D or 3D images, especially when considering 0.25 or 0.50 deviations, 

it is important to consider that BCS is ultimately a subjective measurement, and the human 

assessments used to train such models are prone to inconsistencies. Additionally, the quarter-point 
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divisions usually implemented for evaluating BCS do not account for subtle changes in body 

shape, or the distinction between different fat distribution profiles. Furthermore, the BCS variation 

of a cow through time can be more important than absolute BCS values for health and reproductive 

performance in some cases (Barletta et al., 2017). Considering the current scenario of advanced 

computer vision and data analysis, it might be beneficial to define other more quantitative 

standards of cow fat stores based on measures of shape, depth, form, and contour of different 

regions of the cow’s body. BCS is primarily used to assess metabolic disorder risks, productive 

and reproductive performance, fertility, and overall cow health, while also facilitating dietary 

adjustments. Thus, the precision livestock community could progress towards using cow 

quantitative information extracted from computer vision systems (for example, using feature 

extraction methods proposed in previous works, or features extracted from deep neural networks) 

to directly predict such cow performance and health metrics and assess risks of disease and other 

production metrics. Ideally, new gold standards might arise which are less prone to human error 

and subjectivity. Finally, it is necessary to collect a significant number of examples of cows in 

both extremes of body condition in order to train models with a good representation of the possible 

states that a cow’s body could be in different stages of their life. This is relevant both when the 

desired predicted variable is BCS itself or any other representation of body shape. 

MULTIMODAL MACHINE LEARNING 

Health problems in dairy cows are complex and can be influenced by a multitude of factors, 

making diagnosis and management challenging. Not only current fat stores and fat mobilization 

can indicate the risk of a cow developing metabolic disorders, but also feeding behavior, activity 

levels, diet composition, current physiological state, genetic predisposition, environmental 

conditions, and management practices can all impact on a dairy cow’s health (Ingvartsen and 
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Moyes, 2013; Overton et al., 2017). PLF technologies generate data for tracking such variables, 

which can be used to develop machine learning models for monitoring animal health (Berckmans, 

2017; García et al., 2020). In general, individual animal data is available in the form of data tables, 

images, or text. When using high-dimensional or unstructured data such as text, images, or genetic 

datasets, features must be extracted, and the data dimensionality should be reduced before adequate 

use in machine learning models. High-dimensional data cause predictive analyses to suffer from 

the so-called curse of dimensionality, which is the phenomenon that predictive models tend to 

overfit and not perform well with a growing number of input dimensions (Köppen, 2000). Many 

feature extraction and dimensionality reduction techniques exist to help solve this problem by 

projecting high-dimensional data into lower-dimensional representations (Jia et al., 2022). 

When using genomic data for phenotype prediction, feature extraction and selection can be 

performed via traditional statistical analysis (Manthena et al., 2022), machine learning methods 

(Feldner-Busztin et al., 2023), or, more recently, deep neural networks (Eraslan et al., 2019; Zou 

et al., 2019). In genomics, feature extraction and selection are useful not only for reducing 

computational requirements while maintaining acceptable predictive performance, but also for 

facilitating the understanding of the underlying biological factors that are relevant to the phenotype 

of interest. In addition, dimensionality reduction techniques generally improve the performance of 

predictive models due to the aforementioned curse of dimensionality. 

From image data, features can be extracted using traditional image processing and 

computer vision techniques, or deep learning methods (O’Mahony et al., 2020). Techniques such 

as SURF (Bay et al., 2006) and Scale-Invariant Feature Transform (SIFT) (Karami et al., 2017) 

can provide descriptors of automatically detected points of interest in an image. These descriptors 

compute information related to texture, color gradients, and other local features, which can be used 
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as inputs to machine learning algorithms such as linear regressions and Support Vector Machines 

(Hearst et al., 1998) to perform classification or identification of objects in a scene based on 

training or reference images. Other techniques such as Hough transforms (Goldenshluger and 

Zeevi, 2004), Gabor filters, or histogram of oriented gradients (HOG) (Freeman and Roth, 1995) 

can extract features related to the presence of arbitrary shapes and textures, which can similarly be 

used to perform image classification using machine learning algorithms. 

More recently, CNNs gained popularity in computer vision tasks such as image 

classification, instance segmentation, and object detection (Li et al., 2022b). These neural networks 

can automatically learn optimal filters based on the training data, detecting patterns in the images 

that are most important for a given task. The convolutional layers that form the core of CNNs 

extract features from images by applying automatically learned filters through a convolution 

operation, removing the need for manually engineering filters such as Gabor or Haar filters 

(Haselhoff and Kummert, 2009). The main drawback of CNNs is that they usually require large 

amounts of annotated data to be able to automatically learn such convolutional filters, which can 

be time-consuming and expensive to acquire. Techniques such as transfer learning (Weiss et al., 

2016), semi-supervised (Oliver et al., 2018), and self-supervised learning (Jing and Tian, 2021) 

have been proposed to reduce the need for large scale annotated data and enable CNNs to be trained 

using smaller datasets. 

Drawing inspiration from their success in natural language processing (NLP), special 

neural networks called Transformers have been adapted to computer vision tasks via Vision 

Transformers (ViT) (Dosovitskiy et al., 2021), introducing the concept of patch embeddings to 

interpret images as sequences of patches similarly to how text is interpreted as a sequence of words. 

Although deep neural networks based on the ViT architecture can achieve superior results in 
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certain scenarios when compared to CNNs, they generally require even larger amounts of data to 

be trained, as they lack some of the inductive biases present in CNNs, such as translation 

invariance, pixel locality, and two-dimensional neighborhood structure. These inductive biases 

make CNNs more efficient but less flexible to learn image features for downstream tasks, so when 

sufficiently large datasets are available, ViT can perform better (Dosovitskiy et al., 2021). 

In the pursuit of constructing general-purpose neural networks for image understanding, 

the concept of foundation models has gained popularity in recent years (Bommasani et al., 2021). 

Such models are either trained on very large, annotated datasets spanning a multitude of contexts 

and domains, or on even larger unlabeled datasets using self-supervised learning techniques (Jing 

and Tian, 2021). These models typically contain a larger number of parameters, enabling them to 

learn to extract features from different types of images for various tasks, rather than being 

optimized for a specific application. This allows the same foundation model to be used to extract 

features from images for several applications at the same time, without the need for re-training or 

fine-tuning it. 

In the field of natural language processing, autoregressive techniques such as word2vec 

(Mikolov et al., 2013) have been proposed for converting words into a vector space that 

encapsulates their semantic and syntactic information. With the advancement of deep learning, 

RNNs have been proposed to automatically learn to extract embeddings (vectors) from words or 

tokens (parts of words) based on the training data and process them through recurrent layers to 

perform text classification or generation (Liu et al., 2016). Using attention mechanisms to identify 

the most important parts of the text and how different words are interconnected, a neural network 

architecture called Transformers (Vaswani et al., 2017) achieved great success in NLP tasks. 

Similarly to RNNs, these networks can learn to extract embeddings from words and sentences, 
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synthesizing their semantics with respect to the context within the input text. This allows such 

models to extract text embeddings that contain useful information about the text, which can be 

used as features for different classification and generation tasks without the need for re-training or 

fine-tuning. These models are usually trained using a large corpus of text to perform next- or 

masked-word prediction following a self-supervision paradigm, in which case they are generally 

called large language models (LLM). When trained this way, these models can learn structural 

information about a language, and the meaning of words and how they interact with each other 

within the context of the input text. 

After features are extracted from each type of data (also called data modality), they can be 

combined for use in predictive modeling using techniques that can be categorized as early, late, or 

hybrid fusion. Early fusion consists of combining the features from different modalities before 

training the machine learning (ML) models, late fusion consists of training separate ML models 

for each modality and combining their predictions into a final prediction possibly through another 

ML model, and hybrid fusion is a combination of early and late fusion, borrowing mechanisms 

from both (Lahat et al., 2015). Within hybrid fusion, methods based on machine learning and deep 

learning algorithms have been proposed (Gao et al., 2020; Meng et al., 2020), and it is currently 

an active area of research. 

After ML models are trained, they can be deployed either locally at the farm, via edge 

computing, or completely on the cloud. Systems deployed locally have the advantage of not 

requiring internet connectivity to function, a benefit particularly relevant in areas with limited 

internet access, such as rural areas. However, since the models run on devices located at the farm 

often with no internet access, data integration with other systems outside of the farm premises is 

limited, and scaling the system is expensive, as it requires replacing or including more hardware 
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physically. Edge computing extends local deployment by distributing computation to edge devices 

closer to where the data is generated, reducing latency and bandwidth requirements (Alonso et al., 

2020). However, edge deployment may face challenges related to managing distributed systems, 

ensuring consistent model updates across devices, and scaling hardware capabilities. Conversely, 

cloud computing centralizes computation and storage resources in remote data centers, offering 

virtually unlimited scalability and flexibility, and improving data availability (Schokker et al., 

2022). It facilitates rapid deployment and updates of machine learning models, enabling efficient 

resource utilization and cost-effectiveness. Nevertheless, reliance on internet connectivity can 

limit its application on farms. 

In summary, multimodal machine learning combined with edge and cloud computing 

technologies can support the use of PLF applications for improving management decisions in dairy 

farms. ML models that utilize various dimensions of an individual animal with data originating 

from different sources can be constructed for robust prediction of health issues, productivity, and 

reproductive performance. The implementation of integrated PLF systems guides a data-driven 

approach to livestock farming, facilitating cost reduction, productivity enhancement, and 

advancements in animal health and welfare. 
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TABLES AND FIGURES 
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Table 1.1. Summary of the main concerns and feature extraction methods proposed for BCS prediction using computer vision. 

Works Image type Validation concerns Automation concerns Features extracted 

(Bewley et al., 2008; 

Battiato et al., 2010; 

Azzaro et al., 2011) 

2D No independent test set Manual keypoint detection Shape descriptors from anatomical keypoints 

(Halachmi et al., 

2008, 2013) 
2D No independent test set  Residuals of fitted parabola 

(Bercovich et al., 

2013) 
2D  Manual image selection 

Shape descriptors from anatomical keypoints, 

and FD1 of tailhead contour 

(Huang et al., 2019) 2D 
Possible temporal bias between 

training and testing data 
 CNN2 

(Li et al., 2019) 2D 
Possible temporal bias between 

training and testing data 
Manual image selection CNN2 

(Wu et al., 2021) 2D 
Possible temporal bias between 

training and testing data 
 CNN2 and Vision Transformers 

(Salau et al., 2014) 3D Only correlation analysis Manual image selection Shape descriptors from anatomical keypoints 

(Kuzuhara et al., 

2015) 
3D No independent test set 

Manual keypoint detection and 

image collection 

Geodesic distances between anatomical 

keypoints 

(Fischer et al., 2015) 3D  Manual keypoint detection Principal components of 3D point coordinates 

(Song et al., 2019) 3D  
Manual image collection and 

empirical processing parameters 
Shape descriptors from anatomical keypoints 

(Liu et al., 2020) 3D  
Empirical image processing 

parameters 
Shape descriptors from anatomical keypoints 

(Spoliansky et al., 

2016) 
3D  

Empirical image processing 

parameters 

Shape descriptors extracted from pixel region 

empirically found 

(Hansen et al., 2015, 

2018) 
3D No independent test set  Angularity of 3D surface 

(Zin et al., 2020b) 3D No extreme examples  Roughness parameters from 3D surface 

(Rodríguez Alvarez 

et al., 2018, 2019) 
3D Few extreme examples  CNN2 

(Yukun et al., 2019) 3D  Manual image collection CNN2 

(Zhao et al., 2023) 3D   CNN2 

(Shi et al., 2023) 3D   Attention-guided point cloud feature extraction 
1FD = fourier descriptors 
2CNN = convolutional neural network 
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CHAPTER TWO: USING DORSAL SURFACE FOR INDIVIDUAL IDENTIFICATION OF 

DAIRY CALVES THROUGH 3D DEEP LEARNING ALGORITHMS 

 

ABSTRACT 

Advances in machine learning techniques have allowed the development of computer 

vision systems (CVS) that can accurately predict several phenotypes of interest for livestock 

operations. In this context, 3-dimensional (3D) images taken from a top-down view are particularly 

useful for estimating body condition score, growth development, and body biometrics in cattle. 

Frequently, such CVS rely on identification (ID) systems, such as electronic tags, as a way to 

match animal ID and the predicted phenotype. However, the same 3D images used to predict body 

weight and other animal biometrics could be adopted for animal recognition as well. Such 

alternative would optimize CVS to recognize animal ID and monitor growth development 

simultaneously while leveraging the same hardware infrastructure. Furthermore, this strategy 

could be used to recognize animals with similar color patterns. Nonetheless, growing animals are 

continuously changing body shape, which could limit its use as an invariant feature for pattern 

recognition. Thus, the objectives of this study were: (1) to compare algorithms for different 3D 

object representations to identify individual animals; and (2) to evaluate how short-term changes 

in body shape due to animal growth affect the predictive performance of these algorithms. For 

objective 1, the algorithms were trained (n = 4,558) and tested (n = 1,139) using images from 38 

Holstein calves. For objective 2, we designed three different experiments using images (n = 2,347) 

from five Holstein calves taken over six weeks during their growing period, always training and 

testing on different weeks. Each experiment evaluated how changing a different parameter of the 

image capturing procedure affected the predictive ability of the trained algorithms. In the first 
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experiment, we varied the total number of images per animal in the training set; in the second 

experiment, we varied the number of weeks while keeping a fixed number of images in the training 

set; and in the third experiment, we skipped weeks between images in the training and test sets. 

The F1 score for objective (1) was up to 0.804 when testing with the last frames of each video, and 

up to 0.959 when using random frames for testing. For objective (2), the F1 score was up to 0.947 

for the first experiment when using 130 images per animal; up to 0.979 for the second experiment 

when using all five weeks; and up to 0.917 when not skipping weeks between training and testing. 

These results show that deep learning algorithms can be used to identify individual animals 

through their dorsal area 3D surfaces, and, from our experiments using calves in their growing 

period, that they are robust enough to account for changes in body shape and size, making them a 

promising tool for animal recognition during growth. 

 

INTRODUCTION 

  Deep learning techniques have gained great popularity in the field of computer vision in 

recent years due to their impressive performance in tasks such as image classification, object 

detection, and semantic segmentation (Voulodimos et al., 2018). Deep learning allows machine 

learning models to learn abstract feature representations of the input data and perform automatic 

feature extraction when exposed to large amounts of data (LeCun et al., 2015). Such advances in 

deep learning and computer vision, and particularly in the use of depth sensing cameras, have 

enabled the development of systems that capture animal phenotypes such as body condition, body 

weight, lameness, behavior traits, and more (Fernandes et al., 2020). In order to capture and use 

animal-level phenotypes, implementing a system to identify individual animals is vital. These 

systems can be manual, such as ear tags, or automated, such as radio-frequency identification 
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(RFID) (Voulodimos et al., 2010). However, implementing manual identification or RFID systems 

in large scale operations can be labor-intensive, prone to human error and fraud, costly, and 

invasive for the animals, as it requires manually placing RFID tags on each animal. 

In this context, using computer vision techniques to implement both animal identification 

and phenotyping into one single integrated system can be beneficial, as it could limit the use of 

external accessories attached to animals, leverage the same hardware infrastructure, and therefore 

address most of the issues related to RFID systems. Moreover, computer vision systems (CVS) 

could be a robust alternative to track animals along the food supply chain, allowing the 

development of traceability programs with high degree of security as found in blockchain systems 

(Casino et al., 2019). Recent studies have proposed the use of Red, Green, Blue (RGB) images to 

identify animals based on their unique coat color patterns in different species by using 2-

dimensional (2D) convolutional neural networks (CNN). Andrew et al. (2017) and Bello et al. 

(2020) used 2D CNNs to identify Holstein cows using top-view images of their back, Yao et al. 

(2019) used detection and classification 2D CNNs to detect and identify Holstein cows using 

images of their faces, Yukun et al. (2019) used RGB and depth images to automatically identify 

Holstein cows and estimate their body condition scores, and Hansen et al. (2018) proposed their 

own 2D CNN to individually identify pigs using images of their faces. However, these approaches 

require that individual animals have different coat color patterns, so they would likely fail to 

differentiate animals with similar colors patterns, or certain animal breeds that have little color 

distinction between individuals. 

As an alternative to RGB images, different 3-dimensional (3D) data representations can be 

used to classify objects. For example, depth images, despite being virtual representations of 3D 

surfaces, can be used along with 2D CNNs to perform classification tasks, because they are 
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actually 2D images where each pixel contains a value representing the distance between the 

physical point at that pixel and the camera sensor. Additionally, 3D CNNs and other neural 

network architectures have been recently proposed to work with other 3D representations, such as 

voxels (Maturana and Scherer, 2015), octrees (Wang et al., 2017), and point clouds (Qi et al., 

2016). These representations can prove beneficial in classifying objects whose 3D shape is more 

relevant than their color, as showed by Aijazi et al. (2013) when segmenting urban scenes, and 

Soilán Rodríguez et al. (2019) when classifying data acquired with Airborne Laser Scanning 

systems, for example. Such tasks, however, can be challenging when working with objects that 

quickly change their shapes over time, such as animals during their growing stage of life. 

The current study aims to evaluate the predictive ability of deep neural networks to identify 

individual calves based on the shape of their dorsal region, using different 3D representations as 

input data. Additionally, we evaluated the robustness of the tested algorithms to perform this task 

as body shape changes due to animal growth. To accomplish that, we (1) compared algorithms for 

different 3D object representations to identify individual animals by using images collected in the 

same period of time; and (2) evaluated how short-term changes in body shape due to animal growth 

affect the predictive performance of these algorithms. 

MATERIAL AND METHODS 

This study was split into two objectives, as previously mentioned. For the first one, we 

compared the performance of five neural network architectures on identifying individual calves by 

using different 3D data representations. Three of them were 2D CNNs using depth images as 

inputs, and the other two were a 3D CNN using voxels as inputs, and a combination of multi-layer 

perceptrons using point clouds as inputs. For the second objective, the same five neural network 

architectures were assessed on identifying individual calves in different periods of time during 
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their growing stage, in order to evaluate how changes in body shape would affect the predictive 

performance of these algorithms. 

Datasets 

For the first objective, videos from 38 pre-weaned Holstein dairy calves with ages varying 

from two to eight weeks, and body weight (BW) of 57.0 ± 14.7 kg (average ± standard deviation 

(SD)), housed at the Emmons Blaine Dairy Cattle Research Center (Arlington, WI), were recorded 

during a single week. A Kinect V2 sensor (Microsoft; Redmond, WA) was used, which has an 

RGB camera (resolution of 1920 × 1080 pixels), a depth sensor (resolution of 512 × 424 pixels), 

and a microphone array. The 38 videos were recorded from a top-down view, and each contained 

a single calf, as they were recorded separately while weighing each animal individually. All videos 

were recorded using Kinect for Windows SDK 2.0 (Microsoft; Redmond, WA) installed on a 

laptop locally operated by a person who manually started recording as soon as the calf was 

positioned on the scale, and stopped recording when the weighing process was concluded for that 

calf. The length of the videos varied from 15 to 69 seconds, from which frames from the depth 

stream were extracted at a rate of four frames per second (FPS). This resulted in a total of 5,764 

depth frames with a resolution of 512 × 424 pixels, each pixel representing the distance from the 

object to the camera sensor in millimeters. 

For the second objective, 30 videos from five calves with ages varying from four to eight 

weeks, and BW of 63.8 ± 6.7 kg (average ± SD), housed at the Dairy Cattle Research Center 

(DCRC; Madison, WI), were recorded using the same Kinect V2 sensor (Microsoft; Redmond, 

WA) from a top-down view, and the same recording procedures as in the first objective. Each calf 

had the videos recorded separately once a week for six weeks, with video recording lengths 

between 18 and 80 seconds. Depth frames were then extracted at a rate of two FPS, resulting in a 
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total of 2,347 frames with a resolution of 512 × 424 pixels, each pixel representing the distance 

from the object to the camera sensor in millimeters. 

Data Preprocessing 

Data preprocessing was performed for each acquired frame in each dataset, and it involved 

four steps, in the following order: (1) background removal, (2) point cloud generation, (3) point 

cloud augmentation, and (4) occupancy grid generation. The four steps are described in the 

following subsections (Background Removal, Point Cloud Generation, Point Cloud 

Augmentation, Occupancy Grid Generation). 

Background Removal 

In order to remove background pixels from the captured depth images, a network based on 

the Mask R-CNN framework (He et al., 2017) was implemented to automatically detect and retain 

all pixels containing a calf. We only considered as part of the calf the region between the tail and 

the neck of the animal. The Mask R-CNN network was trained using 584 depth images manually 

segmented according to this standard, as shown in Figure 2.2(b), where pixels containing the calf 

appear in white. Some of the frames captured from the original videos did not contain a calf, 

resulting in 5,697 frames for the first objective, and 2,295 for the second. The trained network for 

calf segmentation achieved an intersection over union of 0.932 on an independent test set. 

Point Cloud Generation 

The pixels detected as containing a calf were converted to a set of points in a 3-dimensional 

coordinate system (a point cloud). For each pixel (i, j) containing a depth value d, a point (xp, yp, 

zp) was created with values (xp, yp, zp) = (j, i, d). This resulted in a point cloud with the number of 

points equal to the number of pixels that were part of a calf in the original frame. Outlier points 

were then removed based on their Z-axis coordinates, or depth value, in order to prevent the 
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inclusion of background pixels due to segmentation errors. A value was considered an outlier if it 

was more than three scaled median absolute deviations (MAD) away from the median. For a 

random vector X with N scalar observations, the MAD is defined as follows: 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)) (Eq. 2.1) 

                                     for i = 1, 2, …, N  

The scaled MAD is defined as k × MAD, where k ≈ 1.4826 is a constant scale factor that 

depends on the distribution (Rousseeuw and Croux, 1993). In this case, we operated under the 

assumption that the Z-axis values were normally distributed. 

Point Cloud Augmentation 

The generated point cloud was then augmented by randomly rotating, scaling, and applying 

jitter to the point coordinates. Image augmentation is a technique used to avoid overfitting and add 

robustness to 2D convolutional networks (Perez and Wang, 2017). Point cloud augmentation, 

however, is a similar technique with some important differences. The main difference is in the 

rotation process: point cloud augmentation allows the objects to be rotated around any of the three 

axes, as opposed to image augmentation, where the image can only be rotated around a single axis 

(the one pointing towards the image plane). In this study, the point clouds were rotated around 

their Z-axis by a random angle between 0 and 360 degrees, the coordinates were scaled by a 

random factor between 0.98 and 1.02, and a 1% jitter was applied to each point. These values were 

chosen arbitrarily. Applying these transformations introduced noise to the data, avoiding 

overfitting and making the trained models more robust to rotation. 

Occupancy Grid Generation 

The point cloud resulting from the augmentation step was then converted into an occupancy 

grid by splitting the coordinate space of the points into 32 cells on each axis. For each point (xp, 
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yp, zp), the coordinate values of the containing cell in the grid space (xcell, ycell, zcell) were calculated 

as follows: 

𝑥𝑐𝑒𝑙𝑙 = min⁡(⌊
𝑥𝑝 −𝑚𝑖𝑛𝑥

𝑚𝑎𝑥𝑥 −𝑚𝑖𝑛𝑥
× 32⌋ , 31) 

(Eq. 2.2) 𝑦𝑐𝑒𝑙𝑙 = min⁡(⌊
𝑦𝑝 −𝑚𝑖𝑛𝑦

𝑚𝑎𝑥𝑦 −𝑚𝑖𝑛𝑦
× 32⌋ , 31) 

𝑧𝑐𝑒𝑙𝑙 = min⁡(⌊
𝑧𝑝 −𝑚𝑖𝑛𝑧

𝑚𝑎𝑥𝑧 −𝑚𝑖𝑛𝑧
× 32⌋ , 31) 

Values 𝑚𝑖𝑛𝑥 and 𝑚𝑎𝑥𝑥 were the minimum and maximum xp values in the point cloud, and 

likewise for y and z, resulting in values in the range [0, 31] for each cell coordinate. Based on the 

cell coordinates of each point, the 32 × 32 × 32 grid was then filled with ones or zeros depending 

on whether the corresponding cell contained at least one point of the original point cloud (Figure 

2.1). Occupancy grids can serve as a more regular 3D representation of the data in comparison to 

point clouds, with grid cells contained in a discrete domain as opposed to the continuous nature of 

point coordinates in point clouds. Such regularization can help machine learning systems learn 

more efficiently than with more irregular formats such as raw point clouds, by adopting 3D 

convolutional neural networks, for example (Maturana and Scherer, 2015). Figure 2.2 shows an 

example of the step-by-step process of transforming a depth frame into an occupancy grid. 

Training and Test Sets 

For the first objective, two different approaches were used to split the dataset into training 

and test sets. In the first approach, 5,697 frames were randomly split into training (n = 4,558) and 

test (n = 1,139) sets, corresponding to 80% and 20% of the total dataset, respectively, without 

necessarily maintaining class proportions between training and test sets. This process was repeated 

10 times, generating 10 different random dataset splits that were used to calculate an average final 

performance metric. The randomization was done at the level of the entire 38 videos, generating 
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slightly different class proportions for each permutation. In the second approach, the frames from 

each video were split chronologically based on their positions in the video, separating the first 80% 

frames for training and last 20% for testing. We used the second approach to minimize similarities 

between the training and test sets, as adjacent frames tend to be similar to each other (see Figure 

2.3). 

For the second objective, three different experiments were designed, and the dataset was 

split accordingly. The first experiment consisted of evaluating how the number of frames used in 

training would affect the predictive performance of the algorithms. For that, random samples of 

20, 40, 70, 100, 130, and 154 images per animal were used for training, all from the first and 

second weeks, and a fixed set of 319 images from the third week was used for testing. 

In the second experiment, we evaluated how increasing the number of consecutive weeks 

used for training affected the performance of the algorithms on the immediate following week, 

while keeping the same total amount of images per animal. We used 80 images per animal for 

training (resulting in a total of 400 images), and tested on images from the following week, such 

that the size of the test set varied according to the week, but the training set size remained constant. 

A total of ten dataset splits were created for this experiment, grouping them according to the total 

number of weeks used for training, and calculating an average performance for each group (Table 

2.1). 

Finally, in the third experiment, we evaluated the effect of increasing the time interval 

between the training and test sets on the prediction quality of the tested algorithms. In this context, 

we defined four time intervals in relation to weeks after training: zero (testing on images from the 

subsequent week), one, two, and three weeks. For training, we used two consecutive weeks and 80 

images per animal (resulting in a total of 400 images) for each split. Ten splits were created for 
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this experiment, grouped according to the interval between the training and test sets. The size of 

the test set varied according to the week used for testing (Table 2.2). Table 2.3 provides an 

overview of the three experiments performed for the second objective. 

Data Representation and Algorithms 

The algorithms were chosen based on the data representation used as input. Algorithms 

able to analyze 2D depth images (Simonyan and Zisserman, 2014; Szegedy et al., 2016; Chollet, 

2017), point clouds (Qi et al., 2016), and occupancy grids (Maturana and Scherer, 2015) were 

selected. All algorithms were implemented in Python, using TensorFlow (Abadi et al., 2016) for 

implementing PointNet, TensorFlow and Keras (Chollet, 2015) for implementing VGG16, 

Inception v3 and Xception, and Theano (The Theano Development Team et al., 2016) and Lasagne 

(Dieleman et al., 2015) for implementing VoxNet. 

Depth Images – VGG16, Inception v3, and Xception 

To generate depth images from the extracted video frames, the data was processed using 

only the first preprocessing stage (Background Removal). The resulting mask was applied to the 

pixel-based depth values, setting every pixel not contained in the mask to zero. Outliers were then 

identified using the method presented in the Point Cloud Generation subsection, and their 

corresponding values were set to zero. The final depth image consisted of a matrix of size 424 × 

512 containing the depth values of relevant pixels, or zero for pixels considered part of the 

background. 

These depth images were then used as the input to three different deep neural network 

(DNN) architectures: VGG16 (Simonyan and Zisserman, 2014), Inception v3 (Szegedy et al., 

2016), and Xception (Chollet, 2017). For all three DNNs, the last fully-connected (FC) layer of 

the original architecture was removed, and all the other layers were initialized with weights from 
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the respective networks trained using ImageNet (Deng et al., 2009), an open image dataset 

containing more than 1 million examples of diverse objects and environments, ranging from wild 

and farm animals to vehicles, airplanes, and housewares, for example. Such strategy was defined 

as Transfer Learning (Weiss et al., 2016), and it accelerates the training process as the network 

weights are initialized with values optimized for a large generic image dataset such as ImageNet, 

instead of being initialized with random values. This technique helped our new networks learn 

generic features, such as textures, edges, corners, and shapes, previously learned in a different task 

domain using a much larger dataset. 

The VGG16-based network was extended with a FC layer of size 2,048 and a Rectified 

Linear Unit (ReLU) activation function (Nair and Hinton, 2010), followed by a final FC layer of 

size n and softmax activation function, where n is the number of classes for each objective (n = 38 

for the first objective and n = 5 for the second objective). 

The Inception v3- and Xception-based DNNs were extended with a global average pooling 

layer as described by Lin et al. (2013), followed by a FC layer of size 1,024 and ReLU activation 

function, and a final FC layer of size n and softmax activation function, similarly to the VGG16-

based approach. 

For each DNN, the training process was split into two consecutive stages: feature extraction 

and fine-tuning. In the feature extraction stage, the DNN was trained for 200 epochs keeping the 

weights of all but the last two FC layers frozen. This allowed features previously learned through 

Transfer Learning to be used and retained. In the fine-tuning stage, weights from earlier layers 

were unfrozen, and the network was trained for 400 epochs with a smaller learning rate, allowing 

it to further learn features that are more specific to our context. 
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The VGG16-based network was trained using RMSProp (Hinton et al., 2012) with a 

learning rate of 2 × 10-5 in the feature extraction stage and 1 × 10-5 in the fine-tuning stage. The 

Inception v3-based network was trained using RMSProp with a learning rate of 1 × 10-3 in the 

feature extraction stage, and Stochastic Gradient Descent (Robbins and Monro, 1951) with a 

learning rate of 1 × 10-4 and momentum of 0.9 (Qian, 1999) in the fine-tuning stage. The Xception-

based network was trained using Adam (Kingma and Ba, 2014) with a learning rate of 1 × 10-3 in 

the feature extraction stage and 1 × 10-5 in the fine-tuning stage. 

Point Cloud – PointNet 

From the point clouds generated by applying the first three preprocessing stages described 

in the Data Preprocessing section, the k-means clustering algorithm was used to separate the 3D 

points into 2,048 clusters. The centroids of these clusters were then grouped into a new point cloud 

and used as the input to a network based on the full PointNet architecture (Qi et al., 2016). We 

decided to use point clouds of size 2,048 because PointNet was designed, trained, and validated 

using the ModelNet40 dataset (Wu et al., 2015), which contains point clouds of size 2,048. The 

last FC layer of the original PointNet architecture was modified to have n nodes, where n is the 

number of classes for each objective, as before. The network was trained for 250 epochs using 

Adam (Kingma and Ba, 2014) with an initial learning rate of 1 × 10-3, a momentum of 0.9, and 

exponential learning rate decay of 0.7 every 200,000 steps. 

Occupancy Grid (Voxel) – VoxNet 

The occupancy grids generated from applying all four preprocessing stages described in 

the Data Preprocessing section, also known as voxels, were used as the input to a network based 

on the VoxNet architecture (Maturana and Scherer, 2015). The grid size was defined as 32 × 32 × 

32, the same as proposed in the original VoxNet article (Maturana and Scherer, 2015). The last FC 
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layer of the architecture was modified to have n nodes, the number of classes for each objective. 

The network was trained for 400 epochs using Stochastic Gradient Descent with a learning rate of 

1 × 10-3, a momentum of 0.9, and L2 norm regularization of 0.001 applied to the loss function. 

Evaluation Metrics 

To evaluate and compare the prediction quality of all algorithms, the accuracy, precision, 

recall, and F1 score were calculated for each class as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (Eq. 2.3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (Eq. 2.4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (Eq. 2.5) 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (Eq. 2.6) 

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False 

Negatives. 

The mean values across all classes were then calculated and used to compare the algorithms 

(macro averaging), and the final F1 score was calculated as the mean of the class-wise F1 scores. 

Precision, Recall, and F1 score are important metrics to evaluate classification tasks. They can be 

more informative than the accuracy in a context of imbalanced data, where the number of images 

corresponding to each class varies significantly. 

RESULTS AND DISCUSSION 

Comparing Algorithms and 3D Representations 

The first objective consisted of comparing different algorithms and 3D representations to 

identify individual calves using their dorsal surfaces. The results discussed in this subsection are 
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related to the approach of using a chronologically ordered split of the frames, in order to prevent 

overoptimistic results from using adjacent frames in the training and test sets (refer to section 

Training and Test Sets for details). Preventing biased evaluation results is an important step in any 

Artificial Intelligence system, as the main goal of the evaluation process is to try to anticipate how 

the algorithm will perform when facing real-world scenarios. Thus, when working with algorithms 

designed to generate predictions on images that will be captured in the future, it is critical to use 

the earliest captured images as the training set, and include only the latest captured images in the 

test set, in order to achieve more realistic results. A report of all calculated F1 scores can be found 

in Table 2.4. Using random images in a sequence for training and testing generates higher, 

overestimated F1 scores, when compared to a more realistic scenario of the test set containing only 

the last frames of the original videos. For example, when using Xception, the F1 score decreases 

from 0.959 to 0.804 when using the chronological order approach, which is a more realistic 

approximation of how that network would perform on future images. 

The 2D CNN approaches achieved F1 scores of 0.718, 0.750, and 0.804 with the VGG16-

, Inception v3- and Xception-based networks, respectively. These results were consistent with the 

results reported in the original Xception publication (Chollet, 2017), with Xception performing 

better than VGG16 and Inception v3 on the ImageNet and JFT datasets. This improvement comes 

from making use of inception modules (Szegedy et al., 2015) and introducing depthwise separable 

convolutions (Chollet, 2017). 

The point cloud approach using a PointNet-based network achieved an F1 score of 0.429, 

which is the lowest of all the approaches for this objective. This is probably because, before being 

fed to the network, the original point clouds resulted from the preprocessing step were reduced 

from approximately 30,000 to 2,048 points. This downsampling was much stronger than the one 
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performed in the original PointNet article (Qi et al., 2016), which proposed a downsampling of the 

point clouds in the ModelNet40 dataset from 2,048 to 1,024 points. This may have caused our 

network to miss important nuances from the surface of the calves, which are necessary to uniquely 

identify them. This evidence was supported when we tested this PointNet approach using only 

1,024 points, and it resulted in a further F1 score drop to 0.318. The PointNet architecture was 

designed to recognize objects that are structurally very different from each other, such as cars, 

tables, and airplanes. When distinguishing such different objects, it is not significantly detrimental 

to make use of fewer points, because the network learns how to use a collection of critical points 

to summarize the shapes (Qi et al., 2016), and the summarized shapes are usually very different 

from each other. However, this architecture may not be suitable for objects that are very similar in 

shape, and which the difference between classes is in small details and nuances, such as in the case 

of identification of calves. 

Using voxels as input, the VoxNet-based network achieved an F1 score of 0.656, which is 

superior to the results achieved using PointNet, but still below any of the F1 scores achieved using 

2D CNNs. VoxNet performed better than PointNet mostly because the voxels used in this study 

had a higher dimensionality than the 2,048-sized point clouds. They were contained in grids of 32 

× 32 × 32 cells, so a total of 32,768 cells each. However, 2D CNNs performed better than VoxNet, 

possibly because they contain more trainable parameters, allowing them to represent more 

complex functions and to learn and extract greater levels of details from the inputs. Extracting 

high-dimensional feature representations appears to be beneficial for individual calf recognition, 

as shown in the results. Additionally, the 2D CNNs used were pretrained using the ImageNet 

dataset (Deng et al., 2009), which helped them learn more generic features before being trained 

with our datasets, further improving their results in comparison to PointNet and VoxNet, which 
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did not undergo any pretraining step. It is worth noting that other publicly available datasets could 

be used for pretraining the 2D CNNs, such as datasets containing exclusively images of animals, 

for example, which would be more similar to the input images used in this study. However, we 

could not find publicly available weights for Inception v3, VGG16, or Xception architectures pre-

trained using such animal datasets, and training those networks from scratch requires significant 

amount of time and computational resources, especially when using large image datasets 

(Simonyan and Zisserman, 2014; Szegedy et al., 2016; Chollet, 2017). Future research could be 

done to evaluate how the choice of pretraining dataset for transfer learning affects the predictive 

performance of neural networks for animal identification, assessing the trade-off between using a 

dataset that is more similar to the one used in the final task, as opposed to a larger, more general 

dataset such as ImageNet. 

Networks that contain more trainable parameters, combined with higher-dimensional 

inputs, perform better in the task of calf identification using 3D images of their dorsal surfaces, as 

they can capture more subtle variations in their shapes. Such nuances can be helpful when trying 

to uniquely identify individuals. The depth images used in this study contained approximately 

30,000 foreground pixels, the voxel grids contained 32,768 cells, and the point clouds used for 

PointNet contained only 2,048 points. The Xception-based network used had 23 million 

parameters, while the PointNet-based network had just 3.5 million, and the VoxNet-based network 

had less than 1 million. This possibly explains why the Xception-based network was the best 

performing algorithm in this task when compared to point cloud- and voxel-based representations 

and architectures (PointNet and VoxNet), and these results agree with another work in the literature 

that performs similar comparisons for human face recognition (Pini et al., 2021). 
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Although 2D CNNs performed better in this specific setting where all videos were taken 

from a top-down view of the animals, 2D depth images can only hold surface information about 

one specific view of an object. Conversely, 3D representations such as point cloud and voxel bring 

the possibility to merge multiple views of the same object into one single instance (Narayanan et 

al., 1998; Seitz et al., 2006), and hold volumetric information about an object. This enables deep 

learning algorithms to perform classification and identification tasks using multi-view 3D 

representations, which contain a more robust and accurate depiction of the real object, possibly 

leading to better results (Gezawa et al., 2020). Although in this study we only used cameras 

positioned in a single fixed angle, it would be possible to take pictures from multiple different 

angles and build a full 3D volumetric representation of the calves. Moreover, while 2D 

representations are limited to rotations around a single axis, 3D representations can be augmented 

by rotating the object around all three axes, or even by implementing an automated data 

augmentation policy, generating more realistic unseen versions of the same animal (Cheng et al., 

2020). 

The networks employed in this study were trained using images of the animals taken 

exclusively from a top-down view, and thus they can only effectively identify individual animals 

in new images taken from that same angle. Alternatively, if the experiment included images taken 

from different angles, it would be necessary to utilize a separate 2D image augmentation process 

for each group of depth images taken from the same angle. For example, if four synchronized 

cameras were positioned to take pictures of the same animal from different angles, they would 

generate four 2D depth images per time point and animal, each undergoing a separate 

augmentation process. However, when using 3D representations such as voxels and point clouds, 

one single instance could represent the whole 3D animal by assembling images taken from 



51 

different angles and reconstructing a full 3D model of the animal, as described by Narayanan et 

al. (1998), allowing for more effective augmentation approaches, such as the ones reported by 

Hahner et al. (2020) and Cheng et al. (2020). In this case, four pictures taken from synchronized 

cameras would result in a single 3D voxel or point cloud. Such process could enhance the 

performance of the trained networks and yield superior results, as they could better generalize to 

a wider variety of camera angles and animal positions in this setting where images are captured 

from different views simultaneously (Cheng et al., 2020; Gezawa et al., 2020; Hahner et al., 2020). 

In this situation, 3D representations and networks could prove more useful than their 2D 

counterparts, despite achieving worse results in the context of our study. 

Evaluating How Short-Term Changes in Body Shape Affects the Predictive Performance of the 

Algorithms 

Several situations can cause fast body shape changes in a short period of time, such as 

growth development in young animals (Cominotte et al., 2020), or body tissue mobilization to 

supply energy demands in early lactating dairy cows (Dórea et al., 2017). Monitoring an animal 

throughout a long period of its life, including such periods of body shape change, can have serious 

implications in animal disease control and food traceability, by making it possible to backtrack 

disease outbreaks in a farm, and ensure that products derived from that animal follow local sanitary 

regulations (Awad, 2016). However, such changes could hinder the predictive performance of the 

evaluated algorithms, as an individual in an image captured in the future could look different from 

when previous images were captured and used for training the animal identification algorithms. 

Nevertheless, as is the case for human faces (Park et al., 2010), there might be unique biometric 

features and landmarks on the body shape of the animals that remain proportional and recognizable 

regardless of the overall change in body size and shape. If the utilized algorithms are not robust 
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enough to identify these features and account for body variations, they would have to be retrained 

frequently during these periods of intense body shape change. Frequently retraining such 

convolutional neural networks could be extremely costly and labor intensive, as they would require 

a large dataset of new labeled images (LeCun et al., 2015), and the labeling process would consist 

of manually assigning each image to the correct animal. Because of that, it is important to evaluate 

if the utilized algorithms can still accurately identify individual animals even as they experience 

body changes. Thus, the second objective of this study was to evaluate how short-term changes in 

body shape affected the predictive performance of the assessed algorithms. 

For the first experiment, which consisted of evaluating how the number of training images 

affected the predictive performance of the algorithms, the best results were achieved using the 

VoxNet-based network. Since we only used the first three weeks of data for this experiment, the 

simpler VoxNet architecture was sufficient, and the greater number of parameters and complexity 

of the Xception architecture did not translate into better results in this case. As shown in Table 2.5, 

increasing the number of training images per animal from 20 to 100 improved the F1 score from 

0.734 to 0.944. This shows that deep neural networks usually benefit from having more images 

available during training, so they can learn more intricate patterns and diverse examples from the 

training set, which help them better generalize to new data (LeCun et al., 2015). In our experiment, 

using more than 100 images per animal did not further improve the algorithms’ performance 

significantly, probably due to the uniformity of our dataset, with all images captured from the same 

view and location. Therefore, including more images possibly just added more redundancy to the 

training set. 

For the second experiment, which consisted of evaluating how the number of consecutive 

weeks used for training influenced the performance of the algorithms on the subsequent week, the 
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best results were achieved using the Xception-based network. Table 2.6 shows that, even as the 

training set size remained constant, including more weeks slightly increased the F1 score of this 

network, and the highest score improvement happened when adding a fourth week to the training 

set. However, the PointNet- and VoxNet-based networks did not benefit from adding more weeks. 

This is likely because the Xception-based network, with a great number of parameters and trained 

using high resolution depth images, was the only network complex enough to capture useful 

information contained in more than two weeks concurrently. For the VoxNet-based network, with 

fewer parameters, and the PointNet-based network, using relatively low-density point clouds, 

additional weeks possibly just translated into more noise added to the training set, rather than 

contributing to better results. 

Nevertheless, these results show that even by using just two weeks, both VoxNet and 

Xception could learn sufficient patterns from the 3D shape of the calves to identify them on the 

next week. This means that it might not be necessary to accumulate a long history of labeled images 

before being able to identify animals in new images, even if those animals are in a growing stage. 

According to the outcomes of our experiments, depth images of the back of calves as young as 

three weeks old can be used to train networks able to identify them during the subsequent week, 

showing that 3D deep learning systems can be used to monitor animals from a very early stage of 

life. Monitoring animals from an early stage is key for disease control as there is a high incidence 

of infectious diseases during that period (Marcé et al., 2010; Cho and Yoon, 2014). Thus, such 

identification and monitoring systems can help farmers make better management decisions to 

minimize the occurrence of such diseases and prevent the high economic losses associated with 

them (Kaneene and Scott Hurd, 1990; Esslemont and Kossaibati, 1999). 
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For the third experiment, which consisted of evaluating how skipping weeks between 

training and test sets affected the predictive performance of the algorithms, the best results were 

achieved, again, using the Xception-based network. Table 2.7 shows how skipping weeks between 

training and testing affected the algorithms’ predictive performance. Using the Xception-based 

network, the F1 score decreased from 0.917 to 0.846 when skipping one week. However, skipping 

more weeks did not further decrease the F1 score of this network considerably, showing that it 

might be possible to skip up to three weeks between training the network and identifying calves in 

new images without significantly affecting its predictive performance. This is evidence that the 

network might be learning unique biometric features on the body surfaces that remain proportional 

as the animals grow. Thus, although labeling new images and retraining the network every week 

would yield the best results, it is still viable to train the network once and use it to identify calves 

on images taken three weeks later without a significant effect on the predictive ability. 

By retraining the network only every three weeks, it is possible to reduce the time and 

effort dedicated to labeling new images and performing the network training routine. Building 

upon the previous experiment, depth images of the back of young calves can be used to train a 

network able to identify them during the three subsequent weeks, further improving the capacity 

of deep learning algorithms to monitor animals from an early stage of life. Such algorithms can 

contribute to the advancement of animal traceability and infectious diseases control, ultimately 

improving farm productivity, food safety, consumer trust, and production sustainability (Awad, 

2016). 

Deep learning algorithms can be used to identify individual animals using their dorsal area 

3D surfaces and, based on our experiments using calves in their growing period, they are robust 

enough to account for changes in body shape and size of the same animals. This study focused on 
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calves in their early stage of life because that is when they undergo the most significant changes 

in body shape and size, representing a more challenging setting for machine learning algorithms, 

as significant divergence between training and future (or testing) data distributions often hinders 

such algorithms’ predictive performance. Conversely, when working with mature cows that show 

a more limited body shape variability, the training data distribution would be more similar to that 

of images collected in the future (images of interest for identification), thus representing a less 

challenging setting for machine learning algorithms. In fact, Andrew et al. (2016) and Okura et al. 

(2019) used Red, Green, Blue, Depth (RGB-D) images to identify mature Holstein dairy cows. 

Nevertheless, adult dairy cows can still undergo significant body shape changes during the 

transition period (between late pregnancy and early lactation), as they mobilize fat stores to 

compensate for a high milk yield and relatively low dry matter intake. Thus, although not explicitly 

shown in this study, algorithms that are able to identify individual calves as their body shapes 

change have the potential to be useful for monitoring mature dairy cows during their transition 

period, and future studies could explore this possibility. 

Depending on the task complexity, 2D CNNs with a higher representation capacity, as a 

consequence of having a greater number of trainable parameters, can achieve better results than 

their 3D counterparts on identifying individual animals as their bodies grow. Nevertheless, 

regardless of the representation approach, 3D information can be used in computer vision systems 

that identify individual animals based exclusively on their shapes, instead of relying on coat color 

pattern information. Methods that rely on unique color patterns, such as the ones proposed by 

Andrew et al. (2017), Bello et al. (2020), Yao et al. (2019), and Hansen et al. (2018), are limited 

to only certain animal breeds, in scenarios with no significant body occlusion. Alternatively, deep 

learning methods that use solely 3D information for individual identification can potentially be 
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applied on species and breeds that share similar color patterns across individuals, such as Jersey, 

Brown Swiss, and Angus cattle, Rambouillet sheep, Saanen goats, Yorkshire pigs, and others; and 

in production systems where animals can be covered in mud or dirt, such as free range systems for 

pigs. By enabling the use of animal biometrics to perform individual identification in a multitude 

of species, breeds and production systems, these 3D deep learning algorithms push the boundaries 

of animal traceability and phenotyping. Although Yukun et al. (2019) makes use of depth and RGB 

images to perform animal identification, to the best of our knowledge this is the first work to 

propose the exclusive use of depth images and 3D representations for individual animal 

identification through 2D and 3D CNNs. Furthermore, this is also the first study to evaluate the 

ability of convolutional neural networks to identify animals as they grow rapidly and experience 

intense body shape changes. Moreover, since they are based on animal biometrics that cannot be 

easily manipulated by humans, the methods proposed in this work provide a secure and automated 

way of tracking individual animals along the food supply chain, contributing as an additional tool 

for ensuring food safety to consumers. 

As previously mentioned, although deep learning methods represent the state-of-the-art in 

many computer vision applications, they often require large amounts of training data to efficiently 

learn a certain task. This could pose an obstacle to commercial applications where labeled data is 

not so readily available. In that context, implementing hybrid approaches that merge traditional 

computer vision techniques with deep learning might help reduce the need for labeled data and 

decrease training times (O’Mahony et al., 2020). Alternatively, active learning techniques (Settles, 

2009) can be used to include human input in the learning process to optimize data annotation (for 

example, the system could request more examples of cows that are harder to classify or classes 

that are underrepresented). In addition, semi-supervised learning methods can leverage 
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information contained in both labeled and unlabeled data to build high-performing classifiers, 

potentially requiring smaller amounts of labeled data for training (Zhu, 2005). 

In future research, capturing images during longer periods of time throughout the animals’ 

life might help understand how long a trained network can still be useful for individual recognition 

without the need to retrain it. Additionally, it would be interesting to explore how the proposed 

methods would apply to mature dairy cows and other animal species and breeds such as Angus 

cows, or Yorkshire pigs. It would be beneficial to include more individuals in a future study as 

well, bringing the context closer to that of a commercial farm. In fact, commercial farms rarely 

hold a fixed herd for a long time. Instead, animals are constantly added or removed from the herd, 

making it necessary to either retrain the algorithms to include new individuals, or use an approach 

that is more suitable for an open herd setting, such as the one described by Andrew et al. (2021), 

that used deep metric learning to identify cattle that have never been seen before by the network. 

However, this problem still needs to be addressed in a larger scale in order to effectively implement 

visual identification systems in commercial farms or whole production systems, where hundreds 

or even thousands of individuals need to be identified and monitored simultaneously. Future 

applications should be able to dynamically integrate new animals to the system as they are added 

to the herd, using mechanisms to tag images of never-before-seen animals for later identification. 

Potential approaches for addressing such problems are explored in the fields of self-supervised and 

zero-shot learning. Certain self-supervised learning techniques such as Contrastive Learning allow 

neural networks to extract semantic representations from high-dimensional data using unlabeled 

datasets (Le-Khac et al., 2020), which could then be used to identify and cluster new examples of 

individuals that had not been seen before by the system, creating a temporary label that could later 

be mapped to a cow identification number. Furthermore, zero-shot learning consists of classifying 



58 

samples that belong to classes not observed during training, given some auxiliary information, and 

recently proposed methods have proven successful in areas of research regarding computer vision 

jointly with natural language processing (Xian et al., 2019). 

CONCLUSION 

The outcomes of this study show that it is possible to use computer vision systems to 

identify individual animals using the 3D surface of their dorsal body region. Both 2D and 3D 

representations of the dorsal surface, and the corresponding neural network architectures, can be 

used in such systems, each being more appropriate for different scenarios. Additionally, the 

experiments using images of calves taken during a period of intense growth provided evidence that 

neural networks can learn unique biometric features from the back of these animals, which remain 

recognizable even as body size changes. These findings suggest that it is possible to use neural 

networks to monitor and identify animals from an early stage of life, or as they experience rapid 

body changes. By using exclusively the body shape of the animals (either through 2D depth images 

or 3D voxels and point clouds), the proposed methods may potentially be applied to species and 

breeds from which individuals share similar coat color patterns, which would be impossible to 

recognize using RGB images. This contributes to a broader application of animal traceability and 

integrated phenotyping based on computer vision, facilitating infectious disease control, and 

improving farm productivity, food safety, consumer trust, and production sustainability. Future 

research can be developed towards investigating techniques such as semi-supervised and active 

learning, as well as hybrid approaches that merge traditional computer vision methods and deep 

learning, to provide systems that are more data efficient and potentially perform better when 

exposed to large amounts of unlabeled data. Additionally, future work pertaining to computer 

vision-based identification systems in large commercial farms should evaluate the potential of 
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novel self-supervised, zero-shot learning, and other techniques to overcome the challenge 

concerning dynamically changing herds. 
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TABLES AND FIGURES 

Table 2.1. Splits performed for the second objective, experiment 2. The ten splits were grouped 

according to the number of weeks used for training, and the four resulting groups were compared 

to evaluate the effect of adding more weeks to the training set. 

Group Weeks in training set Test week Test set size 

Two weeks 

1 and 2 3 319 

2 and 3 4 254 

3 and 4 5 250 

4 and 5 6 403 

Three weeks 

1, 2, and 3 4 254 

2, 3, and 4 5 250 

3, 4, and 5 6 403 

Four weeks 
1, 2, 3, and 4 5 250 

2, 3, 4, and 5 6 403 

Five weeks 1, 2, 3, 4, and 5 6 403 

 

Table 2.2. Splits performed for the second objective, experiment 3. The ten splits were grouped 

according to the time interval between training and test sets, and the four resulting groups were 

compared to evaluate the effect of skipping weeks between training and testing. 

Group Weeks in training set Test week Test set size 

No skipping 

1 and 2 3 319 

2 and 3 4 254 

3 and 4 5 250 

4 and 5 6 403 

Skipping one week 

1 and 2 4 254 

2 and 3 5 250 

3 and 4 6 403 

Skipping two weeks 
1 and 2 5 250 

2 and 3 6 403 

Skipping three weeks 1 and 2 6 403 
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Table 2.3. Experiments performed for the second objective. The experiments evaluated how 

changing the number of images per animal, number of weeks used for training, and time interval 

between training and testing affected the predictive performance of the algorithms. 

Experiment Images per animal Number of weeks Time interval 

1 Varying 2 No skipping 

2 80 Varying No skipping 

3 80 2 Varying 

 

Table 2.4. F1 scores for each combination of train-test split, data representation, and network 

architecture for objective 1. The best performing network was the one based on the Xception 2D 

CNN architecture. 

Train-test split Data representation Architecture F1 score 

RO1 DI3 VGG16 0.888 

RO1 DI3 Inception v3 0.904 

RO1 DI3 Xception 0.959 

RO1 PC4 PointNet 0.669 

RO1 OG5 VoxNet 0.880 

CO2 DI3 VGG16 0.718 

CO2 DI3 Inception v3 0.750 

CO2 DI3 Xception 0.804 

CO2 PC4 PointNet 0.429 

CO2 OG5 VoxNet 0.656 
1RO = Random order. 
2CO = Chronological order. 
3DI = Depth images. 
4PC = Point cloud. 
5OG = Occupancy grid (voxel). 

 

Table 2.5. F1 scores for each combination of images per animal and network architecture for the 

first experiment of objective 2. The VoxNet-based network achieved the best results in this 

experiment. Increasing the number of training images generally improved the F1 scores, up to 

around 100 images per animal. 

Images per animal VGG16 Inception v3 Xception PointNet VoxNet 

20 0.641 0.656 0.539 0.603 0.734 

40 0.546 0.770 0.701 0.697 0.917 

70 0.558 0.859 0.827 0.656 0.929 

100 0.605 0.757 0.852 0.727 0.944 

130 0.629 0.788 0.910 0.653 0.947 

154 0.643 0.763 0.858 0.630 0.939 
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Table 2.6. F1 scores for each combination of number of weeks used for training and network 

architecture for the second experiment of objective 2. The Xception-based network achieved the 

best results in this experiment. The highest score improvement happened when adding a fourth 

week to the training set. 

Number of weeks VGG16 Inception v3 Xception PointNet VoxNet 

2 0.683 0.795 0.909 0.643 0.911 

3 0.724 0.776 0.906 0.581 0.880 

4 0.695 0.706 0.970 0.463 0.903 

5 0.747 0.635 0.979 0.395 0.888 

 

Table 2.7. F1 scores for each combination of number of weeks skipped between training and 

testing and network architecture, for the third experiment of objective 2. The Xception-based 

network achieved the best results in this experiment. Skipping one week affected the F1 score, but 

it remained roughly constant after further skipping more weeks. 

Time interval VGG16 Inception v3 Xception PointNet VoxNet 

No skipping 0.704 0.746 0.917 0.533 0.917 

1 week 0.595 0.612 0.846 0.551 0.831 

2 weeks 0.535 0.654 0.835 0.441 0.806 

3 weeks 0.753 0.726 0.856 0.282 0.792 
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Figure 2.1. Example of the occupancy grid generation process: (a) shows a point cloud in 3D 

space, (b) shows the corresponding generated occupancy grid in a 4 × 4 × 4 grid space, (c) shows 

the same point cloud projected onto the XZ-plane, and (d) shows the corresponding occupancy 

grid projected onto the XZ-plane. In the occupancy grids (b and d), filled cells are assigned value 

1, and empty cells are assigned value 0. Examples were given in both 3D and 2D for clarification. 
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Figure 2.2. An example of all preprocessing stages applied to a depth image to generate an 

occupancy grid. A depth frame (a) is extracted from a video captured using the Kinect V2 sensor; 

a Mask R-CNN network detects the pixels containing the calf body, and generates a binary mask 

(b); this binary mask is applied to the point cloud generated from the depth frame, resulting in a 

point cloud of the calf body (c); this point cloud is then augmented (d) and used to generate the 

final occupancy grid (e). 
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Figure 2.3. Dataset splits for the first objective. In the random approach (a), the dataset was 

randomly split into training and test sets, including 80% and 20% of the frames, respectively. In 

the chronologically ordered approach (b), the frames from each video were assigned to the training 

or test sets based on their positions in the video: the first 80% frames were assigned to the training 

set, and the last 20% were assigned to the test set. 
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CHAPTER THREE: USING PSEUDO-LABELING TO IMPROVE PERFORMANCE OF 

DEEP NEURAL NETWORKS FOR ANIMAL IDENTIFICATION 

 

ABSTRACT 

Contemporary approaches for animal identification use deep learning techniques to 

recognize coat color patterns and identify individual animals in a herd. However, deep learning 

algorithms usually require a large number of labeled images to achieve satisfactory performance, 

which creates the need to manually label all images when automated methods are not available. In 

this study, we evaluated the potential of a semi-supervised learning technique called pseudo-

labeling to improve the predictive performance of deep neural networks trained to identify Holstein 

cows using labeled training sets of varied sizes and a larger unlabeled dataset. By using such 

technique to automatically label previously unlabeled images, we observed an increase in accuracy 

of up to 20.4 percentage points compared to using only manually labeled images for training. Our 

final best model achieved an accuracy of 92.7% on an independent testing set to correctly identify 

individuals in a herd of 59 cows. These results indicate that it is possible to achieve better 

performing deep neural networks by using images that are automatically labeled based on a small 

dataset of manually labeled images using a relatively simple technique. Such strategy can save 

time and resources that would otherwise be used for labeling, and leverage well annotated small 

datasets. 

 

INTRODUCTION 

Computer vision systems (CVS) have great potential to generate precise high-throughput 

phenotyping in several domains, such as precision medicine, crop and animal breeding, and farm 
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management. Deep neural network algorithms are the state-of-the-art in such computer vision tasks 

and they often require large amounts of data to achieve satisfactory performance (LeCun et al., 

2015). Supervised learning tasks require the training data to be annotated and most image data 

generated by CVS in agriculture are not automatically annotated or easy to annotate. Additionally, 

such CVS have the potential to generate large amounts of data that are labor- and resource-

intensive to organize, annotate, and analyze. Objects of interest in agriculture setups are usually 

challenging to be manually annotated by humans, such as individual crops in a farm plot or 

individual animals in a herd, resulting in an even more laborious and time-consuming annotation 

process which is often prone to human error. Several techniques have been proposed in the past 

decades attempting to enable deep neural networks to learn from small datasets, reducing costs 

related to data collection, annotation, and preprocessing while maintaining good predictive 

performance. Such trend can be noticed through the transition from strictly supervised approaches 

with large, annotated datasets to approaches that use partially annotated or unlabeled data that 

require less or no annotation. Among those techniques, there have been great advances in the field 

of few-shot learning (Wang et al., 2020), and more notably semi-supervised learning (SSL) (van 

Engelen and Hoos, 2020). 

In livestock systems, animal identification is the first step for individual animal 

phenotyping. Current state-of-the-art computer vision methods for animal identification usually 

require large labeled datasets that can be labor-intensive to annotate. Andrew et al. (2017) and 

(Xiao et al., 2022) trained convolutional neural networks (CNN) to identify Holstein cows using 

top-down view images of their back, Yao et al. (2019) used detection and classification CNNs for 

face detection and recognition of individual Holstein cows, Yukun et al. (2019) used Red, Green, 

Blue, Depth (RGB-D) images to identify Holstein cows and estimate their body condition scores, 
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and Hansen et al. (2018) proposed their own 2-dimensional (2D) CNN to individually identify pigs 

using images of their faces. Although such studies focused on a closed-set problem, which involves 

identification within a fixed group of animals, this scenario is not commonly encountered in 

commercial farms where the animal movement in and out of the herd is highly dynamic. 

Consequently, Andrew et al. (2021) introduced a novel approach to address the challenge of 

identifying individuals in an open-set scenario. Their method utilizes deep metric learning to 

generate image representations that exist within a latent space that facilitates the clustering of 

images belonging to the same animal, allowing for individual identification even in dynamic 

environments. Nevertheless, it remains unclear how these proposed methods would effectively 

scale for application in large commercial herds. This includes not only evaluating their predictive 

performance but also addressing the operational challenges associated with data collection, 

processing, and annotation. 

As previously mentioned, existing studies on animal identification have predominantly 

focused on fully supervised approaches that require extensive image annotation for both closed-

set and open-set scenarios, which can be labor-intensive and time-consuming. In this context, 

semi-supervised learning can be an effective tool for leveraging unlabeled data collected from 

camera systems installed at farms that would otherwise require significant human effort to 

annotate. In SSL, the machine learning algorithm learns structured information from the labeled 

portion of the dataset and uses the patterns captured from the unlabeled data to improve its 

predictive performance and generalization power. Thus, scenarios where labeling all the data 

available is too expensive or even unfeasible, but it is still possible to label part of the dataset, are 

the most adequate for SSL. In the context of livestock systems, Zhang et al. (2022) introduced an 

SSL method for teat-end condition classification on dairy cows and found a significant 
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improvement in performance by taking advantage of unlabeled data through their proposed 

algorithm. However, applications of SSL for individual animal identification using computer 

vision are yet to be explored. 

Within SSL, a popular technique is pseudo-labeling, which consists of iteratively including 

confident predictions of unlabeled data into the training dataset (Lee, 2013). Pseudo-labeling 

allows for a simple and effective way to improve the predictive performance of trained machine 

learning models when labeling more data is costly and large amounts of unlabeled data are 

available. Pseudo-labeling can be easily implemented with various machine learning algorithms 

applied to different datasets (if unlabeled data is available) and domains, including applications in 

agriculture (Yao et al., 2016; Qiao et al., 2022), medicine (Momoki et al., 2022), person re-

identification (Wu et al., 2018), and remote sensing (Zhou and Li, 2020), for example. The 

simplicity and versatility of pseudo-labeling were our main motivations for evaluating the 

application of this technique for training deep neural networks for animal identification. 

The objective of this study was to evaluate the potential of a semi-supervised learning 

technique called pseudo-labeling to improve the predictive performance of deep convolutional 

neural networks trained to identify individual Holstein cows using labeled training sets of varied 

sizes and a larger unlabeled dataset. The core emphasis of this work was not on introducing a novel 

SSL method, but rather to address a biological problem— the identification of individual animals, 

and to present a fresh perspective to approach this issue—that of semi-supervised learning. Thus, 

we focused on studying pseudo-labeling in the novel setting of animal identification, rather than 

proposing extensive modifications to current semi-supervised methods. The method evaluated in 

this study is complementary to current animal identification research, as it can be seamlessly 
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applied to previously trained models without requiring any modifications in the model architecture 

or optimization procedure. 

MATERIAL AND METHODS 

Data Collection 

Images from 59 lactating cows were taken using four Intel RealSense D435 depth cameras 

(Keselman et al., 2017) installed at the milking parlor exit lanes of the Emmons Blaine Dairy Cattle 

Research Center (Arlington, WI) between August 8th and October 7th, 2020. Top-down view 

images were captured twice a day following each milking session, triggered by cow presence 

detection within camera range. Because the cameras contained a depth sensor, the method for 

detecting a cow under the camera consisted of checking if a region inside the lane had an average 

distance from the camera below a certain threshold. For this study, we used a threshold value of 3 

m, meaning that a snapshot would be taken only if there was an object less than 3 m away from 

the camera. Given that the cameras were installed at 3.5 m high, snapshots were taken if and only 

if there was a cow under the camera. In total, 23,709 snapshots were used in this study, of which 

4,695 were labeled with the corresponding cow identification code, and 20,194 were kept 

unlabeled. The labeled snapshots were split into training, validation, and test sets according to the 

capture date, as shown in Table 3.1. The validation set was used to define the best threshold values 

for each round of the pseudo-labeling algorithm (see details in Pseudo-Labeling), and the test set 

worked as a final independent performance assessment. 

Data Preprocessing 

Each snapshot consisted of a depth and an infrared image, both with a resolution of 640 × 

480 pixels. The depth image contained, for each pixel, the distance in millimeters from the object 

in that pixel to the camera sensor, and the infrared image contained a value between 0 and 255 for 
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each pixel, ranging from black to white, respectively. An image segmentation algorithm based on 

Mask R-CNN (He et al., 2017) with ResNet-50 (He et al., 2016) as the backbone architecture was 

trained using a dataset of 843 depth images and the corresponding manually defined segmentation 

masks of cows and calves in dairy farms. This trained cow segmentation algorithm was applied to 

the depth images to generate segmentation masks for each snapshot, which were then used to 

remove all background pixels from the infrared images (i.e., pixels that did not contain the cow’s 

body, from tail to neck). Finally, the segmented images were cropped to include only the area 

containing the cow body and rotated to adjust the cow to a horizontal position. All further 

experiments used segmented infrared images. See Figure 3.1 for an example of the preprocessing 

steps applied to each snapshot. 

Neural Network Training 

All neural networks in this study were trained using the Keras (Chollet, 2015) library 

available in Python, with TensorFlow (Abadi et al., 2016) as the backend. For the full iteration of 

pseudo-labeling trained in four rounds (see details in Pseudo-Labeling), the neural networks 

followed the Xception architecture (Chollet, 2017). We have also evaluated two additional 

architectures for one round of pseudo-labeling—MobileNetV2 (Sandler et al., 2018) and NASNet 

Large (Zoph et al., 2018). We selected these architectures purposefully to represent a broader 

spectrum of the design philosophies in deep learning—MobileNetV2, a lightweight and efficient 

design suitable for mobile and embedded vision applications; NASNet Large, a modern and high-

performing architecture developed through neural architecture search; and Xception, an 

architecture that uses depthwise separable convolutions to enhance model efficiency, and it 

represents a good trade-off between model complexity and predictive performance. We compared 

the performance of each neural network architecture after one round of pseudo-labeling to study 



77 

how such design decisions interact with the SSL approach. However, it is important to underline 

that our main objective was not to comprehensively compare deep learning architectures per se, 

but to better understand the impact of using pseudo-labeling for enhancing existing animal 

identification models. 

All networks were trained with Transfer Learning using the ImageNet dataset (Deng et al., 

2009), meaning that the weights from all layers except for the last two fully-connected (FC) layers 

were initialized with the values from the original corresponding networks trained using ImageNet. 

This technique accelerates the training process as it allows the neural network to retain the 

knowledge previously learned from training using a large generic image dataset. 

During training, image augmentation was performed using the built-in image augmentation 

functionality from Keras, with the following parameters: zoom_range = 0.1, brightness_range = 

(0.2, 1.5), horizontal_flip = True, vertical_flip = True, fill_mode = ‘nearest’. This means that, 

during the training procedure, all training images were randomly zoomed in or out by up to 10%, 

had the pixel brightness adjusted to a random value between 20 and 150% of the original, and had 

a 50% chance of being flipped horizontally or vertically. For each neural network, the training 

process was performed in two stages: feature extraction and fine-tuning. In the feature extraction 

stage, the neural network was trained for 30 epochs with only the weights from the last two FC 

layers unfrozen, keeping all other weights (i.e., the ones learned from ImageNet) unchanged. Then, 

in the fine-tuning stage, weights from earlier layers were unfrozen and the network was trained for 

60 epochs with a smaller learning rate, allowing the network to adjust its weights to our more 

specific datasets and tasks. The weights were optimized using the Adam algorithm (Kingma and 

Ba, 2014) with a learning rate of 1 × 10-3 in the feature extraction stage and 1 × 10-5 in the fine-

tuning stage. 
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Pseudo-Labeling 

The technique explored in this study consists of training a convolutional neural network in 

multiple “rounds”, with each round consisting of the following steps: first, an initial training set 

labeled by humans is used to train a neural network for cow identification; then this trained network 

performs predictions on a larger unlabeled dataset; and finally, the unlabeled images with 

confident predictions are added to the training set containing previously labeled images for training 

a new neural network. A confidence threshold value controls which unlabeled images are included 

in the training set for the next round, such that only images with a prediction confidence above 

that threshold are included. Thus, the threshold value works as a trade-off between training set size 

and pseudo-label quality, dictating whether the next round will contain more images with uncertain 

predicted labels, or fewer but more certain image labels. The new neural network is trained using 

both the original manually labeled dataset and the portion of the unlabeled dataset for which the 

prediction probabilities were above the defined threshold. After that, another round of predictions 

is performed on the remaining unlabeled data, and the new images and corresponding predictions 

are included in the next pseudo-labeling round. This process is repeated until a given stopping 

condition is achieved. For this study we performed up to four rounds of pseudo-labeling for each 

experiment. Figure 3.2 illustrates the steps that compose one round of pseudo-labeling. 

It is important to note the difference between the technique explored in this study and the 

one proposed by Lee (2013). Lee (2013) proposes that labeled and unlabeled data are used 

simultaneously during the training schedule and that the pseudo-labels are recalculated after every 

weight update. Alternatively, in this study we perform multiple rounds of training, including new 

unlabeled data with the corresponding predicted labels only after full training schedules. We chose 

this method so that we could define a threshold value after each training round to only include 
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unlabeled images with higher probabilities, as opposed to including every unlabeled image in the 

entire training procedure. Additionally, the method used in this study can be seamlessly applied to 

previously trained networks without any modifications in the original network architecture or 

optimization procedure, which might prove useful as a complementary, additional step for 

enhancing current animal identification networks. Part of our experiments consisted of finding the 

best threshold values based on the initial labeled training set. 

Experiments 

We performed four types of experiments to evaluate the best scenarios for applying pseudo-

labeling for animal identification using deep neural networks. Such experiments consisted of (1) 

varying the confidence threshold for a prediction to be included in the next training step, (2) 

evaluating different neural network architectures for one round of pseudo-labeling, (3) performing 

multiple rounds of pseudo-labeling for one of the architectures, and (4) evaluating the effectiveness 

of this technique with varying manually labeled initial training set sizes. 

Threshold Values 

When performing pseudo-labeling, a confidence threshold value must be defined to dictate 

which unlabeled images and their corresponding predictions are included in the training set for the 

next training round. This confidence threshold is applied over the predicted confidence values 

generated by the trained neural network for each new image. The last layers of the deep neural 

networks utilized in this study contained a softmax activation function with the number of output 

units corresponding to the number of classes (in this case, one class for each animal, resulting in 

59 units). This means that the softmax function, with the formula described in Eq. 3.1, was applied 

to the output of such networks, resulting in output values between 0 and 1 for each class, and the 

total sum of all output values equaling exactly 1. For that reason, the output of a neural network 
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that contains a softmax activation function in its last layer can be interpreted as the confidence 

value that the network believes a given data point belongs to each class. 

𝜎(𝒛)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (Eq. 3.1) 

where z is the K-dimensional output of the network before applying softmax, i and j are class 

indices, e is Euler’s number, K is the total number of classes, and 𝜎 represents the softmax function. 

The threshold values evaluated in this study were 0 (meaning that all unlabeled data would 

be included in the next training set), 0.5, 0.75, 0.90, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999, 0.99999, 

0.999999, and 0.9999999. These values were chosen based on an analysis of the output confidence 

values generated by the initial trained network on unlabeled images. The implementation of the 

neural networks in this study allowed for output values represented by a 64-bit floating-point 

variable in Python ranging from 0 to 1, which can accommodate real numbers with 7 decimal digits 

or more, thus allowing for all threshold values chosen to be relevant. It is important to note that 

optimal threshold values for pseudo-labeling are highly dependent on the machine learning 

algorithm used and its possible output values. 

Different Neural Network Architectures 

Aiming to study the impact of different architectural design philosophies on the use of 

pseudo-labeling for this particular problem, we evaluated three neural network architectures for 

one round of pseudo-labeling—Xception (Chollet, 2017), MobileNetV2 (Sandler et al., 2018), and 

NASNet Large (Zoph et al., 2018). We chose a variety of architectures that have varying number 

of parameters and design paradigms; however, it was not within the scope of this work to perform 

a comprehensive comparison of deep neural network architectures. 

Multiple Rounds 
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For the Xception architecture, we evaluated the impact of performing multiple rounds of 

pseudo-labeling. We chose to further explore the technique on such architecture because it 

provided a good trade-off between predictive performance, number of parameters, and training 

time. For each pseudo-labeling round, the best threshold value was chosen based on the accuracy 

on the validation set, with potentially different optimal threshold values being selected on each 

round. After four rounds of pseudo-labeling, we evaluated the predictive performance of the final 

resulting Xception model on the test set and compared it with that achieved by the original model 

(trained using only manually labeled images) on the same test set. 

Initial Labeled Training Set Size 

In order to evaluate how the initial proportion of labeled and unlabeled images affects the 

final achieved accuracy after performing multiple rounds of pseudo-labeling, we generated random 

reduced versions of the initial manually labeled training set. Datasets containing 10%, 25%, 50%, 

75%, and 90% of the manually labeled training set were generated using random sampling and 

used as initial training sets for four rounds of pseudo-labeling each. The generated datasets 

contained 235, 588, 1,177, 1,765, and 2,118 manually labeled images, respectively, which resulted 

in labeled proportions of 1%, 3%, 5%, 8%, and 9%. For this experiment, the Xception architecture 

was evaluated for four pseudo-labeling rounds. 

Evaluation Metrics 

Each threshold value generated a different neural network, trained using both the labeled 

images and the unlabeled images whose prediction confidences surpassed the confidence 

threshold. For each pseudo-labeling round, the best threshold value was the one that generated the 

neural network that achieved the highest accuracy on the validation set (consisting of 1,161 

images). Both the baseline neural network, trained using just manually labeled images, and the 
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models generated after each pseudo-labeling round were evaluated on an independent test set 

containing 1,180 images that were not included in the training or the validation sets, in order to 

assess the performance improvements achieved from performing pseudo-labeling. For each model, 

both the accuracy and the Mean Average Precision (mAP) on the test set were calculated. 

Accuracy corresponds to the proportion of correctly classified images over the total number of 

images in the test set, and mAP corresponds to the micro-average of the area under the precision-

recall curve for each class, averaged over all classes. Accuracy was used as the main performance 

metric because both validation and test sets were balanced, meaning that the number of images per 

class was the same for all classes, and mAP was calculated to allow for comparison with previous 

related work in dairy cattle identification. 

RESULTS AND DISCUSSION 

The baseline Xception model, trained using the initial labeled training set containing all 

2,354 images, achieved an accuracy of 83.45% on the validation set and 77.54% on the test set. 

As described in Evaluation Metrics, the calculated mAP was 90.48% on the validation and 85.23% 

on the testing set. Although the performance on the validation set was slightly higher than on the 

testing set, there is no direct explanation for that difference as the images from both validation and 

testing sets were taken on different days from those in the training set, as previously explained in 

Data Collection. The baseline MobileNetV2 and NASNet Large models achieved accuracies of 

81.55% and 85.00% on the validation set, and 75.00% and 77.03% on the test set, respectively. 

These findings were consistent with our expectations, given the differences in model architecture 

and parameter count. MobileNetV2, being a lightweight model with 3.5 million parameters, 

NASNet Large, a larger model with 88.9 million parameters, and Xception, which falls in between 
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with 22.9 million parameters, demonstrated the well-known trend that models with higher 

parameter counts tend to exhibit greater predictive performance. 

In our study, hyperparameter tuning was not performed for training the neural networks, 

since the network architectures were the same as in the corresponding papers, and the weights were 

initialized using Transfer Learning. Still, we generated a validation set to choose the best threshold 

values for each round of the pseudo-labeling algorithm. Because of that, we compared the 

predictive performance of the baseline models (trained using the 2,354 labeled training set images, 

before any pseudo-labeling was performed) on the validation set with other previously published 

studies using computer vision to identify Holstein cows. Zhao and He (2015) found an accuracy 

of 90.55% using side-view images of 30 cows; Andrew et al. (2017) found an mAP of 86.07% for 

individual identification among 89 cows; Zin et al. (2018) found an accuracy of 97.01% among 45 

cows; and more recently, Xiao et al. (2022) achieved an accuracy of 98.67% using top-view images 

of 48 cows. These results indicate that the performance of our baseline models agreed with other 

similar studies that used computer vision to identify Holstein cows based on their coat color 

patterns. 

On the first round of pseudo-labeling as described in Pseudo-Labeling, the total number of 

images used for training decreased almost exponentially as the threshold value approached 1. This 

phenomenon persisted across all three evaluated architectures, as shown in Figure 3.3. Lower 

threshold values add more images to the next training round, however, with more uncertainty on 

the pseudo-labels. Conversely, higher threshold values restrict the images used in the next training 

round to only those that contain pseudo-labels with higher confidence, decreasing the training set 

size but potentially increasing the quality of the pseudo-labels. As shown in Figure 3.4, the 

accuracy on the validation set starts increasing as the threshold increases, until it reaches a 
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maximum value at 0.999 (for Xception and MobileNetV2) or 0.99999 (for NASNet Large), and 

then starts decreasing as the threshold value increases further. These results reveal how one can 

adjust the threshold value to control the trade-off between the number of images used for training 

and the pseudo-label quality of the previously unlabeled images added after pseudo-labeling. 

Finding the threshold value that optimizes this trade-off is key for achieving the best results when 

using this pseudo-labeling technique. 

For each architecture, we evaluated the best achieved test accuracy after one round of 

pseudo-labeling and the average training times on the same NVIDIA GeForce RTX 2080 Graphics 

Processing Unit (GPU) (NVIDIA; Santa Clara, CA). Results are shown in Table 3.2. 

Since the Xception architecture provided the best trade-off between predictive and 

computational performance, we decided to only use this architecture for further experiments. For 

the Xception architecture, the best threshold value (i.e., the one that maximizes validation 

accuracy) in the first round of pseudo-labeling was found to be 0.999. The new model, trained 

using both the initial manually labeled training set and unlabeled images with a prediction 

confidence of above 0.999, was then used to perform predictions on the remaining unlabeled 

images, resulting in a new round of pseudo-labeling. On this second round, the best threshold value 

found was 0.999999, achieving a validation accuracy of 94.66%, as shown in Figure 3.5. After 

performing the same procedure two more times, the model resulting from the third round of 

pseudo-labeling used a total of 21,667 images for training (2,354 manually labeled and 19,313 

pseudo-labeled), and the model resulting from the fourth round of pseudo-labeling used a total of 

22,418 images for training (2,354 manually labeled and 20,064 pseudo-labeled). The final model 

achieved an accuracy of 95.25% on the validation set and 92.71% on the test set, consisting of a 

15.17% absolute and 19.6% relative increase on testing accuracy when compared to the original 
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model trained using just the manually labeled images. These results show the great potential for 

improving the predictive performance of trained neural networks by using this relatively simple 

pseudo-labeling technique to leverage the information contained in large unlabeled image datasets.  

Lee (2013) proposed the inclusion of an alpha hyperparameter which dictates the relative 

weight of the unlabeled portion of the data on the loss function value calculated at each training 

iteration. This process is equivalent to Entropy Regularization, and the choice of alpha controls 

the trade-off between giving more importance to unlabeled or labeled data during each stage of 

training. The rationale for defining a schedule for alpha is that in earlier epochs its value should 

be low, allowing the network to learn mostly from labeled data, and as the network becomes more 

proficient throughout training, the alpha value can be adjusted to higher values to allow for 

unlabeled data to be included in training with potentially more accurate predictions. This procedure 

uses every image from the unlabeled dataset, attributing a weight to the importance of the entire 

unlabeled dataset during training. Conversely, the confidence thresholding technique utilized in 

this study allows for a more discriminating choice of unlabeled images to be used in subsequent 

training rounds, completely excluding part of the unlabeled dataset, but simultaneously weighting 

labeled and unlabeled images the same during training. 

Oliver et al. (2018) evaluated multiple SSL methods, focusing exclusively on those which 

consist of adding an additional loss term during training. The methods assessed in their study were 

either based on Consistency Regularization (Π-Model, Mean Teacher, and Virtual Adversarial 

Training), or pseudo-labeling. Their implementation of pseudo-labeling was like that proposed by 

Lee (2013) in the sense that unlabeled and labeled data were used in training simultaneously. 

However, Oliver et al. (2018) did not discuss the use of an alpha hyperparameter, and instead 
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incorporated thresholding, with a fixed value of 0.95 as found during their hyperparameter tuning 

procedure. 

In the current study, similarly to Oliver et al. (2018), we used a thresholding parameter to 

select which unlabeled images would be used for training, however, their corresponding pseudo-

labels were not updated dynamically during training. Instead, the pseudo-labels were only updated 

after each full round of training, including new unlabeled images as their corresponding prediction 

confidences reached a value above the defined threshold. Defining the range of thresholds to be 

tested during hyperparameter tuning required a careful evaluation of prediction confidences in the 

unlabeled dataset. Threshold values that differed only after the 5th decimal place, for example, still 

resulted in significant performance and training set size differences, as seen in Figures 3.3 and 3.4. 

Figure 3.6 illustrates histograms of the confidence values predicted by the baseline fully supervised 

Xception model on the unlabeled dataset. 

As described in Initial Labeled Training Set Size, the same 4-round procedure was repeated 

starting with reduced baseline datasets. The original manually labeled training set was reduced to 

10%, 25%, 50%, 75%, and 90% of its size, maintaining class proportions. Then, the accuracy on 

the same fixed testing set was evaluated at the end of the fourth round and compared to the test 

accuracy before performing pseudo-labeling. The results are shown in Table 3.3. Even when 

reducing the starting training dataset to 50% of its original size, the network resulting after the end 

of four rounds of pseudo-labeling could achieve a predictive performance better than that of the 

full manually labeled dataset. Even on very small labeled datasets (average of 20 images per cow, 

which corresponds to approximately 5% of the total number of labeled and unlabeled images 

dedicated to training), performing this pseudo-labeling technique could still significantly improve 

the accuracy of the trained neural networks. In other words, by applying the pseudo-labeling 
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technique explored in this study, a neural network trained for animal identification using a fraction 

of the labeled images can achieve comparable or even better results than a neural network trained 

using more labeled images but without performing pseudo-labeling. 

CONCLUSION 

The main goal of this study was to present a new perspective to approach the problem of 

animal identification using computer vision—using semi-supervised learning. We evaluated the 

potential of a relatively simple semi-supervised learning technique called pseudo-labeling to 

improve the predictive performance of neural networks trained to identify individual Holstein 

cows. The method evaluated in this study is complementary to current animal identification 

research, as it can be seamlessly applied to previously trained models without requiring 

modifications in the model architecture or optimization procedure. We believe that this use-

inspired research highlights the potential of the evaluated method as a tool for advancing the field 

of animal identification, as it could be applicable for both closed- and open-set problems. 

Subsequent research could focus on comparing the evaluated method with other semi-supervised 

learning techniques, including those involving retraining a model from scratch. Furthermore, there 

is room for proposing modifications to existing SSL methods, tailoring the algorithms specifically 

to the task of animal identification. Additionally, it would be interesting to explore the efficacy of 

SSL techniques in the open-set scenario, as it reflects a more realistic setting for dynamic 

commercial herds. 

ACKNOWLEDGMENTS 

This research was performed using the computational resources and assistance of the 

University of Wisconsin- Madison Center for High Throughput Computing (CHTC) in the 

Department of Computer Sciences. The CHTC is supported by University of Wisconsin-Madison, 



88 

the Advanced Computing Initiative, the Wisconsin Alumni Research Foundation, the Wisconsin 

Institutes for Discovery, and the National Science Foundation, and is an active member of the 

Open Science Grid, which is supported by the National Science Foundation and the U.S. 

Department of Energy’s Office of Science. The authors would like to thank the financial support 

from the USDA National Institute of Food and Agriculture (Washington, DC; grant 2023-68014-

39821/accession no. 1030367) and USDA Hatch (Accession number: 7002609). 

  



89 

REFERENCES 

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, 

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. 

Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. 2016. TensorFlow: A 

System for Large-Scale Machine Learning. Pages 265–283 in 12th USENIX Symposium on 

Operating Systems Design and Implementation (OSDI 16). USENIX Association, 

Savannah, GA. 

Andrew, W., J. Gao, S. Mullan, N. Campbell, A.W. Dowsey, and T. Burghardt. 2021. Visual 

identification of individual Holstein-Friesian cattle via deep metric learning. Comput 

Electron Agric 185:106133. doi:https://doi.org/10.1016/j.compag.2021.106133. 

Andrew, W., C. Greatwood, and T. Burghardt. 2017. Visual Localisation and Individual 

Identification of Holstein Friesian Cattle via Deep Learning. Pages 2850–2859 in 2017 

IEEE International Conference on Computer Vision Workshops (ICCVW). 

Chollet, F. 2015. Keras. 

Chollet, F. 2017. Xception: Deep learning with depthwise separable convolutions. Pages 1800–

1807 in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, 

CVPR 2017. 

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A large-scale 

hierarchical image database. Pages 248–255 in 2009 IEEE Conference on Computer Vision 

and Pattern Recognition. 

van Engelen, J.E., and H.H. Hoos. 2020. A survey on semi-supervised learning. Mach Learn 

109:373–440. doi:10.1007/s10994-019-05855-6. 

Hansen, M.F., M.L. Smith, L.N. Smith, M.G. Salter, E.M. Baxter, M. Farish, and B. Grieve. 

2018. Towards on-farm pig face recognition using convolutional neural networks. Comput 

Ind 98:145–152. doi:https://doi.org/10.1016/j.compind.2018.02.016. 

He, K., G. Gkioxari, P. Dollar, and R. Girshick. 2017. Mask R-CNN. Page in Proceedings of the 

IEEE International Conference on Computer Vision (ICCV). 

He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. Pages 

770–778 in Proceedings of the IEEE conference on computer vision and pattern 

recognition. 

Keselman, L., J.I. Woodfill, A. Grunnet-Jepsen, and A. Bhowmik. 2017. Intel(R) 

RealSense(TM) Stereoscopic Depth Cameras. Pages 1267–1276 in 2017 IEEE Conference 

on Computer Vision and Pattern Recognition Workshops (CVPRW). 

Kingma, D.P., and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980. 

LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521:436–444. 

doi:10.1038/nature14539. 



90 

Lee, D.-H. 2013. Pseudo-label: The simple and efficient semi-supervised learning method for 

deep neural networks. Page 896 in Workshop on challenges in representation learning, 

ICML. Atlanta. 

Momoki, Y., A. Ichinose, Y. Shigeto, U. Honda, K. Nakamura, and Y. Matsumoto. 2022. 

Characterization of Pulmonary Nodules in Computed Tomography Images Based on 

Pseudo-Labeling Using Radiology Reports. IEEE Transactions on Circuits and Systems for 

Video Technology 32:2582–2591. doi:10.1109/TCSVT.2021.3073021. 

Oliver, A., A. Odena, C.A. Raffel, E.D. Cubuk, and I. Goodfellow. 2018. Realistic Evaluation of 

Deep Semi-Supervised Learning Algorithms. Page in Advances in Neural Information 

Processing Systems. Curran Associates, Inc. 

Qiao, Y., T. Xue, H. Kong, C. Clark, S. Lomax, K. Rafique, and S. Sukkarieh. 2022. One-Shot 

Learning with Pseudo-Labeling for Cattle Video Segmentation in Smart Livestock Farming. 

Animals 12. doi:10.3390/ani12050558. 

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. 2018. MobileNetV2: Inverted 

Residuals and Linear Bottlenecks. Page arXiv:1801.04381 in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR). 

Wang, Y., Q. Yao, J.T. Kwok, and L.M. Ni. 2020. Generalizing from a Few Examples: A Survey 

on Few-shot Learning. ACM Comput. Surv. 53. doi:10.1145/3386252. 

Wu, Y., Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang. 2018. Exploit the Unknown 

Gradually: One-Shot Video-Based Person Re-identification by Stepwise Learning. Pages 

5177–5186 in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 

Xiao, J., G. Liu, K. Wang, and Y. Si. 2022. Cow identification in free-stall barns based on an 

improved Mask R-CNN and an SVM. Comput Electron Agric 194:106738. 

doi:https://doi.org/10.1016/j.compag.2022.106738. 

Yao, C., X. Zhu, and K.A. Weigel. 2016. Semi-supervised learning for genomic prediction of 

novel traits with small reference populations: an application to residual feed intake in dairy 

cattle. Genetics Selection Evolution 48:84. doi:10.1186/s12711-016-0262-5. 

Yao, L., Z. Hu, C. Liu, H. Liu, Y. Kuang, and Y. Gao. 2019. Cow face detection and recognition 

based on automatic feature extraction algorithm. Page in Proceedings of the ACM Turing 

Celebration Conference - China. Association for Computing Machinery, New York, NY, 

USA. 

Yukun, S., H. Pengju, W. Yujie, C. Ziqi, L. Yang, D. Baisheng, L. Runze, and Z. Yonggen. 

2019. Automatic monitoring system for individual dairy cows based on a deep learning 

framework that provides identification via body parts and estimation of body condition 

score. J Dairy Sci 102:10140–10151. doi:https://doi.org/10.3168/jds.2018-16164. 

Zhang, Y., I.R. Porter, M. Wieland, and P.S. Basran. 2022. Separable Confident Transductive 

Learning for Dairy Cows Teat-End Condition Classification. Animals 12. 

doi:10.3390/ani12070886. 

Zhao, K., and D. He. 2015. Recognition of individual dairy cattle based on convolutional neural 

networks. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural 

Engineering 31:181–187. doi:10.3969/j.issn.1002-6819.2015.05.026. 



91 

Zhou, Y., and X. Li. 2020. Unsupervised Self-training Algorithm Based on Deep Learning for 

Optical Aerial Images Change Detection arXiv:2010.07469. 

doi:10.48550/arXiv.2010.07469. 

Zin, T.T., C.N. Phyo, P. Tin, H. Hama, and I. Kobayashi. 2018. Image technology based cow 

identification system using deep learning. Pages 236–247 in Proceedings of the 

international multiconference of engineers and computer scientists. 

Zoph, B., V. Vasudevan, J. Shlens, and Q. V Le. 2018. Learning Transferable Architectures for 

Scalable Image Recognition. Page arXiv:1707.07012 in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR). 

 

  



92 

TABLES AND FIGURES 

Table 3.1. Capture dates and total number of images contained in each dataset split. Care was 

taken to ensure that images contained in the training, validation, and test sets were collected in 

different days, simulating a realistic scenario where a model is trained on certain dates and its 

accuracy is tested on future dates. 

Dataset split Initial date Final date Number of images 

Training August 8th
 August 9th 2,354 

Validation August 10th August 20th 1,161 

Test September 2nd October 7th 1,180 

Unlabeled August 21st September 1st 20,194 

 

Table 3.2. Best predictive accuracy, time to train the baseline model, and the minimum and 

maximum training times for the first round of pseudo-labeling for each architecture. The Xception 

architecture provided a good trade-off between predictive and computational performance, so we 

decided to further investigate only this architecture in the subsequent experiments. 

Architecture 

Baseline 

training time 

(minutes) 

Minimum 

training time 

(minutes) 

Maximum 

training time 

(minutes) 

Baseline test 

accuracy 

(%) 

Best test 

accuracy 

(%) 

Xception 170 224 1,350 77.5 90.2 

MobileNetV2 146 132 953 75.0 85.7 

NASNet Large 200 331 2,341 77.0 91.3 
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Table 3.3. Training set size, test set accuracy, and percentage of images utilized (considering 

manually labeled and unlabeled images dedicated for training) before any pseudo-labeling and 

after performing four rounds of pseudo-labeling. Even starting with as few as 5% of the total 

images available, performing pseudo-labeling allowed for up to 94% of the images to be retrieved, 

labeled, and used for training. The resulting neural networks achieved a relative increase in 

accuracy between 20 and 40% when compared to the networks trained without pseudo-labeling. a 

Test accuracy after performing four rounds of pseudo-labeling. 

Dataset 

Baseline 

training 

set size 

Baseline 

test 

accuracy 

(%) 

Final 

training 

set size 

Final test 

accuracy1 

(%) 

% Test 

accuracy 

increase 

Initial 

% of 

images 

utilized 

Final % 

of 

images 

utilized 

10% 233 33.6 14,424 42.2 26 1 64 

25% 585 51.5 18,972 71.9 40 3 84 

50% 1,177 70.9 21,138 89.7 27 5 94 

75% 1,769 71.4 21,920 89.7 26 8 97 

90% 2,123 74.2 22,280 91.3 23 9 99 

full 2,354 77.5 22,418 92.7 20 10 99 
1Test accuracy after performing four rounds of pseudo-labeling 
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Figure 3.1. Example of a snapshot after each preprocessing stage: (a) shows the original captured 

depth image; (b) shows the original captured infrared image; (c) shows the predicted segmentation 

mask generated from the trained Mask R-CNN algorithm; (d) shows the segmented infrared image, 

after applying the predicted segmentation mask to the original infrared image; and (e) shows the 

resulting image from cropping and rotating (d) to only contain the area around the cow. 
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Figure 3.2. One round of pseudo-labeling, comprising of: training an initial neural network; 

running predictions on unlabeled data; and training a new neural network using both initial labeled 

data and unlabeled data with confident predictions, using the corresponding predicted classes as 

labels (pseudo-labels). Blue points correspond to labeled data, gray points correspond to unlabeled 

data, and orange points correspond to originally unlabeled data whose prediction confidence is 

greater than a given threshold. In the third step, such unlabeled images (orange points) are assigned 

their predicted classes as labels and are added to the training set for training a new neural network. 
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Figure 3.3. Number of resulting training images after filtering unlabeled data predictions using 

different threshold values. Threshold values were set to 0, 0.5, 0.75, 0.90, 0.95, 0.98, 0.99, 0.999, 

0.9999, 0.99999, 0.999999, 0.9999999. Unlabeled images are filtered based on the prediction 

confidence resulting from the trained baseline model, which corresponds to the highest value in a 

neuron from the output layer after applying the softmax function (Eq. 3.1). Higher threshold values 

restrict the images used in the next training round to only those that contain pseudo-labels with 

higher confidence, decreasing the training set size but potentially increasing the quality of the 

pseudo-labels. 
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Figure 3.4. Validation set accuracy of the neural networks following each evaluated architecture, 

trained using images filtered based on different confidence threshold values. Threshold values 

were set to 0, 0.5, 0.75, 0.90, 0.95, 0.98, 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999. The 

best models for each architecture, represented with stars, were trained using both manually labeled 

images and unlabeled images (and their corresponding predicted labels) with confidence 

predictions above the optimal thresholds using the corresponding baseline model. Finding the best 

threshold value is key to the success of applying pseudo-labeling, as lower threshold values tend 

to add too many noisy (and possibly wrong) pseudo-labels, and higher threshold values tend to 

excessively restrict the addition of unlabeled data, approaching the results achieved with the 

baseline model. 
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Figure 3.5. Accuracy on the validation and test sets of the trained networks after one, two, three, 

and four rounds of pseudo-labeling using the best threshold values in each round. The performance 

increases considerably after a single round of pseudo-labeling and remains roughly steady after 

the subsequent rounds. 
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Figure 3.6. Distribution of the confidence values predicted by the baseline fully supervised 

Xception model on the unlabeled dataset illustrated through a histogram containing evenly 

distributed bins of size 0.1 (a), and through a histogram with bins between 0.9 and 1.0 to better 

indicate the distribution of confidence values closer to 1 (b). Although not numerically equal, bins 

in (b) were set to visually have equal widths for illustration purposes. 
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CHAPTER FOUR: EARLY DETECTION OF SUBCLINICAL KETOSIS IN DAIRY COWS – 

INTEGRATING IMAGE AND TEXT INTO A MULTIMODAL MACHINE LEARNING 

PIPELINE 

 

ABSTRACT 

Computer vision systems (CVS) and wearable sensors can generate high-throughput 

animal-level phenotypes that can be used to monitor potential health problems, animal growth, and 

welfare. CVS can monitor minute changes in a cow’s body shape, and wearable sensors can 

capture their behavioral patterns, which are both associated with the risk of a dairy cow developing 

metabolic disorders in the transition period. The objectives of this study were (1) to explore 

different computer vision techniques for extracting body shape features from depth images of dairy 

cows, and (2) to combine tabular data with features extracted from images and text into a machine 

learning pipeline for the early detection of subclinical ketosis (SCK). The proposed machine 

learning system combines data collected exclusively during prepartum to determine the risk of 

SCK during the first 15 days of lactation, defined based on the plasma beta-hydroxybutyrate 

(BHB) concentrations measured during that period. A total of 276 depth videos from 92 cows were 

individually collected once a week from 21 to 7 days prior to calving. From each video, 50 frames 

were extracted and processed using three different approaches. After removing background pixels, 

features were extracted from each frame using a (1) convolutional neural network (CNN) trained 

for body condition score (BCS) prediction, and (2) sampling depth values between automatically 

detected keypoints on the body surface of the cows. Features were also extracted from sequences 

of frames using (3) a CNN coupled with a recurrent neural network (CNN-RNN) for future BCS 

prediction. Tabular data included cow history information and prepartum feeding behavior and 
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activity, while unstructured text data included notes recorded in the farm management software 

and the structured tabular data converted to unstructured text. Features were extracted from text 

using large language models (LLM) for embedding extraction, allowing information contained in 

textual data to be included in the SCK prediction machine learning pipeline. The features extracted 

from each data source were combined to train Random Forest (RF) models for postpartum SCK 

prediction. To perform model evaluation, 20 random sets of 19 cows were sampled with 

replacement, determining 20 independent test sets. For each test set, data from the remaining cows 

were used to train and perform hyperparameter tuning on the RF models using 5-fold cross-

validation. The best RF models trained using only image features achieved F1 scores of 0.413 (± 

0.182), 0.455 (± 0.153), and 0.493 (± 0.110) when extracting features via the BCS CNN, 

anatomical keypoints, and future BCS CNN-RNN approaches, respectively. The best RF models 

integrating image features and tabular data achieved an average F1 score of 0.706 (± 0.125), which 

was superior to the models trained using only tabular data (F1 score = 0.655 ± 0.094). When 

combining tabular and text data, the best RF models achieved an average F1 score of 0.681 (± 

0.209), which was also greater than the one achieved using only tabular data. These results indicate 

that integrating image, text, and tabular data representing prepartum body shape, feeding behavior, 

cow activity, and cow history information via the proposed machine learning pipeline can be a 

powerful tool for the early detection of SCK in dairy cows in an automated manner. Additionally, 

leveraging modern deep learning techniques for extracting features from high-dimensional 

unstructured data such as images and text proved to be beneficial for improving the performance 

of the trained models. The proposed system could allow the implementation of preventive practices 

in dairy farms, reducing costs associated with subclinical ketosis, and improving animal health and 

welfare. 
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INTRODUCTION 

Transition dairy cow metabolism, management, and prevention of peripartum diseases 

have been the primary focus of dairy cattle research over the past two decades (Drackley, 1999; 

LeBlanc, 2010; Cardoso et al., 2020). During the transition period, dairy cows usually experience 

negative energy balance (NEB) to support the high energy demands of lactation. The severity of 

NEB can increase the risk of a variety of peripartum disorders, such as retained placenta (Cameron 

et al., 1998), metritis (Hammon et al., 2006), endometritis (Dubuc et al., 2010), displaced 

abomasum (LeBlanc et al., 2005), ketosis (Green et al., 1999), and hypocalcemia (Horst et al., 

1994). Among the peripartum disorders associated with severe NEB, ketosis is one of the most 

prevalent, and it causes large economic losses on dairy farms due to costs of treatment, reduced 

productive and reproductive performance, and increased culling rates (Steeneveld et al., 2020). 

Moreover, the greater incidence of health problems negatively impacts animal welfare, longevity, 

and public perception of the dairy industry. 

According to (Grummer, 1993), an important indicator of NEB is an elevation in plasma 

non-esterified fatty acid (NEFA) concentrations. However, frequently assessing accurate plasma 

NEFA values can be challenging, as it requires blood tests or milk fatty acids analysis (Jorjong et 

al., 2014; Dórea et al., 2017; Menezes et al., 2024), which can be costly or labor-intensive to 

perform. Similarly, current methods for detecting ketosis events in large farm operations may not 

be as reliable as laboratory analyses (Wilson and Goodell, 2013; Lei and Simões, 2021) and are 

also labor intensive, as they require collecting blood or milk samples from the cows to be tested 

(Enjalbert et al., 2001; de Roos et al., 2007). Additionally, to the best of our knowledge, there are 

no proposed automated methods in the literature for assessing, prior to calving, the risk of a cow 

developing subclinical ketosis during early lactation. 
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Body condition score (BCS) can be used as a tool to assess the impact of NEB in early 

lactating cows. A high BCS in prepartum cows is associated with greater risks of health disorders 

and poorer reproductive performance, primarily due to elevated body fat mobilization (Buckley et 

al., 2003; Overton and Waldron, 2004; Roche et al., 2009, 2015). However, BCS is highly 

subjective and prone to inconsistencies across different evaluators, and even within the same 

evaluator. To address this issue, computer vision systems (CVS) have been developed to assess 

BCS in a more systematic way (Qiao et al., 2021). Nevertheless, these computer vision systems 

are trained using human-generated assessments, so they retain some of the subjectivity from the 

evaluators. Additionally, the standard quarter-point divisions used for evaluating BCS do not 

enable the detection of subtle changes in body shape, or the distinction between different body 

shapes that fit in the same quarter-point category (for example, two animals might have different 

fat distributions around the hooks and the pins, and still be given the same BCS). A way to 

overcome these limitations is to extract, from images captured from the animals, geometric 

features that characterize body shape change, since such features are objective values that do not 

rely on human evaluation. 

Previous studies demonstrated that depth images can generate precise biometric 

measurements related to body shape, such as volume, torso area, length, height, and width, in pigs 

(Fernandes et al., 2019, 2020) and cattle (Cominotte et al., 2020), as well as features specifically 

related to body fat stores in dairy cattle (Song et al., 2019; Liu et al., 2020; Zin et al., 2020). 

Furthermore, convolutional neural networks (CNN) have been used to automatically extract 

nonlinear and invariant features from depth images in the context of livestock farming (Borges 

Oliveira et al., 2021; Caffarini et al., 2022). The features extracted using such method are often 

difficult to interpret directly, but they represent important characteristics of the objects contained 
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in the image and can be used in combination with other machine learning techniques to perform 

classification tasks (Andrew et al., 2017; Qiao et al., 2019). Thus, CNNs trained to predict BCS, 

such as the one proposed by Yukun et al. (2019), could be used to extract features related to body 

shape. 

Feeding and activity behavior during peripartum can be early indicators of subclinical 

ketosis in dairy cows (González et al., 2008; Goldhawk et al., 2009; Itle et al., 2015). Such 

behavioral data can be automatically collected using electronic roughage intake control bins and 

activity monitoring ear tags. Additionally, farm employees usually record textual notes in their 

farm management software including pen moves, vaccine and medication administration, 

pregnancy checks, insemination procedures, health events, and other management information. 

Recently, large language models (LLM) have achieved great success in extracting quantitative 

information from text in the form of contextual embeddings for knowledge retrieval, anomaly 

detection, text classification, and text clustering (Min et al., 2023). Such embeddings extracted 

from cow-specific text notes recorded in farm management software could potentially contain 

important information that helps predict the risk of diseases in the herd. 

The objectives of this study were (1) to explore different computer vision techniques for 

extracting body shape features from depth images of dairy cows, and (2) to combine tabular data 

with features extracted from images and text into a machine learning pipeline for the early 

detection of subclinical ketosis (SCK). The proposed machine learning system combines data 

collected exclusively during prepartum to determine the risk of SCK during the first 15 days of 

lactation, defined based on the plasma beta-hydroxybutyrate (BHB) concentrations measured 

during that period. 

MATERIAL AND METHODS 
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The proposed machine learning pipeline consisted of (1) using deep learning and image 

processing techniques to extract features related to body shape from depth images collected from 

dairy cows during prepartum; (2) calculating descriptive variables from prepartum feeding 

behavior, cow activity, and cow history data; (3) extracting features from textual data using LLMs; 

and (4) integrating all the extracted features into machine learning models that predict, using 

exclusively prepartum data, the cows with a high risk of developing subclinical ketosis during the 

first 15 days of lactation. In this last step, we evaluated the impact of using different feature 

extraction approaches for image and textual data on the predictive performance of the models. 

Figure 4.1 illustrates these steps. 

While structured tabular data can generally be used directly to train machine learning 

models for phenotype prediction, unstructured data such as images and text require a feature 

extraction step to convert them into lower-dimensional structured features first. Exploring different 

approaches for extracting features from image and textual data was a crucial step in the proposed 

machine learning pipeline, as it enabled the inclusion of important information originating from 

this high-dimensional unstructured data that would otherwise not be possible to be used in 

predictive modeling. 

Image Feature Extraction 

Three different approaches were evaluated for extracting features from prepartum depth 

images: (1) extracting the output of the second-to-last layer of a CNN trained for BCS prediction; 

(2) sampling depth values between automatically detected keypoints on the body surface of the 

cows; and (3) extracting the output of the second-to-last layer of a convolutional and recurrent 

neural network (CNN-RNN) trained for future BCS prediction using sequences of depth frames 

of the same cow taken on consecutive weeks. 
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Prepartum Depth Images Dataset 

Videos from 115 multiparous Holstein cows, housed at the Emmons Blaine Dairy Cattle 

Research Center (Arlington, WI), were manually collected weekly from 21 to 7 days before the 

expected calving date, and from 7 to 56 days after calving. Utilizing an Intel RealSense D435 

depth-sensing camera (Keselman et al., 2017) positioned about 5 meters above the scale during 

individual weighing sessions, the videos displayed a top-down perspective of the back of the 

animals, capturing a 3-dimensional (3D) representation of their body surface. These recordings 

were conducted between December 22nd, 2020, and June 4th, 2021. Not all cows had all 11 videos 

captured, because they either calved more than a week before their expected calving date, or left 

the trial earlier, which resulted in a total of 1,164 videos. The videos were recorded at a resolution 

of 848 × 480 pixels and 60 frames per second, and they ranged between 10 and 20 seconds long. 

From each video, 50 random depth frames were extracted, each at a resolution of 848 × 480 pixels, 

with each pixel encoded as a 16-bit unsigned integer representing the distance in millimeters 

between the camera and the object in that pixel. 

CNN Models for BCS Prediction 

The first approach for extracting features from the depth frames was to extract features 

from the second-to-last layer of a CNN trained for BCS prediction. The hypothesis behind this 

approach was that a CNN that can predict BCS would indirectly learn to extract relevant features 

related to the body shape of the cows. These features could be more informational than just the 

BCS value itself for predicting phenotypes related to body shape changes and body fat 

mobilization, such as the risk of developing subclinical ketosis. 

CNNs were trained for BCS prediction using depth frames extracted from the videos 

collected weekly during individual weighing. In the same days as the videos were collected, three 
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trained independent evaluators assessed the BCS of each cow using a 5-point scale (Wildman et 

al., 1982). The BCS in quarter-point increments that was closest to the average among the three 

evaluators was determined for each video, representing an individual cow and a date. The assessed 

BCS values were 2.00 (n = 1), 2.25 (n = 18), 2.50 (n = 42), 2.75 (n = 123), 3.00 (n = 222), 3.25 (n 

= 247), 3.50 (n = 218), 3.75 (n = 139), 4.00 (n = 84), 4.25 (n = 43), and 4.50 (n = 27). 

Each depth frame extracted from the videos was processed using the steps illustrated in 

Figure 4.2 and described as follows. The 10 preceding and 10 subsequent depth frames were 

collected from the original video – these frames were utilized to reduce individual pixel noise and 

perform a temporally-based depth value denoising. For each frame, including the central and the 

20 adjacent ones, pixels containing a value of 0, which usually represent an error in the computed 

depth value, were filled with the value in the closest non-zero pixel. Masks containing the cow 

body, excluding the neck and the head, were extracted from each depth frame using a semantic 

segmentation neural network based on the U-net architecture (Ronneberger et al., 2015). This cow 

body segmentation neural network was trained using 252 depth frames from 84 animals and tested 

on 80 depth frames from other 27 animals, achieving an average intersection over union (IoU) of 

0.960 and an average Dice similarity coefficient of 0.979 on the testing set. The predicted masks 

were applied to each corresponding depth frame, setting every pixel outside of the masks to 0. 

Each frame was rotated so that the major axis of the ellipse that had the same second-moments of 

the mask was parallel to the x-axis, and cropped around the bounding box containing all mask 

pixels with a 5-pixel padding on each side. The mean pixel values of the 21 rotated and cropped 

frames (one central and 20 adjacent) were set as the final denoised depth frame, and a value of 0 

was assigned to any pixel that contained 0 in at least one of the 21 frames. This final denoised 

depth frame was normalized to values between 0.1 and 1.0 using the minimum and maximum pixel 
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values excluding 0 and converted to an 8-bit image by multiplying the resulting pixel values by 

255. 

The resulting 58,200 denoised depth frames were used to train and validate CNNs for BCS 

prediction following three different paradigms: a regular multi-class image classification neural 

network with a softmax output layer containing 11 neurons, one for each BCS value; and neural 

networks for rank-consistent ordinal regression following the Consistent Rank Logits (CORAL) 

architecture and loss function (Cao et al., 2020), and the Conditional Ordinal Regression for Neural 

Networks (CORN) training procedure and loss function (Shi et al., 2023). Rank-consistent ordinal 

regression methods consider the relative ordering between labels, as it exists in body condition 

scoring, while producing consistently ranked predictions. 

 All networks contained a ResNet-50 backbone (He et al., 2016) and were trained via 

transfer learning starting from a ResNet-50 network pretrained on the ImageNet dataset (Deng et 

al., 2009), with the final classification layers modified according to each training paradigm. The 

transfer learning training procedure was performed following a two-stage approach: first, only the 

final classification layers of the networks were trained for 30 epochs, keeping the weights from all 

layers of the convolutional ResNet-50 backbone frozen; then, all weights were unfrozen, and the 

networks were trained for 60 epochs with a smaller learning rate. The batch size was set to 8 in 

both stages, and the initial learning rates were 10-3 and 10-4 for each stage respectively. The weights 

of the networks were optimized for minimizing the corresponding loss function using Adam 

(Kingma and Ba, 2014) with running average coefficients of 0.9 and 0.999, and a scheduler was 

set to decrease the learning rate by a factor of 10 every 6 epochs. During training, the images were 

resized to 224 × 224 and randomly flipped horizontally and vertically with 50% probability. An 

independent test set was defined containing 11,550 depth frames of 21 of the 115 cows, and the 
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remaining 46,650 frames were used to train the neural networks. The performance of the models 

was assessed by evaluating the accuracy for predicting the exact BCS quarter-point values, as well 

as the accuracies considering error tolerances of 0.25, 0.50, 0.75, and 1.0. 

For each model, 2,048 features were extracted from the output of the ResNet-50 backbone, 

which were later used for subclinical ketosis prediction. Features from one random frame of each 

prepartum video were concatenated, resulting in 6,144-dimensional feature vectors for each cow. 

Since 50 frames were extracted from each video, there were 503 possible variations of feature 

vectors for each cow, but only up to 50 of those variations were used, per cow, for subclinical 

ketosis prediction. 

Body Surface Between Anatomical Keypoints 

Another approach for image feature extraction evaluated in this study was to sample the 

body surface of the cows between anatomical keypoints. This approach more directly extracts body 

shape information from the depth frames than the BCS CNN method, as it consists of sampling 

the pixel depth values between predetermined keypoints over the cow body instead of indirectly 

extracting features from a network trained for the related task of BCS prediction. 

Eight keypoints were determined on the bodies of the cows, located at specific anatomical 

landmarks visible from the top-down perspective captured in the depth videos. The keypoints 

included the (1) left and (2) right hooks, (3) left and (4) right pin bones, (5) tailhead, (6) sacral 

vertebrae, (7) lumbar vertebrae, and (8) cervical vertebrae, as shown in Figure 4.3. A YOLOv8 

model (Jocher et al., 2023) was trained to automatically detect those keypoints in the collected 

depth images. This keypoint detection model was trained for 100 epochs using 29,626 depth 

images of 77 cows and tested on 7,088 depth images of a different set of 17 cows, which also 

belonged to the set of cows used for testing the BCS prediction models. The model predicted 
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keypoints with an average error of 7.37 pixels on the testing set, calculated as the Euclidean 

distance between each predicted keypoint and its corresponding ground truth label. This 

corresponds to an average error of 0.022 when calculated using normalized image dimensions. 

With the eight keypoints detected for each depth frame, 1-dimensional (1D) vectors were 

calculated by linearly sampling depth values between keypoint pairs, as illustrated in Figure 4.4. 

The pairs of keypoints used for extracting such vectors were (1 and 8), (2 and 8), (1 and 7), (2 and 

7), (1 and 6), (2 and 6), (2 and 4), (1 and 3), (4 and 5), (3 and 5), and (3 and 4). The regions between 

such keypoints represent areas that are frequently looked at when assessing the body condition 

score of dairy cows, as these areas usually go through a considerable visual change as the body fat 

stores of the cows vary, thus changing the depth values sampled across them as well. These 

multiple depth vectors calculated from each pair of keypoints were concatenated to form a set of 

features extracted from each depth frame. Four different sampling resolutions (sampling_res) were 

evaluated: 20, 50, 100, and 200, which represent the number of depth values sampled between 

each pair of keypoints. This process generated (sampling_res×11) features per image, with 11 

being the number of keypoints pairs. Additionally, normalized versions of the features for each 

sampling resolution were calculated by subtracting the depth value at each sample point by the 

corresponding depth value of that point projected to the 3-dimensional line connecting the two 

keypoints in the 3-dimensional space consisting of the x and y coordinates of the keypoints, and 

the depth values at their location. In other words, the normalized features are the depth values 

(original feature values) subtracted by the values projected in the line connecting the two keypoints 

in the depth dimension, represented by the dashed lines in Figure 4.4. Finally, an additional set of 

features was calculated by extracting the area between the 1D vectors and the lines connecting the 

two keypoints for each pair of keypoints. This set of features was calculated with sampling 
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resolution equal to 200, as it was the highest resolution evaluated, and generated 11 features per 

image, with 1 feature per pair of keypoints. 

The features extracted from one random frame of each prepartum video were concatenated 

into 660- to 6,600-dimensional feature vectors for each cow. Since 50 frames were extracted from 

each video, there were 503 possible variations of feature vectors for each cow, but only up to 50 of 

those variations were used, per cow, for subclinical ketosis prediction. 

CNN-RNN Models for Next-Week BCS Prediction 

The last approach explored for extracting features from depth images was to extract the 

output of the second-to-last layer of a CNN-RNN model trained for predicting the BCS of the cow 

during the following week using sequences of depth frames of that same cow taken on previous 

consecutive weeks. The hypothesis to be evaluated was that this CNN-RNN model would be able 

to capture not only body shape information from each depth frame independently via its CNN 

portion, but also extract relationships between depth frames taken over time, which could be 

indicative of body shape changes and, consequently, body fat mobilization. The model was trained 

for future BCS prediction to force it to potentially use information from all the images of the 

sequence, instead of simply using only the image corresponding to the target BCS if the target was 

defined as the BCS at the time that the last image of the sequence was taken, for example. 

CNN-RNNs were trained to predict the BCS of a cow during the following week using 

sequences of depth frames taken on previous consecutive weeks. The target BCS values were 

distributed into 2.00 (n = 1), 2.25 (n = 18), 2.50 (n = 42), 2.75 (n = 123), 3.00 (n = 217), 3.25 (n = 

231), 3.50 (n = 194), 3.75 (n = 115), 4.00 (n = 60), 4.25 (n = 28), and 4.50 (n = 20). Each sequence 

contained from 1 to 10 depth frames of the same cow taken on consecutive weeks. 
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The extracted depth frames from all except the last video of each cow was preprocessed 

using the same procedure described in the CNN Models for BCS Prediction subsection and 

illustrated in Figure 4.2, which resulted in 52,450 rotated, cropped, and denoised 8-bit images 

containing the segmented body surface of a cow originated from 1,049 videos. The last video of 

each cow was excluded from this analysis because there was no next-week BCS annotation for 

those. These images were used to construct sequences of length between 1 and 10 during training. 

During each training step, sequences of n images were randomly selected, where n was the length 

of the sequence, and each image belonged to a different video of the same cow taken on 

consecutive weeks. The image sampling for constructing the sequences was determined randomly 

because, for each sequence of n videos of the same cow, a total of 50n different frame combinations 

could be defined, which makes it unfeasible to go through every single possible frame combination 

during training. 

CNN-RNNs models following different architectures and training paradigms were 

evaluated for predicting the BCS of that cow on the subsequent week. The same three training 

paradigms as used for single-image BCS prediction (CNN Models for BCS Prediction) were 

explored: regular softmax output layer, CORAL, and CORN. The CNN backbone for extracting 

features from each individual image followed a ResNet-50 architecture (He et al., 2016) pretrained 

on ImageNet (Deng et al., 2009) or initialized with the weights from the best single-image BCS 

prediction model. A similar transfer learning procedure as described in the CNN Models for BCS 

Prediction subsection was implemented, but with the first stage optimizing the weights of both the 

output layer and the Recurrent Neural Network (RNN) while keeping the weights of the CNN 

frozen. For training the CNN-RNN models initialized with the best BCS CNN weights, we also 

evaluated skipping the second stage of transfer learning, keeping the CNN backbone weights 
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frozen during the whole training procedure. The RNN portion of the model consisted of 1 or 2 

Long Short-Term Memory (LSTM) layers (Hochreiter and Schmidhuber, 1997) with dimensions 

64, 128, 256, 512, 1,024, or 2,048. Finally, we explored allowing different minimum and 

maximum sequence lengths, and including or not postpartum images during training. 

The batch size was set to 8 sequences in both stages of transfer learning, and the initial 

learning rates were set to 10-3 and 10-4 for each stage respectively. The weights of the networks 

were optimized for minimizing the corresponding loss function using Adam (Kingma and Ba, 

2014) with running average coefficients of 0.9 and 0.999, and a scheduler was set to decrease the 

learning rate by a factor of 10 every 6 epochs. During training, the images were resized to 224 × 

224 and randomly flipped horizontally and vertically with 50% probability, and sequences of 

length between the minimum and maximum allowed were determined by randomly selecting 

frames from the different corresponding videos. An independent test set was defined containing 

every sequence from the same 21 cows used for testing the single-image BCS prediction CNN and 

the keypoint detector, which resulted in a total of 210 video sequences that were randomly sampled 

as frame sequences during model evaluation. The 839 video sequences from the remaining 94 

cows were used to randomly sample frame sequences during training. Similarly to the single-image 

BCS CNN, the performance of the models was assessed by evaluating the accuracy for predicting 

the exact next-week BCS quarter-point values, as well as the accuracies considering error 

tolerances of 0.25, 0.50, 0.75, and 1.0. 

For each model, two feature extraction methods were explored: extracting features from 

the full input sequence by retrieving the last (time-wise) hidden state of the last (depth-wise) LSTM 

layer; or extracting features from each image of the input sequence individually by retrieving all 

the hidden states of the last (depth-wise) LSTM layer. Since RNNs process each element of a 
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sequence taking into consideration information remaining from the previous elements, features 

extracted from a sequence of images might take advantage of the relationships between images of 

the same cow taken in consecutive weeks, potentially leading to features that are better subclinical 

ketosis predictors than using the single-image CNN for BCS prediction approach. When extracting 

features from the full input sequence, each sequence of three depth frames (one from each 

prepartum video) resulted in a 64- to 2,048-dimensional feature vector. When extracting features 

from each image of the input sequence individually, features from each image were concatenated, 

resulting in 192- to 6,144-dimensional feature vectors for each cow. Since 50 frames were 

extracted from each video, there were 503 possible combinations of prepartum frames to form a 

sequence, and thus 503 possible variations of feature vectors for each cow, but only up to 50 of 

those variations were used, per cow, for subclinical ketosis prediction. 

Tabular Data – Behavior and Cow History 

Of the 115 cows, 23 did not have at least three videos recorded prepartum and were 

excluded from further analyses. For the remaining 92 cows, the following data was retrieved from 

the management software at the farm: parity, days in milk of the previous lactation, previous dry 

period length, number of past ketosis events, and weekly BCS and body weight in the last three 

weeks before calving. Electronic roughage intake control bins (Hokofarm Group; Marknesse, the 

Netherlands) measured the weight and duration of all meals from these animals between 21 days 

before the expected calving date and the actual calving date. The daily averages of dry matter 

intake (DMI), feeding time, average meal duration, and number of meals were calculated for both 

7 days and 2 days prior to the calving date for each cow. Additional behavioral data were collected 

via SMARTBOW (Zoetis; Kalamazoo, MI) ear tags fitted to each cow, including lying time, 

rumination time, and time spent inactive and highly active, and daily averages were calculated for 
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the last 7 days before the calving date. This resulted in 25 feeding behavior, cow activity, and cow 

history variables per cow, as shown in Table 4.3, which constituted the tabular data utilized in this 

study. 

Text Feature Extraction 

Feeding behavior data, cow activity, and cow history variables were converted to 

unstructured text by using 5 different templates, illustrated in Table 4.2. The variable values were 

inserted into the templates in their corresponding position, resulting in 5 different texts for each 

cow. Text embeddings were then extracted from each generated text using the pretrained text-

embedding-ada-002 model (OpenAI; San Francisco, CA), resulting in a 1,536-dimensional feature 

vector for each text. Text embeddings are numerical representations of text, ideally capturing 

relationships between different concepts included in that text and facilitating quantitative analyses 

on different pieces of textual data. The text-embedding-ada-002 model was trained on a large text 

corpus and was specifically optimized to extract text embeddings for text search, sentence 

similarity, code search, and text classification tasks, and is part of the suite of embedding models 

made available via Open AI’s application programming interface (API). The purpose behind 

creating these texts and extracting text embeddings from them was to compare the effectiveness 

of incorporating behavioral and historical information in both tabular and textual formats (via text 

embeddings) when training machine learning models for SCK prediction. 

Notes recorded during the previous lactation and dry period of each cow were collected 

from the farm management software, including pen moves, pregnancy checks, insemination 

procedures, health events, and others. These notes were exported from the management software 

into files in comma-separated values (CSV) format, which were then converted to more human-

readable text using OpenAI’s chat completion API. We used the GPT-4 model, with the following 
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system message that provided some context to the model: “"DIM" means the number of days in 

lactation that the cow had when that event happened. "PEN" is the pen number where that event 

occurred.”, and the following user prompt: “Give me a chronological report of events that 

happened to the cow described in this CSV: "{CSV content}"”, with the temperature parameter set 

to 0.5. The temperature dictates the degree of randomness in the model’s outputs, controlling the 

balance between consistency (lower temperature) and diversity (higher temperature) in the text 

produced by the model. In addition, the calving date was appended to the end of the generated text, 

to provide temporal information about the start of the next lactation, for which we wanted to predict 

the risk of subclinical ketosis. An example of a CSV file containing the cow notes, and the 

corresponding converted text, is shown in Figure 4.7. 

Text embeddings were extracted from each generated notes text using OpenAI’s text-

embedding-ada-002, resulting in 1,536 features per text. Additionally, for each cow, the generated 

notes text was appended to each of the texts generated from the tabular data, and text embeddings 

were extracted using the text-embedding-ada-002 model. This resulted in three different textual 

1,536-dimensional feature sets per cow: embeddings from text converted from tabular data, 

generated using the templates illustrated in Table 4.2 (template text; 5 feature vectors per cow); 

embeddings from text generated from CSV files containing notes taken during the previous 

lactation and dry period (notes text; 1 feature vector per cow); and embeddings from text 

combining both template text and notes text (combined text; 5 feature vectors per cow). 

Subclinical Ketosis Prediction 

One of the objectives of this study was to train and validate models for predicting the risk 

of subclinical ketosis prediction during early lactation using exclusively prepartum data. 

Subclinical ketosis was defined based on blood samples collected during the first 14 days of 
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lactation. Blood samples from 92 cows were collected at 3, 5, 7, 11, and 14 days after the calving 

date. Concentrations of plasma beta-hydroxybutyrate (BHB) were quantified using the Catachem 

ChemWell-T analyzer (Catachem; Oxford, CT) as previously described (Holdorf et al., 2023). 

Cows with maximum measured BHB concentration among those five samples above 1.0 mmol/L 

were initially classified as having a postpartum subclinical ketosis event. BHB thresholds of 1.1 

and 1.2 mmol/L were also evaluated, but most experiments were performed using a threshold of 

1.0 mmol/L because that resulted in the most balanced dataset (of the 92 cows, 37, 28, and 21 had 

a maximum measured BHB value above 1.0, 1.1, and 1.2 mmol/L, respectively). 

The prepartum data utilized included tabular data, features extracted from depth images, 

and features extracted from text constructed using the tabular data and notes recorded in the farm 

management software. The procedure for training and evaluating models for the early detection of 

subclinical ketosis was divided into seven tasks: (1) train models using only features extracted 

from depth images, and compare the results obtained using the different image feature extraction 

approaches with the ones obtained by a baseline model trained using only BCS measurements as 

predictors; (2) combine the best image features with the tabular data, and compare the results with 

baseline models containing only the tabular data; (3) train models using different number of data 

points per cow by using different variations of the corresponding feature vectors, and evaluate how 

this affected the results; (4) explore different BHB thresholds for defining subclinical ketosis, and 

compare training regressors for BHB prediction with training direct classifiers; (5) compare the 

performance of models trained using tabular data with those trained using the embeddings 

extracted from the text generated using the same variables (template text); (6) explore including 

information from textual notes retrieved from the management software (notes text) by 

concatenating their text embeddings with the tabular data directly, or by combining the textual 
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notes with the text generated from tabular data (combined text) and extracting text embeddings 

from those combined texts; and (7) combine the best features extracted from textual data and depth 

images with tabular data to train a final SCK prediction model. 

For tasks containing tabular data, we assessed how removing dry matter intake from the 

analyses impacted the results, as we consider dry matter intake to be a difficult variable to measure 

in most commercial settings, without intake control bins available. Additionally, we evaluated 

performing principal component analysis (PCA) on the depth image and text features before 

training the models to match the same number of components as the tabular data (25, or 23 when 

excluding dry matter intake measurements). 

For feature sets that contained more than one variation per cow, as shown in Table 4.3, the 

mean value of each feature was calculated when using one data point per cow, or random feature 

vectors were sampled when using more than one data point per cow. Feature sets containing 503 

possible variations (depth images) had 50 variations randomly sampled to calculate the mean 

feature vector when considering only one data point per cow. When including multiple data points 

per cow, the final prediction for a given cow was achieved by selecting the most predicted binary 

class. 

For all seven tasks, Random Forest (RF) models (either classifiers or regressors, depending 

on the task) were trained using 73 cows, leaving the other 19 as testing cows. A 5-fold cross-

validation procedure was performed within these 73 cows to select the best set of hyperparameters 

using randomized search, uniformly sampling 100 times among the values shown in Table 4.4. 

The set of random hyperparameters that achieved the highest cross-validation F1 score (for 

classification), or lowest cross-validation root mean squared error (for regression) was selected to 

train a final model using all 73 cows. This procedure was repeated 20 times, using different training 
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and testing cows at each iteration, and the mean and standard deviation of the accuracy, F1 score, 

precision, recall, and specificity were calculated for each model across the 20 iterations. 

RESULTS AND DISCUSSION 

One of the goals of this study consisted of exploring different ways to extract features from 

depth images and textual data for use in a machine learning pipeline that predicts postpartum SCK 

in dairy cows using prepartum data. Before exploring the performance of the SCK prediction 

models, we discuss the results of the computer vision algorithms for BCS prediction, used in this 

study to extract features from depth images. Then, we go through the results of each of the seven 

tasks described in the Subclinical Ketosis Prediction section. 

BCS Prediction 

CNN Models for BCS Prediction 

Two of the three feature extraction approaches explored in this study for depth images 

relied on deep learning models for BCS prediction. The first approach consisted of extracting 

features from the second-to-last layer of a CNN trained for BCS prediction using segmented, 

rotated, cropped, and denoised depth images containing a single cow. In this approach (CNN 

Models for BCS Prediction), we explored three different training paradigms for training the BCS 

prediction model: (1) regular multi-class image classification using a softmax output layer, and 

rank-consistent ordinal regression using (2) CORAL (Cao et al., 2020) and (3) CORN (Shi et al., 

2023). Using a regular softmax output layer, the model achieved accuracies of 28.4%, 66.9%, 

86.6%, 96.0%, and 98.4% considering error tolerances of 0, 0.25, 0.50, 0.75, and 1.00 points, 

respectively. Using rank-consistent ordinal regression, the CORAL model achieved accuracies of 

33.4%, 78.9%, 94.2%, 98.9%, and 99.9%, and the CORN model achieved accuracies of 31.5%, 

73.3%, 90.4%, 97.7%, and 99.3% considering the same error tolerances, as shown in Table 4.5. 
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These results show that implementing rank-consistent ordinal regression methods for BCS 

prediction provides great benefits, achieving higher accuracies than regular classification using 

softmax, and similar accuracies to those previously reported in the literature considering a similar 

level of automation (Qiao et al., 2021). Achieving high accuracies at exact matches between 

prediction and ground truth tends to be difficult as BCS is a partially subjective measurement. 

Because of that, it is useful to evaluate the performance of the models when tolerating minor 

deviations of 0.25 to 1.0 points. Using CORAL, the high accuracies of 78.9% and 94.2% at 

predicting a BCS within 0.25 and 0.50 points of the ground truth label show that the trained model 

was able to recognize the rough body conditioning of the cows. Although the performance of direct 

BCS prediction might not be a guarantee that the model is a good feature extractor for downstream 

tasks, it is at least indicative that it might have learned to extract important information related to 

the body shape of the cows using depth images. The performance of the extracted features as 

predictors for the early detection of SCK is reported later in this section (Models for the Early 

Detection of Subclinical Ketosis). 

CNN-RNN Models for Next-Week BCS Prediction 

The other approach for extracting features from depth images using BCS prediction models 

consisted of training CNN-RNN models for next-week BCS prediction (CNN-RNN Models for 

Next-Week BCS Prediction). Using sequences of depth images extracted from videos taken in 

consecutive weeks, CNN-RNN models that learn spatial and temporal features were trained to 

predict the BCS of a cow on the week following the last frame of the sequence. Table 4.1 shows 

the different hyperparameters that were evaluated for constructing the CNN-RNN models, with 

the different comparative analysis performed as follows: (1) training paradigm, initial CNN 

weights, and inclusion of the second stage of transfer learning; (2) number and dimension of LSTM 
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layers; and (3) minimum and maximum sequence length and inclusion of postpartum images. In 

order to determine the best model within each comparative analysis, we evaluated the accuracies 

considering 0.25 error tolerance. This provided a balanced evaluation framework that was not too 

strict or too lenient for considering correct predictions. 

The same three training paradigms used for single-image BCS prediction were explored 

for the next-week BCS prediction CNN-RNN models: regular softmax output, CORAL, and 

CORN. The CNN portion of the models were initialized either with the weights of a CNN 

pretrained on the general ImageNet dataset, or with the weights of the CORAL model for single-

image BCS prediction, as it achieved the best performance in that task. Additionally, we evaluated 

skipping or including the second stage of the transfer learning training procedure, which consisted 

of unfreezing the CNN weights and training the whole model using lower learning rates. In this 

analysis, all models contained a single 1024-dimensional LSTM layer and were trained using 

sequences of length 1 to 10. The results are shown in Table 4.6. In this case, the best model was 

achieved when using CORN for classification and initializing the CNN with the weights from the 

CORAL BCS model while skipping fine-tuning the CNN weights. This shows that the CORAL 

weights trained in the single-image BCS prediction approach provided a good starting point for 

the CNN portion of the CNN-RNN model for next-week BCS prediction. Fine-tuning the CNN 

weights during CNN-RNN training actually hindered performance, possibly due to overfitting, as 

the ResNet-50 CNN backbone contains over 23 million parameters and the training set, although 

being in theory virtually infinite because of the large number of possible variations for different 

frames extracted from each video for building the image sequences, included a total of 839 

different videos. 
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For the next comparative analysis, the number and dimension of LSTM layers were 

explored using CORN, initializing the CNN with weights from the CORAL model for BCS 

prediction, and not performing fine-tuning of the CNN weights. The dimensions of the LSTM 

layers ranged from 64 to 2,048 in powers of two, and we evaluated using one or two LSTM layers 

as the RNN portion of the model. The best performing model considering 0.25-error accuracy 

contained a single 512-dimensional LSTM layer, as shown in Table 4.7. This again indicates the 

presence of overfitting, with deeper or wider models not necessarily translating into better 

performance. 

For the last comparative analysis pertaining to next-week BCS prediction CNN-RNN 

models, the minimum and maximum image sequence length, as well as whether to include 

postpartum videos, were evaluated. The other hyperparameters were fixed to their respective 

optimal values according to previous analyses (CORN, CORAL BCS initial weights, no CNN fine-

tuning, and one 512-dimensional LSTM layer). The models were evaluated exclusively on test set 

sequences containing exactly 3 prepartum frames, as those were the types of sequences that would 

later be used to extract features from for subclinical ketosis prediction. The best model was 

achieved by training on all possible sequence lengths, with minimum and maximum lengths set to 

1 and 10 and including frames from postpartum videos. These results suggest that increasing the 

quantity of training data was beneficial for next-week BCS prediction, even when evaluating the 

models solely on sequences containing three prepartum frames. Detailed results are shown in Table 

4.8. 

Models for the Early Detection of Subclinical Ketosis 

Each of the seven tasks described in the Subclinical Ketosis Prediction section resulted in 

a different comparative analysis: (1) using only depth image features and comparing with a BCS 
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baseline; (2) combining image features with tabular data; (3) using different number of data points 

per cow; (4) exploring regression and different BHB thresholds; (5) comparing tabular data with 

the respective generated text embeddings; (6) including text embeddings from textual notes; and 

(7) combining tabular data and features from depth images and textual notes to train a final SCK 

prediction model. 

Using Only Depth Image Features 

In the first task, SCK prediction models were trained using only features extracted from 

depth images, comparing the three methods described in the Image Feature Extraction section: 

CNN models for BCS prediction (CNN Models for BCS Prediction), body surface between 

anatomical keypoints (Body Surface Between Anatomical Keypoints), and CNN-RNN models for 

next-week BCS prediction (CNN-RNN Models for Next-Week BCS Prediction); as well as a 

baseline model trained using only the three BCS measurements directly as predictive variables. 

The best performing model trained on CNN features was achieved using the CORN model features 

without applying PCA (average F1 score = 0.413; average accuracy = 59.5%). This model was the 

second best for predicting BCS, as shown in Table 4.5, but was the best when used as a feature 

extractor for SCK prediction, when compared to using CORAL or regular softmax (0.413 versus 

0.329 and 0.352 average F1 score; 59.5% versus 55.0% and 59.2% average accuracy). This 

indicates that there is some relationship between BCS prediction and the quality of the models as 

feature extractors for SCK prediction, but it is not an exact correlation. In other words, the best 

BCS predictor in this case was not necessarily the best feature extractor, especially as the CORAL 

and CORN frameworks only affect the output layer and loss function utilized during training and 

do not make changes to the backbone CNN architecture. 
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The best model trained on body surface depth values between anatomical keypoints was 

achieved using the lowest sampling resolution of 20 and normalizing the values using the lines 

that connect each pair of keypoints (average F1 score = 0.455; average accuracy = 57.6%). A lower 

sampling resolution possibly helped reduce the noise in the depth values, and normalizing the 

features adjusted for variations that were not necessarily representative of the body shape of the 

animals, such as body height and inclination at the time that the frames were captured. Overall, 

the more direct body surface representation achieved using this approach was better at predicting 

SCK than using the more indirect BCS CNN features. 

Using features extracted from next-week BCS prediction CNN-RNNs, the best SCK 

prediction model was achieved using features from the last LSTM hidden state of the model trained 

using only sequences of exactly three prepartum frames (average F1 score = 0.493; average 

accuracy = 63.9%). Although this model was the second worst at predicting next-week BCS, as 

shown in Table 4.8, it achieved good results for SCK prediction, possibly due to it being focused 

on prepartum sequences of three frames, which was the same configuration of sequences used for 

SCK prediction. Additionally, this model was trained for predicting the BCS of the cows close to 

the calving date (one week after the last prepartum video was collected), which can be more 

directly related to the risk of SCK (Duffield, 2000) than images and BCS later into lactation. This 

suggests, again, that the best BCS predictors are not necessarily the best feature extractors for SCK 

prediction, and training on images taken exclusively during prepartum proved to be beneficial for 

achieving a good feature extractor for this task. 

The baseline model trained using only the three prepartum BCS assessments achieved an 

average F1 score of 0.473 (average accuracy = 61.8%), which was higher than all except the best 

model that utilized depth image features. Many of the features extracted from the images might 
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not be directly related to SCK, thus introducing noise to the model inputs. That is especially 

relevant for features extracted from deep neural networks that were trained for other tasks (such 

as BCS), which might not even be directly related to the body fat stores of the cows, but to any 

other signal captured by the model that facilitates BCS prediction. Conversely, the BCS 

measurements are more succinct and direct representations of the body shape of the animals, which 

contain only noise related to the subjectiveness of the human evaluation. However, BCS is a single 

number that does not incorporate nuances of where the body fat is distributed and how exactly the 

shape of the body changes across different weeks. Thus, the CNN-RNN approach achieved better 

results than using only BCS or any other image feature extraction technique explored in this study, 

possibly because the CNN-RNN model captures relationships between the images of the same cow 

across different points in time. This means that the CNN-RNN model can extract information from 

a sequence of prepartum images jointly, as opposed to the other approaches, which rely on 

extracting features from each image individually and then simply concatenating them. Extracting 

information from a sequence of images taken across different weeks might be important for SCK 

prediction, as reflected by the superior predictive ability of the CNN-RNN. Table 4.9 shows a 

summary of the most relevant models for comparison. 

Combining Image Features with Tabular Data 

The second comparative analysis consisted of finding the best model that included image 

features and tabular data. The best image features using each approach (BCS CNN, depth vectors, 

depth areas, and next-week BCS CNN-RNN) were combined with tabular data, and the results 

were compared to models that used only tabular data. Additionally, models excluding the two dry 

matter intake variables were evaluated, as we considered that dry matter intake was the most 

difficult metric to capture precisely in a commercial farm setting without feed intake control bins. 
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In contrast, computer vision systems that monitor the other variables related to feeding behavior 

and cow activity, as well as BCS and body weight, have been more widely explored (Achour et 

al., 2020; McDonagh et al., 2021; Qiao et al., 2021; Bresolin et al., 2023). 

The baseline models containing only tabular data without image features achieved average 

F1 scores of 0.655 and 0.547 (average accuracies = 74.2% and 67.4%) with and without including 

DMI, respectively. The best models were achieved by using depth vector features both when 

including (average F1 score = 0.706; average accuracy = 76.8%) and excluding (average F1 score 

= 0.596; average accuracy = 72.6%) DMI. When including DMI, the best model used normalized 

depth vectors with a sampling resolution of 20 without performing PCA, and when excluding DMI, 

the best model used normalized depth vectors with a sampling resolution of 200 while performing 

PCA on the image features to convert them to a 23-dimensional space, which was the same number 

of dimensions as the tabular data when excluding the two DMI variables. The idea behind 

performing PCA on the image features was to evaluate how reducing the dimensionality, and 

potentially reducing the noise, of those feature sets affected the results. A summary of the results 

achieved by the most relevant models evaluated in this comparative analysis is presented in Table 

4.10. 

The models that included body shape information in a more direct way through extracting 

depth values between anatomical keypoints performed better than the ones including CNN-RNN 

features when combining the depth image features with tabular data. Even though the CNN-RNN 

features were slightly better than depth vectors when used by themselves, the depth vectors include 

more direct and controlled information about the body shape of the cow presented in each image, 

which might have benefited the SCK prediction models when coupled with tabular data. Excluding 

DMI variables greatly harmed the predictive performance of the models, with the best model 
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achieving an F1 score of 0.596 compared to 0.706 when including DMI. This shows that, although 

being a relatively difficult variable to achieve in large scale, prepartum DMI can be a great 

predictor for postpartum SCK. This is further evidenced when analyzing the average feature 

importances for the best models including or not image features, as illustrated in Figure 4.8. 

Feature importances were calculated as the mean decrease in impurity (MDI) relative to each 

feature in the RF models, with impurity defined using the Gini criterion. 

Using Multiple Data Points per Cow 

As shown in Table 4.3, the feature sets extracted from depth images contain potentially 503 

variations per cow, as each of the 50 frames extracted from each of the 3 prepartum videos 

generated a different feature vector. Because of that, for the third comparative analyses we 

explored randomly sampling 10, 25, and 50 variations of image features per cow, instead of simply 

calculating the mean feature values for each cow as done in the previous analyses. Using multiple 

feature vectors per cow, the final prediction for each cow consisted of the most predicted binary 

class among all samples of that cow. When combining image features with tabular data, the latter 

was repeated for all data points of the same cow, as each animal contained only a single value for 

each of the behavior and cow history variables. This analysis was performed using the same sets 

of image features as the previous analysis, with and without including the DMI variables. The 

results from the most relevant models are illustrated in Figure 4.9. In general, using multiple 

samples per cow hindered the performance of the models, except for when using CNN-RNN 

features. This indicates that simply using the mean values of each feature might be the best 

approach when using normalized depth vectors, as it possibly provides more stable depth values 

for each cow, resulting in better predictive performance. In the case of using features extracted 

from neural networks, calculating mean feature values was detrimental to the performance. Since 
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the neural networks were simply optimized to perform BCS prediction, there was no guarantee or 

incentive for images of the same cow to appear close together in the feature space, resulting in 

mean feature values that might not represent that cow correctly. Instead, using feature vectors for 

each image or sequence of images individually resulted in better results when using neural network 

features, as each feature vector extracted now actually represents the corresponding image or 

sequence of images. 

Exploring Regression and Different BHB Thresholds 

In the previous comparative analyses, the Random Forest models were trained for binary 

classification by converting the maximum plasma BHB value measured for each cow between 3 

and 14 days in milk to a binary value by using a threshold of 1.0 mmol/L. For the fourth 

comparative analysis, we explored directly performing regression on the maximum plasma BHB 

value for each cow and only using the defined SCK threshold for calculating classification 

performance metrics. Additionally, we evaluated using other threshold values of 1.1 and 1.2 

mmol/L for both classification and regression models. The feature sets used to train the regression 

and classification models were the following: only BCS; only tabular data, including or not DMI; 

best image features; and best image features combined with tabular data, including or not DMI. 

Figure 4.10 illustrates the average F1 scores for each model evaluated in this comparative analysis. 

The best image features were individually defined according to their performance by 

themselves or combined with tabular data including or not DMI. The CNN-RNN feature set 

contained features extracted from the last hidden state of the CNN-RNN for next-week BCS 

prediction using only sequences containing three prepartum images. When including DMI, the 

depth vectors were normalized depth values with sampling resolution of 20 without PCA, and 

when not including DMI the depth vectors were normalized depth values with sampling resolution 
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of 200 applying PCA with 23 components. The best performing model overall was achieved using 

tabular data combined with depth vector features for binary classification using a BHB threshold 

of 1.0 mmol/L (average F1 score = 0.706; average accuracy = 76.8%). 

Including image features resulted in a decrease in the F1 score of all models except for 

when performing a regression and a threshold of 1.1 mmol/L without including DMI, when 

performing classification with a threshold of 1.2 mmol/L without including DMI, and when 

performing classification with a threshold of 1.0 mmol/L in all cases. Nevertheless, including 

image features resulted in the best performing model overall (classification with threshold of 1.0 

mmol/L). This indicates that the trained RF models might have struggled to learn the target variable 

when performing classification with thresholds of 1.1 and 1.2 mmol/L due to imbalance on the 

number of cows considered as having subclinical ketosis or not. Only 28 and 21 out of 92 cows 

were considered sick when using thresholds of 1.1 and 1.2 mmol/L respectively, which might have 

impacted the learning capacity of the models. For the dataset utilized in this study, a threshold of 

1.0 mmol/L seems to be the most adequate to use, as 37 out of 92 had maximum plasma BHB 

measurements above that threshold, resulting in a more balanced dataset and consequently better 

classification performance overall. When evaluating the recall of the models, including image 

features resulted in higher values in most cases, as shown in Figure 4.10(b). Recall is an important 

metric for models that perform early disease detection such as the ones developed in this study, as 

detecting potential positive cases facilitates early treatment and improves disease prevention. A 

model that has higher recall and lower precision is preferrable over the opposite, because it is less 

costly to act on a cow unnecessarily for preventing SCK (false positive) than it is to neglect a cow 

with a high risk of developing SCK and failing to prevent it (false negative), resulting in higher 

treatment and indirect costs (Cainzos et al., 2022). 
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Comparing Tabular Data with Text Embeddings 

In the fifth comparative analysis, we compared directly using tabular data as predictors, 

versus using the text embeddings of the corresponding texts that describe those variables (template 

text), generated via the templates depicted in Table 4.2. The idea behind this analysis was to 

evaluate whether text embeddings extracted from descriptive text would be able to capture the 

information included in those variables and be equivalent SCK predictors as using the tabular data 

directly. When applying or not PCA with 25 components, the models trained using the generated 

texts achieved average F1 scores of 0.600 and 0.593, respectively (average accuracies of 69.7% 

and 70.5%), which were lower than the average F1 score achieved by the model trained using the 

tabular data directly (average F1 score = 0.655; average accuracy = 74.2%). This indicates that the 

text embeddings extracted from text generated from tabular data using templates are not as good 

as using the tabular data directly for SCK prediction. Nevertheless, the results were close enough 

to suggest that some information was captured even using a generic text embedding LLM 

(OpenAI’s text-embedding-ada-002 model). Since the information contained in the text was very 

specific to dairy cow management, the generic LLM used might not be ideal for extracting 

embeddings from the generated text, as it was not trained specifically for this context. The quality 

of the embeddings might improve if extracted from an LLM fine-tuned using dairy farm 

management information such as articles written by specialists or scientific papers (Zhu et al., 

2023), and further research in this direction would be needed to validate this hypothesis. 

The ability to use data in a textual format for phenotype prediction could be a step towards 

more easily integrating data originating from different sources without the need to strictly follow 

predetermined data standards. Defining standards for data generated by PLF systems poses a 

substantial challenge to effective data integration and analysis (Bahlo et al., 2019) in livestock 
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farms, which could be mitigated if all generated data can be interpreted and analyzed in a common 

text format. Another potential benefit of using text embeddings extracted from text instead of using 

structured data as predictors is that systems that capture information in this unstructured format 

could be used to collect data in dairy farms in a more seamless way, by allowing the farmers to 

add any type of information about their herd through text or even voice recordings using speech-

to-text technology. The data collected from such systems could then be used with predictive 

models such as the ones proposed in this study, or even be directly requested by user queries using 

knowledge retrieval natural language processing (NLP) techniques (Lewis et al., 2020). 

Including Text Embeddings from Textual Notes 

In addition to the texts methodically generated from tabular data using templates, notes in 

the CSV format extracted from the farm management software were converted to natural language 

text using OpenAI’s GPT-4 chat completion model. This enabled contextual text embeddings to 

be extracted from this data and used as additional features for SCK prediction. In the sixth 

comparative analysis for the proposed machine learning pipeline, we explored two methods for 

including this information contained in textual notes in the predictive models: simply 

concatenating the 1,536 features extracted from the text (notes text) to the 25 tabular data variables; 

and extracting the text embeddings from a full text description of each cow that combines the 

textual notes with text generated from tabular data using templates (combined text). Using the first 

approach of concatenating textual notes embeddings to the tabular data resulted in a superior 

performance when compared to just using the tabular data by itself (average F1 score of 0.681 

versus 0.655; average accuracy of 78.7% versus 74.2%). This promising result indicates that the 

notes recorded in the farm management software including pen moves, vaccine and medicine 

administration, pregnancy checks, and other information prior to the calving date, contain 
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important information for SCK prediction. This information is often overlooked due to the 

difficulty in including this data in quantitative analyses as it is unstructured and often sparse. 

However, even the generic LLMs utilized in this study, which were not fine-tuned for the dairy 

farming context, were able to extract relevant embeddings that served as predictors for phenotype 

modeling. This sheds light on the potential of utilizing data collected in an unstructured way for 

developing models that aid in the decision-making process in dairy farms and help improve animal 

health and overall farm management. Table 4.11 provides a summary of the results achieved using 

text embeddings extracted in different ways for the early detection of SCK. 

Combining All Features 

The last comparative analysis explored in this study consisted of simply concatenating the 

best features extracted from each data source (tabular data, depth images, and text notes) and 

training a model for SCK prediction, comparing its performance with those achieved by previous 

models. For that, we concatenated the 660 features extracted from depth images using the 

normalized depth values between anatomical keypoints approach with sampling resolution of 20, 

the 25 variables collected from wearable sensors and farm management software (tabular data), 

and the 25 PCA-transformed text embeddings extracted from textual notes. We used one sample 

per cow, calculating the mean feature value for the image features, and performed binary 

classification using a plasma BHB threshold of 1.0 mmol/L. The resulting model achieved an 

average F1 score of 0.680 (average accuracy of 76.1%), which is slightly lower than the best model 

using only depth images and tabular data (average F1 score = 0.706, average accuracy = 76.8%), 

and the best model using only notes text and tabular data (average F1 score = 0.681, average 

accuracy = 78.7%). Since adding image features and text features separately contributed to the 

predictive performance of the trained models when compared to using only tabular data, we 
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expected the performance to increase even further when including features extracted from all three 

sources concurrently. However, it is difficult to draw a permanent conclusion for why that was not 

the case, and further investigation including a larger number of animals and possibly exploring 

different feature extraction techniques might be necessary. 

Main Implications of Our Findings 

The first promising result found in this study was that using image features resulted in 

better results than using only the BCS values corresponding to the same period when images were 

taken (average F1 score = 0.493 versus 0.473; average accuracy = 63.9% versus 61.8%). This 

supports our initial understanding that features extracted from depth images should be more 

informative of the body shape of the animals than the simple BCS value (or in the case of the 

CNN-RNN approach, of the body shape variation through time). The image features provide a 

more comprehensive representation of the cow body shape, holding information about different 

parts of the body (more explicitly when using depth vectors retrieved between anatomical 

keypoints), as opposed to the BCS, which is supposed to describe the whole animal condition in a 

single number. Additionally, image features present a more quantitative way to describe the body 

shape, as BCS is a partially subjective measurement, with different evaluators potentially having 

different interpretations of the scoring guidelines. 

However, predicting multifaceted health problems such as ketosis (and even more so 

subclinical ketosis) requires integrating data from multiple different technologies that provide 

insights about various aspects of the individual cows. Information collected from a single type of 

sensor (such as cameras) represents only one dimension of the health condition of a cow, which 

most likely will not be sufficient for a robust understanding and prediction of complex health 

problems. This explains why using only image features, while performing better than BCS, still 
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did not achieve impressive results for the early detection of SCK. The predictive performance of 

the proposed models improved considerably when combing information from multiple different 

sources, such as wearable sensors that quantify feeding behavior and activity, data logged into the 

farm management software in the form of structured and unstructured text data, and depth sensing 

cameras. In general, the inclusion of each data modality (image, tabular data, and text) contributed 

to the final performance, gradually adding information that enhanced the robustness of the SCK 

prediction models. Moreover, the fact that the text embeddings extracted from template text 

performed only marginally worse than tabular data (average F1 score = 0.600 versus 0.655; average 

accuracy = 69.7% versus 74.2%) represents a promising prospect for facilitating data integration 

for analysis and predictive modeling. Data collected from different PLF systems could be 

converted to text and the extracted text embeddings could be directly used in quantitative analyses, 

as opposed to having to define data standards that those systems must conform to in order to enable 

data analysis (Bahlo et al., 2019). 

Some of the data explored in this study had never been considered before for the early 

detection of health issues in dairy cows, most notably depth images and text data extracted from 

the farm management software. To the best of our knowledge, this was the first attempt to leverage 

information contained in this type of data for health monitoring, enabled by the use of modern 

NLP and computer vision techniques for feature extraction. Furthermore, the proposed machine 

learning pipeline aims to detect cases of SCK during the postpartum period using exclusively data 

gathered prepartum, with up to 15 days in advance. Such an early detection system would allow 

the implementation of management practices that could drastically improve the decision-making 

process in dairy farms. For example, it could reduce the time that cows spend in the fresh pen, as 

cows that will most likely not develop hyperketonemia, as predicted by the system, could be moved 
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to a regular pen earlier. This could reduce costs associated with the time and labor required to 

check cows in the fresh pen and alleviate overstocking, which is known to cause several issues 

related to cow welfare and performance (Fregonesi et al., 2007; Coblentz et al., 2018). 

Additionally, the ability to detect cows with a high risk of developing SCK could lead to the 

adoption of more focused preventive practices that can reduce the economical impact of SCK in 

dairy cows (McArt et al., 2014). Future studies evaluating longer prepartum time series could lead 

to even better dairy management practices if the predictions are good enough, as they could 

potentially allow an even earlier detection of health issues in individual animals. 

Finally, the pipeline proposed in this study could be used for other purposes beyond 

subclinical ketosis detection. Different phenotypes that are also associated with body tissue 

mobilization and behavior during the transition period could be predicted using the same features 

extracted via the proposed data processing methods. This framework could be re-used to perform 

predictions for other health issues or even other variables related to the transition period, such as 

reproductive performance, productive potential, and animal welfare. 

CONCLUSION 

The main objective of this study was to propose and rigorously evaluate a machine learning 

pipeline for early subclinical ketosis detection, analyzing different techniques for extracting 

features from depth images containing the cow body and from textual notes retrieved from the 

farm management software, and combining the extracted features with tabular data containing 

feeding behavior, cow activity, and cow history variables collected using wearable sensors and 

farm management software. This study represented a first attempt at using body shape information 

extracted from depth images collected through time during prepartum for the early detection of 

SCK postpartum, leveraging the detailed information contained in those images related to how the 
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body shape of the cows changed during prepartum, and how they might be useful predictors for 

early lactation SCK. Additionally, this study also provided a first attempt to integrate textual 

information extracted from farm management software using NLP for dairy cow phenotype 

prediction, laying the foundation for further research in this exciting and potentially 

groundbreaking field. The machine learning pipeline proposed in this study can extract information 

from high-dimensional unstructured data such as images and text and use it for early disease 

detection. We believe that the proposed framework can be replicated for the prediction of many 

other phenotypes that could enhance the decision-making process at dairy farms. The superior 

results achieved when including depth images of the cows or unstructured textual notes collected 

via farm management software for SCK prediction shed light on the potential of using this type of 

data as disease and phenotype predictors. This involves utilizing modern deep learning techniques 

for extracting quantitative information from this high-dimensional unstructured data that would 

otherwise be challenging to incorporate in predictive analyses. The detailed exploration of the 

different ways to extract features from imaging and textual data could lay the foundation for future 

methods to integrate multiple data sources into robust phenotype prediction models. Furthermore, 

the proposed automated pipeline could allow the implementation of preventive practices in dairy 

farms, reducing costs associated with subclinical ketosis, and improving animal health and welfare. 
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TABLES AND FIGURES 

Table 4.1. Hyperparameters explored for training different BCS CNN models and next-week BCS 

CNN-RNN models. 

Approach Hyperparameter Possible values 

BCS prediction CNN Training paradigm 
Regular softmax, CORAL, or 

CORN 

Next-week BCS prediction 

CNN-RNN 

Training paradigm 
Regular softmax, CORAL, or 

CORN 

Initial CNN weights ImageNet or best BCS CNN 

Skip second stage of 

transfer learning? 
Yes or no 

LSTM layers 1 or 2 

LSTM dimension 
64, 128, 256, 512, 1,024, or 

2,048 

Minimum sequence length 1, 3, or 5 

Maximum sequence length 2, 5, or 10 

Include postpartum? Yes or no 

 

 



 
1
4
3
 

Table 4.2. Templates utilized for converting the feeding behavior, cow activity, and cow history variables into text. The variable values 

were inserted into the templates in their corresponding position (in {italic}), and text embeddings were extracted from each generated 

text using the text-embedding-ada-002 model, resulting in a 1,536-dimensional feature vector for each text. The parity variable was 

converted to its corresponding ordinal text (second, third, fourth, fifth, and sixth). 

It is a {Parity} lactation cow. Its previous lactation lasted {Previous DIM} days. Between the previous and current lactations, it stayed {Previous 

days dry} days dry. It had {Ketosis events} previous cases of ketosis. Its average daily dry matter intake was {Intake -7} kg during the last 

seven days prepartum and {Intake -2} kg during the last two days prepartum. Its average daily time spent eating was {Feeding time -7} minutes 

during the last seven days prepartum and {Feeding time -2} minutes during the last two days prepartum. Its average meal duration was {Meal 

duration -7} minutes during the last seven days prepartum and {Meal duration -2} minutes during the last two days prepartum. Its average 

daily number of meals was {Number of meals -7} during the last seven days prepartum and {Number of meals -2} during the last two days 

prepartum. Its average daily time spent lying, ruminating, inactive, and highly active in the last seven days prepartum was {Lying time -7}, 

{Rumination time -7}, {Inactive -7}, and {Highly active -7} minutes, respectively. Its body condition score on 21, 14, and 7 days prepartum 

was {BCS -21}, {BCS -14}, and {BCS -7}, respectively. Its body weight on 21, 14, and 7 days prepartum was {Body weight -21}, {Body weight 

-14}, and {Body weight -7}, respectively. 

The cow is on its {Parity} lactation. Its prior lactation endured a span of {Previous DIM} days. It experienced a dry period of {Previous days 

dry} days between the previous and current lactations. It encountered {Ketosis events} occurrences of ketosis previously. Its average daily 

intake of dry matter registered an amount of {Intake -7} kg during the seven days leading up to parturition and {Intake -2} kg during the final 

two days before parturition. Its typical daily feeding duration measured an average of {Feeding time -7} minutes during the last seven days 

prepartum and {Feeding time -2} minutes during the last two days prepartum. Its meal duration measured an average of {Meal duration -7} 

minutes during the last seven days prepartum and {Meal duration -2} minutes during the last two days prepartum. Its daily number of meals 

measured an average of {Number of meals -7} during the last seven days prepartum and {Number of meals -2} during the last two days 

prepartum. In terms of rest and activity, its daily periods spent lying, ruminating, being inactive, and highly active during the week before 

calving were {Lying time -7}, {Rumination time -7}, {Inactive -7}, and {Highly active -7} minutes, respectively. Its body condition score was 

{BCS -21} on 21 days prepartum, {BCS -14} on 14 days prepartum, and {BCS -7} on 7 days prepartum. Its body weight was {Body weight -21} 

on 21 days prepartum, {Body weight -14} on 14 days prepartum, and {Body weight -7} on 7 days prepartum. 

A cow in the {Parity} lactation phase. Its preceding lactation spanned {Previous DIM} days. It experienced {Previous days dry} dry days 

between the preceding and current lactations. There were {Ketosis events} prior instances of ketosis. The average daily dry matter intake over 

the last seven days before calving was {Intake -7} kg, and {Intake -2} kg during the last two days prepartum. It spent an average of {Feeding 

time -7} minutes eating daily during the last seven days prepartum and {Feeding time -2} minutes during the last two days prepartum. The 

typical meal duration was {Meal duration -7} minutes during the last seven days prepartum and {Meal duration -2} minutes during the last two 

days prepartum. The typical daily number of meals was {Number of meals -7} during the last seven days prepartum and {Number of meals -2} 



 
1
4
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during the last two days prepartum. In the last seven days prepartum, it spent {Lying time -7} minutes lying, {Rumination time -7} minutes 

ruminating, {Inactive -7} minutes inactive, and {Highly active -7} minutes highly active daily. Body condition score on days 21, 14, and 7 

prepartum was {BCS -21}, {BCS -14}, and {BCS -7}, respectively. Body weight on days 21, 14, and 7 prepartum was {Body weight -21}, {Body 

weight -14}, and {Body weight -7}, respectively. 

A cow is currently in the {Parity} lactation phase, with its previous lactation lasting {Previous DIM} days. It experienced a dry period of 

{Previous days dry} days between the previous and current lactations. The cow has a history of {Ketosis events} previous cases of ketosis. In 

the last seven days prepartum, it had an average daily dry matter intake of {Intake -7} kg, which changed to {Intake -2} kg during the last two 

days prepartum. The cow spent an average of {Feeding time -7} minutes eating daily over the last seven days and {Feeding time -2} minutes 

during the last two days prepartum, with meal durations of {Meal duration -7} minutes over the last seven days and {Meal duration -2} minutes 

during the last two days prepartum. In the last seven days prepartum, it had a daily average number of meals of {Number of meals -7}, which 

changed to {Number of meals -2} during the last two days prepartum. Additionally, in the last seven days prepartum, the cow spent {Lying time 

-7} minutes lying, {Rumination time -7} minutes ruminating, {Inactive -7} minutes inactive, and {Highly active -7} minutes highly active daily. 

Its body condition score on 21, 14, and 7 days prepartum was {BCS -21}, {BCS -14}, and {BCS -7}, respectively. Its body weight on 21, 14, 

and 7 days prepartum was {Body weight -21}, {Body weight -14}, and {Body weight -7}, respectively. 

A cow in its {Parity} lactation phase. It previously underwent a lactation period lasting {Previous DIM} days. Following the previous lactation 

and preceding the current one, it remained dry for {Previous days dry} days. It experienced {Ketosis events} instances of ketosis in the past. 

The average daily dry matter intake stood at {Intake -7} kg over the last seven days prepartum and {Intake -2} during the final two days 

prepartum. Its average daily time dedicated to eating was {Feeding time -7} minutes within the last seven days prepartum and {Feeding time -

2} minutes during the last two days prepartum. The average duration of its meals was {Meal duration -7} minutes over the last seven days 

prepartum and {Meal duration -2} minutes during the last two days prepartum. The average daily number of meals was {Number of meals -7} 

over the last seven days prepartum and {Number of meals -2} during the last two days prepartum. During the last seven days prepartum, it 

spent {Lying time -7} minutes lying down, {Rumination time -7} minutes ruminating, {Inactive -7} minutes inactive, and {Highly active -7} 

minutes highly active daily. Its body condition score on days 21, 14, and 7 prepartum was {BCS -21}, {BCS -14}, and {BCS -7}, respectively. 

Its body weight on days 21, 14, and 7 prepartum was {Body weight -21}, {Body weight -14}, and {Body weight -7}, respectively. 
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Table 4.3. Description of the features extracted for each cow, generated from data originating from imaging and wearable sensors, and 

cow history and textual notes collected from farm management software. 

Source Feature set (number) 
Variations 

per cow 
Description 

Depth 

images 

CNN for BCS (6,144) 503 

2,048 features extracted from the second-to-last layer of a CNN for BCS prediction, for each of the 

50 depth frames sampled from each video. Features from one frame of each prepartum video were 

concatenated into a 6,144-sized feature vector for that cow. 

Depth vectors (660 to 

6,600) 
503 

220 to 2,200 (depending on sampling resolution) depth values sampled between keypoints on the 

cow body surface for each depth frame. Values from one frame of each prepartum video were 

concatenated into a 660- to 6,600-sized feature vector for that cow. Normalized versions of the 

depth values were also considered. 

Areas between keypoints 

(33) 
503 

11 pairs of keypoints generated 11 areas that were calculated between the sampled depth vectors and 

the line connecting two keypoints on the cow body surface for each depth frame. Values from one 

frame of each prepartum video were concatenated into a 33-sized feature vector for that cow. 

CNN-RNN for BCS, per 

image (192 to 6,144) 
503 

64 to 2,048 features extracted from the hidden states of the last LSTM layer for each of the three 

images of the sequence (one for each prepartum video), which were then concatenated into a 192- to 

6,144-sized feature vector. 

CNN-RNN for BCS, per 

sequence (64 to 2,048) 
503 

64 to 2,048 features extracted from the last hidden state of the last LSTM layer for the whole 

sequence of three images of the sequence (one for each prepartum video. 

Wearable 

sensors 

Intake -7 (1) 1 Average daily dry matter intake during the last 7 days prior to calving. 

Intake -2 (1) 1 Average daily dry matter intake during the last 2 days prior to calving. 

Feeding time -7 (1) 1 Average daily time spent feeding during the last 7 days prior to calving. 

Feeding time -2 (1) 1 Average daily time spent feeding during the last 2 days prior to calving. 

Meal duration -7 (1) 1 Average meal duration during the last 7 days prior to calving. 

Meal duration -2 (1) 1 Average meal duration during the last 2 days prior to calving. 

Number of meals -7 (1) 1 Average daily number of meals during the last 7 days prior to calving. 

Number of meals -2 (1) 1 Average daily number of meals during the last 2 days prior to calving. 

Lying time -7 (1) 1 Average daily time spent lying during the last 7 days prior to calving. 

Rumination time -7 (1) 1 Average daily time spent ruminating during the last 7 days prior to calving. 

Inactive -7 (1) 1 Average daily time spent inactive during the last 7 days prior to calving. 

Highly active -7 (1) 1 Average daily time spent highly active during the last 7 days prior to calving. 

Management 

software 

Parity dummy variables 

(4) 
1 

4 one-hot encoded dummy variables representing cow parity. Second lactation cows were encoded 

as 0000, third lactation as 0001, fourth lactation as 0010, fifth lactation as 0100, and sixth lactation 

as 1000. 

Previous days in milk (1) 1 Number of days in milk in the previous lactation. 



 
1
4
6
 

Source Feature set (number) 
Variations 

per cow 
Description 

Management 

Software 

Previous days dry (1) 1 Number of days dry between previous and current lactations. 

Ketosis events (1) 1 Total number of ketosis events in previous lactations. 

BCS -21 (1) 1 BCS assessed 21 days before expected calving date. 

BCS -14 (1) 1 BCS assessed 14 days before expected calving date. 

BCS -7 (1) 1 BCS assessed 7 days before expected calving date. 

Body weight -21 (1) 1 Body weight measured 21 days before expected calving date. 

Body weight -14 (1) 1 Body weight measured 14 days before expected calving date. 

Body weight -7 (1) 1 Body weight measured 7 days before expected calving date. 

Text 

Template text (1,536) 5 
1,536 features extracted from text generated from the wearable sensors and management software 

variables using 5 templates. 

Notes text (1,536) 1 1,536 features extracted from the textual notes retrieved from the management software. 

Combined text (1,536) 5 1,536 features extracted from text combining templates and textual notes. 
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Table 4.4. Hyperparameters optimized during the training of the Random Forest models. The best 

set of hyperparameters in each train-test split iteration was found via 5-fold cross-validation on the 

training cows, among 100 random combinations of hyperparameters (randomized search). 

Hyperparameter Description Possible values 

Bootstrap 

Whether to bootstrap samples when 

building trees (True) or use the whole 

dataset (False). 

True or False 

Maximum depth 

Maximum depth of the trees. If None, 

nodes are expanded until all leaves are 

pure, or until all leaves contain fewer 

than Minimum samples to split samples. 

10 to 100, increasing by 

increments of 10, or None 

Maximum 

features 

Maximum number of features to consider 

when looking for the best split. 

The total number of features, 

the logarithm base 2 of the 

number of features, or the 

square root of the number of 

features 

Minimum 

samples for leaf 

Minimum number of samples required to 

be at a leaf node. 
1, 2, or 4 

Minimum 

samples to split 

Minimum number of samples required to 

split an internal node. 
2, 5, or 10 

Number of 

estimators 

Number of estimators (trees) in the 

random forest. 

200 to 2000, increasing by 

increments of 200 

 

Table 4.5. Results of the single-image BCS prediction models. The best results for each error 

tolerance are highlighted in bold. 

Method 
Accuracy with error tolerance 

0 0.25 0.50 0.75 1.0 

Regular softmax 28.4% 66.9% 86.6% 96.0% 98.4% 

CORAL 33.4% 78.9% 94.2% 98.9% 99.9% 

CORN 31.5% 73.3% 90.4% 97.7% 99.3% 
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Table 4.6. Results of the CNN-RNN comparative analysis exploring different training paradigms, 

initial CNN weights, and whether to fine-tune the CNN weights during training. The best results 

for each metric, as well as the model that achieved the highest 0.25-error accuracy, are highlighted 

in bold. 

Method 
Initial CNN 

weights 

Fine-

tune 

CNN? 

LSTM 

layers 

LSTM 

dimension 

0-error 

accuracy 

0.25-error 

accuracy 

0.50-error 

accuracy 

Softmax ImageNet Yes 1 1,024 32.8% 75.4% 95.7% 

Softmax CORAL BCS Yes 1 1,024 32.0% 79.7% 95.1% 

Softmax CORAL BCS No 1 1,024 34.4% 79.7% 96.5% 

CORAL ImageNet Yes 1 1,024 29.1% 72.9% 91.7% 

CORAL CORAL BCS Yes 1 1,024 29.7% 73.8% 93.6% 

CORAL CORAL BCS No 1 1,024 32.2% 76.1% 94.0% 

CORN ImageNet Yes 1 1,024 30.7% 77.6% 93.9% 

CORN CORAL BCS Yes 1 1,024 33.6% 80.4% 96.8% 

CORN CORAL BCS No 1 1,024 34.0% 81.3% 96.7% 

 

Table 4.7. Results of the CNN-RNN comparative analysis exploring different number of LSTM 

layers and their dimensions. The best results for each metric, as well as the model that achieved 

the highest 0.25-error accuracy, are highlighted in bold. 

Method 
Initial CNN 

weights 

Fine-

tune 

CNN? 

LSTM 

layers 

LSTM 

dimension 

0-error 

accuracy 

0.25-error 

accuracy 

0.50-error 

accuracy 

CORN CORAL BCS No 64 1 34.3% 80.7% 97.9% 

CORN CORAL BCS No 128 1 34.8% 80.6% 97.5% 

CORN CORAL BCS No 256 1 35.4% 81.4% 96.7% 

CORN CORAL BCS No 512 1 34.7% 82.7% 97.0% 

CORN CORAL BCS No 1,024 1 34.0% 81.3% 96.7% 

CORN CORAL BCS No 2,048 1 33.4% 79.9% 96.9% 

CORN CORAL BCS No 64 2 37.1% 81.8% 96.6% 

CORN CORAL BCS No 128 2 33.7% 82.3% 97.0% 

CORN CORAL BCS No 256 2 35.5% 81.7% 96.9% 

CORN CORAL BCS No 512 2 34.4% 80.3% 97.1% 

CORN CORAL BCS No 1,024 2 33.9% 82.6% 96.8% 

CORN CORAL BCS No 2,048 2 35.7% 82.4% 97.6% 
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Table 4.8. Results of the CNN-RNN comparative analysis exploring different sequence lengths 

and whether to include postpartum frames. The number of training sequences shown in this table 

was calculated considering one frame per video, but the models were trained using random frame 

combinations for each video sequence within an epoch, resulting in a virtual infinite number of 

different data points. The best results for each metric, as well as the model that achieved the highest 

0.25-error accuracy, are highlighted in bold. Testing set containing only sequences of 3 prepartum 

frames. 

Minimum 

sequence 

length 

Maximum 

sequence 

length 

Include 

postpartum? 

Number of 

training 

sequences 

0-error 

accuracy 

0.25-error 

accuracy 

0.50-error 

accuracy 

3 3 No 92 25.5% 61.9% 85.0% 

1 3 No 580 33.1% 63.3% 87.9% 

3 3 Yes 828 23.8% 76.2% 91.7% 

5 5 Yes 614 31.7% 53.3% 85.0% 

3 10 Yes 3,652 17.6% 73.8% 94.5% 

1 10 Yes 5,638 19.5% 77.9% 95.5% 
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Table 4.9. Results of SCK prediction models trained using only depth image features or BCS. SR 

stands for sampling resolution, MinSeq and MaxSeq are the minimum and maximum sequence 

lengths for training the CNN-RNN models, and “all HL” and “last HL” correspond to using as 

features all or only the last hidden state of the LSTM layer of the CNN-RNN models. No PCA 

was applied for any of the models listed in this table. The F1 scores and accuracies are reported as 

(mean ± standard deviation) across 20 random iterations of training and testing splits. The best 

results for each metric, as well as the model that achieved the highest F1 score for SCK prediction, 

are highlighted in bold. The CNN-RNN approach achieved the best performance, indicating that 

it might be able to extract more relevant information from all prepartum images jointly, as opposed 

to the other approaches, which rely on extracting features from each image individually. 

Approach Details 
Number of 

features 

F1 score 

(mean ± SD) 

Accuracy % 

(mean ± SD) 

BCS only 

(baseline) 
 3 0.473 ± 0.159 61.8 ± 9.1 

BCS CNN Softmax 6,144 0.352 ± 0.176 59.2 ± 11.9 

BCS CNN CORAL 6,144 0.329 ± 0.160 55.0 ± 9.9 

BCS CNN CORN 6,144 0.413 ± 0.182 59.5 ± 10.0 

Depth vectors SR=20 660 0.329 ± 0.139 48.7 ± 8.0 

Depth vectors SR=20, normalized 660 0.455 ± 0.153 57.6 ± 9.9 

Depth vectors SR=50, normalized 1,650 0.388 ± 0.173 55.5 ± 11.6 

Depth vectors SR=100, normalized 3,300 0.392 ± 0.171 54.2 ± 8.8 

Depth vectors SR=200, normalized 6,600 0.397 ± 0.201 56.6 ± 13.0 

Depth areas SR=200, normalized 33 0.432 ± 0.166 58.4 ± 10.5 

BCS CNN-RNN 
MinSeq=3, MaxSeq=3, 

prepartum, all HL 
1,536 0.441 ± 0.135 60.0 ± 10.0 

BCS CNN-RNN 
MinSeq=3, MaxSeq=3, 

prepartum, last HL 
512 0.493 ± 0.110 63.9 ± 8.2 

BCS CNN-RNN 
MinSeq=1, MaxSeq=3, 

prepartum, last HL 
512 0.433 ± 0.109 58.9 ± 8.7 

BCS CNN-RNN 
MinSeq=3, MaxSeq=3, 

pre + postpartum, last HL 
512 0.443 ± 0.141 60.5 ± 10.1 

BCS CNN-RNN 
MinSeq=5, MaxSeq=5, 

pre + postpartum, last HL 
512 0.390 ± 0.165 55.3 ± 11.5 

BCS CNN-RNN 
MinSeq=1, MaxSeq=10, 

pre + postpartum, last HL 
512 0.374 ± 0.153 54.5 ± 10.3 
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Table 4.10. Results of SCK prediction models trained using depth image features and tabular data. 

DV stands for depth vectors, SR stands for sampling resolution, norm stands for normalized, DA 

stands for depth areas, and the CNN-RNN features reported were extracted from the last hidden 

state of the last LSTM layer of the model trained using only sequences of three prepartum frames. 

The F1 scores and accuracies are reported as (mean ± standard deviation) across 20 random 

iterations of training and testing splits. The best results for each metric, as well as the models that 

achieved the highest F1 score for SCK prediction with and without including DMI, are highlighted 

in bold. The model including normalized depth vectors with a sampling resolution of 20 achieved 

the best performance when also including DMI variables (average F1 score = 0.706), and the model 

including PCA-transformed normalized depth vectors with a sampling resolution of 200 achieved 

the best performance when not including DMI variables (average F1 score = 0.596). These models 

possibly benefited from including information about the cow body shape in a more direct way 

through depth values between anatomical keypoints, as opposed to the more indirect deep neural 

network features. 

Image features 

PCA 

components 

(for image 

features only) 

Include 

DMI? 

Total 

number of 

features 

F1 score 

(mean ± SD) 

Accuracy % 

(mean ± SD) 

None No PCA Yes 25 0.655 ± 0.094 74.2 ± 8.0 

CNN, CORN 25 Yes 50 0.659 ± 0.091 73.2 ± 7.2 

DV, SR=20 norm No PCA Yes 685 0.706 ± 0.125 76.8 ± 8.7 

DV, SR=200 norm 25 Yes 50 0.680 ± 0.156 77.6 ± 8.1 

DA, SR=200 norm No PCA Yes 58 0.643 ± 0.127 74.2 ± 8.1 

CNN-RNN, 3-3, 

pre, last HL 
25 Yes 50 0.649 ± 0.081 72.9 ± 6.9 

None No PCA No 23 0.547 ± 0.140 67.4 ± 8.6 

CNN, CORN 23 No 46 0.524 ± 0.163 67.4 ± 12.7 

DV, SR=20 norm No PCA No  0.486 ± 0.169 61.3 ± 11.3 

DV, SR=200 norm 23 No 46 0.596 ± 0.146 72.6 ± 6.4 

DA, SR=200 norm No PCA No 56 0.507 ± 0.133 67.4 ± 9.5 

CNN-RNN, 3-3, 

pre, last HL 
23 No 46 0.475 ± 0.156 65.3 ± 10.4 
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Table 4.11. Results of SCK prediction models trained using text embeddings and tabular data. The 

text embeddings are described in more detail in Table 4.3 and the Text Feature Extraction section. 

Models using template text or combined text were trained and validated using 5 samples per cow 

because 5 different templates were utilized for generating text from tabular data. The F1 scores and 

accuracies are reported as (mean ± standard deviation) across 20 random iterations of training and 

testing splits. The best results for each metric, as well as the models that achieved the highest F1 

score for SCK prediction with and without including DMI, are highlighted in bold. The model 

using PCA-transformed notes text embeddings concatenated with tabular data achieved the best 

performance (average F1 score = 0.681), surpassing the model trained using only tabular data. This 

indicates that the notes recorded in the farm management software contain important information 

for SCK prediction, and LLMs provide a way to include this information in quantitative analyses 

such as the machine learning pipeline proposed in this study. 

Text 

embeddings 

PCA 

components 

(for text 

embeddings) 

Include 

tabular 

data? 

Total 

number 

of 

features 

Samples 

per cow 

F1 score 

(mean ± SD) 

Accuracy % 

(mean ± SD) 

None No PCA Yes 25 1 0.655 ± 0.094 74.2 ± 8.0 

Template text No PCA No 1,536 5 0.593 ± 0.201 70.5 ± 11.8 

Template text 25 No 25 5 0.600 ± 0.164 69.7 ± 11.4 

Notes text No PCA Yes 1,561 1 0.621 ± 0.094 73.7 ± 8.0 

Notes text 25 Yes 50 1 0.681 ± 0.209 78.7 ± 11.0 

Combined text No PCA No 1,536 5 0.517 ± 0.114 62.6 ± 7.6 

Combined text 25 No 25 5 0.518 ± 0.150 65.8 ± 11.9 
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Figure 4.1. Overview of the first four steps of the proposed machine learning pipeline: (1) using 

deep learning and image processing techniques to extract features related to body shape from depth 

images collected from dairy cows during prepartum; (2) calculating descriptive features from 

prepartum feeding behavior, cow activity, and cow history data; (3) extracting features from 

textual data using LLMs; (4) integrating all the extracted features into machine learning models 

that predict, using exclusively prepartum data, the cows with a high risk of developing subclinical 

ketosis during the first 15 days of lactation. FEImaging, FESensors, and FEText represent the feature 

extractors utilized for depth images, cow behavior and history data, and textual data, respectively. 
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Figure 4.2. Image processing pipeline for generating rotated, cropped, and denoised 8-bit images 

containing the segmented body surface of a cow. The depth frames were denoised by using depth 

frames that were adjacent in the recorded video. Each adjacent depth frame was segmented using 

a trained U-net model for cow body segmentation, rotated and cropped around the cow body. The 

mean pixel values of the cropped adjacent depth frames were calculated to generate a final 

denoised depth image, which was then converted to an 8-bit image. The generated 8-bit images 

were used for training and testing the CNNs for BCS prediction, and for feature extraction. 
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Figure 4.3. Infrared (a) and corresponding depth (b) images containing anatomical keypoints 

defined on the back of the cows. The defined keypoints included the (1) left and (2) right hooks, 

(3) left and (4) right pin bones, (5) tailhead, (6) sacral vertebrae, (7) lumbar vertebrae, and (8) 

cervical vertebrae. These keypoints were automatically detected for each depth frame using a 

trained keypoint detection YOLOv8 model. Multiple 1D depth vectors were calculated by 

sampling depth values between keypoint pairs, which served as image features for subclinical 

ketosis detection. 
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Figure 4.4. Examples of 1D depth vectors extracted from different frames by sampling the depth 

values between pairs of keypoints. The shapes of those depth vectors varied considerably between 

a cow with body condition score 2.25 (top image) and a cow with body condition score 4.50 

(bottom image). The dashed lines connect the first and last sampled depth values from each pair, 

which were used to normalize the depth vectors and to calculate the areas under these vectors, 

which were also used as features. This illustration was constructed using a sampling resolution of 

200. 
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Figure 4.5. Overview of the CNN-RNN architecture and feature extraction methods. Depth frames 

from the same cow on consecutive weeks are passed to a CNN that extracts features from each of 

them. The CNN features are then passed to the RNN as a sequence, which outputs the hidden states 

of each frame in the sequence. The last (time-wise) hidden state is passed to a classification layer 

that outputs the prediction for the BCS of that cow on the following week in relation to the last 

date of the sequence. Using this CNN-RNN approach, two different ways to extract features from 

a sequence of depth frames were explored: concatenating the hidden states from all images in the 

sequence or retrieving just the last hidden state output by the RNN. 

 



158 

 

Figure 4.6. Procedures to extract the three feature sets from textual data. Text embeddings were 

extracted from text generated by inserting tabular data into templates (template text); text generated 

from notes retrieved from the farm management software (notes text); and a combination of these 

two texts (combined text). When training the SCK prediction model, text embeddings extracted 

from notes text were concatenated with the tabular data containing behavior and historical 

information. 
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Figure 4.7. Example of (a) a CSV file containing notes taken during a cow’s previous lactation 

and dry period and (b) the corresponding text generated using OpenAI’s chat completion API. The 

texts were generated using the GPT-4 model, a temperature of 0.5, and the following system and 

user prompts: “"DIM" means the number of days in lactation that the cow had when that event 

happened. "PEN" is the pen number where that event occurred.” and “Give me a chronological 

report of events that happened to the cow described in this CSV: "{CSV content}"”. 1The names 

in the RESPONSIBLE column were replaced with the authors’ names to keep the privacy of the 

corresponding farm employees. 
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Figure 4.8. Average feature importances of the random forest SCK prediction models (a and c) 

including and (b and d) not including depth image features, and (a and b) including and (c and d) 

not including DMI. DMI measurements prove important for SCK prediction, followed by the 

previous days dry (DDRY) and the three body weight measurements (BW1, BW2, and BW3), which 

feature among the top 15 features both when including or not depth image features. Nine and four 

image features were included among the top 15 features when including or not DMI, respectively, 

which, along with the increase in average F1 score, further highlights the importance of including 

depth image analysis in the machine learning pipeline for SCK prediction. Feature importances 

were calculated as the mean decrease in impurity of each feature using the Gini criterion. 
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Figure 4.9. Average F1 scores for each number of samples per cow, (a) including or (b) not 

including DMI. Only the best two models for each analysis (including or not DMI) were plotted. 

When using 1 sample per cow, the mean feature values were calculated based on 50 random 

variations of each cow. The DV-20 and DV-200 models were trained using normalized depth 

vectors with 20 and 200 sampling resolution respectively. The CNN-RNN models were trained 

using the same CNN-RNN features as in the second comparative analysis (Combining Image 

Features with Tabular Data). Dashed lines represent the performance of the baseline models 

containing only tabular data. In general, including more samples per cow hindered the performance 

of the models, except for when using CNN-RNN features. 
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Figure 4.10. Average (a) F1 and (b) recall scores for different feature sets, plasma BHB thresholds, 

and training objectives (classification or regression). Class stands for classification and reg stands 

for regression; the Tabular variables correspond to tabular data, DV stands for depth vector, and 

feature sets containing (-DMI) did not include the two DMI variables. The CNN-RNN feature set 

contained features extracted from the last hidden state of the CNN-RNN next-week BCS prediction 

using only sequences containing three prepartum images. When including DMI, the depth vectors 

were normalized depth values with sampling resolution of 20 without PCA, and when not 

including DMI the depth vectors were normalized depth values with sampling resolution of 200 

applying PCA with 23 components. The best performing model based on F1 score was achieved 

using Tabular+DV features for binary classification using a BHB threshold of 1.0 mmol/L 

(average F1 score = 0.706). Including image features resulted in a decrease in the F1 score of all 

models except for when performing a regression and a threshold of 1.1 mmol/L without including 

DMI, when performing classification with a threshold of 1.2 mmol/L without including DMI, and 

when performing classification with a threshold of 1.0 mmol/L in all cases. However, when 

looking at recall, including image features resulted in a higher score in most cases, including the 

highest recall achieved when using Tabular+DV features for regression and a threshold of 1.0 

mmol/L (average recall = 0.790). 
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CHAPTER FIVE: CLOUD COMPUTING FRAMEWORK FOR AUTOMATED PHENOTYPE 

COLLECTION, INTEGRATION, AND DATA ANALYSIS IN DAIRY SYSTEMS 

 

ABSTRACT 

In precision livestock farming (PLF), wearable sensors, computer vision, and genomic 

tests generate large amounts of data that can be challenging to integrate and analyze jointly due to 

their diverse natures. At the same time, incorporating genomic and phenomic data together can be 

beneficial for developing predictive models in animal biology. The development of automated and 

modularized data pipelines using scalable solutions such as cloud computing can be an effective 

strategy to integrate and analyze animal-level information in real-time. The objectives of this study 

were (1) to propose a cloud computing-based framework to automate the processing and 

integration of phenotypic and genotypic data, and (2) to assess different data fusion strategies 

(early and late fusion, and cooperative learning) for the early detection of subclinical ketosis 

(SCK) in dairy cows, integrating wearable sensors, imaging systems, and genotypic data in 

livestock farms. We developed a modularized pipeline for image analyses including: body 

segmentation, frame quality assessment, animal identification, and body condition score (BCS), 

which were crucial to produce the features used for SCK detection. The body segmentation module 

achieved a Dice similarity coefficient of 0.990, the frame quality assessment module achieved an 

accuracy of 99.1%, the animal identification module achieved an accuracy of 93.2%, and the BCS 

module achieved accuracies of 81.1% and 96.2% when allowing up to 0.25 and 0.50 prediction 

error. For SCK detection, early fusion and cooperative learning achieved the lowest mean absolute 

errors on the prediction of plasma beta-hydroxybutyrate as a continuous variable (down to 0.242), 

and late fusion coupled with an ordinary least squares regression achieved the highest F1 scores 
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for SCK binary prediction (up to 0.750). These results indicate that data fusion techniques can be 

used for efficient integration of genotypic and phenotypic data from multiple sensors. 

Additionally, SCK detection can be performed in dairy farms via the proposed cloud computing-

based framework implemented using modular independent services, which can be customized and 

re-used for a variety of tasks. 

 

INTRODUCTION 

As the global human population grows, so does the demand for food, putting pressure on 

food production systems to become more cost-effective and efficient, both in terms of production 

and environmental impact. In livestock systems, achieving such efficiency primarily hinges on 

optimized management practices and genetic improvement. Both strategies benefit significantly 

from high-throughput phenotyping, which involves the measurement and monitoring of key traits 

in living organisms in a way that is non-invasive, automated, and scalable (Koltes et al., 2019). 

Specifically, through precision livestock farming (PLF) technologies, high-throughput 

phenotyping enables more informed and rapid farm management decisions (Berckmans, 2017) and 

enhances the capabilities for genetic selection (Brito et al., 2020; Silva et al., 2021). 

Precision livestock technologies provide a great way to implement high-throughput 

phenotyping, with computer vision-based systems emerging as potential approaches that provide 

non-invasive, automated, and scalable solutions for individual animal monitoring (Fernandes et 

al., 2020). However, a great challenge in applying PLF technologies in livestock farms pertains to 

making efficient use of the generated data (Koltes et al., 2019). With data generated by each PLF 

system typically being available locally at the farm, locked within each provider’s software, and/or 

following each company’s proprietary formats, data availability and integration become big 
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challenges in the adoption and development of new solutions that could arise from analyzing data 

from multiple sources simultaneously (Neethirajan and Kemp, 2021). 

Cloud computing technology could be used to store the data generated by PLF systems 

available on the farm and process such data into valuable information for the farmer, which could 

be accessed from anywhere with internet connection. Integrating PLF technologies into cloud 

computing solutions can mitigate some of the problems related to data integration and availability, 

as all data generated from different sources are stored and made available on a single platform 

(Schokker et al., 2022). Edge computing is also considered a powerful alternative for processing 

and distributing data collected at farms (Alonso et al., 2020), but it lacks the flexibility that cloud 

computing provides to scale up computing power for data analytics, predictive modeling, and other 

data processing requirements on demand. 

Although cloud computing provides great infrastructure for PLF systems, integrating 

multiple data modalities into predictive analyses can still pose challenges due to the diversity of 

data structures and representations in data originating from heterogeneous sources (Atrey et al., 

2010). For example, data produced by imaging systems and wearable sensors might have 

completely different data acquisition frequencies, structural patterns, and, ultimately, ways to 

process and extract information from. In agriculture, genomic and phenomic data contain distinct 

signals that can be combined to train more robust models than if these modalities were used 

independently. The integration of these data modalities can be performed either via early fusion, 

which consists of concatenating the features from different modalities into a single joint 

representation for prediction, late fusion, which consists of integrating the predictions made for 

each modality separately, or hybrid fusion, which combines the concepts of both early and late 

fusion approaches (Baltrušaitis et al., 2019). Recently, Ding et al. (2022) proposed a hybrid fusion 
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method called cooperative learning, which merges multiple modalities in a data-adaptive manner, 

introducing an agreement penalty that encourages predictions from separate modalities to reach a 

consensus. The weight of this agreement penalty in relation to a regularized squared-error loss 

dictates how much the final model relies on early and late fusion. This weight is considered a 

hyperparameter during model training, and it is adjusted based on a validation set or cross-

validation. Evaluating different data fusion techniques is critical for advancing omics integration 

in agriculture, given the variety of data modalities obtained through sensing technologies. 

Moreover, the integration of such techniques with cloud computing technology provides a 

powerful tool for the deployment of automated PLF systems that optimize livestock management 

decisions and improve animal health and welfare. An overview of the fusion techniques explored 

in this study is illustrated in Figure 5.1. 

Integrating genotypic and phenotypic data in the proposed modularized cloud computing 

framework allows for the development of a variety of predictive algorithms for improving animal 

monitoring and farm management practices. We propose a framework for extracting features from 

different modalities (genotypic data, imaging data, and phenotype tabular data) and combining 

these features for phenotype prediction using data fusion and machine learning techniques. This 

framework can be reused and expanded to solve different problems in livestock farms that are 

related to body shape, genetics, and animal behavior. In this study, we have explored integrating 

genotypic data, wearable sensors, and imaging systems for the early detection of subclinical ketosis 

(SCK), which is one of the most prevalent and economically detrimental peripartum disorders 

affecting dairy cows (Cainzos et al., 2022). Many of the image processing modules implemented 

for the early detection of SCK were also used in the cloud computing framework for performing 
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automatic individual animal identification and body condition score (BCS) evaluation, 

demonstrating the reusability of the modules implemented in the proposed framework. 

The objectives of this study were (1) to propose a cloud computing-based framework to 

automate the processing and integration of phenotypic and genotypic data, and (2) to assess 

different data fusion strategies (early and late fusion, and cooperative learning) for the early 

detection of SCK in dairy cows, integrating wearable sensors, imaging systems, and genotypic 

data in livestock farms. We demonstrate the proposed framework by implementing automated 

animal identification and BCS assessment through imaging data, and a novel approach for the 

early detection of SCK in dairy cows. 

MATERIAL AND METHODS 

The data processing and phenotype prediction pipeline developed in this study consisted 

of four steps: (1) feature extraction from genotype data; (2) feature extraction and prediction from 

image data; (3) feature engineering from sensor and management software data; and (4) data fusion 

and machine learning model prediction. The image processing pipeline was further divided into 

four separate procedures: (1) cow body segmentation; (2) image quality classification; (3) animal 

identification; and (4) BCS classification. It is worth noting that, although the main phenotype 

explored in this work is the early detection of subclinical ketosis, the same data processing 

procedures can be applied to any phenotype that is correlated to genetic data, body shape changes, 

and animal behavior, which makes the developed pipeline reusable for other applications. In 

addition, animal identification is an essential step for any individual phenotyping tool that utilizes 

images. Here we perform animal identification directly from images, without the need for an 

external animal identification system such as radio frequency identification devices. 

BCS Assessment and Subclinical Ketosis Classification 
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Three trained independent evaluators determined the BCS of 115 multiparous cows weekly 

from 21 to 7 days before the expected calving date, and from 7 to 56 days after calving using a 5-

point scale (Wildman et al., 1982). The BCS in quarter-point increments that was closest to the 

average among the three evaluators was then determined for each cow and date. The assessed BCS 

values were 2.00 (n = 1), 2.25 (n = 18), 2.50 (n = 42), 2.75 (n = 123), 3.00 (n = 222), 3.25 (n = 

247), 3.50 (n = 218), 3.75 (n = 139), 4.00 (n = 84), 4.25 (n = 43), and 4.50 (n = 27). 

Blood samples from 106 of those cows were collected at 3, 5, 7, 11, and 14 days after the 

calving date. Concentrations of plasma beta-hydroxybutyrate (BHB) were quantified using the 

Catachem ChemWell-T analyzer (Catachem; Oxford, CT) as previously described (Holdorf et al., 

2023). Cows with the maximum measured BHB concentration among those five samples above 

1.0 mmol/L were classified as having a postpartum subclinical ketosis event. It is worth noting 

that commonly used BHB thresholds for ketosis detection range between 1.0 and 1.2 mmol/L. 

However, in our case, using thresholds higher than 1.0 mmol/L resulted in unbalanced datasets, 

with only a few cases of cows exceeding such thresholds and being considered an SCK event. 

Genotype Data 

Genotypic information from 163 cows was sourced from the Council on Dairy Cattle 

Breeding (CDCB) database, resulting in 78,964 single-nucleotide polymorphism (SNP) markers 

per cow. Of those 163 animals, 19 were separated as testing cows, and the remaining 144 were 

used as a training set for further quality control analyses and feature extraction. SNPs with call 

rates below 0.95, minor allele frequencies below 0.01, or with a highly significant deviation from 

the Hardy-Weinberg equilibrium (p-value below 10-5) were removed from further analyses, 

resulting in 73,031 SNPs. Missing SNP values were imputed with the predominant value for the 

corresponding marker in the training dataset, and each SNP value was converted to two binary 
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values, with the homozygous set to 00 and 11, and the heterozygous set to 01. The resulting 

146,062 binary values for each of the 144 cows were used to train a Uniform Manifold 

Approximation and Projection (UMAP) (McInnes et al., 2018) model with local neighborhood 

size of 15 samples, cosine similarity as the distance metric, and 128 components as the output 

dimensionality. UMAP is a commonly used technique for reducing data dimensionality in a 

nonlinear manner in the context of cellular biology and genomics, often surpassing the 

performance of other dimensionality reduction tools for clustering, visualization, and classification 

(Becht et al., 2019; Allaoui et al., 2020; ElKarami et al., 2022). The trained UMAP model was 

used to extract 128 features from both the 144 training cows and the 19 testing cows. 

Image Processing 

Cow Body Segmentation 

Videos of 74 pre-weaned Holstein dairy calves, aged two to eight weeks and housed at the 

Emmons Blaine Dairy Cattle Research Center (Arlington, WI), were captured from a top-down 

view while individually weighing each animal. Among these, 43 calves were recorded using a 

Kinect V2 sensor (Microsoft; Redmond, WA) at a resolution of 512 × 424 pixels, while the 

remaining 31 were recorded using Intel RealSense D435 depth-sensing cameras (Keselman et al., 

2017) at a resolution of 848 × 480 pixels. Using the same Intel RealSense cameras at the same 

resolution, videos from 155 multiparous Holstein cows were captured as they entered the milking 

parlor, or while individually weighing each animal. Additionally, snapshots from 59 of those cows 

were automatically captured at a resolution of 640 × 480 as they walked under Intel RealSense 

D435 cameras installed at the milking parlor exit lanes. 

All of those videos and snapshots contained a depth channel with each pixel consisting of 

a 16-bit unsigned integer value representing the distance in millimeters between the object at that 
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pixel and the camera lenses. Depth frames were extracted from the videos, and each frame was 

then clipped to floating-point values between 0 and 1 by dividing each pixel value by 5,000 for the 

cow videos taken while weighing (the camera was positioned slightly above 5 meters from the 

scale flooring), or by normalizing each pixel value using the corresponding 1st and 99th percentiles 

for all remaining videos or snapshots. Each frame was then converted to an 8-bit grayscale image 

by multiplying their pixel values by 255 and converting the results to 8-bit unsigned integers. 

Segmentation masks from random depth frames were manually annotated containing the 

full animal body excluding the neck and the head. Care was taken to obtain a balanced number of 

frames per animal and date, as some animals had images collected on multiple different days, 

resulting in 968 images of calves, 159 images of cows entering the milking parlor, 248 images of 

cows at the milking parlor exit lanes, and 2,328 images of cows at the weighing scale. From those 

images, two distinct testing sets were established: 124 randomly selected images from the milking 

parlor exit lanes (test_seg_lane); and 462 images of 21 predetermined testing cows at the scale, 

with 19 of them corresponding to the same testing cows determined for the genotype data 

(test_seg_scale). The remaining 3,117 images were used to train a deep neural network for cattle 

body segmentation based on the U-net architecture (Ronneberger et al., 2015), with training and 

validation sets defined through a random split of 90% of the images for training and 10% for 

validation. 

The U-net model was trained for 100 epochs with batch size equal to 1 and an initial 

learning rate of 10-5. The model parameters were optimized for both minimizing the pixel level 

cross-entropy loss and maximizing the Dice similarity coefficient (Zou et al., 2004) using 

RMSProp (Hinton et al., 2012) with weight decay and momentum of 10-8 and 0.999, respectively. 

A learning rate scheduler was set to reduce the learning rate by a factor of 10 when the Dice 
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similarity coefficient calculated on the validation set would not increase for 4 consecutive epochs. 

Before each forward pass during training, the images were randomly flipped horizontally and 

vertically with 50% probability and rotated by a random angle between -90 and 90 degrees. The 

Dice similarity coefficient was used as the main metric to evaluate model performance on the 

training, validation, and both testing sets. 

Image Quality Classification 

Depth images from cows exiting the milking parlor were automatically collected as they 

walked through the four exit lanes using Intel RealSense D435 cameras at a resolution of 640 × 

480 pixels, resulting in 20,170 images. Each depth image was manually annotated as being good 

or bad for further analysis, based on whether it contained the whole body of a single cow, which 

resulted in 12,368 bad and 7,802 good images. The depth images were normalized to pixel values 

between 0 and 1 using the corresponding 1st and 99th percentiles and converted to 8-bit grayscale 

images by multiplying their pixel values by 255 and converting the results to 8-bit unsigned 

integers. They were then segmented using the trained cow body segmentation model, rotated so 

that the major axis of the ellipse that had the same second-moments of the mask was parallel to 

the x-axis, and cropped around the bounding box containing all mask pixels. 

The same depth frames that were collected from cows during individual weighing and 

manually segmented to train and test the cow body segmentation network underwent the following 

processing steps: pixel values were divided by 5,000 and clipped to values between 0 and 1, as the 

camera was positioned slightly above 5 meters from the scale flooring; the image was converted 

to 8-bit grayscale by multiplying the pixel values by 255 and converting the results to 8-bit 

unsigned integers; the corresponding manually annotated segmentation mask was applied to the 

image; the image was rotated so that the major axis of the ellipse that had the same second-
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moments was parallel to the x-axis; and the image was cropped around the bounding box 

containing all the masked pixels. All 2,328 depth images obtained this way were considered good, 

so bad pairs were artificially crafted by cropping the area to the right of the line that connects one 

random pixel on the top row to another at the bottom row of the image, simulating situations where 

the cow body would be partially occluded. This resulted in 2,328 good and 2,328 bad images 

collected on the scale. 

From those 24,826 annotated depth images, two distinct testing sets were constructed: all 

images collected from one of the four milking parlor exit lanes (4,976 images; test_quality_lane); 

and 462 images of the same 21 predetermined testing cows collected on the scale, along with their 

corresponding bad pairs (924 images; test_quality_scale). The remaining 18,926 images were used 

to train a deep neural network for image quality classification based on the ResNet-50 architecture 

(He et al., 2016), with training and validation sets defined through a random split of 80% of the 

images for training and 20% for validation. 

The image quality classification model was constructed using a ResNet-50 network (He et 

al., 2016) pretrained on the ImageNet dataset (Deng et al., 2009), and the output layer was replaced 

by a fully-connected layer with two output neurons. The training process was performed via a two-

stage approach: feature extraction and fine-tuning. In the feature extraction stage, the network was 

trained for 30 epochs keeping the weights from all except the output layer frozen, allowing features 

previously learned through ImageNet to be used and retained. In the fine-tuning stage, weights 

from all layers were unfrozen and the network was trained for 60 epochs with a smaller learning 

rate, allowing it to learn features that are more specific to the current task. The batch size in both 

stages was set to 16, and the initial learning rates for feature extraction and fine-tuning were 10-3 

and 10-4, respectively. The model parameters were optimized for minimizing the cross-entropy 
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loss using Adam (Kingma and Ba, 2014) with running average coefficients of 0.9 and 0.999, and 

a scheduler was set to reduce the learning rate by a factor of 10 every 6 epochs. Before each 

forward pass, the images were resized to 224 × 224 keeping the original aspect ratio by padding 

the smallest dimension, and randomly flipped horizontally and vertically with 50% probability. 

Model accuracy was monitored for both training and validation sets during training, and the final 

model accuracy was calculated for both independent testing sets. 

Animal Identification 

Videos of 90 multiparous Holstein cows were manually collected during weekly individual 

weighing from 21 to 7 days before the expected calving date and from 7 to 56 days after calving 

using an Intel RealSense D435 depth-sensing camera, resulting in 11 videos per cow. These videos 

were also used for cow body segmentation and image quality classification, described in the two 

previous subsections (Cow Body Segmentation and Image Quality Classification). At the time of 

recording, the videos were labeled with the corresponding cow tag identification number. From 

each video, 10 random infrared frames were extracted, each represented by an 8-bit grayscale 

image captured by one of the Intel RealSense infrared sensors, resulting in 9,680 infrared frames 

because 22 videos did not contain an infrared channel and were excluded from the animal 

identification analysis. The corresponding depth frames were passed through the cow body 

segmentation model and the predicted segmentation masks were applied to the original infrared 

frames. The segmented infrared frames were then rotated so that the major axis of the ellipse that 

had the same second-moments of the mask was parallel to the x-axis, and cropped around the 

bounding box containing all mask pixels. This resulted in 9,679 successfully segmented infrared 

frames. 
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For training the animal identification neural network, frames from the first six videos of 

each cow were allocated to the training set (5,400 images), frames from the 7th video were allocated 

to the validation set (900 images), and the testing set was composed of frames from the last four 

videos of each cow (3,379 images), with the videos being recorded at one-week intervals. Similar 

to the image quality classification model, the animal identification model was constructed based 

on a pretrained ResNet-50 network (He et al., 2016), but with the output layer being replaced by a 

fully-connected layer with 90 output neurons instead (one for each cow). The training procedure 

and hyperparameters were similar to those used in the image quality classification model, with the 

distinction that the images were resized by stretching the originally smaller dimension instead of 

padding it, and an additional image augmentation step was performed to randomly jitter brightness, 

contrast, and saturation by 40% each. 

BCS Classification 

Videos of 115 multiparous Holstein cows were manually collected during weekly 

individual weighing from 21 to 7 days before the expected calving date and from 7 to 56 days after 

calving using an Intel RealSense D435 depth-sensing camera. Some animals did not have all 11 

weekly videos recorded because they either calved more than a week before the expected calving 

date or were removed from the experiment before reaching 56 days after calving, resulting in a 

total of 1,164 videos. For each video, a procedure similar to those described in the two previous 

subsections (Image Quality Classification and Animal Identification) was performed: 10 random 

depth frames were extracted and normalized to an 8-bit image, the segmentation masks predicted 

using the cow body segmentation model were applied, and the depth images were rotated and 

cropped accordingly. This resulted in a total of 11,639 segmented depth frames. 
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For training the BCS classifier, frames from the same 21 testing cows as determined 

previously were separated to form a testing set, and the remaining frames were randomly split into 

training and validation sets in a 90 to 10 ratio, with no frames from the same video belonging to 

both the training and validation sets at the same time. Since only a single video contained a cow 

with a BCS of 2.00, the frames from that video were removed from the BCS analysis, resulting in 

9,319 frames being used for training and validation, and 2,310 being used for testing. 

The BCS classification model was constructed based on a ResNet-50 network (He et al., 

2016) pretrained on the ImageNet dataset (Deng et al., 2009), and the output layer and loss function 

were defined following the Consistent Rank Logits (CORAL) framework (Cao et al., 2020) for 

rank-consistent ordinal regression. The target classes represented the 10 different BCS measures 

in quarter-point increments from 2.25 to 4.50, excluding BCS of 2.00 because only one video 

contained that value. The training procedure and hyperparameters were the same as used in the 

image quality classification model, with an additional image augmentation step performed to 

randomly jitter brightness, contrast, and saturation by 40% each. The performance of the trained 

model was assessed by evaluating the accuracy for predicting the exact BCS quarter-point values, 

as well as the accuracies considering error tolerances of 0.25, 0.50, 0.75, and 1.0. 

Sensor and Management Data 

Cows that were not present in the genotypic database or that did not have all three videos 

recorded before calving during individual weighing were excluded from further subclinical ketosis 

prediction analysis. The remaining 89 cows had the following information retrieved from the 

management software at the farm: parity, days in milk of the previous lactation, previous dry 

period length, number of past ketosis events, and weekly BCS in the last three weeks before 

calving. Electronic roughage intake control bins (Hokofarm Group; Marknesse, the Netherlands) 
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measured the weight and duration of all meals from these animals between 21 days before the 

expected calving date and the actual calving date. The daily averages of dry matter intake (DMI), 

feeding time, and average meal duration were calculated for both 7 days and 2 days prior to the 

calving date for each cow. Additional behavioral data were collected via SMARTBOW (Zoetis; 

Kalamazoo, MI) ear tags fitted to each cow, including lying time, rumination time, and time spent 

inactive and highly active, and daily averages were computed for the last 7 days before the calving 

date. This resulted in 20 management software and sensor variables per cow, as illustrated in Table 

5.1. 

Subclinical Ketosis Prediction 

Models for predicting postpartum subclinical ketosis were trained and tested using 

prepartum data from 89 cows, including genotypic, imaging, management software, and sensor 

data. Those multiple data modalities were merged for analysis using different data fusion 

techniques, including cooperative learning, which were separately evaluated. Genotypic 

information was represented by 128 UMAP features, body shape information was represented by 

features extracted from depth frames using the BCS classification network, cow history 

information was collected from the management software at the farm, and behavior information 

was represented by descriptive statistics calculated from data collected from different sensors 

installed at the farm. 

From each video collected weekly from 21 to 7 days before the expected calving date, 10 

random frames were extracted and processed, and 2,048 features were extracted from the second-

to-last layer of the BCS classifier for each frame. Because BCS is a partially subjective 

measurement, extracting features from the trained classifier can be a more objective and detailed 

way of quantifying the body shape of dairy cows. Extracting features from the 10 random frames 
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of each video resulted in 30 sets of 2,048 features per cow, which were then organized into 10 sets 

of 6,144 features by concatenating the features from frames of the three consecutive prepartum 

weeks. Therefore, each cow contained 128 genotypic features, 20 management software and sensor 

features, and 10 variations of 6,144 image features, resulting in 10 data points per cow and 6,292 

features per data point. Having multiple data points per cow allowed multiple sets of frames to be 

used for training and testing the SCK prediction models without resorting to averaging the features 

extracted from different images of the same cow video and potentially losing information. Table 

5.1 includes descriptions of all the features representing each cow for SCK prediction. 

The target variable of the subclinical ketosis predictors was the highest BHB value 

measured for each cow from the blood samples collected from 1 to 14 days after calving. Four data 

fusion techniques were evaluated: early fusion, which consists of simply concatenating all features 

from different modalities before training the model; simple late fusion, which consists of 

separately training one model for each modality and averaging the individual predictions to 

achieve a final prediction; ordinary least squares (OLS) late fusion, which consists of separately 

training one model for each modality and then training an OLS regressor using the individual 

predictions on the training set to achieve a final predictor; and cooperative learning, which 

introduces an agreement penalty to encourage predictions from different modalities to agree, and 

chooses the degree of agreement in an adaptive manner through cross-validation (Ding et al., 

2022). An overview of the data fusion techniques explored in this study is illustrated in Figure 5.1. 

Additionally, we assessed how removing dry matter intake measurements from the analysis 

impacted the results, as dry matter intake can be a difficult variable to measure in commercial 

settings without intake control bins. Finally, we evaluated performing principal component 
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analysis (PCA) on the genotype and image modalities before training the models to match the 

same number of components as management software and sensor features for each modality. 

For each fusion technique, regressors with the least absolute shrinkage and selection 

operator (LASSO) penalty were trained using 70 cows, and hyperparameter tuning was performed 

using grid search and 5-fold cross-validation within those cows. After the optimal values were 

found for the LASSO regularization and the cooperative learning agreement constants, the models 

were retrained using such values and the full training set containing 70 cows. The models were 

tested on the remaining 19 cows, which were part of the predetermined testing cows used in 

previous analyses for genotypic and imaging feature extraction and BCS classification. After 

training the models, the target values and predictions were converted to binary values for SCK 

classification evaluation using a BHB threshold of 1.0 mmol/L for considering SCK events. This 

resulted in 30 out of 70 and 7 out of 19 cows having SCK in the training and testing sets, 

respectively. The performance metrics used to compare the different data fusion techniques were 

the mean absolute error (MAE) of BHB prediction, and the accuracy, precision, recall, specificity, 

and F1 score of SCK classification, which is the harmonic mean of the precision and recall. 

It is important to highlight that a single, consistent testing set of cows was chosen to assess 

the performance of the SCK prediction model and all image processing models except for animal 

identification. This exception was because the animal identification model utilized a closed-set 

supervised learning approach, which required all animals to be present in both the training and 

testing sets. The decision to use a single set of testing cows, rather than generating multiple random 

testing sets, was driven by the need to evaluate the overall performance of the cloud computing 

pipeline, as only a single trained model could be deployed for each data processing module. This 

approach aimed to mimic the scenario of introducing a new set of cows into the herd for BCS 
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evaluation and early detection of SCK, triggering the entire data processing pipeline from 

genotypic, imaging, and behavioral feature extraction to the final SCK prediction. In this scenario, 

only the animal identification model would need retraining and all other modules could be reused 

for evaluating the newly introduced cows. 

Cloud Computing Pipeline 

All steps of the genotypic, imaging, and sensor data processing and feature extraction, as 

well as animal identification, BCS, and subclinical ketosis predictive models, were deployed to a 

modular cloud computing pipeline hosted in Microsoft Azure and based on Representational State 

Transfer (REST) Application Programming Interfaces (API). Each API function was 

implemented as a serverless Azure Function triggered under different conditions, such as a 

Hypertext Transfer Protocol (HTTP) call or when data became available in certain Azure Blob 

Storage containers, designed to store large amounts of unstructured data such as documents and 

media files. Using this modular approach allows for the re-use of certain core services, such as 

body segmentation and image quality assessment, and facilitates the implementation and 

deployment of new functionalities into the cloud platform, all seamlessly to the farm operations as 

no updates are required in the on-premises farm computer infrastructure. 

For genotypic data, two functions were implemented as Microsoft Azure Functions: 

ProcessGenotypeRef and ExtractFeaturesGenotype. The ProcessGenotypeRef function is 

triggered by an HTTP GET request with no parameters and reads all genotype files stored in an 

Azure Blob Storage container (genfilesref) following the format made available by CDCB. These 

files contain the 78,964 SNP values of the animals meant to be used as a reference for further SNP 

quality control and UMAP training – 144 animals for the current case study. The function stores 

in a Structured Query Language (SQL) table (SNPs), for each SNP, its predominant value and 
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whether it passes the quality control criteria. After replacing missing values with their 

corresponding SNP predominant value, the function then automatically trains a UMAP model and 

saves its parameters to another Azure Blob Storage container for future use (models). The 

ExtractFeaturesGenotype function is then triggered every time a new genotype file is available at 

an Azure Blob Storage container (genfiles). That container is supposed to receive files from new 

animals that are not part of the reference dataset and from which it is desired to extract genotype 

features and perform further phenotype predictions. The function removes invalid SNPs, replaces 

missing values with their corresponding predominant SNP values, and performs inference using 

the previously trained UMAP model, resulting in 128 features per cow. These features are stored 

in an SQL table (FeaturesGenotype) for further analysis. 

For processing imaging data, seven functions were implemented as Microsoft Azure 

Functions: DetectAnimal, ClassifyGoodBad, IdentifyAnimal, PredictBCS, ExtractFeaturesImage, 

CheckImageAvailability, and ProcessImage. The DetectAnimal function is triggered by an HTTP 

POST request, wherein the parameter is an 8-bit depth image processed as previously described, 

and it returns the corresponding mask predicted by the cow body segmentation model. The 

ClassifyGoodBad function is triggered by an HTTP POST request that contains a segmented, 

rotated, and cropped depth image as parameter and returns whether that image is good or bad using 

the image quality classification model. The IdentifyAnimal function is triggered by an HTTP POST 

request that contains a segmented, rotated, and cropped infrared image as parameter and returns 

the cow tag identification number predicted by the cow identification model. The PredictBCS 

function is triggered by an HTTP POST request containing a segmented, rotated, and cropped 

depth image as parameter and returns the BCS predicted by the BCS classification model. The 

ExtractFeaturesImage function is triggered by an HTTP POST request containing a segmented, 
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rotated, and cropped depth image as parameter and returns the 2,048 features extracted from the 

second-to-last layer of the BCS classification model. 

The CheckImageAvailability and ProcessImage functions work as orchestrators that call 

the other image processing functions when new images become available in the corresponding 

Azure Blob Storage container (images). The CheckImageAvailability function is triggered every 

10 minutes and reads all blobs in an Azure Blob Storage container (images) containing depth and 

infrared images to be processed. The images should be named 

<camera_id>_<timestamp>_<suffix_and_extension>, with the camera_id being a text identifier 

for the camera that captured that image, the timestamp being the time when the image was captured 

in the format yyyymmddHHMMss, and the suffix_and_extension being equal to _d.tif for depth 

images, and _i.png for infrared images. The depth and infrared images corresponding to the same 

snapshot should have the same camera_id and timestamp. The function then stores in an SQL table 

(ImagesAvailable) whether the depth and infrared images are available in the container for each 

camera_id and timestamp combination. If both images are available and they had not been 

processed before, the function calls the ProcessImage function for that combination of camera_id 

and timestamp. This ensures that the pipeline implemented in ProcessImage is only activated when 

both depth and infrared images are available in the Azure Storage Blob container (images) for the 

corresponding snapshot. The ProcessImage function is triggered by an HTTP POST request 

containing as parameters the camera_id and timestamp of a snapshot to process. The function loads 

both the depth and infrared images corresponding to the camera_id and timestamp combination 

from the Azure Blob Storage container (images) and performs the following procedures: (1) it 

processes the depth image as previously described and calls DetectAnimal, which returns a 

predicted segmentation mask of the cow contained in that image; (2) it segments, rotates, and crops 
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the depth image using the predicted segmentation mask and calls ClassifyGoodBad, which returns 

whether that image is good or bad; (3) if the image is classified as bad, it ends the pipeline for that 

snapshot, otherwise it calls the PredictBCS and ExtractFeaturesImage functions using the 

segmented, rotated, and cropped depth image, and calls the IdentifyAnimal function using the 

segmented, rotated, and cropped infrared image; (4) it stores in an SQL table 

(IdentificationAndBCS) the predicted cow identification number and BCS for that snapshot; and 

(5) it stores in an SQL table (FeaturesImage) the 2,048 features returned by the 

ExtractFeaturesImage function call for that snapshot. 

The ExtractFeaturesSensor Azure Function was implemented for processing management 

software and sensor data. This function is triggered every time a new file is available at an Azure 

Blob Storage container (sensorfiles). The files sent to this container should follow the comma-

separated values (CSV) format and contain either cow history data, electronic roughage intake 

control bin data, or behavior data. The history data files contain, for each cow, the seven values 

retrieved from the farm management software described in Table 5.1. The electronic roughage 

intake control bin data files contain the duration in minutes, dry matter intake in kilograms, the 

date, and the corresponding cow identification number for all meals computed by the intake control 

system. The behavior data files contain, for each cow and date, the time in minutes spent lying, 

ruminating, inactive, and highly active. The files should be named <prefix>_<file_id>.csv, where 

prefix is equal to hist for history data files, intake for intake control bin data files, and activity for 

activity data files, and file_id is a numerical unique identifier for that file. The function reads the 

contents of the file and calculates the corresponding values for the wearable sensors and 

management software features shown in Table 5.1. It then stores the calculated values for each 

cow in an SQL table (FeaturesSensor) for further analysis. 
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Finally, the PredictKetosis Azure Function was implemented for performing subclinical 

ketosis prediction for a given cow using the features previously extracted and stored in SQL tables 

(FeaturesGenotype, FeaturesImage, and FeaturesSensor). It is triggered by an HTTP GET request 

containing as a parameter the cow identification number of the cow for which it is desired to 

perform a subclinical ketosis prediction. The function first reads a CSV file named 

calving_dates.csv from an Azure Blob Storage container (supplemental) containing the calving 

dates of each cow. It then finds all image keys (combination of camera_id and timestamp) for 

which the cow of interest was predicted via the IdentificationAndBCS SQL table. It groups those 

image keys based on the number of weeks before the calving date of the corresponding cow and 

builds up to 10 different sets of three image keys corresponding to three, two, and one week before 

the calving date. The function then retrieves the image features from the FeaturesImage SQL table 

and builds up to 10 sets of 6,144 features using the corresponding sets of image keys. For the 

genotype features, the function simply reads the 128 features for that cow from the 

FeaturesGenotype SQL table, and for the management software and sensor features, the function 

reads the FeaturesSensor SQL table. The function then loads the best SCK prediction model from 

an Azure Blob Storage container (models) and performs inference on up to 10 variations of 6,292 

features for that cow. The median BHB value predicted for those up to 10 data points is then 

calculated, and the function returns 1 if that value is above the 1.0 mmol/L threshold or 0 otherwise, 

representing whether the system predicts that the evaluated cow has a high risk of developing 

subclinical ketosis postpartum. Using the median of the BHB predictions causes the function to 

output the most common binary-converted SCK prediction for each cow. If there are no genotype 

or sensor features available for that cow, or if there are no image features available for three, two, 
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or one week before the calving date of that cow, the function returns an error stating that it was 

not possible to perform a subclinical ketosis prediction because features were missing for that cow. 

RESULTS AND DISCUSSION 

The objectives of this study were to propose a cloud computing-based framework for 

phenotypic and genotypic data processing and integration, and to evaluate different data fusion 

strategies for the early detection of postpartum SCK in dairy cows using wearable sensors, imaging 

systems, and genotypic data. Since it was not part of the objectives of this study to compare 

different machine learning methods or perform comprehensive hyperparameter searches for each 

image processing model, the performance metrics for each deep neural network are only reported 

once per testing set. 

Image Processing Models 

Deep neural networks were trained and evaluated for four image processing tasks: cow 

body segmentation, image quality classification, animal identification, and BCS classification. 

The cow body segmentation model achieved Dice similarity coefficients of 0.944 and 

0.990 on the test_seg_lane and test_seg_scale testing sets, respectively. This indicates that the 

model was very effective at segmenting cow bodies in both images automatically taken at milking 

parlor exit lanes containing lactating cows, and especially in images manually taken at the scale 

containing prepartum cows, which are the ones used for the early detection of SCK. 

The image quality classifier achieved accuracy, precision, recall, and specificity of 92.9%, 

86.6%, 99.7%, and 87.3% on the test_quality_lane testing set, and 99.1%, 98.5%, 99.8%, and 

98.5% on the test_quality_scale testing set. This shows that the model could classify as good 

99.7% and 99.8% of the good lane and scale test images, missing very few good images overall, 
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and it could correctly discard from the pipeline 87.3% and 98.5% of the bad lane and scale test 

images, being especially good at detecting bad images taken on the scale. 

Of the 20,170 images collected at the milking parlor exit lanes for this study, 12,368 were 

considered bad and 7,802 were considered good. This means that only under 40% of the images 

collected contained a single cow without any occlusion on its body (classified as good) and would 

consequently provide reliable results in further analyses. If the other 60% of the images (classified 

as bad) were not filtered by the image quality classification model, they would potentially generate 

incorrect results in downstream tasks, as parts of the cow body might be occluded, or multiple 

cows were captured in the same image. Processing those poor-quality images not only leads to 

unreliable results in the system but also impacts the storage and computing resource requirements 

of the cloud computing platform. In other words, an effective image quality classification model 

prevents unreliable results from being generated from poor-quality images and saves storage and 

computing resources in the cloud by preventing bad images from being unnecessarily processed. 

This image quality assessment step is crucial for automated image processing pipelines in 

scenarios where it is not possible to control the animal posture, lighting conditions, object 

occlusion, and other conditions that might impact the image quality and, consequently, the final 

predictions resulting from the system. 

The animal identification model achieved an accuracy of 93.2% on the testing set 

containing images of the last four videos taken from each cow. This shows that this model trained 

using six distinct short videos of each cow can identify which of the 90 cows is present in new 

images with good accuracy, comparable to other methods reported in the literature with a similar 

number of cows (Zhao et al., 2019; Xiao et al., 2022; Ferreira et al., 2023). Animal identification 

is an essential component of any automated individual phenotyping system, and its performance 
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is critical for the whole pipeline to generate relevant results. Misidentified animals could lead to 

incorrect phenotype predictions; thus, it is imperative that the animal identification model performs 

with good accuracy. It is worth noting that six of those 90 cows were completely black, making 

them harder to differentiate, and the model achieved an accuracy of 95.1% on the other 84 cows. 

For cows that have very similar coat color patterns, including those belonging to breeds that do 

not present as many color pattern variations as Holstein, it is also possible to perform individual 

identification using depth images taken from a top-down view of their back (Ferreira et al., 2022), 

differentiating individuals based exclusively on their body shape. Additionally, open-set animal 

identification techniques have been proposed to identify new individuals as they are introduced to 

the herd without the need to retrain the deep neural networks from scratch (Andrew et al., 2021; 

Wang et al., 2024). The modularized nature of the proposed image processing pipeline allows for 

such methods to replace or complement the currently implemented animal identification module 

without affecting the rest of the pipeline. 

The BCS classification model performed, on the testing set, 35.0%, 81.1%, 96.2%, 99.1%, 

and 99.7% of the predictions within 0, 0.25, 0.50, 0.75, and 1.00 points of the considered true 

values, which were the closest value in quarter-point increments to the average BCS assessed by 

the three evaluators. It achieved an MAE of 0.222 on the testing set, also considering quarter-point 

increments. This model achieved accuracies comparable to those previously reported in the 

literature, especially considering the approaches that also have a high level of automation (Qiao et 

al., 2021). As reported in previous works, because BCS is partially a subjective evaluation, it is 

difficult to achieve very high accuracies when considering exact matches between the model 

output and the human observation. This is why it is important to evaluate how the model performs 

when tolerating minor deviations between 0.25 and 1.0. As shown in Figure 5.7, the model tends 
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to predict more mild values for the BCS extremes, but it can seemingly differentiate between thin 

and fat cows, and it does not make major mistakes. This indicates that the model might have 

learned how to estimate a rough body shape for the cows through BCS, which is essential for its 

effective use as a feature extractor. Although the quality of BCS prediction might not have a direct 

correlation with the quality of the model as a feature extractor, the fact that it does not make major 

mistakes is a good indicator that it might be able to extract relevant features related to cow body 

shape from the depth images. 

Subclinical Ketosis Prediction 

For evaluating subclinical ketosis prediction, we compared five different models: Early, 

LateSimple, LateOLS, and Coop, corresponding to the four data fusion techniques previously 

described and illustrated in Figure 5.1; and Desc_sensor, which corresponds to a LASSO regressor 

using only the 20 predictive variables that originated from management software and wearable 

sensor data, described in Table 5.1. For each model, we evaluated reducing the dimensionality of 

the genotype and image modalities to 20 components each using PCA, and explored the impact of 

removing dry matter intake features as predictive variables, as that can be a challenging piece of 

information to acquire in large-scale commercial farms. We evaluated the BHB regression 

performance using the MAE of the predictions, and we analyzed the subclinical ketosis binary 

classification performance by converting the BHB regression predictions to binary values using 

the 1.0 mmol/L threshold and assessing classification accuracy, precision, recall, specificity, and 

F1 score. The best BHB regression performance (MAE = 0.242) was achieved when performing 

early fusion (Early) or cooperative learning (Coop) and not including dry matter intake data as 

predictive variables. The best SCK binary classification performance (F1 score = 0.750) was 

achieved when performing late fusion coupled with OLS regression (LateOLS) or when simply 
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using only the management software and wearable sensor variables as predictors. Performing PCA 

did not significantly impact the overall performance of the models. 

The subclinical ketosis models performed considerably better when including dry matter 

intake measurements as predictors (when considering binary classification), and performing PCA 

before training the models did not significantly impact their predictive performance, as shown in 

Figures 5.8 and 5.9. Cooperative learning and early fusion resulted in identical models for all 

analyses, due to the optimal agreement penalty term found for cooperative learning being equal to 

zero in all cases. As previously described (Ding et al., 2022), cooperative learning can be especially 

powerful when the different data modalities are correlated and all modalities contain signal in 

relation to the target variable. Conversely, when modalities are uncorrelated and one of them 

contains more signal than the others, cooperative learning tends to be equivalent to early fusion. 

This seems to be the case in this study, as genotypic, imaging, management software, and wearable 

sensor data are seemingly not highly correlated, and cow history and behavioral data appear to 

have higher signal in relation to BHB than the other modalities. 

In most cases, the early fusion and cooperative learning techniques achieved the lowest 

BHB MAE values (0.242, 0.258, 0.251, and 0.256 following the order of the bar plots in Figure 

5.8), while OLS late fusion or using just the management software and sensor data achieved the 

highest F1 scores (0.625, 0.625, 0.750, and 0.750 following the order of the bar plots in Figure 

5.9). While cooperative learning and early fusion output BHB predictions that are, on average, 

closer to the target values (reflected by the lower MAE), they make more mistakes than OLS late 

fusion for classifying cows that will have low or high BHB values after calving and would 

therefore be exposed to a lower or higher risk of developing SCK postpartum (reflected by the 

lower classification performance). 
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All OLS late fusion models had the coefficients related to the image and genotype separate 

models equal to zero, meaning that the cow history and behavioral (sensors) data were better 

predictors when used alone than when including the image and genotype features. If those 

coefficients were not equal to zero, the separate image and genotype predictors would hinder the 

final late fusion model, as reflected also by the fact that the simple late fusion models, which output 

the average of the separate models’ predictions, performed poorly in all analyses. This indicates, 

again, that the genotype and image features did not contain a strong signal in relation to the 

postpartum BHB measurements. This is possibly a consequence of the relatively low number of 

animals used to train the genotype and image feature extractors, as those modalities have very high 

dimensionality and consequently usually require large amounts of varied data to extract 

meaningful information from. In addition, due to the relatively small number of genotyped 

animals, we have utilized only the simplest method for missing genotype imputation, and more 

sophisticated methods should be evaluated in future studies, such as those taking into consideration 

linkage disequilibrium and pedigree information, for example (Marchini and Howie, 2010). Thus, 

the fact that the features extracted from those modalities were not very good predictors for 

postpartum BHB in this study does not necessarily mean that they are not related. Studies including 

a larger number of animals are essential for further exploring this phenomenon, as previous 

research shows that imaging and genomics data can be good contributors for disease detection in 

humans (Bodalal et al., 2019). Moreover, the ketosis prediction models used in this study are linear 

(LASSO), which might not be able to capture the non-linear relationships between some of the 

features and the target variable. Future work could explore the use of non-linear machine learning 

models such as Random Forest and Artificial Neural Networks in combination with cooperative 

learning and other data fusion techniques for subclinical ketosis prediction. 
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Although including genotype and image features through cooperative learning resulted in 

lower regression error (MAE) in all but one case (performing PCA and not including dry matter 

intake, where Desc_sensor performed better), the best SCK classification performance was 

achieved by using just the cow history and behavioral features (LateOLS and Desc_sensor). 

However, when analyzing the recall of the trained models, using cooperative learning always 

resulted in better or at least the same performance as the models relying on just cow history and 

behavioral features (0.771 versus 0.714 without PCA and without including dry matter intake; and 

0.857 for all models when including dry matter intake), which highlights the potential benefits of 

including other data modalities such as images and genomics. This result is notable because, when 

performing early detection of SCK, a high recall is very important for preventing sick cows from 

going undetected by the model, as false negatives, in this case, are usually more costly than false 

positives. In other words, ignoring a cow that will eventually become sick and potentially lead to 

larger losses is generally more costly than treating a cow unnecessarily trying to prevent SCK 

(Cainzos et al., 2022). Previous research (McArt et al., 2015; Steeneveld et al., 2020) estimates 

that a single case of subclinical ketosis can cost, on average, between $171 and $289 to the dairy 

farmer, reaching up to $1,365 in some extreme cases of clinical ketosis. Moreover, treating cows 

with propylene glycol can have great economic benefits (up to $1,166 per 100 fresh cows), 

especially if the only ones being treated are those that tested positive for hyperketonemia from 3 

to 9 days in milk (McArt et al., 2014). Being able to detect in advance the cows that have a greater 

risk of developing SCK facilitates the adoption of more focused and cost-effective treatment 

strategies. With this early detection being performed in a fully automated and non-intrusive 

manner via the proposed cloud computing framework, dairy farmers can not only obtain significant 
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economic benefits but also improve animal health and welfare by implementing preventive actions 

against hyperketonemia in dairy cows. 

Dairy cows are complex organisms, and the prevalence of subclinical ketosis is affected by 

many different factors, some of which were not considered in this study, such as management and 

nutritional practices and diet composition (Duffield, 2000). With the modular approach 

implemented in the proposed cloud computing framework, other sources of information can be 

included into the data processing and SCK prediction pipeline, potentially enhancing its predictive 

performance. In addition, other predictive models can be implemented by reutilizing parts of the 

existing pipeline, as it can already extract information from genotypic, behavioral, and body shape 

imaging data, which are associated with many other phenotypes that are useful for dairy farming. 

Another benefit of implementing this modular framework in a cloud computing platform 

is that each part of the pipeline can be altered and optimized with the development of new 

algorithms and methodologies. In this case study, for example, not only the model that predicts 

BCS can be improved and subsequently updated within the pipeline, but also each feature 

extraction function can be altered to include other feature extraction methods such as autoencoders, 

foundation models, and other self-supervised techniques. Additionally, in a scenario where not all 

data modalities might be available simultaneously, having separate models trained using a single 

modality or combinations of modalities allows for more flexibility in using the modalities as they 

become available. For instance, an initial prediction could be performed using only the available 

genotypic data for a new animal in the herd, and as images are collected and data from wearable 

sensors become available, a more robust prediction would be performed using the best data fusion 

technique for those modalities. 
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With the rapid advancement of artificial intelligence algorithms, adopting a modular 

approach is key for future-proofing the proposed system and facilitating its use and improvement. 

Implementing a framework based on reusable modules facilitates the development of new tools 

and functionalities within the cloud computing ecosystem, which contributes to both the 

advancement of scientific research and the emergence of new PLF solutions that support 

management decisions in livestock farming and, ultimately, animal health and welfare. 

CONCLUSION 

The results reported in this study show that, when dry matter intake is available, OLS late 

fusion is the best model for classification. However, in the absence of dry matter intake 

measurements, cooperative learning, despite yielding a lower F1 score due to increased false 

positives, exhibits lower MAE and, more importantly, higher recall compared to OLS late fusion, 

and thus is the optimal model in that case. A higher recall means that fewer high-risk cows go 

undetected and thus untreated, enabling the adoption of more focused and cost-effective treatment 

strategies for hyperketonemia in dairy farms. Implementing the proposed automated system for 

the early detection of subclinical ketosis in dairy cows could not only drastically reduce the 

negative economic effects of peripartum hyperketonemia, but also improve animal health and 

welfare. Furthermore, the modularized and multimodal nature of the proposed framework 

facilitates the enhancement of current feature extractors and phenotype predictors, as well as the 

development of new predictive models and functionalities into the cloud computing system, 

allowing for an ecosystem of PLF solutions for improving management decisions in dairy farms. 
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Table 5.1. Description of the features extracted from genotypic data, wearable and imaging sensor data, and management software 

information from each individual cow for the early detection of postpartum subclinical ketosis. DRTC stands for days respective to 

calving, UMAP stands for Uniform Manifold Approximation and Projection, and BCS stands for body condition score. 

Modality Features DRTC 
Variations 

per cow 
Description 

Genotype 128 UMAP features  1 
128 dimensions resulting from UMAP model trained using binary SNPs values 

after quality control. 

Image 

2,048 neural network 

features 
-21 10 

10 sets of 2,048 features extracted from the second-to-last layer of the BCS 

classification model using 10 depth frames collected at 21 days before calving. 

2,048 neural network 

features 
-14 10 

10 sets of 2,048 features extracted from the second-to-last layer of the BCS 

classification model using 10 depth frames collected at 14 days before calving. 

2,048 neural network 

features 
-7 10 

10 sets of 2,048 features extracted from the second-to-last layer of the BCS 

classification model using 10 depth frames collected at 7 days before calving. 

Management 

software 

4 parity dummy variables  1 
4 one-hot encoded dummy variables representing cow parity. Second lactation 

cows were encoded as 0000, third lactation as 0001, and so on. 

Previous days in milk  1 Number of days in milk in the previous lactation. 

Previous days dry  1 Number of days dry between previous and current lactations. 

Ketosis events  1 Total number of ketosis events in previous lactations. 

BCS -21 -21 1 BCS assessed 21 days before expected calving date. 

BCS -14 -14 1 BCS assessed 14 days before expected calving date. 

BCS -7 -7 1 BCS assessed 7 days before expected calving date. 

Wearable sensors 

Intake -7 -7 to -1 1 Average daily dry matter intake during the last 7 days prior to calving. 

Intake -2 -2 to -1 1 Average daily dry matter intake during the last 2 days prior to calving. 

Feeding time -7 -7 to -1 1 Average daily time spent feeding during the last 7 days prior to calving. 

Feeding time -2 -2 to -1 1 Average daily time spent feeding during the last 2 days prior to calving. 

Meal duration -7 -7 to -1 1 Average meal duration during the last 7 days prior to calving. 

Meal duration -2 -2 to -1 1 Average meal duration during the last 2 days prior to calving. 

Lying time -7 -7 to -1 1 Average daily time spent lying during the last 7 days prior to calving. 

Rumination time -7 -7 to -1 1 Average daily time spent ruminating during the last 7 days prior to calving. 

Inactive -7 -7 to -1 1 Average daily time spent inactive during the last 7 days prior to calving. 

Highly active -7 -7 to -1 1 Average daily time spent highly active during the last 7 days prior to calving. 

Highly active -7 -7 to -1 1 Average daily time spent highly active during the last 7 days prior to calving. 
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Table 5.2. Description of all Azure Functions implemented in the proposed cloud computing framework. 

Modality Function Trigger Description 

Genotype 

ProcessGenotypeRef HTTP GET 
Reads reference genotype files, performs quality control, 

and trains UMAP model. 

ExtractFeaturesGenotype 

File available in 

Blob Storage 

container 

Reads new genotype file available, performs quality control 

based on reference values, extracts features using trained 

UMAP model, and saves them to an SQL table. 

Image 

DetectAnimal HTTP POST 
Returns the cow segmentation mask predicted from a 

processed depth image received in the request body. 

ClassifyGoodBad HTTP POST 
Returns whether the segmented depth image received in the 

request body is good or bad. 

IdentifyAnimal HTTP POST 
Returns the cow identification number predicted from the 

segmented infrared image received in the request body. 

PredictBCS HTTP POST 
Returns the BCS predicted from the segmented depth 

image received in the request body. 

ExtractFeaturesImage HTTP POST 
Returns the 2,048 features extracted from the segmented 

depth image received in the request body. 

CheckImageAvailability Every 10 minutes 

Reads all files available in a Blob Storage container to be 

processed. If both infrared and depth images are available 

for a certain camera ID and timestamp, calls ProcessImage. 

ProcessImage HTTP POST 

Reads the infrared and depth images available for the 

received camera ID and timestamp and runs the pipeline, 

calling each of the other corresponding functions. Saves 

cow identification number, BCS classification, and 2,048 

image features to SQL tables. 

Management software 

and wearable sensors 
ExtractFeaturesSensor 

File available in 

Blob Storage 

container 

Reads management software or wearable sensor files and 

saves calculated features to SQL table. 

- PredictKetosis HTTP GET 
Returns SCK prediction for the received cow identification 

number. Returns descriptive error if missing modality. 
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Table 5.3. Performance of each image processing model on the independent testing sets. 

Model Metric 
Performance 

at scale 

Performance 

at lane 

Cow body segmentation 
Dice similarity 

coefficient 
0.990 0.944 

Image quality classifier Accuracy 99.1% 92.9% 

Animal identifier Accuracy 93.2% - 

BCS classifier 
Accuracy @ 0, 

0.25, 0.50 tolerance 

35.0%, 81.1%, 

96.2% 
- 

 

Table 5.4. Performance of the different evaluated models without performing PCA. Including 

genotype and image features through cooperative learning or early fusion resulted in lower 

regression error (MAE), but the highest F1 score was achieved by using just the cow history and 

behavioral features (LateOLS and Desc_sensor). Using cooperative learning or early fusion always 

resulted in better or at least the same recall as the models relying on just cow history and behavioral 

features, meaning that they predict fewer false negatives, which are generally more costly in the 

context of SCK detection. 

Include 

DMI? 
Models MAE Accuracy F1 score Precision Recall Specificity 

Yes 

Coop and 

Early 
0.251 71.6% 0.690 0.577 0.857 0.633 

LateOLS 0.340 78.9% 0.750 0.667 0.857 0.750 

Desc_sensor 0.277 78.9% 0.750 0.667 0.857 0.750 

No 

Coop and 

Early 
0.242 60.5% 0.590 0.478 0.771 0.508 

LateOLS 0.326 68.4% 0.625 0.556 0.714 0.667 

Desc_sensor 0.255 63.2% 0.588 0.500 0.714 0.583 
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Figure 5.1. Overview of the multimodal data fusion techniques explored in this study. Adapted 

from (Ding et al., 2022). In early fusion, features from all modalities are combined prior to training 

a predictive model. In late fusion, each modality has its own separate predictive model, and the 

separate predictions are combined into a final prediction. Cooperative learning is a hybrid of the 

two approaches, introducing an agreement penalty that encourages predictions from different 

modalities to agree, resulting in a spectrum of potential solutions ranging from early to late fusion 

methods. The level of agreement is chosen in a data-adaptive manner through cross-validation to 

minimize validation error. In this study, the three different modalities explored were genotypic 

data, images, and data collected from wearable sensors and farm management software. The target 

variable of the predictive models was the concentration of plasma beta-hydroxybutyrate in 

mmol/L, which indicates subclinical ketosis. 
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Figure 5.2. Overview of the subclinical ketosis prediction pipeline implemented in this study. 

Features are extracted from each data modality (genotype, imaging, and wearable sensors) and 

data fusion techniques are applied to the extracted features for phenotype prediction using machine 

learning algorithms. In this study, the target phenotype is the early detection of postpartum 

subclinical ketosis through plasma BHB concentration prediction. 
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Figure 5.3. Examples of good and bad images collected automatically at the milking parlor exit 

lane (a, b, c, and d) and manually at the scale (e, f, and g). Since images at the scale were collected 

manually, there were no bad examples, so those were artificially crafted to simulate situations 

where the cow body would be partially occluded (g). Images a, b, and e illustrate the collected 

depth images before any processing except for pixel normalization for better visualization. Images 

c, d, f, and g illustrate the preprocessed depth images that were used to train, validate, and test the 

image quality classification model. 
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Figure 5.4. Data collection timeline. BCS evaluation and depth image collection were performed 

weekly during the three last weeks before the calving date, data from wearable sensors were 

collected during the last week before the calving date, and blood samples were collected during 

the two weeks following the calving date. Machine learning models were trained using genotypic 

data and prepartum depth images, wearable sensor data, and information extracted from the farm 

management software, to predict cases of subclinical ketosis postpartum. Since only prepartum 

data were used to train the models, the predictions can be performed at the calving date, enabling 

early detection of subclinical ketosis. 
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Figure 5.5. Image processing and feature extraction procedures implemented in the cloud 

computing pipeline. Dashed boxes with font in bold and italic represent Azure functions and solid 

boxes with font in bold represent the values returned by those functions. Arrows and text in blue 

represent actions performed by the ProcessImage orchestrator function. As both depth and infrared 

images are available, ProcessImage is called. ProcessImage normalizes the depth image and 

passes it as input to the cow body segmentation model via the DetectAnimal function. The 

predicted mask is then applied to both the depth and infrared images, and the segmented images 

are rotated and cropped around the cow. The cropped depth image is passed to the 

ClassifyGoodBad function and, if the image is predicted as good, the rest of the pipeline is 

executed, represented by green arrows. The cow identification number is predicted via the 

IdentifyAnimal function using the cropped infrared image, the BCS is predicted via the PredictBCS 

function, and the image features are extracted from the BCS classification model via the 

ExtractFeaturesImage function; they are then stored in an SQL database. 
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Figure 5.6. Feature extraction and subclinical ketosis prediction implemented in the cloud 

computing pipeline. Dotted boxes with font in bold and italic represent Azure functions and solid 

boxes with font in bold represent the values returned by those functions. Features from images 

collected in different weeks during the three weeks prior to the calving date are extracted and 

concatenated, resulting in 6,144 image features. Management software and sensor features are 

extracted from their corresponding CSV files, and genotype features are extracted from the 

genotype data files using a trained UMAP model. The 6,292 features are passed to a postpartum 

BHB predictor and the predicted BHB value is used to assess the risk of that cow developing 

subclinical ketosis postpartum by using a threshold of 1.0 mmol/L. 
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Figure 5.7. BCS classifier confusion matrices as percentages of the number of observed images 

in each class. The first matrix is the original confusion matrix without any adjustment for error 

tolerance (overall accuracy 35.0%), while the second and third matrices are adjusted to correct 

predictions with up to 0.25 and 0.50 errors, respectively, achieving accuracies of 81.1% and 96.2%. 

The model follows a trend of predicting mild values for the BCS extremes, but it can still seemingly 

differentiate between thin and fat cows, and it does not make major mistakes. 
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Figure 5.8. Testing set BHB MAE for each fusion technique and a model trained exclusively on 

cow history and behavioral data from sensors. The different graphs evaluate how including dry 

matter intake measurements and performing PCA before model training impacted on the results. 

Early fusion and cooperative learning achieved the best results in most cases when evaluating the 

BHB regression error. 

 

 

Figure 5.9. Testing set F1 score for each fusion technique and a model trained exclusively on cow 

history and behavioral data from sensors. The different graphs evaluate how including dry matter 

intake measurements and performing PCA before model training impacted on the results. OLS late 

fusion and the separate cow history and behavioral model achieved the best results when 

evaluating the F1 score classification metric. 
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CHAPTER SIX: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

In livestock farming, computer vision systems (CVS) have the potential for predicting 

phenotypes in a non-intrusive way and on a large scale. The hardware used for collecting images 

and performing high-throughput phenotyping can be leveraged for individual animal identification 

using computer vision algorithms. Several methods have been proposed for identifying dairy cows 

based on unique biometrics such as muzzle patterns, iris, facial features, and coat color patterns. 

The most promising methods for commercial implementation are those that recognize coat color 

patterns, as they only require top-down camera views from a far enough distance, which can be 

easily achieved by installing cameras in convenient locations at the farm that are far from animal 

reach. However, such methods can only be applied to animal breeds that exhibit uniquely 

identifiable color patterns, such as Holstein cows. Only a few studies have explored the potential 

of identifying animals using 3-dimensional (3D) representations, which could be applicable to any 

breed. Nevertheless, to the best of our knowledge, the study presented in Chapter 2 was the first 

to validate an animal identification CVS as the animals experience changes in their body shape 

due to growth. The results of this study suggest that the methods evaluated are able to learn unique 

biometrics from the 3D surface of the calves that remain recognizable even as their body size 

changes due to growth. However, this experiment was done using only five animals and larger 

datasets should be collected and evaluated in future studies. 

The deep neural networks explored in previous animal identification studies typically 

require large amounts of annotated data to generalize well across different environments, which 

can be costly and time-consuming to obtain. In Chapter 3, a semi-supervised learning technique 

called pseudo-labeling was explored for improving the performance of deep neural networks for 

animal identification, while requiring less annotated data. The method evaluated in this study 
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complements current animal identification research by seamlessly integrating with existing 

models, requiring no retraining or modifications to the existing architecture. Future research in 

CVS for animal identification should focus on the open-set problem, as commercial farms have 

dynamic herds with new animals being constantly added. Additionally, applying semi-supervised 

learning techniques to these open-set models could enhance their performance and reduce data 

annotation requirements. 

In Chapters 4 and 5, computer vision and machine learning techniques were explored for 

the early detection of subclinical ketosis (SCK) in dairy cows by integrating data from different 

sources. In Chapter 4, methods for extracting features from high-dimensional unstructured data 

such as images and text were evaluated within the machine learning pipeline for SCK prediction. 

This study represented a first attempt at extracting body shape information from depth images for 

performing early detection of health issues in dairy cows. Moreover, this study was also pioneering 

in extracting information from text data using modern NLP techniques and integrating it into dairy 

cow phenotype predictive models. The superior performance achieved by integrating image and 

text features into the SCK prediction highlights the potential of leveraging unstructured data, that 

would otherwise be difficult to analyze, for early disease detection and phenotype prediction. The 

feature extraction, data processing, and machine learning pipelines proposed in this study can be 

applied to other phenotypes for exploration in future studies, further enhancing the decision-

making process in dairy farms to reduce costs and improve productivity and animal health. 

Inspired by the promising results achieved through the integration of different types of data 

into a machine learning pipeline for SCK prediction, the study presented in Chapter 5 proposed a 

cloud-computing framework to automate and facilitate access to feature extraction and phenotype 

prediction algorithms. This framework was applied to SCK prediction using genotype, imaging, 
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behavior, and cow historical data, and multiple data fusion techniques were evaluated for 

integrating these different data modalities. The proposed framework was designed to be easily 

expanded by implementing an approach based on modules that perform different data processing 

steps independently. This allows the implemented modules to be re-used for the prediction of other 

phenotypes that are related to genetics, body shape, and behavior. Furthermore, this approach 

facilitates the improvement of currently implemented modules and the development of new 

modules that process data in different ways. In other words, the cloud-computing framework 

proposed in Chapter 5 has the potential to contribute to advancements in scientific research related 

to the development of precision livestock farming (PLF) tools aimed at enhancing the productivity 

and efficiency of livestock farms via improved data-drive decision-making processes. 

 


