HIGH-DIMENSIONAL INFERENCE FOR LOW-DIMENSIONAL STRUCTURES:
DOUBLE SPARSE VECTORS AND LOW-RANK TENSORS
by

Yuchen Zhou

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

UNIVERSITY OF WISCONSIN-MADISON

2021

Date of final oral examination: 04/19/2021

The dissertation is approved by the following members of the Final Oral Committee:
Anru Zhang, Assistant Professor, Statistics
Yazhen Wang, Professor, Statistics
Garvesh Raskutti, Associate Professor, Statistics
Nicolas Garcia Trillos, Assistant Professor, Statistics
Kangwook Lee, Assistant Professor, Electrical and Computer Engineering

Ramya Korlakai Vinayak, Assistant Professor, Electrical and Computer Engineering



© Copyright by Yuchen Zhou 2021
All Rights Reserved



Acknowledgments

First,  would like to express my deepest and greatest gratitude to my advisors, Pro-
fessor Anru Zhang and Professor Yazhen Wang. Anru guided me to the charming
area — high-dimensional statistics. During my Ph.D., we worked on many inter-
esting projects together and I benefited a lot from extensive discussions with him.
He is very smart and experienced and can always point out possible directions for
me when my projects got stuck. He set an extraordinary example of how to do
research. Yazhen is an amazing statistician and also a fantastic teacher helping me
build a good foundation of mathematical statistics. He has great statistical insight
and complicated statistical theory becomes much easier to understand after his
explanation. He also provided me with a lot of useful advice on both my research
and life. The guidance I received from these two advisors has deeply shaped my

thoughts on statistics, and I couldn’t finish this dissertation without their help.

I would also like to thank Professor Grace Wahba, a legend in statistics and a
perfect role model who is inspiring to me. I really appreciate her encouragement and
helpful suggestions during my PhD. I am extremely grateful to my undergraduate
advisor, Professor Liwei Wang. I spent two wonderful years in Liwei’s group
and finished my first research project under his supervision, which gave me the
confidence to pursue a doctoral degree.

I would like to thank my final oral committee members, Professors Garvesh
Raskutti, Nicolas Garcia Trillos, Kangwook Lee, Ramya Korlakai Vinayak, for their
time to read my thesis and their valuable questions and helpful suggestions. Many



ii

thanks to Professors Po-Ling Loh and Varun Jog for being part of my preliminary

committee.

I also feel very fortunate to collaborate with Professor Tony Cai, Chen Dan,
Jun Gao, Professor Kristoffer Arnsfelt Hansen, He Jiang, Wenlong Mou, Hong
Wang, Professor Pradeep Ravikumar, Professor Pixu Shi, Professor Dong Xia, and
Hongyang Zhang. I really learned a lot from them.

I would like to thank the staff members in IFDS and the Department of Statistics,
Janine Gumley, Dan Barnish, Nancy Brinkerhoff, and John Schuppel. They are very
nice and helped me a lot in these five years. I also want to thank my friends, Fan
Chen, Rui Chen, Yue Gao, Rungang Han, Tzu-Hsiang Hung, Yutian Liu, Yuetian
Luo, Yifan Mei, Tun Lee Ng, Yuling Yan, Yilin Zhang, Zihao Zheng, and Hao Zhou,
for their help in both my life and research.

Finally, I would like to particularly thank my parents, Bin Zhou and Guifeng
Yu, and my girlfriend, Lili Zheng, for their love and support.



iii

Contents

Contents iii
List of Figures v
Abstract vii
1 Introduction 1

1.1 High-Dimensional Double Sparse Regression . . . . . ... ... ..

1.2 Tensor Data Analysis . . . ... ......... ... ........ 2
2 High-Dimensional Double Sparse Regression 6
21 Introduction . . ... ... ... .. ... 6
2.2 { + {1, Minimization in Noiseless Case . . . . .. ... ... .... 11
2.3 Sparse Group Lassoin NoisyCase . . ... ... ... ........ 20
24 SimulationStudies . ... ... ... ... ... . 23
25 Discussions. . . . . . ... e e e e e 27
3 Inference for Low-rank Tensors * 30
3.1 Introduction . . ... ... .. ... .. .. 30
3.2 Notation and Preliminaries . . . . . . . . ... ... ... ....... 38
3.3 Inference for Principal Components of Tucker Low-rank Tensor . . 40
3.4 PCA for Orthogonally Decomposable Tensors . . . . ... ... ... 51
3.5 Entry-wise Inference for Rank-1 Tensors . . . . .. ... ... .... 53

3.6 Numerical Simulations . . . . . . . . . . . . . . ... ... ... . 57



iv

3.7 Discussion . . ... ... ... ... 61
4 High-order Tensor SVD * 64
41 Introduction . ... . ... ... . ... ... o 64
4.2 Procedure of Tensor-Train Orthogonal Iteration . . . . . ... .. .. 72
43 Theoretical Analysis. . . . ... ... ... ... ... ... 81
4.4 TTOI for Tensor-Train Spiked Tensor Model . . . . . ... .. .. .. 87
4.5 TTOI for Dimension Reduction and State Aggregation in High-order
MarkovChain . . . ... .. ... ... ... ... o 89
4.6 NumericalStudies . . . . . ... ... .. ... . .. o L. 93
4.7 Discussions and Additional Applications . . . ... ... ...... 96
5 Appendices 103
51 AppendixtoChapter2 . . ... ... .. ... ... . ......... 103
52 AppendixtoChapter3 . ... ... ...... ... .. ..... ... 148
53 AppendixtoChapter4 . ... .. ... ... ... ... . ... .. 247

References 279



List of Figures

2.1
2.2

3.1

3.2

3.3

34

3.5

4.1

4.2

Exact recovery rate in the noiselesscase . . . ... ... ......... 26

Average estimation error in thenoisycase . . . . . ... ... .. ... .. 28

f || sin © (Uy,Uy) [IF—plIAL
VZPIIA Al
rank tensor PCA model (3.1). Here, p1 = p» = p3 = p = 200, r = 3,

12
Normal approximation o It for order-3 Tucker low-

o=1. ... 58
Normal approximation of <ﬁ3’u3\>/222p(7\1;p)‘72) for tensor PCA model (3.1)
when T is a third-order orthogonally decomposable tensor and o = 1.
Here,p1 =po=p3=p=200,r =3, A, =A. . .. . . ... .. .... 59
Normal approximation of <ﬁ1’u1\>/222p(7\1;p)‘72) for tensor PCA model (3.1)
when 7 = A - (43 ® vi ® Wy ® @) is a fourth-order tensor and o = 1.
Here,p1 =po=p3=ps=7 :}OO,rzland Amin = A o o oo 60
Normal approximation of \/ﬁ:{tgggfw%a% for tensor PCA model (3.1)
when T is a rank-1 tensor and o = 1. The parameters are p; = p, = p3 =
p =200 with signal strength A. . . . .. ........ .. .. ...... 61

Boxplots for empirical coverage of entrywise confidence interval @Uk 62

Average estimation error (dots) and standard deviation (bars) of || sin (U, W)
and ||DAC — X||r by TT-SVD and one-step TTOIL Both algorithms are

performed based on the observation Y generated from (4.2), where
% N (0, 0%), X is a randomly generated order-5 tensor based on (4.1)
withp =20, =1,G1,50,...,Ga.1,Ga <~ N(O,1). oo, 69

A Pictorial Illustration of Initialization (Algorithm 1(a), d =3) . . . . . 77



4.3 A pictorial illustration of TT-Backward update (Algorithm 1(b), d = 3)
4.4 A pictorial illustration of a (d — 1)st order state aggregatable Markov chain
4.5 Estimation error of TI-SVD and TTOI for high-order spiked tensor
model. Here, Z "' N (0,02). o o
4.6 Estimation error of TI-SVD and TTOI for high-order spiked tensor
model. Here, Z 4 Unif (=b,b). . .
4.7 Estimation error of the transition tensor versus length of the observable
trajectory in high order state-aggregatable Markov chain estimation.
4.8 Singular values of sequential unfolding matrices ), (left panel) and
[fT’emp]z (rightpanel) . . . .. ... ... . ... . . oo
49 State aggregation based on TTOI and empirical estimate . . . . . . . ..
4.10 Based on second order Markov model, state aggregation results are
different with different initial state (the red triangle denotes the initial
state iin each subfigure) . . . ... ... ... ... ... ... . ...

4.11 Tllustration of a high-order state aggregatable Markov decision process . . . .

vi

79
91

99

99



vii

Abstract

High-dimensional statistics has attracted considerable attention in recent years. To
achieve reliable estimation and uncertainty quantification, some low-dimensional
structures, including sparsity and low-rankness, are usually assumed. In this thesis,
we introduce some recent advances in high-dimensional statistics with these two

structures.

In Chapter 2, we study the sparse group Lasso for high-dimensional double
sparse linear regression, where the parameter of interest is simultaneously element-
wise and group-wise sparse. This problem is an important instance of the simul-
taneously structured model — an actively studied topic in statistics and machine
learning. In the noiseless case, we establish matching upper and lower bounds
on the sample complexity for the exact recovery of sparse vectors and for stable
estimation of approximately sparse vectors, respectively. In the noisy case, upper
and matching minimax lower bounds for the estimation error are obtained. We also
consider the debiased sparse group Lasso and investigate its asymptotic property
for the purpose of statistical inference. Numerical studies are provided to support

the theoretical results.

In Chapter 3, we consider the statistical inference for several low-rank tensor
models. Specifically, in the Tucker low-rank tensor PCA or regression model, pro-
vided with any estimates achieving some attainable error rate, we develop the
data-driven confidence regions for the singular subspace of the parameter tensor
based on the asymptotic distribution of an updated estimate by two-iteration al-
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ternating minimization. The asymptotic distributions are established under some
essential conditions on the signal-to-noise ratio (in the PCA model) or sample size
(in the regression model). If the parameter tensor is further orthogonally decompos-
able, we develop the methods and theory for inference on each individual singular
vector. For the rank-one tensor PCA model, we establish the asymptotic distribution
for general linear forms of principal components and confidence interval for each
entry of the parameter tensor. Numerical simulations are presented to corroborate

our theoretical discoveries.

Finally, Chapter 4 studies a general framework for high-order tensor SVD. We
propose a new computationally efficient algorithm, tensor-train orthogonal iteration
(TTOI), that aims to estimate the low tensor-train rank structure from the noisy
high-order tensor observation. We develop the general upper bound on estimation
error for TTOI with the support of several new representation lemmas on tensor
matricizations. By developing a matching information-theoretic lower bound, we
also prove that TTOI achieves the minimax optimality under the spiked tensor
model. The merits of the proposed TTOI are illustrated through applications to
estimation and dimension reduction of high-order Markov processes, numerical
studies, and a real data example on New York City taxi travel records.



Chapter 1

Introduction

The past few decades have witnessed the astonishing development of high-dimensional
statistics, which enables us to cope with large-scale data arising from contemporary
applications in many areas, including biology, engineering, finance, etc. In litera-
ture, some hidden low-dimensional structures are usually assumed to break the
curse of dimensionality. Sparsity and low rankness are two such low-dimensional
assumptions and play important roles in high-dimensional settings. These two
assumptions make models not only easier to estimate but also more interpretable.
While extensive research has been devoted to studying high-dimensional statistical
inference under these two structures, there remain many important problems that
are less understood. In this thesis, we tackle some of these problems, including
estimation and uncertainty quantification for double sparse vectors and low-rank

tensors.

1.1 High-Dimensional Double Sparse Regression

In literature, the Lasso (Tibshirani, 1996) and group Lasso (Yuan and Lin, 2006) are
widely used to estimate entry-wise sparse and group-wise sparse vectors under
high-dimensional regression models, respectively, and their theoretical properties

have been thoroughly investigated. However, in some applications including gene



expression data analysis, cancer biology, climate prediction amongst others, the
coefficient vector 3* may be double sparse — that is to say, it satisfies both element-
wise and group-wise sparsity. To estimate 3* more accurately, Friedman et al.
(2010); Simon et al. (2013) proposed the sparse group Lasso that linearly combines
the {; and group {; penalties. Although the sparse group Lasso enjoys huge success
in practice, there is still a lack of theoretical understandings, e.g., if it can achieve a
smaller statistical error rate than the Lasso and group Lasso and if we can make
inference based on the sparse group Lasso estimator.

In Chapter 2 (based on Cai et al., 2019b), we provide theoretical results for the
sparse group Lasso under the double sparse linear regression model. Specifically,
in the noiseless case, by proving matching upper and lower bounds, we show that
the ¢; +{; » minimization achieves optimal sample complexity to exactly recover the
double sparse vector and to stably estimate approximately double sparse vector 3%,
respectively. In the noisy case, we confirm that the error rate of the sparse group
Lasso is optimal by establishing matching upper and minimax lower bounds. The
proofs of upper bounds are based on a novel construction of an approximate dual
certificate. Furthermore, inspired by Javanmard and Montanari (2014), we propose
the debiased sparse group Lasso and derive its asymptotic distribution, which
could be used to construct a confidence interval for 3*. Interestingly, different
from other simultaneously structured models studied in the literature, our results
show that the multi-objective optimization with norms associated with entry-
wise and group-wise sparsity (the sparse group Lasso or {; 4 {; , minimization)
indeed help us achieve better statistical performance in double sparse linear

regression than exploiting just one structure.

1.2 Tensor Data Analysis

Tensors have attracted a flurry of interest in machine learning, computational
mathematics, and statistics. Different from the matrix setting, tensors have more
sophisticated structures and are more challenging to handle: even the best low-rank



tensor approximation and tensor operator/nuclear norms are computationally in-
tractable. The challenge is further compounded by the explosion of dimensionality
of tensors. These facts call for the development of novel theoretical analysis as well

as new methods.

1.2.1 Inference for Low-rank Tensors

The estimation of low-rank tensors and their associated subspaces has been exten-
sively studied in the literature. However, the statistical inference or uncertainty
quantification of low-rank tensors, i.e., deriving asymptotic distributions and con-
structing the confidence intervals/regions of tensors/subspaces, have been much
less investigated. In Chapter 3 (based on Xia et al., 2020), we consider this prob-
lem under the Tucker low-rank tensor PCA and regression models. Our main

contributions are summarized as follows:

1. For the target low Tucker-rank tensor T with subspaces U; and any estimates

ﬂj(o) achieving some attainable error rate, we propose a two-step alternating
minimization algorithm with output U; and derive data-driven confidence
regions for U; based on the asymptotic distributions of || sin ©(U;, U;)| under
some essential conditions on the signal-to-noise ratio (under the PCA model)

and sample size (under the regression model).

2. Specifically, under the PCA model, if T = Y | | A; - u; ® v; ® w; is orthogonal

decomposable, we make inference for single principle components u;, vi, w;.

3. Furthermore, under the rank-1 PCA model (i.e., T = 1), we prove the asymp-
totic distributions of linear forms of principle components u,, v;, w; and con-

struct confidence intervals for each entry of 7.

Surprisingly, different from the matrix/vector cases considered in the literature,
making inference for low-rank tensors does not rely on any debiasing proce-
dure. In the literature of low-rank tensor estimation, it is widely investigated that

achieving an accurate and computationally feasible estimation usually requires



much stronger conditions than the one needed in the information-theoretic limit
(also known as statistical-computational gap). Such essential conditions allow us

to make inference without debiasing.

1.2.2 High-order Tensor SVD

In modern applications, it is increasingly more common to encounter high-order
tensors, i.e., tensors with large values of order number. Compared to low-order ten-
sors, high-order tensors contain much more parameters, which leads to enormous

challenges in storage and processing.

To address this issue, (Oseledets, 2009; Oseledets and Tyrtyshnikov, 2010; Os-
eledets, 2011) introduced an elegant sequential low-rank structure, the tensor-train
(TT) decomposition. For an order-d dimensional-p tensor, the TT-decomposition
only involves O((d — 2)pr? + 2pr) parameters, which is much less than the one
for the Tucker decomposition (O(r¢ + dpr)) and the total number of the tensor
entries (p?) if d is large and thus significantly reduces the storage burden. While
the low-rank tensor-train approximation under the deterministic setting is consid-
ered in the literature (Oseledets, 2011; Oseledets and Tyrtyshnikov, 2010; Bigoni
et al., 2016), estimating the true low TT-rank structure from a noisy observation is
more crucial in some cases (e.g., the transition probability estimation in high-order

Markov chains/decision processes) and is much less studied.

In Chapter 4 (based on Zhou et al., 2020), we consider the high-order tensor
SVD model. To accurately estimate the true tensor, we propose a new algorithm,
Tensor-Train Orthogonal Iteration (TTOI), which consists of the initialization via
TT-SVD (Oseledets, 2011) and new iterative back/forward updates. We establish
lemmas that help us better understand the TT-structure and provide upper bounds
for the estimation error. In addition, under the probabilistic spiked tensor model,
we also prove matching minimax lower bound indicating that the TTOI can achieve
the sharp error rate. As a by-product, we show that the proposed TTOI can be used
to further improve the approximation result obtained by TI-SVD. As an example,



we study the application of TTOI on estimating transition probabilities of high-
order Markov processes and performing state aggregation. Finally, synthetic and
real data analysis is provided to validate the performance of TTOI.



Chapter 2

High-Dimensional Double Sparse

Regression *

2.1 Introduction

Consider the high-dimensional double sparse regression with simultaneously group-

wise and element-wise sparsity structures
y=XpB"+¢ orequivalently y; = X{B*+e, i=1,...,n. (2.1)

Here, the covariates X € R™*P and parameter 3* are divided into d known groups,

where the jth group contains b; variables,

.
X=[Xu - Xl B"= <(BT1))T,---(B?d))T> , Xy € R, B, € RY;
2.2)

B*is a (s, sq)-sparse vector in the sense that

d P
1B*llo2 == Y _Lip: 40y < sg and [[B*[lo= Y lipiso) <s. (2.3)

j=1 i=1
*This work is based on Cai et al. (2019b) (https://arxiv.org/abs/1909.09851).
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The focus of this chapter is on the estimation of and inference for 3* based on
(y, X). This problem has great importance in a variety of applications. For example
in genome-wide association studies (GWAS) Silver et al. (2013), the genes can be
grouped into pathways and it is believed that only a small portion of the pathways
contain causal single nucleotide polymorphisms (SNPs), and the number of causal
SNPs is much less than the one of non-causal SNPs in a causal pathway. The sparse
group Lasso has been applied to identify causal genes or SNPs associated with
a certain trait Silver et al. (2013). Other examples include cancer diagnosis and
therapy Vidyasagar (2014); Allahyar and De Ridder (2015), classification Rao et al.
(2015), and climate prediction Chatterjee et al. (2012) among many others. The
problem can also be viewed as a prototype of various problems in statistics and
machine learning, such as the sparse multiple response regression Wang et al. (2013)
and multiple task learning Lounici et al. (2009); Lozano and Swirszcz (2012); Zhou
et al. (2017).

The sparse group Lasso Friedman et al. (2010); Simon et al. (2013); Li et al. (2015)
provides a classic and straightforward estimator for (3*:

B Zargmin||y—Xf3||§+?\||BH1+7\9Hr3||1,2. (2.4)
B

Here, ||B]ly = 3_7_; IBiland [|B[l12 = 3_; [[B(j) ll2 are ¢, and ¢, , convex regularizers to
account for element-wise and group-wise sparsity structures, respectively. A, A4 > 0
are tuning parameters. In the noiseless setting that ¢ = 0, one can apply the

constrained ¢; + ¢; , minimization instead to estimate 3*:

A

B = argmin ARl + Agl[Bl12

(2.5)
subjectto y = Xf.

In fact, when A, A4 tend to zero while A/A is fixed as a constant, the sparse group
Lasso (2.4) tends to the ¢; + {; , minimization (2.5).



When (* is only element-wise sparse, the regular Lasso Tibshirani (1996)

B" = argmin |y — XB|3 +AlB (2.6)
B

can be applied and its theoretical properties have been well studied. See, for
example, Bickel et al. (2009); Verzelen (2012). When 3* is only group-wise sparse,
the group Lasso

pet = argmin |y —XBI3 + A 1Bz (27)

and its variations have been widely investigated Yuan and Lin (2006); Lounici et al.
(2011); Bunea et al. (2013). However, to estimate the simultaneously element-wise
and group-wise sparse vector 3*, despite many empirical successes of sparse group
Lasso in practice, the theoretical properties, including optimal rate of convergence
and sample complexity, are still unclear so far to the best of our knowledge.

2.1.1 Simultaneously Structured Models

More broadly speaking, the simultaneously structured models, i.e., the parameter of
interest has multiple structures at the same time, have attracted enormous attention
in many fields including statistics, applied mathematics, and machine learning. In
addition to the high-dimensional double sparse regression, other simultaneously
structured models include sparse principal component analysis Johnstone and
Lu (2009); Ma (2013), tensor singular value decomposition Zhang and Xia (2018);
Wang and Li (2018), simultaneously sparse and low-rank matrix/tensor recovery
Oymak et al. (2015); Hao et al. (2018), sparse matrix/tensor SVD Zhang and Han
(2018), and sparse phase retrieval Jaganathan et al. (2013); Shechtman et al. (2014);
Cai et al. (2016a). As shown in Oymak et al. (2013, 2015), by minimizing multi-
objective regularizers with norms associated with these structures (such as ¢; norm
for element-wise sparsity, nuclear norm for low-rankness, and total variation norm
for piecewise constant structures), one usually cannot do better than applying
an algorithm that only exploits one structure. They particularly illustrated that

simultaneously sparse and low-rank structured matrix cannot be well estimated by



penalizing ¢; and nuclear norm regularizers. Instead, non-convex methods were
proposed and shown to achieve better performance.

However based on their results, it remains an open question whether the convex
regularization, such as sparse group Lasso or {; 4 {; , minimization, can achieve
good performance in estimation of parameter with two types of sparsity structures,
such as the aforementioned high-dimensional double sparse regression. Specifically,
as illustrated in Section 2.2.2, a direct application of Oymak et al. (2015) does not
provide a sample complexity lower bound for exact recovery that matches our
upper bound.

2.1.2 Optimality and Related Literature

This chapter fills the void of statistical limits of sparse group Lasso and provides an
affirmative answer to the aforementioned question: by exploiting both element-wise
and group-wise sparsity structures, the {; + {;, regularization does provide better
performance in high-dimensional double sparse regression. Particularly in the
noiseless case, it is shown that (s, s4)-sparse vectors can be exactly recovered and
approximately (s, s4)-sparse vectors can be stably estimated with high probability
whenever the sample size satisfies n 2 sglog(d/sg) + slog(esgb), where b =
maxici<a bi- On the other hand, we prove that exact recovery cannot be achieved
by ¢ + {;, regularization and stable estimation of approximately (s, sy)-sparse
vectors is impossible in general unless n 2 sy log(d/sg) + slog(esgb/s). We then
consider the noisy case and develop the matching upper and lower bounds on the
convergence rate for the estimation error. Simulation studies are carried out and
the results support our theoretical findings. In addition, statistical inference for the
individual coordinates of 3* is studied. A confidence interval is constructed based
on the debiased sparse group Lasso estimator and its asymptotic property. The
results show that by exploring the simultaneously element-wise and group-wise
sparsity structures, the debiased sparse group Lasso requires less sample size than
the debiased Lasso and debiased group Lasso in the literature Zhang and Zhang
(2014); Javanmard and Montanari (2014); Mitra and Zhang (2016); Cai and Guo
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(2017).

The theoretical analysis of sparse group Lasso and {; 4-{; , minimization is highly
non-trivial. First, the regularizer A|| - |1 +Ag4]| - /1,2 is not decomposable with respect
to the support of 3* so that the classic techniques of decomposable regularizers
Negahban et al. (2012) and null space property Stojnic et al. (2008) may not be
suitable here. Despite a substantial body of literature on high-dimensional element-
wise sparse vector estimation based on restricted isometry property (RIP) Candes
et al. (2006); Candes and Tao (2007); Cai and Zhang (2013a,b, 2014) and restricted
eigenvalue Bickel et al. (2009), these techniques cannot provide nearly optimal
results for sparse group Lasso here as it is technically difficult to partition general
vectors into simultaneously element-wise and group-wise ones that preserves some
ordering structures. Departing from the previous literature, our theoretical analysis
relies on a novel construction of approximate dual certificate. See Section 2.2.3 for
turther details. Although our results mostly focus on the performance of sparse
group Lasso and {; + {; , estimators, the techniques of approximate dual certificate

on multi-norm structures here can also be of independent interest.

The statistical properties of sparse group Lasso and related estimators have been
studied previously. For example, Chatterjee et al. (2012) developed consistency
results for estimators with a general tree-structured norm regularizers, of which
the sparse group Lasso is a special case. Poignard (2018) analyzed the asymptotic
behaviors of the adaptive sparse group Lasso estimator. Rao et al. (2015, 2013) stud-
ied the multi-task learning and classification problems based on a variant of sparse
group Lasso estimator. Li et al. (2015) studied multivariate linear regression via
sparse group Lasso. Ahsen and Vidyasagar (2017) provided a theoretical framework
for developing error bounds of the group Lasso, sparse group Lasso, and group
Lasso with tree structured overlapping groups. Specifically, their results imply that
the group-wise sparse signal can be exactly recovered with high probability by
solving (2.5) if the sample size satisfies n 2 sq4 (b + log d). Different from previous
results, this chapter focused on both the required sample size and convergence rate

of estimation error of sparse group Lasso. To the best of our knowledge, this is
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the first result that provides optimal theoretical guarantees for both the sample

complexity and estimation error of sparse group Lasso.

2.1.3 Organization of the Chapter

The rest of the article is organized as follows. After a brief introduction to notation
and preliminaries in Section 2.2.1, the main theoretical results on constrained ¢; +¢;
minimization in the noiseless setting is presented in Section 2.2.2 and the key proof
ideas are explained in Section 2.2.3. Results for sparse group Lasso in the noisy
setting are discussed in Section 2.3. In particular, the optimal rate of estimation
error and statistical inference are studied in Sections 2.3.1 and 2.3.2, respectively.
In Section 2.4.1, we introduce a practical scheme to select tuning parameters. In
Section 2.4.2, we provide simulation results in both noiseless and noisy cases to
justify our theoretical findings. The proofs of technical results are given in Section

5.1. All technical lemmas and their proofs can be found in Appendix 5.1.9.

2.2 {; + {1, Minimization in Noiseless Case

2.2.1 Notation and Preliminaries

The following notation will be used throughout the chapter. We denote a A b =
min{a, b}, a Vb = max{a, b}. Let sgn(-) be the sign function, i.e., sgn(x) = 1,0, or
—1,if x > 0,x =0, or x < 0, respectively. Hy(-) is the soft-thresholding function
such that Hy(x) = sgn(x) - {(|x| — «) V 0} forany x € R. Wesaya Sbanda 2 b
if a < Cband b < Ca for some uniform constant C > 0, respectively. a < b
means a < band a 2 b both hold. Let the uppercase C, C;, Cy, ... and lowercase
c,C1,Co, ... denote large and small positive constants respectively, whose actual
values vary from time to time. Throughout the chapter, we focus on the parameter
index set {1,...,p} partitioned into d groups. Denote (1),...,(d) C {1,...,p}as
the index sets belonging to each group. Additionally, for any group index subset
G C{1,...,d}, define (G) = Ujeg(j), (G°) = Ujgc(j). For any vector y and index
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subset T, yr € Rl represents the sub-vector of y with index set T. In particular,
Y () represents the sub-vector of y in the union of Groups j € G. Define the {4
norm of any vector y as ||y|q = (2_; Iyilq)l/q. For any vector 3 € RP with group
structures, we also define the £, 4, norm for any 0 < qi, q, < oo as

1/q1
d q1/492

d 1/q1
1Vllq1q. = (Z 1) 3;) = Z hyi/92
j=1 ()

j=1 \i€(j

In particular, |||z = Zf —1 1{y,; #0) is the number of non-zero groups of v, [V ||ec,2 =
max; ||Yj)||2 is the maximum {, norm among all groups of v, and ||y |1 > = Z]fizl 1Y) 2
is the group-wise {; penalty. With a slight abuse of notation, we simply denote
VTl q1,9: = ]l qy,q, if w € RP, urestricted on subset T is yr and u restricted on T¢

is 0.

The focus of this chapter is on simultaneously element-wise and group-wise

sparse vectors defined as follows.

Definition 2.2.1 (Simultaneous element-wise and group-wise sparsity). Assume
B* € RP isassociated with group partition (1), ..., (d). For positive integers s, s 4 satisfying
sg < dand sy < s <mMaxacy,.,d},|Ql=s, 2_ico bi, wesay B* is (s, sq)-sparse if

d
1B o2 = D _1ips, 200 < sg [IB*llo = D_ Liprzo < s
i

j=1

2.2.2 Noiseless Case and Sample Complexity

To analyze the performance of sparse group Lasso and {; + £, minimization, we

first introduce the following assumption on the design matrix X.

Assumption 2.2.1 (Sub-Gaussian assumption). Suppose all rows of X are i.i.d. centered
sub-Gaussian distributed. Specifically, EX;. = 0, Var(X{) = £, and for any « € R?, we
have Eexp («"Z71/2X{) < exp (k?||«||3/2) for constant k > 0. We also assume there
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exist two constants Cpax = Cmin > 0 such that Cmin < Omin(Z) < Omax(Z) < Cax, Where

Omax(X) and omin(X) are the largest and smallest eigenvalues of X, respectively.

Clear, a random matrix X with ii.d. standard normal entries satisfies this
assumption — this design is referred to as the Gaussian ensemble and has been
considered as a benchmark setting in compressed sensing and high-dimensional
regression literature Candes and Plan (2011); Javanmard and Montanari (2018).

The following theorem shows that the {; + {; , minimization achieves the exact
recovery with high probability when 3* is simultaneously element-wise and group-
wise sparse, X is weakly dependent, and Assumption 2.2.1 holds. The theorem also
provides a more general upper bound on estimation error if 3* is approximately

element-wise and group-wise sparse.

Theorem 2.2.1 ({; +-{; , minimization in noiseless case). Suppose one observesy = X3*,
where X has the group structure (2.2) and satisfies Assumption 2.2.1, 3* is (s, sq)-sparse,
and b = maxjci<q bi. Let T be the support of 3*. Suppose there exist uniform constants
C,c > 0 such that

n > C(sglog(d/sg) + slog(esgb)), (2.8)
max |2, rE7k ]|, < /v, (29)

then the constrained {; + {1, minimization (2.5) with Ag = \/s/sgA achieves the exact
recovery with probability at least 1 — C exp(—cn/s).

Moreover, if 3* € RP is a general vector and [3 is the solution to the constrained & + {1,
minimization (2.5) with Ay = \/s/sgA\, then

1, ., 1
min — 1+ — S 1,2> .
1B%llo<s B3 lloa<sg, (\/EHBSCH V/Sq IBse

‘maxiese [|Z1,5Z55ll2<c/V/5

IB—B*[l2 < (2.10)
with probability at least 1 — C exp(—cn/s).

Remark 2.2.1 (Interpretation and comparison). In Theorem 2.2.1, the required sample
size for achieving exact recovery contains two terms: sglog(d/sg) and slog(esgb). In-
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tuitively speaking, sqlog(d/sg) corresponds to the complexity of identifying s, non-zero
groups and slog(esgb) corresponds to the complexity of estimating s non-zero elements of
B in sy known groups.

When (3* is only element-wise or group-wise sparse, one can apply respectively the

classic £, or {1, minimization to recover [3*,

BY = argmin ||B||; subjectto y=XB, (2.11)
B

BY2 =argmin ||B|, subjectto y=X}p. (2.12)
)

The €, minimization and {,, minimization here are respectively the special form of the
regular Lasso and group Lasso (if A, Ay = 04 in (2.6) and (2.7)), respectively. Especially
if the group size by =< --- < bg < b, to ensure exact recovery in the noiseless setting
with high probability, (2.11) requires n 2 Cslog(ebd/s) Foucart and Rauhut (2013)
and group Lasso requiresn 2 s4(b +log(ed/sq)). The &, + {1, minimization (2.5) has
provable advantages over both regular and group Lasso when b > log(d) > log(es4b)
and sgb/log(esgb) > s > sg. In particular, when sq = s, the double sparse regression
reduces to the vanilla sparse linear regression, and the upper bound (2.10) matches the
classic upper bound for {; minimization Candes and Plan (2011).

Inaddition, Condition (2.9) is an important technical condition we used in our theoretical

analysis.

Next, we consider the sample complexity lower bound. Suppose b; = b, =
-+ =bg and d > 2s4. Recall that one observes y = X3* without noise and aims
to estimate the (s, s4)-sparse vector 3* based on y and X. As indicated by classic
results in compressed sensing Candes and Tao (2005), with sufficient computing
power, the ¢, minimization below achieves exact recovery of 3*

B = argmin||Blly subjectto XB =y (2.13)

as along as X is non-degenerate and n > 2s. This bound is actually sharp: when
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n < 2s,foranyset T C {1,...,db} with cardinality 2s, one can find a vector y such
that supp(y) € T and Xy = 0. By choosing an appropriate T, we can split the
support y to obtain two (s, s4)-sparse vectors (31, 3, satisfying 31 + 3, =y. Then,
XpB1 = X(—B2) but there is no way to distinguish 3; and {3, merely based on X and
y = X1 = X(—B2).

However, the {; minimization (2.13) is computational infeasible in practice while
a larger sample size is required for applying more practical methods. The following
theorem shows that by performing the convex {; regularization, {,, regulariza-
tion, or any weighted combination of them, one requires at least ()(sglog(d/sg) +

slog(esyb/s)) observations to ensure exact recovery of (s, s4)-sparse vectors.

Theorem 2.2.2 (Sample complexity lower bound for exact recovery). Suppose b; =
.-+ =bg =b,d, b > 3. Suppose X is an n-by-(db) matrix. If every (2s,2s4)-sparse
vector B € R is a minimizer of the following programming for some (A, Ag) € {(A, Ag) :
AAg = 0,A+Ag > 0F

minA||z||1 + Agl|z|l12  subject to Xz =y = Xp.

In other words, if the &, + {1, minimization exactly recover all (2s,2sg)-sparse vector 3,
then we must have n 2 sqlog(d/sy) + slog(esgb/s).

The following sample complexity lower bound shows that for arbitrary methods,
to ensure stable estimation of all approximately sparse vectors, one requires at least
Q(sglog(d/sg) + slog(esyb/s)) observations.

Theorem 2.2.3 (Sample complexity lower bound for stable estimation). Suppose
by = .-+ =bg = b, b,d > 3. Assume there exists a matrix X € R™*D g map
A :R™ — R4 (A may depend on X), and a constant C > 0 satisfying

1B —AXB)[l2 < C (% + %) (2.14)
9

forall B € RP and some s, sq satisfying d > sg,s4b > s > sg. There exists constants C
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and cg that depend only on C such that whenever sq > Co, we must have
n = co(sglog(d/sg) + slog(esgb/s)).

Remark 2.2.2 (Optimality and comparison with previous results). Theorems 2.2.2
and 2.2.3 show that the sample complexity upper bound in Theorem 2.2.1 is rate-optimal
under a weak condition: log(esyb) =< log(esyb) —log(s) or log(d) > 2slog(s)/sg.
Oymak, et al. Oymak et al. (2015) provided a general analysis for convex regqularization
of simultaneously structured parameter estimation. Specifically for the high-dimensional
double sparse regression, a direct application of their Theorem 3.2 and Corollary 3.1 implies
that if & + 4, o, minimization can exactly recover (s, sg4)-sparse vector 3* with a constant
probability, one must have n 2 s. We can see that Theorem 2.2.2 provides a sharper lower
bound on sample complexity.

In addition, by setting sq = s, the lower bound in Theorems 2.2.2 and 2.2.3 reduces
tom 2 slog(p/s), which matches the optimal sample complexity lower bound for exact
recovery of s-sparse vectors (Foucart and Rauhut, 2013, Theorem10.11, Proposition 10.7).
By setting s = s4b, we obtain a sample complexity lower bound n 2 s4(b 4 log(d/sg))
for (approximate) s 4-group-wise sparse vector recovery and stable estimation. To the best of

our knowledge, this is the first sample complexity lower bound for group Lasso.

2.2.3 Proof Sketches

We briefly discuss the proof sketches of the main technical results in this section.
The detailed proofs are postponed to Section 5.1.

The proof of Theorem 2.2.1 is based on a novel dual certificate scheme. The dual
certificate Bertsekas and Nedic (2003) has been used in the theoretical analysis for
various convex optimization methods in high-dimensional problems, such as matrix
completion Candés and Recht (2009); Gross (2011), compressed sensing Candes and
Plan (2011), robust PCA Candes et al. (2011), tensor completion Yuan and Zhang
(2016), etc. The high-dimensional double sparse linear regression exhibits different

aspects from these previous works due to the simultaneous sparsity structure. In
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particular, we can show that if the u.; defined below is in the row space of X, it can

be used as an exact dual certificate for recovery of (s, s4)-sparse vector 3*:

|(Vet)5) Hz < \/S/sg, j € G |(Wet)Te oo < 1.

(2.15)
Here, T and G are the element-wise and group-wise supports of 3*:

S { ved ) = /5750y /1Byl i € G5 {(wet)T:sgn(m)

T:{1[317é0}§{1,,p}, G:{)B())#O}g{l,,d}

Roughly speaking, 1 is the sub-gradient of objective function (2.5) evaluated at
B = B*. If uc is in the row space of X, the sub-gradient will be perpendicular to
the feasible set of (2.5), which implies that 3* is the unique minimizer of {; + {;,
minimization (2.5).

For more general vector 3* that does not necessarily have a sparse support T or
G, we consider the following (s, s4)-sparse approximation:

BP =argmin —

1

[BSelln + —=IIBse |l
s Vs V59 (2.16)
subjectto  [|Bsflo < 5. [|Bsflo2 < sg, max 1ZisZssll2 < c/Vs.

LetT={i:B{? #0}and G ={j : (B*P)(j) # 0} be the element-wise and group-wise
supports of 7. Define

. { = V/5/54B%.5)/11B%, 3l 7 € G {(VVo)TZSgn(Bf‘r)
’ (Vo)

G1ll2 < \/S/sg, jeGs; |(Wo)Te]l00 < 1.
(2.17)

Here B7 ;) € R is the subvector 3* restricted on the j-th group with all entries in
T¢ set to zero. Similarly to the exactly sparse case, if 11 is in the row space of X and
the true 3* is approximately (s, s4)-sparse, the minimizer of (2.5) will be close to

pr.

However, it is often difficult to find an exact dual certificate that lies in the row
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space of X and satisfies stringent conditions in (2.15) or (2.17). We instead propose to
analyze via the approximate dual certificate defined as (2.18) in the following lemma.

Lemma 2.2.1 (Approximate dual certificate for sparse group Lasso). Suppose T, G
are element-wise and group-wise support defined in (2.16). Uy is defined in (2.17). Assume
X satisfies Omin (X7 X1/M) = Cmin/2. If there exists w € RP in the row span of X satisfying

llur — (o) r]|2 - maxHXIXl/nH2 Cmin/8,

IHi2(wige)) ooz < v50/2,  [[WienTlleo <1/2,

(2.18)

Then the conclusion of Theorem 2.2.1 (2.10) holds with probability at least 1 —2e~°™. Here,
Hy 2(-) is the soft-thresholding operator defined at the beginning of Section 2.2.

If we additionally assume * is (s, sg)-sparse, then 3* is the unique solution to the
sparse group & + € o, minimization (2.5) with probability at least 1 — 2e™ ™.

Lemma 2.2.1 shows that the conclusion of Theorem 2.2.1 holds if there exists
an approximate dual certificate u satisfying the condition (2.18). The following
lemma shows that, under the assumptions in Theorem 2.2.1, one can find such an
approximate dual certificate with high probability.

Lemma 2.2.2. Suppose X has group structure (2.2) and satisfies Assumption 2.2.1. Recall
Omin (XT X7/M) is the least eigenvalue of X1 Xt/n. Then Omin (X7 X1/n) > 1/2 and
(2.18) holds with probability at least 1 — Ce ™/, where T is defined in (2.16).

Another key technical tool to the proof of Theorem 2.2.1 is the following Lemma,
which shows that X satisfies the restricted isometry property for all simultaneously
element-wise and group-wise sparse vectors with high probability when there are

enough samples.

Lemma 2.2.3. Ifn > C(sqlog(d/sg) + slog(esgb)),

CI’I‘III’I

lyll2 < —HXsz Conaxt—5 ) [¥I2, Yy €{y € RP : [lyllo < 25, [[vlloa < 25}
(2.19)

Cmm
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with probability at least 1 — 2e™°™.

Next we briefly discuss the proof of Theorem 2.2.2. Consider the quotient
space R /ker(X) = {[y] := x + ker(X), y € R4} and define an associated norm as
V1| = infyexerx){AlY — Vi1 + AgllY — V[l1,2). We show that there exist N different
(s, s4)-sparse vectors B, ..., B(N) such thatlog(N) =< slog(esyb/s) +s4 log(d/sg)
and [|[[BW]] =1, II[BM] — [BY]]] > 2/9 forall 1 <i#j < N. By a property of the
packing number and the fact that dim(R4° /ker(X)) < n, we must have N < 10™.
Thus n 2 log(N) < slog(esgb/s) + sqlog(d/sg).

We prove Theorem 2.2.3 by contradiction. Assume that

n < co(slog(esgb/s) + sqlog(d/sg)) (2.20)
for a sufficiently small constant co. Let || - || = || - [[1 + \/s/Sg]| - i and B = {x €
R4P : ||x|| < 1} be the unit ball associated with || - ||. Define

"(B,RP) = inf
d ( ’ ) L“isastgslpaceof]]&p {B:];lrl?[_n HBHZ} ’

with dim (RP /L™)<n

We have d™(B,RP) < % by the assumption of this theorem. We can also show that
there exists a uniform constant ¢ > 0 such that

=q] b e
d"(B,R") > cmin {% [(S?glog (ng ogiesg /s)> —|—log(esgb/s)> /n] }

The previous two inequalities and (2.20) together imply that

n

c>-dlog(esgb/s)
n=c | sqlog < + slog(esgb/s) | > co(slog(esgb/s) + sglog(d/sg)) > 1.

This contradiction shows that n > ¢, (slog(esgb/s) + sqlog(d/sg)).
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2.3 Sparse Group Lasso in Noisy Case

We now turn to the noisy case.

2.3.1 Optimal Rate of Estimation Error of Sparse Group Lasso

When observations are noisy, we have the following theoretical guarantee for the

sparse group Lasso.

Theorem 2.3.1 (Upper bound of estimation error). Supposey = Xp* + ¢, X satisfies

Assumption 2.2.1,n > C (sqlog(d/sg) + slog(esyb)) for some uniform constant C > 0,
e N (0,0%), and b = max;<i<q bi. Then the sparse group Lasso estimator (2.4) with

A= Ccr\/(slog(esgb) +sglog(ed/sg)In/s and Ag=/s/sgA

satisfies
1B —B*|2
< - \/Gz(sglog(d/sg) +slog(esgb)) . [IBscllr , [IB3clhz
IBsllo<s IBsllo2<sg, n \/E \/%

‘maxiese | ZisZg5ll2<c/V/5

_Cslog(esgb)—i—sg log(d/sg)>

S

with probability at least 1 — C exp (

Especially, if 3* is exactly (s, sq)-sparse and maXicre |]Zi,TZ{1T|| 2 < ¢/+/s holds, then

0%(sglog(d/sq) 4 slog(esyb)) (2.21)
n

1B — B3 <

with probability at least 1 — C exp (—CSIOg(eSQbHSng(d/Sg) )

S

In addition, we focus on the following class of simultaneously element-wise

and group-wise sparse vectors,

Fssg =B [IBllo <5, [Blloz < sgl
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The following minimax lower bound of estimation error holds.

Theorem 2.3.2 (Lower bound of estimation error). Suppose X satisfies Assumption
221,by=---=byg=Db,and d,b > 3. Then we have

2
inf sup E|[p— p|2 > T (Selosled/sy) +sloglesgb/s))
B

BET¢sq n

Remark 2.3.1. Theorems 2.3.1 and 2.3.2 together show that the sparse group Lasso yields the
minimax optimal rate of convergence as long as the following condition holds: log(esyb) =
log(esgb) —log(s) orlog(d) 2 slog(s)/sg.

Remark 2.3.2. We briefly discuss the main proof ideas of Theorem 2.3.2 here. First, we ran-

domly generate a series of subsets Q'Y C {1,...,p}as feasible supports of (s, s4)-sparse vec-

tors. Then, we prove by a probabilistic arqument that there exist N 2 (sglog(d/sg) + slog(esgb/s))
subsets {QWN | such that |QW N QY| < 8sy[s/sq]/9 for any i < j. Next, we construct

a series of candidate (s, s 4)-sparse vectors V) such that [5](:) = Tl cquy. Intuitively
speaking, {3 VYN, are non-distinguishable based only on observations (y,X) by such a
construction. Theorem 2.3.2 then follows by choosing an appropriate T and the generalized

Fano’s lemma.

2.3.2 Statistical Inference via Debiased Sparse Group Lasso

We further consider the statistical inference for 3* under the double sparse linear
regression model. First, let 3 be the sparse group Lasso estimator given by (2.4).
Inspired by the recent advances in inference for high-dimensional linear regression
Zhang and Zhang (2014); Van de Geer et al. (2014); Javanmard and Montanari
(2014); Cai and Guo (2017), we propose the following debiased sparse group Lasso

estimator,
A A 1 A A
B =B+ =MX" (Y—XB). (2.22)
n
Here, & = L > w4 XkX{ is the sample covariance matrix and M= [hy -1, is

an approximation of the inverse covariance matrix Y1 where 1, is the solution to
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the following convex optimization,

minimize m'ZIm
. (2.23)
subjectto  [[Ha(Zm —€i)]|oco2 < V-

Here, H, is the soft-thresholding operator with thresholding level « defined at
the beginning of Section 2.2 and e; is the i-th vector in the canonical basis of RP.
The following theorem establishes an asymptotic result for debiased sparse group

Lasso.

Theorem 2.3.3 (Asymptotic distribution of debiased sparse group Lasso). Suppose

B* € RPis(s,sq)-sparse, X € R™*P satisfies Assumption 2.2.1, and max; e ||Zi,TZ{1T|]2 <
c/+/s. Set A = Co\/““’g(“gb)“g1°g(d/59”“ and Ng = [SNin (24), « = I,y =

S

‘ /%ﬁ in (2.23). Then with probability at least 1—C exp <—CSIOg(eSQbHSQIOg(d/Sg)>, the

S

debiased sparse group Lasso estimator 3* can be decomposed as /n (B” —B*) =A+w,
where

C(slog(esgb) +sqlog(ed/sy))
vn

In particular, if /1 > slog(esgb) + sqlog(ed/sy), forany 1 <i < p,

1Al < o, WX~N(0,c>MEIMT). (2.24)

v (BB (0,0%). (2.25)

AT A
/My Ly

Remark 2.3.3. (2.25) provides a method to construct confidence intervals for 3*. Specifi-
cally if 6 is a consistent estimator of o, such as the scaled sparse group Lasso to be discussed
in Section 2.5,

B — @ 11— «/2)6

would be an asymptotic (1 — o)-confidence interval for 3. We can see that the debiased
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sparse group Lasso estimator has the provably advantage on sample complexity (n. >
(slog(esgb) +sqlog(ed/sy))?) over the ones via debiased Lasso (n > slog p, see Zhang
and Zhang (2014); Javanmard and Montanari (2014); Cai and Guo (2017)) or debiased
group Lasso (n > (s4b + sglogp)?, see Mitra and Zhang (2016)) for constructing
asymptotic confidence intervals of *.

2.4 Simulation Studies

In this section, we investigate the numerical performance of the sparse group Lasso
and {; + {; , minimization for double sparse regression. The results support our
theoretical findings in Sections 2.2 and 2.3. We first discuss the practical choice for

the tuning parameters used in the proposed algorithms.

2.4.1 Practical Selection of Tuning Parameters

By introducing T as a surrogate for (A4/ A)?, we can rewrite the ¢; +{; , minimization

and the sparse group Lasso as
p =argmin||B]: + vT[Bl12 subjectto y=Xp, (2.26)

B = argmin [y — XB|15 + AlB[lr + A/ Bl12- (2.27)
B

As suggested by Theorems 2.2.1 and 2.3.1, the theoretical choice of the tuning
parameters (A, T) relies on 0, s, and sg4 in sparse group Lasso and {¢; + {; , minimiza-
tion for double sparse regression. These values, however, are usually unknown in
practice. In addition, those theoretical values of tuning parameters may not achieve
the best finite-sample numerical performance. We thus introduce in this section a

data-driven approach to tuning parameter selection using K-fold cross-validation.

We first discuss how to select T in the {; + {; , minimization (2.26). Recall n is
the sample size, p is the total number of covariates, d is the number of groups,

by,...,bq are the number of covariates in each group, and b = max; bj. Since the
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theoretical value T = s/sy and s/sy must satisfy 1 < s/sy < b, for a given integer
L > 1, we introduce a grid

So = (b V/IL-1 ] <1<} (2.28)

as a set of candidate values for T. Here, the grid size L can be set to a typical value
of 10, or a larger value if more computing power is available. We split the data
{Xi,yiJit; into K groups. For 1 < k < K, let Jx C {1,...,n} be the index set of the
kth group and J§ ={1,...,n}\Jx. For each T € Sy, we solve

B (1) = argmin |||l + vT[|Bl12 subjectto yje = Xye,1B

and calculate the prediction error

Let T, be the minimizer of the prediction error: T, = arg min R(t). Then, the

TES)
final estimator f is calculated using (2.26) with ..

Then we consider the sparse group Lasso (2.27), which includes two tuning pa-
rameters (T, A). We still define S in (2.28) as a grid of candidate values of . Follow-
ing the idea in (Simon et al., 2013, Section 3.3), for each T € Sy, we begin with a large
value of Amax(T) 50 that B, the outcome of sparse group Lasso (2.27) with tuning pa-
rameters (T, Amax (T)), is zero (this can be achieved by the SGL package’). Let Apin (T)

be a small fraction of Ayax(T) (€.8., Amin = 0.1Anax as suggested in (Simon et al., 2013,

Section 5)). Then we define A(T) = {{Amin (T)} 5D/ D (A (0D 1 =1,

Next, we split the data {X;, yi}i* ; into K groups. For 1 < k <K, let ], C{1,...,n}
be the index set of the kth group and J{ ={1,...,n}\Jx. For each T € Sy, A € A(7),

thttps://cran.r-project.org/web/packages/SGL/index.html


https://cran.r-project.org/web/packages/SGL/index.html
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and k € {1, ..., K}, we solve

A . 2
B (t,A) =argmin |lyje — Xye,4B||; + ARl + AVl B2
B

and calculate the prediction error

Rt A =) ) (- X106 (1,7))”.

k=1j€]x

A

Let (7., A) be the minimizer of the prediction error: (T, A.) = arg min__ SoAEA () R(T,A).

The final estimator f is calculated using (2.27) with (7., A,).

In our simulation studies next, we will examine the performance of this cross-
validation scheme with K = L = 10, Apin = 0.1Anax-

2.4.2 Numerical Results

We begin by considering the sample complexity for the exact recovery in the noise-
less case. Suppose all group sizes are equal (b; = --- = bg = b) and the number
of observations n varies from 5 to 200. We consider four simulation designs with
(1)d =60,b =20,s4 =1;(2) d =100,b = 30,54 =2;(3) d =b =20,54 = 1;and
(4) d = b =40, sy = 1. For each setting, we randomly draw X € R™* 4 with i.i.d.

standard normal entries, construct the fixed vector 3* € R4 satisfying

g (1,2,3,4,5,0,...,0) €R® j=1,...,5,;
D0 j=sq+1,...,4,

and generatey = Xp* = Z]S 21 X(5)B7;)- We implement the ¢, + {;, minimization
(2.5) with Ay = M?\ (SGL), £; minimization (2.11) (Lasso), and {; ; minimization
(2.12) (Group Lasso), and ¢; + {1, minimization (2.5) with the tuning parameter
Ag/A selected using cross validation discussed in Section 2.4.1 (SGL_CV). An exact
recovery of * is considered to be successful if ||} — B*||, < 10~*. The successful

recovery rate based on 100 replicates is shown in Figure 2.1. It can be seen that SGL
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and SGL_CV have comparable performance and both methods have significantly

better performance than Lasso and Group Lasso. This is in line with our theoretical

results.
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Figure 2.1: Exact recovery rate in the noiseless case

200

Then we consider the noisy case and focus on average estimation errors of

different methods. We generate

Sg
y=Xp*+¢= meﬁg) +¢,
j=1
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where X, 3* are drawn in the same way as the previous setting and ¢ N (0,0.1%).
We consider four designs: i. d = 60,b = 20,s4 = 1;ii. d = 100,b = 30,54 = 2;
iii. d =b =20,s4 = 1;and iv. d = b = 40, sy = 2. For each case, the number of
observations n is chosen from an equally spaced sequence from 5 to 200 and the
simulation is replicated for 500 times. We compare the average estimation error of (a)
SGL_CV1: sparse group Lasso with theoretical value Ay = 1/s/s,A and A selected via
cross validation; (b) SGL_package: sparse group Lasso via SGL packaget in R with
the option of automatic tuning parameter selection; (c) Lasso: regular Lasso with
tuning parameter selected via cross validation; (d) group Lasso: group Lasso with
tuning parameter selected via cross validation; (e) SGL_CV2: sparse group Lasso
with both A and A4 selected using the proposed cross validation scheme. We can
see the proposed method SGL_CV2 achieves smaller estimation error than all other
methods, including SGL_CV1, the focus of our theory. These experimental results
demonstrate our theory and the applicability of the proposed cross-validation

scheme.

2.5 Discussions

In this chapter, we study the high-dimensional double sparse regression and inves-
tigate the theoretical properties of the sparse group Lasso and {; +{; , minimization.
Particularly, we develop the matching upper and lower bounds on the sample com-
plexity for £; + £; , minimization in the noiseless case. We also prove that the sparse
group Lasso achieves minimax optimal rate of convergence in a range of settings
in the noisy case. Our results give an affirmative answer to the open question for
high-dimensional statistical inference for simultaneously structured model: by
introducing both {; and {; , penalties, one can achieve better performance on esti-
mation and statistical inference for simultaneously element-wise and group-wise

sparse vectors.

In addition to 3*, the estimation and inference for noise level o is another

thttps://cran.r-project.org/web/packages/SGL/index.html
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Figure 2.2: Average estimation error in the noisy case

importance task in high-dimensional double sparse regression. Motivated by the
recent development of scaled Lasso Sun and Zhang (2012), one may consider the

following scaled sparse group Lasso estimator:

(Bs,6) = arg min {

BERP,0>0

ly — XBl13
o

+no+’i||ﬁ|h+iguﬁ||z},
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where A and ?\g are tuning parameters that do not rely on o. The consistency of
& can be established based on similar ideas of scaled Lasso in the literature Sun
and Zhang (2012); Javanmard and Montanari (2014) and the approximate dual
certificate in this work.

Moreover, our technical results can be useful in a variety of other problems with
simultaneous sparsity structures. For example, Tibshirani et al. (2005); Rinaldo
(2009) considered the estimation of piece-wise constant sparse signals, i.e., both
the signal vector and the difference between successive entries of the signal vec-
tor are sparse. Jalali and Fazel (2013); Jalali et al. (2019) discussed the estimation
of structured parameters where both the number of non-zero elements and the
number of distinct values of the parameter vectors are small. Sprechmann et al.
(2010) considered the estimation of matrices with simultaneous sparsity structures
within each block and among different blocks. It is interesting to further study
the statistical limits, including the sample complexity and minimax optimal rate
of convergence for these problems. In particular, based on the specific sparsity
structures of each problem, we can introduce corresponding multi-objective regu-
larizers and the convex regularization methods. The corresponding approximate
dual certificates can be proposed, constructed, and analyzed to provide strong
theoretical guarantees.
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Chapter 3

Inference for Low-rank Tensors *

3.1 Introduction

An mth order tensor is a multiway array along m directions. Recent years have
witnessed a fast growing demand for the collection, processing, and analysis of
data in the form of tensors. These tensor data commonly arise, to name a few, when
teatures are collected from different domains, or when multiple data copies are
provided by various agents or sources. For instances, the worldwide food trading
flows (De Domenico et al., 2015; Jing et al., 2020) produce a fourth order tensor
(countries x countries x food x years); the online click-through data (Han et al.,
2020; Sun et al., 2017) in e-commerce form a third order tensor (users x categories
x periods); Berkeley human mortality data (Wilmoth and Shkolnikov, 2006; Zhang
and Han, 2019) yield a third order tensor (ages x years x countries). In addition, the
applications of tensor also include collaborative filtering (Karatzoglou et al., 2010;
Shah and Yu, 2019), recommender system design (Bi et al., 2018), computational
imaging (Zhang et al., 2020b), and neuroimaging (Zhou et al., 2013). Researchers
have made tremendous efforts to innovate effective methods for the analysis of

tensor data.

*This work is based on Xia et al. (2020) (https://arxiv.org/abs/2012.14844).
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Low-rank models have rendered fundamental toolkits to analyze tensor data. A
tensor T € RP1**Pm has low Tucker rank (or multilinear rank) if all fibers™ of T
along different ways lie in rank-reduced subspaces of high-dimension, say {U;}Z,,
respectively (Tucker, 1966). The core assumption of low-rank tensor models is that
the observed data is driven by an unknown low-rank tensor 7, while the Tucker
low-rank conditions can significantly reduce the model complexity. Consequently,
the analysis of tensor data often boils down to the estimation and inference of the
low-rank tensor T or its principal components based on the given datasets.

In the literature, a rich list of methods have been developed for the estimation of
low-rank tensor T and the associated subspace Uj;, such as alternating minimization
(Anandkumar et al., 2014a), convex regularization (Tomioka and Suzuki, 2013; Yuan
and Zhang, 2016), power iterations (Anandkumar et al., 2014a), orthogonal iteration
(De Lathauwer et al., 2000b; Zhang and Xia, 2018), vanilla gradient descent with
spectral initialization (Cai et al., 2019a), projected gradient descent (Chen et al.,
2019a), simultaneous gradient descent (Han et al., 2020), etc. However, in many
practical scenarios, to enable more reliable decision making and prediction, it is
important to quantify the estimation error in addition to point estimations. This task,
referred to as uncertainty quantification or statistical inference, usually involves the
construction of confidence intervals/regions for the unknown parameters through
the development of the (approximate) distributions of the estimators. The statistical
inference or uncertainty quantification for low-rank tensor models remains largely
unexplored. In this chapter, we aim to make an attempt to this fundamental and
challenging problem. Our focus is on two basic yet important settings: low-rank

tensor PCA and tensor regression, which we briefly summarize as follows.

Tensor principal component analysis (PCA) is among the most basic problem of
unsupervised inference for low-rank tensors. We consider the tensor PCA model
(Anandkumar et al., 2014a; Richard and Montanari, 2014; Liu et al., 2017; Zhang

"Here, the tensor fibers are the counterpart of matrix columns and rows for tensors. See Kolda
and Bader (2009) for a review.
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and Xia, 2018; Chen, 2019; Perry et al., 2020), which assumes
A=T+2Z, (3.1

where the signal 7 admits a low-rank decomposition (3.6) and the noise Z contains
ii.d. entries with mean zero and variance o2. A central goal of tensor PCA is on
the estimation and inference of 7 and/or {U;};, i.e. the low-rank structure from A.
Tensor PCA has been proven effective for learning hidden components in Gaussian
mixture models (Anandkumar et al. (2014a)), where {U;}; represent the hidden
components. By constructing confidence regions of {U;};, we are able to make
uncertainty quantifications for the hidden components of Gaussian mixture models.
In addition, confidence regions of {U;}; can be useful for the inference of spatial and

temporal patterns of gene regulation during brain development (Liu et al. (2017)).

Low-rank tensor regression can be seen as one of the most basic setting of supervised
inference for low-rank tensors. Specifically, suppose we observe a set of random
pairs {X;, Yi}I* ; associated as

Yi = (T, X;) + &;i. (3.2)

Here, the main point of interest is T, a low-rank tensor that characterizes the
association between response Y and covariate X, and &; is the noise term. When the
tensor order is m = 2, this problem is reduced to the widely studied trace matrix
regression model in the literature (Candes and Plan, 2010; Koltchinskii et al., 2011;
Tomioka and Suzuki, 2013; Cai et al., 2013; Chen et al., 2019a; Koltchinskii and Xia,
2015; Rauhut et al., 2017; Raskutti et al., 2019; Fan et al., 2019). This model can also be
used as the prototype of many problems in high-dimensional statistics and machine
learning, including phase retrieval (Candes et al., 2013b) and blind deconvolution
(Li et al., 2019b). When m > 3, this problem has been studied under the scenario
of high-order interaction pursuit (Hao et al., 2020) and large-scale linear system
from partial differential equations (Lynch et al., 1964). In applications of tensor

regression to neuroimaging analysis, the principal components of T are useful in
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the understanding of the association between disease outcomes and brain image
patterns (Zhou et al. (2013)). In addition, the principal components determine the
cluster memberships of neuroimaging data (Sun and Li, 2019). Confidence regions
of {U;}; in the aforementioned applications allow us to make significance test for the
detected regions of interest, and to make uncertainty quantifications for clustering

outcomes, respectively.

In addition to tensor PCA and regression, there is a broad range of low-rank
tensor models, such as tensor completion (Yuan and Zhang, 2016; Montanari and
Sun, 2018; Xia and Yuan, 2019; Zhang, 2019), generalized tensor estimation (Han
et al., 2020), and tensor high-order clustering (Wu et al., 2016; Feizi et al., 2017; Chi
et al., 2018; Sun and Li, 2019; Wang and Zeng, 2019; Luo and Zhang, 2020c). A
common goal of these problems is to accurately estimate and make inference on

some type of low-rank structures.

3.1.1 Summary of the Main Results

In this chapter, we aim to develop the methods and theory for statistical inference
under the low-rank tensor PCA and regression models. First, suppose the target
tensor T is Tucker low-rank with singular subspace U; as point of interest. Given
any estimator flj(o) that achieves some reasonable estimation error, we introduce a
straightforward two-iteration alternating minimization scheme (Algorithms 1 and
2 in Section 3.3.1) and obtain U;. Surprisingly, we are able to derive an asymptotic
distribution of || sin ©(U;, U;)||? (definition of sin-theta distance is postponed to
Section 3.2) even though U; is from non-convex iterations. Under the tensor PCA

model with some essential conditions on SNR, we prove that

sin @(U;, U;) |2 — p; 02| AT L3
| (U J”lF _p21 1A 1l i>N(0,1) as pj — oo. (3.3)
VoA 2

Here, A\; is the diagonal matrix containing all non-zero singular values of the jth

matricization of G (see definition of matricization in Section 3.2). Under the tensor
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regression model with some essential conditions on sample size and SNR, we prove
that 0 2 152 A-1)2
sin ®(U;, W) ||z —psn o || A
| (W, Us) |5 — p - | j Iz d, N(©0,1) as p; — oco. (3.4)
Zpn o2 | Al

Then, we consider a special class of orthogonally decomposable tensors T in the
sense that T = Z)T:l Aj -y ®v; @wj € RP1XP2XPs for orthonormal vectors {u;};, {v;};,
and {w;};. The orthogonally decomposable tensor has been widely studied as a
benchmark setting for tensor decomposition in the literature (Kolda, 2001; Chen and
Saad, 2009; Robeva, 2016; Belkin et al., 2018; Auddy and Yuan, 2020). In addition, the
(near-)orthogonally decomposable tensors have been used in various applications
of statistics and machine learning, such as latent variable model (Anandkumar
et al., 2014a), hidden Markov models (Anandkumar et al., 2012), etc. Under the
tensor PCA model, we prove that

(05, 15)* — (1 —p;0”A; %)
V/2p; 02N,

forj=1,---,v when some essential SNR condition holds. Here, {11;, ¥;, W;}; are the

44y N(0,1) as pi — oo (3.5)

estimates of {1, v;, w;}; (up to some permutation of index j) based on a two-step
power iteration (Algorithm 3). Similar results can also be obtained for (9;,v;)? and
(W5, wj)?.

Next, we propose the estimates of A;, A;, 02 that are involved in the asymptotic
distributions of || sin ®(U;, U;)|% in (3.3)(3.4) and (11, 1;)? in (3.5). We prove that
the asymptotic normality in (3.3)(3.4)(3.5) still hold after plugging in these estimates.
These results immediately yield the data-driven confidence regions for U; (Tucker
low-rank settings) or {u;}; (orthogonally decomposable settings).

If A is a rank-1 tensor, the low-rank tensor PCA model reduces to the widely
studied rank-1 tensor PCA (see a literature survey in Section 3.1.2). Under this
model, we establish the asymptotic normality of any linear functionals for the

power iteration estimators i, ¥, W: for all unit vectors q; € RPi, under regularity
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conditions, we have

<<q1,u u) + m;fy;;) <q2,\3 > + pz}<\<}zc\))> (q3,W _ > + p3<}\q/3C:)V>
\/Pl(qu)z *(Q1/u>2 \/Pz(qz V)2 + —(q2,v)? \/Ps(qs w)? —(q3,w)?
2(A/0)* (A/0)? 2(A/0)* (A/0)? 2(A/0)* (A/0)?

as p1, P2, ps — 0o. We further derive the entrywise asymptotic distribution for each

_
) % N(0, I5)

entry of the estimator 7, and propose a thresholding procedure to construct the
asymptotic 1 — o entrywise confidence interval for T, which is the first of such work

to our best knowledge.

Our theoretical results reveal a key message: under the tensor PCA and re-
gression model, the inference of principal components can be efficiently done when a
computationally feasible optimal estimate is achievable. In recent literature, it is widely
observed in many low-rank tensor models (See 3.1.2 for a review of literature) that
in order to achieve an accurate estimation in polynomial time, one often requires
a more stringent condition than what is needed in the statistical (or information-
theoretic) limit. Such a statistical and computational gap becomes a “blessing"
to the statistical inference of low-rank tensor models, as debiasing can become
unnecessary if those strong but essential conditions for computational feasibility

are met!

3.1.2 Related Prior Work

This chapter is related to a broad range of literature in high-dimensional statistics
and matrix/tensor analysis. First, a variety of methods have been proposed for
tensor PCA in the literature. A non-exhaustive list include high-order orthogonal
iteration (De Lathauwer et al., 2000b); sequential-HOSVD (Vannieuwenhoven et al.,
2012), inference for low-rank matrix completion (Foucart et al., 2017; Chen et al.,
2019b), (truncated) power iteration (Anandkumar et al., 2014b; Sun et al., 2017; Liu
et al., 2017), STAT-SVD (Zhang and Han, 2019). In addition, the computational
hardness was widely considered for tensor PCA. Particularly in the worse case
scenario, the best low-rank approximation of tensors can be NP hard (De Silva and
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Lim, 2008; Hillar and Lim, 2013). The average-case computational complexity for
tensor PCA model has also been widely studied under various computational mod-
els, including the Sum-of-Squares (Hopkins et al., 2015), optimization landscape
(Arous et al., 2019), average-case reduction (Zhang and Xia, 2018; Luo and Zhang,
2020c; Brennan and Bresler, 2020; Luo and Zhang, 2020a), and statistical query
(Dudeja and Hsu, 2020). It has now been widely justified that the SNR condition

Amin/0 = Cp%/* is essential to ensure tensor PCA is solvable in polynomial time.

Regression of low-rank tensor has attracted enormous attention recently. Various
methods, such as the (regularized) alternating minimization (Zhou et al., 2013; Sun
and Li, 2017; Li et al., 2018), convex regularization (Tomioka and Suzuki, 2013;
Raskutti et al., 2019), projected gradient descent (Chen et al., 2019a; Rauhut et al.,,
2017), importance sketching (Zhang et al., 2020a) were studied. Recently, Han et al.
(2020) proved that a gradient descent algorithm can recover a low-rank third order
tensor T with statistically optimal convergence rate when the sample size n is much
greater than the tensor dimension p3/2. It was widely conjectured that n > Cp%?is
essential for the problem being solvable in polynomial time (see Barak and Moitra
(2016) for the evidence).

While the statistical inference for low-rank tensor models remain largely unex-
plored, there have been several recent results demystifying the statistical inference
for low-rank matrix models. For matrix PCA, Xia (2019b) introduced an explicit rep-
resentation formula for U; ﬂjT. A more precise characterization of the distribution
of || sin @(U;, U;)||2 was established in Bao et al. (2018) by random matrix theory.
On the other hand, the estimators of tensor PCA are often calculated from iterative
optimization algorithms (e.g., power iterations or gradient descent) in existing liter-
ature, while the estimator of matrix PCA is based on non-iterative schemes. Due to
the complex statistical dependence involved in iterative optimization algorithms, it
is significantly more challenging to analyze the asymptotic distribution of the esti-
mator in tensor PCA than the one in matrix PCA. We also note that, when studying
the asymptotic distributions of individual eigenvectors, an eigengap condition is

often crucial for matrix PCA but not required for tensor PCA.
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The inference and uncertainty quantification were also considered for low-rank
matrix regression. For example, Carpentier et al. (2019) introduced a debiased
estimator based on the nuclear norm penalized low-rank estimator. Cai et al.
(2016b) introduced another debiasing technique and characterize the entrywise
distribution of the debiased estimator under the restricted isometry property. Xia
(2019a) studied a debiased estimator for matrix regression under the isotropic
Gaussian design and established the distribution of || sin ©(Ul;, U;)||? under nearly
optimal sample size conditions. All these approaches rely on suitable debiasing of
certain initial estimates. In addition to low-rank estimation, an appropriate debias
was found crucial for high-dimensional sparse regression (Zhang and Huang, 2008),
and various debiasing schemes were introduced (Zhang and Zhang, 2014; Van de
Geer et al., 2014; Javanmard and Montanari, 2014). Interestingly, as will be shown in
Section 3.3, our estimating and inference procedure for low-rank tensor regression
does not involve debiasing.

Statistical inference for low-rank models are particularly challenging for tensor
problems. In a concurrent work, Huang et al. (2020) studied the statistical inference
for tensor spiked model. Recently, Cai et al. (2020) studied the entrywise statistical
inference for noisy low-rank tensor completion based on an incoherence condition
on Ujs, i.e., all the rows of U; have comparable magnitudes. In comparison, our

results do not require further conditions on Ujs or debiasing.

3.1.3 Organizations

The rest of the chapter is organized as follows. After an introduction on notation
and preliminaries in Section 3.2, we discuss the inference for principal components
under the Tucker low-rank models in Section 3.3. Specifically, a general two-iteration
alternating minimization procedure, inference for tensor PCA, inference for tensor
regression, and a proof sketch are given in Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4,
respectively. In Section 3.4, we focus on the inference for individual singular vectors
of orthogonally decomposable tensors. The asymptotic distribution and entrywise
confidence interval are discussed for rank-1 tensor PCA model in Section 3.5. Section
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5.2 includes some algorithms for tensor PCA and regression in the literature and
all proofs of the main technical results.

3.2 Notation and Preliminaries

We use calligraphic letters 7, G to denote tensors, upper-case letters U, W to denote
matrices, and lower-case letters u, w to denote vectors or scalars. For a random

variable X and « > 0, the Orlicz { ,-norm of X is defined as
HXH% = inf{K > 0 : E{exp(|X|/K)*} < 2}.

Specifically, a random variable with finite {»,-norm or \{;-norm is called the sub-
Gaussian or sub-exponential random variable, respectively. Let e; denote the jth
canonical basis vector whose dimension varies at different places. Let rank(7T) be
the Tucker rank of 7 and write (ay,..., am) < (by,..., by ) if a; < bj forallj € [m].
We use || - ||r for Frobenius norm, || - || for matrix spectral norm and || - ||» for vector
{-norm. Denote SP! = {v € RP : ||v|, < 1} as the set of p-dimensional unit
vectors. Define O, ={U € RP*": UTU = L,} as the set of all p-by-r matrices with
orthonormal columns. In particular, O, is the set of all r x r orthogonal matrices.

We denote xj the jth multi-linear product between a tensor and matrix. For
instance, if G € R"*"*" and V; € RP1*"  then

§x1 Vi = (Y Sl iz, is)V(in )

o i1€lp1]in€lraliz€lrs]
=

We write (Uy, - -+, Uy ) - G inshort for G x; U x5 - - - X4y Uy Let M be the jth tensor
matricization that rearranges each mode-j fiber of T € RP1*"*Pd to a column of
j\/[]. (T) € RPi* (P1--Pa/Pj)

We say T has Tucker rank (ry,-- - ,1,,) if it admits a Tucker decomposition

T=([Uy, -, Un)-G, (3.6)



39

where § € R"**™ and U; € Op, r, for i € [m]. The Tucker decomposition (3.6)
can be roughly seen as a generalization of matrix singular value decomposition
(SVD) to higher-order tensors, where U; can be viewed as principal components
of the jth matricization of T, and G contains the singular values. In the case that
Ty =--- =Ty =1and §is diagonalizable, we say 7 is orthogonally decomposable. If T
satisfies Tucker decomposition (3.6), one has

M(T) =M (L@ @U_1 @U@ @ Um)T € RP X (Propm/Py),

Here ® stands for Kronecker product so that U@W € RP1P2)x(1im2) jf U € RP1¥™ and
W e RP2*"2, The readers are referred to Kolda and Bader (2009) for a comprehensive
survey on tensor algebra.

Let 0,(-) be the rth largest singular value of a matrix. If 7 has Tucker ranks
(11, ,Tm), the signal strength of T is defined by

}\min = Amin(T) = min {Grl (Ml((*r))/ O, (MZ((I))/ SR O, (Mm(ir)) }/

i.e., the smallest positive singular value of all matricizations. Similarly, define
Amac i = Ao (T) = max; 01 (M;(T)). The condition number of T is defined by «(7T) :=
Ao (TALL(T). We let A; be the 15 x 15 diagonal matrix containing the singular

values of M;(9) (or equivalently the singular values of M;(7)). Note that A;s are
not necessarily equal for different j, although || A1]|r = - - - = ||Amllr = || T]|r.

We define the principle angles between U, Ue Oy, as an r-by-r diagonal matrix:
@(U,ﬂ) = diag(arccos(o1),...,arccos(o,)), where 01 > --- > o, > 0 are the

singular values of UTU. Then the sin © distances between (1 and U are defined as

I sin@(U.,ﬁ)H = || diag (sin(arccos(o1)), ..., sin(arccos(o,))) || = /1 — 02,

. 1/2 T 1/2
|| sin @(U,G)HF = (Z sinz(arccos(ci))> = <r — Z G%) .
i=1

i=1
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3.3 Inference for Principal Components of Tucker

Low-rank Tensor

For notational simplicity, we focus on the inference for third-order tensors, i.e.,
m = 3, while the results for general mth order tensor essentially follows and will
be briefly discussed in Section 3.7.

3.3.1 Estimating Procedure

An accurate estimation is often the starting point for statistical inference and uncer-
tainty quantification. In this section, we briefly discuss the estimation procedure
for both tensor regression and PCA models. First, we summarize both models as
follows:

Yi= (X, T)+ &, i=1,...,n

Here, X; can be the covariate in tensor regression; n = p1p,ps, Yi = A(j1,j2,j3), and
Xi = (ej,, €j,,€5,) - 1 withi= (j1 —1)paps+ (G2 —D)ps+j3,j1 € [p1l,i2 € [pal,js € [p3l
in tensor PCA. Let 1, (T) = >_ 1, (Yi — (X;, T))? be the loss function in both settings.
Then a straightforward solution to both problems is via the following Tucker rank

constrained least squares estimator:

n

1

2
min en J)=— Yi - Xi,iT ’
rank (7)< (r,m2,73) (7) n Z ( < >)
. = (3.7)
or equivalently (G, Uy, Uy, Us) == arg min en((ul,uz, Us) - 9)‘

GERT1XT2%73, uj €®pj,rj

Since the objective function (3.7) is highly non-convex, an efficient algorithm with
provable guarantees is crucial for both tensor PCA and regression. As discussed
earlier, various computationally feasible procedures have been proposed in the lit-
erature. For tensor regression, Han et al. (2020) recently introduced a simultaneous
gradient descent algorithm and proved their proposed procedure achieves the min-

imax optimal estimation error; for tensor PCA, a simpler and more direct approach,
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higher-order orthogonal iteration (HOOI), was introduced by De Lathauwer et al.
(2000b). The implementation details of both algorithms are provided in Section
5.2.1 in the supplementary materials.

Moreover, the primary interest of this chapter is on the statistical inference for
J or Uj, far beyond deriving estimators achieving optimal estimation error. In
general, even estimators achieving minimax optimal estimation error rate may not
enjoy a proper asymptotic distribution. For example, the true parameter T or U,
plus a small enough perturbation can achieve optimal estimation error but does

not satisfy any tractable distribution.

To this end, we introduce a two-iteration alternating minimization algorithm for
both Tucker low-rank tensor PCA and tensor regression in Algorithms 1 and 2,
respectively. Our theory in later this section reveals a surprising fact: if any estimator
T = (ﬂ{o), fléo), ﬂéo)) - §(0 achieving some attainable estimation error is provided
as the input, the two-iteration alternating minimization in Algorithms 1 and 2 will
provide an estimator enjoying asymptotic normality and being ready to use for

confidence region construction.

Algorithm 1 Power Iteration for Tensor PCA
Input: {,,(-): Objective function (3.7); Initializations (ﬂio),ﬂéo),ﬂéo]) ;
1: fort=0,1do

2: ﬂ§t+1) = leading 11 left singular vectors of M; (A x» ﬂétw X3 ﬂét)T) ;
3: Uétﬂ) = leading 1, left singular vectors of M, (A x4 ﬂ?” X3 Uét]T) ;
4 WY = leading r; left singular vectors of Ms(A x5 TV T x, (WYT;
5: end for
Output: Test statistic U, = ﬂiz), U, = fléz), U = fléz), and § =

~N2)T ™ (2)T ™N(2)T
(@2, aP - A

Remark 3.3.1 (Interpretation of Alternating Minimization Update in Tensor PCA).
A key observation by (De Lathauwer et al., 2000b, Theorems 4.1, 4.2) shows minimizing

MiNank (7)< (ry,m2,m5) || T — Al is equivalent to maximizing maxy;co, ., [[(Uf, Uy, U3) -
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Algorithm 2 Alternating Minimization for Tensor Regression

Input: £, (-): Objective function (3.7); Initializations (ﬂio),ﬂéo),ﬂéo)), and G
is the solution of arg ming £, ((ﬂio), flém, Uéo)) . 9) for tensor regression model;
1: fort=0,1do
: Solve Vulﬂn((ﬂ§t+o'5), ﬂét), ﬂét)) .Gl )) = 0 to obtain U (t+0.5),
Update by ({*"" = svD, (U
Solve Vuzfn((ﬂm, W alty . go )) = 0 to obtain Qo)

2
3
4:
5. Update by 1)'"" = SvD,, (1*));
6
7
8
9

c
+
+
ot
Z

(> —

N

Solve vusen((u?), ﬂéﬂ, ﬂ§t+0'5)) LGt ) = 0 to obtain U t+05

Update by 1{**" = svD,, (0}"

. Solve Vg, (U, a{**,
: end for

Output: Test statistic U; := ﬂiz), U, := ﬂéz), Uy = ﬂf), and G := §@,

Al%. Therefore, the optimization in tensor PCA is equivalent to

(ﬂl,ﬂz,ﬂg,) :=arg min £, ((U;, Uy, Uj) - §) := arg max ||(UT,U2T,U3T) AH%

uje@p]—,r)- u) G(O)p].,r].
2
=arg max [[UsM; (A X1 Uja X2 U o) -
Uje@pj,rj
Here, for convenience of notation, Uy = Uy, Us = Uy, 14 = 11,75 = 1. Note that, given
fixed U +1 and U +2,

the optimal solution to maxu;co,, .. Iy, ﬂ)if,ﬂfﬂ

Eckart-Young-Mirsky Theorem (Eckart and Young, 1936) implies
) - A||? is attainable via singular
value decomposition:

ﬂ]_(t+1J = leading r; left singular vectors of M; (A Xj+1 U)+1 X2 UH?_ )

This explains the alternating minimization update steps for tensor PCA in Algorithm 1.

Hereinafter, we denote ﬂ]‘ the output of Algorithms 1 and 2, p = max{p1, p2, p3}
and 1, = max{ry, 2, 13}. Next, we establish the asymptotic distribution and develop

the inference procedure for || sin ®(Ul;, U;)||2 in tensor PCA and tensor regression
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models when T admits the Tucker decomposition (3.6).

3.3.2 Inference for Tucker Low-rank Tensor PCA

A A

We assume the following condition on initialization (ﬂgo), U;O), Uéo) ) of Algorithm 1
holds.

Assumption 3.3.1. Under tensor PCA model (3.1) with Z i, i, Hhd N(0, 0?), there is an
event &g withP(&g) > 1—Cre™ 1P for some absolute constants cl, C1 > 0so that, under &,
the initialization (ﬂio), ﬂéo), fl( ) satisfy maxj—ip3 || sin ®(LL"", U;)|| < Coy/Po/An,

for some absolute constant C, > 0.

The claimed error rates in Assumption 3.3.1 are attainable by the algorithm
HOOI under the SNR condition A,,;,,/o > Cp%* (Zhang and Xia, 2018, Theorem 1).
Such the SNR condition is essential to ensure a consistent estimator is achievable
in polynomial time as illustrated by the literature reviewed in Section 3.1.2. Note
that (Zhang and Xia, 2018, Theorem 1) presented an expectation error bound
E|| sin G)(ﬂj(o), U; )|, while its proof indeed involved a desired probabilistic bound
as claimed by Assumption 3.3.1. If a given initialization estimation error upper
bound is in a metric other than the sin © distance described in Assumption 3.3.1,
we may apply Lemma 5.2.4 in the supplementary materials to “translate” the upper
bound in another metric to the desired sin © distance.

Suppose U; is the output of Algorithm 1. Built on Assumption 3.3.1, we charac-
terize the distribution of || sin ©(Ul;, U;)||? by the following theorem.

Theorem 3.3.1 (Asymptotic normality of principal components in tensor PCA).
Suppose Assumption 3.3.1 holds for tensor PCA model (3.1), Z(i1, 12, 13) N (0, 02),
p; <pforj=1,23 and (T) < k. Let U]—s be the output of Algorithm 1 for tensor

PCA model. There exist absolute constants c1, Cy, C1, Co, C3 > 0 such that if A;,,/0 >
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Co(p*/* + k3pl/2), then

sup
x€eR

in ©(Uj, Uj)||2 — p;jo?|| A2
P(HSm (U, W) |5 —pjo|l j ”F<x>—®(x)

V2Pi 02| A2 lr

< Cie P 4+ G, (

Ko(PTwa)>? | K3(P logp)1/2> + Cgriéf
(}\mi"/o)z )\min/o- \/ﬁ’

where N\ = diagU\{j), ey 7\2)) is the diagonal matrix containing the singular values of
M;(9), and ©(x) is the cumulative distribution function of N(0,1).

If the condition number kg = O(1), (PTws)®*(Amn/0) ! — 0and r3_/p — O as
p — oo, Theorem 3.3.1 yields

sin ©(U;, Uj)[|2 — p; 02[|A; 12
I'sin ©(U ’)!F s AR 4 N10,1) as p s oo
V2p; 02| A [k

By the proof of Theorem 3.3.1, we can further establish the following joint distribu-

tion of all Ujs:

|| sin © (Uy,Uy) [IF—p10?[ AL 113
V2102 A |

|| sin © (U, Us) [IF—p20?|A; 112
V2p202 || AL %[

|| sin © (U3, U3) [[—pso?(| A I3
V2p302 (| A %[

N N(0,I3) as p — oo.

Remark 3.3.2. We briefly compare Theorem 3.3.1 with the existing results in the literature.
The asymptotic normality of || sin ©(UL;, Us)||% in Theorem 3.3.1 requires SNR condition
Awin > (T )4, which is slightly stronger than the optimal SNR condition A, > Cop>/*
for achieving the consistent estimation in (Zhang and Xia, 2018, Theorem 1) (if r > 1),
matches the condition in (Zheng and Tomioka, 2015, Theorem 1) (if v = 1), and weaker than
the condition in (Richard and Montanari, 2014, Theorem 4) (if v = 1). Second, note that
Theorem 3.3.1 implies E|| sin ©(U;, W;)||2 = (1 + 0(1))p;0*||A; |3 To the best of our
knowledge, this is the first result with a precise constant characterization of the estimation

error in tensor PCA.
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While Theorem 3.3.1 characterizes the asymptotic distribution of || sin @(U;, U;)| 2
for tensor PCA model, the result is not immediately applicable to uncertainty quan-
tification of U; since H/\]_lH%, Ay ?||lr, and o? are often unknown in practice. We

thus propose an estimate for A;, o:

A, is the diagonal matrix containing the top r; singular values of M; (A X541 fl]-T 11 %42 fle 2),

6= HA —A X LAllﬂlT X2 LAlzﬂzT X3 LA131A13,T“1:/\/]31]32]33-
(3.8)

We can prove a deviation bound for & and the normal approximation for || sin @ (Ul;, U;)|[?

with the proposed plug-in estimators.

Lemma 3.3.1. Under conditions of Theorem 3.3.1, there exist two constants C1,C, > 0
such that

P {|62/oz _ 11 < Calkoyrp 4+ p_3/4\/10g(19))} S1-Cp .

Theorem 3.3.2 (Inference for Tucker Low-rank Tensor PCA). Suppose the conditions
in Theorem 3.3.1 hold. Let A; € R™*™ and & be defined as (3.8). There exist absolute
constants c1, Co, C1, Ca, C3 > Osuch that if A,/ 0 > Co(p>/*+«2p'/2), then forj = 1,2,3,

sin ©(U;, W) ||2 — p; 62| A2
sup [P I (U J)A[F AE) 1A 1% <X> o)
xeR V2pi 62T

3 ~— 3/2
< Cle_clp _|_ C2 riéxz K8p3/2 + KO \/prmax(r%\ax + logp) + \/log(p) + KO Tmax + C3 Tméx .
(Amin/o-.)2 Amin/o— p1/4 \/ﬁ \/ﬁ

When the condition number kg = O(1), (PTyo)¥*(Amn/0) 1 = 0,and 3 /p — 0
as p — 0o, Theorem 3.3.2 implies

sin®(U;, UW;)||2 — p; 62 ||ATH2
| (U; ))A!FA_pz] 1A 1l 4. N(0,1) as P — oo. (3.9)
V2p; 62| Al
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Equation (3.9) is readily applicable to statistical inference for U;. After getting U;
by Algorithm 1, we propose a (1 — «)-level confidence region for U; as

CR(Ul;) == {v € Op,ry : | sin@(W;, VI[I2 < ps 82| AT |2 + 2an/2; 67 |AS 2||F}

(3.10)

where z, = @ 1(1 — «) is the (1 — «) quantile of the standard normal distribution.
The following corollary is an immediate result of Theorem 3.3.2, which confirms
that the confidence region CR,(Ul;) is indeed asymptotically accurate.

Corollary 3.3.1 (Confidence region for tensor PCA) Suppose the conditions of Theo-
rem 3.3.2 hold and the confidence region CR(U;) is defined in (3.10). If k§(r3/?p3/2 +
ToaP 10g P)(Anin/0) 2 = 0and r3_ /p — 0asp — oo, then

max

lim P(U; € CRy (1)) =1 -«

p—00

3.3.3 Inference for Tucker Low-rank Tensor Regression

This section is devoted to the asymptotic distribution and inference in low-rank
tensor regression. We first introduce the following assumption on the initialization
for Algorithm 2.

Assumption 3.3.2. Under tensor regression model (3.2) with X(i;, 12, 13) N (0,1),

Var(&;) = o?and ||&i ||y, < Co for some constant C > 0, there is an event &g with P(Ey) >
1 — C1e= P for some absolute constants c1, C; > 0 so that, under &, the initialization
T = (A, 4, U”)-§(0) satisfy |T—T|2 < Copra,02/normax; || sin (U, Uj)|| <
C, \/p/_nc/)\min for some absolute constant C, > 0.

The claimed bound of ||T— 7|2 in Assumption 3.3.2 is attainable, for instance, by
the gradient descent algorithm developed in Han et al. (2020) and the importance
sketching algorithm developed in Zhang et al. (2020a) under the SNR condition
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n(A,./0)*> > Cp*? and the sample size condition n > Cp®?r,,.. The theoretical

guarantees for this claim can be found in (Han et al., 2020, Theorem 4.2) and (Zhang
et al., 2020a, Theorem 4).

Based on Assumption 3.3.2, we establish the following asymptotic results for
tensor regression.
Theorem 3.3.3. Suppose Assumption 3.3.2 holds for tensor regression model (3.2), X (i1, 12, 13) Hhd
N(0,1), Var(&) = o2, and ||&|y, < Co for some constant C > 0, p; < p for
j = 1,2,3, and x(T) < ko. Let Ujs be the output of two-iteration alternating mini-
mization (Algorithm 2). There exist absolute constants cq, Co, C1, Co, C3, C4 > 0 such that
ifn(An./0)? = Co(p¥2V kgpr2, ) and n > Co(p¥? V k3pr ), then

sin (L, W) |12 — pinLo?|| AT

]P’(” (U, Us) || — P | j HFéx)—@(x)

sup
xER

2o 102 A;

< o[ Kot +K3<r§:axplog2n>1/z +p3/Z<K8riax N KgT3/2 ) N 4<priax+rmaxmogp>1/z
= n 0 n n \Aw/0  (An/0)? (A, 0)2
3/2
+C1€701p+C4 max’
NG

where A\; is the v; x 1; diagonal matrix containing the singular values of M;(7).

If the condition number ko = O(1), (+3/2p%/2+15_plog®n)/m — 0,1%2p*2/(n(A,./0)?) —
Oand r?_/p — 0 as p — oo, Theorem 3.3.3 implies

sin O(U;, W) |12 — pin o2 A2
I (U, Us) |5 — p; - | j iz i)N(O,l) as p — oo.
2pin—to? || AT |r

To make inference for tensor regression, we develop the following asymptotic
normal distribution for || sin @(U;, U;)||r with the plug-in estimates of A;.

Theorem 3.3.4 (Tensor regression). Suppose the conditions in Theorem 3.3.3 hold. Let
A; = diag(A,, ..., 5\T). ) be a diagonal matrix containing the singular values of M, (§), where
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G is the output of Algorithm 2. There exist absolute constants ¢4, C, Cl, C,, C3, C4 > Osuch
that if n(A,.,/0)? = Co(p¥?V k§pr2, ) and n > Cy(p¥/2 V k8pr3 ), then forj =1,2,3,

sin (W, W) |12 — pinto?|| A7
p | (U;, ;) ||z p)A . | j ||1:<X _ D)
2pn—to? || A |

max

sup
x€R
4.5/2..3/2 . 1 2 1/2 3/2 5..2 5.3/2 3 T 1 1/2
< C3 K rmax‘p + Kg( maxp Og TL) + p ( KOTmax + KOTmax > + K‘é (p max + maxp ng>
n n n )\min/o- (}\min/g) Tl'(}\min/o-)z

73/2
+ C1€ cC1p + C __max_

\/]3

We propose the following (1 — o)-level confidence region for Uj;:

—~

CRA@):{VE@mJ\BmQLgVW

_Pi° o?| Ay 1”1: L, 2p;0?(|A; 2|k
n n '

(3.11)

The following corollary establishes the coverage probability of the proposed confi-
dence region.

Corollary 3.3.2 (Confidence region for tensor regression) Suppose the conditions of
Theorem 3.3.4 hold and the conﬁdence region CR o (UL;) is defined by (3.11). If («3r3/2p3/2 +

max

ki3, plog’n)/m — 0, k3r¥/2p3/2/(n(A,/0)? )—> Oand 3, /p — 0asp — oo, then

max

lim IP(U GCR (U )) =1—a
p—o0
Remark 3.3.3 (Selection of o). When o is unknown, we can estimate it by a sample

splitting scheme as follows. First, we retain a part of sample {(Xy, Yx) ijf} and use the
other samples to compute the estimator T. Define

a2 [p%?]

G:Zblm—@mﬁmW1
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Under Assumption 3.3.2 and conditions of Theorem 3.3.3, we can show with probability at

3,162/02 — 1| = O(p~3/*\/logp + Tn.pn!). By plugging in & to (3.11),
we obtain a data-driven (1 — o) asymptotic confidence region for U;.

least 1 —p

3.3.4 Proof Sketch

In this section, we briefly explain the proof strategy for tensor PCA model, i.e.,
Theorem 3.3.1. The proof for tensor regression model is more complicated but

shares similar spirits. Without loss of generality, we assume o = 1. First,
2||sin®(Uy, W)l = [T U =W Uy [ = 2r—2(W U, Wy ) = —2(U Uy, Ul = uy).

It thus suffices to investigate the distribution of (U; U/, a,uf — U, Uy ). By Algo-
rithm 1, U, are the top-1; left singular vectors of M; (A X ﬂél)T X3 ﬂél)T). As a

result, (; U] is the spectral projector and can be decomposed as
M () (AT @ TP ) (A) = M (TN (T) + DY

The high-level ideas of the proof include the following steps.
Step 1: We apply the spectral representation formula (Xia (2019b); also see the

statement in Lemma 5.2.2 from the supplementary materials) and expand

0,0 = WU +81(D1Y) + S2(DyY) + S5(D1) + ) su(DyY),

k>4

where Sy (-) denotes the kth order perturbation term:

Sk(Dil)) — Z (_1)1+T(S) . B;SIDil)B;SZDgl)B B SkD B 5k+1’

S+ Fskp1=k

where B * = WA 2U] for each positive integer k, BY := I,, — UU, s, , sy

are non-negative integers, and t(s) = ZkH I(s; > 0).

Step 2: Since (W U], S1(D{")) = 0and [|Si(D{V)|| < (Cix3y/P/An)* with high
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probability, we can write

IR & TmaxKB 2
(Wl —uwuy, wuy ) = <52(D§1))Iulu1>+<53(D§1)),u1uj>+o( )\4019 )

min

In other words, the higher order terms (k > 4) can be bounded with high probability,
which becomes small order terms.

Step 3: We show, with high probability, the third order term can be bounded by

3 1 3..2.3/2
[(S3(D{), WUy )| = O(KWW s arty

min min

and becomes small order term. Now, it suffices to only investigate the second order

term carefully.

Step 4: We decompose the second order term <SZ(D§1) ), U;U]") into a leading
term and remainder terms. Similarly to Step 2 and Step 3, we show that the remainder
terms are, with high probability, bounded by O(k3p /... log pA.> + kip?r3/2A_4).

max * "min

Step 5: We prove that the leading term of <52(D§1) ), U.1U1T> can be written as
a sum of independent random variables, which yields a normal approximation
by Berry-Essen Theorem. Finally, combining all these steps, we get the normal

approximation for ||U; U] — U U] |3,

Among these steps, Steps 4 and 5 are the most technically involved. Throughout
the proof, we apply the spectral representation formula at multiple stages to prove
sharp upper bounds for higher-order terms, and establish central limit theorem for
the second-order term.

The following lemmas are used in our proof and could be of independent
interest. First, Lemma 3.3.2 is used to establish the concentration inequalities for

the sum of random variables that have heavier tails than Gaussian.

Lemma 3.3.2 (Orlicz 1 4-norm for product of random variables). Suppose X, ..., Xy
are n random variables (not necessarily independent) satisfying || Xi|ly,, < Ki. Define
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Next, Lemma 3.3.3 provides a tight probabilistic upper bound for sum of third
moments of Gaussian random matrices.
Lemma 3.3.3. Suppose Z, ...,Z,, € RP*" are independent random matrices satisfying
Z:(j, k) BSaN (0,1). Then there exist two universal constants C, C; > 0 such that for
fixed My, ..., M, € RP*T,

n 1/2
P > Cpr (Z ||Mi||12?> log(p) | <p .
i=1

> ZilIF(Z:, M)
i=1

3.4 PCA for Orthogonally Decomposable Tensors

In this section, we specifically focus on the tensor PCA model (3.1) with orthogonally

decomposable signal tensor T:

T=) A-w®vi@w, (3.12)

i=1

where U = (uy, -+ ,uy) € Op,r, V=(v1,-, V) € Op,r,and W = (wy, -+, ;) €
Oy, all have orthonormal columns; the singular values satisfy A, = min{A, ..., A} >
0. Here, forany u € RP,v € RP2,w € RP, u®v®@wisap; X pp X p3 tensor whose
(1,j, k)th entry is u(i)v(j)w(k).

Our goal is to make inference on the principal components based on a noisy
observation A = T + Z. Different from the inference for Tucker low-rank tensor
discussed in Section 3.3, where an accurate estimation is hopeful only for the
joint column space of U; due to the non-identifiability of Tucker decomposition,
we can make inference for each individual vector {u;, v;, w;} if T is orthogonally

decomposable as (3.12). Given some estimates {ﬁ]go),@j(o),\?v]-(o) j—1, We propose to
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pass them to a post-processing step by two-iteration procedure in Algorithm 3 to
obtain the test statistics {{1;, ¥;, W; })T:l.

Algorithm 3 Power Iterations for Orthogonally decomposable T

Input: A, initialization {a].(o),o@),w}o) Ry

j
1: fort=0,1do
: forj=1,2,--- ,vdo

3: Compute ﬂJ.(HO'S) = A x; \A,]_(t)T X3 Wj(t)T; Update ﬁ)gtﬂ) _
~ (t+0.5) | (t+0.5) || —1,
W [yt 12

4: Compute 0}”05) = A x4 alﬂt)T X3 W]_(t)T, Update 0]_(t+1) _
A (t4+0.5) | (t+0.5) || —1,
V; 195 12

5: Compute W§t+0'5) = A X1 ﬂj(t)—r X {}](t)—r, Update ngtle) _
Wj(t_’_O'S)HW)gt_FO'S)H;l;

6: end for

7. end for

(2)

a a2 s a(2) a A (2) .
Output: 0 =105, 95 = 9; andwj—wj forallj=1,---,m.

Since our primary interest is about the statistical inference for {1, v;, w;}, we
assume that the initializations of Algorithm 3 satisfies the following Assumption
3.4.1. Such an assumption is achievable by the power iteration method with k-means
initialization introduced in Anandkumar et al. (2014a) along with the theoretical

guarantees developed in Liu et al. (2017) when A/o > Cp®/4.

Assumption 3.4.1. Under the tensor PCA model (3.1) with T being orthogonally de-
composable as (3.12), there is an event &y with P(Ey) > 1 — C1e™ 1P for some absolute
constants ¢1, C;y > 0 such that, under &, the initializations {ﬁj(o),f)j(o],wj(o)}j satisfy
max {Hﬁf()j) — 2, ||\7;0()).) —vjll2, ||W£TO()).) —wjl2} < Ca0\/p/A; for some permutation

m:[r] — [rv],all 1 <j < r, and some absolute constant C, > 0.

We establish the asymptotic normality for the outcome of Algorithm 3 as follows.

Theorem 3.4.1 (PCA for orthogonally decomposable tensors). Suppose Assump-
tion 3.4.1 holds for tensor PCA model (3.1) with an orthogonally decomposable T as (3.12),
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(i1, i, is) ii.d. N(0,0%), p; < pforj=1,2,3,and k(T) < k. Let {ty, 95, Wy, be the
output of Algorithm 3. There exist absolute constants c1, Co, C1, Ca, C3 > 0 such that if
Amin/ 0 = Co(p/* + kZp'/?), then

1 ,’u_z_ 1— ,0.2}\'72
Sup ]P)(< 7'[()) J> ( _?) ) ) < X) _ CD(X)
x€R N/ij(ﬂkj
62 (117)3/2 2 1/2 3/2
e k3o~ (pT) k5o (plogp) T
< Cie P 4+ G, < 7\%“" + A + CBW (3.13)

forallj =1,---,r. Here, mt(-) is the permutation introduced in Assumption 3.4.1. More-
over, let \; = ||A %, 9] x3 Wy |l. Then, (3.13) also holds if A; is replaced by Aj and

kio(plogp)/?A, L is replaced by k3o\/pr(r? 4+ log p)AL. Similar results also hold for
(O3, vi)? and (Wry), wi)*.

By Theorem 3.4.1, if A,,/0 >> k3 (pr)¥* + K3(plogp)'/? and r < p'/3, then for
eachj=1,---,r,

(Qrh), 1u5)? — (1 —pjo?A; %)
V/2p; 0272

Similarly to Section 3.3.2, we plug in data-driven estimates of A; and 02 and construct

i>N(0,1) as p — oo.

a (1 — «) confidence region for u; as

CR«(Tr()) == {v € RV : ||v])2 = 1and ({ty5),v)* > (1—p; sz\;(zj))—z(x ijﬁrzf\;?j)}.
(3.14)
The confidence region for vj, w; can be constructed similarly.

3.5 Entry-wise Inference for Rank-1 Tensors

In this section, we consider the statistical inference for tensor PCA model with a
rank-1 signal tensor:
A=T+2Z, T=A-uvew. (3.15)
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Here, u € SPr1,v € SP21,w € SPs1, the singular value A > 0, and Z R
N(0, 0?). We specifically aim to study the inference for any linear form of u, v, w,
ie., (qi,u),(qz,v), and (qs, W), with arbitrary deterministic unit vectors {qi, q2, q3}.
We also aim to study the inference for each entry Tijx, 1 € [p1],j € [p2], k € [ps]. To
this end, we first apply the rank-1 power iteration in Algorithm 4 (Zhang and Golub,
2001; Richard and Montanari, 2014). Algorithm 4 can be roughly seen as a rank-1
special case of Algorithm 3 for the Tucker low-rank tensor PCA and Algorithm 9
for the orthogonally decomposable tensor PCA.

Algorithm 4 Power iterations for rank-1 tensor T
Input: A
1: Initialize 0¥ = SVD;(M;(A)), 99 = SVD;(My(A)), w® = SVD;(M;3(A)),
t=1,

2: whilet < t,,, do

3: Computeﬁ (t+05) — g ><2\A) ) ><3W Updateu (t+1) — ( (t+0.5) HU (t+0.5) HZ ;

4 Cornputev (t+0.5) =A ><1 >< W T Updatev (t+1) _v(t+05 HV t+05)H2 1’

5 Compute W03 = A x; 4lt T xp VU7, Update w1 =
o (£+05) HW (t40.5) ”21;

6: t=t+1;

7: end while

Output: {1 = (1(tm=) § = H(tma) ) = W(tma) } and T

Next, we establish the asymptotic normality for the output of Algorithm 4,
1,9, W, under the essential SNR condition that ensures tensor PCA is solvable in
polynomial time. Without loss of generality, we assume that the signs of 1, v, W
satisfy ({t,u) > 0, (¥,v) > 0 and (W,w) > 0 (otherwise one can flip the sign of
1, ¥, W without changing the problem essentially). With a slight abuse of notation,
let uy, vj, and wy be the ith entry of u, the jth entry of v, and the kth entry of w,

respectively.

Theorem 3.5.1. Consider the tensor PCA model (3.1) with Gaussian noise Z (11, i, 3) Hhd

N(0, 0?) and rank(T) = 1, p; < p forj = 1,2,3. Let A 0,0, W, T be the outputs of
Algorithm 4 with iteration number t,, > Cqlog(p) for constant C; > 0. Suppose
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Ao > p**. For any deterministic array {q\*), ¢{*, ¢}, satisfying q\*) e s¥1,
denote

T(p) (p2) _(p3)
qlllqzz,%a

pl)/u) (p2) P2) v)

(p1) p1(a) - pa(as™?, (P3) p3(ay w
(0", 0 —w) + Splgp (47,0 —v) + Sl (37 W —w) + S
pi(a’ w2 n (a2 [pa(ay? vy 4= (a7 )2 [ pa(as w)? 4= (a57 )2
2(A/0)* (A/0)? 2(A/o)* (A/0)? 2(A/0)4 (A/0)?

Then

Ty g2 oo 4 N(O,;) as p— oo (3.16)

Specifically, if [uil, [v;], wy| < min{A/(op), 1} for some i € [p1],j € [p2], k € [ps], then

.
(A(ﬁi—ui), A9y —vy), %(Vvk—wk)> LNO L) as p—ooo.  (317)

o

If, furthermore, o/ < [uil, [v;|, [wy| < min{A/(op),1/+/log(p)}, then

A

Jijk — Tijk

5 N(O,1) as p— oo. (3.18)
0\ /1392 + PR + R 02

Theorem 3.5.1 establishes the asymptotic distribution for any linear functional

q; 1, 7 9, q; W. Theorem 3.5.1 also implies that [Tij,—2 /20\/ WHF + VW + Wi, Tt

Zo /20\/ WHF + 950y + Wid] is an asymptotic (1 — o) confidence interval for Tijy

under some boundedness conditions of [uil, [v;|, lwy|. Here, the upper bound
[wil, [v;l, lwk| < min{A/(op),1/ \/W } is significantly weaker than the incoher-
ence condition commonly used in the matrix/tensor estimation/inference literature.
On the other hand, the lower bound condition, [uil, [v;], [lwx| > o/A, is essential
to ensure the asymptotic normality of T. To see this, consider a special case that
u; =v; = wy =0, then (3.17) implies

N2 (‘T‘L)k d

53 G1G2G3 asp — oo, (Gl, Gz, Gg)—r ~ N(O, 13).
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In other words, Jj;x satisfies a third moment Gaussian, not a Gaussian distribution.

To cover the broader scenarios that the lower bound conditions are absent, we
consider the following lower-thresholding procedure. Let s(t) = max{t, log(p) oA 2

for t > 0 and define the confidence interval for Tj;y as

Cla(Fisi) 1=| Tisie — 2020 /(0)s(53) + s(9)s(#7) + (7 )s(42),

Tie+ 2020 /s(02)5(82) + s(92)s(W2) + s(RR)s(6d)].  (3.19)

We can prove a“(ﬁ'ijk) is a valid (1 — «)-level asymptotic confidence interval.

Theorem 3.5.2. Suppose the conditions in Theorem 3.5.1 hold. If A/o > p>* and
[wil, vsl, i < min{A/(op), 1/4/log(p)} for i € [p1l,j € [pal, k € [psl, then

lim inf P (Tiji € Cla(Fige)) > 1« (3.20)

p—ro0

Remark 3.5.1 (Proof sketch of Theorem 3.5.1). The proof scheme for Theorem 3.5.1 is
essentially different from many recent literature on the entrywise inference (Chen et al.,
2019b; Xia and Yuan, 2020; Cai et al., 2020) and we provide a proof sketch here. Without
loss generality, we assume o = 1 and (u, 1), (v,9), (w,W) > 0. First, we can decompose

(0, q1) into two terms:
(qr, ) = (M,uu’qi) + (@, (I—uu')qr) = (g wWit'u+ (Ufg) TU G (3.21)

Similar decompositions hold for (9, q») and (W, qs). For any Oy € Op,_1, we construct
three rotation matrices as

O =uwu'+U;0,U] €0, Oy=wW'+V,0,V] €0,,, O3 =ww +W,0;W] € O,,,

where U, € Op,p,—1, V1L € Op,p,—1, W1 € Oy, 1,1 are the orthogonal complement
of u, v, w, respectively. A key observation is that A = A x; O] x, O; x5 0] and A

tHere, log(p) can be replaced by any value that grows to infinity as p grows.
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share the same distribution. Suppose {i,V, W are the outputs of Algorithm 4. Then we

have it = O] 1, v = O, 9,W = OJ W and can further prove that gzven (u, ), (v,9)

;
A U.l v VL w Wl 10 U.L

and (w, W — . 4 and o) O; | have
(w, W), ||qu||z'||vIv|z'|wIw||z> ajal, — 1 ||VT 3

@)
VHz 2z HWTWH

the same distribution. By the uniqueness of the Haar measure (Neumann, 1936; Weil, 1940)
and Theorem 3.3.1, we can further prove for any fixed vectors f; € SP12,f, € SP272,f3 €
SPs—2 we have

<)\ﬁTULf1, ANV £, MWW, s,

—(1=piA?/2) ¥'v—(1=pA2/2) Ww—(1—-psA~ 2/2))

v/ VP22t V/P3/2\ 2

This inequality and (3.21) result in (3.16)(3.17)(3.18).

— N(0, Is).

Remark 3.5.2. The entrywise inference for Tucker low-rank or orthogonal decomposable
tensor PCA can be significantly more challenging due to the dependence among different
factors. We leave it as future research.

3.6 Numerical Simulations

We now conduct numerical studies to support our theoretical findings in previous
sections. Each experiment is repeated for 2000 times, from which we obtain 2000
realizations of the respective statistics. Then we draw histograms or boxplots, and
compare with the corresponding baselines. In each histogram, the red line is the
density of the standard normal distribution.

We begin with the inference for principal components of Tucker low-rank tensors.
Specifically, we randomly draw U; € RPi*" with i.i.d. standard normal entries
and normalize to U; = QR(U;). We then draw core tensor § € R™"*" with i.i.d.
standard normal entries and rescale to G = G - pY/ A (9)). Consequently, U; is
uniform randomly selected from Op, r; and Ain(G) =A=pY. Forpy =pr=p3 =
200, r = 3, and o = 1, each value of y € {0.80,0.85,0.90, 0.95}, we observe A under
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tensor PCA model (3.1) and apply Algorithm 1 to obtain a realization of

_ |I'sin O(Uy, Uy)|2 —plIATY2
V2P| A e

We repeat this procedure for 2000 times, from which we obtain 2000 realizations of

T

the respective statistics and plot the density histograms in Figure 3.1. We can see T
achieves good normal approximation in these settings.

0.25 |

0.15
0.1 b 0.1r
0.05

o o)
-4 -2 o 2 4 -4 -2 o 2 4

f [l sin © (U, Uy) [IZ—plIAT 12
V2PIIA e
rank tensor PCA model (3.1). Here, py =p, =p3 =p=200,vr=3,0=1.

Figure 3.1: Normal approximation o for order-3 Tucker low-

We then consider the asymptotic normality in orthogonally decomposable ten-
sors under the tensor PCA model. Similarly, we fix p = 200, r = 3, and construct the
orthogonally decomposable tensoras T =Y ! ;(r+1—1)A- (u; ® vi ® wy), where
(ui, ..., uel, vi, ..., vl [wy, ..., w,] are drawn uniform randomly from O, simi-
larly to the previous setting and A = p¥ with y = 0.80,0.85,0.90, 0.95. For each v,

we obtain 2000 replicates of T = <ﬁ3,u3\)/22:p(>\17—2p7\*2) , draw the density histogram, and
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plot the results in Figure 3.2. We can see the normal approximation of T becomes
more accurate as the signal strength A grows.

0.25 | 0.25

0.15 |
0.1
0.05 |

0.15 |
0.1
0.05

o) o)
-4 -2 o) 2 4 -4 -2 o) 2 a

Figure 3.2: Normal approximation of <ﬁ3’“3\>/%g\1f2p7‘72) for tensor PCA model (3.1)

when T is a third-order orthogonally decomposable tensor and o = 1. Here,
P1=pP2=pP3=p =200,7T=3,A,., =A.

Though the focus of this chapter is on third-order tensors, we will explain later
in Section 3.7 that the results can be generalized to higher-order ones. Next, we
conduct simulation study on tensor PCA model for fourth-order orthogonally
decomposable tensors when p = 100 and r = 1. With a few modifications on the
proof, we can show ({fi1, u1)? — (1 — pA~2))(v/2pA~2)~! is asymptotically normal
under the required SNR assumption for efficient computation: SNR > Cp. The
simulation results in Figure 3.3 show that equipped with a warm initialization, the
two-iteration alternating minimization yields an estimator achieving good normal
approximation even if SNR ~ p®?, which is strictly weaker than the required SNR

assumption for efficient computation. See more discussions in Section 3.7.
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-2 (0] 2 4

Figure 3.3: Normal approximation of <ﬁ1’“1\>/22lp()\1_72p>‘72) for tensor PCA model (3.1)
when T = A - (13 ® vi ® Wy ® @) is a fourth-order tensor and 0 = 1. Here,

Pi=pP2=pP3=ps=p=100,r=1and A, = A.

Then, we consider the entrywise inference under the rank-1 tensor PCA model.
We construct T =A-u®@v@w € RP*P*P whereu=v=w=(1/p,...,1//p)"
and A = pY with y € {0.80, 0.85,0.90, 0.95}. For each value of vy, we draw a random
observation A under the tensor PCA model (3.1) and apply Algorithm 4 with
t,. = 10. We present the histogram in Figure 3.4 based on 2000 replicate values

Tia T ~. The simulation results validate the asymptotic normality of

Of ~AD A “2 A AD A
\/u1v1+vlw1+wlul

Fi—Ti; . - .
LXK when u, v, w have balanced entry values, which are in line with

W22 02w w2
\/ 1.v) ik ki

the theory in Theorem 3.5.1.

Finally, we consider the accuracy of the asymptotic entrywise confidence interval
proposed in (3.19) under the tensor PCA model. Let T =A - u ® v ® w be a rank-1
tensor, where u, v, w are uniform randomly drawn from SP~! for p € {100,200} and
A =7pY fory € {0.80,0.85,0.90,0.95}. For each combination of (p,y), we report the
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Figure 3.4: Normal approximation of et for tensor PCA model (3.1)

when T is a rank-1 tensor and o = 1. The parameters are p; = p, = p3 = p = 200
with signal strength A.

empirical coverage rates for the 0.95-confidence interval a{ijk by boxplots in Figure
3.5. The results show the empirical coverage rates are close to 0.95 in all settings
and larger values of (v, p) lead to more accurate coverage.

3.7 Discussion

In this chapter, we investigate the inference for low-rank tensors under two basic
and fundamentally important tensor models: tensor PCA and regression. Based on
an initial estimator achieving a reasonable estimation error, we propose to update
by a two-iteration alternating minimization algorithm then establish the asymptotic
distribution for the singular subspace outcomes. Distributions of general linear
forms of the singular vectors are also established for rank-one tensor PCA model,
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Figure 3.5: Boxplots for empirical coverage of entrywise confidence interval (ﬁaﬁk

which further enables the entrywise inference on the parameter tensor.

Although our main focus is on third-order tensors, the results in this chapter
can be extended to h1gher—order tensors. For example, suppose m > 4 and T =
SN uj '@ ® uj Vis orthogonally decomposable. Given A from the tensor
PCA model (3.1) and Assumption 3.4.1 holds we can refine by two power iterations
1@ A~ (m)

7,0 Similarly to Theorem

similarly to Algorithm 3, then obtain {u , ;

3.4.1, we can prove

(", )2 — (1 —pA?) 4
\/Zpk?\f

—+N(0,1), k=1,...,m,

ifA,../o >> p3/ * and other regularity conditions holds. If m > 4, the SNR condition
Amn > p¥/* is weaker than the condition that ensure a computationally feasible
estimator exists, i.e., A,,,/0 > p™/* (Zhang and Xia, 2018). In other words, if
an sufficiently good initial estimate is already available, a weaker SNR condition

Amin > 3/ is sufficient to guarantee the asymptotic normality of our final estimates.



This phenomenon is further justified by the simulation results in Figure 3.3.
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Chapter 4

High-order Tensor SVD *

41 Introduction

Tensors, or high-order arrays, have attracted increasing attention in modern ma-
chine learning, computational mathematics, statistics, and data science. Some
specific examples include recommender systems (Nasiri et al., 2014; Bi et al., 2018),
neuroimaging analysis (Zhou et al., 2013; Wozniak et al., 2007), latent variable
learning (Anandkumar et al., 2014a), multidimensional convolution (Oseledets
and Tyrtyshnikov, 2009b), signal processing (Cichocki et al., 2015), neural network
(Zhong et al., 2017; Mondelli and Montanari, 2019), computational imaging (Li
and Li, 2010; Zhang et al., 2020b), contingency table (Dunson and Xing, 2009; Bhat-
tacharya and Dunson, 2012). In addition to low-order tensors (e.g., tensor with a
relatively small value of order number), the high-order tensors also commonly arise
in applications in statistics and machine learning. For example, in convolutional
neural networks, parameters in fully connected layers can be represented as high-
order tensors (Novikov et al., 2015; Calvi et al., 2019). In an order-d Markov process,
where the future states depend on jointly the current and (d — 1) previous states,
the transition probabilities form an order-(d + 1) tensor. For an order-d Markov

decision process, the transition probabilities can be represented by an order-(2d +1)

*This work is based on Zhou et al. (2020) (https://arxiv.org/abs/2010.02482).


https://arxiv.org/abs/2010.02482
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tensor, with additional d directions representing past d actions. High-order tensors
are also used to represent the joint probability in Markov random fields (Novikov
et al., 2014).

Compared to the low-order tensors, high-order tensors encompass much more
parameters and sophisticated structure, while leading to inhibitive cost in storage,
processing, and analysis: an order-d dimension-p tensor contains p¢ parameters. To
address this issue, some low-dimensional parametrization is usually considered to
capture the most informative subspaces in the tensor. In particular, the tensor-train
(TT) decomposition (Oseledets, 2009; Oseledets and Tyrtyshnikov, 2009a; Oseledets,
2011; Fannes et al., 1992; Orts, 2019) introduced a classic low-dimensional parame-
terization to model the subspaces and latent cores in high-order tensor structures.
TT decomposition has been used in a wide range of applications in physics and
quantum computation (Bravyi et al., 2019; Fannes et al., 1992; Orts, 2019; Scholl-
wock, 2011; Rakhuba and Oseledets, 2016), signal processing (Cichocki et al., 2015),
and supervised learning (Stoudenmire and Schwab, 2016) among many others.
For example, the TT decomposition framework is utilized in quantum information
science for modeling complex quantum states and handling the quantum mean
value problem (Bravyi et al., 2019; Fannes et al., 1992; Orts, 2019; Rakhuba and
Oseledets, 2016). The TT-decomposition of a tensor X € RP***P4a js defined as
below:

T
xil,---,id :Gl,[il,:JSZ,[:,iz,:] T gdflr[bidfl/:]Gd,[id,:]

no e (4.1)
= Z T Z Gl,ﬁb“ﬂgl[oq,iz,“z] T gdflr[o‘dfﬁidfl/(xdfl]Gd/[idrocdfl]'
061:1 de,1:1

Here, the smallest values of 1y, ...,14_1 that enable the decomposition (4.1) are
called the TT-rank of X. Oseledets (2011) shows that the TT-rank r = rank([X]y),
i.e., the rank of the kth sequential unfolding of X (see formal definition of sequential
unfolding in Section 4.2.1). G; € RP*™, G, € R 1XPXTk G4 € RP4*Ta1 gre the
TT-cores that multiply sequentially like a “train": Xj, ... ;, equals the product of i;th
vector in Gi, i,th matrix in G,, ..., i3_1th matrix in G4_;, and i4th vector in G4. For
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convenience of presentation, we simplify (4.1) to
:x: = IIGll 92/ vy 9(171/ Gd]]

and denote 1y = 14 = 1 throughout the chapter. In particular, the TT rank and
TT decomposition reduce to the regular matrix rank and decomposition when
d = 2. If all dimensions p and ranks r are the same, the TT-parametrization involves
O(2pr + (d — 2)pr?) values, which can be significantly smaller than the ones for
Tucker-decomposition O(r® + dpr) and the regular parameterization O(p?).

In most of the existing literature, the TT-decomposition was considered un-
der the deterministic settings, and the central goal was often to approximate the
nonrandom high-order tensors by low-dimensional structures (Oseledets, 2011;
Oseledets and Tyrtyshnikov, 2010; Bigoni et al., 2016). However, in modern ap-
plications in data science such as Markov processes, Markov decision processes,
and Markov random fields, the (transition) probability tensor computed based on
data is often a random realization of the underlying true tensor. In these cases,
the estimation of the underlying low-dimensional parameters hidden in the noisy
observations can be more important: an accurate estimation of the transition tensor
renders reliable prediction for future states in high-order Markov chains and better
decision-making in high-order Markov decision processes; an accurate estimation
of probability tensor sheds light to the underlying relationship among different vari-
ables in a random system (Novikov et al., 2014). To achieve such a goal, it is crucial
to develop dimension reduction methods that can incorporate TT-decomposition
into probabilistic models. Since singular value decomposition (SVD) is one of the
most important dimension reduction methods involving probabilistic models for
matrices, and there is no counterpart of it for high-order tensors, we aim to fill this
void by developing a statistical framework and a computationally feasible method
for high-order tensor SVD in this chapter.
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4.1.1 Problem Formulation

This chapter focuses on the following high-order tensor SVD model. Suppose we
observe an order-d tensor Y that contains a hidden tensor-train (TT) low-rank
structure:

Y=X+2 Y X e R¥Px (4.2)

Here, X is TT-decomposable as (4.1) and Z is a noise tensor. Our goal is to estimate
X and the TT cores of X based on Y. To this end, a straightforward idea is to

minimize the approximation error as follows,

X = arg min 1Y —Al3. 4.3)
A is decomposable as (4.1)

However, the approximation error minimization (4.3) is highly non-convex and
finding the global optimal solution, even if the rank 11 = --- = 141 = 1, is
NP-hard in general (Hillar and Lim, 2013). Instead, a variety of computationally
feasible methods have been proposed to approximate the best tensor-train low-rank
decomposition in the literature. TT-SVD, a sequential singular value thresholding
scheme, was introduced by Oseledets (2011) to be discussed in detail later. Oseledets
(2011) also proposed TT-rounding via sequential QR decompositions, which reduces
the TT-rank while ensures approximation accuracy. Dolgov and Savostyanov (2014)
introduced the alternating minimal energy algorithm to reconstruct a TT-low-rank
tensor approximately based on only a small proportion of revealed entries of the
target tensor. (Song et al., 2017, Section L.2) proposed a sketching-based algorithm
for fast low TT rank approximation of arbitrary tensors. Bigoni et al. (2016) studied
the tensor-train decomposition for functional tensors. Li et al. (2019a) proposed
the FastTT algorithm for fast sparse tensor decomposition based on parallel vector
rounding and TT-rounding. Lubich et al. (2013) studied dynamical approximation
with TT format for time-dependent tensors. Grasedyck et al. (2015) proposed the
alternating least squares for tensor completion in the TT format. Bengua et al.
(2017) studied the completion of low TT rank tensor and the applications to color
image and video recovery. Steinlechner (2016) studied the Riemannian optimization
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methods for TT decomposition and completion. Also see Novikov et al. (2020) for a
TT decomposition library in TensorFlow. To our best knowledge, the estimation
performance of most procedures here remains unclear. Departing from these
existing work, in this chapter, we make a first attempt to minimize the estimation
error of X in addition to achieving the minimal approximation error under possibly

random settings.

4.1.2 Owur Contributions

Under Model (4.2), we make the following contributions to high-order tensor SVD
in this chapter.

First, we propose a new algorithm, Tensor-Train Orthogonal Iteration (TTOI), that
provides a computationally efficient estimation of the low-rank TT structure from
the noisy observation. The proposed algorithm includes two major steps. First, we
obtain initial estimates G 50), §§0), ey §Eioil, Ga by performing forward sequential
SVD based on matricizations and projections. This step was known as TT-SVD in
the literature (Oseledets, 2011). Next, we utilize the initialization and perform the
newly developed backward updates and forward updates alternatively and iteratively.
The TTOI procedure will be discussed in detail in Section 4.2.

To see why the TTOI iterations yield better estimation than the classic TT-SVD
method, recall that TT-SVD first performs singular value thresholding on [Y]3, i.e.,
the unfolding of Y, without any additional updates (see detailed procedure of
TT-SVD and formal definition of [Y]; in Section 4.2.1), which can be inaccurate since
Y, a pl-by-]_[fi:2 Pk matrix, has a great number of columns. In contrast, TTOI
iteration utilizes the intermediate outcome of the previous iteration to substantially
reduce the dimension of [Y]; while performing singular value thresholding. In
Figure 4.1, we provide a simple simulation example to show that even one TTOI
iteration can significantly improve the estimation of the left singular subspace of
G (left panel) and the overall tensor X (right panel). Therefore, a one-step TTOI,

i.e., the initialization with one TTOI iteration, can be used in practice when the
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computational cost is a concern.
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Figure 4.1: Average estimation error (dots) and standard deviation (bars) of
|| sin®(U;, U;)|| and || X — X||r by TT-SVD and one-step TTOL Both algorithms are

performed based on the observation Y generated from (4.2), where % N (0,02),

X is a randomly generated order-5 tensor based on (4.1) with p = 20,v = 1,
iid

Gl/ 92/- . ‘lgd—llGd ~ N(O,l)

We develop theoretical guarantees for TTOL. In particular, we introduce a series
of representation lemmas for tensor matricizations with TT format. Based on them,
we develop a deterministic upper bound of estimation error for both forward and
backward updates in TTOl iterations. Under the benchmark setting of spiked tensor
model, we develop matching upper/lower bounds and prove that the proposed
TTOI algorithm achieves the minimax optimal rate of estimation error. To the
best of our knowledge, this is the first statistical optimality result for high-order
tensors with TT format. We also prove for any high-order tensor, TTOI iteration

has monotone decreasing approximation error with respect to the iteration index.

Moreover, to break the curse of dimensionality in high-order Markov processes,
we study the state aggregatable high-order Markov processes and establish a key
connection to TT decomposable tensors. We propose a TTOI estimator for the
transition probability tensor in high-order state-aggregatable Markov processes
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and establish the theoretical guarantee. We conduct simulation experiments to
demonstrate the performance of TTOI and validate our theoretical findings. We
also apply our method to analyze a New York taxi dataset. By modeling taxi trips
as trajectories realized from a citywide Markov chain, we found that the Manhattan
traffic zone exhibits high-order Markovian dependence and the proposed TTOI
reveals latent traffic patterns and meaningful partition of Manhattan traffic zones.
Finally, we discuss several applications that our proposed algorithm is applicable
to, including transition probability tensor estimation in high-order Markov decision

processes and joint probability tensor estimation in Markov random fields.

4.1.3 Related Literature

In addition to the aforementioned literature on TT decomposition, our work is also
related to a substantial body of work on matrix/tensor decomposition and SVD,
spiked tensor model, etc. These literature are from a range of communities including
applied mathematics, information theory, machine learning, scientific computing,
signal processing, and statistics. Here we try to review existing literature in these
communities without claiming this literature survey is exhaustive.

First, the matrix singular value thresholding was commonly used and exten-
sively studied in various problems in data science, including matrix denoising
(Candes et al., 2013a; Donoho and Gavish, 2014; Cai and Zhang, 2018), matrix com-
pletion (Cai et al., 2010; Zhang et al., 2011; Klopp, 2015; Chatterjee, 2015), principal
component analysis (PCA) (Nadler, 2008), Markov chain state aggregation (Zhang
and Wang, 2020). Such the task was also widely considered for tensors of order-3
or higher. In particular, to perform SVD and decomposition for tensors with Tucker
low-rank structures, De Lathauwer et al. (2000a,b) introduced the higher-order SVD
(HOSVD) and higher-order orthogonal iteration (HOOI). Zhang and Xia (2018)
established the statistical and computational limits of tensor SVD, compared the
theoretical properties of HOSVD and HOOQI, and proved that HOOI achieves both
statistical and computational optimality. Vannieuwenhoven et al. (2012) introduced
the sequentially truncated higher-order singular value decomposition (ST-HOSVD).
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Zhang and Han (2019) introduced a thresholding & projection based algorithm for
sparse tensor SVD. A non-exhaustive list of methods for SVD and decomposition
for tensors with CP low-rank structures include alternating least squares (Kolda
and Bader, 2009; Sharan and Valiant, 2017), eigendecomposition-based approach
(Leurgans et al., 1993), enhanced line search (Rajih et al., 2008), power iteration with
SVD-based initialization (Anandkumar et al., 2014a), simultaneous diagonalization
and higher-order SVD (Colombo and Vlassis, 2016).

In addition, the spiked tensor model and tensor principal component analysis
(tensor PCA) are widely discussed in the literature. Richard and Montanari (2014);
Hopkins et al. (2015); Anandkumar et al. (2016); Perry et al. (2020); Luo and Zhang
(2020c); Arous et al. (2019) considered the statistical and computational limits
of rank-1 spiked tensor model. Lesieur et al. (2017) studied the statistical and
computational phase transitions and theoretical properties of the approximate
message passing algorithm (AMP) under a Bayesian spiked tensor model. Allen
(2012a,b) developed the regularization-based methods for tensor PCA. Lu et al.
(2016); Zhou and Feng (2017); Liu et al. (2018); Lu et al. (2019) studied the robust

tensor PCA to handle the possible outliers from the tensor observation.

Different from Tucker and CP decompositions, which have been a pinpoint in
the enormous existing literature on tensors, we focus on the TT-structure associated
with high-order tensors for the following reasons: (1) Tucker and CP decompo-
sitions do not involve the sequential structure of different modes, i.e., the Tucker
and CP decompositions still hold if the d modes are arbitrarily permuted. While
in applications such as high-order Markov process, high-order Markov decision
process, and fully connected layers of deep neural networks, the order of different
modes can be crucial; (2) the number of entries involved in the low-Tucker-rank
parameterization grows exponentially with respect to the order d (r?); (3) methods
that explore CP low-rank structure can be numerically unstable for high-order
tensors in computation as pointed out by Oseledets and Tyrtyshnikov (2010). In
comparison, the TT-structure incorporates the order of different modes sequentially

and involves much fewer parameters for high-order tensors, which renders it more
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suitable in many scenarios.

In Section 4.5, we will further discuss the application of TTOI on high-order
Markov processes and state aggregation. This problem is related to a body of
literature on dimension reduction and state aggregation for Markov processes that

we will discuss in Section 4.5.

4.1.4 Organization

The rest of the article is organized as follows. In Section 4.2, after a brief introduction
of the notation and preliminaries, we introduce the procedure of the tensor-train
orthogonal iteration. The theoretical results, including three representation lemmas,
a general estimation error bound, and the minimax optimal upper and lower bounds
under the spiked tensor model, are provided in Sections 4.3 and 4.4. The application
to high-order Markov chains is discussed in Section 4.5. The simulation and real
data analysis are provided in Sections 4.6.1 and 4.6.2, respectively. Discussions
and further applications to Markov random fields and high-order Markov decision
processes are briefly discussed in Section 4.7. All technical proofs are provided in
Section 5.3.

4.2 Procedure of Tensor-Train Orthogonal Iteration

4.2.1 Notation and Preliminaries

We first introduce the notation and preliminaries to be used throughout the chap-
ter. We use the lowercase letters, e.g., x,y,z, to denote scalars or vectors. We
use C,c, Cy,co,... to denote generic constants, whose actual values may change
from line to line. A random variable z is o-sub-Gaussian if Eet(z2—Ez) < e t?/2
forany t € R. Wesay a < bor a = O(b) if a < Cb for some uniform constant
C > 0. We write a = 6(b) ifa = O(b logcl(b)) for constant C’ > 0. The cap-
ital letters, e.g., X,Y, Z, are used to denote matrices. Specifically, O, = {U €
RP*T ;. U'U = I,} is the set of all p-by-r matrices with orthogonal columns.
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For U € Op,, let U, € O, ,_, be the orthonormal complement of U, and let
Pu = UUT denote the projection matrix onto the column space of U. For any
matrix A € RPP2, let A = Y P/P2s;u;v] be the singular value decomposi-
tion, where s;(A) > .-+ > s, Ap,(A) > 0 are the singular values of A in non-
increasing order. Define smin(A) = sp,Ap, (A), SVD&(A) =w...u] €0, and
SVD': (A) = vi...v,] € Op, be the smallest non-trivial singular value, leading r
left singular vectors, and leading r right singular vectors of A, respectively. We
also write SVD"(A) = SVDL (A) and SVD®(A) = SVD: (A) as the collec-

P1/AP2 P1/\p2
tion of all left and right singular vectors of A, respectively. Define the Frobe-

nius and spectral norms of A as ||Al[r = \/ AL = PIAP2 $2(A) and
Al = s1(A) = maxxerr: ||Ax|]2/||x|l2. For any two matrices U € R™*™ and
V e Rm*™ et

U -V ... Uy, -V
: c R(mlmz)x(nlnz)

UgV= :
VR VA VY

be their Kronecker product. To quantify the distance among subspaces, we define
the principle angles between U, Ue Oy, as an r-by-r diagonal matrix: ©(U, u) =
diag(arccos(si),...,arccos(s,)), where s; > - -- > s, > 0 are the singular values of
UTU. Define the sin® norm as

I sin@(U,ﬂ)H = || diag (sin(arccos(s1)),...,sin(arccos(s,))) || = /1 — s2.

The boldface calligraphic letters, e.g., X, Y, Z, are used to denote tensors. For an
order-d tensor X € R®“Piand 1 < k < d—1, we define [X],, € R(P1<XP)x(Pics1--Pa)
as the sequential unfolding of X with rows enumerating all indices in Modes 1, ...,k
and columns enumerating all indices in Modes (k + 1), - - - , d, respectively. That is,
forany1 <k <dand 1 < ik < px,

([XTx) (ik=D)p1--Pr—1+(ik—1—D)p1Pr—2++i, (la=DPrs1Pa—1+(ta1—D)Prs1-Pa—2t+-+Hikp1 — xil-nid'
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We also define the tensor Frobenius norm of X as | X[z = > 7' --- > P¢ X7 .
For any matrix A € RP1*P2 and any tensor B € RP***Pa et vec(A) and vec(B)
be the vectorization of A and B, respectively. Formally,

(vec(B)),

ig—1)p1-pa1+(ia1—1)pr-paat-+ir — = Ueias I<ikspe k=1...d

4.2.2 Procedure of Tensor-Train Orthogonal Iteration

We are now in position to introduce the procedure of Tensor-Train Orthogonal
Iteration (TTOI). The pseudocode of the overall procedure is given in Algorithm 1.
TTOI includes three main parts: we first run initialization, then perform backward
update and forward update alternatively and iteratively.

Algorithm 1 Tensor-Train Orthogonal Iteration (TTOI)

Input: H,{pk}ﬂzl,{rk}g;%, increment tolerance ¢ > 0, maximum number of

iterations tax

1: Obtain Initialization ﬁio), eee, ﬁgoll, DAC(O) by Algorithm 1(a)
2: fort=1,...,th. do
3: if t is odd then B B
4: Apply Algorithm 1(b) with input Ritfl), ceey Rfitjll) to obtain
v g
5: else
6: Apply Algorithm 1(c) with input \71“71), . ,\A/étfl) to obtain
RO, RW g
end if
If ||5C(t) 12 — HDAC(FU |2 < ¢ then break from the for loop
9: end for

Output: X = f)ACm

e Part1: Initialization. First, we obtain an initial estimate of TT-cores Gy, G, ...,

Ga-_1, Gg. This step is the tensor-train-singular value decomposition (TT-SVD)
originally introduced by Oseledets (2011).
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(i) Let REO) be the unfolding of Y along Mode 1. We compute the top-;
SVD of Rgo). Let ﬂgo) € Oy, +, be the first v left singular vectors of
Rio) and calculate ﬁio) = (ﬂio))TRio) € Rm*(P2-Pa) Then, ﬂio) is an
initial estimate of the subspace that G; lies in and ﬁgm can be seen as the

projection residual.

(ii) Next, we realign the entries of ﬁio) € Rrx(P2-Pa) to RéO)R(ﬁPZ)X(PsdeJ,
where the rows and columns of Réo) correspond to indices of Modes-1,
2 and Modes-3, ..., d, respectively. Then, we evaluate the top-r, SVD
of Réo). Let ﬂéo) be the first ; left singular vectors of Réo) and evaluate
ﬁéo) = (ﬂéo) )TRQO) € Rm2*P3-Pa_ Again, ﬂéo) is an estimate of the singular
subspace that 9, lies on and ﬁéo) is the projection residual for the next

calculation.

(iii) We apply Step (ii) on R}"’ to obtain U\” € O, ., and R{” € Rr*(Ps-Pa);
and ﬁffll €
Rre-1Pa_ Then we reshape matrix U\" € R(Pxme-1)xTc to tensor ﬁ,&o) €
RT1XPex for k =2,...,d — 1. Now, (ﬂio),ﬁéo), Uy, ﬁffg) yleld

the initial estimates of TT-cores of X and we expect that

...; apply Step (ii) on ﬁfiolz to obtain ﬁfioll €O

Td—2Pd-1,Td-1

(0 N (0) 470 (0] 5(0)
X ~ DC( )= [[ul /uz A 'ud—le—l]]'

The initialization step is summarized to Algorithm 1(a) and illustrated in
Figure 4.2. In summary, we perform SVD on some “residual" R sequentially
fork=1,...,d —1. As will be shown in Lemma 4.3.3, R]EO) satisfies

RO = (I, @ UVT) - (I, @ WO )Y,

where Y], € RPr-P)x(Pra-Pal ig the kth sequential unfolding of Y (see
definition in Section 4.2.1). This quantity plays a key role in the backward
update next.

¢ Part 2: Backward update. For iterations t =1, 3,5, ..., we perform backward
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Algorithm 1(a) Initialization (TT-SVD (Oseledets, 2011))

Input: Y, (i1, (pld_,
Calculate REO) =Y
for]i?) 1,...,d—1(<01)0
=SVD,, (R)
Ifk=1 then U}, =0 else U]

~

RO — {OTRO

prod ( IPk ® u

end for )
(0
[X(O)] = LlprodR

~.(0)
Reshape [X g 1 € RP1=Pa1)xPato X € RP1IXXPa

=~ =~ ~.(0)
Output: Rio), cery Rfioll, X

Y

prod

Ifk<d—1 then R 1 = reshape(R ](<O),rkpk+1,pk+2 .

)G(U)

“Pa)

Algorithm 1(b) TT-Backward Update

Input: Y, {rk}k 1,{pk}k R t ”,...,ﬁg:ll) for odd iteration number t

1: fork=1,. —1do
2: 1fk—(}then ( “© ©
t S(t—1) t Gt
3: Va1 =SVDy, (Rdfk )r Vorod = Va—i+1
4. else
(t) R St—1) /(1)
5: Vdkarl = SVDTd Kk (Rdfk (Vprod ® IPdka))’
IP d—k+1 )vt(itjk+l
6: end if
7: eAnd for R R R
8: Vl(tJ = [y]lvgjgd, XM, = Vl(t)VrE:gJ, reshape [X(V)
' & procr

A~ A~

Output: \A/(t),... Vé DC

(t) _ (t)
Vprod - (Vprod ®

]1 c Rprix(p2Pa) o
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unfold U, = SVDX(Y) E
R, VJ\IYI
R 1

u U, = SVDL(R,)

reshape M, ‘. -I.’F

mE
ar

>
C

7o

Figure 4.2: A Pictorial [llustration of Initialization (Algorithm 1(a), d = 3)

update, i.e., to sequentially obtain \A/C(lt), e, \A/Z(t) based on the intermediate
results from the (t —1)st iteration (Oth iteration is the initialization). The pseu-
docode of backward update is provided in Algorithm 1(b). The calculation in
Algorithm 1(c) is equivalent to

V) = svDR (ﬁff;”) :

T =SV (R T 0 ) (8 0 1)), k=d—1,...,2

k+

VY= yh(VV @1, 0, ) - (VY @1, )Y e R,
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Algorithm 1(c) TT-Forward Update

Input Y, {rk}k 1,{pk}k 1, V- t 1),...,\7((;71) for even iteration number t

1: Rl = [15]1
2. fork=1,...,d—1do
3 if k = 1 then "
L (Ot ~
4 =svD}, (V{V), un =4
5 else
\/(t—1 1) —1
6 . SVDR < (t)(vc(it : ® IPk+1~~~Pd71) o (V}(ciz ® I‘Pk+l)v](<il ))
7 u}():())d (ka ® uprod)u .
8: end if
9 R](:) _ u](:)TR](:)
10: Ifk<d—1 then R 1 = reshape (N£ )/rkpk+1/pk+2 . -pd>
11: end for "
12: (X4 UprOde ,, reshape X4 € RPr-Pa1)xPa o X € RP1¥ " *Pa

~.(t)

Output: ﬁl S .,ﬁffjl,:x

Here,
R = (@ T, @ TS (e © U Y

are the projection residual term in the intermediate outcome of the (t — 1)st
iteration. Then, we reshape V.''" € Rre-1x(Pri) o VIV € Rre-1%PexT The

backward updated estimate is

S s S S 5

= [[Vl(t)/ VZ AR /Vd—ll Vét)]]'

Remark 4.2.1 (Interpretation of backward update). The backward updates utilize
and extract the right singular vectors of the intermediate products of the (t — 1)st
iteration,

R = () (1 @ G e, @ T T,
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/\T _~ o~ R2 V 3
Us =R, Vs h
H 1 V, = SVDR(R)) RV,

Vorod g

; V, lreshape
= _ R(V;®1)
E (Vi1)Vs SVDH(R (V3 ®1,)) 1 -. .
|
. —~ o~ N 1
reS|duaIl V=YV prod x (D

vV, _ XD with | h _reshape,
/V\l’ /V\Z’ /V\3

Figure 4.3: A pictorial illustration of TT-Backward update (Algorithm 1(b), d = 3)

as opposed to the entire data [Y]y. Such a dimension reduction scheme is the key to
the backward update: it can simultaneously reduce the dimension of the matrix of
interest, [Yly, and the noise therein, while preserving the signal strength. Different
from the initialization in Step 1, the backward update utilizes the information from
both the forward and backward singular subspaces of the tensor-train structure of X.

See Section 4.3 for more illustration.

¢ Part 3: Forward Update. For iteration t = 2,4,6,..., we perform forward
update, i.e., to sequentially obtain ﬂit), ey ﬂg) based on the intermediate
results from the (t — 1)st iteration. Essentially, the forward update can be
seen as a reversion of the backward update by flipping all modes of tensor
Y. The pseudocode of this procedure is collected in Algorithm 1(c). Recall
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Y (\76(;71) ®lp,paa) (V Vg Ipz)V (t=1) is the intermediate product from
the (t — 1)st update. We sequentially compute

A~

= SVD" (h(Ve ™" @ Lpn.py ) (B @ 1))

~

uly =svpt (( b @ U (I, @ WYY

’ (Vc(lt_l) ® ka+1~~~Pd—1) o (Vl(cizl ® kau)vl(;_ll))
fork=2,...,d—1,and
Ug” = (U7 T Ty @ (U)o Ty ® (U5 ) laa] T € RO,

~ ~ (1)
Reshape U](:) € RPxme1)XTe to U, € R™1XPeXTk fork = 2,...,d — 1. Then,

compute
~ (1) (1) gt st

=16,",9, .94 1, Gl

We will explain the algebraic schemes in the TTOI procedure through several
representation lemmas in Section 4.3.1. We will also show in Theorem 4.2 that the
objective function ||Y — x" |2 is monotone decreasing with respect to the iteration
index t. In the large-scale scenarios that performing iterations is beyond the capacity
of computing, we can reduce the number of iterations, and even to tm.x = 1, i.e.,
the one-step iteration, which have often yielded sufficiently accurate estimation as
we will illustrate in both theory and simulation studies. Such the phenomenon has
been recently discovered for HOOI in the Tucker low-rank tensor decomposition
(Luo et al., 2020).

Remark 4.2.2 (Computational and storage costs of TTOI). We consider the computa-
tional and storage costs of TTOI on the p-dimensional, rank-r, order-d, and dense tensor.
Since computing the first v singular vectors of an m x n matrix via block power method
requires O(mnr) operations, initialization costs O(pdr) operations, each iteration of TTOI,



81

including forward and backward updates, costs O(p9r). Therefore, the total number of
operations of TTOI with T iterations is O(pr) + O(Tp9r), which is not significantly more
than the number of elements of the target tensor. Moreover, TTOI requires O(p?) storage
cost, which is not significantly more than the storage cost of the original tensor.

4.3 Theoretical Analysis

This section is devoted to the theoretical analysis of the proposed procedure. For
convenience, we introduce the following two abbreviations for matrix sequential
products: for M; € RPir-)xmi 1 < { < d—1and B; € RMPIXTi-1 2 < j < d, we
denote

Miroare = (Tppepy, @ M) -+ (I, ® My )My € RPUPET vl <ko<d—1,

Borog e = (Ba @ Tp,py ) (Biey1 ® I, ) By € RPK PO ya << d.

(D)

prod,x and Bl(a]rzo)d,k can be defined sequentially as

Equivalently, M

M H

prod,1 = Ml/ M(L) = (ka+1 ® M(L) )MkJrl/ 1 < k < d— 2/

prod, k-+1 prod, k

(R)  _ (R) _ p(R)
Bprod,d - Bd’ Bprod,k - (Bprod,k+1 ® IPk)Bk’ 2 g k g d—1

4.3.1 Representation Lemmas for high-order tensors

Since the computation of high-order tensors with tensor-train structures involves
extensive tensor algebra, we introduce the following three lemmas on the matrix
representation of high-order tensors. These lemmas play a fundamental role in the

later theoretical analysis.

Lemma 4.3.1 (Representation for sequential matricization of TT-decomposable
tensor). Suppose X = [G1,G,...,Ga-1, Ga]. Then the sequential matricization of X
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can be written as

[x]k :(Ipzmpk ® Gl)(ng.-upk X [92]2) e (ka ® [gkfl]z) [gk]z [9k+1]1

(4.4)
. ([9k+2]1 ® ka+1) T ([Sd—l]l ® ka+l‘“Pd72> (Gg ® ka+1"‘pd71) :

Lemma 4.3.2 (Representation of tensor reshaping). For any tensor T € R®&-1Px and
1<i<j<d—1, we have

[T]] = (Ipi+1‘“Pj %) [j’]1._)A(Pi+1~~-'p]”pi+1“~pd)’ [j’]l — A(pi+1~.-pjrp14..pi)—r([‘Jv]j ® Ipﬂl...pj)-

Here, we define e\ as the kth canonical basis of RY and

() (1) (1)

4 Ga €iG-1)+1
W G )
Alid) ez. ei'+2 | ei(j—'l)—|—2 c RO (45)
(ij) (ij) (ij)
€ €y €ij

Lemmas 4.3.1 and 4.3.2 can be proved by checking each entry of the correspond-
ing matricizations. In addition, the following lemma provides a representation of
sequential reshaping tensor, in particular for R,(:) and f%l(:), the key intermediate

outcomes in TTOI procedure.

Lemma 4.3.3 (Representation of sequential reshaping tensor). Suppose T € R®-1Px, M; €
RU-PdXT for 1 <1< d—1, By € RPUVIXT for 2 < i < d, wheretg = 14 = 1.

Consider the following sequential multiplication:

Forward sequential multiplication: Let Sy = [J],. Fork =1,...,d — 1, calculate

gk — MISk c RTkX(Pk+1'“Pa),

Sk = ReShﬂpe(gk, TkPk+1, Pre2 - Pa) ifk<d—1
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Then forany1 <k <d—1,

Sk = (ka ® Mézjl_ﬂ[iﬂk/ Sk — M;;f;[i]’]k (46)

Here, I,, @ MILLT | =T, ifk =1.
Backward sequential multiplication: Let Wq_1 = [J]q—1. Fork =d—1,...,1,
calculate

Wk =W, By € R(Pl"'Pk)XTk’

Wi = Reshape(Wk,pl SR pk_l,kak) lfk > 1.

Then forany 1 <k <d—1,

W = [T1BR @, ), W, =I[TBN

prod,k+2 prod, k+1°

Here, B;(H]j))d,k—O—Z ® IPk+1 = Ipd Z'fk =d—-1

In particular, R](f),ﬁ]((o) in Algorithm 1(a) and R](:),ﬁ,(:) (t€1{2,4,6,...}) in Algorithm
1(c) satisfy

R = (I, @ @)L ) My RY = (@) M, VI<k<d—1. 47)
The proof of Lemma 4.3.3 is provided in Section 5.3.8.

4.3.2 Deterministic Upper Bounds for Estimation Error of TTOI

Now we are in position to analyze the performance of TTOI The following Theorem
~(2t+1
4.1 introduces an upper bound on estimation error of x* (backward update)

and DAC(ZHZ) (forward update).

Theorem 4.1. Suppose we observe Yy = X + Z, where X admits a TT decomposition as
(4.1).
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(A deterministic estimation error bound for backward updates) Let flim =1U; e

RP1*™ be the left singular space of [X]y. For 2 < k < d — 1, define LNll(ft) € RPxT1XTk gg

the left singular subspace of (ka ® (U2Y) ;;ﬂ_l) [Xy. If for some constant ¢y € (0,1),

Hsin@ (ae, ugy) H <co, Vi<k<d—1, (4.8)

then there exists a constant C > 0 such that the outcome of Algorithm 1(b) satisfies

o= - <

d—1

_ A](ft_'_l) +B(2t+1)> , (49)
k=1

where

2

(2t+1) 7 (LT - (R)
Ak = H (U(Zt))prod,k [Z’]k ((V(2t+1))pr0drk+2 X ka+1> . ,

2
2t+1) _ \7(2t+1)y(R)
o - @

Here, (\7(2“1));5,;/“2 @Iy, =L, ifk=d—1.

(A deterministic estimation error bound for forward updates) For2 < k < d—1,

let V2 € RPxm)xriat pe the right singular space of [X]y_y ((V(Zt“));fo;,w ® ka>

and let \N/((ftﬂ) = V4 € RPa*Ta1 pe the right singular space of [X]q_1. If for some constant
Co € (O/ 1)/

Hsin@ (\73””,\73””) H <c, V2<k<d,

then there exists a constant C > 0 such that the outcome of Algorithm 1(c) satisfies

d—1
HDAC(ZHz) B xHZ <C (Z ASHZ) + B(2t+2)> , (4.10)
F
k=1

where ,

7

AL = (1. (R V[

prod,k+1
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2
—~ L)T
B(2t+2) _ H (u(2t+2) ),(gm?i,dfl [Z]a—1 HF .

Here, 1, ® (UCt+2) )WLoLTk =L ifk=1

The proof of Theorem 4.1 is provided in Section 5.3.1. Theorem 4.1 shows the
estimation error Hf)C R X || can be bounded by the projected noise %, i.e., A ()
and Bt if the estimates in initialization (t = 0) or the previous iteration (t > 1),
{U } Tor {\A/]Et)}ﬂzz, are within constant distance to the true underlying subspaces.
The developed upper bound can be significantly smaller than C ||Z||7, the classic
upper bound induced from the approximation error (e.g., Theorem 2.2 in Oseledets

(2011)), especially in the high-dimensional setting (p > 7).

Remark 4.3.1 (Interpretation of error bounds in Theorem 4.1). Here, we provide some
explanation for Aftﬂ) and B2 in the error bound (4.9). By algebraic calculation, the

T'I-core estimation via backward update can be written as
VG =sVDR{UE) DT (100 + (20 (VA E) Loty )}, vI<k<d—1

and

VO _ ([, + %) (VD)

From the definition of A(ztﬂ) we have see A(Ztﬂ) quantifies the error of the singular
subspace estimate szjfr Y and B2t ) quantifies the error of the projected residual V (e,
By symmetry, similar interpretation also applies to AthJr2 and B2 for the error bound

of forward update (4.10).

Remark 4.3.2 (Proof Sketch of Theorem 4.1). While the complete proof of Theorem 4.1
is provided in Section 5.3.1, we provide a brief proof sketch here.

Without loss of generality, we focus on (4.9) for t = 0 while other cases follows similarly.
For convenience, we simply let Uy, V; denote ﬂg‘”, \A/im, respectively. First, by Lemma 4.3.1,
we can transform XMy, the outcome of backward update, to

~

My, — - v vV
XYW = [%]1P(Vd®lp2.“pd,1)"’(V3®IP2)V2
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. . ~(1)
Then we can further bound the estimation error of X~ as

~ —~ |12

X 21 <C |11 (Va © Tpsupa ) -+ (Va & L) Vi |
~ ~ 2
+C Z H Vd 2 IPZ Pa- 1) T (Vk+1 ® IPZ“'Pk)(VkJ- ® IpZ"'pkfl) F

Next, based on Lemma 4.3.2 and (4.8), we can prove

H vd ® IPz Pa- 1) e (Vk+1 ® IPz"'Pk)(VkJ- ® IPZ"'qu) F
= H Je1(Va © Lpopas) " (Vie1 ® ka)VkJ_HF

<C||U Ty, @ UL o)+ (e, @ W1 (Va @ Tpypy )+ (Vi @ Tp ) Vit |
Finally, we apply the perturbation projection error bound (Lemma 5.3.3) to prove that

C Hu I, ® U o) Ty ® ﬂlT)[x]kfl(Vd @ Lpppas) (Vk+1 ® ka)VkJ_”F

<C Huk—l Pr—1 ® ug—z) e (Ipz“'Pkfl ® l/’\[1T)[Z']kfl(\7d ® ka-npdfl) e (VkJrl ® ka) F

Theorem (4.4.1) is proved by combing all inequalities above.

Next, we establish a decomposition formula for the approximation error, i.e.,

2
the objective function in (4.3) HH —x o and show that the approximation error

is monotone decreasing through TTOI iterations.

Theorem 4.2 (Approximation error decays through iterations). We implement TTOI
onY. Let I)ACM be the outcome after the tth iteration. For any k > 1, we have

+1)

. . ~. (1)
(Approximation error decay) ||Y||% — HI)C " H <Y — X3, (4.11)

+ +1)

(Approximation error decomposition) ||Y — X ||F = Y|z — ||f)C * 2. (412

See Section 5.3.2 for the proof of Theorem 4.2.
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4.4 TTOI for Tensor-Train Spiked Tensor Model

In this section, we further focus on a probabilistic setting, spiked tensor model, where
the noise tensor Z has independent, mean zero, and o-sub-Gaussian entries (see
definition in Section 4.2.1). The spiked tensor model has been widely studied
as a benchmark setting for tensor PCA /SVD and dimension reduction in recent
literature in machine learning, information theory, statistics, and data science
(Richard and Montanari, 2014; Lesieur et al., 2017; Zhang and Xia, 2018; Wein et al.,
2019; Perry et al., 2020). The central goal therein is to discover the underlying
low-rank tensor X. Most of the existing works focused on tensors with Tucker or
CP decomposition.

Under the spiked tensor model, we can verify that the initialization step of TTOI
gives sufficiently good initial estimations with high probability that matches the
required condition in Theorem 4.1.

Theorem 4.3 (Probabilistic bound for initial estimates and projected noise). Suppose
X is TT-decomposable as (4.1) and Z have independent zero mean and o-sub-Gaussian
random variables. Denote p = min{ps, - - - , pa}. If there exists a constant C 44, such that
A = $r (X)) = Cyap ((ZL piric1m)? + (Prsr - 'pd)1/2> oforl<k<d-—1,
then there exist some constants C,c > 0, with probability at least 1 — C exp(—cp),

- G0 oY <1
e fome (505 < 5 413
max Hsm@ (ﬁ(t) U(t)> max Hsin@ (\A/m \7(t)>H < ! (4.14)
k=1,..,d— L " k=2,..d ko7 Tk = '
t=5,46,.. t=153
and forall t > 1,
d
max{A](:), B} < Co? Zpirirr,l. (4.15)
i-1

Here, U", VIV, A" and B are defined in Theorem 4.1.
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The proof of Theorem 4.3 is provided in Section 5.3.3. Based on Theorems 4.1

and 4.3, we can further prove:

Corollary 4.4.1 (Upper bound for estimation error). Suppose X can be decomposed
as (4.1), Z,, i, are independent zero mean and o-sub-Gaussian random variables, p =
min{py, -+ ,pa}. Suppose there exists a constant Cgqp such that Ay = s, ([X]x) >
Cyap <(Zf:1 PiTicii) Y2 + (Prgr - - -pd)1/2> ofor1 < k < d—1. Then with probability
at least 1 — Ce™°P, forall t > 1,

d
IXY — x|z < co? Y piriri . (4.16)

i=1

The proof of Corollary 4.4.1 is provided in Section 5.3.4.

Remark 4.4.1 (Interpretation of Corollary 4.4.1). Note that the TT-cores G1,Gi, Ga
respectively have piT1, piTiTi_1, PaTa—1 free parameters, the upper bound (4.16) can be

seen as the noise level 0> times the degrees of freedom of the low TT rank tensors.

Next, we develop a minimax lower bound for the low TT rank structure es-
timation. Consider the following general class of tensors with dimension p =
(p1,...,pa)and TTrank r = (1q,...,7Tq_1).

Tpr(A) = {I)C € RPxPa X can be decomposed as (4.1), sy, ([X]x) > A, 1<k < d— 1} .
(4.17)
Here, the constraint on the least singular value of [X]y corresponds to the condition

required for upper bound in Theorem 4.3.

Thgorem 4.4 (Lower bound). Consider the order-d TT spiked tensor model (4.2), where
2 il N(0, 0%). Assume p = min{py,...,pa} = Co for some large constant Co, 11 <

P1/2,7i < pitic1/2, 71 < piti/2for2 <1< d—1, 1491 < pa, and Ay > 0. Also
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assume 111 < py if d = 3. Then there exists a universal constant ¢ > 0 such that

inf sup ]EHDC DCH C(YZZ]DJJ1 1. (4.18)
X XETpr

See Section 5.3.5 for the proof of Theorem 4.4.

Remark 4.4.2. Corollary 4.4.1 and Theorem 4.4 together show TTOI achieves the minimax

optimal rate of estimation error in the low TT-rank class JFy, +(N).

4.5 TTOI for Dimension Reduction and State
Aggregation in High-order Markov Chain

Since the introduction at the beginning of the 20th century, the Markov process has
been ubiquitous in a variety of disciplines. In the literature, the first order Markov
process, i.e., the future observation at (t + 1) is conditionally independent of those
at times 1,..., (t — 1) given the immediate past observation at time t, has been
commonly used and extensively studied. Moreover, the high-order Markov process
often appear in many scenarios, where the future observation is affected by a longer
history. For example, in the taxi travel trajectory, the future stop of a taxi not only
depends on the current location but also the past path that reveals the direction this
taxi is heading to (Benson et al., 2017). The high-order Markov processes have also
been applied to inter-personal relationship (Raftery, 1985), financial econometrics
(Tsay, 2005), traffic flow (Zhao and Sun, 2016), among many other applications.

We specifically consider an ergodic, time-invariant, and (d — 1)st order Markov
process on a finite state space {1, ..., p}. That is, the future state X, 4 depends on

the current state X, 41 and the previous (d — 2) states (X¢yq—2,..., X¢41) jointly:

P (Xt+d|X1/ SRR Xt+d—1) =P (Xt+d|Xt+1/ R Xt—l—d—l) = T[Xt+1,,..,Xt+d}~ (419)

Our goal is to achieve a reliable estimation of the transition tensor P and to predict
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the future state X, 4 based on an observable trajectory. Since the total number of
free parameters in a (d — 1)st order Markov transition tensor P is O(p?) without
further assumptions, it may be prohibitively difficult to infer P in both statistics
and computation even if p and d are only of moderate scale. Instead, a sufficient
dimension reduction for high-order Markov processes is in demand.

To enable the statistical inference and dimension reduction for high-order
Markov processes, a powerful tool, mixed transition distribution model (MTD), was
introduced (Raftery, 1985). The MTD model assumes that the distribution of future
state is a linear combination of the distributions associated with the (d — 1) imme-
diate past states. The readers are also referred to Berchtold and Raftery (2002) for a
survey on mixed transition distribution model. The linear assumption, however,
does not take into account the potential interactions of past states that commonly
appear in practice. For example in the New York taxi trip data, the interaction

among past locations of a taxi indicates its potential future direction.

On the other hand, there is a recent surge of development in dimension reduction
and state aggregation for first order Markov chains. For example, Ganguly et al.
(2014) considered the Markov chain aggregation and the application to biology;
Du et al. (2019) considered the rank-reduced Markov model and mode clustering;
Zhang and Wang (2020) considered Markov rank, aggregagability, and lumpability
of Markov processes and proposed the dimension reduction and state aggregation
methods through spectral decomposition with theoretical guarantees; Sanders et al.
(2020) proposed clustering block model and proposed efficient algorithm to solve
it; Zhu et al. (2019) introduced a convex and non-convex methods to estimate the

rank-reduced low-rank Markov transition matrix.

Inspired by these work, we propose and study the state aggregation model for the
discrete-time high-order Markov processes as follows.

Definition 4.5.1 ((d — 1)st order state aggregatable Markov process). Suppose there
exist maps Gp : [p] — R™, Gy : [p] x R™1 — R™, Gq : [p] x R"e1 — R such that
Gy, ..., Gq are linear: Gy (X, Mu + Av) = A G (X, u) + A Gy (X, V) for any vectors
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u, Vv, scalars A, A, € R. We say a Markov process {X1, X, ...} is (d — 1)st order state
aggregatable if for all t > 0, the transition can be sequentially generated as follows,

P1(Xe11) = Gi(Xeq1) €RT,
lsk(xt+1/ s /Xt+k) = Gk(Xt+k/ ﬁk*l(XtJrl/ R /XtJrkfl)) € Rrk/ k= 2/ sy d— ]-/
P (Xt+d|X1/ o /Xt—l-d—l) =P (Xt+d|Xt+1/ ceey Xt+d—1) = Gd(Xt—l—d/ lsd—l(xt+1/ ceey Xt+d—1))'

Ina (d—1)st order state aggregatable Markov process, the future state X 4 relies
on a sequential aggregation of the previous d — 1 states X1, ..., X(+q—1 as follows:
we first project X1 to a ri-dimensional vector P1(X¢+1) via Gy, then project P1(Xes1)
jointly with X, to a r,-dimensional vector P, (Xt41, Xe42) via G,. We repeat such
the projection sequentially for Xi.3, ..., X(+q and yield the transition probability
P (X¢talX¢s1, ..., Xepa—1). Also, see Figure 4.4 for a pictorial illustration.

Based on the definition of the state aggregatable Markov chain, we can prove

the corresponding probability transition tensor P will have low TT rank.

Proposition 4.5.1. The transition tensor P of the rank reduced high-order Markov model
in Definition 4.5.1 has TT-rank no more than (r1,...,vq_1). In other words, P satisfies
rank([Pl) < .

The proof of Proposition 4.5.1 is provided in Section 5.3.6.

G = = G, = Gy 3 G
X —— Py @ .| P2 o T Py — Py — S Xy
Xt+2 Xt+3 Xt+3

Figure 4.4: A pictorial illustration of a (d — 1)st order state aggregatable Markov chain

Next, we focus on a synchronous or generative setting, which can be seen as a high-
order generalization of the classic observation model for the analysis of Markov

(decision/reward) processes (see Kearns and Singh (1999) for an introduction),
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for the high-order Markov process. To be specific, for each sample index k =

1,...,n and previous states (i,...,1a-1) € [p]*™!

, suppose we observe the next
state X(1,...,14_1; k) drawn from the Markov transition tensor P. It is natural to

estimate P via the empirical transition tensor:

n
Py = Z 1{X(il,...,id,l;k):id}/n/ i,...,1a €{1,...,p}%

~
I

Then, i’emp is an unbiased estimator of P. However, if the entries of P are approxi-
mately balanced, the mean squared error of P satisfies
~emp 2 ~emp
a5 5= ¥ w(s)

- Aa
i1, 1a

—~ 7

. . . . 4.20
. Z Z P (iali1, ..., la—1) (1 =P (ialiy, ..., 1a1)) - Pdfl ( )
N n n

iela1 ia

To obtain a more accurate estimator, we propose to first perform TTOI on P to
obtain 5’(1), then project each row of @(1)] a—1, or equivalently, each mode-d fiber
of 5’(1), onto the simplex SP 1 ={x e RP : > P, x; =1,x; > 0forall1 <i< p}via
probability simplex projection (see an implementation in Duchi et al. (2008)) and
obtain P.

We establish an upper bound on estimation error for the TTOI estimator P.

Proposition 4.5.2. Consider the synchronous or generative model for a (d — 1)st order
state aggregatable Markov process described above. Suppose the initialization condition
(4.8) in Theorem 4.1 holds. Then with probability at least 1 — Ce™°P, the output of one-step
TTOI followed by the probability simplex projection satisfies

d
~ 2
H?—:PH < C maX 7Ty E piriri_l/n.
F 1<i<d—1 —
i=

The proof of Proposition 4.5.2 is provided in Section 5.3.7. Compared to the
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estimation error rate of P in (4.20), Proposition 4.5.2 shows TTOI achieves sig-
nificantly reduced estimation error by exploiting the low TT rank structure of the

high-order Markov process.

Remark 4.5.1. If the observations form one transition trajectory {Xo, . .., XN}, we can work
on the following empirical transition tensor

N—d+1
20 Xe=igeXepqo1=ta) N—d+1 1, >0
~em] N—d+1 s = Xe=11,..., X _o=14_ ’
: Pi — ¢ T xmiy X g amia1) t=1 t=1 t+d—2=td-1 (4.21)
1t 1/ N—d+1 ¢ . . ~0
P, t=1 {Xe=i1, Xppa2=ta1} — Y-

Then P can be a nearly unbiased and strongly consistent estimator for P. When the
Markov process is (d — 1)st order state aggregatable, we can apply TTOI to obtain a better
estimate. As will be explored by numerical studies in Section 4.6.1, the TTOI estimator
achieves favorable performance on the estimation of P.

4.6 Numerical Studies

In this section, we investigate the numerical performance of TTOL

4.6.1 Simulation

In each simulation setting, we present the numerical results in both average estima-
tion error (denoted by dots) and standard deviation (denoted by bars) based on 100

repetitions.

We first consider the tensor-train spiked tensor model (4.2) discussed in Section
4.4. Specifically, we randomly generate Gy, G»,...,G4-1, Gq with i.i.d. standard
normal entries, and generate Z with i.i.d. N(0, 0?) or Unif(—b,b) entries. Let
P1=:"=Pa=pP, 11 = =Tq1 =1, and consider four settings: (1) p = 100,d =
3,7r=1,2p=50,d=4r=1,3p=20,d=5r=1,4)p=20,d=571=2
For varying values of o € [1,19] and b € [3,30], we evaluate the estimation error
Hﬁ\Cm — DCHF of the TT-SVD and TTOI estimators with 1 or 2 iterations, i.e., tyax =
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0,1,2. From the results summarized in Figure 4.5 (normal noise) and Figure 4.6
(uniform noise), we can see TTOI, even with one iteration, performs significantly
better than TT-SVD, and the advantage becomes more significant as the noise
level o, b grows. This suggests that the proposed TTOI is effective for high-order
tensor SVD compared to the classic TT-SVD, especially when the observations are
corrupted by substantial noise.

Next, we demonstrate the performance of TTOI on transition tensor estimation
for the high-order state-aggregatable Markov chains studied in Section 4.5. We
consider the (d — 1)st order Markov chain on p states. To generate the transition
tensor P, we first draw G; € RP*", G, € R™*P*" G4 € R™*P with i.i.d. standard

normal entries, then normalize the rows of Gy, G, ..., G4 in absolute values as

Gyl
2/ 1G]

_1Gal
25 1Ga il

Sl

- ~ ’
251G 111

G, (i) Gy i) Ga,1j)

.....

any (iy,...,1a—1), so P forms a Markov transition tensor. To generate the trajectory
{Xi,..., Xn}, we generate the initial d — 1 states Xy, ..., X4_1 i.i.d. uniformly from
[p], then generate X4, ..., Xn sequentially according to (4.19). To estimate P, we
construct the empirical probability tensor P by (4.21), then apply TT-SVD and
TTOI with input P as detailed in Section 4.5 to obtain P. We consider two
numerical settings: (1) p =100,d =3,7=1; (2) p =50,d = 4,r = 1. We evaluate
the estimation error Hf/l\’m — P||g for each setting and summarize the results to
Figure 4.7. Again, TTOI exhibits clear advantage over the existing methods in all

simulation settings.

4.6.2 Real Data Experiments

We apply the proposed method to investigate the Manhattan taxi data®. This dataset
contains the New York City taxi trip records from 14,144 drivers in 2013. We treat

2013 Trip Data, available at https://chriswhong.com/open-data/foil_nyc_taxi/
P p g P y


https://chriswhong.com/open-data/foil_nyc_taxi/
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each travel record as a transition among different locations at New York City, then
the overall dataset can be organized as a collection of fragmented sample trajectories
of a Markov chain on New York City traffic. Some recent analysis on such data can
be seen at, e.g., Liu et al. (2012); Benson et al. (2017); Zhang and Wang (2020).

Due to the high-dimensional spatiotemporal nature of the dataset, a sufficient
dimension reduction or state aggregation is often a crucial first step to study a
metropolitan-wide traffic pattern. To this end, we apply the high-order Markov
model as described in Section 4.5. Specifically, we discretize the Manhattan region
into a grid of p = 119 states that forms a state space. Then, we collect all travel
records in Manhattan of each driver from the dataset, sort them by time, and form
into Markovian transition trajectories. In particular, each travel record is treated
as a transition from the pickup to the drop-off location. If the drop-off location i
of the previous trip is different from the pickup location j of the next trip by the
same driver, we also form a transition from states i to j. Based on the trajectories,
we can construct a high-order Markov chain with an order d empirical transition
probability tensor P € R®L1P as described in Section 4.5. Assuming the true
probability tensor is state aggregatable (Definition 4.5.1), we apply one-step TTOI
proposed in Section 4.5 and obtain P. It is noteworthy if d = 2, the described
procedure of P is equivalent to the classic matrix spectral decomposition in the
literature. Figure 4.8 plots the singular values of the sequential unfolding matrices
of P for d = 3, which clearly demonstrates the low-TT-rankness of the probability
transition tensor P. In the following experiments, we focus on the order-2 Markov
model and analyze all consecutive two transitions: i — j — k, corresponding to
the d = 3 case.

Inspired by the classic methods of matrix spectral decomposition, we aggregate
all location states in Manhattan into a few clusters via both P and P° . Specifically,
we calculate G 1, i.e., the last TT-core of P, and [@emp] d—1, i.e., the matricization of
P whose columns correspond to the last mode. Then we perform k-means on
all columns of G 4 and [(/lsemp] a—1, record the cluster index, associate the index to

each location state, and plot the results in Figure 4.9 (Panels (a)(b) are for TTOI
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and Panels (c)(d) are for empirical estimate). From Figure 4.9 (a)(b), we can clearly
identify four regions: (i) lower Manhattan (orange), (ii) midtown (dark blue), (iii)
upper west side (green), and (iv) upper east side (brown or black). In contrast,
direct clustering on P“"* yields less interpretable results as the majority points go
to one cluster. It is also worth noting even the location information is not provided
to this experiment, the resulting clusters in Figures 4.9 (a)(b) show good spatial
proximity between locations. This illustrates the effectiveness of TTOI in dimension
reduction and state-aggregation for high-order Markov processes.

Next, we illustrate the high-order nature of the city-wide taxi trip through the
following experiment. For each initial state i € [p], we apply k-means to cluster
the column span of 5’[1,:,:], where P is the outcome of TTOL We present the results
in Figure 4.10, where the red triangles denote the given first stateiand r =k =7.
If the city-wide taxi trips do not have significant high-order effects, P should be
reducible to a first order Markov process and 93[1,;,;} should have similar values for
different i. However, as we can see from Figure 4.10 that the clustering results
highly depends on the first state i, the high-order effects exist in the city-wide taxi
trip Markov process. In addition, the states in different directions of i are often
clustered to different regions, which shows that the taxi drivers may tend to move
to the same direction in consecutive trips, which yields the high-order effects in the

driving trajectories.

4.7 Discussions and Additional Applications

In this chapter, we propose a general framework for high-order SVD. We introduce a
novel procedure, tensor-train orthogonal iteration (TTOI), that efficiently estimates
the low tensor train rank structure from the high-order tensor observation. TTOI has
significant advantages over the classic ones in the literature. We establish a general
deterministic error bound for TTOI with the support of several new representation
lemmas for tensor matricizations. Under the commonly studied spiked tensor
model, we establish an upper bound for TTOI and a matching information-theoretic
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lower bound. We also illustrate the merits of TTOI through simulation studies and
a real data example in New York City taxi trips.

In addition to the high-order Markov processes, the proposed TTOI can also be
applied to the Markov random field (MRF) estimation. We give a brief description of
MRF below. Consider an undirected graph G = (V, E), where V ={1,...,d}is a set
of vertices and E C V x V is a collection of edges. Each vertex i € V is associated
with a random variable X;, taking values in {s,...,sp}. In an MRF model, the
distribution of {X, ..., X4} can be factorized as

P(Xy, ..., Xa) = % [TveXe),

cec

where C is a collection of subgraphs of G and X¢ = (X,,v € C) denotes the random
vector corresponding to vertices in C. The joint probability function P(-) can be
written as a tensor P € R®-1P, where Piig = P(Xy = siy,...,Xqa = si,). The
MRFs have a wide range of applications, including image analysis (Li, 2009; Zhang
et al., 2001), genomic study (Wei and Li, 2007), and natural language processing
(Chaplot et al., 2015). The readers are referred to, e.g., Wainwright and Jordan
(2008) for an introduction to MRFs.

A central problem of MRF is how to estimate the population density P based
on a limited number of samples {Xii), ey Xg) ™ .. Itis straightforward to estimate

P via the empirical probability tensor P

n d
Por= 2 TTeq! =50 /n.

We can show that P is unbiased for P. Recently, Novikov et al. (2014) pointed out
that P is often approximately low tensor-train rank in practice. To further exploit
such the structure, we can conduct TTOI on P . Under regularity conditions,
it can be shown that the entries of Z are bounded and weakly independent, then

Corollary 4.4.1 suggests the following estimation error rate of the TTOI estimator:
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1P — P2 < CY & ririi1/(np*d1), which can be significantly smaller than the

N . - . SemP
estimation error of original empirical estimator P .

Moreover, the proposed framework can be also applied to high-order Markov
decision process (high-order MDP). MDP has been commonly used as a baseline in
control theory and reinforcement learning (Singh et al., 1995; Sutton et al., 1998;
Puterman, 2014; Duan et al., 2020). Despite the wide applications of MDPs, most of
the existing work focus on the first-order Markov processes. However, the high-
order effects often appear, i.e., the transition probability at the current time depends
not only on current, but also the past (d — 1) states and actions. See Figure 4.11
for an example. Since the number of free parameters in such MDPs can be huge, a
sufficient dimension reduction for the state and action space can be a crucial first
step. Similarly to the example of high-order Markov process in Section 4.5, the
TTOI can be applied to achieve better dimension reduction and state aggregation
for the high-order Markov decision processes.



99

p=100, d=3, r=1 p=50, d=4, r=1
600 f TT-SVD { 600 TT-SVD
500 | TTOI (fmax = 1) 500| | LTOI (fax = 1)
—3—TTOT (tuay = 2) —3—TTOT (tmax = 2)
== 400} =400
I
I 300+
(=
~ 200F
100
o* :
5 10 15
g (o
p=20, d=5, r=1 p=20, d=5, r=2
: ; : | : ;
600 f TT-SVD ] 600 TT-SVD
500 | TTOI (tmax = 1) : 500! | TTOI (fax = 1)
——TTOI (tmax = 2) ——TTOI (tmax = 2)
2= 400 | ] 25 400
= =
I 300+ I 300
= (=
~ 200} 3 — 200}
100 | : 100t
0 : : : o° : : :
5 10 15 5 10 15
ag ag

Figure 4.5: Estimation error of TT-SVD and TTOI for high-order spiked tensor
model. Here, % TN (0, 02).
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Figure 4.6: Estimation error of TT-SVD and TTOI for high-order spiked tensor
model. Here, % b Unif(—b, b).
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Figure 4.7: Estimation error of the transition tensor versus length of the observable
trajectory in high order state-aggregatable Markov chain estimation.
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Figure 4.8: Singular values of sequential unfolding matrices [P, (left panel) and
[?emp] » (right panel)
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Figure 4.11: Illustration of a high-order state aggregatable Markov decision process
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Chapter 5

Appendices

5.1 Appendix to Chapter 2

We collect the proofs of technical results in this section.

5.1.1 Proof of Lemma 2.2.1

Let T satisfy (2.16). For convenience, we denote sy = s/s4 and decompose u as

uy — \/%B?/HB?(]')HZI ie T/l S (J)/

u:\)‘l—w, Vi = Uy, 16(6)\_1_,
ui — Hio(wi), i€ (G). 5.1)
] Hi2(ug)), j ¢ G.

Note that [H;»(x) — x| < 1/2 for any x € R. Based on the property of (2.18),
[wienTlleo < 1/2, then

Cmin .
8 maXiecTe ||X%—FX1/T1||2,
(5.2)

max il <1/2, [[vr —sgn(Bi)l2 = ur — (Fo)rllz <
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W) = V5Bt ) /185, b 15 € G5 [l < V502, ifj £ 6. (53)

Suppose B is the minimizer to (2.5), h = p — B*, then based on the sub-differential
of ||B]|1 and ||B||1,2, we have

P(B) =lIBll + v/sollBlliz = 1B + hll1 + /5ol B* + i

>(|B5 1 +sgn(Br) Thr + [[hrells + v/so [ [IBFlh2 + Z H ” L4 Z IR ll2

jeG

— 185l — VSolBelhz
\/_Bf‘rT iy

>P(B*) + [Ihrell1 + v/sollhge 2 + sgn(BF) Thy + ) ————

—2|[BTelli — 2v/50|BTell1,2- (5.4)
The last inequality comes from ||3*||1 = ||B5]1 + [|Belr and ||B*|l12 < [|B5 |12 +

| BFel12-

In particular, given Xh = 0 and that u lies in the row span of X, we have
vih+w'h =u"h = 0. Therefore,

Sgn(ﬁfr)ThT + Z M = Sgn((ﬁ)ThT vTh+ Z V'S0 T,( _wTh
e 1Pl & TP .

jec
— |lvr —sgn(BT)2/lhrll2 — [[Vrelloo - [[Rrellx

—max |wis) = vEiBt, )/ 1B,z - 1M 2 = Iwie) o2l 2

(52)(5.3)
> —|lvr —sgn(B1)2 - [[hrlla — [[hrell1/2 — V/sollhge) [[1,2/2.

(5.5)
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Next note that h = ht + hyc, we must have Xtht = —Xtchye, then

e lla =l (X7 X /M) X7 Xrhor /nl2 < 0 (X7 X /M) X Xpehre /1|2

< XTX h 60

S ~max | Xy Xi/nlfz - [[ure 1.
Combining (5.2), (5.5), and (5.6), one obtains

sgn(By) Thr + > Pl > 34 Ry — v/Sollhyge [1,2/2-
Plug this inequality to (5.4), we finally have
P(B) = P(B*) + [hrell1/4 + Vsollhiae)l1.2/2 = 2/1Be It — 2/0l Bl 2-
Since f is the minimizer to (2.5), we must have P(f) < P(B*), then
Ihrell1/4 4+ V/sollhie)ll12/2 < 2([BTelli + 2v/S0l|BTe [l1,2- (5.7)

If B* is (s, s4)-sparse, immediately we have hye = 0. Then 0 = X{ Xh = (X{ Xt )hr.

BY Omin (X X1/1) = Cmin/2, we know X7 Xt/n is non-singular, then ht = 0.

Now, we consider the general case. Without loss of generality, suppose G =
{1,..., g}, where g < s4. Denote T; as the indices of the s largest entries of h(g)\T,
T, as the indices of the s largest entries of h(g)\[ruT,;, and so on. For sy +1 <i < d,
denote S;; as the indices of the |s/sq| largest entries of h(i), Si» as the indices
of the [s/s,] largest entries of hi)\s,,,
an arrangement of S;;(1 < j < [bi/|s/sq]],9 +1 < i < d) such that Hh§1|]§ >

) =
o = ||hg 3. Let Ry = U;%,Si, Ro = UY ,Si, and so on. Then
T8 gi1lbi/ls/sqll 9

(Th, To, ..., Ry, Ry,... ) isa partition of T¢, and [Ti/, [R;| < s,19(Ti)l,[g(R;)| < sg, where
g(S) ={ir,..., }if S C Ug‘zl(ij) and S N (i;) are not empty forall 1 < j < k. Let

and soon. Let S, ... ’SZ?:W Moo/Ls/so )] be
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T =TUT, UR;. If (2.19) holds, then

Cmin 1 1 1
THh%H% < T—lHthng = (Xghg, Xh) — — (Xshy, Xgchae). (5.8)
Since Xh = 0, we have
(Xshs, Xh) = 0. (5.9)

Now, we consider |(Xshs, X7.hi.)|. By triangle inequality,

| (X¢hs, Xgchie)

< [{(Xthr, Xschse)

+ ‘ <XT1 hr, XTChTC>

+ [ (Xg,hry, X5chie) | -

The triangle inequality shows that

| (Xrhr, Xgohse)

< ) I(Xrhe, Xphe)l 4+ ) [(Xrhr, Xe/he)| -

i>2 i>2

Combine the parallelogram identity and (2.19) together, we have

[(Xthr, Xt hr)l < Chaxt|[hr|l2][hr |2, ‘<XThT/XthRj>’ < Craxn[ My [[2 [ hg; |2-

Thus,
(X, Xgehio)| < Coanlhr (Y o+ Y e ll2) (5:10)
i>2 j>2
By (3.10) in Candes and Tao (2007), we have
D hrll < s72hiantlh, (5.11)
i>2
and
jsg 1z (-1)sg
Slhele=Y [ X s lB] <Y Valhs, <Y Vs Y
j=2 j22 \i=(j—1)sg+1 j=2 j=2 i=(j—2)sq+1

d
=552 ) |hg =55 > D lhs,l2
k

i=g+1 j

Ihg [l2/s54
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For all g +1 < i < d, apply (3.10) in Candes and Tao (2007) again,

2 lIhsyllz < (Ls/sg)) ™2l Il < V2(s/59) ™ lha .

j=2
Moreover, by the definition of S;,
d d
D hs,llz< Y Il = lhgellhe
i=g+1 i=g+1
Therefore,

d
D Ikl <sg™? ( > \/E(S/Sg)l/zﬂh(i)Hl) +54 %Mo)l 2

j=2 i=g+1

(5.12)
:\/Esfl/ZHh(Gc) Il + Sgl/ZHh(GC) [1,2-

Combine (5.10), (5.11) and (5.12) together, if (2.19) holds, we have

| (Xrhr, Xzchie)

<Coaxt|[N1[2(s 2R n Tl + V252 hge) i + 552 hge) [l1,2)
<Crnax |7 l2(V25 72| hrel1 + 542 Gy [[12)-

Similarly, if (2.19) holds, then |(Xt,hr, X7.hse)| < Comaxtl[hr [2(V25 V2| he |1 +
S *[M(ee) 1.2) and [ (Xe, ey Xgehge)| < Conantllhg, (V252 e 155" hygey 1)
Thus, with probability at least 1 —2e™ ™,

| (X¢hy Xgehge)

<Crmaxt (J[N7]l2 + [Ihrll2 + e, ll2) (V2572 e[l 4 542 e ll1.2)
<VBCmaxnt R [l2 (V2572 [hre |y + 55772 [h e [l1.2)-
(5.13)

The last inequality holds due to Cauchy-Schwarz inequality. Combine (5.8), (5.9),
(56.13) and Lemma 2.2.3 together, we know that with probability at least 1 —2e™ ",

Cmin — _
521715 < V3Camanllhgl2(vV2s 2 lhre i + 55" 2l h(6e) 1),
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i.e., with probability at least 1 —2e~ ",
3 Emax (5 1/ “12
IRgll < 232 (V252 el + 532 e f1.2):

Finally, by (5.7), (5.11), (5.12) and the previous inequality, with probability at least
1—2e°m,

il <Ihgllz + 3 vl + D [l

i>2 i>2

Crnax _ _ _ _
<2V3="E(V2s V2 hely + 542y ge)lh2) + V252 e 2 + 55 hige) 12

1 1
<C - = *c — *c .
( JRlBiel+ =18 ||1,z)

In summary, we have finished the proof of this lemma. [

5.1.2 Proof of Lemma 2.2.2
Let T satisfy (2.16). Given ||37]jo. < sg, without loss of generally we assume that
BT, (sg+1)7 "+ BT,a) = 0.

We also denote Tj;) as the support of 3} ;). First by Lemma 5.1.3 Part 3 with

1, k=1

0, k 75 i Ue RPITH = R(Z?:1 bi)XITllu[T,:} = I;u[TC,:} =0,

vERp,vkz{

and notice that x log(eu/x) > log(eu) for all 1 < x < u, we have

P <max

ieTe

XPxi/ml, > 1/2) < 3 B (Ixixi/ml, 172
ieTe
<D P(|XXi/mn—EX{Xi/n|, + [EXTXi/n|2 > 1/2)

ieTe
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< QP (IXiXe/n—EXiXe/n, > 1/2 = | Zrll| ZorEekla)

ieTe

<D P(|XiXi/n—EX{Xi/n|, > 1/4)

ieTe
<db - Cexp (Cs —n) < Cexp (log(d) +1log(b) + Cs —n)
<Cexp (sqglog(ed/sy) + slog(esgb/s) + Cs —n) < Cexp(—cn) (5.14)

provided that n > C (slog(esgb/s) + sqlog(d/sg)) for some large constant C > 0.
Note that the fourth inequality comes from the facts that || Z1 1| < ||Z]| < Cmax and
||Zi,TZ{1T |2 < ¢/v/s <1/(4Cmax). By Lemma 5.1.4 Part 1, we also know

P (Gmln(XT XT/n) Cmm/z) ( |X:|'|—XT/Tl ZT T || Cmin/z)

(X7 Xr =737 /m =L l1Z0 7]l = cmin/2)
(HX:I'FXTZT /n—Ir = Cmin/(zcmax))
ex

p (Cs —cn) < Cexp(—cn).

NN NN
N " "8 =

Next, we apply the well-regarded golfing scheme Gross (2011); Candes and Plan
(2011) to find an approximate dual certificate u that satisfies (2.18). Let

W CRY, (u)p) = {\/s/s BT 51/ 1B |2+ sgn(Bi ) TEG o

0, j e G-

Immediately we have (uy)t = (11p)r. We divide n rows of X into non-overlapping
batches, say X1, 1, X(1,,1, - - ., with [I;| = ny. Here, ny, 1, ... will be specified a little

while later. Consider the following sequences

X = Uy,
(5.16)

T 1
Yi=Xq  XinZrr/mc- (a1, =0 1—v, 1=12,..., lna



110

Finally the approximate dual certificate is defined as

Lmax Limax
u= Zyl - Z XELI}XHl,T]Z'I_',l‘I'/nl “(oq—1)T. (5.17)
1=1 1=1

From the inductive definition we can see

(o)t = (I_X[TIL,T]X[II,T]Z{lT/nL)(o‘lfl)T/ (Yi)Te = X[TIbTC}X[Il,T}Z?,lT/nl‘((xlfl)T; 1=1,2,....

Next, we apply the random matrix results (Lemmas 5.1.4 and 5.1.3) and obtain the
following tail probabilities.

e if ny > Cst, for large constant C > 0 and t; > C, by Part 1 of Lemma 5.1.4,

P (HXEL,T]X[IL,T}Z'I_'}'I'/T” — Il = Cyv Stl/nt)
1/2 (5.18)
t
<Cexp (Cs —ny min {S—tl, (2) }) < Cexp (—csty);

n n

(solog(esgb/s)+logd)
min{soé%,\/ﬁél}
for 8, > Cmaxicre [Zi 7272 = Clmaxiere [Zir 27 112127 v qiallz/ N diallz

* Suppose qi_1 = (ot_1)1 € RITlisindependent of X, ;. If n; > ¢
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by Lemma 5.1.4 Part 2,

P <§I€1%X Hjqu 1128, (X[TIL,(]')]X[IL,TJZ?}T/M : GIH) H2 > \/S_o||<111!|251)

<) P (HH”ql_]Hzél (X[Tlll(j)]x[n,ﬂ(Z?}Tqm)/m> H2 > \/5\|q171||251)

jeGe

252 5
<d- ((:W) exp <Cso —cny min{ sollguall381  v/Sollqi-1ll28¢ })
0

KT g3 <=7 gl

b _1|136% _1]126
+d- ( )exp Csp — cny min iOqul dp 12, {%qul 1ll28,
[s0] KN Zr s Er il

[so]

b

<2d- (;—J) exp (Cso — cny min{spd}, v/so01})
0

<Cexp (log(d) + Csolog(2esyb/s) + Csp — cny min{sd}, v/S081})
<Cexp(—cny min{syd7, v/S081});

(5.19)

1

Cmin

The third inequality comes from ||):{1T | <

* Suppose qi-1 = (oq_1)1 € R is fixed. If ny min{6?,0,} > Clog(esyb), 0, >
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2maxicre |Zi,7Z7 1|2, by Lemma 5.1.3 Part 2,

P

RS

XX, mZr e/ il = 91”‘1171H2>

< Y P(XhoXun/me (Srka)l > 8laalk)
ie(G)\T

< Z P (’X[Th,ﬂx[h,ﬂ/nt : (Zﬁqulfl) — Zi,TZfqulfl‘ > 01]|qi1ll2 — ’Zi,TZ?,quLAD
ie(G)\T

< P <|Xal,ﬂx[h,ﬂ/nl (Zrr i) = ZorZirqual = 0l quall — Hzi,Tz?,lTﬂqul—le)
ie(G)\T

_ _ 1
< Z P <|X[T11,11X[11,T]/T11 ' (ZT,qul—l) — Ll hqual = 591||CI1—1||2)

— — Cmin —
< P (|X[T11,1}X[I[,T]/T11 : (ZT,qulfl) - Zi,TZT}rqlfﬂ = 5 61||ZT,1Tq171||2>

<sgb - Cexp (—eny min{6}, 6,}) = Cexp(log(sgb) — cny min{63, 6,})
<Cexp (—eny min{6}, 6¢}) .
(5.20)

Then we specify {n, ti, 8;,01}1>1 as follows,

*n =mny, > C(slog(esgb) + sglog(d/sg)), t1 = to = cny/(slog(es)) > C,
51 =8, =1/(164/s), 01 = 0, =1/(16\/s);

e ng=---=mny_ = lm:ll—z > C(slog(esgb) + sqlog(d/sg))/ log(es),
t3=---=1t,, =cns/s > C,
8 = =8y, =log(es)/(164/s) = max{(log(es)/s)'/?/16,log(es)/s0/(16s)},
0; = =0, = (log(es)/s)'/?/16, with L. = [Clog(es)] + 2.

We can see the following events happen

X Xan Iy /m = Il < Cy/sti/my <4 /1/1ogles), 1=1,2;

C <
||XE1,T]X[IL,T} Z‘T’}T/nl - I\T| || < C V Stl/nl < 1/2/ l= 3/ ey 1'max;
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max || Hyaial/evs) (X (1)]X[11,TJZ?,1T/TL1'qt—l)HZ<\/So!|GI1—1\|2/(16\/§)/ =12
T —1
max | Hjaialtog(es)/ (16v5) (X[Il,(i)]x[llfﬂZT,T/nl ' ql—l) H2

g\/%qu—luzlog(es)/(16\/§)/ 123/---/lmax;

(5.22)
HXT NTIXI1,T] TT/nl qi— 1” < lgiall2/(16y/s), 1=1,2
X canmXinnErk/m au|| < llaalls - (Gogles)/s)2/16, 1=3,.., s
(5.23)

with probability at least 1 — Clog(es) exp(— clog ) ) Clog(es) exp ( sg) —
Clog(es) exp (—c2). By triangle inequality, u, satisfies

[uoll2 <4/s/s4 (

When maxicre [|[ X7 Xi /1|2 < % and (5.21)-(5.24) hold, we have

N\ 1/2
) + || sgn(B7)]l2 < 2+/s. (5.24)

||BT ||

jEG

qoll2 < 2V/s,
a1l = || (T = X{ e X0, 7 Z7 /) qo]| < I1m — X{ o X, 727 /1l - (|l
s/log(es);

similarly, ||qa]l2 < ||q1]l2/+/log(es) < 2+/s/(log(es)

lqulla < lquill2/2 < --- < || qall/2V 2 < 2371\/5/(108(63)), 1> 3.
(5.25)

For large constant C > 0,||qu,,. |l < 237€"8(¢s) /s /log(es) < cmin/8. Notice that

ur = ZYL T= Z 1 —o))T = (otg — )1 = (W) — (G )Ts
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we know that
|lur — (Wo) 72 - max || X7 Xi/n2 = ||qu.. |2 - max || X7 Xi/n|2 < Cmin 1 o Cmin
i€Te T™M max ieTe T/M X 8 2 8
In addition,
l’1'1’\&)(
wentlleo < 3| X @nm X ek /m - ((Xl—l)THoo
1=1
lmax
<|lqoll2/(16v/3) + ||q1ll2/(16+/s) + Z llgi1l2 - (10g(es)/s)1/2/16
1=3

<1/8+1/8+ Zz‘* Y16 < 1/2.

1=3

Since

lmax

Idoll2/(16v/3) + [[q1ll2/(16v/s) + Y _[lqi-1]l2 - log(es)/(16y/5)
1=3

lmax

1 4-1
<§+ ZZ Vs/(log(es)) - log(es)/(16+/s) <

e

HHl/Z(u( G) Hooz \||H||C10||2/ (16v/5) -+ qull2/ (16v/3)+ X ™3 | q1_1][2-log(es) (16\/5)(u(G°))||oo,2

-
HHqu 1ll2/(16V/5) (X GC)}X[IL,TC}ql—l)H
1=1

00,2
lmax
+Z H”ql—lHZ‘IOg(eS /(16/s) (XT GC)}X[IL,TC]qlfl)HOO2
1=3 ,
lmax
<Z\/_||q1 1]2/(16V/5) +Z\/—||q1 12 - Tog(es)/(16/5)
<\/%/2.

Thus, the construction of u satisfies all required condition in Lemma 2.2.1 with
probability at least 1 — C exp (—c2). This has finished the proof of this lemma. [
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5.1.3 Proof of Lemma 2.2.3

Let g(S) be the group support of set S, that is, g(S) ={i1,...,ix}if S C U] 1(i5) and
SN (ij) are not empty for all 1 < j < k. Lemma 5.1.4 Part 1 and the union bound
show that

Cmin Cmin
P(ﬂveRp Ivllo < 25, Ivlloa < 259, ~ IXVI3 & [ <22 11 ¢ mm+7)uvn%})

Cmin Cmin
:IP(EIXERZSAP,SQl,"',P/|5|:2$/\Pr|9(S)|<289,H||XSX||§¢[ V1B, (Coin + )IlvlliD

2
2s/A\p 1 2 len Cmin 2

< > P ¥x € R*P, —||Xsx[l3 & | Z5I1VIB, (Coan + =5 V113

SC{1,...,pLISI=2s/Ap,1g(S)I<2s4

1 Cri

< > P (15X — Zall > S22)

SC{1,...,pLISI=2s/Ap,1g(S)I<2s4

C s

< —X{XsZgs—1 e
< )3 P (ILXIX s — Tl > o

SC{L,...phISI=2sA\p,Ig(S)I<2sg

d

< [(25 ) ] ( ) 2exp (Cs —cn)
ed \ > [e-2s4b

g(zs ) < > -2exp (Cs —cn)

<2exp (2slog(esq b/s) + 2s4log(ed/sg) + Cs —cn)
<LRe ™.

U

5.1.4 Proof of Theorem 2.2.2

Ifd >3sgand b > 3s/sg,by (5.52), we can find QV,...,QM™N) < {1,...,db} such
that QW] = sg[s/sg], 1Q) | = T B — for all1 <i<N,1<k<d,
and

QW N QY| <8sqls/sq]/9, 1<i#j<N, (5.26)

Hkl’Q nal ‘ 2Ls/sgj/3}(<2sg/3, 1<ij<N, (527)
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sq/3 s/9
whereN:K d )g ( b ) J.Foranylgj<db,1<i<N,define

2v2s4 2V2|s/sg]
1 : (1)
Bgi) — ) Asgls/sql4+Agsgy/Ls/sg)” jeq
j 0 J ¢ Q(i)’

then [|BM o <'s, [|[BV]|o2 < sg. We consider the quotient space
R /ker(X) = {[x] := x + ker(X),x € R®}.

Then the dimension of R4°/ker(X) is rank(X) < m. Define the norm ||[x]|| =
infyerer ) {A X — V|1 + Agllx — V|l12}. For any vector x € R4? satisfying ||x[jop <
2s, ||x|lo2 < 2sg4, note that x — v with v € ker(X) satisfies X(x —v) = Xx, by our
assumption, we have ||[x]|| = A||x|l1 + Aq/x[|1,2- Thus [[[BV]|| = --- = [|[[B™N]]| = 1.
Moreover, by (5.26) and (5.27),

1
18/sg] +Agsgr/|8/5¢]
N 2s4]8/s¢]
/9(7\59 |s/sg] +Agsgr/ LS/SgJ),

HB(U _ B(J’)Hl :}\S (’Q(i)’ + |Q()')’ _2’Q(i) N _Q(J'J|)
9

and

d
i j (1) ()
HBM - B(])HLZ :Z ||f3(11<) - B(L)“Z
k=1

(1) _ o)
> ) B — Bl

kESi;
S 1 2[s/sq] IS
Asgls/sg) +Agsgr/[8/s4] 3 v
1 2|s/sgq] Sg

2 4
Asgls/sq) +Agsgr/[8/s¢] 3 3
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where S;; = {le&)), ng) are not empty sets,

Since ) — B0 is (2s,2s,)-sparse,

QEQ) N QE%‘ < 2Ls/sgj/3}.

18197~ (U] =8 — BOI =A B~ B+, 89— B, , > 275

By (Foucart and Rauhut, 2013, Proposition C.3), we have N < 107°X) < 10™.

Therefore we have
d sg/3 b s/9
— - T— <107,
(2\/§SQ> (2\/§[s/sgj>

which means that n > c(sglog(d/sg) + slog(esgb/s)).

Ifd<3sgorb < 33/sg,letsé =[sg/3]V1>54/5s" = [5/15]\/sé,then d> 35&

and b > 3s’/s;. Since all (2s,2s)-sparse vectors can be exactly recovered by the
{; 4+ ¢, minimization and s’ <'s, sé < s4, we know that the {; + {;, minimization

exactly recover all (2s’,2s )-sparse vectors. Therefore, we have

b 5
n >c(sglog(d/sy) +s'log(esyb/s’)) > c(%g -log (%) + 2 log (% V eb))

>c'(sglog(d/sg) + slog(esqb/s)).
(5.28)

g

5.1.5 Proof of Theorem 2.2.3

We would like prove Theorem 2.2.3 by contradiction. Let

¢ = min 1c’ ¢ Co = min ic—216c2 Co = max C—ZL
- 8 Vs’ 7 2e’2C2’ 0T c2’32c2 [’
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where ¢’ is a uniform constant such that n > ¢’(slog(esgb/s) + sglog(d/sg)) if the
conditions in Theorem 2.2.2 are satisfied. Assume for contradiction that

n < co(slog(esgb/s) 4 sqlog(d/sg)). (5.29)

Let so = s/sg, define the norm || -

| =1 ll1 + v/Sol| - [l12- Let B = {x € RP|||x|| < 1},

( ’ ) L™ is a subspace of RP {BGBFEL“ ||B||2}
with dim(RP /L™)<n

By (Foucart and Rauhut, 2013, Theorem 10.4), we have

C C
d™(B,RP) < su —A(X < —sup( + /s 2) = —. 5.30
( ) BEIEHB (XB)I2 \/gﬁe}; 1BI[1 + v/Sol[Bl[1,2) s (5.30)
If
s 1/2
1 S c-dlog(esgb/s)
n Py > : - °9 9
d™(B,RP) > cmin { N [( X log< - +log(esgb/s) | /n ,
(5.31)
since
C _ovG_ofsy_ ¢
GSTE ST U
(56.30) and (5.31) together imply that
c2 cidlog(esgb/s)
n> I sqlog - +slog(esgb/s) | . (5.32)
By (5.29),
cidlog(esgb/s) cidlog(esgb/s)
n >c0(slog(esgb/s) +sglog(d/sg))
idlog(esgb/s)

>2e
slog(esgb/s) + sglog(d/sg)
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>dlog(esgb/s) edlog(esgb/s)
> : g g
Zminge slog(esgb/s) ' sqlog(ed/sy)

ed 1/2
> min e—d, " 2(6—‘1) . (5.33)
Sg log(g) Sq

In the last inequality, we used x'/2 > log(x)/2 for all x > 1.
Combine (5.32) and (5.33) together, we have

2

n> ZC_CZ (slog(esgb/s) +sqlog(d/sg)) = co (sloglesyb/s) + sqlog(d/sq)) >,

contradiction!

Thus, we only need to prove (5.31) based on (5.29). We still use the proof of
contradiction. If

n - . 1 Sg Cidlog(esgb/s) 1/2 |
d™(B,R?) < cmin T ?log o +log(esgb/s) | /n =,

then there exists a subspace L™ of R? with dim(RP/L™) < n such that for all
v € L™\{0},

[Vll2 < w([[v]lx + v/sollVl12) -

Let B € R™*P satisfying ker(B) = L™. Lets’ = 55,55 = [s'/s0], by (5.29) and
(5.33),

s 1/2
150—1/2 >cs;Y2 > 1> cmin /&’ ( 52 log(d/sg) +log(esgb/s) ) S 1 12
8 s "\ co(sqlog(d/sg) + slog(esyb/s)) 42

which means that
1<s " <s, 1<sé<sg.

1 / 1 / / ;
Moreover, we have g7 <'s’ < 3 7. For any (2s',2s)-sparse 3 with support set T
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and group support set G, and v € ker(A), by Cauchy-Schwarz inequality,

[vrlls + V/sollvie) e <V2s'[[vrlla + v/S0y /285 [[VTll2 < 2V2s|lvr|l2

<2\/_T kvl + v/sollvlh2) = (IIVII1+\/8_0||V||1,2),

ie.,
[vrlli +vsollvieylliz < [[vrelli + vsollvicell1,2-

Based on Cauchy-Schwarz inequality and the sub-differential of ||3]|; and ||B |12,
we have

B+ Vvl + v/SollB + V12
=B+ + sgn(pB VT+”VT°”1+\/_<”B”12+ZHB T +Z||v]||2>
(3)

eGe
2(1Bll — [vrll + Ivrells + v/so (IBllz — Ivig)ll2 + [vige) ll2)
>[1Bl1 + v/sollBll12-

By Theorem 2.2.2,

n > c'(s'log(es,b/s")+sylog(d/sy)) > c’s’ {log (e;sb) + —log(sod/s )} ¢’s’log (e;gsb) .

b c'>dlog(esgb/s)
e (o (52) + g (A0

¢ (1 Sg c%dlog(esgb/s)
>64M2 <Zlog(esgb/s) + ?log ( -

>n

Thus

provided that ¢ = min {%, c’ 1/ 256} contradiction! This means that (5.31) holds if
(5.29) is true.
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Therefore, we have finished the proof of Theorem 2.2.3. [

5.1.6 Proof of Theorem 2.3.1

Let A = CG\/Sbg(esz)TgIOg(d/SQ)n,?\g = /8/sgA. By (5.58) in Lemma 5.1.2 and
(5.73), one has

1
.
v (HHWX oo ? E%)
1
<P (31 < <4, |Hpa e, > 15he Nl > 5~/_n02) +P (|elle > 5v/no?)
lella > 5\/n02) +P <H£H2 > 5\/n02>

slog(esgb) + sq log(d/sg)) Lo
Sq

1
. T
<P (31 <5 <4 |[Hp X6, = 157

<dexp (—C

=exp (10g(sg) +log(d/sg) — Cslog(esgb) Jsr Sg log(d/sg)> Lo
9

<_C51°g(esng * S log(d/sg)) te ™,

Sg

<exp

(5.34)
By the definition of 3 and KKT condition, we have
XT(y—XB) +Az1 + Mgz =0,
where

{ (z1)i = sgn(Bi), B #0; (2)5) = 1525 B #0;
|(Zl)i| <1, Bi =0; ||(Zz)(j)||2 <1, B(]’) = 0.

Therefore,
HAXT(XB = y))[looz < Ag.
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(5.34), Lemma 5.1.5 Part 1 and the previous inequality together imply that

1 slog(esgb) + s4log(d/s n
P(HH(H&]J?\(XTXMHMZ (1+10)7\)>1—exp (—C glesqb) o log( /9))_6 )

Sg
(5.35)

where h = p — p*. By the definition of B, we have

ly = XBIZ +AlIBIL +AglIBlh2 < ly —XB* I3+ AIB* [l + AglIB* 12

(5.4) and the previous inequality show that

IXh13 + Ahrell1 + AglIhie) 1.2

5.36
<2(Xh,e) — A -sgn(ps) Thy — QZ (5.36)

jEG

+ 2N[|BTellr + 2Ag (| Brel1,2-
HBT

First, we consider (Xh, ¢). Denote P = X1 (X7 X71) X7, since Xh = Xtht +
XTcth and (ITL - P)XT = O,

[(Xh, &) < [(PXh, &) + [{(I, — P)Xh, ¢)|
= [(Xg Xh, (X7 X)X &) | + [{(In — P)Xehre, €)] (5.37)
= [(X7 Xh, (X7 X7) ' X7 e)| 4+ [(Xgehre, (In — P)e)] .

Therefore, to give an upper bound of |(Xh, ¢)|, we only need to bound | (XTI Xh, (X§X7) X e€) }
and [(Xychre, (I, — P)e)l, respectively. By Part 1 of Lemma 5.1.4 and also notice
that Cmin < 0~min(z) g 0-max(z) g Cmax;

1 -1 2 1 Con
P —X+X > <P(||=XIX:—Z > o
(H<n ) m) (1% — Zrrl > 32

1 _ Cmin
<P (XX - L > )

<2exp (Cs —cn) < 2exp (—cn).

(5.38)
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(56.38), Lemma 5.1.6 and Cauchy-Schwarz inequality together imply that with prob-
ability at least 1 — exp (—CSlog(esf’bHSglog(d/sf’)> —2exp(—cn),

S

NG

_ 2 2 s
(X X7) " X1 el <C—_?||X¥E||2 < EHXI‘EHOO

min min

<Ci\/nslog(esgb) + sglog(d/sg)
s

s
02 < C—),
n

2 /s S-S
0GXe) " XFelha < Vgl (XFX0) X el € Y2 xfell, < €0,
Combine Lemma 5.1.5 Part 2, (5.35) and the previous two inequalities together,

slog(esgb)+sglog(d/sqg) _
g . g 108 g > —3e cn,

with probability at least 1 — 2 exp <—C

_ 11
[(XTXh, (XTX7)'XTe)| < ?\H (X7 X71)7'X5 elli+ 7 T ol (XFXT) XT ez
(5.39)
<C—7\2.
n

Similarly to the proof of (5.34), also notice that ||(I, — P)e||2 < || and X(ge) is
independent of I,, — P, we have

: (HHJOA (e (e =Pre) | > 11_07\9)
i (X0 =P > 5

+P (el > 5vno?)
slog(esgyb) + sglog(d/sg)) L

Sg

<P <3j e G,

el =5 T‘LO‘2)

<exp (—C

Sg

By Lemma 5.1.5 Part 2 and (5.34), with probability at least 1—exp (—C slog(esqb)sqlog(d/s,) ) —

e

1
X9 hee (Tn = Pled] = [{ige), XToe Tn — Ple}| < seMlINaer i g5 Rl ha
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Notice that Xyc\(ge) and I,, — P are independent and [T\ (G€)| < |G| < s4b, by
slog(esgb)Jrsglog(d/sg))
S

Lemma 5.1.6, with probability at least 1 — exp(—C

— e_n,

|(Xrev (o) hrey (o), (In — P)e)| < [[hrey (e 11X ey (o) (Tn — Pe|loo

< C\/nslog(esgb)+sg log(d/sg)
s

0?[[hrey(ge)
< 5Mhrey ool
S poiihrevee i

Combine the previous two inequalities together, we have

[(Xtehre, (In — P)e)| < ‘<X(Gc)h(G°)/ (In — P)5>| + ‘<XTC\(GC)hTC\(GC)’ (In = P)€>‘
1 1
SqgMMhrell + g5halihee [l
(5.40)

and (5.40) together, we know that with probability at least 1—C exp (—C sloglesqb)+ s log(d/s,) ) —

s
Ce °m,

with probability 1—C exp (—c slog(esgb)t s108(d/sg) ) _Ce°™. Combine (5.37), (5.39)

S 1 1
Xh, e)| < C=A? + —A|lhte ity W PN A1
[(Xh, €)| Cn + 35 [hr ||1+10 gllhge iz (5.41)

Moreover, by the proof of Theorem 2.2.1, with probability at least 1-C exp(—cn/s),
there exists an approximate dual certificate u € RP in the row span of X satisfying
(2.18), and [[vr — sgn(p%)||» < §, where v is defined in (5.1). Similarly to (5.5), we
have

. V0B 5 ho)
Sgn(BT)ThT + Z —HB* mH !
jeG T,() 112
> — |[vr —sgn(BT)[2 - [[hrll2 — [hrel1/2 — V/Sollh(ge) [l1,2/2 + (h,u)

Cmin
-5 [hrllz = [[hrell1/2 = v/solhGey[l12/2 + (h,w).

By Lemma 5.1.7, with probability at least 1 — Ce <™/5, u = XTw with |[w]| <



125

C+/s/n. Therefore, with probability at least 1 — Ce ™5,
[, wl = [(Xh, W)l < [[Xhl2][w]l2 < Cv/s/n|[Xhl]2.

The two previous inequalities together imply that

V3B 5 ho)
“ ﬁilk',(j) HZ

sgn(B7) Thr+)

Cmin
2 ——g lIhrllz=lhrelli/2=v/s0l[h(Gelh 2/2—C /s /n|[Xh]l2
jeG

(5.42)
with probability at least 1 — Ce™<"/*.

_C slog(esgb)+sglog(d/sg)
s

Combine (5.36), (5.41) and (5.42) together, with probability atleast 1—Ce
Ce—¢n /s ,

3 3
X3 + == Allhrelli + ==Agllh(ge) [h2
. 10 (5.43)
<CE)\2 + gm7\||hT||2 + Cy/s/nA|[Xh[2 + 2A[|BTcll1 + 2Ag[IBTel[1,2-

By (5.14), (5.35) and (5.38), with probability at least 1—exp (—C slog(esgb)+sglog(d/sg) ) _

Sg
—C
Ce™cm,

el <[1OGEX) X Xrhr |2

< IXF Xh — XF Xrehrel|2
< (IXFXhJ2 + [|XT Xrehre )
CminT
<2 [Hui, (X XR) | +E\/§7\—I—nz IXT X /n2lh]
T CminTt AT 2770 2 1% 2lhy
2 T 11 .
gcmmn \/%”H%;\(XTXMHOOQ%-E\/@H—nrirg)c(HXTXi/nHZHth”l
2 11 11 n
< _}\ -~ A - h c
CminT <\/§10 9t 10\/g +5lhr Hl)
5 /s 1
<2 Vi L (5.44)

min T Cmin
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The fourth inequality comes from ||x|2 < ||Ha(x)]]2 + /s for x € R®; the fifth
inequality holds since || X7 Xhlo2 < sgq
(5.43) and (5.44) together imply that

7 3
IXR|lz+ ZgARrell + 750 lhse 12 <C— "N+ C/s/AXR |y + 2A| B 1 + g | B2

with probability at least 1 — C exp(—C2128(¢3a?)+3a108(d/3a)y _ ce—en/s Algo notice
that

Cy/s/MA|[Xh|2 < HXthJrC 22,

slog(esgb)+sglog(d/sqg) . —cn/
g . g g ) Ce n s,

with probability at least 1 — Cexp(—C
S * *
Il + Vsolnges lh < € (SA+ [B5ll + Vool Brelhz) . (5:45)

From the proof of Lemma 2.2.1, we know that (5.8) and (5.13) hold with proba-
bility at least 1 —2e™“™. By Lemma 5.1.5 Part 2 and (5.35), with probability at least
1_ exp (_Cslog(esgb)+sglog(d/sg)) . e,n,

Sg

11
| (X3hs, XR)| —\ e, Xe Xh)| < 75 (Mhelh +Ag[hll2)

— (5.46)
The second inequality is due to [[hz[lo < 3s, ||hz/o2 < 254 and Cauchy-Schwarz
inequality.

Combine (5.8), (5.13), (5.45) and (5.46) together, with probability at least 1 —

(_Cslog(esgb)+sg log(d/sg) )

: — Ce /s, we have

Cexp

Cmin 1 _ _
TthH% <E47\\/§||h~||2+\/§Cmaxl|h~||2 (V25721 + 542l e [11.2)

1
<AAV5 [Nt 2+ V3Coax I f( A+ 1Bl + vsoll Bz )
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S
<C (%x X I -

1 1.
T8l + =g Hl,z)

(_Cslog(esgb)+sg log(d/sg) ) — Cefcn/s,

S

Therefore, with probability at least 1 — C exp

1
thumc(f A+ Bl + mumcum). (5.47)

By (5.11), (5.12), (5.45) and the previous inequality, also notice that e ¢"/s <
Cslog(eSQb]+SSQIOg(d/sg] (_Cslog(esgb)+sg log(d/sg) )
S 4

e , with probability at least 1 — C exp

Iz <l + > Ihnll+ 3 heylls < hall + V2572 e 2 + 55l ge 1.2

i>2 j=2
1
<c(f f||ﬁTc||1+¢—S_g||rsf;c||1,z),
(5.48)

slog(esgb)+sglog(d/sg) )
s 7

i.e., with probability at least 1 — Cexp(—C

2(s,log(d 1 b 1
)l < (\/o (s4 log( /sgr)L+s oglesgy )) \/_H[?,TCHlJr \/%HB?CHLZ).

Moreover, if 3* is (s, sq)-sparse, then ||B}c[|1 = ||BFc||12 = 0. Therefore, with
(_Cslog(esgb)+sglog(d/sg))

s 7

probability at least 1 — Cexp

Co?(sqlog(d/sg) + slog(esyb))

InE < 2
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5.1.7 Proof of Theorem 2.3.2

First, we consider the case that d > 3s, and b > 3s/s4. Let M, ..., w™) be
uniformly randomly vectors from

A ={w {0, 1}* ) Twy 20 = sg lwillo = [s/sq] if wig) # 0},
j

Denote QY = {jlw)m ) QE% ={jlj € (k),ngi) # 0}and BV = tw@, for all
1 <1< N,1 <k < d, where Tis a parameter that will be specified later. Obviously,
1B o = sgls/sq] <s, therefore ||BH — BU)|13 < 254[s/sq]T* < 2572

Moreover, if [QY N QU] > 8s4|s/s4]/9, then we must have

Hklwﬁfywm

o nof)|= ZLs/ng/?)H > 2s4/3,

otherwise [QV N QU| < B2 [s/s,| + 282|s/54]/3 < 854|5/54]/9, which is a con-
tradiction.
Therefore,
P8~ B <2/l
=P (IQ" nQY|>8 LS/S J/9)
P (Hklw w?) hnap| = s/sgj/za}( 254/3)
<Zii[239/31 |: ’&S/[SZQLJS/sgj/ﬂ (LS/tng)(lEs/Lssg/jsgg)} (Ls/ng) (sd 711) (549)
(sdg>(|_s/bsgj) ’

-y (%) (S(dg;;l). 5 (150 %

1=[2s4/3] t=[2[s/sg]/3] Ls/sg]
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Note that
d—1 (d—1)--(d—sg+1)
(sg—l) _ (g DT _ Sglsg—1)---(sg—1+1) < (S_g)l
(%) d(d—1)--(d—sq+1) dd—1)---(d—1+1) ~\ad/’

Sg Sg!

The inequality holds since %@ < %‘1 forall 1 <1< s,
Similarly, for 1 <t < |s/sq],

—1s/sq] -

(}Es/sgjft) < (Ls/bsgjtft) < (LS/SQJ)t

b S b S .
(Ls/sgj) (Ls/sgj) b

Combine (5.49) and the previous two inequalities together, we have

P ([IBY = BU3 < 254[5/5)7/9)
S F )| T () (e T
h L/ \d t b
1=[2s4/3] | t=12[s/s4]) /3]
Sg s 1
< 9
2 1

| t=12(s/54/3]

r 1
yls/sg] < |s/sg] >2LS/89J/3] (5.50)
b

)
>(%9)1. _ Ls/iu (LS/thJ) (L,S/%ﬂ)zwsgm
)
)

s/s 59/
e [(mwsg J>2L / ] 3
d b

B d sq/3 b s/9
SetN = | () " (svay) | then

P(V1<i#£j<NJ|BY —BUE > 2s4|5/54]T/9)
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>1—

NN=1) (2v2s, 7 (2v2ls/s01 )
2 d ' b

>0.

i.e., the probability that *),...,3(N); QM ... QM) satisfy

312 < 25g[s/s) /9 < min [p) — U} < 257, (5.51)
i#j

QW N Q| < 8s4]5/54]/9, VI<i<j<N (5.52)
is positive. For convenience, we fix 1), ..., ™) to be the vectors satisfying (5.51).

Denote y'V) = XB + ¢ forall 1 < i < N. We consider the Kullback-Leibler

divergence between different distribution pairs:

) ) (1) X
DKL«y“LXL(yU%xnzzEwmx)Pog<EﬁLf_%)},
where p(y'V, X) is the probability density of (y'*, X). Conditioning on X, we have

py',X) IX(B™ — B3
E(y(j),x) |:10g (W |X = 262 2.

Thusfor1 <i#j <N,

IX(BY — BONE _ n(B® —pU)TE(R — 1)
Ex =

D (1) G5) _
KL ((U ,X), (Y /X)) 252 202

i) _pnpG)2 2
_3nlpY B3 _ 3nst
4072 20?2

(5.53)

In the first inequality, we used omax(Z) <

N1
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By generalized Fano’s Lemma,

o) 3nst? 1 2
mf sup E|f —B|. > ST/9 (1_ ﬁ) ]

BeFss, 2 log N

Since log N =< sglog(sd ) + slog( ) by setting T = c\/ ( log(sg ::“Og( - ))/

we have

inf sup EJ|p—Blf3 > (mf sup EJ|f — B2

B BEF ., n

BEJFS Sg

Ifd <3sgorb <3s/sg, lets; =[sq/31V12>54/58" =I[s/15] Vs, thend > 3s
and b > 3s’/s;. Similarly to (5.28), we have

s’/ log(d/s!) + s'log(es’b/s’)
inf sup E||f —BJ3 >inf sup E|p 3> 7" (55 logld/sg) + <" logles;b/s))
BE]FSSQ BE]F /, é n
0% (sqlog(d/sy) + slog(esgyb/s))
- .

O

5.1.8 Proof of Theorem 2.3.3

The proof of Theorem 2.3.3 relies on the following key lemma, which shows that
2~ !is in the feasible set of the optimization problem (2.23) with high probability
by choosing appropriate o« and y.

Lemma 5.1.1. By setting oc = C\/Sk’g(eSg [roglogld/sg) y = /5 -oc i (2.23), we have

sn

)2 (sglog(d/sg)+slog(esgb/s))

1 1 b 1
P (max IHaler = —XTXZ e ooz < y) > 1-dexp <—CS oglesqgb) + sqlog(d/se)

1<igp Sg

)
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Note that Y = Xp3* + ¢, we have

VAR —pT) = v (B B NXT (Y- xfs)) —Vn (1 - %MXTX> (B—B*H%MXT&

Lid.
Since £; ~ N(0, 02), we know that

1 . NP
VﬁMX%m~N(QMZMTy

Denote h = p — B*. Since p* is (s, sg)-sparse, by (5.45), (5.48) and Cauchy-Schwarz
(_Cslog(esgb)+sglog(d/sg))

s 7

inequality, with probability at least 1 — C exp
il < hrerfl + (e fl < Vslhrllz + [hrells < VslIRll + [hrelly < CA.

,/S'Sg}\

n

M2 < [[hie)lhztlhelle < Vsglihallzthe e < VSgllhla+[hce iz <

In addition, Lemma 5.1.1 shows that Z~! is in the feasible set of (2.23) with proba-
bility at least 1 — C exp(—C28lesaP)¥sqlogld/se)y By the definition of M,

S

max Ho(ei — IMT €)oo = max Ho (i — Z11)] 002 < V- (5.54)

Combining these facts, by Lemma 5.1.5 Part 2, we must have

1 N ~ A A
H“ — —MXXT)(B—p")| =max |(e;—EM e, h)
<alfhfli +vlh12
<Clon+ Y29
n n
_ C(slog(esqb) +sglog(d/sg)) o

n

with probability at least 1 — C exp(—C 21283017 5a1081d/56)) Thig has finished the
proof of (2.24).
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Next, we consider S By (56.54) and Lemma 5.1.5 Part 2, we have
1— (e, E1hy) = (e, 65 — £y) < |leills +vlleilli2 = « +.
Therefore, for any ¢ > 0,
my Sy > W Siyde(l—a—y)—cley, Z1hy) > min {mTEm+c(l—a—vy)—cle, fm)}.
Since m = ce;/2 achieves the minimum of the right hand side, we have

2
S > c(l—a—vy) — szu.

If$; >0foralll <i< p, by setting ¢ =2(1 — o —y)/iu, we have

) 1—a—~vy)2
> E 2 vicicn, (5.55)

Moreover, by Lemma 5.1.3 Part 2 with u = v = e;, we have

P (‘}iu — L = Cn;“) < 2exp (—cn).

By the union bound,

<

- Cmin
Zi,i_zi,i| = > )

2.

<db - 2exp (—cn)

P

1

<2exp (—cn).

Therefore, with probability at least 1 —2exp (—cn),

N Cmi .
gzi,igcmax'i'%/ V1<1<p

Cmin

2
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(5.55) and the previous inequality together imply that with probability at least
1—2exp (—cn),

(2.24) and the previous inequality together imply (2.25). O

5.1.9 Technical Lemmas

We collect all additional technical lemmas and their proofs in this section.

Lemma 5.1.2 (Bernstein-type Inequality for Soft-thresholded Sub-Gaussian Vectors).

Suppose the rows of X € R™*P are independent sub-Gaussian vectors satisfying Assumption
2.2.1. w € R" is a fixed vector, () is a subset of {1, ..., p} with |QQ] = r. Then

]:ED <
k=1

mn
E Wka,Q
2

For any fixed vector w € R™ and fixed index subset Q C {1,...,p}with |Q] =,

2\/CmaXKHWH2.<\/_+\/_>> exp(—t). (5.56)

P (HH(5\|W\|2)(WTXQ)H2 2 tHWHZ) < (Ut/é)rzj /\T) " exp <_(t/(K V Cimax) — (£/8) A ﬁ)i—/2>

T
" (Ht/é)zl) &P <_(t/('<\/$) — Ht/ém)i/z).
(5.57)

In particular, for any b > 7, if A = Cllw||, \/SIOg = bHS log(d/se) Xy = \/5/sgA, we
have

P ([[Ha(w™Xa)[, > Ag) < exp (—CSlog(eSQb) + 39 08d/ 89)) . (559)

Sg

Proof of Lemma 5.1.2. We only need to focus on the case where ||w|, = 1.
Let W = Xp X ng , immediately we know that W, o, ..., W, o are isotropic sub-
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Gaussian distributed. Then for any fixed w, w' Wg isalso an isotropic sub-Gaussian
vector such that for any « € R",

Eexp (W' Woa) =Eexp < XoZoha > =Eexp (wTXZ_l/Z(Zl/Z).,QZSgoc)
<exp (W(22) 0 Zg G l3/2) = exp (I|al3/2)
The last equation holds since (/%) .(£1/2). o = (ZV2£12)5 6 = Z0 0.
By the tail inequality of sub-Gaussian quadratic form ((Hsu et al., 2012, Theorem

2.1)),
P (HwngHi > k2 (r + 2\/ﬁ+2t)> < exp(—t).

By taking square-root of the previous inequality, we have

P (I Wall, > klwl - (Vi +v2t) ) < exp(-t).

Also note that
wXall, = [wWazifh ], < 4] T Wall, < 1212w Wall, < Vo
we obtain (5.56).

For the second part of proof, note that

P (|[Hs(w ' Xo)|| = t)

P (3A C Q, such that all entries of lw " X| > § and [w' XA ll2 > t)
i (3/\ C QA <, W Xall = t>

+P <EI/\ C Q, \/Wé > t, all entries of jlw ' X| > 6)

Z P([wXal2 >t) + Z P(w'Xal2 > t).

ACQ ACQ
IAl=[(t/8)2 AT IAI=[(t/8)%]

N
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By the first part of this lemma,

P (HWTXAHZ > \/@KHWHZJ{) < exp (— <t— \/W)z+ /2) .

Plug in this to the previous inequality, one has

P (HHé(WTXQ)H } t) g( ’ /\T) 'eXP <_(t/(K\/ Cmax) - (t/é) AN ﬁ)i/z>

[(t/6)2]
" (Ht;zsm) P (—(t/( v/ Conae) — /T (t/é)zw)i/z) .

Specifically, if § = C\/SIOg(eSF’b)tSQIOg(d/SQ), t=1/s/s40,

(/o) - VITTET] 5, [SBlE5) salglfs) o5

Sg Sg

Sg

>C\/slog(esgb) + s4log(d/sg)

Therefore, (5.57) shows that

3 2 slog(esgb) + sqlog(d/sg)
R S e B

I8P ey <_Cslog(esgb) + 84 log(d/sg)>
Sg

slog(esgb) + sq IOg(d/Sg))
Sg

<L2r%/%9 exp (—C

< log 2

slog(esgb) + sq log(d/sg)>

Sg

<exp (—C

n 2slog(eb) B Cslog(esgb) +sglog(d/sg)

)
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Lemma 5.1.3 (sub-Gaussian quadratic form concentrations). Suppose Z € RP is a
sub-Gaussian vector satisfying Assumption 2.2.1.

1. For any fixed w,v € RP,u,v # 0, w' ZZ v is sub-exponential such that for every
t>0,

P(ju"ZZ™v—Eu'ZZ™v| > t|ul2|v]]2) < Cexp(—ct/k). (5.59)

2. In addition, suppose X = [X],..., X 1T € R™*P is a random matrix with indepen-
dent random sub-Gaussian rows satisfying Assumption 2.2.1,

(2t
P ( > t||u||2||v||2> < 2exp (—cnmm {F' F}) .

(5.60)
3. More generally, for any fixed matrix U € RP*", the following concentration inequality

1 n
o Z u' X X v—u'Zv

k=1

in spectral norm holds,
]P (

Proof of Lemma 5.1.3. Since we can rescale u and v without essentially changing

[t
> t||U||||v||2> < 2exp (Cr— cnmin {F, ]

(5.61)

1 n
=) UTXuX{v—UuTzv
n

k=1

2

the problem, without loss of generality we assume |[u/|; = |[v|, =1. Let A =uv ',
thenu'ZZ™v=Z"uv"Z =Z"AZ. By Assumption2.2.1, EZ = 0 and |[(Z, &) |y, <
Ck. By Hanson-Wright inequality ((Rudelson and Vershynin, 2013, Theorem 1.1)),

P(ju"ZZ™v—Eu'ZZ"v| > t) =P (|ZTAZ—-EZ"AZ| > t)

<2exp | —cmin t t
SR AT A

(2t
<2exp |—cmin aa) |
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where
1/2 1/2
||A\|Hs=<Z|am-F> :<Zm|2> = ufalvll2 =1,
ij i)

IA]l = max [|Ax|l2 = max [uwv x|l = [[uf> max v'x| = [ull2|[v]l = 1.
[Ix[l2<1 lIxll2<1 lIxll2<1

Therefore, for every t > «?,

P (|uTZZTv — EuTZZTv} > 1) < 2exp (—ct/K%).
Thus, there exists a constant ¢ < log 2, for every t > 0,
P (|uTZZTV — EuTZZT\)} > 1) < 2exp (—ct/K?%).

Notice that Eu' X X[ v =u"Zv for all 1 < k < n, by Bernstein-type concentration
inequality (c.f., (Vershynin, 2010, Proposition 5.16)),

o[ttt
P >t] <2exp | —cnmin i .

This has finished the proof of (5.60).
Finally, we consider (5.61), which can be done by an ¢-net argument and the

1 n
o Z uw XX v —u' v

k=1

result in (5.60). For any w € R”, ||[w|, =1, set u = Uw in (5.60), we have

P > tHUwH IVIl2 | <2ex cnmin vt
Z 5 20Vil2 | s p 2]

By (Vershynin, 2010, Lemma 5.3), we can find a %-net N% of STt ={x|x € R", ||x]| =
1} with IN% | < 5". By the union bound,

1 n
— D wlUTXX{v—wU Iy

k=1

1 n
— E wiuU X X v—w'u'zv
n

k=1

P(VWEN;,

t
> EIIUWlleVIIz)
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. [t
<5" - 2exp [ —ecnmin ara() (5.62)

Forany g € R",g # 0, set x = ” T € argmax, cpe (1,1 wTgl, we can find y € N1

such that ||x —y||> < 1. By triangle inequality,

1
gl =y gl=Kk"gl—ly gl <x"g—y gl < IIx—yllllgl < =gl
2

Therefore,
1 ¢ 1 ¢
sup — Z w U X Xgv—w U™ Sv| <2 sup |— Z w U X Xy —w U Sy,
werr [wih=1 | 5 weNy [T

The (5.62) and the previous inequality together, also notice that |[U|| = sup,, cgr 0 ),=1 [UW]l2,

we have
1 n
P ( sup — ZWTUTXkXZV —w'u'zy| > t||UHHv||2>
weR|w|,=1 | T+ k=1
1 ¢ t
<P | sup |— ZWTUTXKXIV—WTUTZV > §||U||||v||2
W ke (5.63)

t
ZwTuTxkxkv WUy > §||uw||2||v||z>

<P (‘v’ N%
t
<57 2exp( nmm{ 4,K2}>

Finally, note that

1 n
- Z WTUTXkXIv —w'u'zv|,
k=1

1 n
— ) UTXX{v—UTxy
k=1

= sup
WEeRT™, [[w][z=1

2
we have proved (5.61). O

We collect the random matrix properties of X in the following lemma. These
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properties will be extensively used in the main content of the paper.

Lemma 5.1.4. Suppose X = [X{,..., X 1T € R™*P is a random matrix with independent
random sub-Gaussian rows satisfying Assumption 2.2.1.

1. Suppose T C{1,...,p}is with cardinality s. Then,

2?2t
> t) < 2exp (Cs — cnmin {F, F}) ; (5.64)

2. For any fixed vector « € R*, 8 > 0, and fixed index subset O C T¢ satisfying
QI =7, t >8> Clmaxiere | Zi 127 1 2)]| ]2,

1 _
P (HT—LXIXTZT}T — I

P (|[Hs(a" X Xa /), > 1

T

_ 2 t
<Lz ) P (CLFI AT —enmin | <z’ oz 1) e

+< ' ) exp (C((t/é)ﬂ—cnmin{ t ¢ }) ;
[(t/8)%]) kK43 <Pl ) )7

Here, H\ () is the soft-thresholding estimator at level A.

Proof of Lemma 5.1.4.

1. The first statement is via e-net. Denote Wt = Xt Z{lT/Z, then the rows of W+
are independent isotropic sub-Gaussian distributed. For any fixed vector
x € S5 = {x: x € RS, ||x|], = 1}, by (Vershynin, 2010, Lemma 5.5), Z; =
((Wr){,x) are independent sub-Gaussian random variables with EZ? = 1
and ||Z;||y, < Ck. Therefore, by Remark 5.18 and Lemma 5.14 in Vershynin
(2010),(|Z% — 1|y, < 2/|1Z%ly, < 4]|Zi]3,, < Cx®. Bernstein-type inequality
shows that

1 t
P (‘EHWTxﬂg—l‘ > 5) =P (

1 n
E;(Z%—l)

>t < 2ex cnmin t

t
2

<))
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By (Vershynin, 2010, Lemma 5.2), we can find a }L-net N% of Sl ={x:x¢€
R*, [Ix|[2 = 1} with [N;| < 9°. The union bound tells us

1 5 t . [t ot
P <71<1€1%>£ E”WTXHZ — 1’ > 5) <9°-2exp (—cnmm {E,z}) . (5.66)

By (Vershynin, 2010, Lemma 5.4),

1.+ 1. + . 1 2
||EWTWT L] < 2){161% <(EWTWT_IS)X/X> _22% EHWTXHz_l'-
4
(5.67)
Since Cmin < Omin(Z) < Omax(Z) < Ciax, we have ||Zl/ 2l € VCoax and
[p= 1/2H < 1/4/Cmin. Therefore,
1, -+ . 12 1.+ 1/2
HT_LXTXTZTT Ll =[Z¢T WTWT I
1/2 1/2
<=7 H||—WTTWT LINET Y (5.68)
CI'I'IEIX
STEs IAwrws — 1.
min Tl

Combine (5.66), (5.67) and (5.68) together, we have arrived at the conclusion.

2. Now we consider the proof for (5.65). Note that ||[Hs(cc" X7 Xa)|l2 > t implies

that there exists A C Q such that all entry of |« " X{ X| are greater than 3,
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and |||ocTX¥XA| — 5H2 > t. Thus,

P (|[Hs(e" X1 Xo/m)[[, > 1)

P (3A C Q, such that all entries of o' X{Xa/n| > §,and |[a” XTXA/n[2 > t)
<3Ac Q, VA < t, | XTI XA /1|2 > )

+P (3/\ C Q,/IAI5 > t, all entries of |o' X7 Xa/n| > 6)

< Z P (HocTX¥XA/nH2 >t) + Z P (all entries of |ocTX¥XA/n‘ >0
ACQ ACO
IAI=L(t/8)2|Ar [AI=T(t/8)]
< ) P(le™XiXamlezt)+ Y P(la"X{Xa/m]], > 1)
ACQ ACO
IAI=1(t/8)2]Ar IAI=[(t/8)%]

(5.69)

Since t > & > Cmaxiee ||Zi,TZ{1T||2||oc||2, we know that no matter |A| =
[(t/8)*] Aror [(t/8)],

2CmaxV/ [ (£/8)?] maxHZlTZTTHQ lleel2 < < 2Cmax V2(t/3) rnaxHZlTZTTHZ llel2 <

By Part3 of Lemma5.1.3, forany A C Q, t > 2Cpaxy/|Al maxicre HZi,TZ?,lTH2||°‘||2/
we have
P ([ X7 Xa/m |, > 1)
<P (||l "XT XA/m —Ex" X7 Xa/n|, = t — ||E«’ X7 Xa/n||,)
<P (|l "XT XA /M —Ex" X7 Xa/n||, = t = [[Eare],)
1/2
=P [ [|«"X{Xa/m—Ea"X{Xa/n||, >t — <Z(zﬂo¢)2>
ieEA

<P (HoﬁxixA/n —Ea"X{Xa/n|, > t — /Al max IZi,Tod)

SIP) (HOLTX:I-FX/\/H — IEocTXIXA/nHz 2 t— \/ |/\| llrel_al_)c( ||Zi,TZ1T,1‘|'||2|’ZT,T|| ||OC||2)
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<P (o X7 Xa/n —Eax' Xy XA/, = t/2)

2 t
<2ex C!/\!—cnmin{ , }) .
d Aol Koz

Combine (5.69) and the previous inequality, one obtains

P (|Hs(o X} Xa /], >
T ) B _ t? t })
<wa&”@wmm°mﬁwwww
T 2 , t? t })
*Wwﬂwﬁwm°mﬂwwwm'

U
Lemma 5.1.5 (Properties of Soft-thresholding). 1. Suppose a,b > 0, x,y € R,
H.(-) is the soft-thresholding operator satisfying Hq (x) = sgn(x) - (|x| — a).. Then
the following triangular inequality holds,
Haro(x +y)| < [Ha(¥)] + [Ho (y)]. (5.70)
2. Suppose a,b >0, x,y € RP, if ||Ha(x)||oo2 < b, then

106yl < allyll +Pllylli. (5.71)

Proof of Lemma 5.1.5.

Haro(x +y)l =(x+yl—a—b) < (x[—a+pyl—b)y < (X[ —a)s +(lyl—b)+
=[Hq (%) + [Ho (y)1.
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[, y)| <I(Ha(x), y)l +[(x = Ha(x),y)| = |

d
j=

(Ha ()], Yyl + 1{(x —Ha(x), u)l
1

N

d
IHa 0N 120y 6y ll2 + [x = Ha (X [[eol [y [l < [Ha () so2llyll12 + [ — allylx
=1

)
<bllylli2 + allylh
U

Lemma 5.1.6. Suppose X = [X],..., X ]T € R™*P is a random matrix with independent
random sub-Gaussian rows satisfying Assumption 2.2.1, ¢; "N (0, 0%). Suppose T C
{1,...,p}is with cardinality s, P € R™*™ is a projection matrix and independent of Xy.
Then, for any t > log(es),

P <]|X¥P£HOO > CK\/nt02> <e M+e L

Proof of Lemma 5.1.6. For fixed vector w € R™, since Assumption 2 is satisfied,
forie T, Xy, ..., Xy are independent sub-Gaussian distributed such that

2|51/ 2¢, | 2¢2 25 2
Eexp (tX;i) =Eexp (teiTZl/ZZ_l/ZXjT.) < exp <M> < exp (K—)

2 2
242
<exp (CmTKt)

By Hoeffding-type inequality,

tZ
P (IXIwl > t]w].) < 2exp (—CE> : (5.72)
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Moreover, by (Laurent and Massart, 2000, Lemma 1), for any x > 0,

P (Z e2 > (n+2vnx+ 2x)02) <e ™.
i1

Set x = n in the last inequality, we have
P <||5H2 > v5n62> <e ™ (5.73)
Combine (5.72) and (5.73) together and notice that ||Pe||, < ||€[|2, we have

P <||><IPs||Oo >C tcﬂ) yp (IXTPeI \/ntc72>

ieT

<P (IIPsllz > \/Sncﬂ) +) P (|><IPe| > Cxvnte, ||Pel|; < W)
ieT

<P <H€H2 > x/SnGZ) + Z]P’ <|XIP5| > CkvVnto?
ieT
<e ™M+s-2exp(—Ct)<e ™ +e N

|Pell2 < 5n02>

U

Lemma 5.1.7. With probability at least 1 — Ce="/$, the approximate dual certificate
defined in (5.17) can be written as uw = X w, where |[w|, < Cy/s/

T)T

lmax

Proof of Lemma 5.1.7. By (5.17), we have u = X"w, wherew = (w/, ..., w
and wi = L Xy, 77} qu1. Thus [w]3 = ¥ ™% [[wi[3. Also note that

1 -~ 1 _ _
- Xt v 27 vy =(—X{ + X, rZ7 i1, Zrr qun)
1 n

1 _ _ ~1/2
:<(n_lXE,TX11/TZT,lT — ) g, Z7 g + |12 2 a3

=(—qu, I qu1) + |21 1/2q1 1113

<lqull2IZ7 gl + 1257 a3
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ll2

By (5.25), with probability at least 1 — Cexp (—cn/s),

lmax

Iwli3 <Z qu 113

, C 2 Clog(es) o 1 2
<E(2\/§) +E(2 s/log(es)) +—==% (2*'/s/log(es))

n
1=3

Proof of Lemma 5.1.1. Forany 1 <i<p,1<j<d,, A C (j), I\ =k, by Lemma
5.1.3 with

Vv = Z_lei, ue RpXk/ u[/\,:] = I/u[/\C,I] = 0’
we have

2
P ( > t) < 2exp (Ck— cnmin {%, %}) . (5.74)
2

By the same method in Lemma 5.1.2 Part 2,

1ot v
e ([ (1o =i ) | =)
2

1 1
<IED< C (j), all entries of | (e;) , — —X/T\XZ’leil > ocand || (ei) o — —X,T\XZ’lein > y)
n n

1 _
(ei) A — EXXX)S le.

1
<P(3Agu A<y, [ (e) —;x}xz—leinzm)

1
+P ( 3A C (§), VIAlx >y, all entries of | (ei) , — EX,T\XZ_leiI > oc)
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1
+ P < all entries of | (e;) , — EXXXZ’leiI > oc>

1 1 .
< Y P (|| (e)p = ~XAXE e > y) + Y P <|| (ed)r — XAXE ei]2 > y> .
)

AC() AC(]
IAI=]s/sg] AI=[s/sg]

Combine (5.74) and the previous inequality together, we have

F (e (1000 - pxTxete) | =)

slog(esyb) + s4log(d/sq)
<Ls/ gJ) 2exp ( [s/sg] —en-C 9 sgng 9 )
(jojag) 200 (CToss] - en: BRI o7
<1 (Z(ESQ’D)ZS/Sg exp (CS/S - CSIOg(esgb) + 84 IOg(d/Sg))
= s J Sg
<dexp (2—Slog (Zes b) L Cs/sy— Cslog(esgb) —:gsglog(d/sg)> .

By (5.75) and the union bound, we have

1
P ( max IHule— 2XTXE e oz < )

1<i<p

2 2e( ( XA

)
i=1j 2

<d’b -4dexp (28 log (2629b> +Cs/sq — Cslog(esgb) + Sg 10g(d/sg))

Sg Sg
(210g(sg) +2log(d/sg) + ::—Slog (2b) + Cs /s, — CS108(€850) t Sg log(d/sg))
9 g
(—CS log(esgb) + sg4 log(d/sg)>

Sg

N

<dexp

<dexp

U
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5.2 Appendix to Chapter 3

In this section, we provide the optimal estimation procedures for Tucker low-rank
tensor PCA and tensor regression, and proofs of technical results in Chapter 3.
Without loss of generality, we assume that r; < r,,,, < v for j € [3] throughout the

proofs.

5.2.1 Optimal Estimation Procedure of Tucker Low-rank Tensor
PCA and Tensor Regression

We collect the estimation procedures for Tucker low-rank tensor PCA and tensor

regression in this section. Consider the Tucker low-rank tensor PCA: A = X +

Z, where X = (U;, Uy, U3)G. As proved by Zhang and Xia (2018), the following
Algorithm 9 achieves the optimal rate in estimation error.

Algorithm 9 Higher Order Orthogonal Iteration (HOOI) (De Lathauwer et al.,
2000b; Zhang and Golub, 2001; Richard and Montanari, 2014)

Input: A, m, 1,13, iteration t,,;
1: Initialize (1" = SVD,, (M; (A)), ()Y = SVD,,(M,(A)), (LY = SVD,, (M;(A)),
t=1,
while t < t,, do

2:

3: Uit) leading 1 left singular vectors of M;(A) x, ﬂét_lw X3 ﬂét_lw ;
4: ﬂéﬂ = leading 1, left singular vectors of M,(A) x4 ﬂitflw X3 ﬂétf]ﬁ ;
5: ﬂét] = leading 13 left singular vectors of M3(A) x4 ﬂit_lﬁ X ﬂét_lﬁ,
6: t=t+1;

7: end while

A

Output: ﬂl = ﬂgtmax),ﬂz = uétmax),ﬁ?) — ﬂétmax), 9.

Next, we introduce the simultaneous gradient descent in Algorithm 10 for
Tucker low-rank regression. (Han et al., 2020, Theorem 4.2) proved that Algorithm
10 achieves the optimal rate of estimation error for 7.
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Algorithm 10 Simultaneous Gradient Descent (Han et al., 2020)
Input: {,(-): the objective function (3.7) for tensor regression, {(X;, Yi)}I* ,,
T1, T2, T3, tuning parameters a, b > 0, step size n;

. Uy, Uy, Us, § = HOOI(Y_ [, YiXy); Initialize flj(o) =bU, forj € [3], §1© = G/b%;

—_

2: fort=0,...,t..,—1do
> forjfl')z’Bdo () () 1yt (6) (y (O Ty ()
N (t+1 A () Tyt o A ) Ty (D) Ty (t

4 W = Ul — (Vg e (W, Wy, U - §) 4+ ally (W W —
bZIT‘j));

5: gnd for R R

6 G =8V gL, (O, 1Y, W) - §W);

7 t=t+1;

8: end for
~ " max 7 max " tmax O

9: F = (U=, Qstme), Qftr)y - Gltmae);

10: U; = SVD,, (M;(T)) forj € [3];
11: §=F x, U] x, U] x5 UJ;
Output: Uy, Uy, Us, §

5.2.2 Proof of Theorem 3.3.1

Note that A/oc = T/0 4+ Z/0. We can replace A,7T,Z by A/o,T/0,2/0 without
essentially changing the problem. Thus, we assume that 0 = 1 without loss of
generality. To simplify the notations, we write Py = UU" as the spectral projector
for any orthonormal columns U, i.e., uru being an identity matrix. Then, write
P = 1—Py. Denote A; = M;(A), T; = M;(T), G; = M;(9), and Z; = M;(Z) the

corresponding matricizations for all j = 1,2, 3.

Without loss of generality, we only consider j = 1 and prove the theorem for
TG — WUy ||2. Notice that Theorem 3.3.1 automatically holds if p < 71/3, we
only need to consider the case p > /3. By Algorithm 1, (l; = ﬂiz) contains the

2

top-r; eigenvectors of A;(Pym @ Pra)A]. As aresult, ng)ﬂg T is the spectral
2 3

projector for the top-r; eigenvectors of

APy ® Paw) AL =Ti(Pu, ® Pu) T + 31+ 32 + Js + s
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where 3y = T (Pym ® Pym)Zy, 32 —TZ1(TH£M @ Py Js = ZTl(:PuS) © Py,
and 34 = Tl((:})ﬂél) — Tuz) &® [‘Pﬂén)Tl + Tl(?uz X ((‘Pﬂén — Tu3)T1 .
To this end, we write
Al(j}ﬂ;” ® ?ﬂén)AlT :UlGlGlTulT +3+I+I3+ s
=U;G,G, U] + ¢&.

Lemma 5.2.1. Under Assumption 3.3.1 and conditions of Theorem 3.3.1, there exist
absolute constants c¢1, C1, Co > 0 so that with probability at least 1 — C1e™ 1P,

131 = 1920l € Cakormnv/P, 1331l < Cop,  [134]l € Caxdp,  [1€1]] < CakoAmnn/P-

Moreover, by (Zhang and Xia, 2018, Theorem 1), the following bounds hold:

max{[ U CT = Uil 00T = Wl 0 TR — Wi} < Cov/ph,

(5.76)
for all k € [3]. Denote &y the event of Lemma 5.2.1 and (5.76) so that P(&y) >
1 — Cie P, By definition, A7 is a diagonal matrix containing the eigenvalues of
G;G; . Without loss of generality, we assume that G;G;” = A} is a diagonal matrix.

Then immediately we have
IA71Gs = 1,V) € Bl. (5.77)
Step 1: representation of spectral projector ﬂlﬂf. We write
G0 — g |12 = 2r — 200, uu ) = =200 — uuy, uyuy).

Define, for a positive integer k, ;" k=1 A;ZKuJT . With a little abuse of notations,
denote P := P == iPﬁj. Note that, under the event &, of Lemma 5.2.1

A2
1€]] < CoroMmny/P < .
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implying that the condition of (Xia, 2019b, Theorem 1) is satisfied.

Lemma 5.2.2. (Xia, 2019b, Theorem 1) If || &;|| < ”"" , the following equation holds

Wl —WwUy =) 8g,(€) (5.78)

k>1

where for each positive integer k

Sc(€) = Y (1) P PR E PP P

s1e s =k

where sy, - - -, Sx41 are non-negative integers and t(s) = Z;ill I(s; > 0).

By Lemma 5.2.1 and 5.2.2, eq.(5.78) holds under event £, of Lemma 5.2.1. Since
PIU U = U UTR) = 0, we have

(8G,1(€1), WUy ) = (P &P + P &%, Wil ) = 0.
Similarly, (Sc,2(€1), Uy Uy ) = —(Pr &P &P, WU ) and
(8G,a(€1), WUy ) = —2tr (P71 E1Py Py &P, %) + 2t (P &P EPy &P ).

Note that

[8G, k(€] < Z H( )1+T BT $1 @1‘431 elm;% D skelgp—skﬂ H

S1+“'+Sk+]:k
_ (2 ||el||k< A€\ "

implying that

(5.79)

u,u § 4| €]\ * c Kip?
E T ¢ s
‘ k>4 <SGl'k(€1)' T >‘ ST k>4 ( A2 > s Gan A

min
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where the last inequality holds under event £, by Lemma 5.2.1.

Therefore, under event &;, we write

A A T K4 2
00T — WU [ = ~2(Sc,2(€0), UL — 2(Sc (), WLy + O ),

min

Now, it suffices to investigate the first two terms on RHS of above equation.
Step 2: bounding (Sg, 3(€;), U;U] ). Since T PB{ =0and P;{ T, =0,

(Sc,5(€1), WU ) = — 2 tr Py & P €, cfm ) 42t (P E PP EB )
=—2tr (P (31 + I3)Pi IoPr (32 + I3) P %)
+2tr (P31 + T ‘Bl (32 + 3B 131+ 32+ T3+ J)BY)
=—2tr (P ' (J1 + J)BTIPB1 (32 + 3B 2) (5.80)
+2tr (B IR RS+ )P + 2t (BT PIRB S+ I0% )
+2tr (‘43;1 Pi (32 + 63)131 B+ R+ I +30B7Y)
QUEN

L

+ 2tr BiIsPr (31 + o+ Js + J)By )

Define the term

M =(86,3(€1), Uil ) — 2 tr (P 1P LBy (1 +32)B7 )
= —2tr (B (F1 + Ja) P BBi (T2 + I)B2) + 2t (B3P BF (5 + 3B )
+2tr (P TP (J2 + Io)PB1 H(F1 + T2+ s + 3BT Y)
+ 2t (PP TP @1+ T2+ Ts + 3B,

By Lemma 5.2.1, under event &,

2 : )\mln )\min tp2
M < Core KoP (Ko\/—)\6 (Kor/P )<C2T1§)Tp- (5.81)

min min
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Therefore, we conclude on event &, that

. o 2
C O U U -2t (B @B @y )+t (B 3B 3y (43209 | < Corg
(5.82)
We begin with considering tr (P; 318+ 38, (31 + J2)B; ') Clearly,
tr 713 J_S —1 3 _|_3 —1
tr (B I BB (31 + )P )| (5.83)

<t (B 3B RB 3B |+ | (BTIB NP NP

It suffices to bound |tr (P; ' I BFHPB; '3 B ") | and [tr (B I PB 1B P |,
respectively. By the proof of Lemma 5.2.1, on event &, there exist two (random)
matrices R, € O,, and R; € O,, such that ||1AJ.£1) —UWyRy||, ||11§1) —UsRs|| < Co/P/ A
Therefore, on event &, (5.214),

31 = Tu(Pu, ® Pu)ZT || = HTl(?u;n ®Pan)Z] —Ti(Pu, ® ?us)zIH

< | [ 0] [0 o ] - i(UaRe) o (URe) 24 (URe) & (UsR))”

<[z [0 @ ) - (R @ (UsRe) || [ (0" @ 0|
112 ((UzRe) @ (UsRs DI [Ty [(0 & T = (UaRe) @ (UsRa))]

< KOAmin

2, [(08" & 0" — ((UsRa) @ (UsRs))|
+ Cov/p [T [0 & W) = (UsRy) @ (UsRs))] |
<KoAmin <Hzl (( —WRy) ® U»él)> H + Hzl ((UQRQ) ® (U )~ U‘3R3)> H>

a ;
+ Con/P ([T (0" — UsRe) @ W) |+ [ T2 ((UsRe) @ (U1 — UsRs)) )

proof of lemma 5.2.1, 5.2.3

< CakoAmin - /PT (Hflél) — U2R2H + Hﬂén — U3R3H> + C3K0p3/2/)\min
<C2K0p\/;. (584)
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By Lemma 5.2.1 and (5.84), on event &,

|tr (P TP IB 3P|
<t (B TPy, ® Pu,)Z{ P Za(Pu, @ Pu) T By TPy, © Pu,)Z] B )|
+ |t (B (1 — T (Pu, ® Puy)Z) )Py Zi(Pu, @ Puy) T B T(Pu, @ Puy)Zy B ) |
+ |t (B BB (31— TPy, @ Puy)Z)) TR T (P, @ Pu,)Z) Py |
+ |t (B BB (31— Ti(Pu, @ Puy)ZL )BT )|
< Jtr (B T (Pu, @ Pu)ZTBEZ1(Pu, @ Pu) T B TP, @ Puy)ZTB; )|
KoPV/T * Kon/PAmin * Koy/PAmin
AS
= [tr (WA2U Ty (Pu, ® Puy)Z Us Uy Z4(Py, ® Pu) Ty WAT2U Ti(Py, ® Pu,)Z] WA U )|
+ G, K8r3/2p27\;n4

=[tr (WA 2GIW, WaG{ AT2GIW] AU )| + Coxgr?/?p?A 2 (5.85)

min

+ Comy

where we denote

Wi = U] Z;(U,@Us) € R*2m) 0 Wy = U Z,(Up®Us) € RPrmx(mms) (5 86)

Due to the property of Gaussian matrices, [W; W,] = [U] U/, 1Z; (U, ® Us) Hhd
iid. iid.

N(0,1). Therefore, W; ~ N(0,1), Wi, ~ N(0,1), and W;, W, are independent.
Conditioning on W,, we have
tr (WA 2GIW, WoG{ AT2G W ALY

W, = tr (AT GIW, WaG{ AT2GIW, ) (W,

~N(0, [AT*GIW, WaG[ AT2Gy|3)|[Wa.

By the Gaussian concentration inequality, we get

P (\tr (WAT2GIW, WaG{ AT2GIWY AU ) | < Coy/log(p) [ AT GIW, WaGY AL2Gy ||k

)

>1-p°
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for some absolute constant C, > 0. Denote the above event £; so that P(€;) > 1—p°.

In addition, by (5.77), on event &,

W- 2
AT GIWT WaGT AT2Gllr < Cav/rl < Gy /P

min min

By the previous two inequalities, on event £, N &,

1
tr (U AT2G WS WaGT AT2G WY AT2UY) wz‘ < P Viosr)

)\3

min

By combining eq. (5.85) and the above inequality, we conclude on event ;N &, that

ltr (P P RB WP < C (r”m/ log(p)A,2 + 1%/ ZKﬁpzxmii‘) :

Similarly, on event €y N &,

ltr (B 3PP P )| < G (rmp\/ log(p)A,;2 + 1%/ Kszkmf) :

Combining e.q. (5.83) and the above two inequalities, with probability at least
1-— Clp_SI

tr (B BB BB (G + B[ <G (rl/zm/ log(p)A.2 + r3/2K8p2Amf) :
(5.87)

Step 3: bounding smaller terms of (S, »(¢;), U; U] ). Recall that—(Sg, (), U U] ) =
tr (P; 1P EP; ). Since TP = 0 and P Ty = 0, we write

tr (P EPTEP ) = tr (B (T + Ja)PB(J2 + J)PB1 )
=tr (P NPT B +tr (B3P IHBr ) +tr (B BBrRPBr ) + tr (B TP B )
=4+ I+ 11 +1V. (5.88)
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By Lemma 5.2.1, on event &,

2

VI < a3 P3P < Camaf.

min

(5.89)

Next, we show that Il = III < C, (r'/?p+/log(p)A,2 + r*/2kop?A,}) with probability

min min

atleast 1 — Cip 2. Similarly to (5.84), with probability at least 1 — C;e™ 1P,

135 — Z1(Pu, ® Pu,)Z{ || = Hzl(ﬂ)ﬂél] ® ?a;n)ZI —Z1(Pu, ® iPu3)ZlTH

R N A N T
<[ [z & ][220 @ W] = [Z1(UsRe) @ (UsR))] 1Z4((UsRs) @ (UsRs))T
<[z [0 @ 0y = (UaRa) @ (UsRe))| | | 22 (0" @ TV
+11Z1((URe) ® (UsRs))| |22 [ (04" & 0 = (UaRa) & (UsRs)) |
= z: (5" @ W) — (UaRy) ® (UsRs)) | || (Cov/P + [1Z1(Uz @ Us)])
<Cov/p ( ]zl ((ﬂg” ~WRy) @ ﬂg”) H + ] Z <(U.2R2) @ (1 — U.3R3)> H)
proof of Lemma 5.2.1 ~ (1) ~ (1)

< Gy T | = WRs [ + Covp VT[T — Ry

3/2.,.1/2

<GP - r (5.90)

Combining (5.90) and (5.84) together, with probability at least 1 — C;e~“1P,

1T = [II1]
= [tr (UsA72UY 31U Uy J5U AU |
< Jtr (WATUY T (Pu, ® Puy)Z) Up Uy Zy (P, @ Puy)Z] WhATPUY )|
+ [tr (WATPU (31 — Ti(Pu, ® Puy)Z{ MU Uy Z (Py, @ Puy)Z) ALY ) |
+ [tr (WATU 31U U (35 — Z4 (P, © Pu,)Z] ) WAL ) |
< Jtr (AU Ty (Pu, © Puy)Z) Up LUy Z (P, @ Puy)Z] WAL )| (5.91)
N r||T1(9’a2 ® Pe, )] || ||;J:z — Z1(Pu, ® Pu,)Z] ||

min
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n erh — T1(Pu, ® Pu,)Z] | Z1(Pu, ® Pu,)Z{ ||

N,
< Jtr (AU T (Py, © Puy) Z] Uy U, Zy (Pu, @ Puy) Z] AU |+ 7%k ;\DTZ
= |tr (WAT2G WY WaWJ AT2UT ) | 41972 KO;T%
= [tr (AT*GIW, WoWy') | + 1%/ 0D (5.92)

)\4

min

where W; and W, are defined in (5.86).
Observe that

tr (AT*GIW, WoW))

S W)

= (ATHGIW) Wo, Wi ) Wi ~ N ( )

By the Gaussian concentration inequality, we have

IP’( (ATEGIW] WoWTT) > Cay/log(p) [|[ AT GIW, Wal|, ) p 2. (5.93)

Moreover, by (5.77), with probability at least 1 — C1e= 1P,

lr <V AT G, Wa| < Coy/mits

mln

|Z, (U, ® Us) |12 Cz\/——

< Cz\/_ |
By (5.93) and the above inequality, we get with probability at least 1 — C;p >
V1
fr (ATGIWT WaW] ) < o/ P VI08(P), (5.94)

Recall that A, > p/4, eq. (5.92) and (5.94) together imply that

1| = I < C, (r” 2py/log(p)A,2 + 12 kop 7\) (5.95)
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with probability 1 — C;p 2.

Step 4: treating the leading term of (Sg,(¢;), U;U]). Now, we consider the
leading term I = tr (‘Bflﬁﬁﬁfﬁz‘ﬁfl). By definition and Algorithm 1, ﬂél)ﬂélw is
the spectral projector for the top-r, eigenvectors of

Ao(Pyo ® Pyo JA; =WG2Gy Uy — U Ga (U Pryio Uy @ Uy, ?ﬂgmug)e; u,
1
— U, Go(1,, @ Uy fpﬁéo, Us)G, Uy + TP @ Po)Zy
T T
+ ZZ(:PLAQO) X :Pﬂéo) )Tz + ZZ(:PI:QOJ ® ipﬂéo) )ZZ
ZUQGQG;—u; + @2.

Similarly, we can define &;. Let A2 and A2 be the diagonal matrices containing the
eigenvalues of Gz(ul%gmui ® U3?u§o>U3T)GZT and G3(U1TH§OJU1T ®UsPy0 U, )G;
with decreasing order, respectively. Let A, be the smallest eigenvalue among all
eigenvalues of A3 and A2.

Recall that Bk = U; /\].—Zku)T for positive integer k, and % := P;" = ?ﬁj for
j =2,3. By Lemma 5.2.1 and Lemma 5.2.2, with probability at least 1 — C;e™ P,

1€ < Cakoy/PAn,

and

QLT U] - Y S (&)

k>1

where for positive integer k,

Sa (€)= 3 (DT PGP TGP P

S+ Fskp1=k
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For k > 2, similarly to (5.79), we have

A j k
Jsen@l < (52 -

Then with probability at least 1 — C;e 1P,

K>2
Note that
Pu,8c;n (&) = Puy (B EB + B &) = WA U &P,

Therefore, with probability at least 1 — C;e~“?, forj = 2,3,

T A T A K2p
U Pan =W = APUTEPE | = [Py Pam — Py, — AW & | < 5P,

Forl=tr (‘31_131‘Bf32‘131_1), with probability at least 1 — C;e~ 1P,

IT—tr (A7*G1(Uy ® Uy )Z{ Uy Uy, Zi (U ® Us)Gy )|
= [tr (WA U] 31U U 37 WATPUY ) — tr (AT*Ga (U] @ UG )Z{ Ug Uf) Z; (U, ® Us)GY )|
=|tr (A;4Gl((u;?aéll) ® (U;Tﬂén))ZlTUuULZl((fPagnUz) ® (Tﬂénua))GD
—tr (A7*G1(U; ® Uy )Z{ Uy U, Z1(Up @ Us)GY ). (5.97)

By (5.77), (5.96) and (5.212), with probability at least 1 — C;e~“'P that

| tr (/\f4G1((UszPu§n) ® (Ug?ﬂéu))ZIUuULZl((TuQJUz) ® (?ﬂél)u3))G;—>
—tr (AT*G1(U; @ U3 )Z{ Ui Uy 74 (U @ Us)Gy )|

<2 [tr (AT*G1((AS2U] &P @ U )Z{ U UYL 73 (U ® Us)GY )|
+2[tr (AT*G1(U] @ (A52U] &P Z U UYL Z (U ® Us)GY )|
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+ C2T1 1]’2221)3( (H/\)_ZUJTGJ :Pﬁ) H) . (\/p_) )\mm + C2T1 7\2]:) \/— \/_ )\mm

min

2 2

2
+C2r1}\—p max||/\ ZUTQEiP - (Vpr 2 A2+ Comy (;f) (VPP A2

min min

<2 [tr (AT*G1((A2U] &P,) @ U )Z Up U 75 (U, ® Us)GY )|
+2|tr (AT*G1 (U] ® (A32UF &Py, Z Ui Uy Zy (U @ Us)GY ) | + Cor?kgp?A, 2

min

(5.98)

By the definition of &, and recall that T, iPﬁ2 =0, eq. (6.77) and (5.212) and Lemma
5.2.1 imply that with probability at least 1 — C;e~ v,

|tr (AT*G1 (AU &PE) @ U )ZT Uy U Zy (Up @ Us)GY ) |
< tr (AT GL((A U] T (P 0 ® ?ﬂm)z;?ﬁ )® Uy )Z Uy Uy, Zy (U ® Us) Gy )

+)tr (ATGH(ALPW Zo(P g0 @ P Z] Ph,) @ UTZT Uy U] z1(u2®u3)G1T)‘

< tr (/\—4(;1((/\ ZUZTTZ(T ) ® Py )z2 PL) @ Uz )Z Ui U Zy (U ® Us)GY )
+ Cami ALY - /PP - \/15

< Jtr (ATHG1 (AU To(Pu, ® Puy)Zy Pii,) @ Ug )ZT Uy U Z(Up @ Us)Gy ) |
+ )tr (/\;461((/\;211;5((?&50) —Pu,) @ Pu,)Zy Pl @ U )Z U U 7y (U ® ug)GI)‘

+ )tr /\_461((/\2_2U2TT2(930§0) ® (P —Pu))Zy Pl,) @ Ug )Z{ Upy Uf Zy(Up © ug)GI))

3

e r3/2p27\ —4

min

< Jtr (ATFG((A G (U ® U5 )Z) Pl) @ Ug)Z{ Uy UYL Zy(Up ® Us)GY )|

+C2T1}\ 2 A 1 \/_\/_ \/_ \/_—|—CT3/2 27\m|:1

min min
mln

< Jtr (ATHG1((AS2GaWS P, @ Ug YW Wy (Uy @ Us) Gy )| 4 Car®pA

min

=tr (AT*G1((A2G WS ) ® I, )W W,G[ )| + Cor?p?A, (5.99)

min *

where W; = Z,(U; ® Uz) € Rr2x(mm) W, = U], Z; € RPr—mxaps) Wy =
uzTL\/\/3 e Rr2=m2)x(mms) W, = W, (U, ® Us) € RPr—m)x(pa=m2)ms) W, = W, (U, ®
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U3) c R(Pl*ﬁ)x (Tsz)_

By definition, W5 =" N(0,1), W, "< N(0,1), Ws "% N(0,1), and W5 and W,
are independent. Furthermore, since W,([U, U, ] ® Us) SN (0,1) and Wy, W5,
are two disjoint submatrices of Wy ([U, Uy, ] ® Us). Therefore, W, il N(0,1),

W, Hhd N(0,1), W5, Wg, and W5 are jointly independent. Then,

tr (AT*G1((A2GoWS ) @ L, )W W, GY) W,

=tr (W7G{ A{*G1((A2GaW; ) ® 1, )Wy ) W,

~N(O, [W7GT A6 (A, GaW5 ) @ I ) [)-
By the Gaussian concentration inequality, we have
IP’(‘ tr (AT4G1((AF2G W] ) @ Ir3)W6TW7G1T)‘

> Coy/log(p)[WoG AT Ga((A726:W]) @ L) e | Ws, Wr ) <p°

In addition, with probability at least 1 — C;e™“'?, we have ||Ws|, [[W7|| < Cay/P1
since v = O(,/p). By (5.77), we obtain
IW7G{ AT G1((A2Ga W5 ) @ Iy |le <VTIW2GL AT G1((AL2GaW; ) @ 1L )|
SCoVTVRALL - AL VP CZ\/_

mln

Therefore, with probability at least 1 — Cyp 2,

1
[tr (AT*G1((AL2GaW5 ) @ I )W WG )| < CZWPW.

mln

Combining (5.99) and the above inequality, we get with probability atleast 1—Cyp >
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that

|tr (AT*G1((A2U] &) © UT)ZT Uy U Z4 (U ® Us)GY )| < Co(y/rrpy/log(p)A,2 + 7pAh).

min

Similarly, with probability at least 1 — Cyp 3,

ltr (AT*G1 (U] @ (A;7U4 &P ))ZT U U Zy (U ® Us)GY )| < Coly/Tipy/log(p)A,2 + 7p*AL0).

By (5.97), (5.98) and the above two inequalities, we get with probability at least
1— Cip 3 that

I—tr (A7*G1(Uy @ Uy )Z{ Uy U, Zi (U ® Us) Gy )| < Ca(y/Tipy/log(p)A, + rkGp2AL).
(5.100)

Combining (5.88), (5.89), (5.95) and the above inequality, we get with probability at
least 1 — C;p 2 that

] tr (P ' EPTEP ) —tr (ATG1(U; @ U )Z Uy U Zi (U @ Us) Gy )‘

<Ca(y/Tipy/log(p)A2 + 2 k5p AL,

By (5.82), (5.87) and the above inequality, with probability at least 1 — C;p
6,0 — U R -2t (A;4Gl(u§ ®UI)Z{ Ui U], Zi (U  Us)G] )|
<Ca(y/Tipy/log(P)AS + rPkgpALD). (5.101)

Final step: characterizing the distribution. By eq. (5.101), it suffices to prove the
distribution of tr (A7*G1(U) ® U7 )Z{ Uy U, Z; (U, ® U3)GY ). We write

tr (AT*G1(U; @ Ug)Z] Up U, Z4 (U ® Us)GY )
P1
—|AGIU @ UD)Z Ul = Y IAPGHU @ U)Z{ w3, (5.102)

j=ri+1
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where {uj}f;rl 41 are the columns of U;,. For any 1y +1 < j < py, ZlTuj €
N(0, Iy, xp,;), and

E(Z{u;,)(Z{w,)T =0, Vri+1<j#j2 < pr.

Therefore, {Z] w;}I", |, are standard Gaussian random vectors. Recall that G;G; =
A? and

AT2GH(U @ U3 )Z{uj ~N(0, A{2G1 (U @ UJ)A2G(U; @ Ug)lT)
=N(0, A72G1G; A1) = N(0, A{2).

Therefore,
P1—T1

A6 (U] @ UNZI UL RS Y A =5,
i=1
where z; "N (0, I.). The RHS in above equation is a sum of independent random
variables.

Clearly, E[| Ay 'zi][3 = [[A7 1|, Var (AT zi]13) = 2[|A2[[f, and

T1
_ 1 _
E|A'zl3< Cs ) NOE\CENUEA Cal|ATH 7

j14243=1 "Y1 j2 Y3

where we denote A; = diag (?\gl), 7\&1), e, ?\Q)). By Berry-Esseen theorem (Berry,

1941; Esseen, 1942), we get

sup
x€eR

] —1|2
. <||/\l GilUy ® UD)Z U [l =201 —m) A _ X) —0(x)

V8P =) [|A|g

<C3(HA;1H%>3”_ 1
AR Ve

Note that \/8(p1 —11) ||[AT?]; = v2pimikg 2A 2 By eq. (5.101) and Lipschitz prop-

min
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erty of @(-),

. (ufhﬂf —UnUf - 2(p — ) AT _ X)

V8P =11 A7 |g

_ _1112
p IAT2G1 (U] © UT)ZT Uy |1 —2(p1 — ) [|ATY IR < xa C2<r3/2|<8p3/2 N K%\/plogp)
V 8(p1 - rl) HAl_zHF }\ain Amin
+ C1p73

13/2 K6p3/2 K2 P log P r3/2
< 0 0 -3 1
\(D (X + C2< }\ﬁin + }\min > + Clp + C3 \/ﬁ

3/2,,61,3/2 K2 lo 3/2
<000+ Co(* )\Kzo_p + 20 prl 52) + Cgrﬁ. (5.103)

Similarly, we can show that

P(!Ifhﬂf — WU f =200 — ) A )
V81— 1) [[ A b

r3/2k8p3/2  «§\/plogp 3/2

= (D(X) - CQ( 22 + )\min ) — C3%

min

Combining two inequalities above, we know that

10O — WU 2 —20pr — 1) AT )
sup |P <x ) —D(x)
veh ( V81— 1) |A;

3/2..6:,3/2 2 3/2
<C2<r KGp™T Kox/plogp>+cgr_

A2 Amin

min

Moreover, by the previous inequality and the Lipschitz property of ®(-) and
xle™*/2 < 1 for all x € R, for any x € R,

|P<Hﬂlﬂf WU [ —2p A7

— <x | —O(x)
V8P [|AT?]]; )
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=P

UTHZ 2(p1 —m1) HAI1HIZJ < P1 T ”A 1||F ) @ (x)

JT—H A SV A A
/ 3/2 1
O plng> +C T_ ® < P1 " ||A ||F ) @(X)

N

_|_

13/2¢6 3/2
C
R A M e e T
/2832 (2 3/2 1|2
<y (TP SVPIOBRY L T o (/P ) - |+ 0y 1A
LT T T PR Neremniie
13/2 3/2 2 32
<C(—; OV;lng)JrcsrﬁJr( I%—1) xle /2

3/2 6.~3/2 2 3/2
<G (—2F +K°Vpl°gp)+cL

A2 }\min 3 \/ﬁ .

Therefore, we conclude the proof of Theorem 3.3.1.

5.2.3 Proof of Theorem 3.3.2

First, we show that

(Hulﬂf U~ 2pi0? AT X)

V8p102[| A2
13/2¢603/2 |3 2 3/2
KSp k3+/pr(r2 + log(p)) T
—. 104
(X) + C2< ()\min/o-)2 + )\min/o- + C3 \/5 (5 0 )

Without loss of generality, we assume o = 1 and only prove the result for ||, U] —
U, U ||2. Wedenote U; € Oy, ,, the top-m; left singular vectors of M; (A x, U, x3ULJ).
By Theorem 3.3.1 and Zhang and Xia (2018), it is easy to show that ||U;U] —
U U || < Coy/pA,,! with probability at least 1 — Cyp~3. By definition, we know
that A2 = diag(A?,- -+ ,A2 ) contains the eigenvalues of U] A1 (P, ® P JA{ Uy, We
denote Ay = diag(Aq, - ,Ay,). Then,

sup A% —AY]
1<k<ny

< inf |0} Ay(Py, ® Py )AL Uy — RG1G{ R||

REO,,
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< Jinf HﬂITl(:Pﬂz ® P, )T Us — RAZR|
+2||u Ty (P, ® P ) Z{ Wy + || U Z1(Py, ® Py, ) Z] Uy |
< |4y w6 1((u§9>u2u2) (Ug P, Us)) Gy Uy Uy — Uy Ui G1GY Uy Uy |
+ dnf (AU ATU Ty — RATRT |+ 2k0An, ([0 21 (T @ Us) | + [0y Z4 (0 @ ) [
1
By (5.214) and the Gaussian concentration inequality, with probability at least

1— C1p73
- n n 2
|07 24 @ G)||” < Cop,

and

K07\ ||U1 21 2®ﬂ3 || < KO}\ ; Hﬂ;— ?ul —|—:PJ' )Zﬂﬂz@ﬂg,)”

(
<koAa (U] Z1 (0 @ )| + ([T Un |1 Z1(% @ Ga)])
<koAmn (U Z1 (U2 @ Us) || + [T Us L |]]| Z1(Cr @ Us)]|)
Ami

2 )
<Carohu, (/72 +loglp) + VATLE + 32 5 )
<Cako(1/72 + log(p) A + PVT).

Moreover, with probability at least 1 — C1e™ P,

<o (U7 2100 W) + Copr?

[ 001G (U P, W) @ (U P Us)) 6 UT T — B UGy G U G
<[|6i I Pe, ) @ (WP, U6 - GG/ |
g”@l((u;?% Us) @ (U] Py, Us))GY H+HG1 n® (U PE ug))GIH
<2, (U728 U] + [T PE U] ) < s, (U s+ U3 G, )

<C2K0p.

To deal with infgeg,, |[U UiATUS Uy — RA
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Lemma 5.2.3. For U, U e Op,r,
inf [[07U R[] < U
ReO;

Rl&g HUTU RHF <m1n{||UTU||F,\/_||UTU|| }.

By Lemma 5.2.3 and (5.213), with probability at least 1 — C;e™ P,
Jnt [0 UARL T — RAGRT|
< Ginf |0 U = RATUT |+ [RAG(U U —R) T}
<2 inf [0t —RIIAL] < CalvPA)

<C2K%p.

Combining together the inequalities above, we get with probability at least 1—C1p 3,

sup |AL —A%| < G <K%\/_T'p + Kom/log(p)?\mm) . (5.105)

1<k<n

Therefore, with probability at least 1 — Cyp 2,

2 2
AT = AT I <t sup |Am§‘k’ \cz( 213/2pAE + kory /12 + log (p)A 3)
1<k<

St

and as a result

N 2 _
1A= 1A 2] A = A, _ suPrcer, i

[ N [ PR

<G, (Kérl/ZpAmif + K34 /12 + log(p)Aminl> .
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Note that \/8(]31 —11) H/\l_ZHF > \/2p1T1K 27\mm By eq. (5.103), we have

<||111111T WU R 2p A X)

V8P [|A2
U7 — U Uy 12 —2ps ALY 71
<P (H 1ty ;p 1HH/F\_2H131 H 1 HF <x+ Gy Kgrg\z 43 pr(r }\—i— og(p)) L Cp
A/ 1 1 F min min
r3/2k8p%/2 3 /pr(r? +log(p)) /2
) C Cz3—.
(X) + 2( )\%m + Amin ) + 3 \/ﬁ

Furthermore, we have

o (1007 — UL [ —2pa A X)
VEPL[A];
1G0T — WUy R —2p A ( Al = II/\IZHF))
=P — <x |1+ -
V8P [|A [ 1Al
1C 0T — WUy |2 — 2pa || A kh1/2p i3\ /12 + log(p) C
< e s v L) R

min

4..1/2 3 2 1
<0 (x(l o (MR VIR sgn(X))> e

3/2,603/2 3. /oy 1.2 T log(
+(12(r ek oVprir+ log(p )+c3
Kirl/2 /12 +log(p) —|— log(
@(x)+c2<( s P V2 +log(p) )|x| e )
3/2603/2 (B3 [oT r2+lo
+ Cz( Azp + \/P A g )
kirl/2p /12 +log(p) 3/2 3/2 k3/pr(r2 + log(p)) r3/2
<<D(X)+Cz< : 4 5 ( %o >+C3—
)\%ln Am'“ mln Amin \/]:_)
3/2603/2 (3 /or rZ Flog|
®(x) + Cz( 7\2]3 L v glp ) (5.106)
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which has proved (5.104).

Then, by Lemma 3.3.1 and the similar argument for proving (5.104), we further
have

1G0T — UaU | — 2pa8°[IA I
P TR <x
VBP162 A e

<O(x) + Cz(rS/ngps/z k3\/pr(12 +logp) N V/1og(p) KO\/?) N C3i/2
= (}\mm/o-)2 )\min/G p1/4 \/ﬁ \/ﬁ
Similarly, we have
o (100 — WU IR —2p AR _
V8p182| A% e
SO(x) — CZ(rS/ZKSPS/z k3y/pr(12 +logp) N V/1og(p) KO\/?) B CSi/Z
g (}\mm/o-)2 Amin/o- p1/4 \/5 \/ﬁ

Therefore, we conclude the proof of Theorem 3.3.2.

5.2.4 Proof of Theorem 3.3.3

Note that
Yi/o = ((T/0), Xi) + (&/0).

We can replace Y;, T, &; by Yi/o, T/0, and &;/0 without changing this problem
essentially. Therefore, we assume that o = 1 without loss of generality. We only
need to focus on the non-trivial case p > r'/3. Since the proof is technical challenging
and long, we divide the proof into several steps. Consider the SVD decomposition

A

0y = 1Vs;YDiY " for t = 0,1and j = 1,2,3, where L', D" € 0,,, and

S)Ft) is the diagonal matrix with all singular values of ﬂj(t)TU.j in decreasing order.

Denote Rj(t) = T_].(J‘)Dj(t)T € O,,.
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Fort =0,1, denote
ATl(t+O.5) _ 9(@ x4 u§t+o.5) X5 ﬂét) X3 uét) S (5.107)

and denote G, = M;(§1).
Step 0: preliminary bounds on §(¥ and ;| ***”. ' Before dealing with [ ("' (1" —
U, U] ||3, we first prove some preliminary results on §*) and ﬂ;”o'm which shall

be used later.

Step 0.1: the error of §(t). Without loss of generality, we only prove the bound
for t = 0 and we write § = §© for brevity. Consider the SVD decomposition
ﬂgo)TUi = L;S;D;, where L;, D; € O,,, and S; is the diagonal matrix with all sin-
gular values of ﬂgO)TUi in decreasing order. Note that we omitted the superscripts
of L;, Dy, S; for brevity. Let R; = L;D{ € O,. and

3= %Rl [uI(Z &) ) (U ®u3)} (R ®RJ).
j=1

We aim to show that with probability at least 1 — Cye=“1P —p 3,

|G —RiG1(R; ®R{) —Ju|| < C (Ko% + KOE)\W> (5.108)

where G; = M;(§).

Since %En (Q X1 ﬂio) X5 ﬂéo) X3 ﬂé0)> =0, we have

(5.109)

AG=G—G xRy x3Ry x3R3, AG; = M;(AG) = G; — RiGy (R, ® Ry )
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and

=G xq ((VRy) x, (1VRy) x5 ((WR,y) — T,
ATl =6 (AY) = (ARG (AR & (ARs)T) — T,

By (5.109), we have

AGy —

1& c0) . . .
:(Ml(AS) =y TOT v (20) (U @ TY(AG x3 T x, UL x4 ugo),xi>)

i=1
1« ; . . . . .
— (=2 W )@ @ 1) (AT, 1) — 00 T (A (4 & 0l
i=1
1 & . - . . N . . .
(2 2 &0 ) (0 & 0 - 3) - WOTAR Y @ W) (5.110)
i=1

Notice that rank(M;(AG)) < 2r; and rank(J\/[i(AfTO J)) < 2r; for i € [3], by Lemma
5.2.9, with probability at least 1 — e~ 177,

1 « - . . . A
HMl AS) _EZU; 200) (05" @ U5 (AG xq T <, )Y x5 Ty,

< Cz\/?HAEP)HF. (5.112)
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By the definition of R; and Lemma 5.2.3, with probability at least 1 — C1ie~ P,

- nO0Y 102 p
Huw‘EO)Tui - RiH < HULU?)H < CW, (5.113)

min

and

Ui = ARy <[Py o (U = QPR

+ HTﬁgm (U — URy)

A

=[G U = Ry (@) U] < €

(5.114)

Thus with probability at least 1 — C;e™“'P,

Hﬂs(ym =||9 X1 (ﬂio)Rl) X2 (ﬂéo)Rz) X3 (ug(;O)RS) — G x1 Uy x2 Uy X3 UaHF

<H9 X1 (ﬂ;o)Rl - ul) X2 (ﬂéO)Rz) X3 (ﬂéO)R?,)HF + HS x1 Uy Xo (ﬂéO)Rz — UZ) X3 (ﬂéO)Rg,)HF

e

+ H9 X1 Ul X uz X3 (ﬂéO)RQ, —U3)HF
<”ﬂile - ulHFHGlH + Hﬁém& - U2HFHG2H +

<C- }r\)r/n - KoAmin = CKoy/Pr/m.

min

U Rs — Us |, /|G

The previous inequality and (5.112), with probability at least 1 — e~ “1P" — Ce 1P,

1 N A A N N A T
H; 2 TG ) (WY U (A, X0 -1 v (AEP))(ué“)@ué‘”)H < oo

(5.115)
By Lemma 5.2.10 and (5.114), with probability at least 1 — e~ “1P" — C;e 1P,

Sl
-
I I\’] 3
LN
I
f
>
G
g—{
=
Ve
>
N —
=2
0%
>
W —
=2
~
|
[
=
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~ T
W~ U] ) < CZE;\[_

min

(5.116)

(
(07T 6 (4" TUs) " @ (R — 0 TUs) ) |

< (R =070+ R — T |+ R C U )

< Cz% KoAmin = C2Ko A

min

(5.117)

Putting (5.110), (5.111), (5.115), (5.116) and (5.117) and Lemma 5.2.9 together, we
get with probability 1 — p—2 — Cye 1P that

~ [pT T T
[AG: ]| <[|31]] + C2 ( p—HASHF + Kop— + PVt + Ko P )
n n T1'Amin T"'}\min

pr M)

+ Kg— + K
“n + OnAmin

T2 2+ lo
<G p—HAGlll + G, ( r tloglp)
n n

<

241
||AG1||+C2< T +T?g(p) pr P\/?>

1

and as a result

211
1AG:]| < Cs ( “ﬂ + Ko% + KOE}\i> (5.118)
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Therefore, with probability at least 1 — p 23— Cie P,

T2 T T
HAGl—chz( P ac, H+Ko—+KE;\/_> & (0 + w2

which proves (5.108).

Step 0.2: the error of l]).(t+0'5). Without loss of generality, we only prove the
bound for t = 0 and j = 1. Again, we denote § = §(© and G; = M, (§) for brevity.

We aim to show that with probability at least 1 — C;p 2 — Ce 1P,

U = WR] + ? (Z&Ml 1)U ® )G/ (G1G]) 'R + €, (5119)

where ||€]| < C; (Kon}i;in + K%T?):Z[)

min

Since ali 0.(G xq ﬂ{O'S) X1 ﬂz X3 Uéo)) =0, we have

A‘Il = 9 X1 050'5) X9 ﬂéO) X3 ﬂéO) — 7.

For brevity, denote U; = 050’5) for simplicity. Then, we write



which is equivalent to

U, — UR/

=1+ I+ IIL

By (56.108) and Lemma 5.2.9, with probability at least 1 — Cip 23— Cie P,

T N A A _
<cy/Zjamie| 67 (6:61) 7|

[pr 241
<C H9 X1 U1 qu ><3U )—‘TH ()\min—C2< —r + Og(p) +K0E+K0
F n n

<C~' mm

Moreover, with probability at least 1 — Cip 2 — Cie P,

& xy Uy o 10 55 (1 —THF.

||§ X1 fll X9 ﬂéo) X3 ﬂéo) —THF
SH(@ — G %1 Ry X2 Ry X3 R3) X3 Uy %2 ﬂéo) X3 ﬂéO)HF
+1|G x1 (WhRy) %2 (HEO)RZ) X3 (ﬂéO)Rg) — G x1 Uy xp Uy x5 Us |,
<VT||G = G x1 Ry x2 Ry x5 Rg| + v/7|[Us — Uy Ry ||| G| + v/7| U2 —
+ V[ Us — 03" Rs [ Gs

2 11
<C2\/?< ﬂlﬂ‘ﬂwn p7\\/_>+\/1_"<07\m.n

-1
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(5.120)

VT

117\min

(" Ry|[1Ga|

U — 01R1H + CZKOV %

)
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[or 13/2 T
<C2<K0 %—FKopn +K0n1;\ >+\/;K0Amin

The two previous inequalities together imply that with probability at least 1 —
Clp_3 — Cqie 1P,

Uy — Ry . (5.121)

N N 1 & . A o
i =H (Ml(Am)(uS” © W) == 3 (AT, )6 ()0 @ ugm)) GT(6,6])7"
i=1
KaDT 3/242 3/243/2 A
<G, (n(;\z + Ko ]93/2)\ + K0p3/2)\2 ) - Cngr\/ngll — WyRy . (5.122)

By (5.118), with probability at least 1 — C;p > — C1e 1P, we have

A

67 (6:67) ! = Ry @ RG] (G:1G]) ] |

<J(&-rrr o RD) (@67 |
+]| R & R)GT R (Rl(GlGD*lRT - (@1@;)—1> |

2
<c2< ot loglp)

n

+K0

mln
mln

+[1Gall[}(G16G) 1HII(G 6) [IRiGIGTR] — 616 ||
2
<C2< M+ 0——|—K0 ))\mm
n
G1) (

Ry @ Rs) GTRHHHGl RiGI(R, @Ry ) — Gl)TH>

+ CzKo)\;f( H (RlGl R2 & RS

2 41
<C2K57\m.n< T8 T?g(p) +K0%+Koz{ ) (5.123)

and

HU1G1 ((ﬂéo)Tuz)T ® (ﬂéo)TUﬁT) — U1R1TG1H
<[/ 6 (0T = Re) T @ (U TUs) )|+ |61 (RE @ (O TUs — R)T) |

+[[RiG1(R] ®RJ) — G4
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/ 2 2
§C2Ko7\min( p/n> +C2( thxomjwopﬁ)

)\min n n Tl)\min
241
<C2( Log(p)_i_KOE_i_KO‘p\/F).
n n T\'}\min

By the two previous inequality and (5.108), with probability at least 1 — C1p > —

Clefclp,

HH+ ‘.Pu1<Z ) U ® Us)Gy (G1Gy ) 'R

<[ (0T & (U U T) — WRT G| || 67 (6:67) ' = (R @ RyGT (6167 R] |

"

[[(Ry @ Ra)GT (G1G]) 'R |
+ <HGl((ﬂ§0)TU2 —R)'® (ﬂ§O)TU3)T)H + HGl(RZ (@ H)
|[(R2 ® R3)GY (G1G{ ) 'R ||

2
2 1 2 /
(L;)g(p) + K an + K p ) + CzKo (T‘L p\/_) 7\mm + C2K07\m,n ( p/n> }\m”}

ZAZ n}\mm Amin

min

Pr L PVT
< . .
<G (Kon)\min + K 2 ) (5.124)

min

ef
~ 1 =
U;G; (R; ®Ry) —WiR{ Gy + ET‘“(Z ajml(xj)) ((U2R; ) ® (UsR;)) H
j=1

<CokiN 2

min

For term III, by (5.123) and Lemma 5.2.10 Part 3, with probability 1— Cip3—Cie P
that

1 n
HIH - ;(Z EMG(X)) (U @ Us)G] (G1G] ) 'R]
j=1
1« . (O [ AT /A AT
<[5 X et o 0 (67 (G16T) - (ke RG] (G167 )R )|
i=1

+ H—(Z &M (X)) (AR, — Uz) @ (1S"Rs)) G/ (616G ) 'R/

j=1
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H (Zam 7)) (U ® (URs — Us)) 6] (616 ) 'Ry

<Cy [ 2 5T (G16]) " — (Re® RG] (G1G) 'Ry |
+ Co /B O Rs — U A0 + Cag /B[ 00Rs — Us A7) < cngP;{ . (5.125)

min

Putting (5.120), (5.122), (5.124) and (5.125) and Lemma 5.2.10 Part 3 together, we
get with probability at least 1 — C;p > — Cye~ 1P that

. 1 b
[Tty — UsR] || <HETP¢(Z ajavtl(xj))(uz ® Us)Gy (G1G{ ) 'R{

+C2|<0r\/7Hu1 ulRI\\+C2< }\T —|—K%p)\é—)

<C, \/Exmm +—H1A11—U1R1TH +C, <K0n)\r N zP;\{)
—Hu1 UlRlTH-i-Cz\/EA;n

Therefore, with probability at least 1 — Cip 3 — Cie P,

[T — WiR{ || < CZ\/EA;}. (5.126)

Thus with probability at least 1 — Cip 3 — Cie P,

Nb—\

1
Hu u1RT——fPﬁ1<Z£]M1 1) (U Us)G[ (616G]) 'R/

PT . LPVT

<G, (Kon)\ + K 7‘%.”)+C Kr\/» \/> i
P
A

r zp\/_
min + AZ ).

min
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Now, we continue from eq. (5.107) and prove the distribution of Hfliz)flfw —

Uy Uy |12

Step 1: bounding ||f1§1)TUj —ij ||lr and || U; —fl]m R)m ||.  Withoutloss of generality,
we only prove the bound for j = 1. By definition of ﬂi“o's) in Algorithm 2, we

write

(t)
] (5.127)

Denote Q‘Eit) = 3{}1)/1 +3J &)2 +3J &)3 Recall that ﬂitﬂ) are the left singular vectors of

ﬂitws). We can also apply the spectral representation formula (Lemma 5.2.2) to

investigate ﬂ{tﬂ). Toward that end, we define

0 ﬂ§t+0.5) - 0 ulet)T ) 0 int)
ﬂ§t+0.5)T 0 = Rgt)uir 0 ngt)T 0o |-

Note that the non-zero eigenvalues of the symmetric matrix

0  wRrRYT
RYUT 0
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are ugt) = ... = uﬁf) = 1and uffll = ... = u;i = —1,and for 1 < i < 1y, the

corresponding eigenvectors of ugt) and “S)H are

~(t) ~(t)
1 [ 1 [
e(t) = — t and e(t) . = — 1 ,
' \/E ( e ) e \/§ —€;

where ﬂgt) is the i-th column of U, Ritw and e; is the i-th canonical basis of R™.

Denote a (p; + 1) X (2r1) matrix

o't = (of) ...0l))

and ©" € O, ,r, », -+, such that (G)(t) @P) € Op,+r,- Then, we write

oMo = Y plg®T _ (UﬂllT O)
) )

1<j<2n 0 Iy

For k > 1, denote

0 WRMYT o
T 0 , ifkisold,
—k 1 R
() "= X e =g
1< (M) uu: o o
, if k is even,
[\ o 1
and
u,, u’ o
(t)) _eWeWT _ [ MLt .
<§B1 1 iR < O O)
Let

By Lemma 5.2.10 and together with (5.119), with probability at least 1 — C;p > —
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C1€ c1p
(0) (0) Vp/n pr zp\/_ vp/mo 1
[E| = Hel H <G A + G K0n7\m.n + K " ) S <G - <3 (5.128)
By Lemma 5.2.2, with probability at least 1 — Cip 3 — Cie P,
a0 u;u
o ! ZS (5.129)
O Irl k>1
where
Sy, X) = > (EDTTERY) X)X T () X ()
S+ +skp1=k
where s, - - -

, Sk+1 are non-negative integers and (s)

Clearly, we have

2k _ k
[ €] < (36 IEI1E e < (agE@)™

By (5.128), (5.129) and (5.130), with probability at least 1 — Cip~

— Cye™
00T T < Y 8y, (B < VP
k>1 min

Thus with probability at least 1 — C;p

_Cle_clp’
AT 1) P\/?
[T =R < o T R < e
and
Hul _ﬂgl)Rgl)H <G \/}\P/n, HU1 _ugl)RglJHF <G \/Pr/n_

}\min

s) = Z}jf]l(sj > 0).

(5.130)

c1p
7

(5.131)

(5.132)
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Step 2: representation of Hfliz)flizw — U, U/ ||? and its first order approximation.

For convenience, we denote

E=tY, ¢=¢" and P*=(p") "
Similarly to Step 1, we apply Lemma 5.2.2 to ﬂi”ﬂ?” and get with probability at
least 1 — C;p 2 — Cye P that

A

- UlulTlei

uuy 0 (ﬂgz)ﬂf”—uluf o>>

lts

—2
0 I,

U
wu o
2< T ,Zgu(lJ,k(E)>
0 L, o1

wu o wu o
—2 0 I, ’ ésuin,k (E)> —2 < ( 0 I, rsuil)lz (E)
wu o
-2 0 Irl ’8U§1J,3 (E) (5.133)
wu o0
where we use the fact < ( 10 ! . ) /Sy (E)> =0.
T1 r

Similarly to (5.130), we know that with probability at least 1 — C;p—2 — Cie 1P,

‘2<(u1 ) Zs > <ary |80, (B) <c2r<\/m>4
L, >

)\min
We now bound the third order term. Notice that

2
e o o0)\el 0 0 0 '

N
< Cor g (5.134)

min
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Therefore, we have

U.lulT 0
< ( 0 Iﬁ) /Sugl),g) (E)>

uurl o wu o
=— <( 101 : ),mflEm&)Em?E‘sz>+2<( 101 : ),‘BflE‘BflE‘B?E‘BT1>

—2 < (ul(l)g 10 ) ,m;lEm;lEngm;1> . (5.135)

By simple calculation, we have

L B U RYelu,RMelrL ¢ RUTUT 0
‘4311E‘l¥11E‘B?E‘BH=< r 101 L=t T o)

Therefore, with probability at least 1 — Cyp~2 — Cie 1P,

u,u; o
<( 101 1 ),mﬁEwEﬂs‘iEw>

|/ fwul 0 (WRPTETWRY T el Py e RPUT 0
B 0 I,/ 0 0

~ e (um?”efumi”%f%lelRPuI)‘ _ ‘tr (efule”TeI?ﬁl el)‘

pr
SR TSRS CznTH@lTuln-

min

Similarly to Step 0.2 and by Lemma 5.2.10 and P{j U; = 0, with probability at least
1— C1P_3 — Cqe “1P,

1 n T
& Ui <H (T—Lipu] (Zl ajml(xj)) (U ® us)GI(Glsf)lRi”T) U,
)=

2
+C; (Ko i +K2pﬁ) <C2< L +K5pﬁ)'

nA,.. OnA2 nA2 nA,.. nA2

min min min



184

Combining (5.135) and the above two inequalities together, we get with probability
atleast1 — C;p 3 — Cie “P,

.
'< (ulgll IO ) ,Su]m,3 (E)>

<G,

+ K K
nAZ,_ nAZ, i 02

min min

pr ( 2 +log(p) pr 2P\/_>

pr(r+ /log(p)) erz pzr3/2
(5.136)
Therefore, we conclude that with probability at least 1 — C;p—2 — Cre 1P,
A 2 wu’ o
) @2)T 1
U7, —U1U1THF +2 << 0 ! Iﬁ) Sy, (E)>|
(5.137)

n3/2)\3 2N

min min min

r(r + +/log(p)) 2y2 2p3/2
gcz(p &1P +|<OPQ}\3 + 2P :

Step 3: representing the leading term of |11 (1" " — U U |2, Recall from Step
2, the leading term of AT —u U |2 is

wuy o
-2 < ( 0 Irl) ’Suil)l (E)>

In Step 3, we aim to approximate this leading term by a sum of independent random

variables. By definition of S (E) we have

(R EN > <(”“” )>
uluT wRYTe P e RMVUT 0
0 0

—tr (u el ﬂﬂ &R ulT) = —tr (€] P4 @)
—r(

(Jurs +3u, ?ﬁl(ﬁ{ﬂ,ﬁﬁ{}js)). (5.138)

,...
=
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The last equation holds since J {}j}ul 1 = 0. Therefore, we only need to bound
~(1)T ~(1) ~(1)T ~(1) ~(1)T ~(1) .
tr (‘Jul,l Tﬁ&uu)r tr (Jul,l PLI u1,3) and tr (Ju1,3 ?ﬁlﬂul,s)/ respectively.

Step 3.1: bounding tr (3, | P{ 31, ;). Recall the definitions of J\;; in Step 1.
Similarly to (5.122) and by (5.126), we get with probability atleast 1—C;p>—Cye 1P

that,
3/2.2 3/2.3/2
KopT P> PP P [P,
‘ <C2 <TL}\min + KOTL?’/Z)\min + Ko n3/27\§qin) + CZKOT H . FLAmin
T
<C2K0 P .
nAmin

~(1)
ot

(5.139)

Therefore, with probability at least 1 — Cyp—2 — Cie 1P,

~MTpL ~(1) ~(1) 12 2 P’
o QUL P | < IR < cad s (5.140)

Step 3.2: bounding tr (3, P, J11),). Denote
1 n
K = (A7) = = 3 (A7, 2000 (X)) (U & Us)

i=1

and

1 n
L= T—L(]; Ele(xj)>(U2 ® Us).

Lemma 5.2.10 immediately implies that

P (||L1|| > Cz\/§> <1—-p~°. (5.141)
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By (5.125), with probability at least 1 — C;p > — Cie 1P,

134 — LG (GG R < & 3p7\\{. (5.142)

min

By (5.121), (5.123), (5.126) and Lemma 5.2.9, with probability at least 1 — C;p > —

Cle_clp,

134, = K6/ (616 ) IRT|
1 & ) )
<[ (AT - - 3 (AT, 2 () ) (R~ Ua) © Us ) 6] (616 )R

i=1

N

| () - 137 o) (0R) & (0RY — 1) 67 (66 )R]

1=

H V)Gl (GG )R - 6] (6:6]) |
<C, p_T||M1(A‘Ill‘5 ) || (]G5 R21 — Uy + [[CVRSY — Us| )AL
2 +log(p) pVT
+Cay /(AT s 2 (| B + o+ 0 )
<G 12”Ml(A%LSJ)HFK%\/3)\"1'n2

PVT [pr | pr’/? pr
<CoKj—m ez © ( K +K0n7\min

p3/2
n3/2)\2. '

min

<C2KO

(5.139), (5.140), (5.141), (5.142) and the previous inequality together imply with
probability at least 1 — Cyp 2 — Cie “1P,

~ADTpHL (1)
’tr (Jul,l fPuldul,s)‘
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<o (9 060 5
tr ( i ?ﬁ1(3u13_LlGT(G G~ )T))‘

+)tr(R (

2l — KGT (66T Rl + a1 Li6T (6167 R
+tr (G](G1G] ) 2GiKy) "2 L)

GIG]) "Gk (L P, LG (G16]) R

3/2

5 PP /p/n PT L PVT - nT
<Cor K T+ G ko ko 4 [ (G (GiG ) 2GiKy, TP, L)
<, P G/ (GG ) 26K TPh L 5.143

min

By (5.108) and Lemma 5.2.10, with probability at least 1 — Cip 3 — Cie P,

HJ\/[1 (AT — ((1195)125”)61 (ARMT @ (PR T) — Uy Gy (Uy ® u3)> HF

:HGF'S)(G?) B R{l)Gl(Rén 2 Rél)))(ﬂél)'l' 2 uél)T)HF

3/2 3 1
<G, <KOPT + Ko pT + LOg(p)) . (5.144)
n nA,., n

Define

A

AT = (AR — U Gi(Uu) @ uy), AT, = WG, ((ugﬂRgl) — W) " @ug ) :

AT = UG, (uzT © (VR — u3)T> .

By (5.119), (5.131), (5.132) and Lemma 5.2.10, with probability at least 1 — C;p > —
Cie 1P, we get

n
ma { Uy — QSIR{V ), s — VRS, — 4R} < ¢ P
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Therefore, with probability at least 1 — Cip 2 — Cie CP,

| RMG (PRI @ (ARIMT) = WG (U @ Us) — (ATG + AT, +AT(L, )|

/ 2
<C2\/?< Ap/ﬂ) “ KA = CZKOE;\/?-

min

Combining (5.144) and the above inequality, with probability at least 1 — C;p > —
Cl e*C]P,

3/2 T 3+ lo
HM1 (A7) — (ATYT + AT, + AT ) HF < Cz(Kopn Ryt g(p)).

TIAmin n
(5.145)
Define
~ 1 n T
S —r (GI(GlGDzel{ AT&-? - Z(AT&?’Ml(xile(xi)] (U, ® u3)} fPﬁlLl),
) i=1

- 1 n T
stV —tr (Gf(Gle)zgl{ ATSZ),1 - Z(ATI(le),l,Ml(xi»Mﬂxi)] (U, ® u3)} CPﬁlLl),

i=1

~ 1 n T
s~ (67(6,67) 26, [ATL), — & 3 (AT MG (L o U} 7L ).

i=1

By (5.145), (5.141) and Lemma 5.2.9, with probability at least 1 — C;p > — Cie P,
tr (61(616]) 26K TPg L) — s — s —s{!|

<Cr]| 6] (GG ) 2G| Ly (\/ 2 ne (a79) — (AT + AT, + AT, HF)

51
<C2rAmln[ ,/pr pr TR LY Lk Og(p))
NA i n

2 5/2 3/2
p(r*+172/logp)
<C2(K0 2}\2 + K 0 2)\3 + T]_S/ZAZ . (5146)

Therefore, it suffices to bound |S{"”|,
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-Step 3.2.1: bounding ‘Sil‘S) |. We consider ‘Sil‘S)‘ first. The proof of this part
is involved and highly non-trivial, and some decoupling techniques (e.g., De la
Pena and Giné (2012)) are needed. Let

ey =3 RV @u), vie sl

By (5.127),

S;l.S)

1 ¢ T
=tr (GI(GlGI)_ZGl{ [683,1 - Z<€SRI11M1(xi)>M1(xi)] (U ® U3)} iPﬁlLl)

i=1
T Ty-2 oL
vt (6716167126 { el ——Z €0 MG (Ur 0 )} 75 )
T T2 (1) 1 (1) Tl
+1tr ( G; (G1Gy) Gl{[@ulg—EZ(qul,g,Ml(xi»Ml(xi)}(Uz®U3)} TRERE
im1
(5.147)

By (5.139), (5.141) and Lemma 5.2.9, we have

1 !
tr (GlT(GlGT) 261{[ A _EZ u 1/M1 ) M (X )}(U2®U3)} TﬁlLl)‘
SrHGlT(GlGlT)_zGl||||L1||( ereullH )

<C2r?\mm\/i prﬂru]l”HG | < CoK2 pz;z . (5.148)

min

In addition, by (5.108), (5.131) and Lemma 5.2.10, with probability at least 1 —
Clp_S — Cqie 1P,

(R —H (ulGl(

(s
<G ( ﬂ;“Tug)T) - Ri”TGPH

min
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<CA !

min

G (W) " & (4 TU)T) — G (REVT @ RYT||

R (6 —RiMG: (R @R )|
_|_

12Y43 3/2

pr pr /13 +logp
nAZ + A (& ( n + Kon?\min n )

T r3/2 3+ 1o
L a

min min

+ CoA !

min

<G

min

KOAmln

Therefore, (5.141), Lemma 5.2.9 and the previous inequality together imply that
with probability at least 1 — C;p > — Cie 1P,

1 ¢ T
tr <G1T(G1G1T)2G1{ [@81),2 - Z(GSI),ZI Ml(xi»Ml(xi)} (U ® Us)} ?Eh) ‘

i=1

< (|67 (G626 1Ll (/2 et )

T~
<C2f7\m.n\/i Al H u12|| | G4l

5/2 3/2
LPT , pre p + 1°/?p/log(p
<G, (KO e + K} N + Ko YY) (5.149)

min min min

J1 =LiG] (GG ) 'G(U; ®Uy).
Consider the SVD decomposition G; = Ug, A1V{ , where Ug, € O;,, Vg, € Opyry 1,
and A; € R"*™ is a diagonal matrix containing all singular values of G;. Then

Gy (G1G{ ) 'G1 = Vg, V¢,

By (5.142), with probability at least 1 — C;p > — Cie~ 1P,

n

tr (GI (6:67) 26 {[el)s - %Z<e{}j,3,m1(xi)>ml(xi)} (U @ ug)}T%u)'

i=1
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tr <GlT(GlGlT)‘ZGl{ {Jl - Tll Z<11,M1(xi)>:m1(xi)} (U ® ug)}T?ah)

i=1

+T‘HGI(G1GI)72G1H |“—1||( pTHqule. I1HF>

tr (GI(G GT)—zGl{{h——ZULMl( )M ()] (uz®u3)}Tﬂ>ﬁ1h)

+c2r7\;3\/7 \/E\IH 30, LG (GG R H 1G]l

tr (e{ (G16]) 261{[11——201,%( )M ()| (u2®u3)}TiPtlL1)

+C2r7\mif\[ 1/pr VK gp}\\{ KoM

n

tr (GI G626 { [ - = 3 (ML) W ua)}TLl)
i=1

+ | tr (GlT(GlGlT)ZGl{ [Jl — % Z<111M1(xi)>ml(xi):| (U ® U3)}T?U1Ll>

i=1

3p2 5/2

+ 0K (5.150)
Fori € [n], let

Z; = My (X)) (U ® Us) Vg, € RP™,

and
ZE = L1V61 Z E,lMl UQ X U3)Vgl € RP1*T1,
Then N
Z,"N(O,1) and Ze =) &2,
j=1
Thus

tr (GlT(GlGDZQ{ []1 — % Z<]1/M1(xi)>ml(xi)} (U ® U3)}TL1)

i=1
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1 n n n 1 n n
|3 Z Z Z & &(Zi, Z;){Zs Al_lf Zk/\1_1> 2 Z Z & ak<zj/\l—llzk/\l_l>
n i=1 j=1 k=1 n j=1 k=1
1 « B n -
QEZammmm%—gzﬁwmm%
i=1 i=1
1 n
o2 {Z 8 (2o )20 LA =25, A7) H
i=1 jFAL
1 n
+| 5 D&l ZilF D &lZe, ZeA )| + ‘—SZal 1ZAT: Y (2 Zy)
i=1 k#1 jAL
2 n
5 D& D EZy ZiA)
i=1 ki
1 n
| Z S &8 (2 Z(Z0 ZA) — (25, ZA )] ‘ (5.151)
i=1 j#k#i

By (Vershynin, 2010, Corollary 5.35), for any i € [n], with probability at least
1 — e—cilptlog(n))

i)l < C2y/p +10g(n) and [Zillr < Cay/r(p + log(n)) (5152)
and
r(p +log(n))
1ZiAT e < ZalllAT ] < G =5 (5.153)

By the union bound and Bernstein-type inequality, with probability at least 1 —
e—Cl(pH—log(n)),

1 & B 1 ¢ r*(p +log(n))* _ . m(p +log(n))?
5 L EIZIRIZATE < 15 3 e P PEIE <o HE L e
.:1 1 min min
p?r? + 12 log’(n)

<G

nZa2

min
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and

1 & B r(p + logn) T(p + logn)
=Y Iz < 3252 pA—g S CRLY)
izl min

min

Therefore, with probability at least 1 — e™ 1P,

<G5y (5.155)

min

1 « B 1 ¢ _ pr2 +12log” n
5 2 EIZIRIZAT IR - 5 3 ez < ¢ =,
i=1 i=1

Since Z; and Z; are independent for all 1 < i # j < n, we have (Z;, Zj>|Zi ~
N(0,[|Zi|}}) and (Z;, Z;A2)|Z; ~ N(0, | Z; A7 ?||3), which imply that

KZi, Z))lly, |Zi < ClIZille and  (Zi, Z;AR) ]y, |Zi < CIZAT?Jr.

s, o,

Since E [(Z;, Z;)(Z;, Z;A{ )] |Zi = (Zi, ZiA; %), by (Vershynin, 2010, Remark 5.18)
and (5.229),

(Zi, Z;)(Z, ;A% — (25, AT ||, | Ze < C (24, Z5)(Z, AT, |20
<CI{Zi, Z5) 1, Zs, ZiA3) 1, | Zi < ClIZi|[E ZA e (5.156)

By Bernstein-type inequality, we have

"{

Y & ((Zuz) zl,sz12>—<Zj,Zj/\12>)‘
j#

> CollZills | ZA IR (Y €2) P log(n)[Zi, &u, .. En ) <n.
j#AL

The union bound and (5.152) together imply that

<isi[sz (2, Z;) Zl,zj/\;2>—<Zj,Zj/\1_2>)H

i=1 j#i
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1 1
S C r(p+ sz(;)) og(n) (Z E;;)l/Z £ En) <n?
min j=1

Notice that 4
EE! < (Zsup g (E|ai|q)”q) < Clald, < G

q=1

by (Hao et al., 2020, Lemmas 7 and 8),
P(Z §—Cn>G ( nlog(p) + logz(p)) ) <p (5.157)
j=1

By combining the above two inequalities together, we know that with probability
atleast1— Cip 3,

1 « _ _ r(p +log(n)) log(n)
)| L 8@z nnt - 3,207 || < o IEEE LR
i=1 LAl min
(5.158)
Note that

D EGlZIE Y E(Zu ZiA?) = Y IIZlIFZy & ) EZIAT?)

i=1 K#£i i=1 KA
By (De la Pena and Giné, 2012, Theorem 3.4.1), there exists a constant C > 0, for
any t > 0, we have

r( >

S EZE Y ElZo ZA )| > t) < CP( S 12V R 6 Y 8 ZOA)
i=1 k#1 i=1 k#£i

n n t N
Z(l) 2 Z'(l)l i Z(Z)A*Z 2 - C]P) Z(l] 2 Zgl), 22(2)/\72
;_1 12 1[(Z; 7, & kE_lék v ;H o IR(Z BZTAT)

<cr(

(5.159)

> t/C)
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where {Zil), e, ZT(ll)} and {Ziz), oL, Zg)} are two independent copies of {Z, ..., Z,}.
By Lemma 3.3.3, with probability at least 1 —p 2,

>R Y e | {2

<Cor] S 65?8l fogtr) < Cor 3 6z Ac21Eley o)
By Lemima 2.1, we ave *
p(| Z 82 > CavipT) < e O,
The previous fwo inequalities and (5.238) together imply that
(\an I3 1,&Zakz )| > Conp?22 flog (pIN2) <7
(5160

Since

1 1 2 _
S 1z 13z, 22 A2
i=1

we know that

“
i=1

{ea 20} ~NO Y eIz IHIZEATR),
i=1

> Nz 3z, 2P A

CJ >_ &z IH1Z A g )]{ak,z;”}k_l)@%
i=1

By Cauchy-Schwarz inequality,

n

n n

(11411 7(D) A~ (11411 7(D) A~ (1161 A~
2 EIZIIRIZEAIE < IZVIRIZ AR < ) gz IRIACIP
i=1 i=1 i=1
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< ZaS) (3 1202)"
i=1

P (Z £8 > Cn) <nl,
i=1

By (5.152) and the union bound, with probability at least 1 — e~ 1(PHlog(n)),

Similarly to (5.157),

n 12
>z < Can (/rip-+logln)) ) < Crr (p -+ og(w))".

i=1

By combining the previous four inequalities together, we have

(%

By (5.159), (5.160) and the previous inequality,

|| i ’éf i

) = Cz\/nr3 (p +log(n))*log(p)A m.n> <Cp.

p*/*r¥/2/log(p) 3
(‘—Z& 1Z; |’Fk;£’k (Zi, LATD) | = Ca AL <Cp P (5.161)
Similarly, we have
¢, P/ log(p) .
(’—Z&Hz ALY 1||FZ£,k (Zi,Z))| > el & <Cip 2. (5.162)

k#1

By Lemma 5.2.10, with probability at least 1 — e~ <177,
3 &z, Z akzkA12>' <|X &z
i=1 i=1
<[> ez
i=1

n

D &) E(Zy,ZA)
k=1

i=1

Z ﬁkzk/\sz
k=1 F

2H ConprA_2.

min
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The previous inequality and (5.154) together show that

’—Za[ak (Zi, A

i=1 k#1

r(p + log(n))
n2A2. '

min

<G

(5.163)

Now, we consider |15 > 1y 35y & [(Z5, Z)(Zi, ZAT?) — (Z5, ZATD)] |- By
(De la Pena and Giné, 2012, Theorem 3.4.1), for any t > 0,

(=

_ _ t
B TR

Z Z E,)E,k Z]/Z H{Zs, ZkA;2> - <Zi’ZkA;2>] ‘ Z t)

i=1 );ék;él

i=1 j#k#Ai
<CP(‘%Z [<Z 527,200z, Y 8 ZIA) = (Y 52, ) azlA H
i=1 b j#i ke 7 K
vep(| Y 8 [P 2z, 2P A - @, 2P A] ‘ > 5c)
i=1 1
171 (5.164)

Here, {Z( Hal 1,{Z }“ ; and {Z (3) }“ , are independent copies of {Z;}I* ;. Condition-
ing on {&;}]- l,{Z T, and {Z I ,, we know that

{(Coz? 2@, Y ezdat (¥ ez, Y azdan)
j#L k#1 j#L k#1

are independent. In addition,

(5 e {220

i=1

SNOIY L 557

and

<Z£1)’Zk¢i E’kzl(<3)A;2> {E’V i 7 13)}i:1 ~N (0’ H Zk#i E’kZ]ES)A;Z"IZJ)
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Note that
E<<Zajz§”, 202,y azdA| {e, 20,20} ):<Za) P azdA?)
jAL k#1 jAL k#1
and
S 522, 2z, Y ezd A (Y 520,y azdA)| | {a 2?20}
i AL i AL b =
<CH ZE'J j ’ 11 1 'Zakz ‘ {E'l’ i 7 (3)}#71
jA1 kAL b
N a0 e T, ez,
<CIY &ZV el > &z AP e < ClL Y &Z 18l Y &z [N 2
i o i1 |

By Bernstein-type inequality, for any t > 0,

P( > [(X 62,2002, ¥ 620 A — (Y 622, Y 6z A) \

i=1  jAi kAi j#£L kAi
(3) "
> | {mz 2y )
tz
<L2exp (— C min{ S
Y E s GZP B L 82112

t

maxicicn || 35 & Z7 el Xyt EZ) HF})

By Lemma 5.2.10, for any i € [n], with probability at least 1 — e~ C1(PrHlog(n)))

max {H Z E,jZ)Q) Al Z EkZE’) Hp} < Cz\/n(pr + log(n)).

jAi k£i
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The union bound shows that with probability at least 1 — e~ €1(PrHlog(n)),

max{HZE,] e, 1Y &z \|F}<c2\/n(pr+1og(n)), Vi e [n].

A k7t

Therefore, with probability at least 1 — e~ 1(Pr+log(n)),

ZHZE) YIRI Y &z F < G’ (pr+ log(n)?,

i=1 j#i k#1
and
max |3 &2 ¢l Y &2k < Conpr o+ log(n))
jAi kA1
Thus

A

i[(ZEjz)fz)’ zz, > sz A0 527, s Z2)A H

i=1 A kAL j# k#1
n%2(pr +log(n))+/lo
So, M P ;;2 ) g(p)) <Cpp?

(5.165)

Similarly to (5.156), for any i € [n], we have

[z, 2"z, 20—z, 2 A) | |2

P

<CIZM RN ZV AT e < ClZV RS2,

min

By Bernstein-type inequality,

1/2
seulz (X&) logtm|(zu i, ) <

j#L
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By (5.152), (5.157), the previous inequality and the union bound together show that

“

By (5.164), (5.165) and the previous inequality, we have

= 3/2
e L B B ) R

i 775 )\2
i=1 j#i

min

_ _ +1 1 _
(‘— D &k [(ZJ‘,ZO(Zi/ ZA?) —(Z5, TN, 2>H > Czr(p ff/(z)\)z) Og(n)) <Cip

i=1 ]#k?él min

(5.166)

By combining (5.151), (5.155), (5.158), (5.161), (5.162), (5.163) and the previous
inequality, we conclude that with probability at least 1 — C;p 3,

tr (GI (616726 { 11— 3 (1,36 (X0)36 (%0 (U us)}TLl) ‘

i=1

2
<C, ( pr | tplog(n) | rlog'(n )> . (5.167)

n2a\2. n3/2)\2 n3/2)\2.

min min min

By Lemma 5.2.10, with probability at least 1 —p 3,

12+ log(p)
n

<G

1 mn
ULy = HEUI(;&MM%O(Uz ® Uz)
j=

and
il < Il 6T (616716 = Ll < a2,
Therefore, by Lemma 5.2.9,
- 1 v T
tr (GlT(GlGlT) 261{ [Jl - Zgllml(xi»Ml(xi)} (U ® Ug)} ?U1L1>‘

i=1

<r1|G{ (G1G{ )™ Uy L

UlT[ Ji—— Z Ja, My (X (xi)} (U, ® Us)
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2 + log( T ?p 3/2p /1o
<CA 2.y | L T08P) 8 pr e < G (ng/w + n3/27\;5 ) (5.168)

min

By (5.150), (5.167) and (5.168), with probability at least 1 — Cip 2 + Cre 0P,

1 & T
tr <GI(G1GI) { |: 3 E Z Ul 37 Ml >M1(DC ):| (UZ ® u3)} :PJL_llL1> '
P2 pi2 %plog(n)  rlog’(n)
<G <K et T e T o ) (5.169)

Combining (5.147), (5.148), (5.149) and (5.169) together, we have

T3, n2AZ, O nd2N2, n3/2A2,

min min min min

2,5/2 2.3 3 2
i < <K3p L@ P relosin) | rlogiin )> . (5.170)

A

-Step 3.2.2: bounding \SSJ! and !Sél)!. Let Qféo) = UéO'S) — UZREO)T. Fork > 1,

denote )
0 WRY' o
)1 (T , ifkisold,
CORSE DI
uzu; 0
, if k is even,
0 L,
\
and
0 W, u 0
0\ [ U2 Uy,
(%1 —( ) O)
Let

Similarly to (5.128), with probability at least 1 — Cip 23— Cre P,
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By Lemma 5.2.2, with probability at least 1 — Cip 3 — Cie P,
Py —P
( ot ) > s, Syt (5.171)
0 k>1

where

Sup, X = D (DY) X () X)) T (B)) X))

Syt +skp1=k

u”,

By (5.130), with probability at least 1 — C;p > — Cie~ 1P,

Z HS (E(O))H < Z (4”E(0)”)k . 16HE§0)H2 <C P (5 172)
S IPwtatme TS B T e @) Y g, '
Note that

S, () =(087) B 0) + (1) (1)

0 UWRYT 0 &\ (Ul 0
RYUS 0 ¢ 0 0 0

U, U, 0 0o ¢ 0 UR™T
o o0)\e" o J\RYu] o
u

ROTE U, U, 0 N Uy, Ul eV RPUT 0
0 0 0 0

:<u2R§°) eV Tpd, + i eVROUT 0)
0 0/’

with probability at least 1 — C;p =2 — Cye 1P,

(- it
_H( — Py, — (LROTEOTPL 1 ph e PROUT )qu
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S [(CRENEACY

In addition, with probability at least 1 — Cip 2 —Cre P,

(0) P
<3 [lougn (B")] < cope

k>2

QR — s — (9 — )| = 0 (R = 66Ty < JRE — 0 T <

we know that with probability 1 — C;p—> — Cie 1P,

[ORY — U, — g eVRY| < Cﬁim, (5.173)
and
AT — WG (P eRY) " w Uy )|
| |w G (057RE —ua — e R ) |
=15 51 U1 xz (QRY — Uy — P, e"RY) ugH
<6l [0 REY — Uy — P @R < ko Cp;\g < CKOET\/:".
Let
ATE, = WG ((#h,e"R) "o W)
and

- 1
S — g (GI(GlGT) 261{{ o

By Lemmas 5.2.9 and 5.2.10, with probability at least 1 — Cip 23— Cie P,

58— 81| <67 (6167 )26l -/ B ATy — AT )

2 73/2
<C rAmln[ \/> Cako e — TR (5.174)

Z ATu 1M (X )>M1(DC1)}(U2®u3)}T?ﬁlL1>,
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By (5.120), we have

=3+ I + I s (5.175)

.
el = WG ((Tﬁzﬁ{ﬁliRg’)) o U] ) , viep

Then
AT (0) (0) (0)
ATuZ,1 = quz,l + quz,z + quzs-

Similarly to (5.148) and (5.149), with probability at least 1 — C;p 2 — Cie 1P,

r (GI(G1G1T)2G1{ [@S’;l _ Tll i(q}{ﬁl,Ml(xi»Ml(Xi)] (U ® Us)}T(})ﬁlLl) ‘
i=1
gg%%g? (5.176)
and
tr (GI(GlGI)zGl{ [Qfﬁ);,z _ % i<€ﬁ)§2’ Ml(xi»Mﬂf)Ci)] (U ® Ua)}TfPﬁlLl) ‘
i=1
(4 B T,
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Similarly to (5.142), with probability at least 1 — Cip 3 — Cie P,

[a8, - = Z EMG() (U © Us)G] (G267) R < 2P sazm)

0 nA2.
and
n T T
¢, — WG, DU @ U)6] (G,67) 7)) ey
2r
n T
:HulGl(@’ﬁz (39, ZEI:MZ (U ® Us)GJ (G261 'RYT)RY) ®U3T)H
_ T
<||G1||H3{j’2)/3—EZ&Mg(fxi)(ul®U3)G2T(G262T) 1R§0)TH <C2K8p{.
i=1 ™
(5.179)
Let
#(0) ' 4
& = WG [ (P4, Z&Mz (W ®Us)G (G:6])71)) @ud ).

The same argument for proving (5.150) shows that with probability at least 1 —
Clp_S — Cqpe 1P,

1 & T
tr <G1T(GlG1T)_ZG1{ [Q{i),g, - Z<€(L?2),3/M1(xi)>ml(xi)} (U, ® Ua)} Tﬁﬂ&) ‘
i=1
T Ty—2 5(0) 1 ¢ 5(0) Tl
<t (6l (G626 { el — = Y @0, M(x)M()| (W e Us) | P4 L
i=1
2..5/2
+ Cokii (5.180)
Let

Gz = Ug, A2 V¢,
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be the SVD decomposition of G,. Let Wi = U], M; (X;) (U, ® Uz) Vg, € RIP1I=TI)xm
and W; = UJ, My (%) (U; @ Us) Vg, € RP2-2%72 Then W; "<" N(0,1) and W; "<*
N(0,1). In addition, since X; x; [U; Uy,] x5 [Uy Up ] x5 [Us Usy] <% N(0,1),
U M (%) (U ® Us) and Uy Mp(X:) (U ® Us) are independent. Therefore, W;

and W, are independent.

Note that é{ﬁ;?ﬁl =0 and

U; G, ((Tﬁz(% Z &M (%) (U @ U3)GzT(GszT)1))T ® U3T>,M1(xi)>

j=1
:L >

<
cF
Sl
M-
I
a
=
e
®
&
kol
2
S
9
£
®
=
&
=

u.
I
—

= <9 x1 Uy Xo <Tﬁ2<% Z &M (X5) (U ® U3)G2T(GZG2T)_1)> X3 Us, xi>

“ 1

1 n 1 n o T
=|tr <(H Z <H Z E,)'Wj,Wi>UuM1(xi)(u2 ® Us)Vsl) UuleGl/\lz) ‘

i=1 j=1
1 n n n .
=500 D EE(WL W) (W, Wi %)
i=1 j=1 k=1
1 o -
S QZE'HWIHFHWV\ 2”1: ZZ‘ilEkHW H WuWk/\
i=1

i=1 k#i
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2 1 « ~ —~ _
s D D B WA W) (We, WiA )

i=1 j#£i

1 o —~

+ EZ%EiEj(Wi/Wﬁ Wiy
i=1 j#i

= D EE(WL W)W, WiA?)|.
472k

Similarly to (5.167), with probability at least 1 — Cip3,

tr(GlT(GlGlT) e Z &0, M (X Ml(DC)](U2®U3)}T?ﬁILl)‘

<Cz(pr +1‘plog(n)+rlog( )>.

272 3/2)\2 3/2)\2
n}\min TL/}\min n/A

min

By (5.174), (5.176), (5.177), (5.180) and the above inequality, with probability at least
1— Clpis _ Cleiclp/

Ko 223 +K 0 n2AZ_ 07 H3/2)2 n3/2)2

min min min

2.,.5/2 3 2
s8] < (31” 2 P Tplogn) | rlog (n )>. (5.181)

Similarly, with probability at least 1 — C;p—2 — Cre 1P,

5/2 351 1 2
(1) 3p°T 2 PP rplog(n)  rlog”(n)
1S3 < G, <K0 e T Kg T T e el B (5.182)

min

Putting (5.143), (5.146), (5.170), (5.181) and (5.182) together, we get with probability
atleast 1 — C;p > — Cie “P that

5/2 391 log?
ATl (1) 3P°T ) P rplog(n) rlog*(n)
’ tr (‘julll jDlvll‘lelB) } < C (KO 2%3 + 0 2A2 + KO n3/2A2 n3/2}\2

min min min

(5.183)
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Final step: characterizing the distribution of |tr (3y,, P4 3u,)|. By (5.123),
with probability at least 1 — p® — Cre 1P,

2 1 1 n R X
<Cakohom ( Bl BBV [ @l o 0l

n n nA,.., n &
241
<C2K3Amm< Mﬂogmz_ﬁ)

(B ] 2 o — )
<C2K%7\m.n< —r2+1::g(p)+ —l—KOE)\\/n;)\/;

: VP +plog(p) L P 3p3/2 1/2
<G

A2 +K 3/27\2 + Ko 3/2)\3

min

Moreover, by (5.173) and Lemma 5.2.10, with probability at least 1—C;p2—Cye P,

1 ¢ A A
|3 et (1R @ (AR — (W + 24, el"RE) @ (Us + P, el"RY))
i=1

-G (GiG]) !

<Coy /BT 0VRY — U — 2, R 67 (61670
+ Coy [ ETUSVREY — Us — 2, PR [ 6T (61 6T) |

+ Cay [ P05, — Uy — P, @R[ USVRSY - Us — 2 @Ry || 6T (616 |
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3/2,.1/2
p/ /

<G5 n3/2\3 °

min

Similarly to (5.139), with probability at least 1 — C;p > — Cie 1P,

~(0)
[t

Note that P; J (L(l)z),z =0, by (5.178) and (5.184), with probability at least 1 — C;p > —

Cle_clp,

pT
nAmin .

< Cakg (5.184)

ot R 3 EPHM()(Uh © Us)G] (6:6] 7

pT pPVT
< 2 . 1
C2 <K0ﬂ)\min + Ko TL)\Z > (5 85)

min

) + Hdu23 - Z EM (X)) (U @ u3)G2T(G2G2T)71R§O)TH

Similarly, with probability at least 1 — C;p—2 — Cre 1P,

1 & B -
HiPJd3QSéO)R?EO)_EZai?ﬁ3m3(xi)(u1®u2)G;(G3G;) 1H <G, (KOnA n 227\\{).
i=1 min

min

(5.186)
In addition, with probability at least 1 — C;p > — Cie“1P,

26, e R 128, VR < e ][el | < Cotr.

Let
1

Z &P, (U1 ® U3)G, (GaG; )

and

1 ¢ -t
Qs = - Z1 P, M5(2) (Uy @ Up) Gy (GsG3 )
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Combining the previous six inequalities together, with probability at least 1 —
Clp_3 — Cqie 1P,

s ulg——Z&Ml ) (Up @ Us + Q2 ® Us + Up @ Q3) 6 (G167 ) 'R{!|

z\/m2+vlog( ) PR P
<Cz< — R K |- (5.187)

min min

Letjﬁj,g -1 Zl LEM(XG) (U @ Us + Q2 @ Uz + Uy ® Q) GT(G GT) 1 By Lemma
5.2.10, with probability at least 1 — e~ 1P,

CZ\[AWHZM/ \fxm.f\ \f

Therefore, with probability at least 1 — Cip 3 — Cie P,

’tr 3{1 fPu]du1 5) —tr (Ju 3fpu1«5u13>)

~1 5 (1T L ~1) 21 pMT\Tpl (~(1) =(1) pM)T
<2|tr (3], = LR T2l SR |+ 1 (UL — SR "ok (L - 3R

1s

<rlfau)s = JuRe sl + s _dul,sRll)THz

2 4 pry/log(p) 245/2 2.2
<G K%p nE/Z)\3 5F +K0p2;\3 +K 07132;4 > (5.188)
Let

Z; = U], My (X5)(Uy ® Us) Vg, € RPr=mxm,

ii.d.

Then Z <~ N(0,1). With probability at least 1 — e~ 1P,

n
STl ~(1) 1 el
tr (du],sa ?ﬁldw,s) - EH Z &l 1HF‘

2< ZE;JVH )(Uy ® Us) Vg, A2, — Z&Ml ')(Q2®U3)Vel>‘

i=1
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+2

1 ¢ 1<
<?ﬁ1€ ; E,jM](DCj)(Uz & Ug)VGlAle E Z EM (X)) (U @ Q3) VG1> ‘

i=1

2
+ Cor <w / H\/E\j) . (5.189)
n n

Note that

|< Z‘%Ml ) (Up ® Us) Vg, A2, Zaml )(Q2®U3)VG1>

i=1

:’< (UL% Z ExMi (X ) (U ® U3)> <U1L Z &M () (U, ® Us)Vel) AL?
(( Z U Mo (6) (W ® Us) Gy (GQG;)‘1> ® Ir3> vG1>'

Kligen)(Eemen) ]
j=1 i=1

Here, Wi = UJL M (X0) (Uss © Us) € RIPTX(PamIm) Wy = UT, VG (X (s @
Uz) € R(P1=m1)xm273 gnd W = U. Mz(xl)(Lh ® Uz) € R(Pz—Tz)XrlTs Since X; x4

[U; UJ] x5 [Up UJT x5 [Us UT] il N(0,1), we know that W; "<* N(0,1), W, "=+
N(O,l),W- Hd N(0,1), and Wy, W; andW are independent. Therefore,

s

TJIH

%kzakwk>-

<:Pﬁ1 Z £ (X;) (Uz @ Us) Vg, A%, — Z EM; (X)) (Q2 ® Us) VG1> ‘ {Wk/Wk/ E,k}n

_ T2 1812
~N (0, (T_L;E’)'WileAl 2) {( ZEIWVG2 )®Ir3)VG:| FHng2>.

Note that with probability at least 1 — e~ 1P,

H( Zalwvgl ){( ZalwvGz )@alm)vg}T

F
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<AL 3 ewave | 3 ewvens| < covr (o) (/242
j=1 i=1

and as a result

\/1
(KTﬁl ZEJJ\/M ) (U @ Us) Vg, A2, = Zilml ')(Q2®U3)VG1>‘/ fE3/2;3g >
C
<p—§.

Similarly,

n3/2\3

min

V/log(
(K?ﬁl Z%Ml )(Uz ® Us)Ve, A% Z&Ml (U ® QB)VG1>‘ > \/_p 8(p >
G
< PEX
By (5.188), (5.189) and the two inequalities above, with probability at least 1 —
Clp_3 — Cqie “1P,

| R It prr+pry/loglp)  ,p*%%  , p*?
(DTl ~(1) >

fr (dulﬁipﬁl‘julﬁ)_nzuZg’izi/\llHF‘ sG (KO n3/2z3 G e K s n2as |
i1

min min min

By (5.138), (5.140), (5.183) and the previous inequality, with probability at least
1— Cyp % — Cie “1P, we have proved

wu; 0 1
<( 101 : )/Sugl) > 3 Z&Z/\
T1

<, <K2p1~2 +pry/log(p)  ,p*r¥%  , pPr ‘p2T3 plog(n) rlog’(n )) .

2
0 n3/2\3 + K0 n2A3. T Ko n2A\E +K0nz)\2_ T Ko n3/2)\2 n3/2\2

min min min min min min

(5.190)
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By (5.133), (56.137) and (5.190), with probability at least 1 — Cip 2 —Cie P,

~ (91 2 2 e o 2
2)n(2)T T -1
‘ u= u” —uyy HF — _n2H E_l EiZiN\] HF‘
2 2..5/2 2.2 2.3 3 2
,pr° +pry/log(p) SP°T 5 P°T » P°T rplog(n) rlog (n)

(5.191)

Recall that Z; = UJ, M; (X)) (Uz ® Us) Vg, € RPITx7 o that Z; =" N(0,1).
For fixed a = (ay,...,ay) € R", the rows of (31, a;Z;)A;! PN (0, [[al3AT?).

Therefore, for any a € R™,

1 LI a1 =~ 2
||ay|gH<;“iZi>A11HF:EH;L/WHF

which means that

1 TN el s 2
(X az)ar] = o X zan],

Forany1 <i<p;—1y,

~ 2
(Z))a)ATY||, = nIATIR,

M-

E|(
Var((

1

—.

T~

-
Il
—

~ 2
Za) A L) = 2nA
and

6 T1
1

3 3 A—1116
< Gn Z A\ (123 (112, (112 < G| AL I

j1d243=1 ""j1 j2 Vs
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By Berry-Esseen theorem, we have

p(nuagH(Zl—laznm I = 2(p1 = 0)lIA; ||F/11<X)_®X‘< (HAllH%

V8(p1 — 1) IA?[r/1 A2

(5.192)
By Lemma 5.2.10, with probability 1 — e~ <P,

xER

I3 &2 < o,
i—1
Therefore, with probability 1 — e 1P,
= 5 1] T [, 2
| &Zoar || <m|| X &z AP < campn 2.
i—1 i—1

By Bernstein-type inequality ((Vershynin, 2010, Proposition 5.16)),

)

P (|||<§||§ —n|> Czy/nlog(p)) < 2exp [_Cl min {nlo]i;(P)/ /nlog(p_)}] <pC.

(5.193)
Therefore, with probability at least 1 — Cip 3,
2 2| 2lE|2 - /nl
—=— - < M < CZ%g(p)‘ (5.194)
nflgllz m n?[|g]3 n

By (5.192), (5.194) and the previous inequality and the similar proof in Theorem

3.3.1, we have

ﬂ(Z)ﬂ(Z)T — U ur 2 2py ATL2
xeR LA e

2
4 [pr® +prlog(p) 5p3/2r2 5P3/2T3/2 4P3/2T5/2 3, |mplog”(n)
<C2 KO\/ nAain + KO n}\min + KO nAain + KO n + KO —n

3/2 1

75
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13/2
+ C3— + Cie Crp

VP

k2y/Tlog? (n 13/2

where we use the fact that C, T <Gt = 7

5.2.5 Proof of Theorem 3.3.4

Without loss of generality, we assume o = 1. By (5.108) and Lemma 5.2.10, with
probability at least 1 — C;p > — Cre 1P,

A~

max ‘7\ 7\?)’ <
1<isny

A -
RGO R < (2 4B ¢ [TEREED)
n nAmin n

Therefore, with probability at least 1 — Cyp~2 — Cie 1P,

M- A pr . pyr  [r+log(p)), -
1 i L 3
L (e
and

AR~ HA) N maxicie, B2

2 +1
< CzK% <K0F + KOE;\/_ TTOg(p)> AL

A2 T A

The rest of the proof is essentially the same as the proof of Theorem 3.3.2.

5.2.6 Proof of Theorem 3.4.1

Without loss of generality, we assume o = 1, t(j) = j and only prove the nor-
mal approximation for ({i;,1;)2. We denote U; = (up, -+ ,u,) € Op 1, Vi =
(va, - ,vy) € Op,r—1 and Wi = (Wy, -+ ,w,) € Op,r—1. Denote the (r — 1) x
(r—1) x (r — 1) diagonal tensor A = diag(A,, - -+ ,Ay), and A = Mi(A), A, =
Mao(A), Az = M3 (A).

By definition, {i; is the left singular vector of A x; Oil)T X3 Wil)T, for which we
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write
AT A ()T (1 A (1 ~ ~ ~(1 (1 AT A (DT
A Xo v{ ) ><3w{ ) :7\1<v§ ),v1><w§ J,w1>u1 + WA (W ®W1)T(v{ ) ®w§ )) +2Z ><2v§ T x4 w§ )
sl
27\1U1 +E{1)

where we define A; = A\ (0&1),\@ <Vv§1),w1) and ﬁ{l) =WA (Vs ®\/~V1)T(0§1) ®W§1))+
5 (1)
2.

Similarly to the proof of Theorem 3.3.1, the following bounds hold with proba-
bility at least 1 — C;e~ 1P,

max { [V 91" |12, WS Wil } < Cov/P/Awe and |21V ]2 < C3(v/P +PALY).

As a result, with the same probability, ||E |l < Cs(\/P + kopA,,}). Then, we write

0 Aug + BV 5[ 0w N 0o &
Ay + BT 0 "Lyl o0 EmT o )¢

We now apply Lemma 5.2.2 and represent (wju/, {1yt —wu ). Similarly to the
proof of Theorem 3.3.1, the 1st-order term does not matter, and the 4-th and higher-
order terms can be simply bounded. Therefore, we obtain,

]. A A 2 A A A
(w1t —uf) = st (BT uf BY) + St (BT B Ty, Ul BY) + R
1 1
where (uy,U;,) € O, and ||l~2§1)|| < Cakgp?/AL

- with probability at least 1 —
Clefclp.

Similarly to the proof of Theorem 3.3.1, we have Iﬁil)Tml < Ci(pA,L + y/logp)
which holds with probability atleast 1 — p—>. Therefore, with probablhty at least
1-—2p73, Itr( M7y E uuuﬁﬁﬁ”)l < Cok3p(pA,l + y/logp). Therefore, we

min
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conclude with probability at least 1 — 3p— that

A 1 A ()T £ (1 sz\/ logp | kpp’

min min

Similarly to the proof of Theorem 3.3.1, we have |A\2—A?| < C,k2p with probability
atleast1 — Cie “1P,

Therefore, with probability at least 1 — 4p— that

A3 A

min min

1 A . 21+ /1o 4.2
(W], W] —wul) + e (E{”TUuuLEP)‘ <o opv/logp  Kp )

It then suffices to prove the normal approximation of tr(ﬁilwul LuLfiil) ). Recall

that E{" = U Ay (Vs @ W) T (01" @ wi) + 21V, Note that

KoP

1TAL (V2 @ Wa) T(97" @)l < Can”

implying that, with probability at least 1 — C1e~“'P,

o A A o A A 212
‘ tr ((ul/\l(V@Wm(v§”®w§“))TuuujL (ul/\l(v1®W1)T(v§”®w§“)))‘ < Cg}pr.

Now, we consider the cross term (recall z; = Z x, v{ x3w] ) and conclude with

probability at least 1 —p 3,

’ tr (zﬁmuuuﬁ (WA (V@ Wi) T @l ))) ‘ _ ’ tr (zﬁ” (A (V; @ W) T @
<[t (2 (@A o W) (o] o) )| + [t (27 —20) T (WA @ W) T @ W) )|
<Cyy/rlogp - kop/Anin + C3 Kop? /A2,

where the first term is due to |z] U;|| = O(y/rlogp) with probability at least
1 —p /2, and the second term is similar as the proof of Lemma 2.
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To this end, we obtain with probability at least 1 — 5p— that

L 1 kip\/logp + kopy/Tlogp |<4p2
<U]u1r, U1u-1r — Uy > ﬁ tr ( UU_UU_Z1 )’ < ( 0 }\3 }i)4 )
(5.195)
Now, we investigate the main term tr ( Ty, Luf Lzl ) for which we write

tr (2" U U] 2 = e (U U] 20T = e (U Uz (080T @ (mPwit ) z
)

=tr (U Uy, Zy ((viv)) @ (wiwy ))Z]) + tr (uuuuzl((vl vi T _viv) @ (wiw] )Z])

+tr (UuULZl ((vlvlT) ® (wgl)wgl) —Wiw, ))ZT)

+tr (U Uy Zl((v1 vi Ty ® (wi )wi T —wiw, ))Z{)

where we denote Z; = M;(Z), and the last term can be simply bounded by C4p?/A2,

min

with probability at least 1 — C;e™ 1P,

The idea of bounding the term tr (U U], Z; (( W vi T —viv] ) @ (wiw]))Z])

is the same as the Step 4 in the proof of Theorem 3.3.1. Indeed, we shall recall that

oil) is the singular vector of

0% =A 5 1) %y

=\ <U1,ﬁ§0)><W1,W1 i+ ViAy (U @ Wh) T (1 io) ® Wio)) +Z X1 ﬂio) X3 Wio)

:iio)vl + Ez

Similarly to the proof of Theorem 3.3.1, it suffices to consider the 1st-order term in
99T —viv]. Ttis then easy to show that | tr (Up U, Zi (9{V9"T —viv]) @
(wiwy))Z])| < Caropy/10g p/Amn + Cskip?/A2, with probability at least 1 — p—3

Together with (5.195), we conclude with probability at least 1 — 6p—2 that

(KOP\/IOg p + kopy/rlogp Kop )

A3, ?\4

min min

A 1
(ululT,ululT—uluD—kﬁ tr (leUuULzl)
1

The rest of the proof is identical to the final step in the proof of Theorem 3.3.1.
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5.2.7 Proof of Theorem 3.5.1

Without loss of generality, we assume o = 1. For random variables (or vectors)
A and B, we use A 4 (resp. 5,3)8 as a shorthand for A % (resp. i,g')B as
p — oo. By (Zhang and Xia, 2018, Theorem 1), with probability at least 1 — C1e~ P,

JP

[ — [, [V = V]2, [W—=w|2 < Coi

LetU, € Op,p,-1, VL € Op,p,-1, W, € Op,p,—1 be orthogonal complements of
u, v and w, respectively. For any O; € O, 4,1 € [3], let

C)] = uuT—I—ULolllI € @Plf Oz = VVT‘I_VJ_OQVI € ©P2/ C)g = 1/\W\)T—|-WJ_C)g,Wj_r € ®p3'
Let A = A x; O] x, 0 x3 05 . Notice that O;u = u, O,v = v, 03w = w, we have

A=Ax10] x,0] x30] =T x10{ x20, x307 +2Zx; 0] x,0, x30,

=T+ 2 x1 0] %20, x30;.
Since O; € Oy, ,, the entries of Z x; O] x, O] x5 0] P N(0, 1). Consequently,
AL A (5.196)
Let 11, ¥, W be the outputs of Algorithm 4 after t,,, iterations. Then we have
i=0/1t v=0,9 w=0;W.

In addition, we have
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Similarly, we have (v,9) = (v,¥) and (w,W) = (w,W). By (5.196), for any O; €
Op,_1,i € 3],

(@TUL DTV, WTWL) (1), (v,9), (w, W) S(@TUL DTV, W W) (W, @), (v, 5), (w, W)

A

:(ﬂ—rolul/ \A)T O2\/L/ WTOBWL) ( <u/ ﬁ)/ <V/ \A)>/ <W/ W> )

A

:(ﬂTuJ_OlloTVJ_OZI WTWJ_O3) ((ul 1}:L>/ <V, 0>/ <WIW>)

Therefore, for any O; € Oy, 1,1 € [3],

a'u, 9TV, w'w, . .
(et TVt ) (o 5
i( 4TU,0;  9TVI0,  WTW, 0, )‘ o i)
[(ULO1) T [(VLO2) V2" [[(WLO3) T ’
T ’\T ’\T
:(HUTL:;JH 04, HVT\ZL O, TV\A/J— > < > < < >
12 Ol T W LW,

Set Oy = 1,1, for any v, v, € SP272 = {x € RP2! : ||x]| = 1} and wy, w, € SP*72,
we know that there exists O, € Op,—1 and O3 € Op,_1 such that v, = Oyv, Wy =
O3v,. Then for any Borel set A C SP172,

urd AVARY WTw
P s €A| i =V, i = W >
<||UIu||z VIS~ VI IWiw),
urd VTA WT A
=P L c A|O, —=—— =v,0; = w
<HUIﬁHz 2R T W Wl
ur AVARY WT A
=P < J_A €A J'A Vs, = = W2> .
ulal, IVl Y W

T v wWlw . ..
HU AP and ( IVTsz le B ) are independent. Similarly, we know that

UJ_u V v
e and
[P HVTVIIz IWTWII

-
Haar measure, we know that (Htféﬁz, HX/I\glllz’ ||V\:)vIVvaﬂ2) and ({(u, ), (v, ), (w,W)) T

Therefore,

are independent. In addition, by using the property of
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are independent, and

Uit o g, g \T
[RSRet[ _( [y it ggl)zlml m) '
VIo 4 g, g\
V92 _( 5Pt 952)2'”" sp ggm) ’
Wiw g gt gé?_l T
[WIW|, :( srol 953)2'”" P gf’)Z)

(1) (1) (2) (2) (3) (3)
where gV = (g;",..., 95 )7, 9 = (g/”,..., 05 1), 9% = (g”,..., 95 1)

are independent standard Gaussian random vectors. Moreover, by SLLN,

1 p1—1 . 1 pa—1 o 1 ps—1 32
— g; ™1, = g; 1, = g; 1.
o2 2 P2

For any fixed f; € SP172,f, € SP272,f3 € SP*2, notice that (f] g1,f, g2, T3 g3) " ~
N(0, I3), we have

. . . T
e e e R T
édiag <\/ZE;19£1)2,\/ E’i?ggz)z’\/ fi?fgf’u) - (f] 91,5 92,13 g3) T
4N(0, I5). (5.197)
By Theorem 3.3.1,

% N(0,15).
(5.198)

2 — (1—piA2) v,9)2—(1—pA2) (w,w)2—(1—psA2)\ "
\/2‘[)17\72 ’ \/2]927\72 ’ \/2]33%72
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The delta method and the fact that 1 — p;A 2 1 forie [3] together show that

(ft VTP 08 VTP il VIpA) s
e e e

(5.199)
Also note that
e P _ VPi
1—pA 22— /1—pA2= Pi = Fi o VF
P P AT —pA2+1—pA2p) MW

ar T w’ T A o A
and (”uﬁhz, vagl”Z, ”vavﬁz) is independent of ((u, 1), (v,9), (w,W))T, by (5.197)

and (5.199), for any fixed f; € SP172,f, € SP272,f; € SP+72,

a’u
VPl 1
TV
VP2 T2
wiw
VPswTan e |
(wiy—(1—pia2/2) | = N(O,I). (5.200)
\/P1/2A2
(v,9)—(1—poA~2/2)
V/P2/2A2
(W) —(1—p3A—2/2)

V/P3/2A2

By (5.198),
IUTa 1= (o 5
P1/A Pi/A

By (5.200), for any fixed f; € SP172,f, € SP272,f3 € SP+2,

(AaTuLfl,mTvaQ, MWW, s, (5.201)

(u ) — (1—piA2/2) (v,9) — (1—pA2/2) (W, W) — (1 —psA~2/2) ) '

VP1/2A 2 ’ Vp/2A V/P3/2A 2
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diag (HUIﬁHz, IVIol: (WDl 1,1) YPTWIaRl
\/p_1/7\ \/p_2/7\ \/p_3/7\

VP1/2A?
(v —(1—psA—2/2)

\/pz/zﬂ
(wv)?—(1—psA—2/2)

V/Pa/2A2
LHN(0, Ig). (5.202)
For simplicity, let q; = q\"* for i € [3]. Note that
(0, q1) = (@, Pudr) + (0, Pyqr) = (g Wi u+ (U] qy) UL (5.203)

If q1 # U, g2 # v, q3 # tw for i € [3], since U] q1, V] q2, W] g3 are fixed vectors,
by (5.201), we have

(}\( 1491) U‘IA/ (W) —(1—piA~ 2/2) (Vig2)" VIA/ (v 0)—(1—poA~ 2/2) (Wlqs)" WTA, WW)—(l—m?\z/ZJ)T

Ut qill2 V/P1/2A2 V] a2l \/P2/2A72 W] qsll2 \/Pa/2A2
—’> N(0, Ig). (5.204)
Since
— 2
<q],ﬁ_u> + p1<2(;\12/u> B 1—{u,q1) V pl/;furqﬁ >

A
\/p1<2qxliu>2 + 1—(;1\;»)2 <\/1<;\Léq1>2 + pl(;}igly ’ \/1 <‘;,Q1)2 + p1<u/q1>2
) —

(7\|(|UIC11) uld (u, (1—piA~ 2/2)>

Ulqill, \V/P1/222
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\ 1—(u,qp)? V' P1/2(wqq) T
where k A% is a fixed unit vector, by Lemma 5.2.11,
1—(u,qq)? +P1(U~ ,q1)2 1—(u,qq)2 + p1{w,qp)?
A2 272 A2 272
we have

(<q1,a—u>+% (q2, 0 —v) + 228 gy — ) 4 Bldyw)

-
—, 1 — ) LN, 1)
\/P1<2q71‘1u) + —(;;u> \/PZ(ZQ}\ziV) + —(222/‘0 \/P3<g73\21w) + _<§\3z'w>

(5.205)

If g1 = +u, q» = v or q3 = =w, by (5.198), we still have (5.205).

1,j € [pal, k € [psl,

Specifically, if if [u;], [v;|, lwy| < min{A\/p, 1} for some i € [
% < 7\2 and u; 230,

1
piu}

by setting q; = e, q» = ej, q3 = ey and noticing that pl“t <
we know that (3.17) holds.

Given AL << [wil, vjl, wi| < min{A/p, 1/+/log(p)}, immediately we have ﬁ—l L

1,V—J =1, Wk — 1. Then
j
ﬁif)jwk—uiﬁjwk \A)"\?vk A
A viwy Viwg 0 0 }\(ul - ul)
UiV Wi —ui vy W _ A N d,
S vrerrumll Bl BV U A®; —v;) | = N(O, L3).
U{V; W —Ui{V; W N
)\% 0 0 1 7\(Wk —Wk)
By Lemma 5.2.11, we have
"ka T LR o
UV W —ui ;W
VT IeTa | (A
j
1J.1V]Wk ulvlwk — Wkul Aulolwkfulv)\?vk $ N(O 1)
> o \/u2v2+v2w2 +wiu? Uiwy 4
LL V + V —|— wku. Wi vs UiV Wi — UiV Wy
1 iVj 7\_#;
iVj

2.2 2.2
\/u viv? Wk—o—wkuiL

(5.206)

W22/ (ul v +v ]2<+w]2<u%)£>1,wehave

Z
]
=
(@)
)
-+
=
QO
-
\—am
_l_
<>
-1
>
=N
+




Finally, by (5.105), with probability at least 1 — Cp 3,
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A W VW
(A=2) N [ < Gl + \flog(p)wid < Co,  (5.207)
(1502 + D2W2 + Wil
iYj j vk k1
ie.,
(?\—7\) UiV;Wy 3}0
V092 92 4 2
Therefore, we conclude that
‘j-(l ‘Il'
jk — ik 9 N(0,1).

(129 242
\/ uivj + v]. Wi + Wil

5.2.8 Proof of Theorem 3.5.2

Without loss of generality, we assume o = 1. We discuss in four scenarios:

(1). huil, [v;l, wil = (log(p))/8A~1. By Theorem 3.5.1,

: 24,2 82472 A2 N2)
I}LI{}OP (|(Iijk _Tijk| < Zo(/z\/ i\)j +V)~Wk —|—Wk i> =1—«

Therefore (3.20) holds.

(2). Exactly two of fuil, [vj], lwi| > (log(p))/8A~1. Without loss of generality, we

assume |vj], lwy| > (log(p))'/8A~1. By the essentially same proof of (5.206),

we have o
UiViWye — Ui VWi d,
A ) ] = N(0,1).
202 4 422 2.,2
\/ ugvy + viwy + wiug
(If w; = 0, then immediately we have A u‘zvzwk wvwe o BV g,
\/ +v wi+wiu? ViWk

N(0,1).)

If Iull > (log(p))¥/*A~1, then by (3.17), ﬂl/ul,f)]/v),wk/vk P 1. Therefore,
(0202 + 9202 + W202)/(udv? + viwd +wiu?) 5 1. If [ug| < (log(p)) /1oAY,
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then (3.17) shows that 1 /((log(p))/**A~1) & 0. Thus

ADaD | D AD | AD AD ADaD | D AD | ADAD 2.2 N I)
ugvj Jrv]-wk + Wi U Uy +VjWk + wipug Vywy ViWg p
2.2 2.2 2.2 ~2.~D 2.2 2.2 2.2 2.2
ugvj +v].wk + wiug Vywy upvj +ijk +wiug Viwy
As a consequence,
ﬂi\?‘ka — U{V; Wy d.
A ) ) — N(0,1). (5.208)
~DaD | D AD ~D D
\/ Vi +v]wk + wipug

which indicates that (3.20) holds.
3).

At least two of [uil, [v;|, Iwx| < (log(p))/8A~1. Without loss of generality, we
assume |v;|, lwy| < (log(p))/8A~1. By (3.17),

|{))| p- |Wk| p-
log) /A1 " Togpnvent

By (5.105), we have A/A £ 1. Then

A

‘ {-Tijk
V/S(E2)(92) + s(92)s(W2) + s(#2)s(62)

1

AL D5 Wy |

\/SE2)s(8) + s(92)s(W2) + s(#3 )s(62)

A

A D] Wyl P,
< 1/67%
Ik (log(p))™ "5 (log(p)) VoA T (log(p)) /AT 0,
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and
’ Tij
\/S(ﬁ%)s(f’?) +5(92)s(W}) + s(WR)s(112)
_ |)\uiVjWk|
V/S@S(93) + ()5 0A) + s (A )s )
1/8—1)2
<Alwy| "’kj < ((log(p))"*A71)? .
Vs(¥2) Tog(p)A—1
Therefore,
Cl. (9 ‘j‘i' _71'_'
lim ]P)(‘Tijk € CIoc(r-Tijk)) = lim ]P)< | ik ]k|
p—roo p—roo \/s(ﬂ%)s(\?]?) +s(92)s(Wh) + s(W3)s(2

In conclusion, we have proved (3.20).
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5.2.9 Proof of supporting lemmas

Lemma 5.2.4. For any 0 1, if either of the following inequality holds, (1) | M; (T(©) —
H Amn/2; (2) AT — uyuTY| < 8 (3) (100 AT uuTHF \st
||U] U] > vV1I—28%(5) HU)O)TU]-HF > /1 — 82, we have || sin O(U., U;)|| <

Proof of Lemma 5.2.4. For simplicity, let T; and T(O) denote M;(T) and M;(T®), re-
spectively. Suppose H'AF).( — T;|| < 8A,../2. By (Zhang and Xia, 2018, Lemma 6), we

have
IO < 2T — Tl < 8A,

and consequently,

AN (0)T ~N(0)T
102 WU O

. " (0) 1T
Hsm@(uj ,uj)“—HujL ung Gmin(UjTTj) N Avin h

In addition, by (Cai and Zhang, 2018, Lemma 1), we have

|sin®(C, Uy = /1 — 0" 7w )2 < [0 AT —uyu |

and

|sin@@”, )] < || sin©(CLY, W), = /7 — AL U 2 = [AV WO —U U [e/v2,
which have finished the proof of Lemma 5.2.4. O

Proof of Lemma 3.3.1. Notice that

[ A—Ax1 Py, x2Pyy, X3P |lF = [[Z—2x1 Py, %2P, X3P, +T—Tx1 Py, x2Pyy, X3Py |l

we have

A — A x1 Py, %2 Py, X3 Py llr — [12]]5]
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<12 %1 Py, X2 Py, Xs Polle+ 1T =T X1 Py, X2 Py, X3 Py, [lr-
By (56.214) and (5.215), with probability at least 1 — C;e=“'P,
12 x1 Py, x2 Pey, x5 Py lle = 10 Z1 (U @ Us) e < /71l Z1 (U © Us)|| < Coo/pT.
In addition, we have

|T—T x4 Py, X2 Py, %3 ?03”F
=||T %1 Pu, X2 Pu, X3 Pu, — T x1 Py, x2 Py, X3 TPHSHF
<Py, — P )T (Pu, @ Pug) e + [[(Pu, — Pey ) T2 (P, @ Pug) e + [[(Puy — P ) T (P, @ Puy)lle
<(1Pu; = Py [+ 1Pu, — Pe, |+ [1Pu, = P, ) 1T

°. VTKoA L = Cakoo/PT

min

<G

with probability at least 1 — C1e~“'P. Therefore, with probability at least 1 —C;e~ 1P,
we have
‘H.A —A X1 Tl:ll X iPaZ X3 fpuBHF — ||Z,||F’ < CzKQO'\/p_T. (5209)

By (Laurent and Massart, 2000, Lemma 1),

7

As a consequence, with probability at least 1 —p~>,

s

2 P1P2P3

> Colvprpapay/log(p) +10g(P))) <.

|HZ”F - \/Plpzpsﬁ‘ < Cyy/log(p)o.

Combing (5.209) and the previous inequality together, we know that with probabil-
ity atleast 1 — C;p 3,

6/0 —1] < Ca(koy/Tp " +p*/*y/log(p))
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and
162/0%—1| = |6/0—1||6/0+1| < 2|6/0—1|+6/0—11* < Ca(kev/Tp 4p 4\ /log(p)).
O]
Proof of Lemma 5.2.1. By definition, ||&;|| < |31 + [|32]] + [|J5]] + [|Tal|-
1€ < I3l + (B2l + (133l + [134]]- (5.210)
We first proved the upper bound for ||J;||. By the definition of ||J:||,

191 < HTl('J)l:lélj ® Tuén)zr

< Hﬂ””(ﬂj%n ®TPQ§1))Z1TH < KoAwin

20" @ 0.

(5.211)
For any fixed matrices X € RP2*™,Y e RP3*"s satisfying ||X]|, ||Y|| < 1,
P(Zi(X@Y)| > C2y/pT) < Cre 7" (5.212)

Let Xp, . = {X € RP<*™ | X|| < 1}. By (Zhang and Xia, 2018, Lemma 7), there
exists an 1/4-net X,,, ,, with cardinality at most 9P+ for X, ,,. That is, for any
X € Xp, r., there exists X’ € X, ;, such that || X’ —X]|| < 1/4. Forany X € X,,, ., and
Y € Xpyry, let X € Xp,r, and Y/ € Xy, o, satisfying [|[X — X'|| < 1/4,|Y = Y'|| < 1/4.
Then

1Z1(X @ Y)||
<[ZiX' @Y+ Z(X=X) @ V)| + | Zi(X® (Y = Y))|[ + |Z(X = X) & (Y =Y))||
<Zi(X @ Y| + Z sup 1Z:(X @ Y)).

XeRP2XT2 YeRP3 XT3
IXILA1Y]I<1
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By taking the supremum over any X € X, ., and Y € X,,, »,, we have

sup 1Zi(X®Y)|| <4 sup 1Z:(X" @ Y|
XeRP2%72 YeRP3XT3 X/ €Xpyry, Y E€Xpyry
IXILIYI<t

The union bound shows that

P sup |1Z1(X®Y)|| = Cay/pr
XeRP2XT2 yeRrP3 %73
IXIIYl<1
<P ( sup 1Z:(X" @ Y| > Cz\/pr)
X'€Xpy,ry/ Y €Xpy s

< Y PUZX @Y > Cayd

X’eo'cpz,rz,Y/ea'c

—c1pr
<C1e 1pT

P33

By (Cai and Zhang, 2018, Lemma 1), with probability at least 1 — Cie~ 1P,

128, W = UL G ) < P = Wl < Covp/Awe, 1<k <3,
(5.213)
Therefore, with probability at least 1 — C;e~ 1P,
(0 @ u;%”
= Zl(:PU2®U3 + CPUu@Us + CPuz®uu + TU2L®U3L)(U-£1) & ﬂél))H
(
3

< Zlﬂbuz®u3(u§1) X uél))H + ’

+ 1 Z1Pueus, (0 © ﬂél))H +{|Z1Puy, ous, (Y ® ﬂél))H
(
2

=|zy (U @ Us) (U ® Us) (Y & T

|
+ ||z (w0 @ @5 W) | + |20 (78,00 @ (5,0 |

< ||Zl(U2 (%9 U3)|| + szp‘l’ prﬁzuél) H HTuﬂléU




+ Coyr [P | 26,057 + Covr || 05" | |7, 057 |
<|1Z1(Uy @ Us) || + Co/pr \/_7\mm+C2\/ \/_7\mm+C2\/_p7\mm
<|1Z1(Up @ Us) || + Con/PTy/PA e
<|[[Zi (U2 @ Us)[| + Coy/p.

By the Gaussian concentration inequality;,
P (]|Z1(Uz @ Us)|| = C3¢/p) < Cre” P,
(5.211), (5.214) and (5.215) together imply that
P (1311 = CoroAminy/P) < Cre” 7.
Since J, = J; , we also have

]P)(HJZH 2 CZKO}\min\/E) < C]e_clp,

For J3, by definition,
131l = 1121 (0" @ g
Combining (5.218), (5.214) and (5.215) together, we have

P (]|3s]] = Cop) < Cre™ P,

Then, we consider J4. By (5.213), with probability at least 1 — C;e~ P,

3 <T@ g —Pu) @ Py T || + [T, @ (Pye — Pu) T |

_Hul uz(? PR ® (U] Py Us))GT U] |
+ Wi (Pu, @ (U] (70 — Pu UG U]
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(5.214)

(5.215)

(5.216)

(5.217)

(5.218)

(5.219)
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— Hu1 (U] P Ua) © (U Py Us)) GTuTH
+ HulGl Pu, ® (Ug ?ﬁél)uﬁ )Gy Uy H

<G uzasy [+ e e Jugos

<CokZA2 (VP Awin)?

=CoKkip.

Therefore, by (5.210), (5.216), (5.217) and (5.219) and notice that A, > Cko./P,
we conclude with

IP(HQle Z CQKOAmin\/ﬁ) < Cie ©P,

O

Proof of Lemma 5.2.3. Consider the SVD decomposition U"U = LSWT, where L, W €
Oy, and S € R™" = diag(sy,...,s,) is a diagonal matrix with diagonal entries
1>s >--->s,>0. BysettingR =IW', wehave UTU—~R = L(S — I, )WT.

Therefore, =||S — I,||. Since |[x — 1] < [x*> — 1] for all x > 0, we have

< I~ 1 = l0TuuT - L = ot

(5.220)
For H i pr We have
07U —R||, < vF|JUTU—R| < vr[ult’ (5.221)
and
AU =R < [|$* = Llp = [[ATuu 0 — L[|, = ||C LAl < fjui
(5.222)
which have finish the proof of Lemma 5.2.3. O

Lemma 5.2.5. Under tensor regression model (3.2) with X (i, 12, i3) - N(0,1), Var(&;) =
o2 and |||y, < Co for some constant C > 0, if || T — T||2 < CoPTpe0?/1, N(Ay/0)? =
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Co(p*2V kipr2. ) and n > Co(p3/?\V kZpr3. ) for some constants Cy, Co > 0, then there
exists some constants Cy, ¢y, Cs > 0 such that with probability at least 1 — C1e™ 1P,

Hsin@(ﬂj(l),uj)H < Gvp/no/A,., Vi=1,23,
where Ujm is the one-step alternating minimization defined in Algorithm 2.

Proof of Lemma 5.2.5. Without loss of generality, we assume o = 1. By Assump-
tion 3.3.2 and (Zhang and Xia, 2018, Lemma 6), with probability 1 — C;e~ 1P,

i ) o
G < 2l =10 < e

By (Cai and Zhang, 2018, Lemma 1), we get with probability 1 — C;e'P that

A

inf ([0 - 0], <

O€0y,
10 T e Vpr/m . \/pr/n
<V2 - < C <C :

Similarly, with the same probability, we get

pr/n
}\min

E

~N(0) 7y (0)T "N (0) 7y (0)T
W — WUy || [T —usu | < €

F’

Based on the two equations above, we can prove Lemma 5.2.5 by similar proof of
(5.119). O

Lemma 5.2.6. There exists an e-net O, ={UY) € O, ,,1 <j < N}in | - || norm with
cardinality N < ((4 + €)/€)"" for Oy .. That is, for any U € O, ., there exists j € [N]
such that |[U — U0 || < e.

Proof of Lemma 5.2.6. By (Zhangand Xia, 2018, Lemma7), for U, , = {U € RP*", ||U]| <

1}, there exists an €/2-net U, , = {U0) € RP*", |UB)|| < 1,1 <j < N}tin || - |
norm with N < ((4 + €)/e)P" for U,,. Let UU) € argmin g U6 — uy,

0T — WU, = V2] sin@(0”, U |, = V2|t u,

e
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1 <j < N. Forany U € O,,, there exists UU) such that ||[U0) — U|| < €/2.
Then [[UY) — Ul < [JUD) — U+ [[UY) — U0 || < 2u®) — U < e. O

Lemma 5.2.7. Suppose Z € RP* 9 isa matrix with independent zero-mean o-sub-Gaussian
entries. A € R™*P, B € R9*™ satisfy ||A||, ||B|| <1, m < p,n < q. Then

2

P (][AZB|| > 20vm+1t) <2-5"exp {—c min <;:—1,t)} . (5.223)
2

P (|[AZB[|r > ovmn +t) < 2exp [—cmin (%,t)} . (5.224)

Proof of Lemma 5.2.7. Without loss of generality, assume o = 1. For fixed x € R"
satisfying ||x||» = 1, we have AZBx = vec(AZBx) = (x' B" ® A)vec(Z). Since Zy; is
1-sub-Gaussian, we know that Var(Z;;) < 1. In addition,

E[|(x"B" ® A)vec(Z)||3 =E [trace (vec(Z) " (x"BT ® A) T (x'BT ® A)vec(Z))]
=trace [E ((x'B" ® A)"(x'B" ® A)vec(Z)vec(Z)")]
=trace [(x'B' ® A)T(x'BT ® A)E (vec(Z)vec(Z)")]
<trace (( TBToA)'(x'B" ® A))

=[x BT @ Al = IBx|ZIAIZ < Ix|3I A2

)
)

<m.
(5.225)

The first inequality holds since E (Vec(Z)Vec(Z)T) is a diagonal matrix with diago-
nal entries Var(Z;;) < 1; the last inequality is due to ||A||r < min{m, p}||A|, <m
By Hanson-Wright inequality, we have

t? t
P Bx|Z—m>1t) <2 —cmi ’ '
(IAZBx[; —m >t) < 2exp { ¢ min (H(BXXTBT) ® (ATA)|]Z" |(BxxTBT) ® (ATA)HH
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Since x| = 1and ||A], ||B]| <1,

I(Bxx"B") @ (ATA)[[f =[[Bxx "B [F|ATAllf = (x"B"Bx)*|AT A7
min{m,p}
<(xXTx)?ATA|E = Z oi(A) <m,

i=1
[(BxxTBT) @ (ATA)| < [Bxx BT [ATA] < [hoxT[ATA] < 1.

Thus, for fixed x satisfying ||x||> = 1, we have

2
P (JJAZBx[5 > m+1t) < 2exp {—c min (:I_’L,t)] . (5.226)

By Vershynin (2010)[Lemma 5.2], there exists N1 ,5, a 1/2-net of {x € R™ : ||x||, =1},
such that ‘Nl /2} < 5™. The union bound, Vershynin (2010)[Lemma 5.2] and (5.226)
together imply that

t2
P(|AZB| = 2vVm+1t) < IP’(max |AZBx|; > \/m+t) <2-5"exp {—cmin (H,t)} :

xEN1 )2

For | AZB||g, note that AZB = (B" ® A)vec(Z), Similarly to (5.225), we have

E|(B" ® A)vec(Z)|3 =E [Vec(Z)T(BT QA) (BT ® A)vec(Z)]
=[Etrace [VEC(Z)T(BT QA)T(BT® A)Vec(Z)}
=traceE [(B' ® A)(B" @ A)vec(Z)vec(Z)]
=trace [(B' ® A)"(B' ® A)E (vec(Z)vec(Z)")]
<trace [[B' @ A)"(B' ® A)]
=[B" @ Al = [IBIF| Al

<mn.
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By Hanson-Wright inequality, we have

2 i v -
P (|AZB|ff —mn > t) < 2exp [_Cmm (||(BBT) ® (ATA)[E" I(BBT) & (ATANl)] '

Since ||A[], ||B|| < 1, we have

min{m,p} min{q,n}
IBBT) @ (ATA)r = IATAIZIBBT IR =| Y o}A) 3 o¥(B) < vmnm,
i=1 i=1

I(BBT) @ (ATA)[| < 1.

Therefore,

t2
P (J|AZBJ; > t) <2 —cmin ( —,t].
(I 7> mn+t) exp[ ¢ min (mn )}
]

Lemma 5.2.8. For the class of low-rank tensors under the Frobenius norm X, = {A €
RP1*P2xP3 : rank (M (A)) < 11,1 € [3], || Allg < 13, there exists

Xpr ={AWM, ..., AN (5.227)

with N < ((8 4 €)/e)rmratZiapirs satisfying AV € RPP2xPs - || AW < 1, such
that for all A € Xy, there exists i € [N] satisfying || AV — Al < €.

Proof of Lemma 5.2.8. By (Zhang and Xia, 2018, Lemma 7), there exist €/4-nets X, r,
for X, », = {U € RP*7i ¢ |U|| < 1} under the spectral norm with cardinality at
most ((8 + €)/e)Pi™, 1 € [3], and X;, r,r, fOr Xy, rpr, = {B € R™X(273) ¢ |Bjp < 1}
under the Frobenius norm with cardinality at most ((8 4 €)/e)™ ™. Let

5Cp,r ={B x1 U; x2 Uy xzg Uz : U; € :_xpi,rilml(B) € xrl,rzm}-

For any A € X,,, there exist U; € X, ,, and D; € X, r,r, such that M;(A) =
ViD1(V, ® VJ). Then we can find U} € X, ,, and B* € R"*™2x"3 B¥ = )\, (B*) €
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Xy roryr and B xq U o Us x5 U € X, satisfying

| A —B* x1 Uj %2 U3 x5 Uj||e
=[ViD1(V; ® V5 ) = UiBy(Us" @ Uz ") e
<[[Vi =UDD1(V; @ V3 )l + UF (D1 = B (V) @ V5 )l + [UBT (V2 — Uz) " @ V3 )l
+H{IUTBT (U3 " @ (Vs —Uz) v
<[Vi = UL [[lIVal[l[ Va][[[Dalle + (U V2Vl D1 — Bylle + U7 [[[1V2 — Uz |[[[Va][I[B1 e
UL Vs = Us][[[B7 [|e
<E +ErS48 e
4 4 4 4
Notice that [Xp el < 1Xp,  1Xp, 1,1 X s [ Xrp eyl < (84 €)/€)T 12T Z1PiTs we have
finished the proof of Lemma 5.2.8. O

Lemma 5.2.9. (1) Suppose X € RP**P2 X(i3, 1) i N(0,1) and X4, ..., X, arei.id.

copies of X. Then there exist two universal constants C, C; > 0 such that for any
ﬁxed u e ©p1,T1/V E @pzﬂ”z m’ld A E Rplxpz,

'

> CHAHFt) <2- 7r1+r2e*C1 min{ntz,nt}.

1 mn
- Z (X, AYUTXV—UTAV
=1

(5.228)
(2) Suppose X € RP1*P2xP3 X(iy,1y,13) - N(0,1) and X4, ..., X, arei.id. copies of
X. Then
1 n
P sup = 3 (25, AYMG (X)) (Uz @ Us) — My (A) (Uz @ Us)|| > Ct
uerRrugl<t || 5

AERPL*P27P3 || A|[p<1
rank (A) < (71,72,73)

<2- 7P1+T2T39P2T2+P3T333?1fzf3+Z?=1 PiTi e—C1min{TLt2,nt}.

Proof of Lemma (5.2.9). (1) We only need to show that (5.228) holds for any fixed
U e 0p,,V € 0p,, Forany fixed a € R",b € R™ satisfying ||alj, =
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1,|b|l2 = 1, notice that E[(X;, A)X;] = A for i € [n], we have
E[(X;, A)a"U"X;Vb] = a"UTAVb, Vie n].

For any random variable Y; and Y;, by Cauchy-Schwarz inequality, we have

1 1/ 1 2q\ 1 2q\
Y,Y <Csup = (E[Y1Y2]9) 79 < C |sup —= (E|Y1[*9) % | |sup ——= (E|Y;[*9) %
1Y1Y2]|y, q;l? 1Y2 q;l’ ’_2q< 179) q}Il’ /_2q( 1)
<C Y1, [[Yall,-
(5.229)

Since (Xi,A) ~ N(0,[|Al?) and a"UTX;Vb ~ N(0,1), by (Vershynin, 2010,
Remark 5.18) and the above inequality, we have

[{(Xi, 4)a"UTX;Vb —a"UTAVD||,
<C|[(Xi, A)a"UTX V]|

<CI(Xi, A) s [la"UTX: Vb ]y,
<CllA[fe-

By Bernstein-type inequality, we have

'

By (Vershynin, 2010, Lemma 5.2), there exist a 1/3-net N; for S ! ={x:x €
R™, ||x|l» = 1} with cardinality at most 7™ and a 1/3-net N for S ! = {x :

x € R™,||x||, = 1} with cardinality at most 7™. By the union bound, we have

> Tll ((Xi, A)a"UTX;Vb — a"UTAVD)

i=1

> C||A||Ft> < 2exp [—~Cy min{nt* nt}] .

b = C“AHFt < 2.7T1+T26—C1 min{ntZ,nt}.

T - 1 ) Ty v/ _ 11T
a [Zn«XUA)U X;V—UTAV)

i=1

P sup
aeNy,beN,
(5.230)
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Let a* € S and b* € S ! satisfy

‘b*

* T = 1 . Ty v/ _ 11T
a [;n«xuwu XiV—UTAV)

Z (X, HUTX;V —UTAV)

= sup bl.

acS1 ! besm!

<1

Then there exist & € N; and b € N, such that || — a*|| < 3 and HB —b*|| < 3.

Therefore,

~T n l . Ty . T « AT l . vy T _
S| [;n<<x“A>u XiV—U'AV) | b| + |(a" — @) [;n(%,&u X,V —UTAV) | ‘
+a”! [Z%((Xi/AﬂlTX V—-UuTAVv)| (b* —b)
i=1
=1 N
S, al — ((Xy, A)U' XV —UTAV) | b| + > — (X, A)UTXV—urav)|,
iy [;n ((Xi, ) ) 3 ;n ((Xs, ) )

which means that

> Tll ((Xi, AUTX;V —UTAV)

i=1

<3 sup

aeNy,beN,

T = l X Ty \/ _ 11T
a [Zn(<X1,A>U X;V—U'AV)

i=1

(5.231)
Combining the previous inequality and (5.230), we have proved the first part.

(2) For fixed U; € RPi" and A € RP1*P2%P3 satisfying ||U;|| < 1and ||A||r < 1, by
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(5.228), we have

'

By (Zhang and Xia, 2018, Lemma 7), there exist 1/4-nets X,,, ,, for X, ,, =
{U e RP*™i ¢ ||U]| < 1} with cardinality at most 9P:"i. Therefore, by the union

bound, we have

Tll Z<xi,A>M1(xi)(U2 ® Us) — My (A) (U @ Us)
i1

2 Ct) < 2‘7p1+r2T36—C1min{ntz,nt}.

P sup > Ct
uiejC_Pi:Ti

Ae DCp,f

(X AUV (00 (Us © Us) — UT M () (Us © Us)
i=1

1

<2 . 7p1+r2r39p2r2+p3r3331‘11‘2f3+2321pif*iefClmin{ntZ,nt},

where D_Cp,f is defined in (5.227) with e = 1/5.
Similarly to (5.231), we have

LS (0 APUT M (200) (Us © Us) — UT Ve () (U & Us)

su
p n -
i=1

Wi €RPIXTL UL 1<
AERPLXP2XP3 || Al[p<1
rank (A)<(71,72,73)

LS 0, AYUT M) (U © Us) — UT M, () (Us & Us)

i=1

<4 sup
uiexj’i/fi
AEXps

By combining the two previous inequalities together, we have finished the

proof of the second part.
[
Lemma 5.2.10. (1) Suppose X € RP1*P2 js g matrix with independent entries satisfying

EXi; =0, Var(Xy;) =1, || Xy |y, < C and Xy, ..., Xy arei.i.d. copies of X. Suppose
&1, ..., &n are independent zero-mean Co-sub-Gaussian random variables. For any
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fixed U € Op, r, and V € O, .,, we have

IP) (
P ( > LuUTXv
i=1
(2) Suppose X € RP1*P2XPs js g tensor with independent entries satisfying EXi;, =
0, Var(Xiji) = 1, | Xijillw, < C, and X4,..., X, are i.id. copies of X. Suppose
&1, ..., &n are independent zero-mean Co-sub-Gaussian random variables. Let p =

i EUTX;V

i=1

> Cov/ny/m + 12 + xcr) <e Cxqpeam

> Covnvrims + xo) <e Gx peam,

F

maxj—ip3P;j and v = max{ri, v, T3}. Suppose v < /p. Then for fixed V; € Oy, .,

P ( Z E,lvl—er(xl)(VZ & V3) 2 Czﬁ\/Tl + ToT3 + IOg(p)O') < p*C1+efclTl.
i=1

(5.232)
P ( Z £V My (X)) (Va® V3)|| > CZ\/T_l\/TlTZTB + 10g(P)U> <p e am
i=1 F
(5.233)
Moreover,
P < sup Z EVIM(X) (V2@ Va)|| > Czw/npr0> Le P e G
Vi€0piry ||i=1
(5.234)
P ( sup Z EVIMU(X) (Vo @ Va)|| > Czw/npr(r) Le G e Cm
Vie@pi,ri i=1 F

(5.235)

(3) Suppose the conditions in (2) holds and p, > 1,13 = v1. Then for fixed V, € O, +,
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and V3 € Op, +, and V3 € Orpry 1y,
sup
V E(O)pl i

Sup
Vi e@pl Ti

In addition,

Z ((-lel Vz (%9 V3

i=1

> Coy/m 0‘) <e G f e Cimy

Z E: VG (X)) (Vo @ v3)v

i=1

nprcr) —CPT e G,

P sup
Vi€0p; r; =23
Vy€0ryrg,mq

1) (Vo ® V3)Vy < e C1PT e G,

> Cyy/npro

N—

n

Pl sup |} Mi(X)(Va@V5)Vy
N

> Cyy/mpro | < e C1PT 4 e Ciny

i=1

Proof of Lemma 5.2.10. Without loss of generality, we assume o = 1. For any fixed
a=(ay,...,a,) € R", noting that the entries of }_." ; a;X; are independent C||a||,-
sub-Gaussian random variables with mean 0 and variance | a||3. By Lemma 5.2.7,
for any x > 0,

]P (

]P (
i=1

Z EUTXV

]P (
i=1

i ailU’' XV

i=1

> Cllallav/r1 + 12 +X> <e O

UTXV

> Cllall2v/Tim2 +X> < e Crx,

F
Therefore,

= CHE,HQ\/H + Ty + X

E,l,...,é,n> <e X (5.236)
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i EUTXV

i=1

> Cll&|l2v/T1m2 + X

F

|

By Bernstein-type inequality ((Vershynin, 2010, Proposition 5.16)),

E,l,...,an> <e X (5.237)

P(IEl2 > Cym) <e O™ (5.238)

Thus we have

g ( 2_EUXV| > Cﬁ\/m) <e Cx e Cim
i=1

P( D aUXv| > Cﬁm> <o O e Cm,

i=1 F
By setting x = log(p), U = Uy, X; = M(X;) and V = U, ® Us in the previous two
inequalities, we have proved (5.232) and (5.233), respectively.

By setting t = C,/p7in (5.236) and (5.237) and using Lemma 5.2.6, (5.238) and
the e-net argument, we have (5.234) and (5.235).

Similarly, we can prove the inequalities in Part 3. O

Proof of Lemma 3.3.2. By the definition of {,-norm,

onf

By the weighted AM-GM inequality, we have

)} <2, Yienl.

1 n 1

Z?:l"%i X4
<) ThoL

i=1 i=1 oy

Xi

Xi
Ki

H?:l Xi
[Tio Ky

7
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and

[T, X
eXp <‘ Hn 1 K.
i=1 ™M

FI,?.<

)
)
'

Zn% n 1
i=1 &y L
)cow (Lo

i=1 &~i=1 oy

1

_Hexp (zJ
<Z i 1“ exp(

FI,?.<

|2

By taking expectations on both sides, we have

E [ex ‘ i= “ ex — <2,
p( Hi:lKl ZZ) 1Cx P Ki
which has finished the proof of Lemma (3.3.2) Il

Proof of Lemma 3.3.3. Since * HM H ~ N(0,1), ||m<zi, M)y, < C. Notice that
1Zi[§ ~ x5, by (Wainwright, 2019, Example 2.8), we have

E (et(llzillf:*pr)> < €2prt2, V[t < 411

Sett =

k’gf) < 1/4, we have

1Z5 13 —pr
E (em> <2

& —prll,, <Cypr. By Lemma 3.3.2,

(Zi, My)

(NZi|f — pr) et (Zi, My)
H F M e

[1Z3]l —prl,,, < CvpT.

i)

brs H M [e
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Since

(Z 1Zi[F = pr){Ze, My >> =0,

i=1

by (Hao et al., 2020, Lemma 8), with probability at least 1 — p <,

n 1/2
W((ZM> log(p) + ( max Ml 1og(pn3/2>.

In addition, since Y " (Z;, M) ~ N(0, >, [[Mi]3)

2 UIZiE —pr)(Zu My) | <

i=1

n 1/2
> Cpr <Z ||Mi||%> log(p) | <p~ €.
i=1

pry (Zi,My)
i=1

By combining the previous two inequalities, we have finished the proof of Lemma
3.3.3. n

Lemma 5.2.11. Suppose k and d are fixed numbers satisfying1 <k < d. Y, 4 N(0,1q)
as p — oo. Then for any deterministic matrix array {A, )5, satisfying A, € Qqx, we
have

ALY, LN, L) as p— oo

Proof of Lemma 5.2.11. By Skorohod’s theorem (Shao, 2003, Theorem 1.8), there
exist random vectors {Z,}, Z defined on a common probability space such that
Z~N(0,13), Yp & Z,and Z, 1% Z as p — oco. Notice that

A, Z~N(0,1)
and

1AL (Zp = D)2 < NAp I Zp — Z|l = 1|1Zp = Z]2 =50 as p — oo,
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we have

d. d.
ALYy S ANZy =AZ+A)(Z,—Z) S N(0,I) as p — oo.

5.3 Appendix to Chapter 4

We collect all technical proofs of Chapter 4 in this section.

5.3.1 Proof of Theorem 4.1

For convenience, let ﬂi, \A/i, R; and ﬁi denote LAIEO), \A/im, REO) and ﬁfo), respectively.
By Lemma 4.3.1 and

Tpppa — P(%@Ipz.upd,l)~--(\73®1p2>\72

:P(\A/d®1p2---pd,1)"'(\73®Ip2)\7u + P(\A/d®1p2...pd,1)"'(\74®Ip2p3)(\7u®1p2) +oet P\/}dL®Ip2...pd71,
we have
~.(1) 2
X _ xH
F
~ ~ ~ ~ ~ ~ 2
[/ [0 (Ve @ Tppope )+ (V@ T )V VT (VT @ 14,) -+ (V@ Ty ) — 0|

2

[Z]lp(\?d(glpz..pd,])“'(\73®IP2)\72 + [X]lp(\/}d@Ipz---Pdf])"'(\73®Ip2)\72 - [x]lHF

2 2
<C< H [th(\A/d(@Ipzmpd,l]~~~(\73®1p2)\72 F T H Dc]lP(\A/d®Ipz--qu)"'(\73(8’1132)\7ZL F
2 2

+ HDC]lP(Vd@pz...pd,l)~-~(V4®1p2p3)(\7u®1pg F Tt H[x]lpvmmm,_pdq F)

<c( |2V @ Ty )+ (Vs @ 1)V |+ 00 (Va © Ty, ) (Vs @ )V |

F
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~ ~ ~ 2
+ H X1 (Va @ Lpypy ) (Ve ® Ty, ) (Var ® I,)

+o H 0 (Var © Lp,.py )

)

F
(5.239)

To prove (4.9), we only need to show that for all 2 < k < d,

|00 (Va @ Tppy )+ Vit @ Ty ) (Vier @ Ty )|

<C|T (I, @ W)+ gy, @ U1 (Va @ Ty )+ (it @ 1)
(5.240)

7

where
[xh(\?d®1p2...pd,1) e (Vk+1®1p2-~pk)(\7kJ_®Ip2--~pk,1) = [x]l(\A/d@)Ipz...pd,l) o (\73®Ipz)\7u
if k =2 and

[ (Vg Lppopad) o (Viey ® Ip2~~pk)(\7kJ_ R Lpypry) = [ (Var ® Lpspai)

ifk =d.
By Lemma 4.3.2, we have

[X]1 (Vg ® Lpypai) (Vier1 ® Ip2-~-pk)(\7kJ_ ® Lpyprs)

F
— [A(pzn.pkillpl)]—r([:x:]kfl ® Ipz---pkil)(\/}d ® Ipz...pd,1) U (Vk+l ® Ipz---pk)(\/]kJ_ ® Ipz---pk71) F

= ||[AP2Prrp)] T (([x]kfl(vd ® Lpyopas) o (Vk+l ® ka)\A/u) ® Ipz---pk,1> ‘F

= || X1 (Va | IS R (Vi1 ® ka)ka_HF-
(5.241)

The third equation holds since the realignment doesn’t change the Frobenious
norm.

Moreover, recall that U; € RP1*™ is the left singular space of [X];, and ﬂj €
RPi"-1%" js the left singular space of (I, ®tle_1 ) (Tp,_op, ®LA1)-T_2) o (Tpyep ®ﬂ1T) [X];
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for2<j<d—-1byLemma432 forany2 <k<d—-1,

p @ [:X:]l)A(Pr“pk,pkﬂ...pd)

(

:(Ipz'"m ® Py, (X4 )A(pZ“‘Pk/Pkade
(
(

(5.242)

Lpyope @ Puy)(Ipyopy ® xh)A(pz”'Pk'PkH‘"Pd)
(X

=(Ip,py @ Pu, ) [ Xy,

and forany 2 <j <k,

Ty, e ® W) (T, 1o @ W) - (T, @ U)X
:(IP]‘"'Pk ® ﬂijl)(Iijlmpk ® ﬂjtz) T (Ipz...pk ® ﬁlT)( Pm e ® [j)C] JA A Pj+1PioPrs1Pa)
— <1pj+l"'pk ® [(ij ® ajT_l)(ijflpj ® ﬂjT_z) Ly, ® u1 X; APii1 Piopiarpa)
- <1P5+1-.~pk ® [Pﬁj(lm ® ﬁjT—l)(IpHpj ® ﬁjfz) (Ipyp; ® u1 )[X] JD APiiPoPistPa)
=(Tp 1 pe @ Py )Ty @ W) (T oy @ U)o (T, @ U

.A(le“'Pk,PkH---pd)

N—

(1 Pj+1- P @ ]J)

(IPJ+1 Pk & P )(Ip] Px X u )(ijfl"'Pk X a)j;Z) e (LPZ"'Pk ® ﬂir)[x]k,
(5.243)

where A" is defined in (4.5) for any 1,j > 0.

Therefore, by (5.242),

(X1 (Ve Lpepas) - (Viey1 ® ka)VkJ_HF

=T @ PUNXT 1 (Ve @ Ty )+ (Vi @ L Vi |

= (Ipz---Pkfl ® ulT)[:x]kfl (\7(1 &® ka"-pd—l) .. (Vk+l ® ka)VkJ-HF

< Tpyeopry ® GI)(IPZ'--pkfl @ Up)(Lp,p , ® UlT)DC]kfl(\/?d @ Tpypas) - (Vk+1 ® ka)VkJ_HF

’ sr;iln <(IP2‘“Pk71 ® alT)(IPZ"‘pkfl ® ul))
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= H (Ipyip ® ﬁ;r)[x]kfl(vd ® Ipypai) - (Viers ® ka)\/}kLH : m1n(u1 ).
(5.244)

The inequality holds since ||B||z < ||AB||r - s, (A) for any invertible matrix A €
R™>*™ and B € R™*™2; in the last step, we used (L,..p, ; ® Ui)(Ip,p , ®
U [Xk—1 = (Ipypy; ® Puy)[X]k—1 = [X]x—1. Similarly to (5.244), by (5.243), for
I<j<k—=2

~

H (ijJrl"‘Pk—l ® UJT) T (IPZ"'pk—l ® ﬂir)[x]k—l(vd ® kampd—l) T (Vk+1 ® ka)vkLHF

= (ij+2"'pk—l ® Pﬁj+1)(1pj+1"'pk—l ® ﬂ)‘l’) T (IPZ"'pk—l ® ﬂ;r)[x]k—l

: (\7(1 ® Lo paq) o (Vk+1 & ka)ka_

F

(ij+2"'pk  ® u)+1)(lpj+1"'Pk_1 ® ﬁ)‘l’) U (IPZ"'Pk—l ® GI)[x]k—l

: (\7(1 ® Loy pay) - (\7k+1 & ka)vkj_

F

< (ij+2"'Pk  ® u)+1)(lpj+1"'Pk_1 ® ﬁ)‘l’) U (Ipz"'Pk—1 ® GI)[x]k—l

h ‘

: (\7(1 & ka...pd,l) U (vk—l—l & ka)VkJ_

: sr;}n(u]+1u]+1) (5.245)
F

By (5.244) and (5.245),

[x]kfl(vd ® Ipppai) - (\7k+1 ® ka)\/;kJ_HF

N

(IPZ'”Pkfl ® ﬂlT)[x]kfl (Vd & ka...pdq) U (\7k+1 X ka)\?kJ_H mm(uTul)

<[ T s ® U T, ® U1 (Va @ Ty )+ (Viern @ L) Vi |
St (U U)ot (U Uy)

mm mll’l

<Hu Ty ® ULg) Ty ® U 1(Va @ Ty )+ (Vi @ Tp ) Vit |
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csh (U Uy )sd (UF Up) -+ - sk (U Uy q)

mll’l rmn

< Hukfl(lpk,1 0%y uk—Z) e (IPZ"'pkfl & ul )[x]k—l(vd 0%y ka...’pd,1) Tt (\7](—0—1 ® ka)vkLHF

k—1
_ 1
V1—c¢3
<C||U Iy, @ UL o)+ (e, @ W1 (Va @ Tpypy )+ (Vi @ Tp ) Vit |
(5.246)

By the definition of \7k e RPxm)xm1 and Lemma 4.3.3, we know that \7k is the
right singular space of

U Ty, @ UL ) (T, @ UDMhe 1 (Va @ Loy ) -+ (Vi ® T,
=Uy (L, @ UL ) (Ipyope y @ U X1 (Va @ Ly pa o) - (Viern ® 1)
+ u—lk—_l(ka,l & uz_z) e (Ipz“'Pkfl ® UI)[Z]k—l(Vd X ka...pd,l) T (Vk+1 ® ka)/

Lemma 5.3.3 shows that

|0y @ T (T, ® U1 (Va @ Ty )+ (Viern @ L) Vi |

<2 Huk—l Pr—1 ® U‘[—Z) T (IPZ“'Pk—l ® GI)[Z]kfl(Vd ® IPkadfl) e (Vk+1 ® ka) F
(5.247)

Combine (5.241), (5.246) and (5.247) together, we know that (5.240) holds for all
2 < k < d, which has finished the proof of Theorem 4.1.

5.3.2 Proof of Theorem 4.2

For i > 1, by the definition of X"’ and Lemma 4.3.1, we have

21

[y %

(1, —P . o _
H( P1Pa-1 (Ipz»--pd,l®U§2”]"'(Ipdﬂ@U&]zJUfl)l [H]d 1 .

2
R 2 _ ~ (s —~ (93 ~ (7}
—”[‘c’]d*l”F [Pt e 0591 w00 |



252

2 |20
=19l - ||%

Similarly, we have

~ (2i—1) (2i—1) |2
- = s — =
In addition, we have
HH_DAC(zi) =||Yla_sllf — H (Ipypy @Y. .(Ipd1®ﬂ512_‘)2)ﬁ£12;)][y]d—1H12:
=l = [T (O @ GE) - (o, @ T e |
= I — O Gy, © G (T, © T a1V
AT, @ TP (g, TP L0 VR
<L~ |G (@ TEY) - (g, ® U0V
=Yz — ((IPH @ U ) (1, oy, @ UEITY (1, @ U Y VED Hi

The last equation holds since Ll 1 is the left singular space of (I, 1(X)U il 2 )(Ip eaPas®
ugzl]?)T) (L ®u (21) )[y]d_lv(zl o)

For any B € R™" and 1 < 1 < 1, we can check that the I-th columns of A(™™B
and (I, ® B ® I,,,)A(™™) are equal:

(A™MB) Ly = Z Bj. Z - 1 mn+ i mex = (Im®B® L) AT )5y
j=1 k=1

where eELn ?))anr(jfl)erk is the ((k — 1)mn + (j — 1)m + k)-th canonical basis of

R™™ and A4 is defined in (4.5). Therefore,

AMMB = (I, @ B® LA™,
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By the last equation and Lemma 4.3.2, we have
(Ipd72pd71 ® uEizl)?)T) T (Ipz.npd,l & ugzﬂT)[y]d_lV‘(iZi—l)
Ipdfﬂ)dfl ® ﬁézl);) T (Ipz---pd71 ® ﬂizUT)(Ipdi1 ® [y]d,Z)A(pdflfpd)Vc(ih*U

= (Ipd—l ® (ﬂleZT(IPd—z ® ﬂfizl)g,—r) e (I‘pz-npd_z X ﬂf”—r)[y]d—Z)) <Ipd_1 X (V e & Ipd 1))

= (Ipdfl ® <ﬁ£12i)2—r(lpd72 ® ﬁgzi)g,T) o (Ipyepas ® ﬁizﬂT)[‘d]dfz(V e Lo 1))) AlPa-1rat)
:Reshape (ﬁﬁfi)zT(Ipd,z &® ﬂﬁff) s (Ipz---pd,z ® ﬁng)[’é] dfz(VéZlil ® Ipd,l)zrdfﬂ?dfl/rdfl)-

Since the realignment does not change the Frobenius norm, we have

(2i)]|2 2

|y-x

<O Gy, @ D) (L © G )Wl (V2 0 1,
(5.248)

. .

By similar proof of (5.248), we have

~ (21)(2

-

F
(21 o (21 (21 (21— 2
< ||[H]1||123 - Hufizf)z—r(lpdfz ® uilzf)ij) e (IPZ"'pd—Z ® u§2 )T)[y]d—Z(Vc(iz Y ® Ipdq) )

F
7721)T 721)T (2i—-1) 2i—1 2
H HF o Hud 2 Pdfz ® U’Ei—)3 ) e (IPZ“'Pdfz ® Ug : )[y]dfz(v ® I]Dd 1)V((i—1 )HF
OB s @ U)o, © T )l (VY @ 1, VY|
(21 (21 (21 (i Sei-1)||?
<nwﬂéﬂwﬁﬁnmd®ui?»~mmm4®M“Wmnﬂw§1%MNJV£SWF

~

1721 i— i— 2
- ” HF H Pa—2 U ) T (IPZ""PCFZ ® u£2 )T)[y]dfz(va Y ® IPd 1)vc(12 1 UHF

. 2
<L — [V @ gy ) (WY @ 1 V2|

(2

= H[‘dh (Ipz-~pd — P @Iy ) (VU@L )V )H
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s

. .

Similarly, we can prove (4.11) holds for k = 21,1 > 0.

5.3.3 Proof of Theorem 4.3

Without loss of generality, we assume 02 = 1. We still let ﬁi, \A/i, R; and ﬁi denote
ﬁgo), \A/i(l), R and ﬁgo), respectively.
Lemma 5.3.2 Part 4 immediately shows that (4.15) holds with probability at least

1 — Ce °P. Next, we show that with probability at least 1 — Ce™°P,

\/21 1 PiTio1Ti + /PxTk—1 + /Pr+1- " Pa

, VI<k<d-1
Ax

(5.249)

~

N| =

Hsm@ Uk,Uk H <

Recall that
=SVDy (W),  [Yh = [X]; + [Z];,

where [X]; € RP1*P-1 satisfying rank([X];) = 1y, [Z]; € RP**P-1, by Lemmas 5.3.3
and 5.3.2, with probability 1 — Ce™“P, we have

UL 10 || < 20| Zh| < Clp% + (p2---pa)/?).

Therefore, with probability at least 1 — Ce™P,

AL

|simerth,u) < sn(uﬁxh) =) S A

For 2 < i <j < d—1, by the definition of ﬂi and Lemma 4.3.2, we have

(505 =(Ip,..p, © XR)APT PP P) = (I, (Py, [X]y))A P2 Piie-pa)

=(Ip,.p; @ Puy) (Ipyop, ® [X]3)A P2 PPraPa) = (T @ Uy ) (Ip,.p, © UJ )X
(5.250)
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and

Ty © U)o (T, @ AT ) (X

Loy @ (I U7 1)> . (Ipmmpj 9 (Ty.oop, ®G1T)) (Ipe.y.op; ® [XT) AP Pips1Pa)
Tpsrp; ® ((I QUL ) (Ip,.p, ®ﬂ1T)[x]i)) APiriPiPii-Pa)

Loy, ® (Pﬂi(lpi QUYL (I, ® ﬂlT)DC]i» APis1PyPii1Pa)

Tpeprp; ® Pﬁi) (Ipm-»-p,- ® ((Ipi ® ﬁll) o (Lpyp, ® ﬂlT)[f)C]i>> A Pis1PiPis1-Pa)

IPi+1"'Pj ® ui) <IP1+1"'Pj ® u;l’) (Ipi""Pj ® u;rfl) (IPZ"'Pj ® u;l’) DC]J"

I
S N N7 N7 N NN

(5.251)

where [, ., =T1ifi=j. Let

Ly = Hsin@ (ﬂk, ﬁk>

2<k<d-1
For k =2, by (5.250) and Lemma 5.3.1, with probability at least 1 — Ce™ P,

ey (T, @ U)X ) Zsmin (T, @ U )Ty, & W) ) s, (XD
:Smin(ﬁ;—ul)AZ

—\/1—[Isin©(T;, Uy)|2As

3
>4/,
\/;2

Since U, = SVD, (I, ® U )[Yl2), and (I, ® U7 )Yl = (Ip, ® UJ)[X], + (I, @
fllT )[Z],, by Lemma 5.3.3 and Lemma 5.3.1, we know that with probability at least
1— Ce °PT,

U (T, © UDXL|| <2]|(Tp, @ U] < Cly/pari + (pa---pa) /> + v/Pir1).
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Combine the two previous inequalities together and recall that U, is the left singular
space of (I, ® ﬁlT )[X],, we have

Uy, UpUj (1,
S, (ﬂ;(l
U (T, ® U)X
sr, ({1, @ aT)[:x]z)

Jsin® (T, ) | <! A)Dm d

xL)

®
o U

VP VPaT o+ (s pa)
»

with probability at least 1 — Ce™°P.
Assume that (5.249) holds for k < j — 1 with probability 1 — Ce™“P. For k = j, by
Lemma 5.3.1 and (5.251), with probability at 1 — Ce™“P, we have

~

Sri ((Ip] ® uT )(Ip) 1Pj ® u ) ( P2--Pj—1Pj ® ul )[:x:] )
>Smm ((I & u )(I‘pj & u] 1 ) Sr] ( Pj—1Pj X uj,z) T (I‘PZ”'pjflpj & ﬁ;)[x%)
= Smin (ajtlﬂi—l) Srj ((ij—lpj ® ujfZ) Y (IP2"‘Pj—1Pj ® ﬂlT)[x]i)

jT—1u5—1> Smin <(ijflpj ® ﬁjT—Z)(Iijlpj ® ﬂj—2)>

S ( Pj—2Pj-1Pj ® U]Tf3) T (Ipz"'ijlpj ® u;l')[x]])

(5.252)

In the last inequality, we used the fact that d is a fixed number and (/3/4)'~!

(v/3/4)4
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By the definition of ﬂj and Lemma 4.3.3, we have
U; =SVD}, ((ij @ U )Ty, py @ U o) - (T ypy ® U )[‘d]j> :

Note that

(ij ® ﬂ)jr—l)(lpjflpj ® ﬂ;_—Z) e (Ipznﬁ)j,l‘pj ® a;r)[y])
:(ij ® u)'T—l)(Ipiflpi ® u]_T_z) T (IPZ“'P;’APJ‘ ® ulT)[x]]
+ (IPi ® U]'T—l)(Iijlpj ® U’jT—z) T (Ipz---pj,lpj & ulT)[Z’]j,

by Lemma 5.3.3, with probability at least 1 — e cPT

HUJTL(IPJ‘ ® u]jr—l)(Iijlpj ® u;l'_z) o (Ip2~~~pj,1pj & u;l')[:x]) H

<2 H (Ipi ® ﬁjT—l)(IPiflpj ® ﬁjT—Z) T (Ipz"'ijlpj ® ﬂlT)[Z’]] H
i1 1/2

<€ (Z Pifuri) +(pym5-1)" 2+ (pyea - pa)?
i=1

Therefore, with probability at least 1 — Ce™“?,

~

HuiTJ-U’jU‘]T(IPi ® u)jrfl)(lpjflpj ® U’ijZ) T (IPZ"'ijﬂDj ® ulT)[x]J H

HSIH@(UJ,G)>H < — — — —~
S (U)T(ij ® u)T—l)(ijflpj ® u]'—r—z) T (Ipz"‘ijlpi ® UI)DC]J)

HGJ'TJ_(IPJ' ® ﬂ]jr—l)(Iijlpj ® G)T—Z) T (IPZ"'pjflpj ® uil')[x]) H
((ij ® ajtl)upj—lpi ® ﬂijz) e (IPZ"‘pjflpj ® ﬂﬁ[j)c]).)

Sr;

j—1 1/2 12 L
( i=1 qun) + (pj15-1)"* + (Pj41-- - Pa)
<C 8 .
j

Therefore, (4.13) holds with probability 1 — Ce™°P.
Finally, we consider (4.14). Let &, = {(4.13) and (4.15) hold}. Without loss of
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generality, we only show that under &,

fsine (%, ) | < YESPI 1

Ak—1 S 2

N

k<d (5.253)

In fact, (5.253) can be proved by induction. Let V4 € RPa*74-1 be the right singular

space of [X]4_1. Then there exists an orthogonal matrix Qd_l cO such that

Td—1
VaQa 1 =SVDR (UL (I, , @ UL )+ (Tpy 1pr @ U)X 1)

Similarly to (5.252), under &,

—~ ~ ~ d—1
Sry (ug_l(lpd,l QUL ) (I, ,py ® UJ)X] d_l) > (\/3/4) A1 = cAa_.

Therefore, by Lemma 5.3.3, under &,

0 (55) - |ano (500
Hﬁji_fl(lpdfl ® ﬂgfz) e (Ipdflnpz ® ﬂ;l')[x] d*1\7c—|1—J_H
Sra <ﬁ:1r—1(IPd71 ® ﬁji——Z) T (Ipdfln-Pz ® ﬂ;—)[X] d—1>

2

<

ﬂg—l(lpdfl ® ﬁg—Z) T (Ipdflwpz ® ﬁir)[Z] d—1 H

Sraq <ﬂgfl(lpd71 ® i\l—ld—fz) T (Ipdfl---Pz ® ﬂir)[x] d—1>

[—d
i—1 PiTi—1Ti
<C Zl—l P 1 .

X
)\dfl

<

Suppose (5.253) holds for j + 1 < k < d. For k = j, since \~/]- is the right singular
space of DC]j_l(\A/d ® Ipjpa) (\7j+1 ® Ip,,), there exists (Ngj_l € Oy, , such that

V;Qj_1 = SVDR (U (I, ,@U ) - (Ippy , @UDX 1 (Va® Ly py 1) -+ (Vi1 ®L,,)).
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By Lemma 5.3.1, (5.250), (56.251) and (5.252), under &,

ey (U4 0y, @ U)o (T, @ U)X 4 (Va @ Ty ) o (Vi @1

> (W @ W) (T, @ U 1 Ve @ Ty, ) (Vo @ T, (Vi ©14,))
* Smin <(Vj+1 ® ij)(vﬂ—l ® 1, ))

=5y, | (ﬁ{_l(lpjfl DU ) (T, @ U)X 1 (Va @ Ty, py ) (Vi @ ijpm))

~r &
: smin(vj+1vj+l)

>s, (uj (T, @ W) (T, @ U )mj_l) Smin(Vg Va) -+ Smin (V1 Vi)
> Smin (U] Uj—1)85,, ((Ip,.,l QU ) (I, , @ U )mj_l) Smin(Va Va) *+ Smmin (V5111 V1)

3 j—1 3 d—j

Note that V; € Op;r;,r;, isthe r1ght singular space ofU (Ip 1®LA1)-T72) o (Tpypy o ®
U1 )[‘d]] 1(Vd (29 Ip] Pa 1) = (V]+1 & I ) and

U (L, , @ U ) - (I, @ UD Y (Va @ Ly pe ) - (Vi @ 1))
:u)j;l(lpjfl ® u)j|;2) e (Ip2..-pj71 & u;—)[x])fl(vd & ij.,,pd,l) U (ijrl X I‘pj)
+ Uijl(ij,l ® U)-tz) o (Tpgepy, O UDZL 4 (Va @ L, o y) - (Vi @ 1),

By Lemma 5.3.3, under &,
100(5,%) < ono 5.
0 @ T (s @ U (Ve @ Ty ) (Vi @ Ty Vi

sm(uj (T @ U7 5) e (T, @ U 4 (Va @ Ty ) (Vi @11))

S‘r]-,l (uj—rfl(lpj,l ® u)',Q) U (IPZ"'ijl ® GI)[X]],l(Vd & ij---pdq) U (Vj+1 X ij)>

2|0 Ty, @ U) - (T, @ DR 4 (Va @ Ty ) (Vi @ 1)

\
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a4 1/2
(Zizl pmri,l)

<C
A1

Therefore, under &, (5.253) holds.

Thus, we have finished the proof of Theorem 4.3.

5.3.4 Proof of Corollary 4.4.1
Let Q = {(4.15),(5.249) hold}, then P(Q¢) < Cexp(—cp) and

d
X" 2 < CY pereris underQ

i=1

Under Q¢, due to the property of projection matrices, we know that
(1)
13| < e < s + 1.
Moreover,

~ 4 ~ 4
B - x|, < c (B[]} + 10t < clocii + cuzig

2
<Cexp(4cop) + CE (x5,.,) < Cexp(4cop) + C(p1 -+ - pa)’
<Cexp(4cop) + Cexp (2cop) < Cexp(4eop).

Therefore, we have the following upper bound for the Frobenius norm risk of X:

~.(t) 2 ~.(t) 2 ~.(t) 2
B x|, =[x x| 10 + B[ - x] 10

d ~(t) 4
<C E piTiTio1 + \/IE H‘X — DCHF -P(Q¢)
i=1

a
<C Zpinn,l + Cexp ((4co —c)p/2).

i=1
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By selecting ¢y < c/4, we have
~(1) 2 Zd
EH:X: —XHF < C - PiTiTi—1-

Therefore, we have finished the proof of Corollary 4.4.1.

5.3.5 Proof of Theorem 4.4

Without loss of generality, assume 0% = 1. Since d is a fixed number, we only need
to show that forany 1 <1i < d,

inf sup EHDC T)CH > CPiTiTi1. (5.254)
X XeTFp,

Suppose X can be written as (4.1), U; € RPim-Ux7 and V; € RPi"i)*Ti-1 are re-
shaped from G; € R"-1*Pi*"i, G; = U, Gq = Vy. Forany 1 <i < d—1,by Lemma
4.3.1, we have

(X = (Ipz'“m @ U)--- (Ipi ® ui—l)uivi—zrl (V 2 ® IP1+1) e (Vt—ir ® IPi+l"'Pd71) :
(5.255)
Forallj #1i,1 <j < d—1,letU; ~ N(0,1), Va ~ N(0,1)and U, ..., U 1, Us,1,..., Ug 1, Va
are all independent. By Lemma 5.3.1, for any 1 < j < d — 1, we have

S ((I‘p2~-~pj ® Ul) o (I ® ujfl)uj) 2 Smin (Ipz-npj ® U1) “Smin(Uj) = 8¢, (Ug) -+ - 54, (Uy),
Similarly,

sry (Vi (V 2 ®Tp ) (Vd @ Tppep ) = 8n (Vi) s (Va).
Moreover, Lemma 5.3.1 Part 1 tells us

Sty ((IPZ"'P]‘ ® U’l) o (ij ® U 1)U, VJ+1 (VTZ ® Ipl+1> o (v:li— ® IPJ‘H"'Pdfl))
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28” ((Ipz"'Pj ® ul) e (ij ® ujfl)ul') Sy (Vj——rb—l (V +2 ® IP]+1> T (V(I ® ij+1"'Pd71)>
2 (Un) -+ s (Wy)se; (Vi) - 8vyy (Va)- (5.256)

Recall that Vj is reshaped from U; forall 1 < j < d—1, by Vershynin (2010)[Corollary
5.35], we know that with probability at least 1 — Ce P, forall1 <j <d—1,j #1,

P
VI < o — v = YO0 < () < s (Uy)
PiTi—1
N e E R = Nt
\/4) I < 51 (V5) (V;) <2/p;7;, and Vzd Srq 1 (Va) < s (Va) <2¢/p

(5.257)

For a fixed Uy € Op,r, , r,, define the following ball with radius ¢ > 0,
B(UQ, E) — {U’ - (O)Pﬂ‘iflﬂ’i : || sin @(U’, UO)“F < 8} .

By Lemma 1 in Cai et al. (2013), for 0 < a < 1and 0 < ¢ < 1, there exist

w,.., U™’ C B(Uy, e) such that

1

Cco\ Ti(PiTici—Ti) vy o~y
m > <—O> , min Hsin@ <U£)) ,ng) )

x 1<jAk<m

‘ > KE.
F

By Lemma 1 in Cai and Zhang (2018), one can find a rotation matrix Oy € O, such
that

Uy — U OkHF \/_H81n®<uo, )H

Let ﬂgk) = ﬂE Oy, we have

Htlgk) - UOHF < V2, Hsm@ (UI.),ﬁik» HF zae, 1<j<ksm
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LetU!™ = s+u™, where S N(0,12). Sett > 8/ \/Pi, Vershynin (2010)[Corollary
5.35] shows that with probability at least 1 — Ce™“?,

PiTi—1

ST <o (i - v - YR ) S < 5) - (W) <5 (u)

<si (U) <s1(8) 45 (W) < (m+\/—+vp”l)+1<zw\/m.
(5.258)

If2<i<d—1,since Vi(k) is reshaped from ng), we know that Vi(k) =T+ \Z(k)
where T ' N (0,2), and \N/i(k) is realigned from ﬂgk). Notice that

Ty _ o) < (1) na
si(Vim) = Vi Il < Vi lle = W fle = i,

Since T > 8/,/pi, by Vershynin (2010)[Corollary 5.35], with probability at least
1— Ce cPiTy,

BB <o (i - VT - YR ) - VR s (T = (W) <, (V)

<si (VY) <s1 (M40 (V) < (m+ Vi + ) + /T < 21T
(5.259)

Choose fixed Uy, - -- ,U;_1, Vii1, -+, Vg, S such that (5.257), (5.258) and (5.259) hold.
Let

XM = (Tpyops @ Wp) - (I, @ U DUSVE (V@ 1) - (VI @ Tppas)

(5.260)
and X e RrP1<xPa j5 the corresponding tensor. (5.256), (5.257), (5.258) and
(5.259) together show that

j d
K) VPkTk—1 VPKTk \/Pl Par1i-- - Tda—1
])>T||T [] 8 c . (5.261)
k=1 k=j+1 al
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. Cmaxigiga—1 A maxigi<d—1 +/Tj
By setting T = e V 8 maxici<a—1 v/ 1/pi, we have

or (XM) 225, v1<j<d-1.

o — x|

2
[T @ U (T2 U (U = U ) VI (V@ 1) - (VE @ T )|
) 2
>anin ((Ipz--~m ®Up)--- (Ipi ® Ui—1)) H (ugk) - Ug”) ViTH (V +2® IP1+1) T (V(I ® Ipi+1"'pd71) ‘F
12
:SEH ((IPZ'“Pi—l ® ul) . 'ui—l) 5%1 (V1+1 (V 2 @ Iy, +1) o (Vg ® Ipa+1-~~pd_1)) Hugk) - U?) ’F
~ 0 ~ 12
:Szl 1 ((Ipz Pia @ ul) uifl) S%i (V1+1 (V +2® Ipm) (VJ ® Ipi+1"'pdfl)) HUE ' U‘?) ‘F
2
2 2 2 2 . (k) 170)
557, (U)ot (Uen)s? (Vi) s, (Vo) gmin [0~ 07 o||
— PhTh-1 = pimt ~k) TG AP
TP 1170 g o
16 11 7 &uin [t —UTOf
h=1 1=i+1
i1 i
15 I % oo 500
h=1 1=i+1 F
=>C (thrh 1 H pﬂ'[) OC 8 (5262)
1=i+1
In addition, let Y = X + 2 and 2™ ) N(0,1). The KL-divergence between
distributions Y and Y’ i
. 1 .
Dic (Y147 = Z[x™ — x|
2
2 H(Ipzmpi DUy (Tp, ® Uia) (ugk) ) V1+1 (V 2 ® Ipm) T (Vg ® IPi+1"'Pd—1) ’F

—_

12
<§H(Ip2...pi®ul) (Lpe @ Wi g) [P [ Vi ( +2®IPLH>‘“(VI®Ipi+l...pd,1)||2Hu§k)—U?) ‘F
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% T(Up) - s7(Uim)sT(Viga) -+ - sT(Va) HU?‘) — U?)Hi
1i4 : 4 u™ —u Ul — || )
L T (] )
i—1 d
(H PhTh— 1 (p1T1)> 52. (5263)
h=1 —it1

By generalized Fano’s Lemma,

inf sup IEHDC DCH

X oeqxlc
H H 1 (H:;ll (PrTh-1) H{i:iﬂ(mﬁ)) e2 + log 2
Th PiTixe —
PR 1=it1 o Ti(pirti1 — 11) log(co/x)
i — ! T (PiTio1—Ti) 1 _
By setting ¢ = ¢ \/CHh;ll(phrhfl) T < 5, = (cg /A 1)/8, we know that for

anyl1 <i<d-—1,

inf sup EHDC fXIH inf sup EHDC I)CH > CTiPiTi1-
X xXeFy, X e

For i = d, similarly to the case i = 1, we have

inf sup EHDC f)CH Z C1PaTa—1-
X XeFp,

Therefore, we have proved Theorem 4.4.



5.3.6 Proof of Proposition 4.5.1

Define G; € RP*"1 G, € R"1XPx"x G, € RP*Ta-1 guch that

= (G1(i ))1, Vie [pl,lelr],
iy = (G, el )1, Vielpljemedleml2<k<d—1,
Gany = Gali, elrd ) Vi e [pl,L € [rqa_1]

(k)

where e’ is the i-th canonical basis of R*. Then

]31 (XtJrl) GT er/

1,[X¢ 41,

]SZ(Xt—O—l/Xt—I—Z) =G, (Xt+2/ ﬁl(xt+1)>

hnearmapz G2 Xt+2/ ) (Pl(xt+1)) (Gl [X¢y1,7] 9 2,[: Xt+2/:})—r 4
j=1

By induction, forany2 < k < d —1,

]Sk(XtH, sy Xt+k) = Gk(Xt+k/ lsk—l (Xt+1, ceey Xt+k—1))
Tk—1

linear ma Tk >
=" Z G (Xt e,-( « 1)) (Pkfl(Xt+1;--~;Xt+kfl)>-

)
j=1
~T
gk [ X e4x,0] Pk 1(Xt+1/ . /XtJrkfl)

- ~ T
(G 1,Xesn,1) 92 [ Xeia] " 9k,[:,Xt+k,:])
and

P (Xt+d|Xt+1l ey Xt—!—d—l) :Gd(X‘H—d/ ]Sd—l(Xt—O-l/ ey Xt—l—d—l))

DT ~T
:Pd_l (Xt+1/ ceey Xt+d—1 ) Gd,[Xt+d,;}

_ A C % T
—Gl,[XHl,:]92,[:,Xt+2,:] T 9d—1,[:,Xt+d71,:]Gd,[xwd/:]-

Therefore,

266
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and has TT-rank (rq,...,7Tq4_1).
5.3.7 Proof of Proposition 4.5.2
LetZ =" _ P, then EZ = 0. Let
T = Iix(iy,ig uk)=iapy VIS<k<m1<iy,...,ia<p
and
M =T P igliy,.. ., ia1), VISk<m1<iy,...,iq <P

Then EZ¥) = 0. Moreover, by definition, for any 1 < j < d — 1, the rows of
"]

{1,...,p% 7} satisfying ‘ng)‘ == ‘Qgg,j,l

€ RP*P"” areindependent, and there exists a partition {Qf o Qgg,j,l} of

j
= p, such that ([Z(k)] ) P
) [:,Q{j)}

[Z(k)] are independent and
j [: Q(J) }

d—j—1

leql
Therefore,
Z(k)] ) < ([g-(k)] ) ) ([:r(k)] ) =2, ¥V1<m<p,1<k
Z~ ([ j m,l Z j m,l Z j m,l p
leﬂg]) ’ lGQEJ] 4 16-()-?) 7

For any fixed x; € R’ and x, € RP*” satisfying ||x1|» = 1 and ||x|, = 1, we have
y ymng

< 2 max (xp); < 2 H(Xz)Qm
teql '

T (), o0 = mmoen (1) ,

(G
- 1eQ! -
].GQEJ) 1 leQi]
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By (Wainwright, 2019, Exercise 2.4), ZteQ?ﬂ ([z(k)} ) (xp)1is 2 H (Xz)an
i j m,l i

-sub-
2

Gaussian. Therefore,

2] =3 om > | X ([z(“]) (o)t
) m=1 i=1 \1eql )/ ml

. j d—j—1
1s( P OB TP 4 ) g

that 2 =13 ', 2, the Hoeffding bound (Wainwright, 2019, Proposition 2.5)
shows that

1/2
2) = 2||x1||2||x2]|2 = 2-sub-Gaussian. Notice

T nt?
IP’(|X1 [Z]sz‘ >t) <2exp ) Yt > 0.
Therefore, for any fixed U & Opipry, V E ©pd—j,prj+l, x € R",y € RP"i+1 with ||x|, =1
and [yl =1,
T T T nt’
P(|x"UT[2hVTy| >t) <2exp -5 ) "t=o

Similarly to the proof of (5.267), with probability at least 1 — Ce P, forall 1 < k <
d—1,

d
5 = -~ - o 1 PiTiTi—
HU1(<O)T(Ip S UOTY. - (s ® WO RV @ Lues) - (V) & IP)H < C\/%

Similarly, with probability at least 1 — Ce™°P,

d
~ ~ N e
H[Zh(v«gll) @ Tpaa) - Vv,V @ Ip)vz(l)H < C\/—Zl—lpl.
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Notice that [|X|[r < /7||X] if rank(X) = 1, by the previous two inequalities and
Theorem 4.1, we know that with probability at least 1 — Ce™°P,

~(1 2 d TiTs
- ) Fhamea
F

1<i<d—1 n
Finally, by the definition of JA), we have

P, <[P 2]+ [P -], <2[>"

which has finished the proof of Theorem 4.5.2.

5.3.8 Proof of Lemma 4.3.3

By symmetry, we only need to prove (4.6). By definition, (4.6) holds for k = 1.
Suppose it holds for k = j. For k = j+1, since S;41 € R (riPi+1)x (Pir2--Pa) jg realigned
from S = MTS € R"*(Pi+1Pa) Lemma 4.3.2 that S;.1 = (I, , ®§j)A(pj+1/pj+2~~.pd)’

where the reahgnment matrix A1) is defined in (4.5). Therefore,

Sj41 = (ijﬂ ® §]) A Pir1Pi2Pa)

= (Ip,., ® M S;) APitPiepa)

= (Ip,, ® M) (I, ® S;) AlPiapisapa)

= (Tpy s ® M) (I, @ (I, @ M) -+ (Ipypy @ M )[T]y)) APrsipisas=pa)

= (Ip,, @ M) (Ipy, @ (T @ ML) -+ (Tpy, © (T, @ M) (T, @ [T]5) APierPiezpa)
= (Tp;s @ M) (Tpps @ M) -+ (Tpypyy @ M) [Ty

The third equation and the fifth equation hold since (A®B)(C® D) = (AC) ® (BD);
the last equation holds since Yj 1 = (Ip,,, ® Yj) AlPinvPieePal and A® (B® C) =
(A®B)® C.

Also notice that S, = M| S, we have finished the proof of (4.6).
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5.3.9 Technical Lemmas

We collect the additional technical lemmas in this section.

Lemma 5.3.1.

(1) Suppose A € R™*™2 B € R™*™s where m; > my. Then

Smin{m,, ms} (AB) 2 Sm, (A)smin{mz,m3} (B)

(2) Suppose A € R™*P1, B € R"*P2, X € RPV*P2 mnk(X) = 1,p1 = m,p2 > n. If
X =WMV], where Uy € Oy, 1 and Vy € Oy, , then

Gr(AXB) > Srnin(Aul)O—r(X)Smin(vlTB)'

Proof of Lemma 5.3.1. (1) Consider the SVD decomposition A = UaZaAVA,B =
UBZBV];F, where U € ©m1,mzrvA € @mZ,UB € @mz,min{mz,ms}/VB € @min{mz,ms},msl
Ia = diag(oy1(A),...,sm,(A)) and Xg = diag(si(B),..., Smin{m,,m,}(B)) are diago-
nal matrices with nonnegative diagonal entries. Then

Smin{m,, ms} (AB) = Smin{m,,m3} (uAZAVX uB ZBvl—gr ) = Smin{mz,m3}(ZAv;\ruB XB ) .
(5.264)
For any x € Rmin{m2ms) satisfying ||x||, = 1, we have

”ZAV,IUBZBXHZ 2 sz(A)HVXUBZBXHZ — sz(A)HZBXH2 2 sz(A)Smin{mz,m3}(B)-
Therefore
Smin{m2,m3}(AB) - Smin{m2,m3}(ZAVXuBZB) > sz(A)Smin{mz,m3}(B)'

(2) Consider the SVD decomposition X = UZVT, where U € Op,r, V€O, rand L

is a diagonal matrix. Then we know that there exist two matrices L € R™*" and
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R € R™*7 satistying U = UL and V = V;R. Moreover,
L'L=L"u/y\L=u'u=I, R'R=R"VJVIR=V'V=1I.

Therefore,

Gr(AXB) = Gr(AulLZRTvlTB) P Smin(Aul)Gr(LZRT)Smin(VlTB) = Smin(Aul)o—r(X)smin(vlTB)'

O

Lemma 5.3.2. Suppose Z is a matrix with independent zero-mean o-sub-Gaussian entries,

d is a fixed number, v =14 = 1.

(1) Suppose Z € RP*9, A € R™*P,B € R9*™ satisfy |A|,|B| <1, m < p,n <q.
Then ,
t
P (]|AZB|| > 20vm+1t) <2-5"exp {—c min <n_1't>] . (5.265)
2
P (|[AZB[lr > ovmn +t) < 2exp {—cmin (H,t)l . (5.266)
(2) Suppose Z € RPr-P)xm 2 <k < d—1. Then
k—1
{Baﬁ)w {(ka ® Uz—ﬂ o (Lpyep ® UlT)ZH > Co Zpin_lri + PrTr—1 + M.
T =
(5.267)

with probability at least 1 — C exp(—c(Zf;ll PiTi_iTi + PxTk_1 + m)).
(3) Suppose Z € RPr-Pr)x(Prn=pal 2 <k < d—2. Then

T (IPZ”'pk ® U‘lT)Z(vd ® ka+1~-~pd71) o (Vi @ ka+1)H

(5.268)
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with probability at least 1 — C exp(—c Y_, piri_17i). Here,

A={Uy,..., U, Vo, ..., Va) : Uy € RPITDXT U || < 1,V € RPTXmon vy < 1.
(5.269)

(4) Suppose Z € RPr-Pa-1)%Pa_ Then with probability at least 1—C exp(—c 3_ &, piri_171),

d
T T T
max Hud_l(lch @ Ug 5) - (Ipypy , ® Uy )ZHF > Co E PiTi_1Ti-
Ui eRPimi-1XT U I<1 i=1

(5.270)

(5) Suppose Z € RPr-Pr)x(Prn=pal 2 <k < d—2. Then

max A ||uI(IPk ® u—kr—l) T (Ipz"'Pk ® ulT)Z(Vd ® ka+1~-~pd71) T (Vk+2 & IPkH)HF

d
>Co Z PiTi—1Ti

i=1

(5.271)
with probability at least 1 — C exp(—c Y_& | piri_11;). Here, A is defined in (5.269).

Proof of Lemma 5.3.2. W.O.L.G., assume o = 1.
(1) For fixed x € R™ satisfying ||x|» = 1, we have AZBx = (x'B" ® A)vec(Z). Since
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Zy; is 1-sub-Gaussian, we know that Var(Z;;) < 1. In addition,

E[|(x"B" ® A)vec(Z)||5 =E [trace (vec(Z) " (x"BT ® A) T (x'BT ® A)vec(Z))]
=trace [E ((x'B" ® A)"(x'B" ® A)vec(Z)vec(Z)")]
=trace [(x'B' ® A)T(x'B" ® A)E (vec(Z)vec(Z)")]
<trace (x'B' ® A)' (x'B" ® A))
=[[x"BT @ All; = [BxIZIAl < Ix/3IA]2
<m.

(5.272)

The first inequality holds since E (VQC(Z)VQC(Z)T) is a diagonal matrix with diago-
nal entries Var(Z;;) < 1; the last inequality is due to ||A||r < min{m, p}[|A|, < m.
By Hanson-Wright inequality, we have

t2 t
2 2 <2 — i 7 '
P (IAZBx|z —m > t) eXp[ Cmm(||(BxxTBT)®(ATAJ|I% H(BxxTBT)@WA)M

Since ||x|l =1 and ||A]],||B] <1,
[(Bxx"B") @ (ATA)[ =[|Bxx BT [[F|ATA[E = (x "B Bx)*|AT Al
min{m,p}
SKXPJATAIR= ) oi(A)<m,
i=1
|(Bxx"BT) @ (ATA)| < [Bxx BT [ATA| < xT[ATA] < 1.

Thus, for fixed x satisfying ||x||2 = 1, we have
2
P (|[AZBx|; > m+1t) < 2exp [—cmin <n—1,t)}. (5.273)

By Vershynin (2010)[Lemma 5.2], there exists N7 5, a 1/2-net of {x € R™ : x|, =1},
such that ‘Nl /2} < 5™. The union bound, Vershynin (2010)[Lemma 5.2] and (5.273)
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together imply that

2
P(|[AZB|| > 2vm+t) <P (max |AZBx||, > \/m+t) <2-5"exp [—cmin (n_i't)} .

XENl/z

For ||AZB||r, note that AZB = (B" ® A)vec(Z), Similarly to (5.272), we have

E|(B" ® A)vec(Z)|3 =E [vec(Z)"(B" ® A)"(B" ® A)vec(Z)]
=Etrace [vec(Z)' (B ® A)"(B" ® A)vec(Z)]
—tracelE [(BT QA) (BT ® A)Vec(Z)Vec(Z)T}
=trace [(B" ® A)" (BT ® A)E (vec(Z)vec(Z)")]
<trace [(BT QA)T(BT ® A)]
=[B" @ Al = Bl All2

<mn.

By Hanson-Wright inequality, we have

2 i v :
P (IAZB|Jf —mn > t) < 2exp [‘Cmm (II(BBT) @ (ATA BB ® (ATA)H> } '

Since ||A|], ||B|| < 1, we have

min{m,p} min{q,n}

(BBT)®(ATA)F\/ATA%IBBT%J Y olA) Y ol(B) < Vi,
i=1 i=1

I(BBT)® (ATA)| < 1.

Therefore,

t2
P (|AZB|j% > t) <2 —cmin [ —,t])].
(I 3> mn+t) exp[ ¢ min (mn )}

(2) For fixed x € R™ and A € R(Pxr1)x(PrPu) gatisfying ||x|, = 1 and ||A[ < 1,
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by (5.265) with B = I,,,, we have

2
P (||AZ|| > 2/PrTk-1+ t) <2-5™exp [—c min (Pka—1’t>} . (5.274)

By Zhang and Xia (2018)[Lemma 7], for 1 < i < k—1, there exist e-nets: UE”, ey uNy

i c
RPir-)xTi (here 19 = 1), Ny < ((2 + ¢)/e)Pim-1)x™ _such that

YU € RPim-)xTi satisfying ||U|| < 1,31 < j < N; such that HU?) — Ul <=

Therefore,

(ka ® u](jEEl)T) T (IPZ'”Pk ® ugil)T)ZH >2 PiTie-1 + t)

2
<L2((2+ 5)/5)21‘;11pm_1n5m exp {—c min ( t ,t)} .
PrTr—1

(5.275)

Let

up,..., Uy € arg max [(Tpy @ UL) - (Tpypy ® U )Z
Uy erPUi-1XT i
luill<t,  1<igk-1

M= max [Ty, @ UL) - (Tpypy @ UT)Z]|.
U eRPIT-1XTE 1gigr—1
lugll<t,  1<igk—1

7

Then for any 1 < i < k — 1, there exists 1 < j; < Ny, such that ||U§ji) — Uil < e
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Then

= ” Pk ® U*T ) e (IPZ'“pk &® UTT)ZH
H Pr ® U- Jk J ) T (IPZ"'pk ® uijl)T)ZH

i

. T .
(ka ® (u]t—l . Ufjf]”)) (ka o ® u Jk 2 ) . (Ipz~~Pk ® ugh)T)ZH
T H (L, @ UL (I, @ ULT) (Ipz.“pk © (W — u{“)T) zH

<[ @U@ U TIZ| 4 el - DM,

(5.276)
Combine (5.275) and the previous inequality together, we have
p(M> 2y/pxTi—1 +t
1—(k—1)¢
(5.277)

. 2
<2((2+ s)/s)Zizllpm*mSm exp {—c min < ! ,t)} .

PrTk—1

By setting ¢ = =T k 5 and t = C\/Zl 1 PiTi—1Ti + PxTk—1 + m, we have proved
(5.267).

(3) For fixed A € R™<*(P1Px) B ¢ R(PrirPa)x(Priment) gatisfying ||A|| < 1,||B|| < 1,
by (5.265), we have

2
P ([[AZB|| > 2v/Tx + 1) < 2-5P 1"+ exp [—c min (r_'t)} .

k

Let

M
= max ||u]—<r(ka ® u];rfl) e (I'Pz"'pk ® UI)Z(Vd ® ka+1...pd—l) e (karZ 02 I'pk+1) 7

U erPim—1)T Iy <aigik
Vi eRPITDXTi1 v <1 kragigd
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By similar arguments as (5.277), one has

P(M> 2\/Tk+t

t2
Z m) < 2((2+€)/€)Zlgi<d'i#k+lpiri_1T15pk+1Tk+l exp |:—C min (K,t):|

forany 0 < e < . By setting ¢ =
the third part of Lemma 5.3.2.

d gandt=C > & piri_iri, we have proved

(4) For fixed Uy, ..., Uq_1 satisfying [|[UW]| < 1,letA =U] (I, , QU] ,) - (Ip,opy @
) € Rrarx(PrPat) then ||A|| < 1. By (5.266) with B = I,,, we have

2
P (|JAZ||f > para_1 + 1) < 2exp [—cmin( ,t)} .

PaTa—1

Let

M = max ||U Pd  ® U o) (IPZ"'Pdﬂ ® uI)ZHF

W eRPI-1XT U] <1

The similar proof of (5.277) leads us to

-1 2
P (M2 > ( Ta_1Pat ) <2((2+ e)/s)zgzlp“’”k*1rk exp {—cmin( t ,t)} :

1—¢(d—1))2 PdaTa-1
(5.278)
for 0 < ¢ < ;7. By setting ¢ = d AT andt = C Zk 1 PxTk—1Tk, we have arrived at
(5.270).

(5) For fixed A € R™*P1=Px) B ¢ RPrsPa)x(Praamin) |A] < 1,|B| <1, by
(5.266), we have

2
P (||AZB||% > Pri1Tre1Tk + t) < 2exp [—c min <—,t)} .

Pr+1Tk+1Tk
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Let

M = max HUE(IPk ® u[—l) T (Ipz'"Pk ® ulT)Z(Vd ® ka+1-~~pd71) T (vk+2 ® ka+1)|

( ) E’
iTs XT3
Uy erPiTi-1) X7y <

(T XTS
Vi erPTUXTiL vy

Similarly to (5.277), for any 0 < & < <15, we have

t t2
IP’(M > VPiert T & ) < 2((2 + &) /) i<icaiza PiTiciTexp [—c min (— t)} .

1—(d—1)e PrriTks1Tk
(5.279)
By setting ¢ = 2((11——1) andt=C Zle piTi—1Ti, we have proved (5.271). O

Lemma 5.3.3. Suppose X, Z € RPP2, rank(X) = 1. Let Y = X + Z, U = SVDL(Y),
V= SVDX(Y). Then we have

max{|[UTX|, XV [} <2[|Z]|, max{[[U]X|[s XV [} < 2min{]|Z][s, V7| Z]}.

Proof of Lemma 5.3.3. See (Zhang and Xia, 2018, Lemma 6) and (Luo and Zhang,
2020b, Theorem 1). ]
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