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abstract

Statistical analysis of brain images/image-derived measures plays a central
role in discovering associations between different brain regions and covariates.
When this framework is used to analyze neurodegenerative diseases such
as Alzheimer’s disease (AD), the major goal is to identify, ideally early on,
which of the brain regions show abnormal variations due to the disease, so
that we can provide intervention and treatment to slow down the progression
of the disease. Unfortunately, there are several factors that make this statis-
tical analysis problematic. In most brain imaging studies, the sample size is
limited (typically up to only a few hundreds) due to the high cost of scans
and difficulties in recruiting participants depending on diseases or risk factors.
In many cases, thus, it may not be sufficient to robustly achieve statistically
meaningful outcome especially when the effect size is small in the preclinical
stages. Moreover, there are many nuisance factors that affects the analyses.
To deal with the challenges above, in this thesis, we propose novel multi-
resolution frameworks which we will develop and experimentally evaluate on
a variety of neuroimaging data. These frameworks make use of recent work
from harmonic analysis literature which implement “wavelet transform” in
non-Euclidean spaces, so that we can adopt the multi-resolution scheme not
only for imaging data in the Euclidean space (i.e., Rn) but for image derived
measures represented in non-Euclidean spaces such as cortical thickness on
brain meshes and brain connectivity. We describe the algorithmic develop-
ment and how such methods can help evaluate novel scientific hypothesis. For
each framework, we demonstrate extensive experimental results to show that
the frameworks improve statistical outcome over traditional approaches and
can be easily adopted for real data analyses.
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1 introduction

1.1 Analysis of Neuroimaging Data

Brain imaging plays a major role in clinical practice and scientific research
in neuroscience. A broad spectrum of neuroscience studies heavily rely on
statistical analysis of the brain images to focus on understanding the process of
aging (Jagust et al., 2006; Wingfield and Grossman, 2006; Dennis and Cabeza,
2008), the effects of trauma (Williams et al., 2006; Hull, 2002) and the manifes-
tation of neurological disorders (Savitz and Drevets, 2009; Castellanos et al.,
2002). In these analyses, one important question is to identify which specific
brain regions are affected as a function of disease and/or to find associations
of regional measurements in the image with future cognitive decline.

There are various types of imaging modalities used in scientific and clinical
research, and each of them characterize different aspects of the brain. Magnetic
resonance image (MRI) is one of the most commonly used imaging modalities
in neuroscience which is based on the magnetization properties of atomic
nuclei in the brain (Haacke et al., 1999). An external magnetic field is applied
to the brain to align the protons that are randomly oriented within the water
nuclei of the tissue, and by measuring the relaxation time taken for the nuclei
to return to their resting alignment, we obtain T1 and T2 weighted images as
shown in the left of Fig. 1.1 (Johnson, 2008; Haacke et al., 1999; Ogawa et al.,
1990). MR images provide detailed information on grey matter containing
dendrites and axon terminals of neurons and white matter made of axons con-
necting different parts of grey matter. It is typically used to analyze structural
pathologies of brain diseases (Courchesne et al., 2001; Watkins et al., 2002;
Sparks et al., 2002; Jack et al., 2004).

Also, advances in diffusion tensor imaging (DTI), which is a form of MR
Imaging, paved the way for many important in vivo investigations of white
matter microstructure (Uhlhaas and Singer, 2006; Crossley et al., 2014; Konrad
and Eickhoff, 2010). By applying diffusion encoding gradients to the brain, one
measures the orientation of water molecules in the brain tissue as a “diffusion
tensor” describing the diffusion direction at each voxel of the image. It is a non-
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Figure 1.1: Examples of neuroimages. Left: T1-weighted and T2-weighted MRI capturing
grey and white matters, Middle: DTI capturing the orientation of water molecules, Right:
FDG-PET and PiB-PET images capturing metabolism in the brain.

invasive imaging method to characterize the microstructural organization of
tissue, and offers information on the tissue microstructure (Jones and Leemans,
2011). An example of a DTI scan is shown in the middle of Fig. 1.1.

While the aforementioned imaging modalities provide structural infor-
mation in the brain, positron emission tomography (PET) scans characterize
metabolic changes at the cellular level in the brain tissue. In many cases, a
disease process begins with functional changes at the cellular level in the very
early stages of the disease and PET images can capture these changes before
the brain exhibits structural variations shown in the MRI. To acquire a PET
scan, a radiotracer is injected into the bloodstream which travels to organs
and emits gamma rays indicating tissue metabolic activity. By observing the
metabolic rate in the brain using different types of the radiotracers, we can
capture various pathologies of diseases. For example, Pittsburgh compound B
(PiB) PET captures uptake of tissue radioactivity concentration (Ikonomovic
et al., 2008; Rinne et al., 2010) and Fludeoxyglucose (FDG) measures the uptake
of glucose in brain tissue (Chao et al., 2001; Padma et al., 2003), and represen-
tative images of a FDG PET scan and a PiB PET scan are shown in the right of
Fig. 1.1.

Once the neuroimaging data are collected, one may apply statistical anal-
ysis methods directly on the acquired images, or one can pre-process these
brain images to obtain image-derived measures that characterize other types
of information from the brain. For instance, running the Freesurfer algorithm
(Fischl, 2012) on a MRI scan yields inner and outer cortical surfaces as shown
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Figure 1.2: Illustration of cortical thickness.
The inner cortical surface (red) is covered by the
outer cortical surface (yellow), and the cortical
thickness is measured by the distance between
the outer and the inner cortical surfaces.

in Fig. 1.2. By measuring the distance
between the two surfaces, we can ob-
tain cortical thickness measures on
a brain surface which is a relevant
feature in many brain disorder anal-
yses. The existing literature tie this
measure to brain growth (O’Donnell
et al., 2005; Shaw et al., 2006a; Sow-
ell et al., 2004; Lemaitre et al., 2012),
autism (Chung et al., 2005), attention-
deficit (Shaw et al., 2006b), genetic influences (Panizzon et al., 2009), amusia
(Hyde et al., 2007), osteoporosis (Hodsman et al., 2000), and even gender
(Sowell et al., 2007).

The recent development of tractography with DTI data offers a charac-
terization of the human connectome (the brain’s wiring diagram) to better
understand the structural aspects of brain connectivity (Le Bihan et al., 2001).
DTI measures macroscopic axonal organization in nervous system tissue,
which corresponds to complex neural fiber network in human brains. Per-
forming tractography on a DTI image yields structural brain connectivity at
the individual level, and various parameters are defined along the neuron
fiber bundles that correspond to the connection between different regions of
interests (ROIs) measuring the strength of the connection (e.g., number of
fibers, fractional anisotropy (FA) and mean diffusivity (MD)) (Basser et al.,
2000). These measures have been used to analyze traumatic brain injury (TBI)
(Niogi et al., 2008; Wozniak et al., 2007), Parkinson’s disease (Vaillancourt et al.,
2009) and perform brain analysis of infants and children (Glenn et al., 2003).

Regardless of the types of the data, in an ideal case, a statistical analysis
method is applied at each data point location (e.g., voxel in a 3D volume image)
on the data collected from a population of subjects. The objective of such an
analysis may be to identify variations due to a certain variable of interest (e.g.,
a disease, a risk factor and a treatment) that are statistically significant. Let
us first consider a simple case where we observe a single measurement (e.g.,
age or a summary measure of the whole brain) per subject. If the cohort can



4

Figure 1.3: Voxel-wise brain image analysis. Brain scans from different participants (left)
are first registered to a template image (middle) to obtain voxel-to-voxel correspondence, then
statistical test is performed at each voxel to obtain resultant p-value map showing clusters are
shown on the template brain (right).

be stratified into two (or more) groups and the groups are matched by other
confounding variables that may affect the final outcome, a group analysis
(e.g., diseased versus healthy controls) is performed on the stratified data
using a hypothesis test (e.g., two sample t-test). For the hypothesis test, we
basically assume that there is no difference between the two groups and the
statistical test examines whether the assumption should be accepted or rejected.
A p-value is returned as a result of the hypothesis test, and one can conclude
that there is a significant group difference when the p-value is sufficiently
low (e.g., 6 0.05). If the groups are not matched by other covariates or we
are interested in a variable that is continuous and does not indicate the group
information (e.g., age and cognitive score), we can use regression models (e.g.,
general linear model, multi-variate general linear model and mixed effects
model) to find out the effect from the variable of interest.

Performing such statistical analysis on neuroimages is complicated due to
many reasons. First, human brains may have different sizes and shapes. Since
the same voxel location in different images may correspond to different parts
of the brain, the images from each individual cannot be compared directly.
Therefore, these images must be registered on a common coordinate space
to obtain “voxel-to-voxel correspondence”. The registration process enables
us to perform meaningful statistical analysis at each voxel (or data point)
with a variable of interest to obtain p-values for every voxel. But notice that
we have to perform the statistical test as many times as the number of data
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points (i.e., voxels). In this case, we face the so-called multiple testing problem
(Dunnett, 1955; Hsu, 1996; Keppel and Wickens, 2004), i.e., an error from each
test accumulates as the number of tests increases which eventually leads to
many false-positives. The multiple comparisons issue can be corrected using
a threshold on the p-values that takes the number of total tests into account.
When the correction is done and the resultant p-values surviving the multiple
comparisons correction are projected on the template space, they may form
“clusters” of voxels that indicate regions in the brain that are affected by the
variable of interest with statistical evidence. Such a pipeline is demonstrated
in Fig. 1.3.

1.2 Challenges in the Analysis of Neuroimaging Data

Despite advances in image acquisition techniques and sophisticated analysis
methods to better understand various aspects of the human brain, there are
several challenges that the standard neuroimaging/neuroscience studies rou-
tinely face. The most fundamental challenge is to recruit a sufficient number
of subjects. Even if there is a clear disease specific variation in the brain, it is
difficult to characterize the existing variations using a statistical method with
insufficient data (i.e., small sample-size). Therefore, the cohort size must be
large enough to ensure that we can reliably identify the variation. However, in
many neuroimaging studies, this may not be feasible due to cost and/or the
specific scope of the clinical question of interest (e.g., demographic require-
ments, genetic profile) which restricts the number of participants, typically, to
no more than a few hundred. In this small sample-size regime, the analysis
becomes particularly problematic when the effect size of interest is weak or
subtle. Since we are progressively moving towards analyzing early symptoms
of disease and often, even in the pre-clinical stages, this is a critical issue that
needs to be addressed. Therefore, it is imperative that the analysis method is
sensitive enough to detect even the subtle signal variations in the brain.

Also, accurate registration of the brain images is necessary but very difficult
to achieve in reality. Correct registration is critical in voxel-wise statistical im-
age analysis, since it provides voxel-to-voxel correspondence among different
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(a) (b) (c) (d)

Figure 1.4: Example of multi-modal image registration for statistical analysis. a) FDG-PET
scan, b) T1-weighted image, c) Dartel T1 template, d) Registered FDG-PET scan from a).
Direct registration of a) to c) is problematic. Therefore, a) is first co-registered to b), and the
warping of T1-weighted image to the template (from b) to c)) is computed. Then the warping is
applied to a) to obtain a registered PET image as in d).

images in the dataset to perform meaningful voxel-wise analysis (Jenkinson
and Smith, 2001; Maes et al., 1997; Pluim et al., 2003; Wells III et al., 1996).
However, even the state-of-the-art (linear or non-linear) registration techniques
sometime fail to register different images across a dataset when the resolu-
tion is poor and it is often problematic to register images between different
modalities (Viola and Wells III, 1997; Ashburner and Friston, 1997; Roche et al.,
1998). For example, as demonstrated in Fig. 1.4, co-registering two PET images
requires additional steps compared to registering MRI scans due to its low reso-
lution. In order to co-register two PET images, the images are first registered to
the T1-weighted images of the same subject and then the T1-registered images
are warped to each other for registration. Such a process is complicated and
may involve registration error, and thereby would result in significant decrease
in statistical power. In some cases, such as infant/adolescents brain analysis,
a specific template for the population may not even be available leading to
sub-optimal results.

There are often issues arising from systematic variations in the imaging data
as well, which are caused by various factors in the data acquisition process
(Colcombe et al., 2003). For example, in a longitudinal image study, the same
participant goes through multiple scans at different time points. When there
are systematic differences between the scanning process at different times such
as changes in scanner, scanner parameter or imaging protocol, such factors
will cause systematic variations in the acquired images. Such systematic
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variations also cause problems in multi-site studies where the data are collected
in different locations (Jovicich et al., 2006) or datasets from multiple locations
are concatenated in an effort to increase the sample size (Zhou et al., 2016, 2017).
In this regime, it is quite challenging is to capture only the disease specific
phenomena under study and minimize the effect of confounding factors.

In order to identify the full relationships among different variables (i.e., ROIs
and covariates) a graphical model selection method is often adopted which es-
timates a “sparse” precision matrix (i.e., inverse covariance matrix) (Banerjee
et al., 2006; Honorio and Samaras, 2010) whose non-zero elements describe
the conditional dependencies among the variables. Unfortunately, when iden-
tifying these associations between brain regions and covariates, we often face
a problem caused by latent variables that affects our observation (i.e., measure-
ments / data) yet hidden. In many cases, the measurements (image intensity
or image-derived measurements) obtained from the ROIs may be dependent
on unknown factors (i.e., latent variables) and prevent one from identifying
the true relationships between the covariates by making the precision matrix
“dense”. This is especially true in many real datasets which involve a large list
of latent variables affect the observed variables but remain unknown. Account-
ing for such latent variables is not clearly addressed by standard precision
matrix estimation, and is typically approached using specialized optimization
techniques with many constraints (e.g., number of latent variables) (Chan-
drasekaran et al., 2012; Marlin and Murphy, 2009).

Figure 1.5: An example of neural
fiber bundles derived using tractogra-
phy on DTI.

Last but not the least, many recent brain
imaging datasets contain data that live in
non-Euclidean spaces (e.g., a graph that con-
sists of vertices and edges). For example,
cortical thickness measures (see Fig. 1.2) on
brain surfaces can be considered as signals
defined on a graph where the signal is the
thickness measure and the graph is the brain
surface mesh. Also, the tractography derived
brain connectivity measures from DTI can be
naturally represented as a graph where the
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ROIs correspond to vertices and the edges are defined by the strength mea-
sures of the connections from neural fiber bundles. In such settings, where the
domain of the data is non-Euclidean, it is problematic to perform traditional
image processing techniques to enhance the sensitivity of the method since the
domain has an arbitrary structure. For instance, in the Euclidean setting (i.e.,
uniformly sampled lattice), Gaussian smoothing is performed on each image
by kernel convolution to increase signal-to-noise ratio in an image and increase
the statistical power. However, if the signal is defined in a non-Euclidean
space, it is difficult to define such filtering operations due to the ambiguity of
shapes of basis functions to transform the signal into the frequency space.

1.3 Image Analysis in Alzheimer’s Disease

Throughout this thesis, we will focus on the analysis of AD using various
neuroimaging modalities. AD is one of the most common progressive neu-
rodegenerative diseases characterized by severe loss of memory, decline in
cognitive function, changes in mood, inability to find orientation and so on
(McKhann et al., 2011) . The disease progresses through multiple stages and
its pathology can accumulate before development of clinically relevant cogni-
tive impairment (Perez-Nievas et al., 2013; Chételat et al., 2013). Before being
diagnosed as AD, patients go through the mild cognitive impairment (MCI)
stage and annually 10% to 15% of the MCI patients convert to AD (Okello et al.,
2009; Risacher et al., 2009). Over 24 million people in the world are affected by
AD, and unfortunately, there is still no cure for the disease (Leow et al., 2009).
It is therefore critical to detect the disease in the early stages and slow down
its progression by intervention.

AD poses a challenge given that the cognitive changes that define the dis-
ease do not manifest until significant brain pathology has accumulated, and
often these cognitive changes are not highly correlated with certain pathologi-
cal features of the disease. A well-known AD related change in the brain is
severe thinning in cortical thickness on several different locations in the brain
(Pachauri et al., 2011; Dickerson and Wolk, 2012; Thompson et al., 2011). Given
that brain function and pathology manifest strongly as changes in the cortical
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Figure 1.6: Examples of variations due to AD (figures captured from Alzheimer’s Associations
International Conference (AAIC)). Left: Structural changes (i.e., cell loss) in the brain due to
AD, Right: Amyloid plaques (i.e., abnormal clusters of protein fragments) and tangles due to
AD.

thickness, the analysis of such data (to find group level differences in clinically
disparate populations) plays a central role in structural neuroimaging studies.

Also, post-mortem diagnosis of the disease is determined by regional
density of beta-amyloid plaques and neurofibrillary tangles (as shown in the
right in Fig. 1.6) with amyloid accumulation (Jack et al., 2013; Montine et al.,
2012). It is therefore meaningful to characterize the disease by the changes in
neural connectivity captured by different measures, taking into account the
neural networks that comprise several affected regions. AD is well-known to be
tied to functional connectivity changes as well (Wang et al., 2007; Damoiseaux
et al., 2012; Supekar et al., 2008), and therefore changes in brain connectivities
can explain behavioral symptoms in AD and may predict conversion to AD
(Filippi and Agosta, 2011; Li et al., 2002; Shao et al., 2012).

1.4 Multi-resolution Analysis of Neuroimaging Data

In order to tackle the challenges addressed above arising from the analysis of
AD using neuroimaging data, the key concept underlying the methods that
we propose is a “multi-resolution” framework in non-Euclidean spaces. In
the traditional Euclidean setting, the representation of an image or a signal at
different resolutions (as shown in Fig. 1.7) was used to obtain invariance to
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Figure 1.7: An example of multi-resolution of an image from Jeremy (my son). Top: Gaussian
Pyramid (i.e., high to low resolutions).

scale, which is one of the the most fundamental concepts in computer vision.
Its applications span interest point detection (Lowe, 2004; Zhang et al., 2006b;
Donahue et al., 2014; Bay et al., 2006), denoising/filtering (Wink and Roerdink,
2004; Sardy et al., 2001; Chang et al., 2000) and compression (Chang et al., 2000;
Lu et al., 2000), and is often studied as scale space theory (Lindeberg, 1994).
An analog of this concept from the signal processing perspective is “wavelet
transform”. The wavelet transform uses a localized (i.e., translated and has finite
duration) oscillating function at multiple scales, i.e., mother wavelets, as the
basis instead of the sine basis with infinite duration in the Fourier transform.
It captures “local context” information (i.e., relationship among neighboring
pixels in an image) and overcomes the key limitation of Fourier series in failing
to capture sharp changes in a function (i.e., Gibbs phenomena due to infinite
support) via the localization property.

Unfortunately, the conventional formulation of wavelet transform has been
traditionally studied only in the Euclidean space (e.g., a regular lattice). This
is because the construction of the wavelet basis in the non-Euclidean setting
is not straight forward due to the ambiguity of scales and translation, which
are the key properties of the mother wavelet. Recent literature in harmonic
analysis provides an interesting development by defining the wavelet basis as
band-pass filters in a dual space (i.e., an analog of the frequency space) where
the notion of the scale is easier to define (Hammond et al., 2011; Coifman
and Maggioni, 2006). To do this, they first define orthogonal transformations
for graphs which is an analog of traditional Fourier transform. When the
band-pass filtering operation is implemented in the original space by a inverse
transformation from the dual space, it constructs a wavelet basis that satisfies
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Figure 1.8: An example of multi-resolution in non-Euclidean space. Cortical mesh and
cortical thickness signals on the vertices of the mesh are shown in multiple resolutions.

the key properties of traditional mother wavelets. Once the wavelet transform
is defined for the signals that are defined on graph vertices, now one can think
of this wavelet transform as viewing each vertex of a graph zoomed in-and-out
at various resolutions based on the connections among neighboring vertices.

1.5 Aims of the Thesis

Throughout this thesis, we propose various novel multi-resolution frameworks
that provide solutions to fundamental issues that routinely arise in neuroimag-
ing data analysis by solving the corresponding technical problems. These
frameworks explore the underlying structure of the data to offer desirable
properties and benefit their applications in real data analysis. The technical
core driving the frameworks is based on the wavelet transform on graphs.
Below is a brief description of the frameworks:

(i) A sensitive method for analyzing cortical thickness signals on brain
surfaces for AD; the method defines multi-scale descriptor at each vertex
of a cortical mesh using wavelet transform on graphs, which benefit the
downstream the statistical analysis (Kim et al., 2012, 2014, 2015c).

(ii) A sensitive method for analyzing signals on brain network connection
(i.e., edges) for AD and preclinical AD; the method utilizes the dual
representation of a graph and the wavelet transform on graphs to derive
a multi-scale descriptor at each connection of a brain network which
improves the results from statistical analysis (Kim et al., 2013a, 2015a,c).

(iii) A method for performing statistical analysis for longitudinal images with



12

systematic variations; instead of direct comparison of two longitudinal
images with systematic variations, the method defines operators from
each image that is invariant to the systematic variations and uses them
as a surrogate for detecting changes between them (Kim et al., 2015a).

(iv) A method for performing statistical analysis of images with local defor-
mations; the method defines an image representation that is invariant to
the local deformation error using convolution neural network of a graph
and the downstream analysis using the new image representation yields
more robust results (Kim et al., 2015b).

(v) A method for identifying relationships between different brain neural
pathways and relevant covariates using human connectome project (HCP)
data; a latent variable graphical model selection method that identifies
relationships between different random variables in the presence of un-
known latent variables affecting the observation (Kim et al., 2016b).

The full description of these methods is introduced in the subsequent chapters.
Together with the presentation of the methods, we provide extensive exper-
imental results demonstrating improved results in the statistical analysis of
neuroimaging data and enabling discovery of new scientific findings in AD
and preclinical AD analyses.
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2 background

2.1 Continuous Fourier and Wavelet Transforms

Let f(x) be a integrable function (or signal) defined in R parameterized by x.
It is natural to examine the signal in the original space x, however, it merely
provides the information of the signal regarding its value at a given location
in x. Analyzing the signal in x does not convey the information as to the rate
at which the signal is varying. To see why this is important, for example,
shifting f(x) just a little bit does not affect its shape but changes the f(x) at
every location and makes it a very different function if we analyze it at every
point in the domain. In such a case, rather than analyzing the signal in the
original space, it can be useful to look at a new representation of the signal in
a dual space that describes how the signal is varying.

In traditional signal processing, the Fourier transform is the most well-
known technique to analyze how a signal is changing (i.e., exploring its
frequency characteristics) by decomposing a signal f(x) into a linear com-
bination of Fourier coefficients and Fourier bases (i.e., sin()) (Bracewell and
Bracewell, 1986; Welch, 1967; Harris, 1978). A simple example of the Fourier
transform is given in Fig. 2.1, where on the left is the original signal f(x) =
sin(80x) + sin(300x), in the center is a corrupted version of the f(x) with noise
and the right is the signal in the freuqency space (i.e., the dual space). As seen
on the right in Fig. 2.1, there are two peaks at 30Hz and 100Hz that tells us
that the sin() at those two frequencies are the major components to constitute

Figure 2.1: An example of Fourier transform. Left: original signal, Middle: corrupted signal
(i.e., original signal with noise), Right: corrupted signal in the frequency space.
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Figure 2.2: Examples of a Fourier basis and mother wavelets. Left: sine basis for Fourier
transform, Middle: mexican hat wavelet, Right: haar wavelet. Unlike the sine basis, mother
wavelets are localized and have finite support.

the original signal f(x).
Mathematically speaking, the Fourier transform uses sin() functions as the

bases to decompose an original signal f(x). It basically transforms the f(x) to
the frequency space denoted byω as

f̂(ω) =

∫
f(x)e−jωxdx (2.1)

resulting in Fourier coefficients f̂(ω). Its inverse transform reconstructs the
original signal as a linear combination of the coefficients and the bases as

f(x) =
1

2π

∫
f̂(ω)ejωxdω. (2.2)

The wavelet transform is similar to the Fourier transform in that a signal is
decomposed as a linear combination of coefficients and certain basis functions.
While the Fourier expansion uses sin() bases which have infinite support and
is localized only in the frequency space, the wavelet expansion instead uses a
mother wavelet basis ψwhich is localized in both time and frequency (Haykin
and Van Veen, 2007). Representative examples of Fourier and mother wavelets
(i.e., Haar wavelet and Mexican hat wavelet) are shown in Fig. 2.2.

The classical wavelet transform starts by defining a mother wavelet ψs,a

with a scale parameter s and a translation parameter a as

ψs,a(x) =
1
s
ψ(
x− a

s
). (2.3)
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Figure 2.3: Examples of scale and translation properties of haar wavelet. Top row: haar
wavelet in different scales (i.e., dilation), Bottom row: haar wavelet in different locations.

Here, the parameter s governs the dilation and the parameter a controls the
localization of ψs,a respectively as shown in Fig. 2.3. Using ψs,a as the bases,
the wavelet transform of a function f(x) is defined as the inner product between
the ψ and f, represented as

Wf(s,a) = 〈f,ψs,a〉 =
1
s

∫
f(x)ψ∗(

x− a

s
)dx (2.4)

whereWf(s,a) is the wavelet coefficient at scale s and at location a, and ψ∗ is
the complex conjugate of ψ. The inverse wavelet transform can be defined if it
satisfies the admissibility condition,

Cψ =

∫
|ψ̂(jω)|2

ω
dω <∞ (2.5)

where Cψ is the admissibility constant and ψ̂(jω) =
∫
ψ(x)e−jωxdx is the

Fourier transform of the mother wavelet. Once the admissibility condition
is satisfied, such a wavelet transform is invertible, and the inverse wavelet
transformation reconstructs the original signal f(x) fromWf(s,a) without any
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Figure 2.4: An example of wavelet transform of an image. First: original image, Second:
wavelet transform using a scaling function, Others: wavelet transform using wavelet bases in
different scales.

loss of information as,

f(x) =
1
Cψ

∫∫
Wf(s,a)ψs,a(x)dads. (2.6)

Here, (2.6) is known as resolution of the identity and the key expression for
multi-resolutional analysis using the wavelet transform (Haykin and Van Veen,
2007; Daubechies, 1990).

Interestingly, the mother wavelets ψs at multiple scales behave as band-
pass filters corresponding to different bandwidths in the frequency space.
When these band-pass filters do not cover the low-frequency components, an
additional scaling function φ (i.e., father wavelet) that behaves as a low-pass
filter is introduced, and a transform with the scaling function φ returns a
low-pass filtered (i.e., smooth representation) of the original function f. Due
to this selective filtering property, wavelets offer a multi-resolution view of the
given signal. A classical example of the wavelet transform is demonstrated in
Fig. 2.4 with an original image, wavelet trasform using the scaling function
and mother wavelets in multiple scales.
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2.2 Fourier and Wavelet Transforms in Non-Euclidean
Spaces

As previously described in Section 2.1, the Fourier transform and the wavelet
transform of a signal in the Euclidean spaces (i.e., Rn) are well defined and
have been popular in signal processing for representing the signal in the
frequency space to obtain its frequency characteristics (Haykin and Van Veen,
2007; Bracewell and Bracewell, 1986; Takeda et al., 1982; Daubechies, 1990;
Antonini et al., 1992). The implementation of these transforms in the Euclidean
space is convenient thanks to the regularity of the domain. Since the domain
is typically represented as a regular lattice, one can easily define the ‘shape’
of the basis (i.e., sin() or a mother wavelet). However, in a non-Euclidean
setting where the domain is irregular (e.g., a graph), the definition of the basis
in such a complex domain becomes difficult. For example, on a graph with
a set of vertices and edges connecting the vertices, the notions of scale and
translation of a mother wavelet ψs,a are not as easy to conceptualize when
the distance between each vertex and the number of connected edges are not
uniform. Due to this difficulty, the wavelet transform has not been suitable
for the analysis of signals when the domain has an arbitrary structure until
recently when (Coifman and Maggioni, 2006; Hammond et al., 2011; Narang
et al., 2012) presented a result dealing with wavelet and Fourier transform of
graphs (and other non-Euclidean spaces).

Formally, a graphG = {V ,E} is defined by a vertex set V (where the number
of vertices is N) and a edge set E. Such a graph G is generally represented as
an adjacency matrix A of sizeN×N where each element aij denote the edge
weight between the ith and the jth vertices. Another graph representing matrix
is a degree matrix D, which is a diagonal matrix with the ith diagonal as the
sum of edge weights connected to the ith vertex. From the adjacency matrix
and the degree matrix, a graph Laplacian is defined as L = D−A, which is an
analog of the Laplacian operator in the continuous space. An example with a
star shaped graph and matrices representing the graph (i.e., its adjacency and
degree matrices and graph Laplacian) are shown in Fig. 2.5. Here, the graph
Laplacian L is self-adjoint and positive semi-definite, therefore the spectrum
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(a) (b) (c) (d)

Figure 2.5: An example of Spectral Graph Theory. a) A star shaped graph, b) Adjacency
matrixA representing connections between the vertices, c) Degree matrixD, d) Graph Laplacian
L = D−A.

of L yields pairs of eigenvalues λl > 0 and the corresponding eigenvectors
χl where l = 0, 1, · · ·N− 1. The χl are orthonormal eigenvectors that can be
used as analogs of sin() bases in the traditional Fourier transform. Examples
of χl defined on a sphere shaped mesh are shown in Fig. 2.6, where the color
represents the function values. Notice that there are peaks represented in
red and blue which correspond to the high and low peaks of traditional sin()
functions, and as the order l increases, the number of peaks increases indicating
higher frequency.

Given the general definition of a inner product for two vectors (i.e., for
complex vector) a and b as

〈a, b〉 =
∑

aib
∗
i , (2.7)

the graph Fourier transform using χl as the bases is defined as an inner product
between the function f(n) on the graph nodes and a basis vector χl(n) as

f̂(l) = 〈f,χl〉 =
N∑
n=1

f(n)χ∗l (n) (2.8)

where f̂(l) is the graph Fourier coefficient and the inverse transform is defined
as

f(n) =

N−1∑
l=0

f̂(l)χl(n). (2.9)

Notice that (2.8) and (2.9) are similar to (2.1) and (2.2) in traditional Fourier
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(a) (b) (c) (d)

Figure 2.6: Examples of graph Fourier bases on a sphere mesh. Observe that as the order
of the basis increases, the frequency of fluctuation of the basis changes (i.e., higher order
corresponds to higher frequency). a) A 3-D triangular mesh domain (sphere) with 2562 vertices
and 5120 faces, b) χ2, c) χ9, d) χ27.

transform but use different orthogonal bases in the discrete graph space. This
transform offers a convenient means to transform a signal/measurement on
graph vertices to a dual domain which is an analog of the frequency domain
in traditional Fourier analysis.

Utilizing the graph Fourier transform, the mother wavelet ψ can be con-
structed by first defining a kernel function g() (i.e., band-pass filter) in the
frequency domain and then localizing its operation by a delta function δ in the
original graph space via the inverse graph Fourier transform. In other words,
a band-pass filter g() is first defined in a graph Fourier space defined by λl,
and then a ψ is constructed when the band-pass filtering operation by g() is
implemented in the original graph space by inverse graph Fourier transform.
Since the frequency representation of a δn is 〈δn,χl〉 = χ∗l (n) (using (2.7)) in
the dual space, the mother wavelet ψs,n at vertex n at scale s is constructed
(i.e., localized) using the inverse Fourier transform (2.9) as

ψs,n(m) =

N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (2.10)

which is a band-pass filtering of a delta function δn in the graph Fourier
space. Notice that the scale s is defined inside g() by the scaling property of
Fourier transform (Haykin and Van Veen, 2007) and the eigenvalues λl serve
as the analogs of frequency. Also, since L � 0, χ∗l = χl and ψs,n(m) can be
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considered as a symmetric kernel defining a distance between two vertices n
and m (i.e., ψs,n(m) = ψs,m(n)). Examples of ψs,n (i.e., Mexican hat wavelet)
in different scales are shown in Fig. 2.7.

Usingψs,n, the wavelet transform of a function f(m) at scale s can be easily
defined as an inner product using the mother wavelets ψs,n as

Wf(s,n) = 〈f,ψs,n〉 (2.11)

=

N∑
m=1

f(m)ψs,n(m) (2.12)

=

N∑
m=1

f(m)ψs,m(n) (using the symmetry of ψ) (2.13)

=

N∑
m=1

f(m)

N−1∑
l=0

g(sλl)χ
∗
l (m)χl(n) (2.14)

=

N−1∑
l=0

g(sλl)[

N∑
m=1

f(m)χ∗l (m)]χl(n) (2.15)

=

N−1∑
l=0

g(sλl)f̂(l)χl(n) (2.16)

resulting in wavelet coefficients Wf(s,n) just like in (2.4). Such a transform
offers a multi-resolution view of signals on graphs, and the multi-resolution
property can be easily captured by a single parameter s in the kernel function
g().

Note that this expression (2.16) corresponds to the continuous wavelet
transformation as shown in (2.4) with an integral of a set of coefficients and
given wavelet bases. If the kernel g() satisfies the admissibility condition

Cg =

∫∞
0

g2(x)

x
dx 6 ∞ (2.17)

and g(0) = 0, then such a transform is invertible,

f(m) =
1
Cg

N∑
n=1

∫∞
0
Wf(s,n)ψs,n(m)

ds
s

(2.18)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7: Examples of mother wavelets, i.e., Mexican hat wavelet (top) and Meyer wavelet
(bottom) on a sphere surfaces. Observe that as the scale varies, the dilation of the wavelet
changes. First column: A 3-D triangular mesh domain (sphere) with 10242 vertices and 20480
faces, Second column: ψ1,1, Third column: ψ2,1, Fourth column ψ3,1.

which represents the original signal by superposition of wavelet coefficients
and wavelet bases over the full set of scales. (2.18) is equivalent to the following
expression (where we use χl),

1
Cg

N−1∑
l=0

(∫∞
0

g2(sλl)

s
ds
)
f̂(l)χl(m). (2.19)

which corresponds to the inverse wavelet transform in the continuous set-
ting given in (2.6). This completes our discussion of the connection between
wavelets in continuous space and a graph space.

An example of the wavelet transform on graphs discussed above is shown
in Fig. 2.8 demonstrating the transformation of a random signal defined on a
brain mesh. Given a brain mesh which consists of a set of vertices sampled
from a brain surface and patched by triangles yielding the edges connecting
the vertices, a signal (which may correspond to cortical thickness) is defined
on its vertices (on the left of Fig. 2.8 left). The middle of Fig. 2.8 demonstrates
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⇔

Figure 2.8: Forward and inverse graph wavelet transform on a brain mesh. Left: a random
signal defined on a brain mesh, Right: examples of mother wavelets in multiple scales (top)
and wavelet coefficients derived using the mother wavelets (bottom). The original signal on the
left can be reconstructed using the inverse transform.

localized wavelet bases in multiple scales (top) and the resultant wavelet coef-
ficients from (2.16) using the mother wavelets (bottom). The inverse wavelet
transform using (2.18) reconstructs the original random signal on the brain
mesh.
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3 analysis of cortical thickness using
multi-resolution shape descriptor

Hypothesis testing on signals defined on surfaces (such as the cortical surface)
is a fundamental component of a variety of studies in Neuroscience. The goal
in such an analysis is to identify regions that exhibit changes as a function of the
clinical condition under study. As briefly described in Chapter 1, the clinical
questions of interest move towards identifying very early signs of diseases,
the corresponding statistical differences at the group level invariably become
weaker and increasingly hard to identify. Indeed, after a multiple comparisons
correction is adopted (to account for correlated statistical tests over all surface
points), very few regions may survive. In contrast to hypothesis tests on
point-wise measurements, in this chapter, we make the case for performing
statistical analysis on multi-scale shape descriptors that characterize the local
topological context of the signal around each surface vertex. The descriptors
are based on recent results from harmonic analysis (Hammond et al., 2011),
that show how traditional wavelet transform extends to non-Euclidean settings
(i.e., irregular weighted graphs). In the later section, promising evidence that
these descriptors successfully pick up group-wise differences is provided,
where traditional methods either fail or yield unsatisfactory results.

3.1 Overview

The cerebral cortex is a layer of highly convoluted surface of gray matter
with spatially varying thickness, and the distance between inner and outer
cortical surface is known as the cortical thickness. Within the last decade, nu-
merous studies have shown how cortical thickness is an important biomarker
for brain development and disorders, and changes in the cortical thickness
(Newman et al., 1998; Prevrhal et al., 1999) are particularly important in
the context of Alzheimer’s Disease (AD) (Erkinjuntti et al., 1987; Thompson
et al., 2004; de Leon et al., 1989; Pachauri et al., 2011), which will be the pri-
mary focus of analysis in this chapter. In this context, studies have observed



24

Figure 3.1: Cortical thickness mea-
sures on a brain mesh. Top: a brain
surface mesh, Bottom: cortical thick-
ness measures denoted in color.

significant cortical thinning in temporal, or-
bitofrontal and parietal regions (Lerch et al.,
2005; Thompson et al., 2004) in patients with
AD. Lehmann and colleagues (Lehmann
et al., 2011) used both voxel-based morphom-
etry (VBM) and cortical thickness (CT) mea-
sures extracted by Freesurfer to find signif-
icant patterns of variation between clinical
populations including AD and the related
posterior cortex atrophy (PCA) group. They
found cortical thinning in the occipital and
posterior parietal lobe in the PCA popula-
tion, and in medial temporal regions in the
AD population. Similar results were found
in (Thompson et al., 2011; Wirth et al., 2013)
which relate this measure to other biomark-
ers also. In many other AD studies, researchers have used cortical thickness
as a biomarker to detect and classify AD cohorts from control subjects (Lerch
et al., 2008; Wolz et al., 2011; Cho et al., 2012; Querbes et al., 2009; Dickerson
and Wolk, 2012).

The body of work above relating cortical thickness to cognitive decline is
vast and tackles various neuroscientific questions; but these studies share a
commonality in that once the thickness measurement on the cortical mesh has
been calculated via a pre-processing method, the main interest is to employ
statistical hypothesis testing to find regions that exhibit statistically significant
differences between the two groups — typically a clinical/diseased group and
a healthy control group — while accounting for various confounds.

But this workflow must take into account a few potential pitfalls. The first
order requirement, clearly, is to recruit a sufficient number of subjects to ensure
that the study has sufficient power. Now, if the expected variations are small,
the cohort size must be large enough to ensure we can reliably identify group-
wise differences. However, this may not be feasible in many cases because of
several constraints due to cost, scope of clinical question and etc. Therefore, it
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is important that the analysis procedure we choose is sensitive and maximizes
the likelihood of detecting signal variations between the groups. Otherwise, in
the small sample size regime, it is entirely possible that we will fail to discover
a real disease-specific effect.

Notice that analysis of two very distinct groups that lie at the opposite
sides of the disease spectrum will obviously yield a strong statistical signal.
But recent work, with good reason, has almost entirely focused on detecting
biomarkers pertaining to the early stages of decline (Johnson et al., 2011), or
on finer gradations of the clinical spectrum from control to AD. Because of
the more moderate effect size in this regime, even in larger studies, identify-
ing group differences may be challenging. Our interest then is in deriving
representation schemes for the data, which helps the downstream statistical
test pick up subtle group differences with higher confidence than would be
possible otherwise.

Multiple Comparisons. Consider the standard pipeline for analyzing cortical
thickness variations in a neuroimaging study. Here, the data are defined on
an intricate mesh domain (i.e., brain surface), and as a result the number of
vertices needed to represent the surface (and consequently, the number of
hypothesis tests) grows up to 100,000 or more. After vertex correspondences
between subjects have been found, the hypothesis test is performed at each
cortical surface mesh vertex. Finally, one must perform multiple comparisons
correction such as Bonferroni, FDR or the method detailed in (Van De Ville
et al., 2004) as the example shown in Fig. 3.2 demonstrating the effect of
multiple comparisons correction (i.e., FDR) at different levels. We can then
conclude that the cortical regions which correspond to the surviving vertices
are indeed meaningful disease-relevant regions.

Observe that in such a vertex-wise statistical task on surfaces, improved
sensitivity can be achieved by increasing the signal to noise ratio. One option
may be to utilize a filtering operation (such as Gaussian smoothing). But
this relies on achieving a delicate trade-off between smoothing the signal just
enough to suppress noise but taking care not to blur out the signal of interest.
Instead, our key idea is to derive a descriptor for each mesh vertex that charac-
terizes its local context, at multiple scales (or resolutions) concurrently. Such
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Figure 3.2: Demonstration of varying multiple comparisons correction thresholds with
p-value maps on a brain surface identifying AD specific regions. FDR α = 10−3 (left column),
α = 10−5 (middle column) and α = 10−7 (right column) respectively.

multi-resolution ideas, historically studied within image processing as scale
space theory (Lindeberg, 1993) or via the wavelet transform (Daubechies, 1990;
Mallat, 1989), have been used sparingly within the context of statistical analysis
on arbitrary meshes (Chung et al., 2008; Chung, 2006). The framework pre-
sented here gives an end to end solution that makes these ideas implementable
for cortical surface data, with improved sensitivity.

The wavelet transformation mentioned above and introduced in Chapter 2
is an obvious choice for multi-resolution analysis which uses a centered oscil-
lating function as the basis instead of the sine basis. Therefore, it overcomes
the key limitation of Fourier series in failing to capture sharp changes in a
function (i.e., Gibbs phenomena due to infinite support) via the localization
property. Unfortunately, the conventional formulation is defined only in the
Euclidean space (e.g., a regular lattice). This is not suitable for convoluted
and arbitrary surface models where the mesh has a highly irregular geome-
try. In order to still make use of the main theoretical constructs, but in the
non-Euclidean setting, one must first decide a priori a “standard” coordinate
system. Popular parameterization techniques use a unit sphere and utilize
the spherical harmonics (SPHARM) (Chung et al., 2007). SPHARM defines
Fourier bases using spherical Laplacian to parameterize a function mapped to
a sphere.

The procedure above involves a module which will ‘balloon’ out the the
cortical surface on to a sphere while preserving, to the extent possible, local
distances, areas or angles. This is usually a lossy or distortion prone process
(Thompson and Toga, 1996). Based on similar ideas, the spherical wavelet de-
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fines the wavelet on a template sphere with discretized regular lattice (Freeden
and Windheuser, 1996; Antoine et al., 2002). Studies have shown how spherical
wavelets can be used to analyze complex cortical surface development (Yu
et al., 2007). However spherical wavelets, like spherical harmonics, by design,
cannot compensate for the metric distortion already introduced in the sphere
mapping module. Of course, there are some heuristic adjustments which offer
varying levels of empirical performance in practice. But theoretically, it will
be satisfying to remove the restriction of a standardized coordinate system
completely, and derive a multi-resolution representation in the native domain
itself.

By leveraging some recent results from the harmonic analysis literature
(Hammond et al., 2011) introduced in Chapter 2, we propose a framework to
decompose a scalar function defined at each vertex of a surface model into
multiple scales using non-Euclidean wavelets. It is easy to think of this process
as viewing each mesh vertex zoomed at various levels, and characterizing
the set or union of all such views within a vertex descriptor. Once such a
representation is derived, we can simply analyze the multi-scale signal using
multi-variate statistical tests. Later in this chapter, we show that such a frame-
work provides substantial improvement over analyzing a uni-variate signal
using cortical thickness data on brain meshes.

3.2 Multi-scale Shape Descriptor for Signals on
Graphs

3.2.1 Wavelet Multiscale Descriptor

Wavelet transform is well-known for deriving multi-resolution views of sig-
nals and provides robust comparison of signals in multiple resolutions. In
this sense, the fundamental idea is for using wavelet transform on graphs
for cortical analysis is that we can, perhaps, achieve robust comparisons of
cortical thickness measures on brain meshes which would facilitate statistical
parametric mapping analyses of neuroimaging data. Using the spectral graph
wavelet transform (introduced in Chapter 2) of a signal defined on a graph
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yields wavelet coefficients on graphs and we can define the Wavelet Multiscale
Descriptor (WMD) as a set of wavelet coefficients at each vertex n for multiple
scales in S = {s0, s1, . . . , s|S|−1} as

WMDf(n) = {Wf(s,n)|s ∈ S} (3.1)

where s0 denotes the scale at the scaling function. The WMD on each vertex n
can be interpreted as the original univariate signal (e.g., cortical thickness,)
being decomposed into various resolutions depending on the geometry of
the original space. WMD is suitable for analyzing any signal defined in a
non-Euclidean space (e.g., brain mesh or other 3-D shape mesh).

3.2.2 Implementation Settings

Our framework is implemented using the spectral graph wavelet transform
(SGWT) toolbox from (Hammond et al., 2011) as a sub-module. First, the graph
representation G of a surface mesh is derived from its Delaunay triangulation,
which gives a vertex set V as well as a set of faces, each of which is comprised
of a 3-tuple of vertices consisting a triangle. From these we can extract a binary
edge relation E. The cortical thickness values are then computed on each vertex
by Freesurfer (Fischl, 2012), which is a function f(n) (or a signal) defined at
each vertex n ∈ V .

In our experiments, we used the default spline wavelet design provided
by SGWT toolbox as the kernel function g, which is a piece-wise function,

g(x;α,β, x1, x2) =


x−α1 xα2 for x < x1

s(x) for x1 6 x 6 x2

x
β
2 x

−β
2 for x > x2

(3.2)

where s(x) = −5 + 11x − 6x2 + x3, α = β = 1, x1 = 1 and x2 = 2, which are
default settings in (Hammond et al., 2011). Scales of g are defined as equally
spaced bands in log scale in the spectrum of graph Laplacian. Here, the choice
of the number of scales is important and must be made empirically (details
below). We also note that since it is not feasible to eigendecompose a graph
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Laplacian when there are more than ∼ 105 vertices within a brain surface, we
cannot easily access the full spectrum. What we can do instead is to find the
largest eigenvalue, and then divide the spectrum into a number of bins, giving
the different scales. Hence, the method has just one tunable parameter, which
is the number of bins (i.e., the number of scales). This has to be a small integer,
meaning that there are a very small number of values that this parameter can
take, if one sets this parameter using a validation test empirically. Because
noise generally lies at high end of the spectrum, we only use the scales of lower
end of the spectrum to define the WMD. Those scales of interests are chosen
by incrementally adding band of the scales from the coarser scale until results
are satisfactory, and the remaining scales are discarded.

Since we operate on multiple brain surfaces, the range of the entire spec-
trum is defined by the largest eigenvalue of the graph Laplacian of all subjects.
Defining wavelets in the common spectrum ensures that we define the same
wavelet transform over the group of subjects. To divide up the spectrum,
we ran experiments by setting the total number of scales to 5, 6 and 7. We
observed empirically that 7 scales were effective for our dataset. Next, one
must choose how many scales will be used to define the actual descriptor for
statistical analysis. We found that using the first four scales for both datasets
works reliably noting that other choices for these parameters yield comparable
results.

3.2.3 Experimental Framework and Statistical Analysis

The goal of our experiments was to assess the improvement in the ability to
detect group differences using WMD versus using cortical thickness on its
own (i.e., baseline). The results of these experiments will be described in the
following section.

We followed the general analysis pipeline (as described in Chapter 1 and
shown in Fig. 1.3) by plotting the resultant p-values on the template brain
surface after FDR correction. We additionally applied heat-kernel smoothing
on the cortical thickness to compare the group analysis result. To compute
the p-values, we used a t-test on univariate variables (i.e., raw and smoothed
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cortical thickness) and Hotelling’s T 2 test and Multivariate General Linear
Model (MGLM) with Hotelling-Lawley trace on the multivariate variables
of interest (i.e., WMD). Using MGLM, we controlled for the effects driven
by factors that were not directly related to the disease (i.e., age or gender) to
obtain a more accurate result.

Since our fundamental argument is that multivariate WMD is more sen-
sitive than performing statistical tests on univariate cortical thickness, one
should expect to see a stronger signal than results derived via smoothed or
raw cortical thickness.

3.3 Cortical Thickness Analysis: Group Analysis for
Alzheimer’s disease (AD) Studies

The identification of group differences between cortical surface signals is based
on comparing the distribution of the signal across the two groups at each vertex.
This can be done either by using the signal (cortical thickness) obtained from
the segmentation directly, or by using spherical harmonic (SPHARM) to first
parameterize and then smooth the signal, followed by a vertex-wise t-test on
the smoothed signal. In contrast to spherical approaches, our multi-scale
descriptor is well defined for characterizing the shape (and the signal) on the
native graph domain itself by utilizing graph structure for each mesh for signal
transforms. We employ hypothesis testing using the original cortical thickness
and SPHARM as the two baselines for comparison.

3.3.1 Simulation of Surface-based Group Analysis and ROC
Response

We first demonstrate group analysis using WMD using synthetically generated
cortical thickness (and atrophy) on a template brain surface. The template
brain surface consists of 2790 vertices and 5576 faces, and 20 diseased and 20
control subjects are artificially synthesized using the template brain. First, a
synthetic baseline global cortical thickness signal of mean 2mm and variance
0.1 is introduced. This is shown as the blue region in Fig. 3.3.
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∼ N(µ1, σ
2
1) atrophy of mean 0.2mm

atrophy of mean 0.4mm

Figure 3.3: Simulation setup of synthetic cortical thickness and atrophies on brain surfaces.
Blue regions correspond to the default (non-diseased) cortical thickness signal, µ1 = 2mm,σ2

1 =
0.01. Green and red correspond to disease regions which undergo atrophy affected on the
default cortical thickness signal. These atrophy levels are about ∼ 25% and ∼ 50% of the actual
atrophies measured in AD specific regions of a real dataset.

Note that this region is viewed as not affected by disease and so no group
differences should be identifiable in these regions. Next, we define two dis-
eased regions (green and red) in Fig. 3.3. These regions undergo varying
levels of atrophy (relative to the ‘default’ cortical thickness signal in blue). The
green region corresponds to a mean atrophy of 0.2mm (variance 0.02mm) and
the red region corresponds to a mean atrophy of 0.4mm (variance 0.04mm)
effecting the default (blue) cortical thickness signal. The red and green regions
cumulatively correspond to a total of 889 vertices (32% of the brain region).
Finally, we add noise from N(0, 1) to the cortical thickness signal obtained
from the above procedure.

From the above data, we obtain smoothed CT and WMD for comparison.
Smoothing is performed via heat-kernel smoothing with bandwidth of 0.5.
The spectrum of the graph Laplacian is [0, 18.5], and this range is divided into 6
bins including the scaling function in order to define WMD. The spline kernel
function g from SGWT toolbox is used to obtain the WMD. For statistical group
analysis, a t-test was used for univariate raw data and smoothed data, and
we used Hotelling’s T 2 test for multivariate analysis for WMD. The resultant
p-values are shown on the template surface in − log10 scale for comparison,
see Fig. 5.3.
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Figure 3.4: ROC curve using p-values
from statistical group analysis on Raw CT,
Smoothing and WMD with AUC of 0.623,
0.892 and 0.971 respectively.

It is well known that filtering raw
data improves sensitivity, however, over-
filtering of data may end up detecting
many false positives. Multiple compar-
isons correction is generally applied to
control the type I error in most studies.
In this simulation, however, we know the
ground truth from the synthetic atrophy
model — a label for each vertex indicates
whether it atrophies or not; so, we can
conduct an ROC analysis to observe the
sensitivity and specificity relationship.
Here, the aim is to show that we are not
only increasing the sensitivity, but we also do not make specificity worse using
WMD. From this group analysis, we obtain p-values at each vertex, which
tells us whether to reject the null hypothesis: the two distributions from the
data at each vertex are the same. When the null hypothesis is rejected, we
find those vertices with significant differences, and we can use (1 − p) as a
measure to determine the label for each vertex. The resultant ROC curve is
given in Fig. 3.4, and we measure the area under the curve (AUC). We see that
the raw data gives an AUC measure of 0.623, when heat-kernel smoothing is
used the AUC is increased to 0.892. But using WMD yields the best AUC of
0.971 suggesting that increased sensitivity does not come at the cost of poor
specificity.

Remark. Based on the simulation results, we may ask why a classical group
analysis on the raw cortical thickness signal is not detecting stronger signal
differences, especially since the atrophy is significant. There are two reasons
for this behavior relating to the level of atrophy introduced in these simulations
(which are not very large) and the small sample sizes. Recall that the synthetic
atrophy was set to ∼ 50% and ∼ 25% of the mean difference in atrophy levels in
disease specific regions measured in a real dataset (which was about 0.82mm).
Also, the sample sizes are relatively small (20 healthy controls and 20 diseased).
We will see shortly that when the atrophy differences and the sample sizes
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(a) (b) (c)

Figure 3.5: Simulation of surface based group analysis. The resultant p-values in − log 10
scale after FDR at q = 0.01 are mapped on the template brain surface. a) result using raw CT, b)
result using heat-kernel smoothing (t = 0.5), c) result using WMD (4 scales out of 6).

are larger, classical analysis on cortical thickness can indeed detect regions
exhibiting group-level differences.

3.3.2 Analysis on ADNI Dataset

Dataset. For the experiment, we used MR images acquired as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our data included brain
images from 356 participants: 160 Alzheimer’s disease subjects (AD) and 196
healthy controls (CN). These two groups lie at the opposite ends of the AD
spectrum and the number of subjects is sufficient for group analysis. Therefore,
we expect the standard method (apply hypothesis tests to the cortical thickness
signal directly) to perform well and yield significant group differences. It
will nonetheless provide a baseline to assess whether the multi-resolution
representation yields any improvements at all. The details of the ADNI dataset
are given in Table 3.1.
Experimental setup. The MRIs in ADNI dataset were pre-processed using
a standard image processing pipeline, and the Freesurfer algorithm (Reuter
et al., 2010) was used to segment the cortical surfaces, and calculate the cortical
thickness values. In the end we obtained cortical thickness measures that were
defined on cortical meshes (i.e., univariate signal defined on a graph) for each
participant. We constructed WMDs for each vertex on the cortical surface at
6 different scales, and used Hotelling’s T 2−test for group analysis to obtain
p-values at each vertex. The resulting p-value map was corrected for multiple
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Table 3.1: Demographics and baseline cognitive status measures of the ADNI
dataset

Category AD (mean) AD (s.d.) Ctrl (mean) Ctrl (s.d.)
# of Subjects 160 - 196 -
Age 75.53 7.41 76.09 5.13
Gender (M/F) 86 / 74 - 101 / 95 -
MMSE at Baseline 21.83 5.98 28.87 3.09
Years of Education 13.81 4.61 15.87 3.23

MMSE: Mini Mental State Examination

comparisons over all vertices using the false discovery rate (FDR) method
(Benjamini and Hochberg, 1995). The same procedure using student’s t-test to
acquire p-values was repeated on the original cortical thickness measurements
and the smoothed cortical thickness obtained from SPHARM for baselines.
Analysis. Fig. 3.6 summarizes the results of our analysis. The first row corre-
sponds to the result from group analysis using the original cortical thickness
(CT) measures. Here, while we see some discriminative regions, group dif-
ferences are weak and statistically significant in only a small portion of the
brain regions. The second row shows the result pertaining to SPHARM, which
indicate improvements over the baseline, partly due to the effect of noise filter-
ing. Finally, the bottom row in Fig. 3.6 shows that performing the statistical
tests using our multi-scale descriptor gives substantially larger regions with
significantly lower p-values.

We evaluated the regions identified by these tests in the context of their
relevance to Alzheimer’s disease. We found that the identified regions are those
that might be expected to be atrophic in AD. All three methods identified the
anterior entorhinal cortex in the mesial temporal lobe, but at the prespecified
threshold, the WMD method was more sensitive to changes in this location
as well as in the posterior cingulate, precuneus, lateral parietal lobe, and
dorsolateral frontal lobe. These are regions that are commonly implicated in
AD, and strongly tie to known results from neuroscience (Nelson et al., 2012;
Ding et al., 2014; de Leon et al., 1989).
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Figure 3.6: Resultant p-values in −log10 scale after FDR correction at α = 10−5 are shown on
a template brain surface. Row 1: using original cortical thickness, Row 2: using SPHARM, Row
3: using WMD. Our framework with WMD shows improved

3.3.3 Analysis on Wisconsin ADRC Dataset

Dataset. The Wisconsin Alzheimer’s Disease Research Center (W-ADRC)
dataset consists of a total of 269 subjects at this point (and increasing), catego-
rized by AD, controls, mild cognitive impairment (MCI). We used available
data from 134 participants including 42 AD, 42 MCI and 50 older controls.
These individuals were diagnostically characterized in the W-ADRC’s multi-
disciplinary consensus conferences using applicable clinical criteria (McKhann
et al., 1984; Petersen et al., 2001). All MCI cases were of the single or multi-
domain amnestic subtype whose etiology was attributed to AD. The University
of Wisconsin Institutional Review Board approved all study procedures and
each participant provided signed informed consent before participation.
Experimental Setup. To acquire the data, the MRI scans were obtained in the
axial plane on a GE x750 3.0-T scanner with an 8-channel phased array head
coil (General Electric, Waukesha, WI). 3-D T1-weighted inversion recovery-
prepared spoil gradient echo scans were collected using the following param-
eters: inversion time (TI)/echo time (TE)/repetition time (TR)=450ms/3.2ms
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Table 3.2: Demographic details and baseline cognitive status measure of the
W-ADRC dataset

Category AD (mean) AD (s.d.) MCI (mean) MCI (s.d.) Ctrl (mean) Ctrl (s.d.)
# of Subjects 42 - 42 - 50 -
Age 76.69 10.01 75.62 7.9 76.32 5.5
Gender (M/F) 22 / 20 - 33 / 9 - 19 / 31 -
Years of Education 14.41 2.8 16.77 2.74 15.84 2.85
CDR(SB) 4.9 1.99 1.9 0.48 0.14 0.4
MMSE at Baseline 21.25 4.27 26.9 1.96 29 0.99

CDR: Clinical Dementia Rating, SB: Sum of Boxes, MMSE: Mini Mental State Examination

/8.2ms, flip angle = 12◦, slice thickness = 1mm (no gap), field of view (FOV) =
256mm, matrix size = 256mm× 256mm× 156mm, and in-plane resolution =
1mm× 1mm. These MRIs were pre-processed using the Freesurfer algorithm
as in the ADNI analysis in Section 3.3.2. Cortical thickness measures were de-
fined on cortical meshes for each participant, WMDs were constructed for each
vertex on the cortical surface at 6 different scales. Statistical group analysis was
performed as in Section 3.3.2 where we compared the p-values from WMD and
baseline (i.e., raw cortical thickness and SPHARM) analyses. On the ADRC
data, we compared AD vs. controls, AD vs. MCI, and MCI vs. controls. In the
AD vs. controls analysis, we expect to detect similar brain regions found in the
result using the ADNI. In the AD vs. MCI and MCI vs. controls analysis, we
simply show which brain regions are showing morphological changes between
groups.

AD vs. Controls Analysis

We first analyze a group differences on AD and control subjects. Compared to
the ADNI dataset, here we have a smaller number of subjects. Applying general
hypothesis testing directly fails to detect any group differences using the raw
cortical thickness due to the small sample size. Fig. 3.7 shows the resulting
p-values in increasing order from student’s t-test using cortical thickness and
smoothed cortical thickness (heat-kernel smoothing at t = 0.5), and Hotelling’s
T 2 test and MGLM using WMD. FDR threshold at α = 0.1 is plotted in red
dotted line, and the number of vertices that are below the threshold level are
considered as the signal showing significant group differences. We see that
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Figure 3.7: Plot of sorted p-values and FDR threshold at α = 0.1 from AD vs. controls
analysis on the right hemisphere of the brain according to different sample sizes using ADRC
dataset. Left: using 60% of the total subjects, Middle: using 80% of the total subjects, Right:
using all subjects. As the sample size increases, the number of surviving vertices increases. We
can see that WMD increases the sensitivity.

while it is difficult to find a meaningful signal using raw cortical thickness
estimates on the ADRC dataset, WMD easily detects the underlying difference.
On 131076 vertices on both the right and left hemispheres of the brain surface
(65538 tests on each hemisphere), we apply t-test on the cortical thickness data
and heat-kernel smoothed data, Hotelling’s T 2 test on WMD, and MGLM on
WMD. After FDR at α = 0.05, we detect each 622, 5913, 12455, 13769 vertices
from the t-test, Hotelling’s T 2 test, and MGLM respectively, which corresponds
to 0.47%, 4.51%, 9.5%, and 10.5% of the total number of tests performed.

In Fig. 3.8, we compare the four different results using different features
and statistical techniques on the template brain surface. In the top two rows,
the result using raw cortical thickness and smoothed cortical thickness are
presented. The smoothed cortical thickness helps the test detect some signal
variation, but the result is weak and almost does not reveal any differential
brain region. However, WMD increases sensitivity, detecting many more
regions with lower p-values (using Hotelling’s T 2 test); the result is shown in
the third row of Fig. 3.8. Since variation of cortical thickness may be caused by
age or gender, we further utilize MGLM to remove the age and gender effects.
As seen in the bottom row of Fig. 3.8, the signal becomes more concentrated at
specific regions.

Using cortical thickness and smoothing, we observe differences in a very
small region in the right inferolateral lobe only. However, using WMD, we
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Figure 3.8: Group analysis result (AD vs. controls) on ADRC dataset. The resulting p-value(in
− log10 scale) from hypothesis tests after FDR at α = 0.05 is shown on a template brain surface.
First row: t-test on the raw cortical thickness data, Second row: t-test on the smoothed data,
Third row: Hotelling’s T 2 test on WMD, Fourth row: MGLM on WMD (without age and
gender effect).

find very strong group differences in the bilateral inferolateral parietal as well
as temporal pole and parahippocampal cortex. Other than those regions, we
also find isthmus cingulate, posterior cingulate, superior frontal, precuneus,
entorhinal cortex on both right and left hemisphere as showing group differ-
ences. Since we found similar regions using ADNI dataset, it is reasonable to
conclude that our results on ADNI and ADRC are in agreement.

AD vs. MCI and MCI vs. Controls

We also compare AD vs. MCI and MCI vs. controls group, and the results are
shown in Fig. 3.9 and Fig. 3.10. In these analysis, we show the uncorrected
p-values using Hotelling’s T 2 test and MGLM (removing age and gender effect)
on WMD. The first row of Fig. 3.9 and Fig. 3.10 represents the result using
cortical thickness, the second row is the result using heat-kernel smoothing
(t = 0.5), and the third and fourth row shows the result using WMD by
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Figure 3.9: Group differences (AD vs. MCI) on ADRC dataset. First row: p-values (uncor-
rected) from t-test using CT, Second row: p-values (uncorrected) from t-test on smoothed
data, Third row: p-values (uncorrected) from Hotelling’s T 2 test on WMD, Fourth row: p-values
(uncorrected) from MGLM on WMD (age and gender effect removed.)

applying Hotelling’s T 2 test and MGLM respectively. These comparisons
provide additional evidence that analysis with WMD is more sensitive.

In both AD vs. MCI and MCI vs. controls analysis, we expect to see similar
brain regions identified by the AD vs. controls analysis, with small differences.
By comparing MCI with AD and controls, we may assess the longitudinal
progression of the disease in specific brain regions. On AD vs. MCI, the
results showed differences in precuneus, inferior frontal and lateral occipital
on both hemispheres. Relatively weaker differences in the temporal pole and
parahippocampal regions are seen. As identified from the AD vs. controls
analysis, the changes in cortical thickness occur in the precuneus, inferior
frontal, temporal pole and parahippocampal regions as a subject enters MCI
(Risacher et al., 2009; Chetelat et al., 2005). In the MCI vs. CN analysis, we
observed changes in the precuneus, isthmus cingulate, inferior parietal, inferior
temporal, superior temporal and temporal pole. Although not reported in
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Figure 3.10: Group differences (MCI vs. controls) on ADRC dataset. First row: p-values
(uncorrected) from t-test using CT, Second row: p-values (uncorrected) from t-test on smoothed
data, Third row: p-values (uncorrected) from Hotelling’s T 2 test on WMD, Fourth row: p-values
(uncorrected) from MGLM on WMD (age and gender effect removed).

previous works, the MCI and CN comparison showed potential changes in
the postcentral region as well.

3.4 Summary

Surface based mapping analysis is a widely deployed procedure in neuroimag-
ing where we use mass univariate tests, (e.g., t-test or GLM type analysis)
along with multiple comparisons correction to detect and assess statistically
significant differences between clinical, genotype, or other groups of interest.
The aim then is to derive maps showing the degree of significance of group
level effects so as to localize regions of interest. This approach works very
well when there are a sufficient number of subjects in the study, and when
the analysis method is sensitive enough to identify such group differences.
However, these assumptions may not always hold, which necessitates the
design of mechanisms that are sensitive enough to identify variations even in
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the smaller sample size regime. In this work, we have focused on improving
the sensitivity of the extracted features, so as to mitigate the dependence on
sample size.

To this end, we derived wavelet based multi-scale descriptors (WMDs) of
the cortical thickness signals which are sensitive both to surface geometry and
topology, as well as variations at different spatial scales. As noted above, a
graph (typically) defines a non-Euclidean space, and the appropriate tools
completely capture its geometry and topology. Therefore, wavelet theory
lends itself nicely to the problem of deriving useful scale-dependent features.
This construction is based on a set of elegant results in the harmonic analysis
literature dealing with the Spectral Graph Wavelet Transform (Hammond et al.,
2011) and Diffusion Wavelets (Coifman and Maggioni, 2006). This allows us to
propose a multivariate approach for group analysis of surface based signals in
Neuroimaging settings.

Instead of mapping the data onto a sphere, as in traditional spherical
harmonic (SPHARM) based methods, our multi-scale shape descriptor is
directly defined on the cortical surface graph itself, completely bypassing
the ballooning process. Further, the WMD method is sensitive to signals at
different scales unlike SPHARM based methods.

In our WMD construction, each scale represents a different level of support
over the harmonic basis. By varying a window over the harmonic spectrum,
the method of WMD efficiently characterizes both local and global context
around each vertex. As the window moves toward to the lower frequency
spectrum, the wavelet frame becomes more overcomplete. To avoid this issue,
subsampling is utilized in grid based Euclidean spaces. However, when deal-
ing with non-Euclidean spaces, without making any assumption on the nature
of the graph, there is not necessarily a clear concept of subsampling. We note,
for instance, that the method described in (Narang and Ortega, 2012) gives
a method of subsampling, but only in bipartite graphs, and other methods
can do this by making other assumptions. For instance, the method in (Coif-
man and Maggioni, 2006) assumes that the spectrum decays. Because there is
no subsampling scheme on graphs, spatial correlations are induced between
nearby vertices in the lower frequency range. The authors in (Van De Ville
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et al., 2004) propose to deal with the spatial correlation issue by leveraging
the compact, localized support of wavelets. In various situations, the above
decimated strategy is preferable, however, the subsampling needed in such a
scheme makes interpreting the specific band-pass filtering behavior difficult.
Instead, the non-decimated scheme adopted here is more convenient for anal-
ysis purposes because avoiding subsampling enables deriving a descriptor
precisely at the given set of vertices.

Through our experiments, we demonstrated that such a multi-resolutional
shape descriptor defined in a graph space can be a powerful and flexible tool for
identifying group difference signals. Indeed, a method with greater sensitivity
to group differences would require recruitment of fewer subjects. We primarily
evaluated the WMD framework on cortical surface signals, comparing group
analysis results with WMDs against classical methods. We first compared these
models using ROC curves for group analysis on synthetic brain surface data.
Relative to raw uni-scale measurements, or with smoothing, we identified brain
regions with much stronger group differences with global FDR correction, and
in some cases these were detected when classical methods fail. In the ADNI
dataset, we obtained pronounced group differences in the anterior entorhinal
cortex, posterior cingulate, precuneus, lateral parietal lobe and dorsolateral
frontal lobe. Similar regions were found using the distinct W-ADRC dataset
as well. It is encouraging that these independent results are in agreement; we
also note that these regions are consistent with the literature (Lehmann et al.,
2011; Thompson et al., 2011; Wirth et al., 2013). In addition to these results,
we applied MGLM analysis to control for factors such as age and gender and
show how these factors change the results. The FDR-curves suggest that up to
twenty-eight times more vertices using WMD than using raw cortical thickness
can survive global correction. Using the W-ADRC dataset, we further analyzed
the effect from MCI. We showed that WMDs obtain lower p-values than raw
cortical thickness, and displayed whole-brain sensitivity map using the R2

metric of effect size. Finally, the power analysis on AD and controls using
cortical thickness and WMD indicates that WMD is more sensitive, giving
smaller sample size estimates. By applying our framework on two different
datasets: the ADNI dataset (a large and well characterized dataset) and the
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W-ADRC dataset (central to a number of local studies,) we have demonstrated
that the methodology is broadly applicable.

We believe, for several reasons, that the improved sensitivity is attributable
to the filtering effect achieved by separating high-frequency information from
low-frequencies. First, anatomical brain features, and neurodegenerative mor-
bidity effects, tend to exhibit a certain degree of spatial cohesion and locality
(Braak and Braak, 1995; Hinrichs et al., 2009). In addition, most noise processes,
whether derived from scanner effects or post-processing, tend to be distributed
across all scales. Gaussian smoothing and filtering is therefore quite common
for this and other reasons. Note however, that a non-adaptive Gaussian blur
kernel is oblivious to anatomical divisions such as sulci and cortical bound-
aries, and may inappropriately mix signals which are close spatially, but not
anatomically. Heat-kernel smoothing attempts to resolve this issue by first
expanding the cortices to a spherical surface (ballooning) and then smoothing,
but in doing so it smooths all scales with the same fixed-bandwidth kernel. A
key feature of the WMD approach is that each scale corresponds to a particular
band-pass filter in the spatial domain, which can be thought of as smoothing
only certain frequencies. In graph-based methods, smoothing can, and indeed
must, be done separately for each scale because there is a strong dependence
on the unique topology of each subject’s cortical surface mesh. In the interest
of space, we do not report the effect of using all seven scales, (as opposed to
treating the upper three as “high-frequency” signal and discarding them as
noise,) but briefly, doing so uniformly weakened results and lessened signifi-
cance. Moreover, the high frequency components simply did not correspond
with any identifiable brain regions, and visually resembled a random “speckle”
pattern. This is an important observation because in some image processing
domains, high-frequency information can give well-defined edges, but this
did not appear to be the case in this application.

Although we have demonstrated that our framework is able to obtain strong
and robust results in group analysis, there are nevertheless a few shortcomings.
Our method leaves it to the user to define the scales, and we note that this
is often the case in wavelet-based methods. Ideally, one would like to eigen-
decompose the entire graph Laplacian, and divide the spectrum into portions
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of roughly equal mass. However, when there are ∼ 105 nodes in the graph, this
becomes infeasible. A more practical approach is to find the largest eigenvalue,
and simply divide the spectrum into a fixed number of equal-width bins, which
is the approach we followed. It still remains to choose how many such bins to
use, but we found empirically that a small number, on the order of five to ten,
works well. This choice is driven by several considerations. Primary among
these is computational burden. Consider that WMDs contain information not
only about the function defined on vertices, but also about the distinct topology
of each subject’s vertex mesh. Therefore, resampling to a grid must be done
subsequent to any calculation of WMDs, and it must be done independently
for each scale. For a large number of scales this cost becomes a bottleneck.
Moreover, we do not wish to incur the curse of dimensionality any more than is
necessary. That is, while multi-resolution descriptors can effectively separate
out some signals that are scale-dependent, if we allow the descriptors to unduly
proliferate then we may dilute the underlying signal by spreading it too thinly
over a large number of scales. Thus, while some signals genuinely exist only at
a particular scale, if we choose too many scales in some neighborhood of the
true signal, then this signal may “leak” between them due to sampling artifacts.
Taking these issues into consideration, we avoid choosing too many scales. In
our evaluations, we found that seven scales gives satisfactory results, though
we did not perform an exhaustive grid search because of the above mentioned
constraints. In addition to the choice of number of bins is the choice of which
ones to discard as high-frequency noise, and which to treat as low-frequency
signal. Following a similar line of reasoning as above, we simply chose the
first four bins as signal and the last three as noise. This is corroborated by
the fact that the distribution of p-values of the WMDs corresponding to high
frequency portions of the spectrum followed a roughly uniform distribution,
and visual inspection showed no recognizable spatial cohesion. This is exactly
as we expect, and is in fact the intended effect — considering that the cortical
thickness measures can be recovered as a deconvolution and summation of
the WMDs, and that the high frequency WMDs are designed to serve as a
model of “noise”, then it is not surprising that the overall cortical thickness
signal is weaker.
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There is an important increase of interest in wavelet based neuroimag-
ing analysis methodologies. A number of works have expanded the basic
framework as well as adapted it to various statistical issues. Van De Ville
and colleagues (Van De Ville et al., 2004) approach the problem of selecting
thresholds for both wavelet and spatial domains, which is important because
without addressing this issue, spatial statistical maps are uninterpretable.
They tackle this issue by balancing the two thresholds in the wavelet and the
spatial domain, and apply statistical testing in the spatial domain instead of
the wavelet domain. The authors of (Leonardi and Van De Ville, 2013) ex-
plored the ramifications of using tight (or Parseval) wavelet frame which more
closely resembles an orthonormal basis while retaining basic wavelet proper-
ties. Among the advantages of using a tight frame is that the inverse transform
is easy to compute; this plays an important role in pre-processing the raw data.
In addition, it is efficient because it preserves the energy in the transformed
domain. Although the tight frame formulation is preventing spectral leakage
between scales and proposes a much cleaner strategy than re-normalizing
the coefficients, the t and T 2 statistics we used in the analysis automatically
re-scale the coefficients regarding the difference in ranges between scales. The
authors above also noted that the construction in (Hammond et al., 2011) does
not give a tight frame, however it is nonetheless feasible for our particular
application (as shown in our experiments) because we are primarily interested
in the forward transform which is essential to obtaining the descriptors.

Lastly, we observe that there is an issue of whether to account for subject
specific variations in global cortical thickness. Adjustments for global effects in
volumetric analyses are premised on the finding that individuals who overall
have bigger heads also tend to have larger regional brain structures (e.g.,
hippocampus) than persons with smaller heads. Normalization of regional
volumes by means of whole brain volume (whether via regression approaches
or proportional scaling) is therefore necessary to control for this potential
confound. In contrast, available evidence convergently indicates that cortical
thickness is only minimally or not at all related to sex, height, or overall brain
size. Therefore, adjusting for brain size/global thickness while performing
vertex-wise cortical thickness analyses risks introducing error variance into the
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model. (Salat et al., 2004; Dickerson et al., 2009; Palaniyappan, 2010; Whitwell
et al., 2013)

Despite these unresolved issues, our results shown in this chapter suggest
that the method may be highly suitable to traditional group analysis in most
cases. The procedure can be easily adapted to analyze data with arbitrary
topologies (Kim et al., 2012; Chung et al., 2005) and for studies dealing with
other neurodegenerative disorders involving morphological measurement on
the brain surface or on brain networks as we will describe in later chapters.
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4 multi-resolution descriptor on brain
connectivity

There is significant interest, both from basic and applied research perspectives,
in understanding how structural/functional connectivity changes can explain
behavioral symptoms and predict decline in neurodegenerative diseases such
as AD. The first step in most such analyses is to encode the connectivity
information as a graph; then, one may perform statistical inference on various
‘global’ graph theoretic summary measures (e.g., modularity, graph diameter)
and/or at the level of individual edges (or connections). For AD in particular,
clear differences in connectivity at the dementia stage of the disease (relative
to healthy controls) have been identified (Sheline et al., 2010; Shao et al., 2012).

Despite such findings, AD-related connectivity changes in preclinical dis-
ease remain poorly characterized. Such preclinical datasets are typically
smaller and group differences are weaker. In this chapter, we propose a new
multi-resolution method for performing statistical analysis of connectivity
networks/graphs derived from neuroimaging data. At the high level, the
method occupies the middle ground between the two contrasts — that is, to
analyze global graph summary measures (global) or connectivity strengths or
correlations for individual edges similar to voxel based analysis (local) (Bull-
more and Sporns, 2009). Instead, our strategy derives a wavelet representation
at each primitive (connection edge) using the wavelet transform on graphs
introduced in Chapter 2 which captures the graph context at multiple res-
olutions. We provide extensive empirical evidence on how this framework
offers improved statistical power by analyzing two distinct AD datasets. Here,
connectivities are derived from diffusion tensor magnetic resonance images
(DT-MRI) by running a tractography routine. We first present results showing
significant connectivity differences between AD patients and controls that
were not evident using standard approaches. Later, we show results on popu-
lations that are not diagnosed with AD but have a positive family history risk
of AD where our algorithm helps in identifying potentially subtle differences
between patient groups.
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4.1 Overview

Alzheimer’s Disease (AD) is a progressive neurodegenerative condition char-
acterized by severe loss of cognitive function and ability to carry out activities
of daily living (McKhann et al., 2011). It has a long course and significant
pathology can accumulate prior to development of clinically relevant cognitive
impairment (Perez-Nievas et al., 2013; Chételat et al., 2013). While analyses
of regional brain changes have come a long way toward informing upon the
preclinical stages of AD, it has become increasingly clear that a better under-
standing of AD may not be possible based on characterizing regional pathology
alone. AD poses a challenge given that the cognitive changes that define the
disease do not manifest until significant brain pathology has accumulated,
and because cognitive changes are poorly correlated with certain pathological
features of the disease such as amyloid accumulation (Jack et al., 2013). A
promising initiative then, is to derive a better understanding of the disease
by characterizing changes in connectivity, taking into account the neural net-
works that comprise several affected regions. Functional connectivity changes
are well-documented in the disease (Wang et al., 2007; Damoiseaux et al.,
2012; Supekar et al., 2008), and promising studies suggest that connectivity
changes can explain behavioral symptoms in AD and may predict conversion
to AD (Filippi and Agosta, 2011; Li et al., 2002; Shao et al., 2012). Despite clear
differences in connectivity at the dementia stage of the disease, AD-related
connectivity changes in preclinical disease are not well-characterized. In this
chapter, we use a novel approach to probe connectivity differences in a cohort
of late-middle-aged adults enriched for risk factors for AD, including parental
family history and APOE ε4 genotype.

Our approach builds upon prior studies using graph-based network analy-
sis to assess connectivity. Assume we are given a population of connectivity
graphs, G = {Gi} where i ∈ {1, · · · ,n} indexes the study participants. Each
graph Gi = {Vi,Ei} corresponds to a single subject, the vertex set Vi is an
anatomical starting point, and each edge in the set Ei provides information
about the relationship between these vertices. In this study, connectivity was
based on the strength of white matter tract connections between template-
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Figure 4.1: Deriving connectivity matrix using tractography. Left: Brain atlas, Middle: fiber
tracts from DTI, Right: connectivity matrix derived from the atlas and fiber tracts. Each element
in the connectivity matrix represents strength measures of tract bundles between ROIs defined
by the atlas.

defined anatomical locations, derived from diffusion tensor imaging (DTI).
Each voxel in DTI gives the orientation of water molecules in the brain which
gives us directional information given as a tensor at each voxel location. By
following these tensors, we obtain individual neural tracts in the brain (middle
in Fig. 4.1), and by selecting those tracts connecting different brain atlas (left in
Fig. 4.1), we identify tract bundles connecting different regions in the brain. In
the end, we get a connectivity matrix (right in Fig. 4.1) by defining a strength
measure for each track bundle such as FA, MD or the number of fibers as we
introduced in Chapter 1.

In order to improve sensitivity, we employed multi-resolution analysis
using wavelets described in Chapter 2. Multi-resolution analysis exploits the
“local context” of information to identify significant effects. That is, multi-
resolution analysis takes into account the fact that information can be viewed
at different resolutions (similar to zooming in and out of an image), which
provides a mechanism to capture the ‘context’ of information when perform-
ing the downstream statistical analysis. To see why such an approach may be
useful, observe that roughly speaking, the connectivity analysis literature may
be broadly clustered in two categories. The first set of approaches take into
account graph theoretic summaries of the entire graph (i.e., girth, diameter,
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modularity, small-worldness, degree distribution, etc.). Alternatively, we may
go with more local approaches, i.e., a Voxel Based Analysis (VBA) type analysis
applied to graph edges (Fornito et al., 2013; Bullmore and Sporns, 2009). To
obtain disease specific behavior of specific edge connections, we see a need for
a framework that lies in the continuum between the global and local methods.
These requirements make wavelets a promising way to approach this problem.
This approach is based on the concept that a signal can be represented by a set
of localized wavelet coefficients, while noise in the signal is uniformly spread
throughout the wavelet space (Ruttimann et al., 1998). Recent advances in
multi-resolution wavelet analysis have facilitated the development of sensitive
methods for image analysis, including the recent work on wavelet based mor-
phometry (Canales-Rodríguez et al., 2013) in neuroimaging. The technique
offers certain advantages in that it improves sensitivity and specificity relative
to voxel based analysis, arguably due to the multi-resolution perspective of
the data (Canales-Rodríguez et al., 2013). Tract based spatial statistics (TBSS)
may also be considered a hybrid global/local approach (Smith et al., 2006).
We provide a more detailed discussion of this issue later in Section 4.5 and
relate it to the ideas developed here.

While multi-resolution wavelet analysis has been applied more extensively
in classical image processing where images are signals sampled on a uniform
lattice, connectivity graphs are not. The standard constructions are no longer
applicable for non-Euclidean spaces. Based on recent work in harmonic anal-
ysis on spectral graph wavelets (Hammond et al., 2011) and using methods
described in Chapter 3 to apply non-Euclidean wavelet based transformations
to conduct shape analysis (Kim et al., 2012, 2014), we show how to perform
multi-resolution wavelet analysis to connectivity graphs derived from DTI
data. Multi-resolution wavelet analysis is ideal for improving sensitivity in
both cases where sample sizes are low (often the case in patient-based studies),
and where differences (effect sizes) may be small, often the case in studies of
preclinical participants.

We evaluated preclinical alterations to structural connectivity in a late-
middle-aged group of adults from the Wisconsin Registry for Alzheimer’s
Prevention (WRAP) study. In order to limit our analysis to white matter
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tracts that change in known disease, we first applied our approach to AD
patients compared to age-matched controls from the Wisconsin Alzheimer’s
Disease Research Center (ADRC). The starting point for tract connectivity was
information derived from fractional anisotropy (FA), a summary measure of
directional water diffusion that is highly sensitive to microstructural features
including axonal density, diameter, myelination, and cytoskeletal features. We
hypothesized that non-demented adults with increased risk for AD due to
parental family history, would show differences in connectivity compared to
controls. Further, given that our proposed approach is new, we compared it
against standard methods of analysis (i.e., applying statistical test at all edges
and correcting for multiple comparison problem), and hypothesized that we
would find improved sensitivity using multi-resolution analysis.

4.2 Line Graphs of Connectivity Networks

As mentioned in Chapter 2, a graph G consists of a vertex set V , an edge set
E and corresponding edge weights ω. In order to utilize a graph wavelet
transform to derive a multi-resolution view of the signals defined on the graph
edges (i.e., edge weights ω), one must first define the edge weights as signals
defined on a new graph. For this, a dual representation of a graph G, the line
graph L(G), can be defined by simply exchanging the notion of nodes and
edges; a node/vertex vi with two incident edges eij and eik is now thought as
if the node were connecting the two edges. After this line graph transformation,
these two edges become two distinct vertices in L(G), and they are connected
by a binary edge (corresponding to the common vertex vi in G).

Formally, a line graph L(G) = {VL,EL,ωL} is defined by a vertex set VL,
an edge set EL, and a corresponding edge weightsωL, which is derived from
the initial graph G. The vertex set VL and the edge set EL come from the edge
set E and the vertex set V in G respectively, where as the edge weights ωL
for the edges in EL are binary — the weight is 1 if there exists a common
vertex between two edges, and 0 otherwise (Harary, 1969). It is easy to see that
L(G) has NL vertices, same as the number of edges in G. One benefit of this
transformation is that the original edge weightsω from G can now be treated
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Figure 4.2: Examples of simple graphs and the corresponding line graphs. The original
graphs are shown with the vertices in red and the edges in yellow, and the thickness of edges
represents the edge weights, and corresponding line graphs are shown with yellow vertices
and red edges. The vertex size is proportional to the signal defined on each vertex (i.e. the edge
weight of the original graph).

as a function defined over the vertices VL in L(G). Consider the adjacency
matrix AL of L(G), of size NL ×NL, comprised of entries gij defined as,

gij =

1 if v ∈ V , v v ei, ej
0 otherwise

(4.1)

where v is a vertex from V and ei and ej are two different edges in E. This
means that when the ith edge ei and the jth edge ej are connected by a common
vertex v, we assign 1 to gij, otherwise zero. Since AL gives the connectivity
between edges through vertices, it is also known as the edge-adjacency matrix.
Simple examples of the line graph transformation are shown in Fig. 4.2. Here,
the original graphs are represented by red vertices and yellow edges where the
edge thickness denotes the edge weights. On the other hand, the line graphs
consist of yellow vertices and red edges, where the vertex size represents the
edge weight.

The advantage of using line graph transform is that we can now adopt
edge weights in the original graph as a function defined on vertices in the
line graph. Once the line graph is obtained from an original graph, the edge
weights in the original graph become a function that is defined on the vertices
of the transformed line graph. We can then apply multi-resolution analysis
using wavelets on the function defined on this line graph.
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4.3 Multi-resolution Descriptor on Graph Edges

Recall from Chapter 2 that the wavelet transform starts by defining a mother
wavelet ψs,a, which is a basis function with scale (s) and translation (a) prop-
erties. For a graph where the vertices are indexed by n, a wavelet transform of
a signal f(n) using ψs,n as basis is defined as

Wf(s,n) = 〈f,ψs,n〉 (4.2)

to obtain the wavelet coefficientsWf(s,n). Now that we can define the graph
edge weights ω as a function defined on the nodes of L(G), we can obtain
wavelet coefficients from theω on L(G) using spectral graph wavelet transform
(Hammond et al., 2011) in the same manner as in Chapter 3. Here, theWf(s,n)
in scales of S = {s0, s1, . . . , s|S|−1} are defined at each node of a line graph. When
they are transformed to the original graph domain, they form the Wavelet
Connectivity Signature (WaCS), a multi-resolution descriptor on each edge of
the original graph as

WaCSf(e) = {Wf(s, e)|s ∈ S} (4.3)

where e is a edge index from the original graph which corresponds to the
node index of the line graph. Notice that e and n are equivalent here and
therefore the WaCS is an analog of WMD (in Chapter 3), but defined on graph
edges. Since the line graph transformation maps the original connectivity
graph to the dual representation where each vertex has an associated signal
measurement, the wavelet coefficients will provide a multi-resolution view of
the connectivity signal.

4.4 Brain Connectivity Discrimiation: Group Analysis
for AD and Preclinical AD

In this section, we provide experimental results from the analysis of AD and a
AD-related risk factor such as family history (FH). Here, family history positive
(FH+) is defined where any of the participant’s biological parents have been
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diagnosed as AD and family history negative (FH-) otherwise. The participants
went through diffusion tensor imaging (DTI) scans and tractography process
was performed on the DTI to obtain structural brain connectivity for each
participant. We use two independent datasets to setup two-stage experiments,
1) Alzheimer’s Disease Research Center (ADRC) dataset which consists of
participants in either AD or controls group and 2) Wisconsin Registry for
Alzheimer’s Prevention (WRAP) where the participants are healthy controls
but at risk of AD. The analysis consists of two stages, 1) AD versus controls
and 2) FH positive versus FH negative analyses, where we perform statistical
group analyis at each brain connectivity. We first analyzed AD symptoms
using ADRC dataset and derive connections of interest (COI). In the second
stage, we used WRAP datset to perform group analysis at each COI to localize
the affect of FH conditioned on the AD related variations. The details of the
experiments and results are described in detail in the following sections.

4.4.1 Deriving Structural Brain Connectivity from Diffusion
Tensor Imaging

DTI acquisition: Participants were imaged on two identical General Electric
3.0 Tesla Discovery MR750 (Waukesha, WI) MRI systems fitted with an 8-
channel head coil and using parallel imaging (ASSET). All participants in the
W-ADRC dataset were imaged on one scanner, while all WRAP participants
were imaged on a second, identical scanner. For both cohorts, DTI was acquired
using a diffusion-weighted, spin-echo, single-shot, echo planar imaging (EPI)
pulse sequence in 40 encoding directions at b = 1300s/mm2, with eight non-
diffusion weighted (b = 0) reference images. The cerebrum was covered using
contiguous 2.5 mm thick axial slices, FOV = 24 cm, TR = 8000 ms, TE = 67.8 ms,
matrix = 96× 96, resulting in isotropic 2.5 mm3 voxels. High order shimming
was performed prior to the DTI acquisition to optimize the homogeneity of
the magnetic field across the brain and to minimize EPI distortions.

Image analysis: We employed a robust processing pipeline, based on
methods in (Zhang et al., 2007a) and reported in (Adluru et al., 2014). The
processing stream is depicted in Fig. 4.3. For both datasets, head motion
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Figure 4.3: The pipeline for generating the template: After the data are acquired, the DWI
images are corrected for eddy current distortions and field inhomogeneity. Then, brain tissue
is extracted from the images so further processing is done only on the relevant regions of the
images. Tensors are estimated by non-linear optimization. An initial bootstrap template is
then computed using the Log-Euclidean mean approach. Finally, the bootstrap template is
iteratively improved using three layers: rigid registration, then affine registration and lastly by
diffeomorphic registration.

and image distortions (stretches and shears) due to eddy currents were cor-
rected with affine transformation in the FSL (FMRIB Software Library) package
(http://www.fmrib.ox.ac.uk/fsl). Geometric distortion from the inhomo-
geneous magnetic field applied was corrected with the b = 0 field map,
PRELUDE (phase region expanding labeler for unwrapping discrete estimates)
and FUGUE (FMRIB’s utility for geometrically unwrapping EPIs) from FSL
(Smith et al., 2004), where field maps were available. All images were visually
inspected at this stage to ensure that data with substantial artifact (loss of
frontal or temporal lobe signal) or geometric distortions are not included in
the final analysis. Brain tissue was extracted using FSL’s BET (Brain Extraction
Tool). Tensor fitting was performed using a nonlinear least squares method in

http://www.fmrib.ox.ac.uk/fsl
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Camino (Alexander and Barker, 2005).
Spatial normalization: For each of the dataset, we first created popu-

lation specific templates using Diffusion Tensor Imaging ToolKit (DTI-TK,
http://www.nitrc.org/projects/dtitk/) which is an optimized DTI spa-
tial normalization and atlas construction tool (Zhang et al., 2006a, 2007b) that
has been shown to perform superior registration compared to scalar based
registration methods (Adluru et al., 2012). The template is constructed in an
unbiased way that captures both the average diffusion features (e.g., diffu-
sivities and anisotropy) and the anatomical shape features (tract size) in the
population (Zhang et al., 2007b). Individual maps were then registered to
the study-specific templates using rigid, affine, and diffeomorphic alignments
and finally interpolated to 2× 2× 2 mm2, voxel resolution before generating
the network data. Note that we do not use an overall template representing
both datasets since the node regions of interest provide us the correspondence
across subjects and datasets.

Tractography based network estimation: Tractography was performed
on the template using the following parameters for the track command im-
plemented in Camino (Cook et al., 2006): curvature threshold of 45◦, curve
interval (i.e., the length of tract over which the curvature threshold is tested)
of 10 mm. An Euler tracking algorithm with nearest neighbor interpolation
based on probabilistic tensor deflection (TEND (Lazar et al., 2003)) was used
to generate the tracks, and the step size for the Euler tracking was set to 0.1
mm. Bootstrapping (20 times) was performed (i.e., 20 tracts were generated
per seed voxel where the seeds were defined as the entire brain mask.) The
seed mask was obtained by binarizing the trace map of the population tem-
plate where the lower and upper thresholds were 0.01 and 100 respectively.
These thresholds are commonly used in DTI-TK (Zhang et al., 2006a). The
stopping criteria did not involve any thresholding for FA since the tracts were
filtered to pass through the ROIs from the IIT atlas. Note that the bootstrap
tractography procedure was used only to define the white matter region of
interest which connects two separate nodes. Once the regions were defined
from the tractography procedure, we took the mean FA values along the tracts,
which is stable and is not affected by the number of bootstrap replications.

http://www.nitrc.org/projects/dtitk
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The number of replications (20) was chosen based on our initial experiments
to make sure we obtained reasonable white matter pathways between pairs of
nodes and verified that changing the number of replications has no effect on
the white matter region extracted.

Then, a DTI white matter atlas (Varentsova et al., 2014) was registered to
the population average FA map using Advanced Normalization Tools (ANTS)
(Klein et al., 2009). In total, 164 regions were initially defined on a diffusion
tensor template which has been made publicly available (Varentsova et al.,
2014). Once we warped the FA of that template to the FA of the population
template, we applied the warp to the 164 regions to align them onto the
population template using nearest neighbor interpolation. In the end, two
regions labeled unknown were excluded. Full brain tractography was then used
with the conmat tool in Camino to obtain edge weights using the spatially
normalized FA and MD measures giving us two 162× 162 symmetric matrices
per subject. A full index of the ROIs can be found in IIT3 atlas documentation
at http://www.nitrc.org/projects/iit2.

4.4.2 Brain Connectivity Differences between AD and Controls

Dataset. For our AD versus control analysis, we used the Wisconsin Alzheimer’s
Disease Research Center (W-ADRC) dataset, which we used in our experiment
earlier in Chapter 3. In this experiment, we use the data from N = 102 partici-
pants who went through DTI scan. The demographic of the W-ADRC dataset
used in this analysis is given in Table 4.1. Each brain network in the dataset is
given as a 162× 162 matrix where each element represents fractional anistropy
(FA) values of neuron fibers connecting different brain regions.

Analysis. The baseline analysis using standard procedure (t-test and mul-
tiple comparisons correction) on the FA weighted edges initially yielded 6
connections. On the other hand when we performed the test (using multi-
variate approach) on WaCS, we detected 81 out of 13041 brain connections
spanning over 67 brain regions. For the baseline approach, the p-values were
computed using a general linear model and a multivariate general linear model
was used to obtain the p-values from WaCS. In both cases, age and gender were

http://www.nitrc.org/projects/iit2
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Table 4.1: Demographics of W-ADRC dataset

Category AD(mean) AD(s.d.) CN(mean) CN(s.d.)
Number of subjects 44 - 58 -
Age 77.05 9.35 74.05 6.82
Sex (M/F) 31 / 13 - 33 / 25 -
Global CDR 0.74 0.37 0.06 0.16
MMSE 22.72 4.44 29.15 0.8543
RAVLT total raw score 20.52 8.07 43.76 8.49
RAVLT long delay raw score 0.66 1.46 8.41 3.12

CDR: Clinical Dementia Rating, MMSE: Mini Mental State Examination,
RAVLT: Rey Auditory Verbal Learning Test

Figure 4.4: Significant group differences (controlled for age and sex) after Bonferroni cor-
rection at α = 0.01 from AD vs. control connection analysis using FA. The thickness of each
connection represents the p-values in − log 10 scale (thicker connection corresponds to lower
p-value), and the color of each connection represents the direction of the difference (red: stronger
in controls group, blue: stronger in AD group). Top row: result from GLM on raw FA values,
Bottom row: result from MGLM on WaCS and Bonferroni at α = 0.01.

used as nuisance covariates. To keep comparisons fair, both these analyses
were corrected for multiple comparisons using the Bonferroni correction at
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α = 0.01. Among the 81 connections identified with our framework, 19 of them
showed higher FA in the AD group compared to control, while 62 connections
showed a reverse phenomenon, i.e., higher FA values in the control group.
These connections surviving the Bonferroni threshold are visualized in Fig. 4.4,
the connections from baseline approach are shown in the top row and those
from our framework are presented in the bottom row. Here, the thickness of
each connection represents the p-values in − log 10 scale (thicker connection
corresponds to lower p-value), and the color of each connection represents the
direction of the difference (red: stronger in controls group, blue: stronger in
AD group).

4.4.3 Effects of Family History Risk on Brain Connectivity

Dataset. For our second stage analysis, we used dataset from the Wisconsin
Registry for Alzheimer’s Prevention (WRAP) study. The WRAP dataset con-
sists of healthy individuals only, but categorized by the presence or absence of
certain AD risk factors. The dataset contains various types of brain scans such
as MRI, DTI, FDG-PET and PiB-PET on the participants under study, and will
be used not only in this chapter but also in Chapter 5 and 6. The demographics
of the WRAP dataset used in this experiment are given in Table 4.2.

Table 4.2: Demographics of WRAP dataset

Category FH-(mean) FH-(s.d.) FH+(mean) FH+(s.d.)
Number of subjects 93 - 250 -
Age 62.96 5.84 60.29 6.89
Sex (M/F) 64 / 29 - 166 / 84 -
MMSE 29 3.26 29.25 2.16
RAVLT total raw score 50.58 10.20 51.08 8.70
RAVLT long delay raw score 10.63 2.96 10.77 2.69

CDR: Clinical Dementia Rating, MMSE: Mini Mental State Examination,
RAVLT: Rey Auditory Verbal Learning Test

It is obvious that the differences in healthy controls caused by a disease risk
factor are expected to be subtle, making the task of finding group differences
a more challenging task. We therefore selected connections of interest (COIs)
based on the AD versus control analysis described above (section 4.4.2), and
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Figure 4.5: Significant group differences (controlled for age and sex) from FH+ vs. FH-
connection analysis using WaCS derived from FA. Those connections with p-values that survive
FDR threshold at 0.05 are exhibited. The thickness of each connection represents the p-values
in − log10 scale, and the color of each connection represents the direction of the difference (red:
higher in FH- group, blue: higher in FH+ group). The region labels and indices are given in
Tab. 4.3

focus our analysis only on these pre-selected COIs. To obtain a large set of
initial COIs (to reduce false negatives), we selected the 512 connections in an
AD vs. control comparison using our algorithm by applying false discovery
rate (FDR) threshold of 0.01. This resulted in a total of 615 COIs out of 13041
connections which were then used to test for effects of family history (FH+ vs.
FH-).

Analysis. Seven connections were identified to show significant group
differences between FH+ and FH- groups spanning 5 ROIs from the left hemi-
sphere (orbital gray matter, calcarine sulcus, lateral orbital sulcus, postro
ventral cingular gyrus and pericallosal sulcus) and 4 ROIs from the right hemi-
sphere (precuneus, superior parietal lobule, posterior sylvian fissure, calcarine
sulcus, pericallosal sulcus). These connections are shown in Fig. 4.5 where the
color of the connectivity denotes the direction of the strength of connectivity
(i.e., red for connections with higher FA in FH- group and blue for connections
with higher FA in FH+ group) and the thickness of the connectivity denotes the
corresponding p-values (thicker edge for lower p-values). The individual ROIs
with white matter pathways connecting the ROIs are visualized in Figs. 4.6
and 4.7. The labels for corresponding pair-wise ROIs with p-values at each
connections are listed in Table 4.3 as well.
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Table 4.3: Identified connections (between left and right column) and corre-
sponding ROIs showing group differences between FH+ and FH- (controlled
for age and sex). Direction -1 / 1 denotes to higher FA value in FH+ / FH-
group respectively.

Index Region Label (Region Index) Region Label (Region Index) Direction p-value
1 ctx_lh_G_orbital (62) ctx_lh_S_calcarine (102) -1 2.997e-5
2 ctx_lh_S_calcarine (102) ctx_lh_S_orbital_lateral (138) -1 1.218e-4
3 ctx_rh_G_parietal_sup (69) ctx_rh_G_precuneus (75) -1 1.889e-4
4 ctx_rh_G_parietal_sup (69) ctx_rh_Lat_Fis-post (97) -1 2.86e-4
5 ctx_lh_G_cingul-Post-ventral (34) ctx_rh_S_pericallosal (147) 1 4.024e-4
6 ctx_lh_S_pericallosal (146) ctx_rh_S_pericallosal (147) 1 4.396e-4
7 ctx_rh_S_calcarine (103) ctx_rh_S_pericallosal (147) 1 5.598e-4

Of note are two connections that were observed in both AD vs. control
analysis and the FH+ vs. FH- comparison, the connection between left perical-
losal (146) and right pericallosal region (147) and the connection between right
superior parietal lobule (69) and right precuneus (75). The baseline approach,
applying statistical test on the raw FA data, did not reveal any significant
connection differences between FH+ and FH-.

4.4.4 Identifying Associations between Longitudinal Connectivity
Changes and CSF

4.5 Summary

We presented an algorithm for assessing brain connectivity variations in popu-
lations having Alzheimer’s disease and in populations that are not diagnosed
with AD but have a family history positive risk of AD. The technique, based
on performing a Wavelet transform on non-Euclidean spaces such as graphs
provides a method for identifying potentially subtle differences between pa-
tient groups, and is especially suited to detecting difference due to early, pre-
clinical neurodegeneration. Our study demonstrated extensive connectivity
differences between AD patients and controls that were not evident using
standard approaches. In addition, we identified connectivity differences due
to increased risk for AD, differences that were not observed using a standard
approach.
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Figure 4.6: Visualization of the white matter tracks of connections (in red) with higher
FA values in FH- group. Left column: top view, Middle column: left view, Right column:
right view. First row: connection between left ventral posterior cingulate (yellow) and right
pericallosal sulcus (green), Second row: connection between left pericallosal sulcus (yellow)
and right pericallosal sulcus (green), Third row: connection between right calcarine sulcus
(yellow) and right pericallosal sulcus (green). The connection between left pericallosal sulcus
(146) and right pericallosal sulcus (147) in the second row is detected in both W-ADRC and
WRAP studies.

It is widely accepted that AD has a long preclinical phase during which the
brain shows continued degeneration prior to the manifestation of cognitive
symptoms. Substantial evidence suggests that the earliest pathology in AD
involves abnormal processing of β-amyloid peptide, with the earliest evidence
of the disease likely to manifest as alterations to amyloid-related bio-markers
(Jack Jr et al., 2010). In addition to amyloid pathology, AD neuropathology
is characterized by hyperphosphorylation of tau protein (the protein which
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Figure 4.7: Visualization of the white matter tracks of connections (in blue) that have higher
FA values in FH+ group. Left column: top view, Middle column: left view, Right column:
right view. First row: connection between left orbital gyrus (yellow) and left calcarine sulcus
(green), Second row: connection between left calcarine sulcus (yellow) and left lateral orbital
sulcus (green), Third row: connection between right superior parietal lobule (yellow) and right
precuneus (green), Fourth row: connection between right superior parietal lobule (yellow) and
right posterior lateral fissure (green).
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stabilizes microtubules in neural cells), and extensive loss of synaptic connec-
tions. Increasing evidence suggests that the cognitive dysfunction found in
AD may be due to disconnection between highly-interrelated brain regions
(Delbeuck et al., 2003; Brier et al., 2014a). Of the characteristics which define
AD, neuronal loss and synaptic pathology show the strongest relationship
to dementia severity and cognitive deficits in AD (Gómez-Isla et al., 1997;
Lassmann et al., 1993; DeKosky and Scheff, 1990; Perez-Nievas et al., 2013).

Among healthy individuals, neural connections underlie normal infor-
mation processing, and constrain neural activity. Using statistical analysis
to identify brain regions which show temporal coherence during fMRI, re-
searchers have identified brain regions that show high-interconnectedness, for
example, regions identified using resting-state or task-free fMRI that form the
so-called Default Mode Network. Brain regions in this network include the
medial prefrontal cortex, medial temporal lobe, and posterior cingulate cor-
tex/retropslenial cortex. These brain regions are part of the episodic memory
network (Xu et al., 2009; Johnson et al., 2006), in addition to being active during
states of self-awareness (Craik et al., 1999; Gusnard et al., 2001; Fingelkurts
et al., 2012; Johnson et al., 2007) and self-monitoring (Schmitz and Johnson,
2007). Interestingly, these brain regions are also those which show some of
the highest levels of amyloid burden (Buckner et al., 2005) in AD. Perhaps not
surprisingly then, several studies have found that AD patients show altered
default mode network (DMN) activity which suggests a loss of connectivity.
The finding of altered networks are robust in patients with AD or mild cogni-
tive impairment (MCI) (Sorg et al., 2007; Greicius et al., 2004; Koch et al., 2014).
More recently, fMRI based connectivity differences have also been observed in
preclinical individuals at risk for the disease (Sperling et al., 2009; Brier et al.,
2014b; Sheline et al., 2010).

In order to understand the structural basis for the connectivity loss ob-
served in AD, recent studies have incorporated DTI-based information to
determine the extent of loss of myelinated neuronal axons in the disease. In
healthy adults, Grecius et al have shown that DMN regions are connected
via major white matter tracts (Greicius et al., 2009). While this in itself is not
highly surprising, it may suggest that even subtle damage to white matter
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tracts could potentially affect network efficacy. In support of this, Hahn et
al have shown that disrupted white matter connectivity is associated with
altered functional connectivity in MCI and AD (Hahn et al., 2013).

In the present study, we observed that AD affected no less than 81 white
matter connections. The majority of the connectivity differences were centered
on key brain regions, some of which are in the DMN, and that included portions
of the lateral parietal lobe, precuneus, occipito-temporal brain regions, and
hippocampus. Our analysis also revealed connectivity differences in tracts
connecting to the occipital cortex, which while not a region of high amyloid
burden, does show lower cerebral perfusion in MCI (Ding et al., 2014) and
altered white matter in MCI patients who convert to AD. In individuals at risk
for developing AD, we observed altered connectivity between similar brain
regions to those observed in the AD comparison, including precuneus, lateral
parietal lobe, and the gray matter of the pericallosal sulcus (which separates the
cingulate from the corpus callosum). As with the AD comparison, individuals
with family history of AD also showed altered occipital connections. No
connectivity differences were detected using standard approaches.

Parental family history of AD is associated with altered connectivity even
in asymptomatic adults. Parental family history of AD has in recent years been
associated with several brain differences, including altered glucose metabolism
(Mosconi et al., 2009), differences in BOLD signal during episodic memory
(Xu et al., 2009), lower cerebral perfusion (Okonkwo et al., 2012), increased
amyloid deposition, and lower gray matter volume (Mosconi et al., 2014), all in
advance of any clinical symptoms of AD dementia. Resting-state connectivity
differences have also been observed in individuals who harbor a combination
of parental family history risk and APOE ε4 carriage. Fleisher et al found
differences in connectivity between posterior cingulate/retrosplenial cortex
and several cortical regions in the DMN, including higher connectivity with
prefrontal and temporal regions in high risk adults, and lower connectivity
with precuneus (Fleisher et al., 2009). In addition to altered connectivity
between several DMN regions observed in the AD versus control comparison,
precuneus emerged as a hub region in the current study, and showed altered
connectivity in the FH+ group. The findings also align with prior work from
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our group, suggesting that white matter changes are manifested in individuals
with parental family history of AD (Adluru et al., 2014; Bendlin et al., 2010),
including altered cingulum white matter, which carries fibers interconnecting
precuneus (van den Heuvel et al., 2008) with other DMN regions. While the
mechanism underlying increased vulnerability to AD based on family history
is not known, both genetic and shared environmental factors may play a role
(Huang et al., 2004).

It is worth noting that the direction of the connectivity differences between
groups was uniform. While the majority of the connections in the AD vs.
control comparison revealed higher FA in healthy individuals, both the AD
comparison, and the comparison by family history, revealed some connections
where FA was higher in the AD, or the at risk group. While higher FA in
a disease group is typically unexpected, accumulating studies suggest that
selective axonal loss may result in higher FA in the disease group. A study com-
paring presymptomatic and symptomatic carriers of the presenilin 1 mutation
that results in familial AD, has also found that patients in the asymptomatic
disease stage exhibit higher regional FA compared to healthy controls(Ryan
et al., 2013).

Limitations. A key limitation in this particular application is the physiologic
interpretation of higher tract connectivity in AD and FH+. Whether this is
due to actual increased connection strength of the tract or is an outgrowth
of disease-related simplification / pruning / loss of crossing fibers allowing
the tract to be visualized better in the disease group. Separate from this
motivating application, we believe that the algorithm can be broadly applied to
other types of brain connectivity analyses where the core advantages of higher
sensitivity, due to a multi-resolutional perspective, should carry over with very
few modifications in an analysis pipeline. Despite the various benefits of the
algorithm, there are a few additional limitations that we must point out. First,
note that the multi-resolution strategy and our framework involves a quadratic
dependence of the number of connections on the number of regions. For
example, the number of edges generated in a line graph from a node of degree
d will be O(d2). Even for a fully connected graph, with N number of nodes in
the original graph, the number of nodes in the line graph is upper bounded
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by the number of edges, O(N2). In our experiments, each network yields a
sparse graph (due to a sparse adjacency matrix), so we did not encounter any
scalability issues. Independent of computational issues, when the number of
edges is large, the multiple comparisons correction will be fairly strict although
our framework does provide means of detecting stronger differences that have
a better chance of surviving the correction. A heuristic solution here is to
use the multi-resolutional view to come up with a tessellation of the graph
into smaller sub-graphs and perform the analysis on sub-graph summaries
instead. The specifics will clearly depend on the needs of the application
and are not investigated here. Second, as the number of regions p grows, so
does the size of the matrix whose decomposition we must obtain. For the
sizes used in this work, a Chebyshev polynomial approximation used in the
spectral graph wavelet toolbox (Hammond et al., 2011) to approximate the
wavelet transformation on graphs is sufficient. Finally, while the method can
characterize signals that are scale dependent, when too many scales are defined
over the eigenvalue spectrum, the true signal may leak between different scales
due to sampling. Choosing special types of wavelet such as ”Meyer” wavelet
with a tight frame (instead of an overcomplete basis) may help in such cases,
but was not needed in our experiments.

Is there a fundamental statistical reason why a multi-resolution view should im-
prove power? Notice that the goal of reducing Type 2 errors is also common
in other areas of science (outside neuroimaging) such as statistical genomics.
In particular, for analyzing differential gene expression Dahl and Newton
proposed a very interesting idea (and accompanying statistical analysis) for
improving power in microarray data analysis (Dahl and Newton, 2007). The
rationale in that work is elegant yet simple. Consider a setting where the
hypothesis tests are being performed on individual genes. Now, if one could
define ‘true’ clusters of genes in terms of shared parameter values, one could
improve the sensitivity of individual gene-level tests, because more data bearing on
the same parameter values are available. In other words, if two genes were part
of the same cluster, any degree of information sharing between them directly
improves the power for hypothesis tests performed for each of them because
in the most optimistic setting, we have twice as many measurements. The
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analysis in their work makes these arguments rigorous and develops ways of
obtaining such a clustering based on non-parametric Bayesian methods. In the
current work, we do not explicitly ‘cluster’ the edges of the graph. Nonetheless,
interestingly, it is easy to think of a diffusion process on the graph (achieved
by wavelets) as, in fact, serving a similar goal as clustering and taking multiple
edges into consideration at once. By aggregating information at different/-
multiple resolutions (governed by the scaling and dilation parameters of the
wavelet expansion), the framework described here offers improved sensitiv-
ity based on roughly similar principles. That is, part of the reason why our
proposed framework achieves better sensitivity is by considering multiple
network edges jointly similar to the more recent work on hyper graph (Davison
et al., 2015).
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5 statistical analysis of longitudinal
data with systematic variations

As we discussed earlier in Chapter 1, statistical analysis of longitudinal or cross
sectional brain imaging data to identify effects of neurodegenerative diseases
is a fundamental task in various studies in neuroscience. However, when
there are systematic variations in the images due to parameter changes such as
changes in the scanner protocol, hardware changes, or when combining data
from multi-site studies, the statistical analysis becomes problematic. Motivated
by this scenario, the goal of this chapter is to develop a methodological solution
to the problem of systematic variations in statistical image analysis. Based in
part on recent literature in harmonic analysis on diffusion maps and the ideas
in the earlier chapters, we propose an algorithm which compares operators that
are resilient to the systematic variations. These operators are derived from the
empirical measurements of the image data and provide an efficient surrogate
to capturing the actual changes across images. To evaluate the proposed
ideas, we later present various experimental results on detecting changes in
simulations as well as analysis on real longitudinal PIB-PET imaging data
acquired from participants at risk for Alzheimer’s disease (AD) to show how
the method offers improvement in a statistical analysis.

5.1 Overview

Statistical analysis of a cohort of brain imaging scans, as introduced in Section
1.1, to assess the long term effects of trauma/stress and identify genetic, demo-
graphic and lifestyle factors for neurodegenerative diseases is a cornerstone of
current research in neuroscience (Canales-Rodríguez et al., 2013; Ruttimann
et al., 1998; Chung, 2006). There are two basic but important issues that we
can emphasize in such a statistical brain image analysis. First, our ability to
conclude that (at a specific voxel) the observed empirical intensity distribu-
tions are different across groups depends on the sample size and how distinct
the distributions are (i.e., the effect size). Second, this analysis assumes that
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the absolute image intensity measurements are meaningful. In other words,
we assume that the only differences between the groups is due to the effect
of the clinical phenomena under study (i.e., age, disease and so on), and not
other global systematic variations coming from modifications in acquisition
parameters. Generally, in small to medium sized studies where the data is
acquired at a single site (with the same scanner), this is not a problem. But as
scientific studies investigate more subtle scientific questions where the group
differences are weaker, we need larger sample sizes — logistic constraints ne-
cessitate multi-site studies. Changes in the hardware and pulse sequences
(and many other factors) across sites introduce systematic variations in the
dataset. In fact, even in small studies, a hardware upgrade (between baseline
and follow-up acquisitions) may be a nuisance for analysis, requiring ad-hoc
normalization which may affect statistical power of detecting true group effects
(Driemeyer et al., 2008). When the effect sizes are poor, performing inference
on the data without appropriate adjustments could affect the success or failure
of the scientific hypothesis under investigation.

The above problem is common across various imaging modalities in medi-
cal imaging. For instance, in neuroimaging uses of positron emission tomog-
raphy (PET), a nuclear imaging modality (where an injected radiotracer binds
to specific pathologies as discussed in Section 1.1), image measurements vary
considerably, even for the same subject, due to a variety of reasons. So, before
any statistical analysis can be performed, these images must be “normalized”.
Possible approaches include global normalization (mean intensity) or regional
scaling (by a reference region). This process converts the intensities into a
physiological range of interpretable values. But if the global average or the
mean intensity of the reference region used is not independent of the con-
dition being studied, the analysis will invariably suffer (an example shown
in Fig. 5.1). In these cases, incorrect normalization can lead to an inability
to identify real group differences, or worse, one may obtain paradoxical or
“opposite” findings. In various other imaging modalities, a normalization
strategy may not even be viable. For example, if the systematic variations are
the result of changes in the acquisition parameters at different sites, one must
analyze the smaller datasets separately. The goal of this chapter is to develop
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Figure 5.1: An example of systematic variation in longitudinal FDG-PET scans. Left: FDG-
PET scan of a subject, Middle: FDG-PET scan of the same subject after 2 years, Right: the
changes between the two scans. FDG intensities tend to increase over time with glucose uptake,
but significant decreases are shown in many regions.

a unified statistical solution to this problem.

5.1.1 Related Work

There are several broadly related ideas in vision and medical imaging that can
serve as a reasonable starting point for comparing functions that cannot other-
wise be compared (Eismann et al., 2008). The most natural choice is a statistical
measure that is, by construction, invariant to image intensities: Mutual Infor-
mation (MI). Mutual information has been extensively used in both computer
vision (e.g., stereo (Hirschmuller, 2005; Kim et al., 2003; Hirschmuller, 2008))
and in medical imaging (e.g., non-linear registration (Viola and Wells III, 1997;
Maes et al., 1997; Pluim et al., 2003; Wells III et al., 1996)) and offers precisely
the type of invariance we desire. While MI is a good loss function to optimize
when searching for a non-linear transformation or disparity map, once such a
transformation has been found and the images have been aligned, MI does
not make the statistical analysis any easier. For instance, consider a set of ten
participants whose images were acquired twice, a few years apart, and the
intensities in the second acquisition are systematically different (e.g., affine
scaling). While MI can characterize the joint entropy of a pair of intensities, it
cannot be easily used to quantify the voxel-wise change from one time point to
the other.

An alternative to the MI approach is based on dictionary learning/patch
regression inspired idea called image synthesis (Iglesias et al., 2013; Roy et al.,
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2010; Osman and Prince, 2004). Broadly, one may use image synthesis to
synthetically generate the image that has been corrupted, assuming a large
set of training examples is available. While this approach is suitable for ad-
dressing missing data, applying it in the above longitudinal setting will entail
generating the entire set of images at the second time point. The learning task
will broadly correspond to inferring the parameters of a generative model
that explains temporal change across the population, given only the baseline
acquisition — clearly difficult regardless of how well characterized the train-
ing dataset is. Given these issues, to our knowledge, there is no universally
applicable solution offering the same capabilities as the algorithm we propose
here. In situations where the structural variations in the intensities are related
by a simple transformation, one may normalize the entire image by a suitable
normalization constant. In medical imaging, this is often difficult because
it must be derived from a region not affected by disease, age, or the clinical
phenomena under study. If this is sub-optimal, it can affect the statistical
analysis in unexpected ways.

5.1.2 A High Level Description of the Idea

Let f denote an unknown function. Let α and β denote two parameters such
that they modify the form of the function f(·) yielding fα and fβ. Now, consider
that we are only given access to measurements of fα and fβ. It is clearly
not possible to verify whether they were both derived from the same latent
function f, unless we also know the relationship between the transformations
of f induced by α and β (if the respective inverse transformations are unique).
Assume that an oracle provides us an operator T with the interesting property
that it is invariant to the parameter space P from which α and β are drawn.
That is, if we construct a pair of operators from the empirical measurements
of fα and fβ, the operators will be the same: Tfα ≡ Tfβ if they share the same
latent function, f.

Next, consider a slightly more complicated setup. The latent function f
has now been modified to f′. We are now provided with the measurements,
fα and f′β, i.e., both the parameter and the function change. Since the opera-
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tor T only offers invariance to the parameter space P (and assumes that the
latent function is the same), in this case, the operators Tfα and Tf′β cannot be
compared. Nonetheless, we can see that the operators provide a mapping to
two different spaces, say Sfα and Sf′β , since f and f′ are distinct. Interestingly,
because of the invariance to P, if we now plug in a known function (such as an
impulse function) at all locations in the original space into the two operators,
we will obtain its transformed representations in Sfα and Sf′β . Once these
transformed forms of the impulse functions are mapped from Sf′β to Sfα , we
can calculate the distance. If the distance is near zero, then f ' f′; otherwise,
it characterizes the discrepancy between f and f′ since the operators are, by
design, invariant to P. In the following sections, we demonstrate how this
idea can be implemented using wavelet expansion in non-Euclidean space
described in Chapter 2.

5.2 Wavelet Map and Wavelet Kernel Distance

Defining a kernel function in a square integrable measure space (X,µ) enables
one to measure local similarities within X at small scales (Coifman and Hirn,
2014). We therefore define a mother wavelet function as such a kernel function
using an operator Ts, which is constructed using empirical measurements of
function fα. A mother wavelet ψs,p(q) described in Section 2.2 can be viewed
as if it were a kernel function written as ψs(p,q), defining a relationship
between vertex p and q (Brislawn, 1991). Using this, we define Wavelet Kernel
Distance (WKD) ds(p,q) at scale s, a measure between two points p and q
defined as `2−norm of the wavelet density difference over the space X as

ds(p,q)2 = ||ψs(p, ·) −ψs(q, ·)||22 (5.1)

=

∫
X

(ψs(p, r) −ψs(q, r))2µ(r) (5.2)

In the graph setting, using the SGWT operator Tsg as in Section 2.2, observe
that (5.2) can be rewritten using a wavelet kernel function g() in the spectral
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.2: Comparing two differently scaled functions on four data points. a) f(p) = fα(p) =
(1, 1, 1, 1)T , b) f ′(p) = (1, 1, 3, 1)T , c) f ′β(p) = 3 − f ′(p) = (2, 2, 0, 2)T , d) |fα − f ′β|, e), f) graphs
from fα and f ′β respectively (edge thickness denotes to edge weight), g) WKD using structure
from e) and f). The true change between a) and b) is (0, 0, 2, 0), but a simple subtraction in d) is
inaccurate. The proposed algorithm can capture the true change in g).

domain as

ds(p,q)2 =

N−1∑
l=0

g(sλl)
2(χl(p) − χl(q))

2 (5.3)

It can be interpreted as if we were comparing the effect of the same wavelet
function dissipating from different locations p and q to their neighbors by the
wavelet kernel function g(), thereby measuring the effect of the propagation.

Further, we can also define a mapping of δp at each grid-point to a lower
dimensional Euclidean space spanned by χ defined as the wavelet map γ :

X→ `2 at scale s as

γs(p) = (g(sλl)χl(p))l=0,1,...,N−1 (5.4)

characterizing the local relationship of the graph with the wavelet kernel
function g(). Note that when gs(λl) = λsl , the wavelet map exactly becomes
diffusion map proposed earlier in (Coifman and Lafon, 2006).

A toy example is shown in Fig. 5.2: the objective here is to compare two
different functions fα and f ′β defined on four data points, and find the true
difference between them. Given latent functions f = (1, 1, 1, 1)T and f ′ =
(1, 1, 3, 1)T , the true difference (i.e., |f− f ′|) here is (0, 0, 2, 0). Given the latent
functions, fα remains the same as fwhile f ′β is defined to be f ′β(p) = 3− f ′(p).
Clearly, a direct comparison of fα and f ′β (i.e., |fα−f ′β|), as illustrated in Fig. 5.2
d), fails to detect the true difference. On the other hand, computing WKD
from graphs constructed using fα and f ′β at each data point yields the true
difference as shown in Fig. 5.2 g).
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We can now formally establish the relationship between wavelet map,
WKD, and the construction of Wavelets using the following two results.

Proposition 5.1. The squared WKD ds defined between two vertices p and q on
the same graph is equivalent to the `2−norm of the difference between the respective
wavelet maps of vertices p and q.

Proof. Taking the `2−norm of the difference over wavelet map on vertices p
and q yields,

ds(p,q)2 = ||γs(p) − γs(q)||
2
2 (5.5)

=

N−1∑
l=0

(g(sλl)χl(p) − g(sλl)χl(q))
2 (5.6)

=

N−1∑
l=0

g(sλl)
2(χl(p) − χl(q))

2.

From Proposition 5.1, we can see that WKD defines a Euclidean distance
of the wavelet maps between vertices p and q in the space formed by χ. We
can further define a relationship between Wavelet maps and an actual wavelet
function.

Proposition 5.2. Let V = [χ0 χ1 . . . χN−1] denote a matrix where χi corresponds
to columns. The projection of a wavelet map γs(p) at vertex p to the row space of V
precisely constructs a mother wavelet function ψs,p(q).

Proof. Given χ(q), the qth row of V, taking inner product of the wavelet maps
γs(p) and χ(q) becomes

〈γs(p), χ(q)〉 =
N−1∑
l=0

g(sλl)χl(p)χl(q) (5.7)

= ψs,p(q) (since χ∗l = χl) (5.8)

which defines a mother wavelet function at q centered at p exactly in the form
given in (2.10) .
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We see that Proposition 5.2 establishes the connection between the con-
struction of wavelet basis from Section 2.2 and the wavelet map. It shows that
a Wavelet function can be constructed from the wavelet map at each vertex.
Further, this result ties the wavelet map to kernel signatures on graphs, vari-
ants of which have been used for graph matching and surface segmentation
(but using diffusion (Fang et al., 2011; Sun et al., 2012)). When the wavelet map
of p is projected to the pth row of V, we get a wave-type kernel descriptor in
(Aubry et al., 2011; Kim et al., 2013b). Separately, when gs(λl) = exp(−sλl),
we obtain the heat kernel signature in (Bronstein and Kokkinos, 2010).

5.3 Generalization of Wavelet Kernel Distance

So far, we have shown how two different vertices on the same image/graph
can be compared using a Wavelet operator Tfα that has been derived from
empirical measurements of a function fα. We further generalize the method
to compare two different vertices from two different graphs by looking into
two different operators.

Consider two individual graphs I and J, constructed using functions (or
images) fα and f ′β, where the number of vertices in each is N. We assume
that the vertices are spatially registered and that we are operating on a square
integrable space X. On these graphs, WKD between a vertex pI from I and a
vertex qJ on J is defined as

ds(p
I,qJ)2 = ||ψIs(p, ·) −ψJs(q, ·)||22 (5.9)

=

∫
X

(ψIs(p, r) −ψJs(q, r))2µ(r) (5.10)

using wavelet kernel functions ψIs and ψJs.
We first construct two operators Tfα and Tf ′β , and obtain two sets of or-

thogonal bases χI and χJ from each operators to compare the vertex-wise
differences. Note that while the expansion of (5.9) does not simplify as in
(5.3) since the eigenvectors χI and χJ are no longer orthogonal to each other, it
nonetheless reduces to a meaningful expression defining a mapping between
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the lower dimensional spaces defined by the two operators as described by
the following result.

Proposition 5.3. Let λI, λJ and χI and χJ denote the eigenvalues and eigenvectors
from graphs of I and J respectively. Then, the WKD ds(p

I,qJ) can be written as,

ds(p
I,qJ)2 =

N−1∑
l1=0

g(sλIl1
)2χIl1

(p)2 +

N−1∑
l2=0

g(sλJl2
)2χJl2

(q)2 (5.11)

− 2
N−1∑
l1,l2=0

g(sλIl1
)χIl1

(p)g(sλJl2
)χJl2

(q)〈χIl1
,χJl2
〉

Proof. Let X be a square integrable space and {λIl,χIl} and {λJl ,χ
J
l} be eigenvalue

and eigenvector pairs from graph Laplacians of graph I and J respectively.

ds(p
I,qJ)2 = ||ψIs(p, r) −ψJs(q, r)||22 (5.12)

=

∫
X

(ψIs(p, r) −ψJs(q, r))2dµ(r) (5.13)

=

∫
X

ψIs(p, r)2 +ψJs(p, r)2 − 2ψIs(p, r)ψJs(q, r)dµ(r) (5.14)

=

N−1∑
l1=0

g(sλIl1
)2χIl1

(p)2 +

N−1∑
l2=0

g(sλJl2
)2χJl2

(q)2 (5.15)

− 2
N−1∑
l1,l2=0

g(sλIl1
)χIl1

(p)g(sλJl2
)χJl2

(q)〈χIl1
,χJl2
〉

Let us look at the individual terms in (5.11) more carefully. The first two
terms in (5.11) form the WKD on a single graph whereas the last term compen-
sates for the discrepancy caused by the variations of the inherited spaces once
the first space has been mapped to the other. By inspection, we see that this
generalizes Proposition 5.1. When I and J are the same, we can easily verify
that,

Proposition 5.4. When I and J are equal, then (5.11) reduces to (5.3).
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Proof. Since I and J are the same graph, they share the eigenvalues λl and
eigenvectors χl, therefore

ds(p
I,qJ)2 =

N−1∑
l1=0

g(sλIl1
)2χIl1

(p)2 +

N−1∑
l2=0

g(sλJl2
)2χJl2

(q)2

− 2
N−1∑
l1,l2=0

g(sλIl1
)χIl1

(p)g(sλJl2
)χJl2

(q)〈χIl1
,χJl2
〉

=

N−1∑
l=0

g(sλl)
2(χl(p)

2 − χl(q)
2)

with 〈χIl1
,χJl2
〉 = 0 when l1 6= l2.

5.4 Group Analysis of Synthetic PIB images

We now present results of statistical analysis on a population of synthetically
generated 2-D Pittsburgh Compound B (PIB) image data. The experiment
design is as follows. We assume we have two groups: diseased and healthy
(controls). We simulate brain images of 20 diseased and 20 control subjects,
using a template 2-D PIB image with size of 79 × 95. We assume that each
subject was imaged longitudinally providing a t0 (baseline) and t1 (follow-up)
image. At t0, the images Yt0 in both (diseased and control) groups are modeled
as a random field with mean µcontrol with added Gaussian noise N(0, 0.1) as

Yt0 = µcontrol +N(0, 0.1) (5.16)

where µcontrol is given by the template PIB image slice shown in Fig 5.3 (a).
At t1, we consider two types of changes: the first is an increase of PIB values
by 20% in certain regions of the brain in the diseased group characterized by
µdisease, and the other is systematic variation simulated as an arbitrary affine
transformation with scale s ∈ [1, 2] and translation a ∈ [0, 1] applied to the
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(a) (b) (c) (d)

Figure 5.3: Result from a group analysis on diseased vs. normal groups using synthetic
PIB images. a) a template PIB image used for the mean µ, b) p-value map in − log10 scale
from the group analysis using images without the systematic variation (serving as the ground
truth), c) p-value map in − log10 scale from the group analysis using images with systematic
variation, d) p-value map in − log10 scale from the group analysis using WKD on images with
systematic variation. We can see that using WKD, we can detect group differences even when
there is a systematic variations in the images.

image intensities.

Yt1 =

sµcontrol + a+N(0, 0.1) if normal

sµdisease + a+N(0, 0.1) if diseased

In this scenario, we would like to detect the changes ∆Y = Yt1 − Yt0 from
the two time points across the two groups by comparing the distribution
of ∆Y across groups. In the standard procedure, performing a statistical
hypothesis test at each pixel (a total of 7505 tests) yields a p-value at each
pixel, that tells us whether the distribution of the ∆Y are the same. Applying
Bonferroni correction at 0.05 removes false positives and identifies the regions
with significant changes between the two groups. This process works well
when s = 0 and a = 0, however, systematic variations may reduce or bias the
effect sizes and diminish the statistical power. Using our method, we expect
to detect the group differences even in the presence of systematic variation.

The resultant p-value maps from this simulation is displayed in Fig. 5.3
b), c) and d) at the same scale (− log10 scale), which shows three cases of this
experiment: using the standard hypothesis testing procedure on (i) the given
data without systematic variations (i.e., ground truth), (ii) with systematic
variations and (iii) WKD for the data with systematic variations. As seen in
Fig. 5.3 (b), there is a strong signal showing group differences between the two
groups (diseased and controls), easily identified using standard hypothesis
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testing. This serves as the ground truth. In contrast, when there are system-
atic variations in the data, the traditional approach fails to detect the true
differential signal as shown in Fig. 5.3 c). We computed WKD at each pixel of
the images with systematic variations instead of computing ∆Y directly, and
then applied hypothesis testing on WKD. This process successfully detects the
region as shown in Fig. 5.3 d) showing excellent consistency with the actual
changes between t0 and t1. Therefore, in this sanity check experiment, our
method correctly picks up the true variations and makes the downstream
statistical analysis more sensitive even when systematic variations exist.

5.5 Analysis of Longitudinal PIB Changes

Here, we demonstrate results from a longitudinal PIB-PET image analysis,
where we use the ratio of total τ protein and amyloid-β-142 (Aβ(1-42)) as
a predictor for the increase in voxel-wise PIB values at two different time
points. PIB values are used as a measure of brain amyloid deposition, a
core pathological feature of Alzheimer’s disease (AD), and it is known that
such increase is closely correlated with AD. The Aβ(1-42) interacts with the
signaling pathways to control the phosphorylation of τ protein (LaFerla, 2008;
Ittner and Götz, 2010) and their ratio is widely used as a sensitive feature of
AD pathology (Fagan et al., 2007; Diniz et al., 2008).

5.5.1 Dataset

The dataset of 84 participants from WRAP study, including subjects that are
otherwise healthy but may have potential risk factors for AD is used for the
experiment. The participants are comprised of 26 males and 58 females with
the mean age 67.4, and the 3-D PIB images from each participants are spatially
registered to the Montreal Neurological Institute (MNI) space. The image
intensities represent standard uptake value (SUV), which is the ratio of the
tissue radioactivity concentration and injection divided by the body weight.
These values are scaled with the intensity from a reference region (i.e., cerebel-
lum), generating standard uptake value ratio (SUVR) images (Lucignani et al.,
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2004). The PIB intensities, by nature, tends to increase due to accumulation of
amyloid burden in the brain. However, when the SUVR images between two
time points are compared (i.e., affected by time), various brain regions show
decrease in the PIB values, indicating that there exist systematic variations
that have not been account for by the normalization process.

5.5.2 Experimental Setup

For the graph representation of each volume image, we used a grid graph with
six neighbors for each voxel in 3-D space. The connection between voxels were
defined by exp(−||I(p) − I(q)||2/σ2) where I(p) is the PIB intensity at voxel p
and σ = 0.1, and used a Jacobi-Davison conjugate gradient method (Notay,
2002) to compute the first fifty eigenvalue/eigenvector pairs of the matrix. For
the wavelet kernel function g, we used the cubic spline function provided in
SGWT (Hammond et al., 2011).

5.5.3 Experimental Results

Figure 5.4: Plot of sorted correlation with
respect to the number of voxels. The corre-
lation using WKD (green) and SUVR images
(red) show that WKD shows higher correla-
tion with larger number of vertices above the
threshold (blue).

A high positive correlation between
the PIB changes and the ratio between
total τ protein and Aβ(1-42) indicates
that the increase of the PIB values are
highly related to the increase of the ra-
tio. When compared to the result us-
ing SUVR images, stronger correlation
from WKD is demonstrated in larger
regions of the brain. Among the total
of 510340 voxels, WKD identifies 21101
voxels (4.13%) with correlations above
0.3 — a common threshold for moder-
ate correlation. On the other hand, us-
ing SUVR images, we find only 14655
voxels (2.87%) with the same threshold.
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Figure 5.5: Montage of axial view of the correlation between the PIB changes and the ratio of
total τ-protein and Aβ(1-42) on a template T1-weighted brain image. The red-yellow intensities
indicate correlation using WKD, and the blue-light blue intensities indicates correlation using
SUVR images in the range of [0.3 0.5].

The sorted correlations are shown in Fig. 5.4, indicating that WKD is more
sensitive than the differences found via SUVR images.

Fig. 5.5 shows the resultant correlation overlayed on a T1-weighted tem-
plate, where the correlations using WKD and SUVR images are shown in
red-yellow and blue-light blue maps in the same range respectively. The result
shows that both our analysis and the one performed on SUVR images agree on
moderate correlations in lateral temporal lobe regions, which are well-known
to be affected by AD (Chan et al., 2001; Scheltens et al., 1992; Kim et al., 2012,
2014) — but our algorithm shows higher correlation and larger regions. In-
terestingly, WKD framework also picks up the bilateral cerebellum regions
which is known to show loss of volume with dementia (Reiman et al., 2009).
Note that this region is very close to regions that are used as the ‘reference’
for the SUVR normalization — therefore will not be identified in the standard
analysis even if affected by disease.
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5.6 Summary

In this chapter, we proposed a solution to a problem where statistical analysis
of imaging data in brain imaging studies is problematic due to systematic vari-
ations caused due to a variety of factors. Motivated from recent literature in
harmonic analysis, we proposed to compare operators as a means of detecting
changes across images, when the absolute measurements cannot be compared
on their own. These operators are derived from empirical measurements of im-
ages and provide invariance to the systematic variations. Using our framework,
we showed experiments on synthetic as well as real datasets, demonstrating
that the algorithm works well in a regime where few alternatives are currently
available. In particular, in an interesting application to brain imaging data
from subjects at risk for Alzheimer’s disease, we show that the sensitivity and
power of statistical analysis of PIB-PET images can be improved by using the
proposed method.

Despite the advantages of the proposed method, there are some potential
limitations of the method from the neuroscience point of view. For instance,
one issue is that the analysis may miss out on some regions that are found by
the standard analysis. In these situations, it is difficult to assess whether this
is an artifact of our method or a consequence of the normalization process in
the standard analysis.
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6 deformation invariant
representation of images via scattering
transform on graphs

A variety of studies in neuroscience/neuroimaging seek to perform statistical
inference on the acquired brain image scans for diagnosis as well as under-
standing the pathological manifestation of diseases. To do so, an important
first step is to register (or co-register) all of the image data into a common
coordinate system. This permits meaningful comparison of the intensities
at each voxel across groups (e.g., diseased versus healthy) to evaluate the
effects of the disease and/or use machine learning algorithms in a subsequent
step. But errors in the underlying registration make this problematic, they
either decrease the statistical power or make the follow-up inference tasks less
effective/accurate. In this chapter, we derive a novel algorithm which offers
immunity to local errors in the underlying deformation field obtained from
registration procedures. By deriving a deformation invariant representation
of the image, the downstream analysis can be made more robust as if one had
access to a (hypothetical) far superior registration procedure. Our algorithm is
based on recent work on scattering transform. Using this as a starting point, we
show how results from harmonic analysis on graphs (introduced in Chapter
2) yields strategies for designing deformation and additive noise invariant
representations of large 3-D brain image volumes. We present a set of results
on synthetic and real brain images where we achieve robust statistical analysis
even in the presence of substantial deformation errors; here, standard analysis
procedures significantly under-perform and fail to identify the true signal.

6.1 Overview

In most of statistical neuroimage analyses, a key component which precedes
much of the “analysis” pipeline is co-registration (Ashburner and Friston,
1997) as we discussed earlier in Chapter 1. For instance, if the study cohort
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includes a set of 100 participants/subjects, the co-registration step will warp
each of the 100 images into a common template coordinate system. It is easy to
see that doing so enables one to retrieve the measurement at a specific voxel v
across the entire cohort — in other words, for any arbitrary voxel in one image,
we know its corresponding voxels in all other images (demonstrated in the
middle of Fig. 1.3). This process, often called as ”spatial normalization”, is
essential for performing either voxel-wise inference (i.e., independently, one
voxel at a time) or utilizing such data for classification or regression tasks
(Shattuck et al., 2001; Smith et al., 2004; Zhang et al., 2011).

Given the critical role of registration in statistical image analysis of brain
imaging data, the community has invested much effort in algorithms and
(mature) software libraries that are reliable and easily deployable. Depending
on the clinical question and the type of image modality under study, methods
based on non-linear/free-form deformations optimizing various loss functions
(e.g., mutual information) are broadly available (Maes et al., 1997; Maintz and
Viergever, 1998; Roche et al., 1998; Mattes et al., 2003). Note that while the
general ideas driving image registration do not change very frequently, most
popular toolboxes are regularly fine-tuned, to achieve better accuracy. These
“incremental” refinements seem routine, but are very valuable in practice. To
see why, let us use an example to answer a closely related question, namely,
what happens when the registration pre-processing is slightly imperfect?

Consider a dataset which consists of two groups: healthy and diseased
subjects. Once the initial co-registration is done, our goal may be to perform
a voxel-wise parametric test to identify voxels that are statistically different
across the groups suggesting a potential disease effect (Ashburner and Friston,
2000). It is commonly observed by practitioners that using a newer registration
method that is marginally better relative to its older version improves the final
analysis in measurable ways: for example, by revealing a stronger disease effect
(i.e., lower p-values) and possibly more image regions where differences are
statistically significant (survive a threshold of α = 0.05) across the healthy and
diseased groups. This suggests that even small errors in the registration may
have a detrimental effect on the downstream analysis. The statistical power
improvements described above have important and real consequences; an



86

actual experiment or study that may have needed 500 participants to evaluate
a hypothesis may now be possible (using a better registration procedure) with
a slightly smaller sample size.

Clearly, image registration algorithms will continue to improve. But sep-
arate from these developments, our work here considers a complementary
(but potentially more interesting) question that is not tied to which method
is currently the best. Assume that there is an ideal registration (or transfor-
mation), T and the one estimated by a state of the art registration method is
T + εwith error ε > 0. Based on the foregoing discussion, actively pursuing
better registration schemes is obviously important. But independent of these
improvements, can we derive statistical analysis methods that are, by design,
immune to nominal values of ε? In other words, as long as the registration pro-
cedure provides a reasonable estimate of T, the follow-up analysis operates on
alternate representations of the image that are invariant to local deformations
(of up to magnitude ε′ 6 ε) (Kowalski, 2014; Ling and Jacobs, 2005; Morel
and Yu, 2009; Lawrence et al., 1997; Simpson et al., 2013, 2011). Such a tool, if
available, will have two direct implications. Notice that if the upstream regis-
tration is already good, such a local-deformation invariant analysis framework
may occasionally offer a small improvement or at worst, will match the results
that we obtained anyway. But more importantly, if the results from state-of-art
registration methods are imperfect, such a framework will be extremely useful.
In some sense, the final analysis results will be consistent with a (hypothetical)
registration procedure that did not make those errors. Note that while spatial
smoothing may provide some resilience to such local registration errors, it will
be desirable to obtain algorithms that are invariant to such errors. Later in our
experimental section, we demonstrate that such a framework yields improved
result on a statistical analysis for imperfectly registered (by adding noise to
the warping field) Fludeoxyglucose (FDG) PET images.

6.2 Scattering Transform
The scattering transform is known to provide a representation robust to defor-
mation groups. It make use of the wavelet transform and the modulus operator
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together to obtain such group invariance. From Chapter 2, the mother wavelet
functionψ is defined as a localized oscillating function with finite support. It is
this localization property that offers partial robustness to deformation within
the classical wavelet transform. Unfortunately, it is again this localization
property that makes the wavelet transform variant to local translations. To
overcome this, the scattering transform uses an additional non-linear operation
to make the resultant representations invariant to such localization.

Among the several non-linear operations one can adopt, scattering trans-
form uses the modulus operator, M, which is a piece-wise linear operator.
Moreover, the M satisfies the following three important properties: it is 1)
point-wise, 2) non-expansive (i.e., ||Mf−Mg|| 6 ||f−g|| ), and 3) signal energy
preserving (Bruna and Mallat, 2013).

Having the wavelet transform and modulus operation, the scattering trans-
form obtains its non-linear invariants by combining wavelets (for additive
noise invariance), modulus (for local translation invariance) and averaging
operation (for local rotation or some other group invariance) in a cascade fash-
ion, and therefore obtains a local deformation invariance. Let U[s]f = |f ?ψs|,
and any sequence p = (s1, s2, · · · sm) define a path of an ordered product of
operators as

U[p]f = U[sm] · · ·U[s2]U[s1]f (6.1)

= | · · · ||f ?ψs1 | ?ψs2 | · · · ?ψs1 | (6.2)

Using this concept, a scattering transform (represented as a convolution net-
work) along path p at the location u is defined as

S[p]f = U[p]x ? φ(u) (6.3)

= | · · · ||f ?ψs1 | ?ψs2 | · · · ?ψs1 | ? φ(u) (6.4)

yielding scattering coefficients S[p]f for path p. These scattering coefficients
are invariant to translation of f and although it has many similarities with the
Fourier transform modulus, S[p]f is Lipschitz continuous to deformation in
contrast to the Fourier transform modulus. Such a transform can represented
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Figure 6.1: Example of scattering transform as a convolution network. Figure adopted from
(Bruna and Mallat, 2013).

as a convolution network as demonstrated in Fig. 6.1.
The trouble with above construction of scattering transform is that it is

inapplicable where the dimension of the function space and size of the data
is large, since the number of rotation parameter increases when the dimen-
sion of the function space increases. A potential solution to the issue here is
to utilize the underlying structure of the given data using graph and avoid
a computational cost that increases rapidly with the dimension. When im-
ages are expressed as a graph, the spatial correlations are encoded as edges
whereas the number of nodes only depends on the size of the image, not on
its dimensionality. In this scenario, intuitively, the notion of rotation can be
substituted by strategies based on anisotropic filtering governed by the edge
weights. If some additional technical conditions hold, one can still offer the
types of properties obtained in the conventional scattering transform.

Recall that wavelet transform is the core of the scattering transform, which
classically has been defined only in the Euclidean space. In order to define
scattering transform on data that lives in the non-Euclidean space (i.e., a graph),
we utilize spectral graph wavelet transform from Section 2.2.



89

6.3 Scattering Transform on Graphs

With the above components in hand, deriving a Scattering transform on a
graph can be performed mechanically. First, we define a single scattering
operation by combining the wavelet and modulus operations together as,

S(t,n) = |f ? ψ̄t,n| (6.5)

which yields the local deformation invariant coefficients S(t,n) in scale t at ver-
tex n. Note that in order for a transform to achieve robustness to deformation,
it must be non-expansive, so we should expect the graph scattering transform
presented above to offer these properties. First, S(·, ·) is local deformation
invariant since ψ̄ is one, and it is also invariant to additive noise which is an
important property that does not hold for the classical Fourier transform. This
can be shown by proving that it is a nonexpansive operator (Mallat, 2012),

Proposition 6.1. The scattering operation S on a graph using SGWT operator Tsg at
scale s with a kernel g() that is

∫
g(x)dx = 1 is non-expansive.

Proof. Given two functions f and h defined on a graph,

‖Sf− Sh‖ =
∥∥|Tsgf|− |Tsgh|

∥∥
=

∥∥∥∥∥|
N−1∑
l=0

g(tλl)f̂(l)χl|− |

N−1∑
l=0

g(tλl)ĥ(l)χl|

∥∥∥∥∥
6

∥∥∥∥∥
N−1∑
l=0

g(tλl)f̂(l)χl −

N−1∑
l=0

g(tλl)ĥ(l)χl

∥∥∥∥∥
= ‖f− h‖

We can now construct the scattering operation in a cascade fashion in
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S[∅]f =
|f ? ψt0 |

S[t0]f =
||f ? ψt0 | ? ψt0 |

S[t0, t0]f =
|||f ? ψt0 | ? ψt0 | ? ψt0 |

· · ·

S[t1]f =
||f ? ψt0 | ? ψt1 |

S[t1, t0]f =
|||f ? ψt0 | ? ψt1 | ? ψt0 |

· · ·

· · ·

· · · · · ·

S[tJ ]f =
||f ? ψt0 | ? ψtJ |

· · · S[tJ , tJ ]f =
|||f ?ψt0 |?ψtJ |?ψtJ |

Figure 6.2: Illustration of the convolution network using scattering operation. A function f
propagated through the network using SGWT and modulus operation. The scattering coeffi-
cients are recursively propagated through the branches by convolution using SGWT in multiple
scales, then applied with modulus operation to generate scattering coefficients in the next layer.

multiple layers, which turns out as a convolution network as

S[∅]f = |f ? ψ̄t0 | (6.6)

S[tl1 ]f = ||f ? ψ̄t0 | ? ψ̄tl1 | (6.7)

S[tl1 , tl2 ]f = |||f ? ψ̄t0 | ? ψ̄tl1 | ? ψ̄tl2 | (6.8)
...

where S[l]f gives the scattering coefficients obtained by the wavelet bases at
the lth layer. In layer lk, the scattering coefficients from the previous layer lk−1

are processed by the forward wavelet transform at multiple scales and then
the modulus operator is applied to generate the new scattering coefficients to
be passed to the next layer lk+1. This construction of convolution network is
illustrated in Fig. 6.2.

Our construction of scattering transform is distinct from the transform
proposed in (Bruna and Mallat, 2013) in that we are using scales for branching,
not the rotation. In a graph setting, we do not have a notion of direction, but
the anisotropic filtering is still achieved by the graph edges.
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6.4 Simulation Experiments for Group Analysis

In this section, we demonstrate results of statistical analysis for identifying
group level differences using our framework on a population of synthetic
images, representative of two distinct groups.

6.4.1 Experimental Design

For the first group, we consider a default ‘healthy’ image and for the second
group, we artificially introduce two separate holes, which is a representative
of the disease effect, see top two rows of the first column in Fig. 6.3. Based
on these ‘models’ for the two groups, which serve as the mean µ, we draw
samples from each group to populate the cohort: 20 images for each group
(total of 40). The image intensities are normalized to [0, 1]. In other words, for
each individual (healthy or diseased) image, the intensity at a specific pixel is
drawn from a distribution centered on the mean intensity for that pixel in the
model image (healthy or diseased). Notice that at this stage, the images are in
correspondence and performing a pixel-wise parametric test is meaningful
and will reveal precisely the holes as the group-wise difference. Now, we
apply a transformation A, which consists of a random rotation and translation
drawn from Gaussian distribution (with a mean of 5 percent of the image
space for translation, 10◦ for rotation and a variance 1 for both), to each image
to simulate deformations in the images. The pixels across the dataset are no
longer in correspondence, so a pixel-wise test cannot be performed. We then add
Gaussian noise with mean 0 and standard deviation 0.3 to each pixel in each
image. The modified images for the healthy group (similarly for diseased) are,

Yhealthy(i, j) = Aµhealthy(i, j) +N(0, 0.3) (6.9)

where A is an arbitrary transformation sampled from a distribution described
above. Examples of these synthetic images are shown in the top two rows of
the second and the third column of Fig. 6.3.
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Figure 6.3: Simulation of our framework using synthetic images. First row: the mean image
(left) and synthetic images (middle and right) from the normal group, Second row: the mean
image (left) and synthetic images (middle and right) from the diseased group , Third row:
p-value maps from group analysis using initial images (left), using images with random rotation
and translation (middle) and using our framework (right). The bottom row shows that standard
statistical analysis detects the group differences correctly on registered images, but it fails in
presence of rotation and translation in the images. However, our algorithm accurately detects
the group differences (the two holes) despite the deformations.

6.4.2 Results

From the two representative images (top and middle row images in the first
column of Fig. 6.3), we can easily tell that the true difference between the mod-
els of the groups are the two holes. When standard statistical group analysis
is applied pixel by pixel on the two groups of images (with noise and transfor-
mation), by performing a t-test at each pixel and using Bonferroni correction
at α = 0.05 level for multiple comparisons correction, we detect no pixels as
showing significant group differences. This is expected because the pixels are
no longer in correspondence. On the other hand, using our framework, i.e.,
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first constructing grid graph using the image intensities, applying scattering
transform on the graphs to obtain scattering coefficients and performing a
hypothesis test at each pixel, and finally, applying a Bonferroni correction
at α = 0.05 level, we are able to detect most of the true group differences.
This result demonstrates that our framework does offer a reasonable level of
invariance to local rotation and translations. If we imagine the two holes in the
disease model a consequence of some pathology and the samples drawn from
that distribution reflect individual level variations, these simulations suggest
that even if the registration is not perfect, the downstream statistical analysis
can be made robust to such errors.

6.5 Statistical Analysis on FDG-PET Scans

In this study, we utilize a standard statistical group analysis procedure on
real 3-D FDG-PET scans to identify those brain regions that are related to
Alzheimer’s disease (AD) risk factors, the Apolipoprotein E (APOE) genotype
of the subjects and evaluate our framework in the presence of different levels
of registration error. Note that an increase in FDG intensity, which is caused
by an uptake of glucose in certain brain tissue, is popular for analyzing AD
pathology. APOE ε4 is genetically related to the development of AD, where
the risk for AD is largely increased with increase in the number of APOE ε4
alleles (Corder et al., 1993).

6.5.1 Dataset

We use partial WRAP dataset of 130 healthy control participants where some
subjects have potential AD risk factors (i.e., APOE ε4 genotype, family history
and etc). The cohort is comprised of 38 males and 92 females, with a mean
age of 64.18. The FDG-PET scans are spatially registered to the Montreal
Neurological Institute (MNI) space, and image intensity values are normalized
using intensities from the cerebellum as the reference region. During the
registration process, the original image is warped to the template image using
a deformation field. We introduce errors in this deformation field by 1) adding
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(a) (b) (c) (d) (e)

Figure 6.4: Registered FDG-PET scans of a subject. a) Using the original deformation field, b)
Using deformation field with 5% noise level, c) Using deformation field with 10% noise level,
d) Using deformation field with spatially correlated noise, e) A slice of GRF used for generating
d).

uncorrelated errors, up to 10% of the deformation magnitude at each voxel, 2)
adding realizations of a Gaussian Random Field (GRF) with variance 0.5 to
simulate spatially correlated error (∼5 voxels) to simulate imperfect registration.
Examples of these images are shown in Fig. 6.4.

6.5.2 Experimental Setup

In this experiment, we used two different datasets with 10% noise level and
GRF respectively in the deformation field for registration. As a baseline, we
used properly registered FDG-PET images and divided them into two groups
using APOE ε4 status, a well-known AD risk factor. We applied t-test at each
voxel and thresholded the resultant p-values at 0.05 level, and the resultant
p-values were projected onto a T1-weighted template image to identify the
risk factor specific regions, which would serve as the ground truth.

On the imperfectly registered datasets, i.e., 1) 5% and 10% noise levels, 2)
GRF structured noise in the deformation field, we applied our framework to
detect the risk factor specific brain regions. Given an FDG-PET image I for each
subject, we first constructed a grid graph (i.e., defined each voxel as a vertex
and defined an edge between a voxel and its six neighboring voxels in the 3-D
volume space with edge weights of exp(−‖I(x) − I(y)‖2/σ2) with σ = 0.05.
Then, the proposed scattering transform on graphs was applied on each grid
graph to generate scattering coefficients. For the scattering transform, we used
a wavelet transform with five scales for each layer, and we went up to the third
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Figure 6.5: Comparisons of statistical group analysis results on cuneus (left column) and
cerebellum (right column) using FDG-PET scans with respect to APOE genotype. First row:
Using properly registered scans (baseline), Second row: Using imperfectly registered scans (10%
noise level), Third row: Our results on imperfectly registered scans (10% noise level), Fourth
row: Our results on imperfectly registered scans (GRF noise). Compared to the baseline results
in the first row, the results in the second row show decreased statistical power with increased
error in the registration, and is unable to detect the cuneus. However, even when there are
errors during the registration (voxel-wise noise or GRF), our algorithm correctly identifies
the cuneus as shown in the third and fourth row, consistent with the analysis performed on
properly registered images.

layer of the cascade to derive scattering coefficients for the original image. In
much of brain image analysis, lower frequency components with less noise are
preferred, so we took the first three descendant branches from each branch in
each layer. Then, these coefficients were defined in a vector form at each voxel
(total of 13 features), and Hotelling’s T 2 test was applied at each voxel. Again,
these resultant p-values were thresholded at 0.05 level and projected onto a
T1-weighted template image to obtain a apples-to-apples comparison with the
baseline.

6.5.3 Experimental Results on FDG-PET Scans

The result of our analysis is demonstrated in Fig. 6.5. The baseline analysis
using APOE ε4 as a predictor on properly registered FDG-PET images revealed
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cuneus regions, known to be closely tied to AD pathology, and some lower
cerebellum regions as shown in blue-light blue regions in the first row of
Fig. 6.5 with p-values in the range of [0, 0.05] in − log10 scale. However, as
shown in the second row of Fig. 6.5 in red-yellow, the statistical power to
detect risk factor related regions diminishes due to noise in the registration
process. At the 10% noise level, it returned salt-and-pepper type result, failing
to yielding meaningful result. In contrast, using our algorithm on the both
datasets with 10% level voxel-wise noise and GRF, we were able to successfully
detect exactly the same regions (i.e., cuneus and lower cerebellum regions) that
were found in the baseline analysis, as demonstrated in red-yellow regions in
the third and fourth row of Fig. 6.5. The results above indicate that even when
a good registration is unavailable, this framework may offer a robust solution
by performing the same analysis using a deformation invariant representation
of the original images.

6.6 Summary

It is well known that the statistical analysis of brain imaging data (including
classification and regression experiments) can only proceed once the images
have been warped into a common template space. But when individual sub-
jects have significant atrophy or a pathology (resulting from tumor or vascular
factors), the registration is imperfect. Separately, in some populations creating
a common template itself may be difficult which leads to sub-optimal registra-
tion. But independent of where the registration errors come from, their effect
on the downstream analysis can be significant and has serious implications
on the success of the study. We provide an algorithm that derives local de-
formation invariant representations of the image. In practice, this means that
inference using the image data can proceed as if a (much superior) registration
method were available.

Our method is based on the recently proposed Scattering transform which
we adapt in interesting ways using ideas related to spectral graph wavelets in
the harmonic analysis literature. The performance of the proposed approach
does not depend on whether the noise in the warp field is i.i.d. or correlated.
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The scattering operator is provably invariant to the action of any compact
Lie group on the measured signal (Mallat, 2012). We show that deriving
wavelet expansions using the graph representation of the data (together with
other modifications) makes the scatter transform a viable tool for analyzing
large 3-D image datasets. The proposed ideas have direct applications in
neuroimaging analysis but are likely to be more broadly applicable in other
computer vision problems where invariance to group actions (e.g., rotation,
translation, diffeomorphism) is desired.
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7 latent variable graphical model
selection using harmonic analysis for
human connectome project (hcp)

As introduced in Chapter 1, a major goal of brain imaging studies is to identify
its associations with covariates such as genotype, risk factors, and so on. For
this, a large scale study, Human Connectome Project (HCP), was launched
recently to characterize the structural network map of the human brain and
find the associations between brain connectivity and various covariates. Un-
fortunately, the set of image derived measures and the set of covariates in the
dataset are both large, so we must first estimate a ‘parsimonious’ set of rela-
tions between the measurements. For instance, a Gaussian graphical model
will show conditional independence between the random variables, which
can then be used to setup specific downstream analyses. But most such data
involve a large list of ‘latent’ variables that remain unobserved, yet affect the
‘observed’ variables substantially. Accounting for such latent variables is not
directly addressed by standard precision matrix estimation, and is tackled via
highly specialized optimization methods. We offer a unique harmonic analysis
view of this problem. By casting the estimation of the precision matrix in terms
of a composition of low-frequency latent variables and high-frequency sparse
terms, we show how the problem can be formulated using a new wavelet-type
expansion in non-Euclidean spaces. Our formulation poses the estimation
problem in the frequency space and shows how it can be solved by a simple
sub-gradient scheme. We provide a set of scientific results on ∼500 scans
from the recently released HCP data where our algorithm recovers highly
interpretable and sparse conditional dependencies between brain connectivity
pathways and well-known covariates.



99

7.1 Overview

Consider a large scale neuroimaging study, e.g., the ongoing Human Connec-
tome Project (HCP), where diffusion weighted magnetic resonance images
(diffusion MRI) are acquired for a cohort of participants. Each subject provides
a variety of clinical and cognitive measures in addition to the images, as well
as demographic information such as age, gender, education status and so
on. Such a rich data resource offers an unprecedented opportunity to answer
many scientific questions. For instance, how do brain networks differ across
gender, and does education or genotype have an association with structural
brain connectivity beyond the expected effects of age? Until recently, the scien-
tific community had limited means to answer such questions because public
datasets were either small, not well curated or the imaging protocols used
for acquisition were too heterogeneous. The recent public release of images
(and covariates) from the HCP study makes such an analysis possible if we
can address the associated modeling issues that arise in performing inference
on such a high dimensional dataset.

A fundamental scientific goal in statistical analysis of HCP (and similar
datasets) is to identify associations between the full set of variables and the
entire spectrum of image-derived measurements (Akil et al., 2011; Marcus
et al., 2011; Kim et al., 2014, 2015a). For example, are a subset of the clinical
covariates highly predictive of the inter-regional connectivity derived from the
images? The traditional approach here may proceed by estimating a graphical
model that best explains the data: where the nodes correspond to the full set
of covariates (image-derived measures and clinical/cognitive scores) as jointly
Gaussian random variables. By estimating the inverse of the covariance matrix
between the variables, we precisely recover the graphical model structure. This
may then be used to setup hypothesis driven structural equation models (SEM)
(Ullman and Bentler, 2003) or simple regression model based experiments. The
difficulty is that in many modern image analysis problems, the total number
of such covariates, say p, is far larger than the number of samples (subjects)
n in the study. Classical model selection is highly problematic in this high
dimensional setting since the empirical statistics are often poorly behaved. The
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popular solution here is to impose a sparsity regularization on the inverse of the
covariance matrix Σ−1. Using a `1 penalty on the entries of this matrix, under
mild conditions, one can guarantee that the maximum likelihood solution
will recover the true model (Yuan and Lin, 2007; Friedman et al., 2008). In
the last five years, this idea has been extensively used in a broad spectrum of
applications in computer vision (Gu et al., 2007; Marlin and Murphy, 2009),
machine learning (Banerjee et al., 2008; Raskutti et al., 2008; Liu et al., 2010;
Yuan, 2010) and medical imaging (Smith et al., 2011; Varoquaux et al., 2010;
Huang et al., 2010).

The formulation above, given its broad applicability, has been heavily stud-
ied and we now have a comprehensive treatment of efficient optimization
routines (Banerjee et al., 2006; d’Aspremont et al., 2008; Scheinberg et al., 2010;
Oztoprak et al., 2012) and regularization properties (Raskutti et al., 2008; Lam
and Fan, 2009). These developments notwithstanding, there are various situa-
tions in medical image analysis, computational biology and other applications,
which are not direct fit for the standard sparse inverse covariance matrix esti-
mation model. For instance, in many real-world studies, there are a non-trivial
number of latent variables that either cannot be directly observed or can only be
measured at a high monetary cost or discomfort to the subject. The incorpora-
tion of such latent variables in the estimated structural relationship, generally
called “latent variable graphical models”, is not as extensively studied (Jordan
et al., 1999).

Related Work. There is some degree of consensus that a straightforward
incorporation of such ‘latent’ variables in the default construction described
above is problematic. Therefore, existing approaches (Dempster et al., 1977)
must pre-specify the number of such variables in an ad-hoc manner and pro-
ceed with a bi-level non-convex scheme to estimate the parameters. There are
other combinatorial heuristics (Elidan et al., 2007) which cluster the observed
variables and assign them incrementally to a latent variable. The practical
effectiveness of such algorithms varies and they offer few theoretical guaran-
tees. An interesting recent paper (Chandrasekaran et al., 2012) resolves many
of these problems and presents an algorithm where all variables (observed
and latent) are jointly Gaussian. The main idea is to approximate the sample
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Figure 7.1: Demonstration of latent variables (orange nodes) affecting the observation (7
grey nodes) leading to dense precision matrix. Left: no latent variable and corresponding true
relationship and sparse precision matrix, Middle: one latent variable and corresponding dense
precision matrix, Right: many latent variables and corresponding denser precision matrix

covariance matrix Σ in a way where the corresponding Σ−1 is expressed as a
sum of a sparse matrix and a low-rank matrix. This recovers the influence of
the unobserved latent variables as well as the conditional graphical model, as
desired. This strategy works well as long as the low rank requirement remains
valid; however, as the number of latent variables grow, the data may deviate
farther from the low rank assumption. Consequently, the sparse term must
explain a larger ‘mass’ of the data and the estimated matrix becomes denser.

The above discussion suggests that the means of regularizing the degrees
of freedom (i.e., the low rank term) for the latent components may be not be
ideal from a numerical perspective as the number of latent variables grow.
Notice that the literature suggests that high rank matrix completion (columns
of the matrix belong to a union of multiple low-rank subspaces) uses a set
of concepts that are quite different from those used for completing low-rank
matrices (e.g., nuclear norm). So, a potential solution in our graphical model
setting must also look for alternatives to the algebraic characterization (used in
(Chandrasekaran et al., 2012)). Certain classical tools at the high level, express
a closely related intuition. Consider the following simple idea. If we think of
the precision matrix as the composition of low and high frequency terms, the
lower order terms may easily serve as a proxy for the latent components. Then,
by asking that the remaining contribution should be sparse yields a similar
overall effect as (Chandrasekaran et al., 2012) but does not directly involve
spectral relaxations of the rank constraint. Fortunately, harmonic analysis
offers a natural tool for such needs via wavelets which are used in the previous
chapters.
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Adopting the ideas above, our proposal here is to perform multi-resolution
analysis of the main component for graphical model selection (i.e.,sample
precision matrix), using the formulation of mother wavelets in non-Euclidean
spaces introduced in Chapter 2. Analyzing different bandwidths (i.e.,scale)
in a dual space (i.e.,frequency space) derived from a covariance matrix, we
may be able to find the optimal band that yields a desirable property for the
estimated precision matrix. Later in the experimental section, we demonstrate
that such a framework provides a good solution to a sparse precision matrix
estimation problem. When there exist (potentially a large number of) unknown
latent variables, our method still works well while baseline methods fail to
achieve the “sparsity” in the estimated precision matrix.

7.2 Harmonic Analysis of Latent Variable Graphical
Models

Using the wavelet concepts in non-Euclidean spaces described in Section 2.2
in hand, we will describe our formulation for estimating a precision matrix
while concurrently taking into account the effect of an unknown but large
number of latent components. Our procedure below will parameterize the
to-be-inferred graphical model not in terms of its precision matrix directly,
rather via its low and high frequency components. Operating on these latent
(low-frequency) and sparse (high-frequency) pieces will model the structural
associations within the graph. Recall that recent developments in wavelet
analysis on discrete spaces such as graphs have overwhelmingly been used to
analyze signals defined on the nodes where the graph has a “fixed” (known)
structure. In order to apply wavelet analysis to our problem, we will need to
introduce a few key technical results that are summarized below, and described
in detail in this section. (a) First, we will introduce multi-resolution analysis for
modeling the graph structure and not just the measurement at individual graph
nodes. We will define a new set of basis functions for estimating the graph
structures and provide theoretical conditions which guarantee its validity. (b)
Second, we will introduce an information theoretic “closeness” measure for
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graph structure (i.e., precision matrices). Here, we will identify an additional
condition which will yield a valid symmetric positive definite matrix at each
scale s. (c) Finally, we will discuss our optimization scheme in the dual space
(i.e., frequency domain) with a simple gradient descent method.

7.2.1 Multiscale Analysis of a Precision Matrix

Let us assume we are given a positive definite covariance matrix Σ of size n×n.
Now, Σ can be easily decomposed in terms of its eigenvector and eigenvalues
as,

Σ = VΛVT =

n∑
`=1

λ`V`V
T
` (7.1)

where the `th column vector of V is the `th eigenvector and the `th diagonal of
Λ is the corresponding `th eigenvalue of Σ which are all positive. Then, the
precision matrix Θ is given as the inverse of the covariance matrix as

Θ =

n∑
`=1

1
λ`
V`V

T
` =

n∑
`=1

σ`V`V
T
` (7.2)

where σ = 1
λ and σ are positive since λ are positive. Notice that both Σ and

Θ are positive definite and self-adjoint, so their eigenvectors can be used for
defining a Fourier type of transform which is analogous to the graph Fourier
transform as in (2.8). For multi-resolution analysis of the precision matrix Θ,
we first define our basis functions as

ψ`,s(i, j) = g(sσ`)V∗` (i)V`(j),∀` ∈ {1, . . . ,n} (7.3)

at scale s and along the `th basis. Since we deal only with real valued functions,
to avoid notational clutter, we will omit the conjugate operation for the eigen-
functions, i.e., V∗(i) = V(i). These basis functions are analogous to mother
wavelets and yield a nice result which we will present shortly. Now, we can
easily setup a transform of the precision matrix using our basis above. This
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yields wavelet-like coefficients as

WΘ,s(`) = 〈Θ,ψ`,s〉 (7.4)

=

n,n∑
i,j

n∑
` ′=1

σ` ′V` ′(i)V` ′(j)g(sσ`)V`(i)V`(j)

= σ`g(sσ`).

UsingWΘ,s(`), the multi-resolution reconstruction with a non-constant weight
ds/s is obtained by

Θ̃(i, j) = 1
Cg

∫∞
0

1
s

n∑
`=1

WΘ,s(`)ψ`,s(i, j)ds. (7.5)

Roughly speaking, this can be viewed as the weighted average of multi-
resolution reconstruction over scale s.

A natural question here is whether we can guarantee if the reconstruction
in (7.5) is identical to the original precision matrix Θ. To address this issue, we
define the admissibility condition for the function defined on the structure (or
edges) of the graph. A kernel g(x) is said to satisfy the admissibility condition if
the following condition holds∫∞

0

g2(x)

x
dx =: Cg <∞ (7.6)

when the reconstruction is defined with a non-constant weight dx/x as (7.5).
Lemma 7.1 below shows that using the bases we constructed in (7.3), if g(x)
satisfies admissibility condition, the matrix reconstruction in (7.5) is identical,
namely, Θ̃(i, j) = Θ(i, j).

Lemma 7.1. If Θ � 0,Θ = ΘT and kernel g satisfies the admissibility condition∫∞
0

g2(sσ)

s
ds =: Cg <∞ (7.7)



105

then,
1
Cg

∫∞
0

1
s

n∑
`=1

WΘ,s(`)ψ`,s(i, j)ds = Θ(i, j) (7.8)

Proof. By substituting ψ`,s and WΘ,s(`) with (7.3) and (7.4) respectively in
graph Fourier basis, the left hand side of (7.8) is given as

1
Cg

∫∞
0

1
s

n∑
`=1

WΘ,s(`)ψ`,s(i, j)ds

=
1
Cg

∫∞
0

1
s

(
n∑
`=1

σ`g(sσ`)g(sσl)V`(i)V`(j)

)
ds

=
1
Cg

∫∞
0

1
s

(
n∑
`=1

σ`g
2(sσ`)V`(i)V`(j)

)
ds

=

n∑
`=1

(
1
Cg

∫∞
0

g2(sσ`)

s
ds

)
σ`V`(i)V`(j)

=

n∑
`=1

σ`V`(i)V`(j) = Θ(i, j) by the assumption in (7.7)

We can derive a stronger result showing that using the bases in (7.3), the
admissibility condition holds for two parameter kernels as well, i.e., g(s,σ).
This allows defining a kernel, if desired, that separately handles the influence
of the eigenvalue σ and a scale parameter s.

Lemma 7.2. If kernel g satisfies the admissibility condition∫∞
0

g2(s,σ)
s

ds =: Cg <∞ (7.9)

then,
1
Cg

∫∞
0

1
s

n∑
`=1

WΘ,s(`)ψ`,s(i, j)ds = Θ(i, j) (7.10)



106

Proof. Note that since
∫∞

0
g2(sσ)
s ds =

∫∞
0
g2(x)
x dx =: Cg, the admissibility

condition can be written in both ways.
Using the definition of ψ`,s andWΘ,s(`) for the reconstruction of Θ,

1
Cg

∫∞
0

1
s

n∑
`=1

WΘ,s(`)ψ`,s(i, j)ds

=
1
Cg

∫∞
0

1
s

(
n∑
`=1

σ`g(sσ`)g(sσl)V`(i)V`(j)

)
ds

=
1
Cg

∫∞
0

1
s

(
n∑
`=1

σ`g
2(sσ`)V`(i)V`(j)

)
ds

=

n∑
`=1

(
1
Cg

∫∞
0

g2(sσ`)

s
ds

)
σ`V`(i)V`(j)

=

n∑
`=1

σ`V`(i)V`(j) = Θ(i, j) by the admissibility condition in (7.8)

This two parameter kernel result can be used for functions defined on
either nodes (commonly used in non-Euclidean Wavelets) or edges (graph
structure). The admissibility condition for the classical SGWT (one parameter
kernel for the functions defined on nodes) is studied in (Hammond et al., 2011)
and consistent with our result. Based on this harmonic analysis of graphical
models, we next describe our main estimation algorithm to recover the sparse
precision matrix by explicitly taking into account the contribution of the latent
components.

7.3 Estimating the Optimal Scale for a Sparse
Precision Matrix

In this subsection, we describe the optimization scheme to estimate Θ̃which
satisfies two properties: i) it is consistent with the empirical Θ and ii) satisfies
sparsity properties (in the sense of the multi-resolution characterization)
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The reconstruction of Θ at level s is given by

Θ̃ =

n∑
`=1

σ`g
2(sσ`)V`V

T
` =

n∑
`=1

K(s,σ`)V`VT` (7.11)

where K(s,σ`) := σ`g2(sσ`). To keep notations concise, we will often use K as
shorthand in this subsection. To perform the reconstruction at every level s,
the kernel function g should satisfy the condition, g2(x) > 0,∀x > 0. Then, one
can easily check that Θ̃ is symmetric positive definite, i.e., Θ̃ ∈ SPD, exactly as
desired.

At a high level, we seek for a Θ̃which is similar to the empirical (potentially
non-sparse) estimate, Θ. To do so, we need to define “closeness” between our
estimate Θ̃ and Θ. We consider the two matrices as corresponding Gaussian
distributions with zero mean, but with covariance matrices Σ̃ and Σ.

Using KL-divergence KL(·‖·) between the two Gaussian densities, we can
measure “closeness” by

KL(p(x; Σ̃)‖p(x;Σ)) = 1
2

Dld(Σ, Σ̃) = 1
2
Dld(Θ̃,Θ) (7.12)

The last two identities express closeness by Bregman divergence using the log
determinant (Davis et al., 2007). Given two matrices A and A0, the Bregman
divergence between the two matrices Dld(A,A0) is given as

Dld(A,A0) = tr(AA
−1
0 ) − logdet(AA−1

0 ) − n. (7.13)

With this fidelity measure, our objective is to find the optimal scale swhich
minimizes the Bregman divergence using logdet(·)) between the empirical pre-
cision matrixΘ and the sparse reconstruction Θ̃. We impose a sparsity penalty
in the usual way using the `1-norm of the matrix. Then, our optimization
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problem is given as,

min
s>0

tr(Θ̃Θ−1) − logdet(Θ̃Θ−1) − n+ γ|Θ̃|1 (7.14)

subject to Θ̃ =

n∑
`=1

σ`g
2(sσ`)V`V

T
` .

Substituting in the identity from (7.1) forΘ, we obtain an almost unconstrained
optimization model (which only involves one non-negativity constraint),

min
s>0

n∑
`=1

λ`K(s,σ`) −
n∑
`=1

log(λ`K(s,σ`)) − n

+ γ

n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑
`=1

K(s,σ`)X`(i, j)

∣∣∣∣∣
(7.15)

where X` = V`V
T
` and X`(i, j) is i, jth element in X. The optimal (sparse)

precision matrix will then correspond to some s which minimizes (7.14) or
(7.15).

7.3.1 Deriving the First Derivative for Optimization

To optimize (7.14), we compute the first derivative ofDwith respect to s, which
can be written as

d

ds
tr(Θ̃Θ−1) −

d

ds
logdet(Θ̃Θ−1) +

d

ds
γ|Θ̃|1 (7.16)

Here, we calculate d
ds tr(

∑n
`=1 λ`K(s,σ`)V`VT` ) taking a derivative of each el-

ement and then taking the sum of the diagonal elements of Θ̃Θ−1 and we
obtain,

d

ds
tr(

n∑
i=1

λ`K(s,σ`)V`VT` ) =
n∑
`=1

λ`K
′(s,σ`) (7.17)

where K ′(s,σ`) := ∂K/∂s. The derivative of the second term takes the form,

d

ds
logdet(Θ̃Σ) =

n∑
i=1

K ′(s,σi)
K(s,σi)

(7.18)
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Notice that the third term involves the `1 norm which is not differentiable, so
we approximate its search direction instead as

n∑
i=1

n∑
j=1

sign(Θ̃(i, j))
n∑
`=1

K ′(s,σ`)X`(i, j). (7.19)

Combining all three terms together yields a direction to optimize (7.14). The
actual optimization then only involves a simple gradient descent-like method.

Remarks. Observe that a precision matrix always has non-zero diagonal
elements. So, the sparsity regularization may not be meaningful for diagonal
elements. One can impose sparsity for only the off-diagonal elements with
minor changes in the third term (7.15) and its search direction (7.19), namely,∑
i 6=j |Θ̃(i,j)| and its search direction is

n,n∑
i 6=j

sign(Θ̃(i, j))
n∑
`=1

K ′(s,σ`)X`(i, j). (7.20)

7.3.2 Choice of the Kernel Function

For the choice of kernel function g(), we used the popular Gaussian function
exp(− 1

2sx). This kernel function models diffusion or a random walk process
(Spitzer, 2013), and is used to define diffusion type of wavelets (Coifman and
Maggioni, 2006; Hou and Qin, 2013). The kernel function itself may not satisfy
the admissibility condition, which is not an issue because we work with a
single scale estimation. However, to work with all scales concurrently, we will
be limited to only that class of kernels which directly satisfies the admissibility
condition.

K(s,σ) = σg2(sσ) = σe−sσ (7.21)

is able to perfectly reconstruct the original sample precision matrix Θ. Intu-
itively, in our optimization problem, we should be able to reconstruct the exact
Θ in the non-regularized setting. This is because of σ in front of g() in (7.21).
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That is, our estimation Θ̃

Θ̃ =
∑
l

σlg
2(sσl)VlV

′
l (7.22)

becomes P when s = 0 as

Θ̃ =
∑
l

σle
−sσVlV

′
l (7.23)

=
∑
l

σlVlV
′
l = Θ. (7.24)

7.4 Experimental Results for Latent Variable Graphical
Model Selection

We demonstrate two sets of experiments, one on synthetic brain network data
to validate our framework where the ground truth is available, and the other
on the Human Connectome Project (HCP) data. The first experiment evaluates
precision matrix estimation results using our framework by comparing it to
the estimations from other methods and the ground truth. In the second
experiment, we analyze an exquisite recently released imaging dataset of ∼ 500
(and increasing) individuals from the Human Connectome Project. We obtain
brain connectivity pathways by processing Diffusion Tensor Images (DTI) and
analyze this connectivity data jointly with a rich set of covariates. Among
the many inter-regional fiber bundles, we focus our analysis on 17 major
connections and identify which of the covariates are statistically associated
with these major pathways. In both experiments, the objective is to estimate
true dependencies between the observed variables when the latent variables
are unobserved.

7.4.1 Statistical Dependency Estimation on Synthetic Brain
Connectivity Data

In this section, we demonstrate results of precision matrix estimation using
synthetic brain connectivity data. Consider a case where we observe a set
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of np + nc random variables, i.e., a set of np structural brain connections
(i.e., pathways) and nc covariates. We add additional nh number of latent
variables that are assumed to be unobserved but statistically influence the full
set of observed variables. Then, the statistical model estimation task is to find
the true conditional dependencies between the observed variables alone, i.e.,
properly taking into account the effect of latent factors. In other words, we
want to identify which brain connections are statistically associated with the
covariates as well as how these pathways are related to one another.

Experimental Design

We set np = 50 and nc = 10, so the total number of observed variables
no = 60. We run multiple replicates, each for a different setting for the number
of latent variables nh. The dependencies between the brain connections are
arbitrarily chosen such that 5% of the elements in the true precision matrix
(i.e., ground truth) are non-zeros. We set each covariate to be dependent on
the brain connections in a pattern (i.e., first five connections depend on the
first covariate, next five connections depend on the second covariate, etc.).
These dependencies between observed variables are the ground truth and
can be visual checked to see if we estimate the same pattern. The latent
variables are then connected to all observed variables with random weights;
this ensures that our measurements of the observed variables include an effect
from all latent variables. This yields a precision matrix Θ of size n× n and
its corresponding covariance matrix Σ. Synthetic data are sampled from a
multi-variate normal distribution using Σ. We draw samples only from the
observed variables to construct a sample covariance matrix Σo, which serves
as the input for estimating Θ̃o.

Results

Experimental results with nh = 5 and nh = 10 latent variables are shown
in the top/bottom blocks of Fig. 7.2 respectively. Fig. 7.2 (top row) shows in
each block the estimated dependencies between the full set of connections
(covariates are not shown in the top row). The small spheres represent the



112

Figure 7.2: Comparison of results from estimation of statistical dependencies between
observed variables (when there are at least a few latent components) using synthetic brain
network data. Top/Bottom blocks show results for 5 and 10 latent variables respectively, and
the top/bottom rows show estimated dependencies in the data (correct estimation in blue and
false positive in red) and corresponding precision matrices. First column: sample precision
matrix, Second column: result using GLasso, Third column: result using Chandrasekaran
et al. (2012), Fourth column: our result. We can observe that while the sample precision matrix
is dense, the results in the second, third and fourth column show sparse and more accurate
results.

physical centers of each brain connection and the edges in blue/red denote
correct/incorrect estimation of the conditional dependency. The bottom row
shows the estimated Θ̃o including the covariates. In each block, the first column
shows Σ−1

o as the estimated precision matrix Θ̃o (i.e., sample precision matrix).
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Here, both sample precision matrices are dense due to the effect from the latent
variables, leading to a solution which is far from Θo. In the second and third
column in both blocks, we include results from graphical Lasso Friedman et al.
(2008) and the method from Chandrasekaran et al. (2012). When nh = 5, the
sparsity pattern in the estimated precision matrices for both baselines and our
algorithm are quite similar to the ground truth (few red edges). In the second
row, we see that the oblique patterns expressing the relationship between the
connectivity and the covariates is also recovered. When the number of latent
variables grows, the low rank assumption in Chandrasekaran et al. (2012)
becomes weaker and the data deviates from the assumptions of graphical
lasso (which assumes all variables are observed). For nh = 10, neither of
the baselines are able to recover the conditional dependencies between the
connections and covariates (oblique patterns in the precision matrix). On
the other hand, the fourth columns (second row) shows that our algorithm
recovers Θo with a sparsity pattern that is highly consistent with the ground
truth Θo.

In the following, we demonstrate additional analysis of precision matrix
estimation with varying number of latent variables. In Fig. 7.3, estimation
results from experiments with different number of latent variables (i.e., 0, 5, 10,
20) are displayed, where the top row in Fig. 7.3 shows the inverse covariance
matrix corresponding to different number of latent variables and the bottom
row shows our estimations. At a glance, we can easily see that the increase in
the number of latent variables makes the inverse covariance matrix denser, on
the other hand, our estimation results yield correct sparse graphical models
despite the increase. In Fig. 7.4, the precision matrix estimation in different
scales with 5 latent variables are demonstrated whose a), b) and c) are the esti-
mation results with s = 0, 0.5, 0.7, and d) shows a result with the optimal scale
s = 0.2089 obtained using our framework. The estimation result significantly
varies depending on the scale parameter with dense non-zero elements, but
our method is able to find the optimal scale that provides an estimation that is
sparse and similar to the sample precision matrix.

Limitations. These results suggest that our algorithm is effective in iden-
tifying the true precision matrix even when there are diffusive effects of un-
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(a) (b) (c) (d)

Figure 7.3: Precision matrix estimation with different numbers of latent variables. Top row
shows the inverse covariance matrix, and the bottom row shows our estimation result. a) no
latent variables, b) 5 latent variables, c) 10 latent variables, d) 20 latent variables. We can
easily see that the inverse covariance matrix becomes denser as the number of latent variables
increases, while our method yields good estimation of the sparse graphical model.

(a) (b) (c) (d)

Figure 7.4: Precision matrix with 5 latent variables in different scales. a) estimation with
s = 0, b) estimation with s = 0.5, c) estimation with s = 0.7, d) estimation with optimal scale
s = 0.2089. Our optimization scheme find the optimal scale that gives a sparse graphical model.

observed variables. However, in situations where we have a large number of
latent variables and each affects only a small number of observed variables (i.e.,
high-frequency effect), our algorithm may not be able to identify the correct
associations.

7.4.2 Experiments on Human Connectome Project (HCP) Data

In this section, we demonstrate experimental results on a real brain imaging
dataset from HCP. The dataset has many covariates that may correspond to
latent variables, and we try to estimate relationships among different neural
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Figure 7.5: The subset of white matter tract fibers used in our experiment (from the seventeen
presented in Table 7.1) that are statistically associated to non-imaging covariates.

fiber pathways and important covariates related to demographics, physical
health, memory, cognitive ability. By applying our framework on the data,
we expect to identify the true relationships by estimating a sparse precision
matrix.

HCP Dataset

The HCP1 project recently made available high-quality imaging and clinical
data ((Uğurbil et al., 2013; Glasser et al., 2013)) for over 500 healthy adults
(Hodge et al., 2015). We analyzed the high angular resolution diffusion MR
imaging (dMRI) dataset, consisting of 489 images (Sotiropoulos et al., 2013;
Van Essen et al., 2013).

Imaging Data. We obtained DTI from the dMRI data via standard fitting
procedures which were then spatially normalized (Zhang et al., 2006a). Seven-
teen major white matter connectivity measures were obtained by registering
(using ANTS) the publicly available IIT atlas Varentsova et al. (2014) to the
HCP template. The average fractional anisotropy (FA) in each pathway was a
proxy for the connection strength. Table 7.1 lists the seventeen connectivity
pathways.

Non-imaging covariates. Besides the imaging data, HCP provides several
categories of non-imaging covariates for the subjects Herrick et al. (2014)
covering factors such as cognitive function, demographic variables, education

1Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium
(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the
16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and
by the McDonnell Center for Systems Neuroscience at Washington University.
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Connection label Description (count)
Forceps major (FMa) inter-hemispheric (1)
Forceps minor (FMi) inter-heispheric (1)

Fornix inter-hemispheric (1)
Cingulum bundle frontal (CBf) bi-lateral (2)

Cingulum bundle hippocampal (CBh) bi-lateral (2)
Cortico-spinal tracts (CST) bi-lateral (2)

Inferior fronto-occipital (IFO) bi-lateral (2)
Inferior longitudinal fasciculus (ILF) bi-lateral (2)

Superior longitudinal fasciculus (SLF) bi-lateral (2)
Uncinate fasciculus (UF) bi-lateral (2)

Table 7.1: Pathways spanning connections between all major lobes of the brain
(frontal, parietal, occipital and temporal) with several important regions such
as amygdala, hippocampus, pre-frontal cortex.

and so on. In our experiments, we chose 22 variables related to demographics,
physical health, sleep, memory, cognitive flexibility and other as listed in Table
7.2. These covariates span a wide range high-level human behavior and highly
relevant physiological measurements.

Sparse Precision Matrix Estimation on HCP Dataset

Figures 7.5 summarize the results of our experiments on the HCP data. The
matrix shown in Fig. 7.6 lists the full set of connections and covariates used
in our analysis, along the axes. Our goal was to recover a sparse (and inter-
pretable) precision matrix explaining the conditional dependencies among
these variables. It is clear from the figure that our algorithm indeed finds a
parsimonious set of statistical relations, among the non-imaging covariates,
among the brain pathways as well as across these two groups of variables. As
we can expect, several connectivity pathways seem to be involved in several
different categories of behavioral measures. Note that similar to the simulation
setup, in this case, results from the baseline algorithms were non-sparse and
hence harder to interpret. Part of the reason is that none of the measurements
were controlled for various (observed or unobserved) nuisance variables. One
advantage of our algorithm is to take into account the effect of such latent
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Category Covariates
Demographics Age, gender, years of education completed (Edu)
Physical health Height, weight
Alertness Mini mental status exam (MMSE)
Sleep Pittsburgh sleep questionnaire (PSQI)
Episodic memory Picture sequence recall (PicSeq)
Cognitive flexibility Picture matching accuracy and reaction time (CardSort)
Inhibition Flanking accuracy and reaction time (Flanker)
Fluid intelligence Correct responses in Penn progressive matrices (PMA_CR)
Reading NIH toolbox reading recognition test (ReadEng)
Vocabulary NIH toolbox picture vocabulary (PicVocab)
Processing speed NIH toolbox pattern comparison speed (ProcSpeed)
Spatial orientation Expected number of correct clicks (VSPLOT_CRTE),

total off positions (VSPLOT_OFF)
Sustained attention Short Penn continuous performance test:

sensitivity (SCPT_SEN), specificity (SCPT_SPEC),
longest run of non-responses (SCPT_LRNR)

Episodic memory Penn word memory test: total correct responses
(IWRD_TOT), reaction time (IWRD_RTC)

Working memory NIH toolbox sorting working memory (ListSort)

Table 7.2: Full list of non-imaging covariates used in our analysis spanning
a wide range high-level human behavior and highly relevant physiological
measurements.

nuisance variables automatically.
Finally, since there is no ‘ground truth’ available for these results, we

checked if our findings are corroborated by independent results in the litera-
ture. We found that many of the associations in Figs. 7.6 appear as standalone
findings in multiple papers (Penke et al., 2012; Booth et al., 2013). For example,
the association between the cingulum bundle and processing speed was the
focus of (Nestor et al., 2007), whereas (Karlsgodt et al., 2008; Kubicki et al.,
2005) identified a relation between longitudinal fasciculus and cognitive/ver-
bal ability and (Zarei et al., 2011) demonstrated that forceps major and gender
were related. Significant associations have also been found between integrity
of the uncinate fasciculus and spatial working memory (Davis et al., 2009).
This is not definitive evidence that we identify the real underlying precision
matrix, but promising that most of the identified associations have precedence
in the literature.
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Figure 7.6: Estimated sparse precision matrix on HCP dataset. Notice that the matrix shows
sparse connections between the pathways and covariates.

7.5 Summary

Undirected graphical models are used to address a variety of needs in com-
puter vision and machine learning. While existing methods for estimating
statistical conditional independence between a set of random variables are
quite effective, this analysis becomes problematic when there are multiple
latent (unobserved) variables that non-trivially affect our measurements of
the observed variables. This situation is becoming more frequent in many
modern medical image analysis and computer vision datasets, where the latent
variables cannot be measured due to cost or privacy reasons. We propose a
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novel perspective on this sparse inverse covariance matrix estimation problem
involving latent variables using non-Euclidean wavelet analysis. The exper-
imental results using synthetic brain network data demonstrated that our
algorithm provides substantial improvement over other graphical model se-
lection methods. Also, we presented an extensive set of results on the recently
released HCP imaging data set showing statistical dependencies between brain
connectivity pathways and cognitive/behavioral covariates, and the results
that we found are consistent with independent findings in the neuroscience
literature.
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8 discussion and future work

8.1 Summary of Contributions

The work introduced in this thesis tackles fundamental problems that routinely
arise in typical neuroimaging studies. The problems described in each chapter
were motivated in the context of neuroimaging analysis for Alzheimer’s disease
and solved using Harmonic Analysis on Graphs. The proposed methods and
applications mostly fall into one of the four scopes: 1) developing a sensitive
method for analyzing neuroimaging data on graphs to detect subtle group
differences, 2) developing a method to compute differences between images
(e.g., longitudinal images) even in the presence of systematic variation, 3)
developing an image representation that is invariant to local deformation
error in brain image registration, 4) developing a graphical model selection
method with unknown latent variables to identify relationships between brain
regions and covariates. Although these frameworks were adopted to solve
interesting problems and evaluated in AD analysis, they can be applied to
other domains as long as the data is represented with a structure, i.e., a graph.
In the following, we briefly summarize the key contributions of the proposed
methods in this thesis.

8.1.1 Sensitive Methods for Group Analysis on Neuroimaging
Data in Non-Euclidean Spaces

In Chapter 3 and 4, we addressed the need for more sensitive method to
perform group analysis using neuroimaging data defined on graphs (i.e.,
cortical thickness measures on brain meshes or strength measures on brain
connectivity). This becomes especially challenging when the given dataset is
small sample-sized and the effect size is subtle. To resolve this problem, we
developed a framework whose main contributions are

i) we derived a highly sensitive “multi-resolution” shape descriptor for
performing group analysis in a population of subjects on signals defined
on surfaces/shapes or signals defined on brain connectivity.
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ii) we demonstrated the utility of the frameworks on various independent
datasets and showed significant performance improvements over the
standard baseline. In some cases, our framework is able to characterize
changes in preclinical stages by comparing asymptomatic individuals with
and without risk factors for AD. These experiments give strong evidence
that a large number of neuroimaging data in non-Euclidean spaces can
immediately benefit from these ideas with negligible additional cost.

8.1.2 Statistical Analysis of Images with Systematic Variations

In Chapter 5 we studied the problem of systematic variations in longitudinal
imaging studies or multi-site imaging studies. The main contribution of the
work introduced in Chapter 5 was to formalize this idea for immunity to the
systematic variations in statistical analysis of imaging data, based on a new
method in the harmonic analysis literature by Coifman and Hirn (Coifman
and Hirn, 2014). In particular,

i) we derived operators from each image using the recent work in Diffusion
Maps (Coifman and Lafon, 2006; Coifman and Hirn, 2014) and compared
the spectrum of the operators to achieve differences between the images
which are invariant to systematical variation.

ii) we described how the lower dimensional mapping obtained by the oper-
ators relate to a wavelet transform in non-Euclidean spaces.

iii) we provided experimental evidence in that the method facilitates sta-
tistical analysis of Pittsburgh compound B PET (PIB-PET) images and
offers improvements over standard normalization methods used in the
community.

8.1.3 Statistical Analysis of Images with Imperfect Registration

The work we introduced in Chapter 6 was to take a step towards registra-
tion error invariant analysis of brain imaging data. The contributions of our
proposed algorithm were:

i) we leveraged recent results from harmonic analysis, namely, scattering
coefficients to derive image representations that are provably invariant to
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local deformations. This so-called scatter transform is obtained via a cas-
cade of operations, involving wavelet expansions using an orthonormal
basis derived from a function of the image. The downstream statisti-
cal questions can then be simply reformulated in terms of such repre-
sentations, which are immune to nominal levels of errors in the given
registration.

ii) we provided simulation results as well as empirical evidence obtained
from experiments on real brain images showing that the image representa-
tion derived from our framework can provide more statistically significant
and meaningful results in statistical brain image analyses.

8.1.4 Latent Variable Graphical Model Selection

In Chapter 7, we introduced the problem of identifying relationships between
different variables which corresponds to different neural fiber pathways in the
brain and covariates, the main bottleneck was the existence of latent variables
that affects our observations. We proposed a novel method to resolve this prob-
lem using multi-resolution approach via harmonic analysis in non-Euclidean
spaces, and its main contributions were

i) we demonstrated how this latent graphical model estimation problem
can be viewed via the lens of harmonic analysis.

ii) we showed that by operating on the inverse covariance matrix via its as-
sociated graph (actually a wavelet transform of this graph), it becomes an
inference problem expressed in the frequency space. The actual optimiza-
tion requires no sophisticated solvers, we only need to perform a simple
gradient descent on one variable that controls the band-pass filtering
property of wavelets.

iii) Our motivating application was the analysis of the Human Connectome
Project (HCP) dataset which includes more than ∼350 covariates (and
therefore, many latent variables) together with a rich set of imaging data.
Here, we obtained neuroscientifically meaningful sparse models relat-
ing image-derived brain connectivity to covariates where alternative ap-
proaches yield uninterpretable results.
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8.2 Future Work with Multi-resolution in
Non-Euclidean Space

There exists a rich body of work in computer vision, machine learning and
signal processing that demonstrates the power of a multi-resolution framework
(Shen and Ip, 1999; Wink and Roerdink, 2004). The intuition here is that instead
of looking at an object/image at a fixed distance, looking at it from different
distances (scales) better captures its various properties. However, as the data
that we collect in the real world are in high dimensions and exist in a complex
space, traditional methods often become ill suited to analyze such data types.
Therefore, we are interested in broadening the multi-resolution framework
in non-Euclidean space for such complex data, not only for neuroimages, but
also for general data that we cannot explore with traditional methods. Such
a technique shares commonalities with many other machine learning and
computer vision ideas, where the community is interested in analyzing data
in low-dimensional spaces in which tasks become easier, in some sense.

8.2.1 Human Brain Connectome Analysis

The National Institute of Health (NIH) has recently launched the Human
Connectome Project (HCP) (http://www.humanconnectome.org), releasing a
large dataset (with imaging and non-imaging data) of 897 participants. The
objective of the project is to identify variations in neural pathways that affect
brain function and behavior. We plan to use ideas of multi-resolution in non-
Euclidean space to analyze brain network data as in the HCP dataset, as a
neural connectivity of the brain is naturally represented as a weighted graph
in non-Euclidean space. Using the multi-resolution methodologies that we
have developed, we plan to investigate new scientific hypothesis in the dataset,
or validate the findings that have been reported using other imaging modali-
ties. Further, we are interested in making use of local datasets that have been
collected for their own purposes together with this HCP dataset. Those local
data may be sufficient to answer a few questions for which the dataset was
designed, but are statistically underpowered for analyses with other meaning-



124

ful factors which still may manifest strong effect. We can narrow down search
spaces by first analyzing the HCP dataset, and use the result as a prior for
the statistical analyses of other independent and smaller local datasets. Such
a design will demonstrate improved statistical results with fewer number of
hypothesis tests to compare. Combining the analyses of the HCP dataset and
local datasets together, we will be able to answer many fundamental questions
raised in neuroscience identifying which of the associations between different
brain regions are closely related to clinically meaningful factors such as dis-
ease status, age, gender and genotype. These analyses will yield interesting
scientific discoveries that have not been studied on structural relationships
between brain regions and identify how the human brains function.

8.2.2 Analysis of Various Neurological Disorders / Cognitive
Ability

We are interested in broadening the area of study to various neurological/psy-
chiatric disorders such as Parkinson’s disease, schizophrenia, bipolar symp-
toms, traumatic brain injury (TBI) and autism, and work on methods that will
facilitate development of diagnosis techniques and new treatments. Analyzing
various brain disorders is critical, since many disease specific symptoms in
the human brain are shared across different disorders. Using multi-resolution
analysis, we plan to study both structural and functional aspects of the brain
to better understand different brain disorders, which will help increase the
accuracy of diagnosis and narrow focuses for treatments. Understanding
which specific structural/functional variations in the brain are closely related
to cognitive decline, verbal inability and abnormal behaviors will give us a
feasible interpretation of how the human brain functions. Such objectives are
central to global large scale initiatives.

8.2.3 Adaptive Signal Recovery in Non-Euclidean Spaces

We are studying ideas related to multi-resolution analysis for estimating signals
defined on graph nodes. The problem definition and technical details here are
similar to traditional Matrix Completion problem (Candes and Recht, 2009;
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Candes and Plan, 2010) where one is given with partial observations on some
of the elements in a matrix and tries to recover the full matrix. When this
regime is defined in a graph setting (Puy et al., 2016), given a graph and
partial signals on the graph nodes, the objective is to estimate the full signal
to “complete” a graph utilizing the graph structure and harmonic analysis.
We are studying this problem from the perspective of multi-resolution and
collaborative filtering, proposing an adaptive sampling scheme and estimation
of the full signal by taking advantage of the bandlimited nature of signals.
Recently, there are a number of data available that are represented as a graph
such as social network, brain network, genome data, 3D mesh and so on, where
data (i.e., signals) are collected on the nodes of the graphs. Our work here
will broaden the goal of experimental setups required for the analysis of such
complex data and advance scientific findings with less cost. We will exploit
the properties of these graphs to provide important practical and immediate
ramifications for many experimental design considerations in various scientific
domains (Kim et al., 2016a; Hwa Kim et al., 2017).
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