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Abstract

Cancer staging is a crucial process that determines the severity of an individual’s

cancer based on specific risk factors and clinical outcomes, such as time-to-event outcomes

or the presence of a disease. This process involves classifying a heterogeneous set of cancer

patients into several homogeneous groups. Accurately classifying the cancer stages helps

doctors identify patients for clinical trials, understand the disease’s severity and prognosis,

and facilitate clinical decision-making on therapy and surveillance.

Tree methods have emerged as promising tools for cancer staging due to their ease of

interpretation and ability to handle complex datasets with minimal assumptions [Bre+17;

LWC13; Lin+16]. However, integrating multiple risk factors into cancer staging using

tree methods presents several challenges. First, it is unclear how to leverage the ordering

indicated by ordinal risk factors. Second, with a high number of categories defined by risk

factors, it remains unknown whether patients in each category have a distinct prognosis.

If not, it is unclear how to combine them into one stage. Finally, allowing a general

grouping pattern is challenging, as most approaches have restrictions on the patterns

of groupings. For instance, the classification and regression tree (CART) method only

permits straight-line groupings on a partially ordered two-way grid.

To address the limitations of tree methods with ordinal variables, we introduce a

new method: Ordering Partially Ordered Set Elements by Recursive Amalgamation

(OPERA)[Wan20]. This approach utilizes ordered information and accommodates gen-
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eral grouping patterns. OPERA, combined with pruning, demonstrates improved per-

formance compared to traditional tree methods without pruning. This data-driven tool

simplifies staging by condensing multiple groups into a single stratum based on a dis-

tinct prognosis, enhancing ease of use and interpretation. A well-trained tool can also

accurately classify cancer stage and predict clinical outcomes. Beyond cancer staging,

this method has implications for clustering in healthcare, aiding the identification of

homogeneous patients for clinical trials and resource prioritization.
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Chapter 1

Introduction

Cancer staging plays a crucial role in medicine by identifying homogeneous patient groups

for clinical trials, aiding in treatment decisions, helping to understand the disease progno-

sis, and facilitating communication and collaboration among medical professionals. The

TNM staging system [Den52], which classifies cancers based on the extent of the tumor

(T), extent of spread to the lymph nodes (N), and presence of metastasis (M), has be-

come a wildly used benchmark in the medical community. This system has historically

been associated with outcome measures like overall survival (OS) and relapse-free sur-

vival (RFS). While the TNM staging system can provide accurate predictions of outcome

for heterogeneous patients groups, incorporating additional biologic determinants that

recognize the intrinsic tumor biology is necessary for a more personalized approach to

patient classification [Giu+17], especially for different biologic subtypes of cancers that

express different biomarkers at an individual level.

In the revision of the 8th edition of the TNM classification of the AJCC, the breast

cancer staging system incorporated tumor grade, proliferation rate, estrogen receptor

(ER) and progesterone receptor (PR) expression, human epidermal growth factor 2

(HER2) expression, and gene expression. This update provides a more flexible and pre-

cise platform for prognostic classification based on both anatomic factors and biomarkers
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[Giu+17]. In addition to ER, PR and HER2, which can be analyzed through microar-

ray and hierarchical clustering analysis, gene expression profiling has identified five main

intrinsic or molecular subtypes of breast cancer. These subtypes, which are correlated

with immunohistochemical (IHC) biomarkers, include luminal A, normal-like, luminal B,

HER2-enriched and triple-negative or basal-like breast cancer in order of prognosis from

best to worst [Per+00]. Studies have demonstrated that surrogate classification based

on IHC biomarkers and tumor grade leads to improved separation in survival outcomes

when compared to using the eight ER/PR/HER2 subtypes [PC14].

However, using a large number of risk factors to create overly refined categorizations

in the staging system makes the system difficult to use. Moreover, increasing the number

of risk categories has not been accompanied by increased ease of use or better prognostic

ability, so that parsimony should be considered to counterbalance the instinct to increase

the number of categories in future revisions of staging systems [GW10]. The challenge now

is to merge a high number of categories jointly defined by multiple risk factors into a few

strata while preserving clinically distinct prognosis within each stratum. For instance, the

PAM50 molecular classifier is a 50-gene panel that can accurately distinguish the intrinsic

subtypes of breast cancer [Par+09]. By combining PAM50 (A: luminal A, normal-like,

luminal B, HER2-enriched and basal-like), tumor stage (B: I, II, III, IV) and neoplasm

histologic grade (C: 1, 2, 3), we can create an A × B × C cube with 5 × 4 × 3 = 60

different categories. Therefore, a data-driven algorithm is needed to determine which

categories have a distinct prognosis and to collapse certain categories into one stratum.

It is important to maintain the ordering of ordinal risk factors and the difference in

prognosis among strata.

This problem can potentially be solved by tree-based algorithms such as the classi-

fication and regression tree (CART) method [Bre+17; Loh14]. The CART method is

suitable for either time-to-event outcome or binary outcome. It provides a tree structure

that can be easily converted to a set of rules to facilitate its clinical utility, and is not
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influenced by scale or specific assumptions. However, it is unclear how to incorporate

the intrinsic ordering embedded in risk factors into the heuristics of the CART method.

When the ordering is adopted, CART cannot be generalized to all patterns of groupings.

At each split, CART must make a complete separation for each risk factor. For instance,

as shown in Figure 1.1(a), in the A×B table where both A and B have four levels, CART

splits thoroughly along all columns or rows conditional on the existing splits [LWC13],

since CART treats ordinal variables in the same way as continuous variables. Once a

cut-off value is selected, CART continues to explore each split and each leaf node corre-

sponds to a different level of stage. Thus, CART is unable to generate a three-category

grouping where categories lie in different columns and rows like III and IV in Figure

1.1(b), or a non-neighbouring grouping like III in Figure 1.1(c). Hence lasso tree for can-

cer staging with survival data [LWC13] and penalized logistic regression [Lin+16] with

binary outcome such as mortality or the presence of disease, were proposed separately to

enforce more general grouping and to select the optimal grouping by introducing partial

ordering constraints. Although these two methods deal with different type of outcomes,

they both use an L1 penalized regression method to shrink the difference of neighbouring

coefficients towards zero instead of the coefficients themselves and to encourage sparsity

in the grouping of the categories. Both of them also take into account partial order-

ing constraints for multiple categories of multiple risk factors by using partial ordering

constraints, with no pre-specified number of stages. Both of these two methods can cre-

ate triangular and rectangular grouping patterns as shown in Figure 1.1(b) but fail to

generate non-neighbouring patterns like III in Figure 1.1(c) as sparsity is only forced on

neighbouring coefficients.

Therefore, a new method called ordering partially ordered set (Poset) elements by

recursive amalgamation (OPERA) was proposed to overcome the limitations of previous

methods [Wan20]. OPERA treats the partially ordered two-way grid based on prognosis

as a poset and shrinks all the coefficients to a reference level using L1 penalty during each
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Ⅰ Ⅱ Ⅱ Ⅱ

Ⅰ Ⅱ Ⅱ Ⅱ

Ⅲ Ⅳ Ⅳ Ⅴ

Ⅲ Ⅳ Ⅳ Ⅴ

(a) CART

Ⅰ Ⅰ Ⅱ Ⅱ

Ⅰ Ⅱ Ⅱ Ⅱ

Ⅲ Ⅲ Ⅳ Ⅴ

Ⅲ Ⅳ Ⅳ Ⅴ

(b) Lasso Tree

Ⅰ Ⅱ Ⅱ Ⅱ

Ⅰ Ⅱ Ⅲ Ⅲ

Ⅲ Ⅳ Ⅳ Ⅴ

Ⅲ Ⅳ Ⅳ Ⅴ

(c) OPERA

Figure 1.1: Different grouping patterns using CART, lasso tree and OPERA

recursive step, allowing it to generate any grouping pattern, including non-neighbouring

patterns like III in Figure 1.1(c). Additionally, non-risk-factor covariates can be adjusted

to improve modelling. Although OPERA has shown superior performance compared to

lasso tree and CART in risk stratification, it has only been applied to the cancer staging

problem with two ordinal risk factors and survival outcome. Moreover, how to prune the

initial result in a bottom-up way to improve accuracy and ensure a distinct prognosis for

each stage by collapsing some categories and reducing the total number of stages remains

an open question.

This thesis extends OPERA to binary outcomes and scales it up to handle multiple

risk factors. Additionally, a pruning algorithm is proposed to improve the accuracy

of cancer staging and generate better separations of stages. Furthermore, pruning can

deal with continuous risk factors by categorizing them and merging them into fewer

categories based on the same grouping patterns. Simulation studies and real-world data

both demonstrate very promising results.

Chapter 2 of this thesis presents a generalized version of OPERA that can handle

binary outcomes with multiple risk factors. In addition to the initial OPERA result, we

introduce a pruning step that is similar to tree methods. This step combines overly refined

stages and improves accuracy. We also extend the lasso tree method to binary outcomes

with multiple risk factors and evaluate our approach through a series of simulation studies.

In Chapter 3, we apply OPERA, along with the pruning step, to time-to-event out-
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comes with multiple risk factors. Additionally, we extend the lasso tree method to survival

outcomes with multiple risk factors, which serves as a comparison with our approach.

Chapter 4 shows how OPERA, with the pruning step, can handle continuous risk

factors by categorizing them into ordinal categories and merging them based on the same

staging patterns.

Chapter 5 evaluates the performance of OPERA on several real datasets, including

an advanced colorectal neoplasia study and a few cancer studies, such as breast cancer,

colorectal cancer, lung cancer, and prostate cancer.

Chapter 6 presents an R package that can implement cancer staging methods, includ-

ing the lasso tree method and OPERA with the pruning step as an available option.

Finally, in Chapter 7, we apply OPERA beyond cancer staging and use it as a clus-

tering method to identify homogeneous patients with advanced illnesses. This approach

helps prioritize clinical resources for patients in higher stages while also simplifying the

advanced illness trigger groupings designed by clinicians. This is accomplished by taking

into account more clinical and demographic risk factors.
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Chapter 2

Binary Outcome

This chapter provides a comprehensive description of OPERA and its application to

binary outcomes with multiple risk factors. Additionally, we introduce a pruning step

that improves a potentially overly refined staging system. Taking inspiration from the

topological sorting problem, this chapter begins by introducing important topological

concepts that are used to describe OPERA.

2.1 Topological Concepts

Topological concepts and relevant notations are adopted from Brualdi (2010) [Bru10] and

Garg (2015) [Gar15].

Definition 2.1.1. (Relation) Let X be a set. A relation on X is a subset R of the set

X × X of ordered pairs of elements of X. We write a R b (a is related to b), provided

that the ordered pair (a, b) belongs to R; we also write a��Rb whenever (a, b) is not in R

(a is not related to b).

The following are special properties that a relation R on a set X may have:

• R is reflexive, provided that x R x for all x in X.
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• R is antisymmetric, provided that, for all x and y in X with x ̸= y, whenever we

have x R y, we also have y��Rx. Equivalently, for all x and y in X, x R y and y R x

together imply that x = y.

• R is transitive, provided that, for all x, y, z in X, whenever we have x R y and

y R z, we also have x R z.

Example: The relation of ”less than or equal” on a set of numbers, denoted by ≤,

is a reflexive, antisymmetric, and transitive relation.

Definition 2.1.2. (Partial order) A partial order on a setX is a reflexive, antisymmetric,

and transitive relation R. If a relation R is a partial order, we generally use the usual

inequality symbol ≤ instead of R.

Definition 2.1.3. (Poset) A set X on which a partial order ≤ is defined is usually called

a partially ordered set (or more simply, a poset) and denoted by (X, ≤).

Example: The disease prognoses for breast cancer patients can be compared by

using the A × B × C system, which can be viewed as a partially ordered set (poset).

A patient with luminal A breast cancer in the first neoplasm histologic grade and the

first tumor stage (A1B1C1) is less likely to experience death than someone with basal-

like breast cancer in the second neoplasm histologic grade and the third tumor stage

(A5B2C3). The partial order is defined as less or the same likely to experience death,

which can be denoted as A1B1C1 ≤ A5B2C3. However, not all elements in the poset

are comparable, such as A4B2C3 and A5B1C3.

Definition 2.1.4. (Total order) A partial order R on a set X is a total order, provided

that every pair of elements of X is comparable.

Definition 2.1.5. (Cross Product of Posets) Given two posets (P,≤) and (Q,≤), the

cross product forms a new poset denoted as P × Q is defined as (P × Q,≤) where
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(p1, q1) ≤ (p2, q2)
def
= (p1 ≤ p2) ∩ (q1 ≤ q2).

Example: The standard relation ≤ on a set of numbers is a total order. Another

example in breast cancer staging can be a subset of the A × B × C system, such as

{A5B2C1, A5B2C2, A5B2C3, A5B2C4}. The A×B×C staging system is the Cartesian

product of the total ordered sets A, B and C and such a product set is a poset.

a1b1c1

a2b1c1 a1b2c1 a1b1c2

a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2a1b1c3

a4b1c1 a3b2c1 a3b1c2 a2b3c1 a2b2c2a2b1c3a1b4c1a1b3c2a1b2c3

a5b1c1 a4b2c1 a4b1c2 a3b3c1 a3b2c2a3b1c3a2b4c1a2b3c2a2b2c3 a1b4c2a1b3c3

a5b2c1 a5b1c2 a4b3c1 a4b2c2a4b1c3a3b4c1a3b3c2a3b2c3 a2b4c2a2b3c3 a1b4c3

a5b3c1 a5b2c2a5b1c3a4b4c1a4b3c2a4b2c3 a3b4c2a3b3c3 a2b4c3

a5b4c1a5b3c2a5b2c3 a4b4c2a4b3c3 a3b4c3

a5b4c2a5b3c3 a4b4c3

a5b4c3

The Tree−like Structure of Risk Factors

a − Pam50

1: LumA
2: Normal
3: LumB
4: Her2
5: Basal

b − Tumor Grade

1: 1
2: 2
3: 3
4: 4

c − Neoplasm Histologic Grade

1: 1
2: 2
3: 3

Figure 2.1: An example of a Hasse diagram
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Definition 2.1.6. (Cover relation) Let a and b be in (X, ≤). Then a is covered by b

(also expressed as b covers a), denoted a <c b, provided that a < b and no element x can

be squeezed between a and b; that is, there does not exist an element x such that both

a < x and x < b hold.

Definition 2.1.7. (Hasse diagram) A diagram of a finite partially ordered set (X, ≤) is

obtained by taking a point in the plane for each element of X, being careful to put the

point for x below the point for y if x <c y, and connecting x and y by a line segment if

and only if x is covered by y.

Example: The Hasse diagram of a poset is a directed acyclic graph (DAG) that

has at least one topological ordering. It consists of a sequence of vertices, and every

edge is directed from one vertex to another, representing an ordering. For example, when

considering three risk factors related to breast cancer (PAM50 (A), tumor stage (B), and

neoplasm histologic grade (C)), each factor can be considered as a set with a total order.

The relation on each set is based on having no worse prognosis. The Hasse diagram for

the poset (A × B × C,≤) is shown in Figure 2.1, where each edge represents a cover

relation indicating no worse prognosis between two elements. Each node represents an

element in the poset (A × B × C,≤), and the arrow points from an element indicating

no worse prognosis to an element indicating no worse prognosis.

Appendix Section A.1 contains more noteworthy properties regarding the Hasse dia-

gram of a poset in the context of cancer staging problem.

Definition 2.1.8. (Mapping) We define a mapping ξ from the poset (S,≤) to the real

numbers R as the regression coefficients of risk categories.

Definition 2.1.9. (Order-preserving condition) For any two elements, a and b, in a

poset S, if a has no worse prognosis than b, denoted as a ≤S b, then the corresponding

coefficients ξ(a) and ξ(b) also follow this relation, i.e., ξ(a) ≤ ξ(b). In cancer staging,
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the poset is formed from the cross product of total ordered sets, such as A, B, and

C, where the relation among poset elements is defined as having no worse prognosis.

Alternatively, this relation can be represented as a no-greater-than relation among the

coefficients obtained from regression models. By enforcing sparsity, elements with the

same coefficient can be classified into the same stage.

Given (S,≤) = S1∪S2∪· · ·∪Sm, where S1, S2, . . . , Sm represent disjoint cancer stages

and ∀i, j, Si ∩ Sj = ∅,

• if i < j and ∀a ∈ Si and ∀b ∈ Sj, then ξ(a) < ξ(b).

• if ∀a, b ∈ Si, then ξ(a) = ξ(b).

In cancer staging, categories defined by multiple risk factors can be represented as

a poset (S,≤). For each subject i, the observed data includes the outcome yi ∈ R, the

risk category ri, which is a |S|-dimensional one-hot vector indicating the category the

subject falls into, the covariates Zi ∈ Rp, and the censoring status δi ∈ {0, 1} for survival

outcomes. To model survival outcomes, we adopt the penalized Cox proportional hazard

model, while for binary outcomes, we use the penalized logistic regression model.

Definition 2.1.10. (Down-set) Let (S,≤) be any poset. A subset D of S is known as

a down-set or an order ideal if it satisfies the following condition: for any y, z ∈ S such

that z ∈ D and y ≤S z, we have y ∈ D.

2.2 OPERA without Pruning

The process of staging cancer can be seen as an iterative process of selecting a down-set

Sk, where k = 1, 2, . . . ,m, and m is not pre-specified, from a residual set
⋃m

i=k Si = S −⋃k−1
i=1 Si. OPERA, which stands for ordering poset elements by recursive amalgamation,

orders the poset elements by selecting those that do not cover any other elements, and

recursively adding them to a down-set from the residual poset, resulting in the new stage,
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as shown in Algorithm 1. This idea is similar to Kahn’s algorithm for topological ordering

[Kah62] on a directed acyclic graph, where the nodes without dependencies or incoming

edges are selected and removed recursively.

Algorithm 1: OPERA

1 k ← 0 ; /* Initialization: No stages are found. */

2 S0 ← ∅
3 while ∪ki=0Si ̸= S; /* Recursion: A down-set is identified from the

residual set */

4 do
5 k ← k + 1
6 To satisfy the partial order constraints, the poset elements need to be ordered

based on the partial ordering.
7 Then, the elements that are close to the reference level can be amalgamated

to form a new stratum Sk. This new stratum Sk should be a down-set of the
residual poset S − ∪k−1

i=0 Si.
8 If an L1 penalty is included, the elements which are the nearest to the

reference level can be chosen as the new stratum Sk. γs indicate how close
each element is to the reference level. Therefore, the elements with zero γs,
which are the nearest to the reference level, are selected to form the new
stratum Sk.

9 end

Figure 2.2 illustrates the visualization of the OPERA algorithm on the Hasse diagram

of an A × B table, where both A and B are four-level ordinal risk factors. An ordinal

risk factor implies a monotonic relationship between the likelihood of experiencing an

outcome and each level of the risk factor. That is, the higher the level goes, the more

probable it is for a patient to experience an outcome. Each node in the diagram is labelled

with a γ, which represents the difference in the mapped regression coefficient from the

reference level.

The algorithm initially applies an L1 penalty to all γs and combines all elements with

zero γs to create S1. Subsequently, the elements in S1 are assigned the same coefficient,

and S2 is identified using the same approach. This process is repeated until all elements

are classified. After each iteration of finding a stage, the mapped coefficient of the

reference level monotonically increases.
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It is worth noting that OPERA has the capability to produce any grouping patterns,

including non-neighboring grouping patterns, such as the one demonstrated in S3 in

Figure 2.2. This is due to the absence of restrictions during each iteration regarding which

elements are combined to form a stage, as long as the partial ordering is maintained.
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Figure 2.2: An example visualization of OPERA

OPERA is applicable to different types of outcomes, with the main difference being

the likelihood function or objective function. In this chapter, we illustrate our method

and algorithms using OPERA based on a binary outcome. However, details on how

OPERA is used for survival outcomes can be found in the next chapter.

2.2.1 A Lasso-Type Modeling Procedure to Select a Down-Set

The primary objective of OPERA is to identify a down-set Sk from a residual set S −

∪k−1
i=1 Si. To accomplish this, a lasso-type modeling procedure is employed. This strategy

is based on two types of posets: posets with a unique minimum element and posets with

no minimum element but multiple minimal elements.



13

Definition 2.2.1. (Minimum Element) An element l is deemed as the minimum element

of a poset (S,≤) if l ∈ S and ∀y ∈ S : l ≤S y.

The uniqueness of a minimum element is ensured due to the antisymmetric property

of the partial order. For instance, as demonstrated in Figure 2.1, the minimum element

is A1B1C1.

When provided with data (yi, ri, Zi)
n
i=1, where for each subject i, the observed data

includes the binary outcome yi ∈ {0, 1}, the risk category ri that indicates the category

the subject i falls into, and the covariates Zi ∈ Rp, the logarithm of the likelihood can

be expressed as follows under a logistic regression model:

l(ξ, α) =
n∑

i=1

[yi(ξ(ri) + ZT
i α)− log(1 + exp(ξ(ri) + ZT

i α))] (2.1)

Therefore, if the poset contains a unique minimum element, a fundamental approach

for finding the target down-set involves selecting the minimum element l as the reference

level and fusing other elements r into it with a coefficient ξ(r) through penalization. When

a fixed reference l is established, an intercept µ ∈ R is introduced, where γ(r) = ξ(r)−µ.

If γ(r) = 0, then the element r can be amalgamated into the minimum element l with

γ(l) = 0. Based on the equation ξ(r) = γ(r) + µ, the lasso-type modeling for binary

outcomes can be defined as follows:

argmin
µ,γ,α,γ(l)=0

−l(µ, γ, α) + λ
∑
r∈S

|γ(r)| = argmin
µ,γ,α,γ(l)=0

{−
n∑

i=1

[yi(µ+ γ(ri) + ZT
i α)−

log(1 + exp(µ+ γ(ri) + ZT
i α))] + λ

∑
r∈S

γ(r)}
(2.2)

The partial order constraints for this problem are defined as follows: ∀a, b ∈ (S,≤),

if a ≤S b, then γ(a) ≤ γ(b), and γ is greater than or equal to 0. The parameter λ is used

to control the level of sparsity. The stratum S1 corresponds to the first stage of cancer,



14

and is defined as the set of elements r ∈ (S,≤) such that γ(r) = 0.

It is possible, however, for a poset to not have a minimum element.

Definition 2.2.2. (Minimal Element) A minimal element of a poset S is defined as an

element x such that there exists no element y ∈ S satisfying y ≤S x.

Although the original poset may have only one minimum element, after several strat-

ification steps, the residual poset can contain multiple minimal elements. In Figure 2.2,

for instance, both γ30 and γ23 correspond to minimal elements after S1 is identified. In

cases where there are multiple minimal elements, our proposal is to follow the optimiza-

tion approach of the basic method and use the minimum instead of arbitrarily selecting

a minimal reference. To achieve this, we adopt a parameterization strategy[OV17] de-

noted by ξ(r) = γ(r) + µ for ∀r ∈ S, which involves (|S| + 1 + p) parameters. Here, µ

is an artificial parameter that does not correspond to any element, and generalizes the

decomposition technique used for the minimum element.

Based on ξ(r) = γ(r) + µ, the lasso-type modeling for binary outcome can be defined

as follows:

argmin
µ,γ,α

−l(µ, γ, α) +
∑
r∈S

λ|γ(r)| = argmin
µ,γ,α

{−
n∑

i=1

[yi(µ+ γ(ri) + ZT
i α)−

log(1 + exp(µ+ γ(ri) + ZT
i α))] +

∑
r∈S

λγ(r)}
(2.3)

Similar to the case where there is a unique minimum element, the partial order con-

straints for this problem are defined as follows: ∀a, b ∈ (S,≤), if a ≤S b, then γ(a) ≤ γ(b),

and γ is greater than or equal to 0. The reference level is selected from the set of minimal

elements. Furthermore, these constraints help eliminate the absolute value symbol since

all elements are non-negative, which provides significant computational convenience.

If S1, S2, . . . , Sk−1 have already been found, the down-set can be defined as Dk−1 =⋃k−1
i=1 Si, and the residual poset as Uk−1 = S−Dk−1. To find a down-set Sk from a residual
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poset Uk−1, one way is to identify all the elements in Uk−1 that are minimal with respect

to the partial order, and then add them to Sk. More formally, the lasso-type modeling

for binary outcomes can be defined as follows:

argmin
µ,γ,α

−l(µ, γ, α) +
∑

u∈Uk−1

λ|γ(u)| = argmin
µ,γ,α

{−
n∑

i=1

[yi(µ+ γ(ri) + ZT
i α)−

log(1 + exp(µ+ γ(ri) + ZT
i α))] +

∑
u∈Uk−1

λγ(u)}
(2.4)

The partial order constraints include

• ∀1 ≤ i < k,∀r ∈ Si, γ(r) = Γi

• ∀a, b ∈ (S,≤) : a ≤S b⇒ γ(a) ≤ γ(b)

• ∀d ∈ Dk−1, γ(d) ≤ 0; ∀u ∈ Uk−1, γ(u) ≥ 0

After removing S1 and optimizing (2.4) for binary outcomes, the set u ∈ U1 : γ(u) = 0

should be included in the stratum S2. By recursively applying a similar method to select

a down-set as a new cancer stage from the residual poset, the entire risk factor set (S,≤)

can be stratified step by step. At the kth iteration, (k + |Uk−1|+ p) parameters need to

be estimated.

2.2.2 Optimization

To solve the L1 penalized logistic regression [Lin+16], an iterative procedure can be used.

This involves expressing the standard Newton-Raphson update as the method of itera-

tively reweighted least squares (IRLS), followed by replacing the weighted least squares

step with a constrained weighted least squares procedure. Because our problem does

not involve high-dimensional data, this procedure is suitable for accurately computing its

estimates.
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Define

πi =
1

1 + exp(−ηi)

yi ∼ BIN(1, πi)

η = ZTα +RTγ + 1µ = XTβ

Z = [Z1, Z2, . . . , Zn]

R = [r1, r2, . . . , rn]

XT = [1|RT |ZT ]

βT = [µ|γT |αT ]

π = [π1, π2, . . . , πn]
T

y = [y1, y2, . . . , yn]
T

η = [η1, η2, . . . , ηn]
T

(2.5)

In equation (2.5), the vector ri denotes the category of risk factors or the stage that

the subject i belongs to, at the kth iteration of OPERA. This vector has a dimension of

(|Uk−1|+ k − 1).

Define

u =
∂l

∂η

ui =
∂l

∂ηi
= yi − πi

A =
−∂l2

∂ηηT
= diag(πi(1− πi))

z = η + A−1u

(2.6)

To obtain a down-set Sk from a residual poset Uk−1, using a binary outcome, OPERA

employs an iterative procedure at the kth iteration, which can be outlined as follows:
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1. Fix a value of λ and initialize β̂

2. Compute η, u, A and z based on the current value of β̂

3. Minimize (z − η)TA(z − η) + λ1Tγ subject to the constraints including

• ∀1 ≤ i < k,∀s ∈ Si, γ(s) = Γi and Γ1 ≤ Γ2 ≤ · · · ≤ Γk−1 ≤ 0

• ∀a, b ∈ (Uk−1,≤), if a ≤Uk−1
b then γ(a) ≤ γ(b).

• For all d ∈ Dk−1 = ∪k−1
i=1 Si, we have γ(d) ≤ 0 and for all u ∈ Uk−1, we have

γ(u) ≥ 0.

4. Repeat Steps 2 and 3 until β̂ converges.

Algorithm 2: IRLS for Binary Outcome

Data: (yi, ri, Zi)
n
i=1, λ, k, β0; /* β0 ∈ Rd */

Result: βT
λ = [µλ, γ

T
λ , α

T
λ ]

1 Z ← [Z1, Z2, . . . , Zn], R← [r1, r2, . . . , rn], X
T ← [1|RT |ZT ], d← |Uk−1|+ k + p,

q ← 0 ; /* 1 ∈ Rn */

2 while 1
d
|βq − βq−1|1 > ϵ and q ≤ 10; /* ϵ = 10−4, βq ∈ Rd */

3 do
4 ηq ← XTβq ; /* η = ZTα +RTγ + 1µ = XTβ */

5 πq ← 1
1+exp(−ηq)

, uq ← yq − πq, Aq ← diag(πq ⊙ (1− πq))

6 zq ← ηq + A−1
q uq ; /* zi = 0 if ∂l2

∂η2i
= 0 */

7 βq ← argminβ,γ(zq −XTβ)TAq(zq −XTβ) + 2λ1Tγ =
argminβ,γ β

TXAqX
Tβ − 2zTq AqX

Tβ + 2λ1Tγ s.t.

• ∀1 ≤ i < k, ∀s ∈ Si, γ(s) = Γi, Γ1 ≤ Γ2 ≤ · · · ≤ Γk−1 ≤ 0

• ∀a, b ∈ (Uk−1,≤) : a ≤Uk−1
b⇒ γ(a) ≤ γ(b)

• ∀d ∈ Dk−1 = ∪k−1
i=1 Si, γ(d) ≤ 0; ∀u ∈ Uk−1, γ(u) ≥ 0

q ← q + 1
8 end

By dropping the absolute values, the minimization problem in Step 3 reduces to a

simple quadratic program with linear inequality constraints. This can be efficiently solved

using the R Package quadprog [Tur19][GI82][GI83]. Based on empirical experience, the
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iterative procedure typically converges rapidly. All computational tasks are performed

using R version 4.2.0.

The IRLS method is described in detail in Algorithm 2. To obtain the estimates

denoted as (µλ, γλ, αλ), the tuning parameter λ is provided, and the method is executed

for find the (k + 1)th stage when k stages have been found. The initial value of β̂ can

be set as β0 by utilizing the logistic regression coefficients with no imposed constraints

and setting λ to zero. The number of iterations is kept track of by the variable q.

Line 7 employs 2λ to simplify computation and implementation. Moreover, XAqX
T is

substituted with XAqX
T + ϵI in consideration of the possibility that X may be singular.

Here, ϵ is a small positive value that helps prevent numerical instability.

2.2.3 Tuning Parameter Selection

Algorithm 3 highlights the parameter tuning step in OPERA, which is a necessary step

before identifying a down-set. Assuming that the total number of stages found at the end

is m, we can define the poset S = ∪mj=1Sj = ∪|S|h=1sh as formed by the union of m stages or

|S| categories defined by risk factors, and the variable k keeps track of the current number

of discovered stages. Before finding a down-set, a grid of λ’s is uniformly selected on the

logarithmic scale between λmin and λmax, which can be determined through binary search.

The number of zero ri’s is counted before finding λmin and λmax by setting λ to zero. In

the search for λmax, λ is initially set to 1. If any ri’s are non-zero, λ is doubled until all

ri’s are zero. If all ri’s are zero, λ is halved until some ri is non-zero. Similarly, in the

search for λmin, λ is initially set to 1. If any ri’s are zero, λ is halved until the number

of zero ri’s matches the count when λ equals 0. If all ri’s are non-zero, λ is doubled until

some ri is zero. N denotes the total number of λ’s to be searched, and all λ’s are evenly

spaced on the logarithmic scale.

The Akaike information criterion (AIC) [Aka73] is a method proposed to select the

optimal tuning parameter λ, defined as:
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Algorithm 3: OPERA with Parameter Tuning

Data: (yi, ri, Zi)
n
i=1

Result: sh ∈ Sj, where j = 1, 2, . . . ,m, h = 1, 2, 3, . . . , |S| and sh ∈ (S,≤)
1 D0 = ∅, U0 = S, k = 0 ; /* Initialization */

2 while Uk! = ∅ do
3 k1 ← 0, λ← 1
4 while

∑
1[γλ! = 0] > 0 and k1 <= 30 do

5 (µλ, γλ, αλ)← IRLS((yi, ri, Zi)
n
i=1, λ)

6 λ← λ× 2, k1 ← k1 + 1 ; /* while any ri’s are non-zero */

7 end
8 if k1 > 1 then
9 λmax ← λ/2

10 else
11 k2 = 0, λ← 1
12 while

∑
1[γλ! = 0] = 0 and k2 <= 30 do

13 (µλ, γλ, αλ)← IRLS((yi, ri, Zi)
n
i=1, λ)

14 λ← λ/2, k2 ← k2 + 1 ; /* while all ri’s are zero */

15 end
16 λmax ← λ× 4

17 end
18 k3 = 0, λ← 1
19 while

∑
1[γλ = 0] = 0 and k3 <= 30 do

20 (µλ, γλ, αλ)← IRLS((yi, ri, Zi)
n
i=1, λ)

21 λ← λ× 2, k3 ← k3 + 1 ; /* while all ri’s are non-zero */

22 end
23 if k3 > 1 then
24 λmin ← λ/4
25 else
26 k4 = 0, λ← 1
27 while

∑
1[γλ = 0] >

∑
1[γλ=0] and k4 <= 30 do

28 (µλ, γλ, αλ)← IRLS((yi, ri, Zi)
n
i=1, λ)

29 λ← λ/2, k4 ← k4 + 1 ; /* until the number of zero ri’s matches

the count when λ equals 0 */

30 end
31 λmin ← λ× 2

32 end

33 for λ in {exp (log λmin +
log λmax−log λmin

N−1
i)}N−1

i=0 , N ← 30 do

34 (µλ, γλ, αλ)← IRLS((yi, ri, Zi)
n
i=1, λ), AICλ ← AIC(µλ, γλ, αλ)

35 if AICλ < AICbest then
36 AICbest ← AICλ, (µbest, γbest, αbest)← (µλ, γλ, αλ)
37 end

38 end
39 (µ̂, γ̂, α̂)← (µbest, γbest, αbest)
40 k ← k + 1
41 Sk ← {u ∈ Uk−1 : γ̂(u) = 0}, Dk ← Dk−1 ∪ Sk, Uk ← S −Dk

42 end
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AIC(λ) = −2l(µλ, γλ, αλ) + 2dfλ (2.7)

where l(µλ, γλ, αλ) is the log-partial likelihood for the constrained fit with λ, and dfλ

is the degree of freedom in the model, estimated by the number of non-zero γ’s. The

AIC enhances the negative log-partial likelihood by a penalty term that is proportional

to the effective number of parameters. Each time OPERA attempts to find a down-set,

the AIC is computed over a range of values of λ, uniformly distributed on the log scale

from λmin to λmax. The best λ that minimizes the estimated AIC is chosen.

2.3 Coarse Pruning

Algorithm 1 generates outputs sh ∈ Sj, where j = 1, 2, . . . ,m, h = 1, 2, 3, . . . , |S|, and

sh ∈ (S,≤), assigning each category defined by risk factors with a cancer stage. The

assigned stages follow an ordering from the least advanced to the most advanced cancer

stage. However, as Algorithm 1 does not have prior knowledge about the number of

stages, it may over-partition the tree-like structure, as illustrated in Figure 2.1. To

overcome this potential issue, a pruning procedure is introduced.

An approach to refining the results obtained from Algorithm 1 involves iteratively

reducing one stage. In each iteration, we also iteratively merge each adjacent pair of

stages and use the likelihood to determine which stage to prune. The stopping rules for

pruning can be either the AIC, the Brier Score (BS)[Bri+50], or the likelihood ratio test

(LRT) with a p-value smaller than α. This helps us choose the best combination that

fits the data.

The process, as outlined in Algorithm 4, includes an outer iteration and an inner

iteration. In the outer loop, we iteratively reduce the number of stages by 1, calculate

the BS or AIC, and check if the stopping criterion is met. When the BS or AIC is used as

the stopping rule, we need to iteratively reduce the number of stages to 2. However, when
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the LRT is used, we can break the loop anytime the p-value is no more than α. In each

inner loop, we iteratively choose the best set of coefficients with the maximum likelihood.

The new coefficients are estimated using the IRLS algorithm, subject to constraints that

ensure all coefficients comply with the ordering embedded in adjacent cancer stages.

Algorithm 4: Coarse Pruning

1 From Algorithm 1, m stages are found.
2 while m− 2 > 0 do
3 Estimate the coefficients for cancer stages given the total ordering among

different stages (Algorithm 5)
4 Calculate the corresponding likelihood lm, the BS BSm and the AIC AICm

5 m← m− 1
6 for j in 2:(m+1) do
7 Merge Sj, Sj−1 into one stage Sj

8 Estimate coefficients using IRLS under the following constraint:
ζ(S1) ≤ . . . ζ(Sj−2) ≤ ζ(Sj) ≤ ζ(Sj+1) ≤ · · · ≤ ζ(Sm+1)

9 Calculate the corresponding likelihood lm,j

10 end
11 Select Sj for pruning if it yields the maximum likelihood lm = maxj lm,j

12 Calculate the BS BSm and the AIC AICm

13 if the LRT is used then
14 −2(lm − lm+1) ∼ χ2(1)
15 if p-value ≤ α then
16 break
17 end

18 end

19 end
20 if the BS or AIC is used then
21 Select the final result with the smallest BS or AIC
22 end

It is essential to note that in line 8 of Algorithm 4, the process of estimating coefficients

for each cancer stage involves IRLS under linear constraints. The coefficients can be

initialized as β0 using the logistic regression model. To estimate the coefficients, the total

ordering is then incorporated into IRLS as linear constraints, as shown in Algorithm 5

line 7. This ensures that the coefficients satisfy the ordering among different stages. Here,

ri represents an m-dimensional one-hot vector indicating the original stage obtained from

OPERA or the new combined stage to which subject i belongs.
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Algorithm 5: Iteratively Reweighted Least Squares to Estimate the Coefficients
for Stages (IRLSG)

Data: (yi, ri, Zi)
n
i=1, S = S̃1 ∪ S̃2 ∪ · · · ∪ S̃m̃, β0

Result: βT = [ζT , αT ], ζ ∈ Rm̃, α ∈ Rp

1 Z ← [Z1, Z2, . . . , Zn], R← [r1, r2, . . . , rn], X
T ← [RT |ZT ], q ← 0

2 while 1
m̃+p
|βq − βq−1|1 > ϵ and q ≤ 20; /* ϵ = 10−4, βq ∈ Rm̃+p */

3 do
4 ηq ← XTβq ; /* η = ZTα +RT ζ = XTβ */

5 πq ← 1
1+exp(−ηq)

, uq ← yq − πq, Aq ← diag(πq ⊙ (1− πq))

6 zq ← ηq + A−1
q uq ; /* zi = 0 if ∂l2

∂η2i
= 0 */

7 βq ← argminζ,α(zq −XTβ)TAq(zq −XTβ) s.t.

• ζ(S̃1) ≤ ζ(S̃2) · · · ≤ ζ(S̃m̃)

q ← q + 1
8 end

Algorithm 6: Coarse Pruning with IRLSG

Data: (yi, ri, Zi)
n
i=1, S = ∪mj=1Sj = ∪|S|h=1sh

Result: Ṡ
1 while m− 2 > 0 do
2 [ζT , αT ]← IRLSG((yi, ri, Zi)

n
i=1, S, β0), AICm ← AIC(ζ, α), lm ←

l(ζ, α), BSm ← BS(ζ, α), Ṡm = S
3 m← m− 1
4 for j in 2:(m+1) do
5 [ζT , αT ]← IRLSG((yi, ri, Zi)

n
i=1, S = S1 ∪ S2 · · · ∪ (Sj−1 ∪ Sj) ∪ Sj+1 · · · ∪

Sm+1, β0), AICm,j ← AIC(ζ, α), lm,j ← l(ζ, α), BSm,j ← BS(ζ, α)
6 end
7 J = argmaxj lm,j, lm = lm,J , BSm = BSm,J , AICm = AICm,J

8 Ṡ1 ← S1, . . . , ṠJ−1 ← SJ−1 ∪ SJ , ṠJ ← SJ+1, . . . , Ṡm ← Sm+1, Ṡ
m = ∪mk=1Ṡk

9 if the LRT is used then
10 −2(lm − lm+1) ∼ χ2(1)
11 if p-value ≤ α then

12 Ṡ = Ṡm+1

13 break

14 end

15 end

16 end
17 if the BS or AIC is used then

18 Ṡ = ṠK , K = argminm BSm or K = argminm AICm

19 end
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Algorithm 6 provides further technical details on the coarse pruning algorithm. The

coarse pruning process is carried out only if the OPERA algorithm produces more than

two stages. The poset S = ∪m
j=1Sj = ∪|S|h=1sh is formed by the union of all identified stages

or groups of risk factors. In this representation, higher stages indicate higher risk, while

lower stages indicate lower risk.

When the AIC or BS is used as the stopping rule, the combination with the lowest

AIC or BS is selected as the final coarse pruning result. To calculate the AIC, we use

the equation:

AIC(ζ, α) = −2l(ζ, α) + 2df (2.8)

Here, l(ζ, α) represents the log-partial likelihood with the estimated coefficients under

the total ordering, and df is the degree of freedom in the model, estimated by the cur-

rent number of stages. The AIC penalizes the negative log-partial likelihood by a term

proportional to the total number of stages.

The BS is essentially the mean squared error (MSE) for binary outcomes. To calculate

the BS, we use the equation:

BS(ζ, α) =
1

n

n∑
i=1

(yi − p̂i)
2 (2.9)

Here, p̂i is the estimated probability of experiencing the event (i.e., P (Yi = 1)).

2.4 Fine Pruning

Algorithm 4 demonstrates that the coarse pruning procedure takes O(m2) operations to

obtain the pruned result, wherem represents the number of stages identified by Algorithm

1. However, coarse pruning has a limitation: it does not allow the merging of certain

groups of risk factors Q within a stage Sj into a neighboring stage Sj−1 while combining
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the remainder into another stage Sj+1. To address this limitation, we introduce a fine

pruning procedure.

The key to fine pruning is to enforce the merging of Q ⊆ Sj into Sj−1 and the merging

of Sj\Q into Sj+1. A brute-force approach to achieving this is to attempt merging each

element in Sj into either Sj−1 or Sj+1, which takes O(2|Sj |) operations. This approach

is known as an exhaustive search. To mitigate the complexity associated with the

brute-force approach, we introduce a quadratic constraint in the IRLS procedure as

an alternative approach.

2.4.1 Exhaustive Search

The OPERA algorithm classifies each group of risk factors into stages according to Algo-

rithm 1. To recombine stages that may have been over-partitioned, coarse pruning is used

as outlined in Algorithm 4. Alternatively, fine pruning involves an exhaustive search that

considers all possible scenarios satisfying the partial ordering constraints when a stage is

removed and split into neighboring stages. The optimal scenario for splitting and merg-

ing is determined using the maximum likelihood when each stage is removed, and the

candidate stage to be pruned is also determined using the maximum likelihood after-

wards. Finally, the LRT or BS or AIC is employed to determine whether a stage should

be pruned, and the pruning process is stopped accordingly.

Similar to coarse pruning, the fine pruning process is executed only if the OPERA

algorithm yields more than two stages, as demonstrated in Algorithm 7. Line 6 and 7

depict the main distinction between coarse pruning and fine pruning. Coarse pruning

focuses on pruning the results at the stage level, whereas fine pruning delves into pruning

at the node level. When the LRT is performed between m and m−1 stages, if the p-value

is no more than α, the pruning step stops. Otherwise, the pruning continues and the

total number of stages decreases by 1. The pruning will not cease until the p-value is

larger than α. When the BS or AIC is used, the pruning continues until only two stages
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remain. The final result is based on the smallest BS or AIC, as indicated in Algorithm 7.

Algorithm 7: Fine Pruning with an Exhaustive Search

1 From Algorithm 1, m stages are found.
2 while m− 2 > 0 do
3 Estimate the coefficients for cancer stages given the total ordering among

different stages (Algorithm 5), and calculate the corresponding likelihood
lm, the BS BSm and the AIC AICm

4 m← m− 1
5 for j in 2:m do
6 Generate a matrix with dimensions of 2|Sj | × |Sj|. Each row represents a

vector that signifies a potential staging scenario, indicating whether each
node in Sj merges into Sj−1 or Sj+1. Remove any rows from the matrix
where the partial ordering constraints are violated.

7 Iterate through all possible rows in the matrix, estimating the
corresponding coefficients that adhere to the total ordering constraint
among various stages. Select the row with the highest likelihood lm,j.

8 end
9 Select Sj for pruning if it yields the maximum likelihood lm = maxj lm,j, and

calculate the BS BSm and the AIC AICm

10 if the LRT is used then
11 −2(lm − lm+1) ∼ χ2(1)
12 if p-value ≤ α then
13 break
14 end

15 end

16 end
17 if the BS or AIC is used then
18 Select the final result with the smallest BS or AIC
19 end

Algorithm 8 provides further technical insights into our methodology. The log-

likelihood, the BS, and the AIC are computed before each iteration of stage pruning.

When selecting the optimal scenario for stage pruning, we iterate through all current

stages as the outer loop. Within each stage, we explore all possible scenarios of splitting

into neighboring stages as the inner loop. To represent these scenarios, we use the matrix

A
2|Sj |×|Sj |

. Additionally, we use P.×|Sj | to detail the relevant partial ordering constraints,

filtering out scenarios that violate the ordering constraint. By multiplying A
2|Sj |×|Sj |

by

P T
|Sj |×., we obtain a new matrix W with 2|Sj | rows. Rows with negative values in W
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indicate that the corresponding rows in A should be removed, before we are left with c

scenarios that are then selected based on the log-likelihood for further consideration.

Algorithm 8: Fine Pruning with an Exhaustive Search with IRLSG

Data: (yi, ri, Zi)
n
i=1, S = ∪mj=1Sj = ∪|S|h=1sh

Result: Ṡ
1 while m− 2 > 0 do
2 [ζT , αT ]← IRLSG((yi, ri, Zi)

n
i=1, S, β0), AICm ← AIC(ζ, α), lm ←

l(ζ, α), BSm ← BS(ζ, α), Ṡm = S
3 m← m− 1
4 for j in 2:m do
5 Find the rows of A

2|Sj |×|Sj |
P T
|Sj |×. with negative values

6 Remove the corresponding rows to get A′
c×|Sj |

7 for k in 1:c do
8 [ζT , αT ]← IRLSG((yi, ri, Zi)

n
i=1, S, β0), AICm,j,c ← AIC(ζ, α), lm,j,c ←

l(ζ, α), BSm,j,c ← BS(ζ, α)
9 end

10 end
11 J,C = argmaxj,c lm,j,c, lm = lm,J,C , BSm = BSm,J,C , AICm = AICm,J,C

12 Ṡ1 ← S1, . . . , ṠJ−1 ← SJ−1 ∪ SJ,C , ṠJ ← SJ+1 ∪ (SJ\SJ,C), . . . , Ṡm ←
Sm+1, Ṡ

m = ∪m
p=1Ṡp

13 if the LRT is used then
14 −2(lm − lm+1) ∼ χ2(1)
15 if p-value ≤ α then

16 Ṡ = Ṡm+1

17 break

18 end

19 end

20 end
21 if the BS or AIC is used then

22 Ṡ = ṠK , K = argminm BSm or K = argminm AICm

23 end

2.4.2 Quadratic Constraint

Definition 2.4.1. Suppose that Algorithm 1 yields m stages, such that S = ∪mj=1Sj. If

it is necessary to prune Sj, then we must merge S̃ ⊆ Sj into Sj−1, and Sj\S̃ into Sj+1.

The coefficients associated with the stages obey a total ordering, expressed as ζ(S1) ≤
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ζ(S2) ≤ · · · ≤ ζ(Sm). This merging problem can be cast as a quadratic programming

constraint, as given in Equation 2.10:

∑
s

[(ζ(s)− ζ(Sj−1))
2 + (ζ(Sj+1)− ζ(s))2] ≥

∑
s

(ζ(Sj+1)− ζ(Sj−1))
2

∀s ∈ Sj, ζ(Sj−1) ≤ ζ(s) ≤ ζ(Sj+1)

(2.10)

Proof. If a = ζ(s)− ζ(Sj−1) ≥ 0, b = ζ(Sj+1)− ζ(s) ≥ 0, then g = (a+ b)2− a2− b2 ≥ 0.

Only if a = 0 or b = 0, then g = 0. Thus, if (ζ(s) − ζ(Sj−1))
2 + (ζ(Sj+1) − ζ(s))2 −

(ζ(Sj+1)− ζ(Sj−1))
2 = a2+ b2− (a+ b)2 = −g ≥ 0, then a = 0 or b = 0 can be concluded.

This implies that either ζ(s) = ζ(Sj−1) or ζ(s) = ζ(Sj+1).

Definition 2.4.2. If Sj needs to be pruned and βT can be partitioned as βT = [ζT , αT ],

then ζT = [ζ1, ζ2, . . . , ζj−1, ζ(s)
T , ζj+1, . . . , ζm], where s ∈ Sj, ζi = ζ(Si), and ζ ∈

Rm−1+|Sj |. The quadratic programming constraint in Equation 2.10 can be rewritten

as:

V2|Sj |×(m−1+|Sj |) =



0 . . . −1 1 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . .

0 . . . −1 0 0 . . . 1 0 . . . 0

0 . . . 0 −1 0 . . . 0 1 . . . 0

. . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . −1 1 . . . 0


,

ζTMζ = ζT (V TV − |Sj|vvT )ζ = ζTV TV ζ − |Sj|ζTvvT ζ ≥ 0,

v(m−1+|Sj |)×1 = [0, 0, . . . ,−1, 0, 0, . . . , 0, 1, 0, 0, . . . , 0]T ,

M = V TV − |Sj|vvT .

(2.11)

Algorithm 9 presents a methodical approach for fine pruning utilizing a quadratic

programming constraint. Prior to the stage pruning, coefficients for the current stages

and the corresponding likelihood are estimated within the context of the total ordering

among the stages, as outlined in Algorithm 5. The BS, AIC, and log-likelihood are also
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computed as part of the pruning steps. The primary distinction between the exhaustive

search and the quadratic programming constraint lies in the approach. The latter involves

introducing a quadratic constraint to ensure the splitting and merging of all nodes from

a stage. In contrast, the former enumerates all possible scenarios. Nevertheless, the

scenario with the maximum log-likelihood remains the optimal choice for stage pruning.

Algorithm 9: Fine Pruning with a Quadratic Programming Constraint

1 From Algorithm 1, m stages are found.
2 while m− 2 > 0 do
3 Estimate the coefficients for cancer stages given the total ordering among

different stages (Algorithm 5), and calculate the corresponding likelihood
lm, the BS BSm and the AIC AICm

4 m← m− 1
5 for j in 2:m do
6 Perform IRLS under three different scenarios, including no linear

constraint on coefficients, ζm ≤ max(ζ0), or ζm ≤ max(ζ0) and
ζ1 ≥ min(ζ0)

7 Under each scenario,
8 Introduce a Lagrangian parameter λ in each iteration of IRLS to

ensure that the quadratic constraint is satisfied (Algorithm 10)
9 Tune the value of λ and select the set of coefficients that maximizes

the likelihood (Algorithm 11)
10 Choose the coefficients with the highest likelihood during IRLS, regardless

of the number of linear constraints
11 end
12 Select Sj for pruning if it yields the maximum likelihood lm = maxj lm,j, and

calculate the BS BSm and the AIC AICm

13 if the LRT is used then
14 −2(lm − lm+1) ∼ χ2(1)
15 if p-value ≤ α then
16 break
17 end

18 end

19 end
20 if the BS or AIC is used then
21 Select the final result with the smallest BS or AIC
22 end

The quadratic programming constraint offers an advantageous and unique approach

by avoiding the need to enumerate all possible combinations, which can be exponen-
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tially large (O(2|Sj |)), when attempting to prune Sj. However, the drawback lies in the

non-convex nature of this constraint. In other words, unlike the exhaustive search, the

quadratic constraint cannot guarantee to produce the optimal solution with the maximum

log-likelihood. When the linear constraints ζj−1 ≤ ζ(s) ≤ ζj+1, s ∈ Sj are satisfied, the

condition ζTMζ ≤ 0 holds. Checking whether the difference between −ζTMζ and zero

is smaller than a tolerance number ϵ ensures the fulfillment of the quadratic constraint

and enables successful pruning.

Algorithm 10: One Iteration of IRLS with Linear and Quadratic Constraints
during Pruning without Parameter Tuning (OIRLS)

Data: (yi, ri, Zi)
n
i=1, λ, S = S̃1 ∪ S̃2 ∪ · · · ∪ S̃m̃, βq−1, β0, c

Result: βq = (ζq, αq), l(βq)
1 Z ← [Z1, Z2, . . . , Zn], R← [r1, r2, . . . , rn], X

T ← [RT |ZT ], ηq−1 ← XTβq−1

2 πq−1 ← 1
1+exp(−ηq−1)

, uq−1 ← yq−1 − πq−1, Aq−1 ← diag(πq−1 ⊙ (1− πq−1))

3 zq−1 ← ηq−1 + A−1
q−1uq−1 ; /* zi = 0 if ∂l2

∂η2i
= 0 */

4 βq ← argminζ,α(zq−1 −XTβq−1)
TAq−1(zq−1 −XTβq−1)− λζTq−1Mζq−1

• ζ(S̃1) ≤ ζ(S̃2) ≤ · · · ≤ ζ(S̃j−1) ≤ ζ(s) ≤ ζ(S̃j+1) ≤ · · · ≤ ζ(S̃m̃), ∀s ∈ Sj

• a, b ∈ Sj, if a ≤Sj
b, then ζ(a) ≤ ζ(b)

• More linear constraints

– If c = 0, then no additional linear constraints are involved;

– If c = 1, then ζ(S̃m̃) ≤ max(ζ0);

– If c = 2, then ζ(S̃m̃) ≤ max(ζ0) and ζ(S1) ≥ min(ζ0)

The non-positiveness of M and its associated non-convex constraint introduce com-

plexity to the estimation process during pruning, specifically with the use of IRLS for

coefficient estimation. The non-convexity of the optimization problem implies that con-

vergence of IRLS cannot be guaranteed. To enhance estimation accuracy, we initialize

ζ0 with coefficients estimated from a logistic regression model. Additionally, as shown

in Algorithm 10, we employ three different scenarios to select the optimal set of coef-

ficients based on the likelihood: (1) no additional linear constraint on coefficients, (2)

ζm ≤ max(ζ0), or (3) ζm ≤ max(ζ0) and ζ1 ≥ min(ζ0). These strategies help facilitate
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estimation and maintain control over the overall estimated coefficients within a certain

range.

During each iteration of IRLS, a Lagrangian parameter λ is introduced to ensure the

fulfillment of the quadratic constraint. This is accomplished by minimizing −ζTMζ until

it reaches zero, as illustrated in line 4 of Algorithm 10. The appropriate tuning of the

parameter λ depends on the feasibility of satisfying the quadratic constraint ζTMζ = 0.

Initially, λ is assigned a value of 1, as depicted in Algorithm 11. Subsequently, a binary

search is performed to determine whether the quadratic constraint can be satisfied. Due

to the non-convexity of M , we use the nearest positive definite[Hig88] of the quadratic

matrix in the minimization problem in line 4 of Algorithm 10.

Irrespective of whether IRLS converges during the pruning procedure, the incorpora-

tion of additional linear constraints, or the number of iterations required to satisfy the

quadratic constraint, the set of coefficients with the maximum likelihood is consistently

selected. This selection process is demonstrated in line 24-35 of Algorithm 11 and line

4-12 of Algorithm 12. As long as the quadratic constraint is met, the coefficients yielding

the highest likelihood are chosen, regardless of the specific IRLS convergence behavior or

the inclusion of linear constraints.

Each stage Si is evaluated as a potential candidate for pruning, and the stage that

corresponds to the maximum likelihood is ultimately chosen. Once Sj is selected, either

the LRT or the BS or the AIC is employed. In the case of the LRT, a test is conducted

between m and m − 1 stages, and if the resulting p-value is equal to or lower than the

predefined Type I error rate α, the pruning procedure is halted. Conversely, if the p-value

exceeds α, the pruning process continues, and the total number of stages decreases by

1. Alternatively, when using the BS or AIC, the total number of stages is determined

based on the smallest value, as indicated in lines 23-25 of Algorithm 12. In this approach,

the stage configuration with the most favorable BS or AIC is selected, and the pruning

procedure continues until only two stages are left.
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Algorithm 11: One Iteration of IRLS with Linear and Quadratic Constraints
during Pruning with Parameter Tuning (OIRLST)

Data: (yi, ri, Zi)
n
i=1, S = S̃1 ∪ S̃2 ∪ · · · ∪ S̃m̃, βq−1, β0, c

Result: βq = [ζq, αq]
1 Z ← [Z1, Z2, . . . , Zn], R← [r1, r2, . . . , rn], X

T ← [RT |ZT ], λ← 1, t1 ← 0
2 βq ← OIRLS((yi, ri, Zi)

n
i=1, λ, S, βq−1, β0, c)

3 while t1 < 30 and |ζq| ==∞ do
4 βq ← OIRLS((yi, ri, Zi)

n
i=1, λ, S, βq−1, β0, c), λ← λ× 2, t1 ← t1 + 1

5 end
6 if t1 = 30 then
7 λ← 1, t2 ← 0
8 while t2 < 30 and |ζq| ==∞ do
9 βq ← OIRLS((yi, ri, Zi)

n
i=1, λ, S, βq−1, β0, c), λ← λ/2, t2 ← t2 + 1

10 end

11 end
12 t3 ← 0, t4 ← 0
13 if −ζTq Mζq ≥ ϵ then
14 while −ζTq Mζq ≥ ϵ and t3 < 30 do
15 βq ← OIRLS((yi, ri, Zi)

n
i=1, λ, S, βq−1, β0, c), λ← λ× 2, t3 ← t3 + 1

16 end
17 λmax ← λ/2, λmin ← λ/4

18 else
19 while −ζTq Mζq < ϵ and t4 < 30 do
20 βq ← OIRLS((yi, ri, Zi)

n
i=1, λ, S, βq−1, β0, c), λ← λ/2, t4 ← t4 + 1

21 end
22 λmax ← λ× 2, λmin ← λ

23 end

24 for λ in {exp (log λmin +
log λmax−log λmin

N−1
i)}N−1

i=0 , N ← 30 do

25 β, l(β)← OIRLS((yi, ri, Zi)
n
i=1, λ, S, βq−1, β0, c)

26 if −ζTMζ < ϵ then
27 if l(βq) == NULL then
28 βq ← β, −l(βq)← −l(β)
29 else
30 if −l(β) < −l(βq) then
31 βq ← β, −l(βq)← −l(β)
32 end

33 end

34 end

35 end
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Algorithm 12: Fine Pruning with a Quadratic Programming Constraint with
OIRLST

Data: (yi, ri, Zi)
n
i=1, S = ∪mj=1Sj = ∪|S|h=1sh

Result: Ṡ
1 while m− 2 > 0 do
2 [ζT , αT ]← IRLSG((yi, ri, Zi)

n
i=1, S, β0), AICm ← AIC(ζ, α), lm ←

l(ζ, α), BSm ← BS(ζ, α), Ṡm = S
3 m← m− 1
4 for j ← 2 : m do
5 for c← 0 : 2 do
6 q ← 1, βm,j,c,0 ← β0

7 βm,j,c,q, lm,j,c,q ← OIRLST ((yi, ri, Zi)
n
i=1, S, βm,j,c,q−1, β0, c)

8 while q <= 10 do
9 βm,j,c,q+1, lm,j,c,q+1 ← OIRLST ((yi, ri, Zi)

n
i=1, S, βm,j,c,q, β0, c),

q ← q + 1
10 end

11 end

12 end
13 J,C,Q = argmaxj,c,q lm,j,c,q, lm = lm,J,C,Q, BSm = BSm,J,C,Q, AICm =

AICm,J,C,Q

14 Ṡ1 ← S1, . . . , ṠJ−1 ← SJ−1 ∪ SJ,C,Q, ṠJ ← SJ+1 ∪ (SJ\SJ,C,Q), . . . , Ṡm ←
Sm+1, Ṡ

m = ∪mp=1Ṡp

15 if the LRT is used then
16 −2(lm − lm+1) ∼ χ2(1)
17 if p-value ≤ α then

18 Ṡ = Ṡm+1

19 break

20 end

21 end

22 end
23 if the BS or AIC is used then

24 Ṡ = ṠK , K = argminm BSm or K = argminm AICm

25 end
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2.5 Simulation

2.5.1 Edge Misclassification Rate

Refer to Figure 2.1, which depicts all combinations of risk factors in a tree-like structure.

In this structure, each node represents a unique combination, and each edge represents

an ordering relationship. One simplistic approach to assess the performance of our algo-

rithms is to assign a stage label to each node, compare the classification with the ground

truth, and calculate the proportion of nodes that are incorrectly classified known as the

node misclassification rate. However, this metric is not robust as it heavily relies on

the total number of stages and the accuracy of early-stage classification. Therefore, we

propose the use of the edge misclassification rate as a more reliable measure. The edge

misclassification rate quantifies the proportion of incorrectly classified edges.

Mathematically, edge misclassification rate can be denoted as follows

1−
∑|E|

i 1(eTi s− eTi t = 0)

|E|
(2.12)

In Equation (2.12), |E| represents the total number of edges, and ei is a |S|-dimensional

vector that represents a partial ordering relationship, where (S,≤) is a poset compris-

ing all combinations of risk factors. For example, if p, q ∈ (S,≤) and p ≤S q, then

eTi = [0, 0, ..., 0,−1, 0, ..., 0, 1, 0, ..., 0, 0], where −1 corresponds to p and 1 corresponds

to q. Furthermore, s is a |S|-dimensional vector representing the prediction for cancer

staging, and t is a |S|-dimensional vector representing the ground truth for cancer staging.

2.5.2 Setup

To assess the performance of OPERA and its related methods, we selected lasso tree

[LWC13] as the alternative approach for comparison. Although lasso tree was initially

designed for survival outcomes with two risk factors, we extended it to handle binary
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outcomes and multiple risk factors so that our algorithms could be compared effectively.

For the purpose of simulation, logistic regression models, as shown in Table 2.1, were

used to define the underlying probabilities (pi) of experiencing an outcome for each patient

(i), where 0.1 ≤ pi ≤ 0.9. The binary outcome Yi was simulated based on the binomial

distribution with a size of 1 and a probability of pi for each patient. The assignment of

patients to risk categories followed a uniform distribution, ensuring an equal probability

of belonging to each category.

Model Assumptions

logit(pi) =
∑5

j=1 βj1(Xi ∈ (Sj,≤))

Yi ∼ BIN(1, pi)

Xi ∼ UNIF{(S,≤)}

0.1 ≤ pi ≤ 0.9

i = 1, 2, 3, ..., n

β = −2,−1, 0, 1, 2

Table 2.1: The model and assumptions to simulate binary data

The underlying coefficients βs for risk categories defined by two risk factors were

pre-specified as illustrated in Figure 2.3. The figure on the left Figure 2.3a represents

a scenario that favors lasso tree, as lasso tree is only capable of handling neighboring

categories within the same stage. Conversely, the figure on the right Figure 2.3b depicts

a scenario that favors OPERA, where non-neighboring categories can belong to the same

stage, such as the second stage and the third stage.

In the binary outcome scenario, the sample size n can vary between 1600 and 3200 for

two-risk-factor scenarios, and between 2700 and 5400 for three-risk-factor scenarios. For

each simulation scenario, a total of 500 simulations were conducted. The two-risk-factor

scenarios involved two different 4-level ordinal risk factors, namely A and B, as depicted

in Figure 2.3. Alternatively, the three-risk-factor scenarios considered three different 3-

level risk factors, denoted as A, B, and C, as shown in Figure 2.4. It is important to

note that no additional covariates needed to be adjusted in the simulations.
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b1 b2 b3 b4

a1 -2 -2 -2 -1

a2 -1 -1 -1 -1

a3 0 1 1 2

a4 0 1 2 2

(a) Simulation setup favoring lasso tree

b1 b2 b3 b4

a1 -2 -2 -2 -1

a2 -1 -1 -1 0

a3 0 1 1 2

a4 0 1 2 2

(b) Simulation setup favoring opera

Figure 2.3: Simulation setup for coefficients βs with two risk factors

a1b1c1

a2b1c1 a1b2c1 a1b1c2

a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2 a1b1c3

a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b3c2 a1b2c3

a3b3c1 a3b2c2 a3b1c3 a2b3c2 a2b2c3 a1b3c3

a3b3c2 a3b2c3 a2b3c3

a3b3c3

Coefficients

−2
−1
0
1
2

(a) Simulation setup favoring lasso tree

a1b1c1

a2b1c1 a1b2c1 a1b1c2

a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2 a1b1c3

a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b3c2 a1b2c3

a3b3c1 a3b2c2 a3b1c3 a2b3c2 a2b2c3 a1b3c3

a3b3c2 a3b2c3 a2b3c3

a3b3c3

Coefficients

−2
−1
0
1
2

(b) Simulation setup favoring opera

Figure 2.4: Simulation setup for coefficients βs with three risk factors
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Figure 2.5: The edge misclassification rate for different methods with two risk factors
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Figure 2.6: The edge misclassification rate for different methods with three risk factors
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2.5.3 Results

The results for various simulation scenarios, including those with two risk factors and

three risk factors, are displayed in Figures 2.5 and 2.6, respectively. We also consider

various underlying true staging patterns, including the neighbouring staging patterns

that favor lasso tree and the non-neighboring staging patterns that favor OPERA. In

each simulation scenario, we compared multiple approaches, including the use of a logistic

regression model with a partial ordering constraint and the grouping of variables with

the same coefficients (after rounding them to the nearest two decimal places) into stages

(referred to as regression), the application of lasso tree using BIC (referred to as lasso

tree), the use of OPERA without pruning (referred to as no pruning), the implementation

of coarse pruning (referred to as coarse pruning), and the adoption of fine pruning using

exhaustive search (referred to as fine pruning). The stopping rule for pruning relies on

the criterion used to determine whether a stage should undergo pruning. This criterion

can be based on the LRT, where the Type I error rate can be set at either 0.05 or 0.01,

the BS, the AIC, or pruning until the true number of stages is reached – in our case, 5

stages.

In three-risk-factor scenarios favoring lasso tree, as illustrated in Figure 2.6a, the

regression method yields the poorest performance in the median edge misclassification

rate. In contrast, coarse pruning using LRT with α = 0.01 demonstrates the best per-

formance among all the criteria without knowing the true number of stages. Also, the

result is closely comparable to pruning based on the predefined number of stages with

the median edge misclassification rate equal to 0.06 when the sample size equals 2700

and 0 when the sample size equals 5400. This approach leads to an improvement of

0.72 in reducing the median edge misclassification rate compared to regression, and a

further enhancement of 0.35 compared to the use of the lasso tree for a sample size of

2700. Similarly, an improvement of 0.8 compared to using regression and 0.35 compared

to using lasso tree are observed for a sample size of 5400. Among the other pruning
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criteria, using the LRT (α = 0.05) yields the best results in the median misclassification

rate, followed by the AIC, and then the BS. Fine pruning steps only uses the exhaustive

search method here. Fine pruning consistently outperforms or at least performs on par

with coarse pruning across various criteria, except for a slightly worse performance (0.01

increase in the median edge misclassification rate) for a sample size of 2700 using LRT

(α = 0.01). However, with a larger sample size, fine pruning matches the performance of

coarse pruning, regardless of the stopping criteria used. The enhancement from OPERA

without pruning to pruning using the BS is extremely small (the difference in the median

misclassification rate is no more than 0.02), indicating that the BS is not an effective

criterion for pruning. While OPERA outperforms lasso tree with a smaller sample size

(0.3 vs. 0.41), it fails to do so with a larger sample size (0.39 vs. 0.35), due to the issue

of over-partitioning. Nevertheless, pruning substantially enhances performance with a

larger sample size by mitigating the over-partitioning issue.

In three-risk-factor scenarios favoring OPERA, as illustrated in Figure 2.6b, similar

conclusions can be drawn. The regression method still yields the poorest performance,

while coarse pruning using LRT with α = 0.01 still demonstrates the best performance in

the median misclassification rate, closely comparable to pruning based on the predefined

number of stages (0.07 for a sample size of 2700 while 0 for a sample size of 5400). When

the sample size is 2700, this approach results in an improvement of 0.76 in reducing the

median edge misclassification rate compared to using regression and 0.62 compared to

using lasso tree. Similarly, with a sample size of 5400, improvements of 0.83 compared

to using regression and 0.67 compared to using lasso tree are observed. Among the other

pruning criteria, using the LRT (α = 0.05) still yields the best results, followed by the

AIC, and then the BS. Fine pruning steps still only use exhaustive search. Fine pruning

consistently outperforms or at least performs on par with coarse pruning across different

criteria by demonstrating a smaller median misclassification rate or a smaller interquartile

range (IQR). The improvement from OPERA without pruning to pruning using the BS
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is still extremely small (0 for coarse pruning while 0.04 for fine pruning), indicating

that the BS is not an effective criterion for pruning. In both sample sizes, OPERA

outperforms lasso tree, as the simulation scenarios favor OPERA with non-neighboring

staging patterns.

In two-risk factor scenarios favoring lasso tree, as depicted in Figure 2.5a, lasso tree

outperforms OPERA for a sample size of 3200 (0.17 vs 0.21), while the opposite can

be observed for a sample size of 1600 (0.21 vs 0.17). It is consistent with the previous

results in Figure 2.6a that lasso tree can outperform OPERA only for a larger sample size.

Coarse pruning using the LRT (α = 0.01) still demonstrates the best performance in the

median edge misclassification rate (0 for both sample sizes), comparable to pruning with

the predefined number of stages. On the other hand, regression still exhibits the worst

performance. Fine pruning does not exhibit better performance than coarse pruning

across different stopping rules. In two-risk factor scenarios favoring OPERA, as shown in

Figure 2.5b, OPERA without pruning outperforms lasso tree across different sample sizes,

contrasting the scenarios favoring lasso tree. Coarse pruning using the LRT (α = 0.01)

still shows the best performance in the median edge misclassification rate (0 for both

sample sizes), comparable to pruning with the predefined number of stages. Fine pruning

still does not show a better performance than coarse pruning across different stopping

rules, except using the BS for a sample size of 1600.

Across all scenarios, pruning with BS consistently fails to improve accuracy, whereas

pruning with LRT (α = 0.01) consistently performs the best among all the criteria with-

out knowing the true number of stages, closely comparable to pruning using the predefined

number of stages. Coarse pruning achieves performance as good as fine pruning.

2.5.4 Discussion

Given the demonstrated improvements of pruning methods over OPERA without prun-

ing, further exploration of these methods can be undertaken using different initial steps.
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These steps involve applying the lasso tree with AIC as the criterion for determining

optimal groupings, using the lasso tree with BIC as the default criterion, and utiliz-

ing OPERA without pruning. As depicted in Figures 2.7, 2.8, 2.9, and 2.10, while the

three initial methods yield different results without pruning, the use of pruning enables

all methods to perform well, with low median edge misclassification rates across differ-

ent simulation scenarios, including different sample sizes, different staging patterns, and

different numbers of risk factors.

To further explore which pruning method performs the best across different initial

methods, we calculate the mean edge misclassification for each simulation scenario across

500 simulations and select the top 3 pruning methods with the lowest mean edge mis-

classification rates. The results, including the estimated standard deviation (SD) and

95% confidence intervals, are displayed in Table 2.2 - 2.5. The estimated SD can be

calculated using the sample standard deviation, while the confidence interval can be cal-

culated using the mean edge misclassification rate plus or minus Z0.975 = 1.96 times the

sample standard error. In three-risk-factor simulation scenarios, either with neighboring

or non-neighboring staging patterns, LRT (α = 0.01) is consistently the best stopping

rule with the lowest mean edge misclassification rates, as shown in Table 2.2 - 2.3. In

two-risk-factor simulation scenarios, either with neighboring or non-neighboring staging

patterns, coarse pruning with LRT (α = 0.01) remains the best stopping rule with the

lowest mean edge misclassification rates, as shown in Table 2.4 - 2.5.

The next question pertains to whether coarse pruning can be as effective as fine

pruning with LRT (α = 0.01) as the stopping rule. If it is not the best, how much less

effective is it? As shown in Table 2.6, we compare the mean misclassification rates among

coarse pruning, fine pruning using exhaustive search, and fine pruning using quadratic

constraint with LRT (α = 0.01) as the stopping rule. Coarse pruning consistently demon-

strates a smaller mean misclassification rate across all simulation scenarios, compared to

fine pruning using quadratic constraint, given all the negative differences between these
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two pruning approaches. Compared to fine pruning with exhaustive search, coarse prun-

ing still shows a smaller mean edge misclassification rate across the majority of simulation

scenarios. In cases where fine pruning using exhaustive search performs better, the dif-

ference is significantly small or even not significant (p-value ≥ 0.05) after we use the

paired sample t-test to analyze the difference. The largest significant difference is 2%,

which means only around 1 more edge out of 54 edges is classified correctly compared

with coarse pruning. Thus, we still believe coarse pruning demonstrates comparable

performance and is preferable due to its lower computational cost.

To evaluate the performance of fine pruning methods with exhaustive search com-

pared to those with quadratic programming constraints, each fine pruning method using

each criterion is examined, as illustrated in Figures 2.11, 2.12, 2.13, and 2.14. Across

all scenarios, utilizing quadratic programming constraints achieves a low median edge

misclassification rate, comparable to using exhaustive search. To further investigate how

much using quadratic constraints leads to inferior performance compared to using ex-

haustive search, we use the paired sample t-test to compare these two approaches. As

shown in Table 2.6, with LRT (α = 0.01) as the stopping rule, using exhaustive search

only demonstrates a small yet significant improvement over using quadratic constraints,

with 5.8% as the largest difference in the mean edge misclassification rate. This is roughly

equivalent to 1 edges out of 24 edges. In other words, when the computational cost is

high with using exhaustive search, using quadratic constraints can be an alternative with

comparable performance. Note that, due to 500 simulations for each scenario, even a

small difference can be significant.

Given coarse pruning with LRT (α = 0.01) as the best pruning approach, different

initial methods also have a slight impact on the final result. While it may not be evident

from Figures 2.7 - 2.10 based on the median edge misclassification rate, we can still

observe that using the lasso tree leads to a better performance in terms of the mean edge

misclassification rate when the sample size is smaller, with 2.8% as the largest difference.
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However, all three approaches perform very similarly well when the sample size is larger,

with less than 1% as the largest difference. In real data analysis, we recommend using

the lasso tree as the initial method, not only due to its slightly better performance but

also its lower computational cost as shown in Table 2.7, in comparison with OPERA.
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Table 2.2: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in three-risk-factor simulation scenarios with non-neighboring
staging patterns (Mean = Estimated Mean; SD = Estimated Standard Deviation; Lower
= 95% Confidence Interval Lower Limit; Upper = 95% Confidence Interval Upper Limit;
quad = using quadratic constraint; ex = using exhaustive search)

Sample Size Initial Method Pruning Method Mean SD Lower Upper

2700 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.091 0.108 0.082 0.101

2700 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.101 0.115 0.091 0.112

2700 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.136 0.125 0.125 0.147

2700 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.094 0.109 0.084 0.103

2700 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.111 0.118 0.100 0.121

2700 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.139 0.124 0.128 0.149

2700 OPERA fine pruning ex (LRT 0.01) 0.100 0.109 0.090 0.109

2700 OPERA coarse pruning (LRT 0.01) 0.120 0.119 0.109 0.130

2700 OPERA fine pruning quad (LRT 0.01) 0.137 0.117 0.127 0.147

5400 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.063 0.106 0.053 0.072

5400 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.068 0.114 0.058 0.078

5400 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.098 0.114 0.088 0.108

5400 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.061 0.105 0.051 0.070

5400 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.062 0.109 0.052 0.072

5400 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.097 0.115 0.087 0.107

5400 OPERA fine pruning ex (LRT 0.01) 0.060 0.103 0.051 0.069

5400 OPERA coarse pruning (LRT 0.01) 0.062 0.109 0.053 0.072

5400 OPERA fine pruning quad (LRT 0.01) 0.097 0.112 0.087 0.106
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Table 2.3: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in three-risk-factor simulation scenarios with neighboring staging
patterns

Sample Size Initial Method Pruning Method Mean SD Lower Upper

2700 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.067 0.095 0.059 0.076

2700 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.087 0.116 0.077 0.097

2700 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.094 0.138 0.082 0.107

2700 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.068 0.096 0.060 0.077

2700 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.092 0.119 0.082 0.103

2700 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.097 0.139 0.085 0.109

2700 OPERA coarse pruning (LRT 0.01) 0.095 0.101 0.086 0.104

2700 OPERA fine pruning ex (LRT 0.01) 0.104 0.114 0.094 0.114

2700 OPERA fine pruning quad (LRT 0.01) 0.115 0.136 0.103 0.127

5400 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.040 0.092 0.032 0.048

5400 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.043 0.095 0.035 0.051

5400 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.047 0.108 0.038 0.057

5400 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.036 0.087 0.029 0.044

5400 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.037 0.089 0.029 0.045

5400 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.043 0.107 0.034 0.053

5400 OPERA coarse pruning (LRT 0.01) 0.041 0.089 0.033 0.049

5400 OPERA fine pruning ex (LRT 0.01) 0.041 0.089 0.033 0.048

5400 OPERA fine pruning quad (LRT 0.01) 0.046 0.103 0.037 0.055
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Table 2.4: The mean edge misclassification rates for the top 3 pruning methods with dif-
ferent initial methods in two-risk-factor simulation scenarios with non-neighboring staging
patterns

Sample Size Initial Method Pruning Method Mean SD Lower Upper

1600 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.067 0.093 0.059 0.075

1600 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.083 0.110 0.074 0.093

1600 Lasso tree (AIC) fine pruning ex (LRT 0.05) 0.089 0.116 0.079 0.099

1600 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.072 0.097 0.064 0.081

1600 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.090 0.114 0.080 0.100

1600 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.098 0.124 0.087 0.108

1600 OPERA coarse pruning (LRT 0.01) 0.082 0.097 0.073 0.090

1600 OPERA coarse pruning (LRT 0.05) 0.098 0.112 0.089 0.108

1600 OPERA fine pruning ex (LRT 0.01) 0.105 0.124 0.094 0.116

3200 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.015 0.052 0.011 0.020

3200 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.026 0.075 0.019 0.032

3200 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.052 0.118 0.042 0.063

3200 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.016 0.052 0.011 0.020

3200 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.026 0.075 0.019 0.032

3200 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.053 0.118 0.043 0.063

3200 OPERA coarse pruning (LRT 0.01) 0.018 0.057 0.013 0.022

3200 OPERA fine pruning ex (LRT 0.01) 0.028 0.078 0.021 0.035

3200 OPERA fine pruning quad (LRT 0.01) 0.054 0.118 0.044 0.065
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Table 2.5: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in two-risk-factor simulation scenarios with neighboring staging
patterns

Sample Size Initial Method Pruning Method Mean SD Lower Upper

1600 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.061 0.091 0.053 0.069

1600 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.072 0.102 0.063 0.081

1600 Lasso tree (AIC) fine pruning ex (LRT 0.05) 0.089 0.119 0.079 0.100

1600 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.069 0.100 0.061 0.078

1600 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.080 0.110 0.071 0.090

1600 Lasso tree (BIC) fine pruning ex (LRT 0.05) 0.101 0.126 0.090 0.112

1600 OPERA coarse pruning (LRT 0.01) 0.075 0.096 0.067 0.084

1600 OPERA coarse pruning (LRT 0.05) 0.086 0.109 0.077 0.096

1600 OPERA fine pruning ex (LRT 0.05) 0.103 0.121 0.092 0.114

3200 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.012 0.045 0.008 0.016

3200 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.028 0.081 0.021 0.035

3200 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.045 0.084 0.037 0.052

3200 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.012 0.045 0.008 0.016

3200 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.028 0.080 0.021 0.035

3200 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.040 0.081 0.033 0.048

3200 OPERA coarse pruning (LRT 0.01) 0.015 0.050 0.011 0.019

3200 OPERA fine pruning ex (LRT 0.01) 0.031 0.083 0.023 0.038

3200 OPERA coarse pruning (LRT 0.05) 0.041 0.085 0.034 0.049
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Table 2.6: The pairwise comparisons in the mean misclassification rate among coarse
pruning, fine pruning using exhaustive search and fine pruning using quadratic constraint
with LRT (α = 0.01) (Each cell displays the difference with the corresponding p-value in
parentheses)

Sample Size Initial Method Coarse vs Ex Coarse vs Quad Ex vs Quad

Three Risk

Factors

& Non-

neighboring

2700 OPERA 0.020 (< 0.001) -0.017 (< 0.001) -0.037 (< 0.001)

2700 Lasso tree (AIC) 0.010 (0.01) -0.035 (< 0.001) -0.045 (< 0.001)

2700 Lasso tree (BIC) 0.017 (< 0.001) -0.028 (< 0.001) -0.045 (< 0.001)

5400 OPERA 0.002 (0.302) -0.034 (< 0.001) -0.037 (< 0.001)

5400 Lasso tree (AIC) 0.005 (0.062) -0.030 (< 0.001) -0.035 (< 0.001)

5400 Lasso tree (BIC) 0.001 (0.684) -0.035 (< 0.001) -0.036 (< 0.001)

Three Risk

Factors &

Neighboring

2700 OPERA -0.009 (0.023) -0.021 (< 0.001) -0.011 (0.047)

2700 Lasso tree (AIC) -0.020 (< 0.001) -0.027 (< 0.001) -0.007 (0.248)

2700 Lasso tree (BIC) -0.024 (< 0.001) -0.029 (< 0.001) -0.004 (0.488)

5400 OPERA 0.000 (0.896) -0.005 (0.181) -0.005 (0.166)

5400 Lasso tree (AIC) 0.003 (0.259) -0.004 (0.255) -0.007 (0.050)

5400 Lasso tree (BIC) 0.000 (0.869) -0.007 (0.071) -0.007 (0.089)

Two Risk

Factors

& Non-

neighboring

1600 OPERA -0.024 (< 0.001) -0.068 (< 0.001) -0.045 (< 0.001)

1600 Lasso tree (AIC) -0.023 (< 0.001) -0.081 (< 0.001) -0.058 (< 0.001)

1600 Lasso tree (BIC) -0.025 (< 0.001) -0.082 (< 0.001) -0.056 (< 0.001)

3200 OPERA -0.010 (< 0.001) -0.037 (< 0.001) -0.027 (< 0.001)

3200 Lasso tree (AIC) -0.010 (< 0.001) -0.037 (< 0.001) -0.027 (< 0.001)

3200 Lasso tree (BIC) -0.010 (< 0.001) -0.037 (< 0.001) -0.027 (< 0.001)

Two Risk

Factors &

Neighboring

1600 OPERA -0.030 (< 0.001) -0.047 (< 0.001) -0.017 (< 0.001)

1600 Lasso tree (AIC) -0.034 (< 0.001) -0.060 (< 0.001) -0.026 (< 0.001)

1600 Lasso tree (BIC) -0.037 (< 0.001) -0.060 (< 0.001) -0.024 (< 0.001)

3200 OPERA -0.016 (< 0.001) -0.032 (< 0.001) -0.016 (< 0.001)

3200 Lasso tree (AIC) -0.016 (< 0.001) -0.032 (< 0.001) -0.016 (< 0.001)

3200 Lasso tree (BIC) -0.016 (< 0.001) -0.032 (< 0.001) -0.017 (< 0.001)
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Table 2.7: The average time for each initial method along with coarse pruning with
LRT(0.01)

Sample Size Initial Method Pruning Method Average (s) Total (s)

Three Risk Factors

& Non-neighboring

2700 Lasso tree (AIC) coarse pruning 373

2700 Lasso tree (AIC) no pruning 177 550

2700 Lasso tree (BIC) coarse pruning 332

2700 Lasso tree (BIC) no pruning 201 533

2700 OPERA coarse pruning 151

2700 OPERA no pruning 503 654

5400 Lasso tree (AIC) coarse pruning 1546

5400 Lasso tree (AIC) no pruning 700 2246

5400 Lasso tree (BIC) coarse pruning 1172

5400 Lasso tree (BIC) no pruning 698 1870

5400 OPERA coarse pruning 397

5400 OPERA no pruning 1953 2350

Three Risk Factors

& Neighboring

2700 Lasso tree (AIC) coarse pruning 168

2700 Lasso tree (AIC) no pruning 192 360

2700 Lasso tree (BIC) coarse pruning 109

2700 Lasso tree (BIC) no pruning 210 319

2700 OPERA coarse pruning 63

2700 OPERA no pruning 469 531

5400 Lasso tree (AIC) coarse pruning 487

5400 Lasso tree (AIC) no pruning 661 1148

5400 Lasso tree (BIC) coarse pruning 268

5400 Lasso tree (BIC) no pruning 709 978

5400 OPERA coarse pruning 262

5400 OPERA no pruning 1568 1830
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Table 2.7: The average time for each initial method along with coarse pruning with
LRT(0.01)

Sample Size Initial Method Pruning Method Average (s) Total (s)

Two Risk Factors &

Non-neighboring

1600 Lasso tree (AIC) coarse pruning 50

1600 Lasso tree (AIC) no pruning 39 89

1600 Lasso tree (BIC) coarse pruning 39

1600 Lasso tree (BIC) no pruning 40 79

1600 OPERA coarse pruning 20

1600 OPERA no pruning 89 110

3200 Lasso tree (AIC) coarse pruning 129

3200 Lasso tree (AIC) no pruning 107 236

3200 Lasso tree (BIC) coarse pruning 133

3200 Lasso tree (BIC) no pruning 129 263

3200 OPERA coarse pruning 89

3200 OPERA no pruning 392 481

Two Risk Factors &

Neighboring

1600 Lasso tree (AIC) coarse pruning 34

1600 Lasso tree (AIC) no pruning 42 76

1600 Lasso tree (BIC) coarse pruning 36

1600 Lasso tree (BIC) no pruning 45 81

1600 OPERA coarse pruning 44

1600 OPERA no pruning 151 195

3200 Lasso tree (AIC) coarse pruning 106

3200 Lasso tree (AIC) no pruning 125 230

3200 Lasso tree (BIC) coarse pruning 74

3200 Lasso tree (BIC) no pruning 124 198

3200 OPERA coarse pruning 73

3200 OPERA no pruning 344 417
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Figure 2.10: The edge misclassification rate for simulation scenarios with three risk factors
favoring opera



55

0.12 0.12

0.33 0.33

0 0 0 0 0 0

0.17
0.15

0.31 0.31

0 0 0 0 0 0

0.12 0.12

0.21 0.21

0 0 0

0.08

0 0 0 0

0.17 0.17

0 0 0 0 0 0

0.12 0.12

0.17 0.17

0.08 0.08 0.08

0.12

0 0 0 0

0.21 0.21

0 0 0 0 0 0

OPERA

Lasso tree (BIC)

Lasso tree (AIC)

1600 3200

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Sample Size

E
dg

e 
M

is
cl

as
si

fic
at

io
n 

R
at

e a

a

Exhaustive Search

Quadratic Constraint

Fine pruning (AIC)

Fine pruning (BS)

Fine pruning (LRT 0.05)

Fine pruning (LRT 0.01)

Fine pruning (5 stages)

Figure 2.11: The edge misclassification rate for fine pruning methods with two-risk-factor
simulation scenarios favoring lasso tree



56

0.17 0.17

0.5 0.5

0 0 0

0.12

0 0

0.17 0.17

0.46 0.46

0 0 0 0 0 0

0.17 0.17

0.42 0.42

0

0.08

0

0.12

0 0

0.17 0.17

0.38 0.38

0 0 0 0 0 0

0.17 0.17

0.21 0.21

0.12 0.12

0.08

0.12

0 0

0.17 0.17

0.21 0.21

0 0 0 0 0 0

OPERA

Lasso tree (BIC)

Lasso tree (AIC)

1600 3200

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Sample Size

E
dg

e 
M

is
cl

as
si

fic
at

io
n 

R
at

e a

a

Exhaustive Search

Quadratic Constraint

Fine pruning (AIC)

Fine pruning (BS)

Fine pruning (LRT 0.05)

Fine pruning (LRT 0.01)

Fine pruning (5 stages)

Figure 2.12: The edge misclassification rate for fine pruning methods with two-risk-factor
simulation scenarios favoring opera



57

0.26
0.28

0.55 0.56

0.07
0.09

0.06 0.06

0 0

0.26 0.26

0.5 0.5

0 0 0 0 0 0

0.24 0.24

0.41 0.41

0.07 0.07
0.06 0.06

0 0

0.22 0.22

0.35 0.35

0 0 0 0 0 0

0.22 0.22

0.28 0.28

0.07
0.09

0.07 0.07
0.06 0.06

0.24 0.24

0.39 0.39

0 0 0 0 0 0

OPERA

Lasso tree (BIC)

Lasso tree (AIC)

2700 5400

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Sample Size

E
dg

e 
M

is
cl

as
si

fic
at

io
n 

R
at

e a

a

Exhaustive Search

Quadratic Constraint

Fine pruning (AIC)

Fine pruning (BS)

Fine pruning (LRT 0.05)

Fine pruning (LRT 0.01)

Fine pruning (5 stages)

Figure 2.13: The edge misclassification rate for fine pruning methods with three-risk-
factor simulation scenarios favoring lasso tree
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Chapter 3

Survival Outcome

This chapter provides a comprehensive overview of OPERA and its application in analyzing survival

outcomes that involve multiple risk factors. Similar to binary outcomes, a pruning step is integrated

to improve an excessively detailed staging system and counteract overfitting. The primary difference

between OPERA applied to binary outcomes and survival outcomes resides in the formulation of the

(partial) likelihood function and its derivatives utilized in the optimization process. Hence, this chapter

begins with an introduction to the partial likelihood function, followed by simulation studies aimed at

assessing the performance of OPERA when employed with survival data.

3.1 The Partial Likelihood for Survival Data

When presented with survival data (yi, δi, ri, Zi)
n
i=1, where each subject i has observed data including

the survival outcome yi with δi indicating censorship status, the risk category ri indicating the subject’s

category, and covariates Zi ∈ Rp, the logarithm of the partial likelihood can be expressed as follows

under a Cox proportional hazards model:

l(ξ, α) =
∑

i∈{i:δi=1}

[(ξ(ri) + ZT
i α)− log

∑
j∈{j:yi≤yj}

exp(ξ(rj) + ZT
j α)] (3.1)

To establish a fixed reference level, an intercept µ ∈ R is introduced, where γ(r) = ξ(r) − µ. If

γ(r) = 0, the element r can be amalgamated into the minimum element (if it exists) l with γ(l) = 0.

Using the equation ξ(r) = γ(r) + µ, the lasso-type modeling for survival outcomes can be defined as

follows:
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argmin
µ,γ,α,γ(l)=0

−l(µ, γ, α) + λ
∑
r∈S

|γ(r)| = argmin
µ,γ,α,γ(l)=0

{−
∑

i:δi=1

[(µ+ γ(ri) + ZT
i α)−

log
∑

j∈Ri={j:yi≤yj}

exp(µ+ γ(rj) + ZT
j α)] + λ

∑
r∈S

|γ(r)|}
(3.2)

In cases where there is no unique minimum, similar to when there is a unique minimum element,

the reference level is selected from the set of minimal elements. Based on ξ(r) = γ(r)+µ, the lasso-type

modeling for survival outcomes can be defined as follows:

argmin
µ,γ,α

−l(µ, γ, α) + λ
∑
r∈S

|γ(r)| = argmin
µ,γ,α

{−
∑

i:δi=1

[(µ+ γ(ri) + ZT
i α)−

log
∑

j∈Ri={j:yi≤yj}

exp(µ+ γ(rj) + ZT
j α)] + λ

∑
r∈S

|γ(r)|}
(3.3)

3.2 Optimization

To solve the L1 penalized Cox model[LWC13], an iterative procedure can be employed, similar to the L1

penalized logistic regression model. This procedure consists of expressing the standard Newton-Raphson

update as an IRLS step, followed by replacing the weighted least squares step with a constrained weighted

least squares procedure. The necessary derivatives for computation are as follows:

u =
∂l

∂η

ui = δi − exp(ηi)
∑
k∈Ci

1∑
j∈Rk

exp(ηj)

Ci = {k : i ∈ Rk}

Rk = {l : yk ≤ yl}

(3.4)

A =
−∂2l

∂ηηT

∂2l

∂η2i
= ui − δi + exp(2ηi)

∑
k∈Ci

1

{
∑

j∈Rk
exp(ηj)}2

z = η +A−1u

(3.5)

This computation requires O(n3) operations, where A is a full matrix. To expedite the computation,

A can be substituted with a diagonal matrix D having diagonal entries equal to − ∂l2

∂η2
i
[Has17].
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3.3 Simulation

3.3.1 Setup

To evaluate the performance of OPERA on survival outcomes and compare it with related methods, we

chose lasso tree as the alternative approach. Although lasso tree was originally developed for survival

outcomes with only two risk factors, we extended its application to handle survival outcomes with

multiple risk factors. This allowed for an effective comparison of our algorithms.

For simulation purposes, we utilized Cox proportional hazards models, as depicted in Table 3.1, to

generate the failure time and censoring time, both of which followed an exponential distribution. The

parameter λj was chosen to achieve the desired proportion of censored patients, denoted as δp. The

survival outcome Yi was simulated based on the shorter time between the failure time and censoring

time for each patient. To avoid cases with no censoring in advanced stages, the mean of the exponential

distribution used to simulate the censoring time decreased as the stage advanced. The assignment of

patients to risk categories followed a uniform distribution, ensuring an equal probability of belonging to

each category.

Model Assumptions

log(λi) =
∑5

j=1 βj1(Xi ∈ Sj)

Ti ∼ EXP (λi)

Ci ∼ EXP (exp(λj)× (1− 1
si+1 ))

Yi = min{Ti, Ci}

δi = 1(Ti ≤ Ci)

δp = 1− 1
n

∑
i δi

Xi ∼ UNIF{S}

i = 1, 2, 3, ..., n

si ∈ {1, 2, 3, 4, 5}

β = 0, 1, 2, 3, 4

Table 3.1: The model and assumptions to simulate survival data

The coefficients for risk categories defined by two risk factors, denoted as βs, were predetermined

and displayed in Figure 3.1. The left figure, Figure 3.1a, illustrates a scenario that benefits lasso tree,

as it can effectively handle neighboring categories within the same stage. On the other hand, the right

figure, Figure 3.1b, portrays a scenario that favors OPERA, as it allows non-neighboring categories to

belong to the same stage, such as the second stage.
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a1 0 0 0 1

a2 1 1 1 1

a3 2 3 3 4

a4 2 3 4 4

(a) Simulation setup favoring lasso tree

b1 b2 b3 b4
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a3 2 3 3 4

a4 2 3 4 4

(b) Simulation setup favoring opera

Figure 3.1: Simulation setup for coefficients βs with two risk factors
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Figure 3.2: Simulation setup for coefficients βs with three risk factors
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In the survival outcome scenarios, the sample size (n) ranged from 800 to 1600 for the two-risk-factor

scenarios, and from 1800 to 3600 for the three-risk-factor scenarios. The censoring proportions varied

between 0.5 and 0.8. A total of 500 simulations were conducted for each scenario.

For the two-risk-factor scenarios, two 4-level ordinal risk factors, namely A and B, were considered,

as illustrated in Figure 3.1. Conversely, the three-risk-factor scenarios involved three different 3-level

risk factors, denoted as A, B, and C, as depicted in Figure 3.2. Each stage is represented by a different

color. It is important to note that no additional covariates needed to be adjusted in the simulations.

3.3.2 Results

The results for different simulation scenarios with survival outcomes, including two risk factors and three

risk factors, are presented in Figure 3.3 and 3.4, respectively. We still compare the same set of approaches

with the same set of stopping rules. The only difference lies in the Brier Score (BS). Instead of using

the mean squared error, we use the integrated Brier Score (IBS) [Gra+99].

In three-risk-factor scenarios favoring the lasso tree, as shown in Figure 3.4a, the regression method

performs the worst in terms of the median edge misclassification rate, while pruning using LRT (α = 0.01)

demonstrates the best performance, comparable to pruning based on the predefined number of stages

across different sample sizes and censoring proportions. Fine pruning with LRT (α = 0.01) yields notable

improvements in reducing the median edge misclassification rate: 0.33 for OPERA without pruning and

0.56 for the lasso tree when the sample size is 1800 and the censoring rate is 0.5. For a censoring rate of

0.8, the improvements are 0.09 for OPERA without pruning and 0.33 for the lasso tree. The accuracy

decreases as the censoring proportion increases due to a lack of patients experiencing events. Additionally,

when the sample size is 3600 and the censoring rate is 0.5, there is an improvement of 0.39 for OPERA

without pruning and 0.6 for the lasso tree, while for a censoring rate of 0.8, there is an improvement

of 0.16 for OPERA without pruning and 0.46 for the lasso tree. The overall accuracy increases as the

sample size increases. Coarse pruning with LRT (α = 0.01) also performs well across different simulation

scenarios with no more than a 0.03 increase in the median edge misclassification compared to fine pruning

with LRT (α = 0.01). Among the other pruning criteria, using LRT (α = 0.05) yields the best results,

followed by AIC and then BS. However, the discrepancy is less obvious as the censoring proportion

increases. IBS proves to be a more effective criterion for pruning with survival data compared to BS

used for binary data. OPERA outperforms the lasso tree in all four scenarios, and pruning consistently

improves performance by mitigating the over-partitioning issue, regardless of which stopping rule is used.

In three-risk-factor scenarios favoring the OPERA tree, as depicted in Figure 3.4b, similar conclusions
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Figure 3.3: The edge misclassification rate for different methods with two risk factors
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Figure 3.4: The edge misclassification rate for different methods with three risk factors
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can be drawn. The regression method still performs the worst, while pruning using LRT (α = 0.01) still

demonstrates comparable performance to pruning based on the predefined number of stages across all

four scenarios. When the sample size is 1800 and the censoring proportion is 0.5, fine pruning using LRT

(α = 0.01) results in an improvement of 0.4 in reducing the median edge misclassification rate compared

to OPERA without pruning, and an improvement of 0.67 compared to the lasso tree. For a censoring

rate of 0.8, there is an improvement of 0.1 compared to OPERA without pruning and 0.41 compared to

the lasso tree. Similarly, when the sample size is 3600 and the censoring proportion is 0.5, there is an

improvement of 0.49 using OPERA without pruning and 0.72 using the lasso tree, while for a censoring

rate of 0.8, there is an improvement of 0.25 compared to OPERA without pruning and 0.55 compared

to the lasso tree. Coarse pruning with LRT (α = 0.01) also performs well across different simulation

scenarios with no more than a 0.08 increase in the median edge misclassification compared to fine pruning

with LRT (α = 0.01). Before pruning using LRT (α = 0.01) is applied, the overall misclassification rates

are higher compared to three-risk-factor scenarios favoring the lasso tree, and the lasso tree performs

worse than in the three-risk-factor scenarios favoring the lasso tree, as three-risk-factor scenarios favoring

OPERA are more complicated and involve non-neighboring patterns. A larger sample size and a smaller

censoring rate still correspond to higher accuracy.

In two-risk factor scenarios favoring the lasso tree, as depicted in Figure 3.3a, the lasso tree and

OPERA demonstrate very close performance, with the difference in the median edge misclassification

rate being no more than 0.04. Pruning using LRT (α = 0.01) still leads to the best performance among

various stopping rules when the true number of stages is unknown, except when the sample size equals 800

and the censoring rate equals 0.8. However, in that specific scenario, the median edge misclassification

rate is only 0.04 higher than the lowest, which corresponds to roughly 3 edges out of 75. Coarse pruning

with LRT (α = 0.01) demonstrates the same median edge misclassification rate as fine pruning with LRT

(α = 0.01) across all simulation scenarios with a relatively smaller interquartile range (IQR). In two-risk

factor scenarios favoring OPERA, as shown in Figure 3.3b, OPERA without pruning outperforms the

lasso tree in the median edge misclassification rate in all scenarios, as the lasso tree fails to identify

non-neighboring staging patterns. Coarse pruning with LRT (α = 0.01) still demonstrates the best

performance across all simulation scenarios.

Across all scenarios, pruning using LRT (α = 0.01) consistently performs the best, comparable to

pruning using the true number of stages. Coarse pruning can achieve as good performance as fine pruning

with no more than a 0.08 increase in the median edge misclassification when LRT (α = 0.01) is used as

the stopping rule.
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3.3.3 Discussion

Different initial steps, including utilizing the lasso tree with AIC as the criterion for determining optimal

groupings, the lasso tree with BIC as the default criterion, and OPERA without pruning, are still

considered to explore how initial methods can affect the performance. As depicted in Figures 3.5, 3.6,

3.7, and 3.8, while the three initial methods yield different results without pruning, the introduction

of pruning enables all methods to perform closely well, with comparable median edge misclassification

rates.

To further explore which pruning method performs the best across different initial methods, we

calculate the mean edge misclassification for each simulation scenario across 500 simulations and select

the top 3 pruning methods with the lowest mean edge misclassification rates. The results, including

the estimated standard deviation (SD) and 95% confidence intervals, are displayed in Table 3.2 - 3.5.

In three-risk-factor simulation scenarios, pruning using LRT (α = 0.01) consistently performs the best

in terms of the mean edge misclassification rate. In two-risk-factor simulation scenarios, pruning using

LRT (α = 0.01) consistently demonstrates the top three lowest mean edge misclassification rates, except

when the sample size is 800 and the censoring rate is 0.8. However, in that specific simulation scenario,

we observe very close performance between coarse pruning using LRT (α = 0.01) and the best approach,

with a difference no greater than 0.04 in the median misclassification rate.

To investigate whether coarse pruning using LRT (α = 0.01) can demonstrate performance on par

with fine pruning using LRT (α = 0.01), we conduct the paired sample t-test between coarse pruning

and fine pruning, as shown in Table 3.6. The largest difference is 5.5%, indicating that roughly 4 more

edges out of 75 edges are correctly classified. Thus, coarse pruning using LRT (α = 0.01) can perform

as well as fine pruning using LRT (α = 0.01) in the majority of simulation scenarios, with only a slight

increase in edge misclassification rate in a few cases.

To evaluate the performance of fine pruning methods with exhaustive search compared to those

with a quadratic programming constraint, each fine pruning method using each criterion is examined,

as illustrated in Figures 3.9 - 3.12. Across all simulation scenarios, utilizing a quadratic programming

constraint achieves a similarly low median edge misclassification rate as that of exhaustive search, with

0.04 as the largest difference in the median edge misclassification rate. In terms of the mean edge

misclassification rate, the largest difference, as shown in Table 3.6, between the two approaches is 1.9%,

indicating that roughly 1.5 more edges out of 75 edges are correctly classified. Thus, across all scenarios,

a quadratic constraint can deliver performance on par with exhaustive search.

All three initial approaches perform closely well after pruning, with 3.5% as the largest difference in
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the mean edge misclassification rate. In real data analysis, we recommend using OPERA as the initial

method, not only due to its good performance but also its lower computational cost as shown in Table

3.7, in comparison with the lasso tree.
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Table 3.2: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in three-risk-factor simulation scenarios with non-neighboring
staging patterns (Mean = Estimated Mean; SD = Estimated Standard Deviation; Lower
= 95% Confidence Interval Lower Limit; Upper = 95% Confidence Interval Upper Limit;
quad = using quadratic constraint; ex = using exhaustive search)

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

1800 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.098 0.117 0.088 0.108

1800 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.110 0.121 0.099 0.120

1800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.134 0.130 0.123 0.145

1800 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.101 0.116 0.091 0.111

1800 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.112 0.121 0.102 0.123

1800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.136 0.130 0.124 0.147

1800 0.5 OPERA fine pruning ex (LRT 0.01) 0.094 0.111 0.084 0.103

1800 0.5 OPERA fine pruning quad (LRT 0.01) 0.113 0.120 0.103 0.124

1800 0.5 OPERA coarse pruning (LRT 0.01) 0.148 0.126 0.137 0.159

1800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.250 0.110 0.240 0.259

1800 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.259 0.108 0.250 0.269

1800 0.8 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.263 0.117 0.252 0.273

1800 0.8 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.297 0.115 0.287 0.307

1800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.299 0.119 0.289 0.309

1800 0.8 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.306 0.118 0.295 0.316

1800 0.8 OPERA coarse pruning (LRT 0.01) 0.274 0.102 0.265 0.283

1800 0.8 OPERA fine pruning ex (LRT 0.01) 0.280 0.103 0.271 0.289

1800 0.8 OPERA fine pruning ex (LRT 0.05) 0.280 0.103 0.271 0.289

3600 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.106 0.122 0.095 0.117

3600 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.108 0.123 0.097 0.119

3600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.113 0.124 0.103 0.124

3600 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.106 0.123 0.096 0.117

3600 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.107 0.124 0.096 0.118

3600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.110 0.122 0.099 0.121

3600 0.5 OPERA fine pruning ex (LRT 0.01) 0.090 0.117 0.079 0.100
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Table 3.2: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in three-risk-factor simulation scenarios with non-neighboring
staging patterns (Mean = Estimated Mean; SD = Estimated Standard Deviation; Lower
= 95% Confidence Interval Lower Limit; Upper = 95% Confidence Interval Upper Limit;
quad = using quadratic constraint; ex = using exhaustive search)

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

3600 0.5 OPERA fine pruning quad (LRT 0.01) 0.090 0.117 0.080 0.101

3600 0.5 OPERA coarse pruning (LRT 0.01) 0.102 0.123 0.091 0.112

3600 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.159 0.111 0.150 0.169

3600 0.8 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.174 0.124 0.163 0.185

3600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.186 0.134 0.174 0.197

3600 0.8 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.162 0.113 0.152 0.172

3600 0.8 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.177 0.126 0.166 0.188

3600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.193 0.131 0.182 0.205

3600 0.8 OPERA fine pruning ex (LRT 0.01) 0.160 0.107 0.150 0.169

3600 0.8 OPERA fine pruning quad (LRT 0.01) 0.177 0.119 0.167 0.188

3600 0.8 OPERA coarse pruning (LRT 0.01) 0.194 0.128 0.183 0.205



71

Table 3.3: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in three-risk-factor simulation scenarios with neighboring staging
patterns

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

1800 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.080 0.103 0.071 0.089

1800 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.087 0.105 0.078 0.096

1800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.100 0.112 0.090 0.110

1800 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.093 0.104 0.084 0.102

1800 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.097 0.104 0.088 0.106

1800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.111 0.112 0.101 0.120

1800 0.5 OPERA fine pruning ex (LRT 0.01) 0.070 0.089 0.063 0.078

1800 0.5 OPERA fine pruning quad (LRT 0.01) 0.080 0.097 0.072 0.089

1800 0.5 OPERA coarse pruning (LRT 0.01) 0.103 0.110 0.094 0.113

1800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.210 0.111 0.200 0.220

1800 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.232 0.106 0.223 0.241

1800 0.8 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.233 0.114 0.223 0.243

1800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.242 0.117 0.232 0.252

1800 0.8 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.263 0.109 0.254 0.273

1800 0.8 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.267 0.119 0.256 0.277

1800 0.8 OPERA fine pruning ex (LRT 0.01) 0.248 0.099 0.239 0.257

1800 0.8 OPERA coarse pruning (LRT 0.01) 0.255 0.104 0.246 0.264

1800 0.8 OPERA fine pruning ex (LRT 0.05) 0.257 0.101 0.248 0.266

3600 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.072 0.106 0.063 0.082

3600 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.072 0.105 0.063 0.081

3600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.076 0.107 0.066 0.085

3600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.071 0.104 0.062 0.080

3600 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.071 0.104 0.061 0.080

3600 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.072 0.105 0.063 0.081

3600 0.5 OPERA fine pruning ex (LRT 0.01) 0.054 0.093 0.046 0.063

3600 0.5 OPERA fine pruning quad (LRT 0.01) 0.055 0.093 0.047 0.064

3600 0.5 OPERA coarse pruning (LRT 0.01) 0.060 0.097 0.052 0.069
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Table 3.3: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in three-risk-factor simulation scenarios with neighboring staging
patterns

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

3600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.134 0.109 0.124 0.143

3600 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.136 0.099 0.127 0.145

3600 0.8 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.136 0.106 0.126 0.145

3600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.136 0.108 0.127 0.146

3600 0.8 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.142 0.105 0.132 0.151

3600 0.8 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.143 0.100 0.135 0.152

3600 0.8 OPERA fine pruning ex (LRT 0.01) 0.135 0.094 0.127 0.143

3600 0.8 OPERA fine pruning quad (LRT 0.01) 0.140 0.101 0.131 0.149

3600 0.8 OPERA coarse pruning (LRT 0.01) 0.155 0.106 0.146 0.165
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Table 3.4: The mean edge misclassification rates for the top 3 pruning methods with dif-
ferent initial methods in two-risk-factor simulation scenarios with non-neighboring staging
patterns

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

1600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.019 0.060 0.014 0.024

1600 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.025 0.071 0.019 0.031

1600 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.026 0.073 0.019 0.032

1600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.018 0.059 0.013 0.024

1600 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.024 0.071 0.018 0.030

1600 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.025 0.073 0.019 0.031

1600 0.5 OPERA coarse pruning (LRT 0.01) 0.020 0.060 0.015 0.025

1600 0.5 OPERA fine pruning ex (LRT 0.01) 0.026 0.074 0.020 0.033

1600 0.5 OPERA fine pruning quad (LRT 0.01) 0.026 0.072 0.020 0.032

1600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.146 0.105 0.137 0.155

1600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.153 0.094 0.145 0.162

1600 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.05) 0.162 0.119 0.152 0.173

1600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.167 0.090 0.159 0.174

1600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.168 0.100 0.160 0.177

1600 0.8 Lasso tree (BIC) fine pruning ex (LRT 0.05) 0.176 0.115 0.166 0.186

1600 0.8 OPERA coarse pruning (LRT 0.01) 0.157 0.096 0.149 0.165

1600 0.8 OPERA coarse pruning (LRT 0.05) 0.159 0.107 0.149 0.168

1600 0.8 OPERA fine pruning ex (LRT 0.05) 0.178 0.120 0.167 0.188

800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.051 0.081 0.043 0.058

800 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.084 0.123 0.073 0.095

800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.085 0.114 0.075 0.095

800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.058 0.086 0.050 0.065

800 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.089 0.123 0.078 0.099

800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.090 0.113 0.080 0.100

800 0.5 OPERA coarse pruning (LRT 0.01) 0.051 0.082 0.044 0.058

800 0.5 OPERA fine pruning ex (LRT 0.01) 0.085 0.122 0.075 0.096

800 0.5 OPERA coarse pruning (LRT 0.05) 0.088 0.116 0.078 0.098
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Table 3.4: The mean edge misclassification rates for the top 3 pruning methods with dif-
ferent initial methods in two-risk-factor simulation scenarios with non-neighboring staging
patterns

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.227 0.107 0.218 0.237

800 0.8 Lasso tree (AIC) fine pruning ex (AIC) 0.235 0.124 0.224 0.246

800 0.8 Lasso tree (AIC) fine pruning quad (AIC) 0.237 0.125 0.226 0.248

800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.247 0.107 0.237 0.256

800 0.8 Lasso tree (BIC) fine pruning ex (AIC) 0.255 0.119 0.245 0.266

800 0.8 Lasso tree (BIC) fine pruning quad (AIC) 0.257 0.119 0.247 0.268

800 0.8 OPERA coarse pruning (LRT 0.05) 0.244 0.105 0.235 0.253

800 0.8 OPERA fine pruning ex (AIC) 0.260 0.113 0.250 0.269

800 0.8 OPERA fine pruning quad (AIC) 0.261 0.115 0.251 0.271
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Table 3.5: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in two-risk-factor simulation scenarios with neighboring staging
patterns

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

1600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.016 0.055 0.012 0.021

1600 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.024 0.074 0.018 0.030

1600 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 0.026 0.075 0.020 0.033

1600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.016 0.054 0.011 0.021

1600 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.023 0.074 0.017 0.030

1600 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 0.026 0.075 0.019 0.032

1600 0.5 OPERA coarse pruning (LRT 0.01) 0.016 0.055 0.012 0.021

1600 0.5 OPERA fine pruning quad (LRT 0.01) 0.024 0.074 0.017 0.030

1600 0.5 OPERA fine pruning ex (LRT 0.01) 0.026 0.075 0.020 0.033

1600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.122 0.104 0.113 0.131

1600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.138 0.099 0.129 0.146

1600 0.8 Lasso tree (AIC) fine pruning quad (LRT 0.05) 0.146 0.122 0.136 0.157

1600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.136 0.101 0.127 0.145

1600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.143 0.095 0.135 0.152

1600 0.8 Lasso tree (BIC) fine pruning ex (AIC) 0.161 0.112 0.152 0.171

1600 0.8 OPERA coarse pruning (LRT 0.01) 0.140 0.101 0.131 0.149

1600 0.8 OPERA coarse pruning (LRT 0.05) 0.141 0.107 0.132 0.150

1600 0.8 OPERA fine pruning quad (LRT 0.05) 0.173 0.123 0.162 0.183

800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 0.036 0.068 0.031 0.042

800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.065 0.100 0.056 0.074

800 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 0.066 0.115 0.056 0.076

800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 0.042 0.073 0.035 0.048

800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.067 0.099 0.058 0.075

800 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 0.070 0.117 0.060 0.081

800 0.5 OPERA coarse pruning (LRT 0.01) 0.037 0.069 0.031 0.043

800 0.5 OPERA coarse pruning (LRT 0.05) 0.065 0.099 0.057 0.074

800 0.5 OPERA fine pruning quad (LRT 0.01) 0.067 0.115 0.057 0.077
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Table 3.5: The mean edge misclassification rates for the top 3 pruning methods with
different initial methods in two-risk-factor simulation scenarios with neighboring staging
patterns

Sample

Size

Censoring

Rate
Initial Method Pruning Method Mean SD Lower Upper

800 0.8 Lasso tree (AIC) fine pruning quad (AIC) 0.212 0.121 0.202 0.223

800 0.8 Lasso tree (AIC) fine pruning ex (AIC) 0.213 0.120 0.202 0.223

800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.05) 0.214 0.110 0.204 0.223

800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.05) 0.218 0.107 0.209 0.228

800 0.8 Lasso tree (BIC) coarse pruning (AIC) 0.219 0.114 0.209 0.229

800 0.8 Lasso tree (BIC) fine pruning ex (AIC) 0.219 0.109 0.210 0.229

800 0.8 Lasso tree (BIC) fine pruning quad (AIC) 0.220 0.110 0.210 0.229

800 0.8 OPERA coarse pruning (LRT 0.05) 0.247 0.107 0.237 0.256

800 0.8 OPERA fine pruning quad (AIC) 0.253 0.112 0.244 0.263

800 0.8 OPERA fine pruning ex (AIC) 0.254 0.112 0.244 0.264
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Table 3.6: The pairwise comparisons in the mean misclassification rate among coarse
pruning, fine pruning using exhaustive search and fine pruning using quadratic constraint
with LRT (α = 0.01) (Each cell displays the difference with the corresponding p-value in
parentheses)

Sample

Size

Censor

-ing

Rate

Initial Method Coarse vs Ex Coarse vs Quad Ex vs Quad

Three

Risk

Factors &

Non-

neigh

-boring

1800 0.5 OPERA 0.055 (< 0.001) 0.035 (< 0.001) -0.019 (< 0.001)

1800 0.5 Lasso tree (AIC) 0.036 (< 0.001) 0.024 (< 0.001) -0.012 (< 0.001)

1800 0.5 Lasso tree (BIC) 0.035 (< 0.001) 0.023 (< 0.001) -0.011 (< 0.001)

1800 0.8 OPERA -0.006 (0.246) -0.014 (0.002) -0.009 (0.035)

1800 0.8 Lasso tree (AIC) -0.010 (0.047) -0.013 (0.005) -0.003 (0.450)

1800 0.8 Lasso tree (BIC) -0.007 (0.171) 0.002 (0.647) 0.009 (0.031)

3600 0.5 OPERA 0.012 (< 0.001) 0.011 (< 0.001) -0.001 (0.498)

3600 0.5 Lasso tree (AIC) 0.006 (0.015) 0.007 (< 0.001) 0.002 (0.329)

3600 0.5 Lasso tree (BIC) 0.003 (0.204) 0.004 (0.057) 0.001 (0.633)

3600 0.8 OPERA 0.034 (< 0.001) 0.017 (< 0.001) -0.018 (< 0.001)

3600 0.8 Lasso tree (AIC) 0.026 (< 0.001) 0.012 (0.009) -0.014 (< 0.001)

3600 0.8 Lasso tree (BIC) 0.031 (< 0.001) 0.016 (0.001) -0.015 (< 0.001)

Three

Risk

Factors &

Neighbor

-ing

1800 0.5 OPERA 0.033 (< 0.001) 0.023 (< 0.001) -0.010 (0.001)

1800 0.5 Lasso tree (AIC) 0.020 (< 0.001) 0.013 (< 0.001) -0.007 (0.001)

1800 0.5 Lasso tree (BIC) 0.018 (< 0.001) 0.014 (< 0.001) -0.004 (0.071)

1800 0.8 OPERA 0.007 (0.068) -0.007 (0.122) -0.014 (< 0.001)

1800 0.8 Lasso tree (AIC) -0.022 (< 0.001) -0.023 (< 0.001) -0.001 (0.702)

1800 0.8 Lasso tree (BIC) -0.021 (< 0.001) -0.025 (< 0.001) -0.004 (0.293)

3600 0.5 OPERA 0.006 (< 0.001) 0.005 (0.002) -0.001 (0.100)

3600 0.5 Lasso tree (AIC) 0.003 (0.048) 0.004 (0.018) 0.000 (0.559)

3600 0.5 Lasso tree (BIC) -0.001 (0.627) 0.000 (0.922) 0.001 (0.182)

3600 0.8 OPERA 0.020 (< 0.001) 0.015 (< 0.001) -0.005 (0.111)

3600 0.8 Lasso tree (AIC) -0.002 (0.537) -0.002 (0.538) 0.000 (0.928)

3600 0.8 Lasso tree (BIC) -0.007 (0.091) -0.005 (0.166) 0.002 (0.473)
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Table 3.6: The pairwise comparisons in the mean misclassification rate among coarse
pruning, fine pruning using exhaustive search and fine pruning using quadratic constraint
with LRT (α = 0.01) (Each cell displays the difference with the corresponding p-value in
parentheses)

Sample

Size

Censor

-ing

Rate

Initial Method Coarse vs Ex Coarse vs Quad Ex vs Quad

Two

Risk

Factors &

Non-

neighbor

-ing

800 0.5 OPERA -0.034 (< 0.001) -0.037 (< 0.001) -0.002 (0.405)

800 0.5 Lasso tree (AIC) -0.034 (< 0.001) -0.036 (< 0.001) -0.002 (0.407)

800 0.5 Lasso tree (BIC) -0.031 (< 0.001) -0.033 (< 0.001) -0.002 (0.361)

800 0.8 OPERA -0.062 (< 0.001) -0.065 (< 0.001) -0.003 (0.383)

800 0.8 Lasso tree (AIC) -0.065 (< 0.001) -0.065 (< 0.001) 0.000 (0.904)

800 0.8 Lasso tree (BIC) -0.060 (< 0.001) -0.059 (< 0.001) 0.001 (0.768)

1600 0.5 OPERA -0.007 (0.003) -0.006 (0.002) 0.001 (0.631)

1600 0.5 Lasso tree (AIC) -0.007 (0.003) -0.006 (0.002) 0.001 (0.631)

1600 0.5 Lasso tree (BIC) -0.007 (0.002) -0.006 (0.002) 0.001 (0.631)

1600 0.8 OPERA -0.039 (< 0.001) -0.042 (< 0.001) -0.003 (0.157)

1600 0.8 Lasso tree (AIC) -0.037 (< 0.001) -0.040 (< 0.001) -0.003 (0.175)

1600 0.8 Lasso tree (BIC) -0.029 (< 0.001) -0.032 (< 0.001) -0.003 (0.183)

Two

Risk

Factors &

Neighbor

-ing

800 0.5 OPERA -0.035 (< 0.001) -0.030 (< 0.001) 0.005 (0.087)

800 0.5 Lasso tree (AIC) -0.033 (< 0.001) -0.030 (< 0.001) 0.003 (0.252)

800 0.5 Lasso tree (BIC) -0.032 (< 0.001) -0.029 (< 0.001) 0.004 (0.171)

800 0.8 OPERA -0.030 (< 0.001) -0.030 (< 0.001) 0.001 (0.798)

800 0.8 Lasso tree (AIC) -0.040 (< 0.001) -0.036 (< 0.001) 0.004 (0.089)

800 0.8 Lasso tree (BIC) -0.039 (< 0.001) -0.036 (< 0.001) 0.003 (0.140)

1600 0.5 OPERA -0.010 (< 0.001) -0.008 (0.004) 0.002 (0.097)

1600 0.5 Lasso tree (AIC) -0.010 (< 0.001) -0.008 (0.004) 0.002 (0.097)

1600 0.5 Lasso tree (BIC) -0.010 (< 0.001) -0.007 (0.004) 0.002 (0.097)

1600 0.8 OPERA -0.049 (< 0.001) -0.044 (< 0.001) 0.005 (0.010)

1600 0.8 Lasso tree (AIC) -0.044 (< 0.001) -0.038 (< 0.001) 0.006 (0.002)

1600 0.8 Lasso tree (BIC) -0.046 (< 0.001) -0.041 (< 0.001) 0.004 (0.038)
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Table 3.7: The average time for each initial method along with coarse pruning with
LRT(0.01)

Sample

Size

Censoring

Rate
Initial Method Pruning Method

Average

(s)

Total

(s)

Three

Risk

Factors &

Non-

neighbor

-ing

1800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 312

1800 0.5 Lasso tree (AIC) no pruning 8407 8720

1800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 321

1800 0.5 Lasso tree (BIC) no pruning 10004 10326

1800 0.5 OPERA coarse pruning (LRT 0.01) 91

1800 0.5 OPERA no pruning 237 328

1800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 294

1800 0.8 Lasso tree (AIC) no pruning 3256 3550

1800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 197

1800 0.8 Lasso tree (BIC) no pruning 2964 3161

1800 0.8 OPERA coarse pruning (LRT 0.01) 87

1800 0.8 OPERA no pruning 92 178

3600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 596

3600 0.5 Lasso tree (AIC) no pruning 37046 37641

3600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 571

3600 0.5 Lasso tree (BIC) no pruning 55601 56171

3600 0.5 OPERA coarse pruning (LRT 0.01) 332

3600 0.5 OPERA no pruning 842 1174

3600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 581

3600 0.8 Lasso tree (AIC) no pruning 16034 16615

3600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 822

3600 0.8 Lasso tree (BIC) no pruning 35263 36085

3600 0.8 OPERA coarse pruning (LRT 0.01) 291

3600 0.8 OPERA no pruning 531 822
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Table 3.7: The average time for each initial method along with coarse pruning with
LRT(0.01)

Sample

Size

Censoring

Rate
Initial Method Pruning Method

Average

(s)

Total

(s)

Three

Risk

Factors &

Neighbor

-ing

1800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 222

1800 0.5 Lasso tree (AIC) no pruning 7577 7799

1800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 185

1800 0.5 Lasso tree (BIC) no pruning 7849 8034

1800 0.5 OPERA coarse pruning (LRT 0.01) 100

1800 0.5 OPERA no pruning 144 244

1800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 237

1800 0.8 Lasso tree (AIC) no pruning 3704 3941

1800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 159

1800 0.8 Lasso tree (BIC) no pruning 3646 3805

1800 0.8 OPERA coarse pruning (LRT 0.01) 69

1800 0.8 OPERA no pruning 96 165

3600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 398

3600 0.5 Lasso tree (AIC) no pruning 36461 36858

3600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 364

3600 0.5 Lasso tree (BIC) no pruning 52995 53359

3600 0.5 OPERA coarse pruning (LRT 0.01) 355

3600 0.5 OPERA no pruning 781 1136

3600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 449

3600 0.8 Lasso tree (AIC) no pruning 18592 19041

3600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 530

3600 0.8 Lasso tree (BIC) no pruning 35340 35870

3600 0.8 OPERA coarse pruning (LRT 0.01) 237

3600 0.8 OPERA no pruning 508 745
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Table 3.7: The average time for each initial method along with coarse pruning with
LRT(0.01)

Sample

Size

Censoring

Rate
Initial Method Pruning Method

Average

(s)

Total

(s)

Two Risk

Factors &

Non-

neighbor

-ing

1600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 99

1600 0.5 Lasso tree (AIC) no pruning 4410 4509

1600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 97

1600 0.5 Lasso tree (BIC) no pruning 4652 4749

1600 0.5 OPERA coarse pruning (LRT 0.01) 230

1600 0.5 OPERA no pruning 93 324

1600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 94

1600 0.8 Lasso tree (AIC) no pruning 1122 1215

1600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 75

1600 0.8 Lasso tree (BIC) no pruning 1123 1198

1600 0.8 OPERA coarse pruning (LRT 0.01) 64

1600 0.8 OPERA no pruning 88 153

800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 32

800 0.5 Lasso tree (AIC) no pruning 135 167

800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 28

800 0.5 Lasso tree (BIC) no pruning 140 169

800 0.5 OPERA coarse pruning (LRT 0.01) 24

800 0.5 OPERA no pruning 13 37

800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 30

800 0.8 Lasso tree (AIC) no pruning 52 82

800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 22

800 0.8 Lasso tree (BIC) no pruning 67 90

800 0.8 OPERA coarse pruning (LRT 0.01) 18

800 0.8 OPERA no pruning 22 40
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Table 3.7: The average time for each initial method along with coarse pruning with
LRT(0.01)

Sample

Size

Censoring

Rate
Initial Method Pruning Method

Average

(s)

Total

(s)

Two Risk

Factors &

Neighbor

-ing

1600 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 81

1600 0.5 Lasso tree (AIC) no pruning 4259 4340

1600 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 71

1600 0.5 Lasso tree (BIC) no pruning 4422 4492

1600 0.5 OPERA coarse pruning (LRT 0.01) 167

1600 0.5 OPERA no pruning 74 242

1600 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 83

1600 0.8 Lasso tree (AIC) no pruning 1415 1498

1600 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 70

1600 0.8 Lasso tree (BIC) no pruning 1495 1565

1600 0.8 OPERA coarse pruning (LRT 0.01) 139

1600 0.8 OPERA no pruning 412 550

800 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 24

800 0.5 Lasso tree (AIC) no pruning 129 153

800 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 21

800 0.5 Lasso tree (BIC) no pruning 128 149

800 0.5 OPERA coarse pruning (LRT 0.01) 21

800 0.5 OPERA no pruning 195 215

800 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 23

800 0.8 Lasso tree (AIC) no pruning 51 74

800 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 75

800 0.8 Lasso tree (BIC) no pruning 74 149

800 0.8 OPERA coarse pruning (LRT 0.01) 14

800 0.8 OPERA no pruning 6 20
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Figure 3.9: The edge misclassification rate for fine pruning methods with two-risk-factor
simulation scenarios favoring lasso tree
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Figure 3.10: The edge misclassification rate for fine pruning methods with two-risk-factor
simulation scenarios favoring opera
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Figure 3.11: The edge misclassification rate for fine pruning methods with three-risk-
factor simulation scenarios favoring lasso tree
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Chapter 4

Continuous Risk Factor

Continuous risk factors can be utilized in cancer staging when they are categorized as ordinal risk factors.

If the continuous risk factor is subdivided into multiple levels, it should be possible to merge certain levels

that exhibit the same staging pattern. In Figure 4.1, for example, variable a represents a continuous risk

factor that is categorized into an ordinal variable consisting of six levels. However, a1 and a2 show the

same staging pattern. The same applies to a3 and a4, or a5 and a6. Consequently, a1 and a2 can be

combined as a single level, along with merging a3 and a4, as well as a5 and a6. This application proves

highly useful when dealing with continuous risk factors. By initially dividing it into numerous levels

and using this bottom-up approach, we can merge certain levels based on the same staging pattern to

determine an improved threshold that simplifies the staging system, similar to pruning. For example,

variable a can be age, a common continuous risk factor. Initially, we divide it into six levels from <20,

20≤−<30, 30≤−<40, 40≤−<50, 50≤−<60, ≥60. Upon staging, we identify the thresholds 30 and 50.

4.1 Setup

We conducted simulation studies to demonstrate the efficacy of our methods in achieving the goal of

identifying thresholds and corresponding subgroups for continuous risk factors in order to simplify the

cancer staging system. Our simulation studies encompass both non-neighboring patterns, as depicted in

Figure 4.1, and neighboring patterns, as depicted in Figure 4.2. This distinction arises from the fact that

the lasso tree can only perform staging on neighboring patterns, while OPERA can perform staging on

both non-neighboring and neighboring patterns. We consider three risk factors, denoted as a, categorized

into six levels: a1 and a2 form a subgroup with the same staging pattern, as do a3 and a4, and a5 and
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a6. The probabilities for a patient to be in a1, a2, a3, a4, a5, and a6 are 0.1, 0.1, 0.3, 0.3, 0.1, 0.1,

respectively. For the other two risk factors, each patient follows a uniform distribution to be placed in

each level. Regarding a binary outcome, the coefficients assigned to stages 1 to 5 are -2, -1, 0, 1, and 2,

respectively. In contrast, for a survival outcome, the coefficients assigned to stages 1 to 5 are 0, 1, 2, 3,

and 4. Additional information regarding the simulation setup can be found in Chapter 2, Table 2.1, and

Chapter 3, Table 3.1.

Furthermore, our simulation studies take into account both survival outcomes and binary outcomes.

Regarding survival outcomes, we consider two different sample sizes: 1200 and 2400, along with two

censoring rates: 0.5 and 0.8. For binary outcomes, we consider two sample sizes: 2400 and 4800.

For each simulation scenario, we compare three initial methods: lasso tree using BIC, lasso tree

using AIC, and OPERA. We also consider four pruning stopping rules: (integrated) Brier score, AIC,

LRT with α equal to either 0.05 or 0.01, and retaining only 5 stages. In addition, we compare three

pruning methods: fine pruning using exhaustive search, fine pruning using quadratic constraint, and

coarse pruning.

To evaluate each method, we utilize the probability of correctly identifying one, two, or three sub-

groups for the continuous risk factor. This estimation is derived from the proportion of total simulations

where exactly one, two, or three subgroups are accurately identified. It is important to note that the

subgroups in question are denoted as a1&a2, a3&a4, and a5&a6.

When evaluating our methods, we assume that the true subgroups are unknown. In order to count

a subgroup as discovered, it is essential that it exhibits the same staging pattern, which must differ from

the staging patterns defined by the adjacent levels. For instance, if we identify a3&a4 as having the same

staging pattern, it is crucial to verify that this pattern is distinct from the pattern defined by either a2

or a5. Only then can we consider a3&a4 as a successfully discovered subgroup.

4.2 Results

The true subgroup discovery rate refers to the estimated probability of correctly identifying one, two, or

three subgroups for the continuous risk factor a. Figure 4.3 - 4.6 present the main results, comparing all

methods in various simulation scenarios with either survival outcomes or binary outcomes, considering

either neighboring staging patterns or non-neighboring staging patterns. All fine pruning methods are

based on exhaustive search. We also consider three different initial methods, including using lasso tree

(AIC), lasso tree (BIC), and OPERA.

In Figures 4.3 to 4.4, focusing on survival outcomes, regardless of the censoring rate or sample size
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or the initial method, coarse pruning with LRT (α = 0.01) demonstrates the best performance. It yields

the highest estimated probability of correctly identifying all three subgroups, as well as the highest

estimated probability of identifying at least one subgroup correctly, without knowing the true number of

stages. Notably, when the censoring rate is 0.8, it surpasses the performance of the method with the true

number of stages provided. In Figure 4.3, specifically focusing on neighboring staging patterns, coarse

pruning consistently outperforms fine pruning with LRT as the stopping rule across different sample sizes

and censoring rates. However, as the censoring rate decreases, the difference between the two pruning

approaches becomes smaller. In Figure 4.4, which focuses on non-neighboring staging patterns, the same

conclusion can be drawn, with the exception that fine pruning slightly outperforms coarse pruning in

terms of slightly higher estimated probabilities of identifying all three subgroups when the sample size

is 2400 and the censoring rate is 0.5. However, even in this specific scenario, the estimated probabilities

of identifying at least one subgroup remain the same when comparing these two approaches. In the

discussion, we will further explore the extent to which fine pruning can outperform coarse pruning.

Moving on to Figures 4.5 to 4.6, which focus on binary outcomes, LRT (α = 0.01) continues to

emerge as the optimal stopping rule for pruning without knowing the true number of stages. When the

sample size is 2400 and only neighboring patterns are considered, coarse pruning with LRT (α = 0.01)

performs better. On the other hand, when the sample size is 4800, fine pruning with LRT (α = 0.01)

yields slightly superior results in terms of slightly higher estimated probabilities of identifying all three

subgroups, given that the estimated probabilities of identifying at least one subgroup remain the same

when comparing these two approaches. In the case of non-neighboring patterns, coarse pruning generally

performs better. However, when the sample size is 2400 and OPERA is used as the initial method, there

is a 0.01 increase in the estimated probability of identifying at least one subgroup. In the discussion, we

will further explore the extent to which fine pruning can outperform coarse pruning.

4.3 Discussion

In summary, pruning (LRT α = 0.01) consistently exhibits the best performance in correctly identifying

at least one subgroup and all three subgroups, thereby simplifying the staging system. This remains true

regardless of the outcome type, sample size, censoring rate, and initial method. As shown in Tables 4.1,

4.2, and 4.3, we also calculate the average number of discovered subgroups, which can range from 0 to 3,

and select the top three pruning methods for each initial method in simulation scenarios with survival

or binary outcomes and non-neighboring or neighboring staging patterns. Pruning (LRT α = 0.01)

consistently demonstrates the top three highest average number of discovered subgroups and performs
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the best in the majority of cases.

To further investigate the difference in performance between coarse and fine pruning (LRT α = 0.01),

we conduct the paired sample t-test to compare the average number of discovered subgroups between

the two approaches, as shown in Tables 4.4 and 4.5. For survival outcomes, the largest difference in

the average number of discovered subgroups is 0.044. This indicates that in the worst case, using coarse

pruning leads to a decrease of 0.044 in the average number of discovered subgroups. For binary outcomes,

the largest difference is 0.036. Considering its comparable performance with fine pruning and its lower

computational cost, coarse pruning is recommended.

Pruning can improve the initial results, enabling all methods to achieve similar levels of performance

with no more than 0.28 difference in the average number of discovered subgroups, regardless of the initial

method used, as shown in Tables 4.1, 4.2, and 4.3. Considering the higher computational cost associated

with lasso tree methods, as indicated in Table 4.6, OPERA is suggested as the preferred initial method

for survival outcomes. Meanwhile, lasso tree methods are recommended for binary outcomes due to their

lower computational cost, as presented in Table 4.7.

Regarding fine pruning using the quadratic constraint or exhaustive search, we conducted the paired

sample t-test to compare the average number of discovered subgroups between the two approaches with

LRT (α = 0.01), as shown in Tables 4.4 and 4.5. For survival outcomes, the largest difference in

the average number of discovered subgroups is 0.106. This indicates that in the worst case, using the

quadratic constraint for fine pruning leads to a decrease of 0.106 in the average number of discovered

subgroups. For binary outcomes, the largest difference is 0.084. As shown in Figures 4.7-4.10, the largest

difference in the true subgroup discovery rate of finding at least one subgroup is no more than 0.03. In

conclusion, fine pruning using the quadratic constraint can be considered an effective alternative to fine

pruning using exhaustive search.
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Table 4.1: The average number of discovered subgroups for the top 3 pruning meth-
ods with different initial methods in simulation scenarios with non-neighboring staging
patterns and survival outcome (Mean = Estimated Mean; SD = Estimated Standard
Deviation; Lower = 95% Confidence Interval Lower Limit; Upper = 95% Confidence
Interval Upper Limit; quad = using quadratic constraint; ex = using exhaustive search)

Sample

Size

Censor

-ing Rate
Initial Method Pruning Method Mean SD Lower Upper

1200 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.452 0.676 2.393 2.511

1200 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.442 0.690 2.382 2.502

1200 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 2.404 0.694 2.343 2.465

1200 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.456 0.673 2.397 2.515

1200 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.452 0.690 2.391 2.513

1200 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 2.412 0.689 2.352 2.472

1200 0.5 OPERA fine pruning quad (LRT 0.01) 2.372 0.700 2.311 2.433

1200 0.5 OPERA fine pruning ex (LRT 0.01) 2.356 0.706 2.294 2.418

1200 0.5 OPERA coarse pruning (LRT 0.01) 2.354 0.739 2.289 2.419

1200 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 1.860 0.826 1.788 1.932

1200 0.8 Lasso tree (AIC) fine pruning quad (LRT 0.01) 1.762 0.883 1.685 1.839

1200 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.01) 1.714 0.909 1.634 1.794

1200 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 1.786 0.840 1.712 1.860

1200 0.8 Lasso tree (BIC) fine pruning quad (LRT 0.01) 1.716 0.877 1.639 1.793

1200 0.8 Lasso tree (BIC) fine pruning ex (LRT 0.01) 1.672 0.920 1.591 1.753

1200 0.8 OPERA coarse pruning (LRT 0.01) 1.704 0.866 1.628 1.780

1200 0.8 OPERA fine pruning ex (LRT 0.05) 1.678 0.865 1.602 1.754

1200 0.8 OPERA fine pruning quad (LRT 0.01) 1.664 0.897 1.585 1.743

2400 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 2.756 0.541 2.709 2.803

2400 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.734 0.573 2.684 2.784

2400 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.712 0.591 2.660 2.764

2400 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 2.756 0.541 2.709 2.803

2400 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.734 0.573 2.684 2.784

2400 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.714 0.597 2.662 2.766

2400 0.5 OPERA fine pruning ex (LRT 0.01) 2.748 0.549 2.700 2.796

2400 0.5 OPERA fine pruning quad (LRT 0.01) 2.728 0.585 2.677 2.779
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Table 4.1: The average number of discovered subgroups for the top 3 pruning meth-
ods with different initial methods in simulation scenarios with non-neighboring staging
patterns and survival outcome (Mean = Estimated Mean; SD = Estimated Standard
Deviation; Lower = 95% Confidence Interval Lower Limit; Upper = 95% Confidence
Interval Upper Limit; quad = using quadratic constraint; ex = using exhaustive search)

Sample

Size

Censor

-ing Rate
Initial Method Pruning Method Mean SD Lower Upper

2400 0.5 OPERA coarse pruning (LRT 0.01) 2.714 0.607 2.661 2.767

2400 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.028 0.775 1.960 2.096

2400 0.8 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.020 0.783 1.951 2.089

2400 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.01) 1.984 0.813 1.913 2.055

2400 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.004 0.768 1.937 2.071

2400 0.8 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.004 0.768 1.937 2.071

2400 0.8 Lasso tree (BIC) fine pruning ex (LRT 0.01) 1.966 0.804 1.896 2.036

2400 0.8 OPERA fine pruning quad (LRT 0.01) 1.964 0.825 1.892 2.036

2400 0.8 OPERA coarse pruning (LRT 0.01) 1.940 0.813 1.869 2.011

2400 0.8 OPERA fine pruning ex (LRT 0.01) 1.932 0.837 1.859 2.005
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Table 4.2: The average number of discovered subgroups for the top 3 pruning methods
with different initial methods in simulation scenarios with neighboring staging patterns
and survival outcome

Sample

Size

Censor

-ing Rate
Initial Method Pruning Method Mean SD Lower Upper

1200 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.424 0.833 2.351 2.497

1200 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.368 0.889 2.290 2.446

1200 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 2.344 0.907 2.264 2.424

1200 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.440 0.817 2.368 2.512

1200 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.352 0.891 2.274 2.430

1200 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 2.336 0.910 2.256 2.416

1200 0.5 OPERA coarse pruning (LRT 0.01) 2.318 0.850 2.244 2.392

1200 0.5 OPERA fine pruning quad (LRT 0.01) 2.296 0.868 2.220 2.372

1200 0.5 OPERA fine pruning ex (LRT 0.05) 2.260 0.868 2.184 2.336

1200 0.8 Lasso tree (AIC) coarse pruning (LRT 0.05) 1.428 1.001 1.340 1.516

1200 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 1.420 0.997 1.333 1.507

1200 0.8 Lasso tree (AIC) fine pruning ex (AIC) 1.388 0.977 1.302 1.474

1200 0.8 Lasso tree (BIC) coarse pruning (LRT 0.05) 1.436 1.004 1.348 1.524

1200 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 1.424 0.999 1.336 1.512

1200 0.8 Lasso tree (BIC) coarse pruning (AIC) 1.394 0.972 1.309 1.479

1200 0.8 OPERA coarse pruning (LRT 0.01) 1.148 0.894 1.070 1.226

1200 0.8 OPERA coarse pruning (LRT 0.05) 1.142 0.912 1.062 1.222

1200 0.8 OPERA no pruning 1.132 0.895 1.054 1.210

2400 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.770 0.571 2.720 2.820

2400 0.5 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.742 0.603 2.689 2.795

2400 0.5 Lasso tree (AIC) fine pruning ex (LRT 0.01) 2.728 0.625 2.673 2.783

2400 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.784 0.549 2.736 2.832

2400 0.5 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.744 0.603 2.691 2.797

2400 0.5 Lasso tree (BIC) fine pruning ex (LRT 0.01) 2.732 0.624 2.677 2.787

2400 0.5 OPERA coarse pruning (LRT 0.01) 2.774 0.505 2.730 2.818

2400 0.5 OPERA fine pruning quad (LRT 0.01) 2.766 0.525 2.720 2.812

2400 0.5 OPERA fine pruning ex (LRT 0.01) 2.738 0.574 2.688 2.788
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Table 4.2: The average number of discovered subgroups for the top 3 pruning methods
with different initial methods in simulation scenarios with neighboring staging patterns
and survival outcome

Sample

Size

Censor

-ing Rate
Initial Method Pruning Method Mean SD Lower Upper

2400 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 1.910 0.971 1.825 1.995

2400 0.8 Lasso tree (AIC) coarse pruning (LRT 0.05) 1.836 0.983 1.750 1.922

2400 0.8 Lasso tree (AIC) fine pruning ex (LRT 0.05) 1.732 0.991 1.645 1.819

2400 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 1.904 0.953 1.820 1.988

2400 0.8 Lasso tree (BIC) coarse pruning (LRT 0.05) 1.834 0.963 1.750 1.918

2400 0.8 Lasso tree (BIC) fine pruning quad (LRT 0.01) 1.736 1.004 1.648 1.824

2400 0.8 OPERA coarse pruning (LRT 0.01) 1.710 0.994 1.623 1.797

2400 0.8 OPERA fine pruning ex (LRT 0.05) 1.676 0.984 1.590 1.762

2400 0.8 OPERA fine pruning ex (AIC) 1.672 0.973 1.587 1.757

2400 0.8 OPERA coarse pruning (LRT 0.05) 1.670 0.994 1.583 1.757
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Table 4.3: The average number of discovered subgroups for the top 3 pruning methods
with different initial methods in simulation scenarios with binary outcome

Sample

Size
Initial Method Pruning Method Mean SD Lower Upper

Non-

neighbor

-ing

2400 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.440 0.660 2.382 2.498

2400 Lasso tree (AIC) fine pruning ex (LRT 0.01) 2.342 0.700 2.281 2.403

2400 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.334 0.751 2.268 2.400

2400 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.478 0.650 2.421 2.535

2400 Lasso tree (BIC) fine pruning ex (LRT 0.01) 2.354 0.697 2.293 2.415

2400 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.352 0.757 2.286 2.418

2400 OPERA fine pruning ex (LRT 0.01) 2.248 0.701 2.187 2.309

2400 OPERA coarse pruning (LRT 0.01) 2.224 0.703 2.162 2.286

2400 OPERA fine pruning ex (LRT 0.05) 2.184 0.772 2.116 2.252

4800 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.740 0.552 2.692 2.788

4800 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.696 0.580 2.645 2.747

4800 Lasso tree (AIC) fine pruning ex (LRT 0.01) 2.652 0.593 2.600 2.704

4800 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.776 0.488 2.733 2.819

4800 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.708 0.565 2.658 2.758

4800 Lasso tree (BIC) fine pruning ex (LRT 0.01) 2.658 0.581 2.607 2.709

4800 OPERA coarse pruning (LRT 0.01) 2.634 0.587 2.583 2.685

4800 OPERA fine pruning quad (LRT 0.01) 2.602 0.620 2.548 2.656

4800 OPERA fine pruning ex (LRT 0.01) 2.590 0.595 2.538 2.642
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Table 4.3: The average number of discovered subgroups for the top 3 pruning methods
with different initial methods in simulation scenarios with binary outcome

Sample

Size
Initial Method Pruning Method Mean SD Lower Upper

Neighbor

-ing

2400 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.526 0.712 2.464 2.588

2400 Lasso tree (AIC) coarse pruning (LRT 0.05) 2.408 0.766 2.341 2.475

2400 Lasso tree (AIC) fine pruning quad (LRT 0.05) 2.396 0.800 2.326 2.466

2400 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.576 0.682 2.516 2.636

2400 Lasso tree (BIC) coarse pruning (LRT 0.05) 2.480 0.717 2.417 2.543

2400 Lasso tree (BIC) fine pruning quad (LRT 0.05) 2.446 0.751 2.380 2.512

2400 OPERA coarse pruning (LRT 0.01) 2.282 0.777 2.214 2.350

2400 OPERA fine pruning ex (LRT 0.05) 2.220 0.811 2.149 2.291

2400 OPERA fine pruning ex (LRT 0.01) 2.214 0.830 2.141 2.287

4800 Lasso tree (AIC) fine pruning ex (LRT 0.01) 2.866 0.390 2.832 2.900

4800 Lasso tree (AIC) coarse pruning (LRT 0.01) 2.852 0.422 2.815 2.889

4800 Lasso tree (AIC) fine pruning quad (LRT 0.01) 2.788 0.547 2.740 2.836

4800 Lasso tree (BIC) fine pruning ex (LRT 0.01) 2.868 0.388 2.834 2.902

4800 Lasso tree (BIC) coarse pruning (LRT 0.01) 2.864 0.402 2.829 2.899

4800 Lasso tree (BIC) fine pruning quad (LRT 0.01) 2.818 0.515 2.773 2.863

4800 OPERA fine pruning ex (LRT 0.01) 2.752 0.464 2.711 2.793

4800 OPERA coarse pruning (LRT 0.01) 2.716 0.510 2.671 2.761

4800 OPERA fine pruning quad (LRT 0.01) 2.668 0.599 2.616 2.720
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Table 4.4: The pairwise comparisons in the average number of discovered subgroups
among coarse pruning, fine pruning using exhaustive search and fine pruning using
quadratic constraint with LRT (α = 0.01) in simulation scenarios with survival outcome
(Each cell displays the difference with the corresponding p-value in parentheses)

Sample

Size

Censoring

Rate
Initial Method Coarse vs Ex Coarse vs Quad Ex vs Quad

Non-

neighbor

-ing

1200 0.5 OPERA -0.002 (0.942) -0.018 (0.389) -0.016 (0.462)

1200 0.5 Lasso tree (AIC) 0.038 (0.122) -0.010 (0.569) -0.048 (0.023)

1200 0.5 Lasso tree (BIC) 0.040 (0.105) -0.004 (0.831) -0.044 (0.036)

1200 0.8 OPERA 0.048 (0.172) 0.040 (0.096) -0.008 (0.813)

1200 0.8 Lasso tree (AIC) 0.146 (< 0.001) 0.098 (< 0.001) -0.048 (0.160)

1200 0.8 Lasso tree (BIC) 0.114 (0.002) 0.070 (0.009) -0.044 (0.168)

2400 0.5 OPERA -0.034 (0.038) -0.014 (0.346) 0.020 (0.086)

2400 0.5 Lasso tree (AIC) -0.044 (0.006) -0.022 (0.071) 0.022 (0.071)

2400 0.5 Lasso tree (BIC) -0.042 (0.008) -0.02 (0.096) 0.022 (0.071)

2400 0.8 OPERA 0.008 (0.782) -0.024 (0.257) -0.032 (0.251)

2400 0.8 Lasso tree (AIC) 0.044 (0.166) 0.008 (0.752) -0.036 (0.223)

2400 0.8 Lasso tree (BIC) 0.038 (0.223) 0.000 (1.000) -0.038 (0.189)

Neighbor

-ing

1200 0.5 OPERA 0.062 (0.039) 0.022 (0.279) -0.04 (0.103)

1200 0.5 Lasso tree (AIC) 0.080 (0.007) 0.056 (0.004) -0.024 (0.352)

1200 0.5 Lasso tree (BIC) 0.104 (0.001) 0.088 (< 0.001) -0.016 (0.530)

1200 0.8 OPERA 0.168 (< 0.001) 0.130 (< 0.001) -0.038 (0.037)

1200 0.8 Lasso tree (AIC) 0.248 (< 0.001) 0.234 (< 0.001) -0.014 (0.538)

1200 0.8 Lasso tree (BIC) 0.276 (< 0.001) 0.262 (< 0.001) -0.014 (0.562)

2400 0.5 OPERA 0.036 (0.075) 0.008 (0.642) -0.028 (0.027)

2400 0.5 Lasso tree (AIC) 0.042 (0.050) 0.028 (0.104) -0.014 (0.337)

2400 0.5 Lasso tree (BIC) 0.052 (0.019) 0.040 (0.027) -0.012 (0.406)

2400 0.8 OPERA 0.134 (< 0.001) 0.068 (< 0.001) -0.066 (0.024)

2400 0.8 Lasso tree (AIC) 0.278 (< 0.001) 0.188 (< 0.001) -0.090 (0.004)

2400 0.8 Lasso tree (BIC) 0.274 (< 0.001) 0.168 (< 0.001) -0.106 (0.001)
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Table 4.5: The pairwise comparisons in the average number of discovered subgroups
among coarse pruning, fine pruning using exhaustive search and fine pruning using
quadratic constraint with LRT (α = 0.01) in simulation scenarios with binary outcome
(Each cell displays the difference with the corresponding p-value in parentheses)

Sample Size Initial Method Coarse vs Ex Coarse vs Quad Ex vs Quad

Non-

neighbor

-ing

2400 OPERA -0.024 (0.387) 0.052 (0.067) 0.076 (0.009)

2400 Lasso tree (AIC) 0.098 (0.001) 0.106 (0.001) 0.008 (0.794)

2400 Lasso tree (BIC) 0.124 (< 0.001) 0.126 (< 0.001) 0.002 (0.945)

4800 OPERA 0.044 (0.05) 0.032 (0.113) -0.012 (0.605)

4800 Lasso tree (AIC) 0.088 (< 0.001) 0.044 (0.048) -0.044 (0.067)

4800 Lasso tree (BIC) 0.118 (< 0.001) 0.068 (0.001) -0.05 (0.036)

Neighbor

-ing

2400 OPERA 0.068 (0.021) 0.124 (< 0.001) 0.056 (0.054)

2400 Lasso tree (AIC) 0.150 (< 0.001) 0.150 (< 0.001) 0.000 (1.000)

2400 Lasso tree (BIC) 0.172 (< 0.001) 0.152 (< 0.001) -0.020 (0.499)

4800 OPERA -0.036 (0.007) 0.048 (0.005) 0.084 (< 0.001)

4800 Lasso tree (AIC) -0.014 (0.209) 0.064 (0.002) 0.078 (< 0.001)

4800 Lasso tree (BIC) -0.004 (0.695) 0.046 (0.014) 0.050 (0.009)
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Table 4.6: The average time for each initial method along with coarse pruning with
LRT(0.01) in simulation scenarios with survival outcome

Sample

Size

Censoring

Rate
Initial Method Pruning Method

Average

(s)

Total

(s)

Non-

neighboring

1200 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 95

1200 0.5 Lasso tree (AIC) no pruning 1422 1517

1200 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 92

1200 0.5 Lasso tree (BIC) no pruning 1567 1660

1200 0.5 OPERA coarse pruning (LRT 0.01) 37

1200 0.5 OPERA no pruning 42 80

1200 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 84

1200 0.8 Lasso tree (AIC) no pruning 255 339

1200 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 69

1200 0.8 Lasso tree (BIC) no pruning 275 345

1200 0.8 OPERA coarse pruning (LRT 0.01) 28

1200 0.8 OPERA no pruning 24 52

2400 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 310

2400 0.5 Lasso tree (AIC) no pruning 15294 15604

2400 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 283

2400 0.5 Lasso tree (BIC) no pruning 14865 15148

2400 0.5 OPERA coarse pruning (LRT 0.01) 123

2400 0.5 OPERA no pruning 239 362

2400 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 268

2400 0.8 Lasso tree (AIC) no pruning 6408 6676

2400 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 266

2400 0.8 Lasso tree (BIC) no pruning 6817 7083

2400 0.8 OPERA coarse pruning (LRT 0.01) 100

2400 0.8 OPERA no pruning 129 229
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Table 4.6: The average time for each initial method along with coarse pruning with
LRT(0.01) in simulation scenarios with survival outcome

Sample

Size

Censoring

Rate
Initial Method Pruning Method

Average

(s)

Total

(s)

Neighboring

1200 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 28

1200 0.5 Lasso tree (AIC) no pruning 247 275

1200 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 26

1200 0.5 Lasso tree (BIC) no pruning 247 273

1200 0.5 OPERA coarse pruning (LRT 0.01) 15

1200 0.5 OPERA no pruning 15 30

1200 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 27

1200 0.8 Lasso tree (AIC) no pruning 108 135

1200 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 24

1200 0.8 Lasso tree (BIC) no pruning 109 134

1200 0.8 OPERA coarse pruning (LRT 0.01) 11

1200 0.8 OPERA no pruning 8 19

2400 0.5 Lasso tree (AIC) coarse pruning (LRT 0.01) 223

2400 0.5 Lasso tree (AIC) no pruning 15020 15243

2400 0.5 Lasso tree (BIC) coarse pruning (LRT 0.01) 224

2400 0.5 Lasso tree (BIC) no pruning 14590 14813

2400 0.5 OPERA coarse pruning (LRT 0.01) 118

2400 0.5 OPERA no pruning 224 342

2400 0.8 Lasso tree (AIC) coarse pruning (LRT 0.01) 220

2400 0.8 Lasso tree (AIC) no pruning 6483 6704

2400 0.8 Lasso tree (BIC) coarse pruning (LRT 0.01) 214

2400 0.8 Lasso tree (BIC) no pruning 6903 7117

2400 0.8 OPERA coarse pruning (LRT 0.01) 103

2400 0.8 OPERA no pruning 142 246
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Table 4.7: The average time for each initial method along with coarse pruning with
LRT(0.01) in simulation scenarios with binary outcome

Sample

Size
Initial Method Pruning Method Average (s) Total (s)

Non-

neighboring

2400 Lasso tree (AIC) coarse pruning (LRT 0.01) 68

2400 Lasso tree (AIC) no pruning 45 113

2400 Lasso tree (BIC) coarse pruning (LRT 0.01) 49

2400 Lasso tree (BIC) no pruning 46 95

2400 OPERA coarse pruning (LRT 0.01) 16

2400 OPERA no pruning 98 114

4800 Lasso tree (AIC) coarse pruning (LRT 0.01) 393

4800 Lasso tree (AIC) no pruning 295 688

4800 Lasso tree (BIC) coarse pruning (LRT 0.01) 424

4800 Lasso tree (BIC) no pruning 414 838

4800 OPERA coarse pruning (LRT 0.01) 197

4800 OPERA no pruning 755 952

Neighboring

2400 Lasso tree (AIC) coarse pruning (LRT 0.01) 92

2400 Lasso tree (AIC) no pruning 135 228

2400 Lasso tree (BIC) coarse pruning (LRT 0.01) 59

2400 Lasso tree (BIC) no pruning 142 201

2400 OPERA coarse pruning (LRT 0.01) 39

2400 OPERA no pruning 247 286

4800 Lasso tree (AIC) coarse pruning (LRT 0.01) 205

4800 Lasso tree (AIC) no pruning 337 542

4800 Lasso tree (BIC) coarse pruning (LRT 0.01) 147

4800 Lasso tree (BIC) no pruning 404 551

4800 OPERA coarse pruning (LRT 0.01) 192

4800 OPERA no pruning 1174 1366



106

a1b1c1

a2b1c1 a1b2c1 a1b1c2

a3b1c1 a2b2c1 a2b1c2 a1b2c2

a4b1c1 a3b2c1 a3b1c2 a2b2c2

a5b1c1 a4b2c1 a4b1c2 a3b2c2

a6b1c1 a5b2c1 a5b1c2 a4b2c2

a6b2c1 a6b1c2 a5b2c2

a6b2c2

The True Stages

1
2
3
4
5

Figure 4.1: The network defined by a continuous risk factor (a) and two ordinal risk
factors (b, c) with non-neighbouring staging patterns
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Figure 4.2: The network defined by a continuous risk factor (a) and two ordinal risk
factors (b, c) with neighbouring staging patterns
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Figure 4.3: The true subgroup discovery rate for a survival outcome with neighbouring
staging patterns
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Figure 4.4: The true subgroup discovery rate for a survival outcome with non-
neighbouring staging patterns
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Figure 4.5: The true subgroup discovery rate for a binary outcome with neighbouring
staging patterns
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Figure 4.6: The true subgroup discovery rate for a binary outcome with non-neighbouring
staging patterns
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Figure 4.7: The true subgroup discovery rate using quadratic constraint and exhaustive
search for a survival outcome with neighbouring staging patterns
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Figure 4.8: The true subgroup discovery rate using quadratic constraint and exhaustive
search for a survival outcome with non-neighbouring staging patterns
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Figure 4.9: The true subgroup discovery rate using quadratic constraint and exhaustive
search for a binary outcome with neighbouring staging patterns
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Figure 4.10: The true subgroup discovery rate using quadratic constraint and exhaustive
search for a binary outcome with non-neighbouring staging patterns
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Chapter 5

Real Data Analyses

OPERA can be applied to real datasets by leveraging multiple risk factors with either survival data or

binary data. To illustrate its effectiveness, several public datasets are downloaded from the cBioPortal

website. These datasets are used as examples for analyzing survival outcomes. Additionally, a dataset

from [Lin+16] is selected to evaluate the performance of OPERA with binary outcomes. By utilizing

these diverse datasets, OPERA’s capability and versatility can be demonstrated across different types

of data and research domains. One difference between previous simulation studies and the current real

data analysis is that for simulation studies, there is no restriction on the number of patients in each

stage. However, for real data analysis, we need to ensure that each stage has either no fewer than 30

patients or constitutes no fewer than 10% of the total patients. If the initial result does not satisfy this

condition, it will activate coarse pruning to recursively merge the stages that do not meet the condition

with adjacent stages until the condition is met.

5.1 A METABRIC Breast Cancer Dataset

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study protocol

received ethical approval from the University of Cambridge and British Columbia Cancer Research

Centre. Funding for the METABRIC project was provided by Cancer Research UK, the British Columbia

Cancer Foundation, and the Canadian Breast Cancer Foundation BC/Yukon[Per+16][Rue+19][Cur+12].

A comprehensive collection of over 2,000 clinically annotated primary fresh-frozen breast cancer

specimens was assembled from tumor banks in the UK and Canada[Cur+12]. The treatment regimens

were homogenous within clinically relevant groups, with almost all estrogen receptor (ER)-positive and/or

https://www.cbioportal.org
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lymph node (LN)-negative patients not receiving chemotherapy, while ER-negative and LN-positive

patients did receive chemotherapy. Furthermore, none of the HER2+ patients received trastuzumab. A

discovery group of 997 tumors was initially analyzed, and an additional set of 995 tumors, for which

complete data became available later, was used to assess the reproducibility of the integrative clusters.

This dataset comprises 2,509 patients, each corresponding to a single sample. The median overall

survival time is 116.47 months, with 33.4% of samples censored and 21.0% missing.

For cancer staging, three risk factors are considered: Pam50 subtype and Claudin-low subtype

(including LumA, Normal, LumB, Her2, and Basal), Tumor Stage (1, 2, 3, 4), and Neoplasm Histologic

Grade (1, 2, 3). Two different survival outcomes, overall survival and disease-free survival, are analyzed

separately. Age is consistently adjusted as a continuous covariate throughout the staging process.

The cancer staging results based on overall survival using OPERA are presented in Figure 5.2a

and 5.2b, while the corresponding Kaplan-Meier curves are depicted in Figure 5.1a and 5.1b. We used

both coarse pruning and fine pruning with LRT (α = 0.01), as both are computationally achievable.

Well-separated curves indicate reliable staging results obtained from both OPERA without pruning and

OPERA with fine pruning using LRT (α = 0.01, exhaustive search). However, the latter approach

prunes down one stage and leads to better separation among all the survival curves, as indicated by

almost equally spaced median survival times. We only display the result from using coarse pruning

due to its slightly superior performance and from using OPERA as the initial method due to its lower

computational cost and comparable performance with lasso tree methods.

The cancer staging results based on disease-free survival are analyzed using the lasso tree with BIC,

and the corresponding results are presented in Figure 5.4a and 5.4b, with the corresponding Kaplan-

Meier curves depicted in Figure 5.3a and 5.3b. Since using OPERA only leads to 2 stages even without

pruning, only the results obtained from the lasso tree are presented for disease-free survival. Although

the lasso tree cannot handle non-neighboring patterns, it can still over-partition the combinations of risk

factors, and pruning can help achieve more separated survival curves, as shown in Figure 5.4b. In this

case, both coarse pruning with LRT (α = 0.01) and fine pruning with LRT (α = 0.01, exhaustive search)

attain the same result.

5.2 A TCGA Prostate Cancer Dataset

Prostate Adenocarcinoma (TCGA, Firehose Legacy) originated from GDAC Firehose, previously known

as TCGA Provisional. This dataset consists of 501 samples, encompassing 500 patients with one patient

having two samples while all other patients has only one sample. The median overall survival time is

https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=prad_tcga
http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/PRAD/20160128/
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Figure 5.1: The Kaplan-Meier curves for the overall survival probabilities across different
stages obtained from OPERA for breast cancer patients
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Figure 5.2: The cancer staging results obtained from OPERA based on overall survival
for breast cancer patients



119

+ +
+++++++++++++ + ++++++++

++++++++ +++++++
+
++ + ++++

+ ++
++++++ ++++++++++ +

+
+++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++

+++++++++++++++++++

+ +

+
+++++

++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++
+++++++

++++ ++++ ++

+
++

++++
+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++

+

++++++
+++++++++

+++
+++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ + +

+

+
+

+

+

+ + ++
++ ++ + ++ +++ + +

p < 0.0001

Log−rank

The Brier Score = 0.1946
0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Months

T
he

 E
st

im
at

ed
 S

ur
vi

va
l P

ro
ba

bi
lit

ie
s

No Pruning with Lasso Tree with BIC

84 55 22 0 0
166 101 41 1 0
152 80 21 0 0
328 182 62 1 0
432 169 45 2 0
75 17 5 0 0stage=6

stage=5
stage=4
stage=3
stage=2
stage=1

0 100 200 300
Months

Number at risk

(a) No pruning (Lasso tree)

+ + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++

+ + +

++
+++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++

+

++++++
+++++++++

+++
+++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ + +

+

+
+

+

+

+ + ++
++ ++ + ++ +++ + +

p < 0.0001

Log−rank

The Brier Score = 0.1932
0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Months

T
he

 E
st

im
at

ed
 S

ur
vi

va
l P

ro
ba

bi
lit

ie
s

Fine Pruning with Exhaustive Search Using the LRT with Alpha 0.01

250 156 63 1 0
480 262 83 1 0
432 169 45 2 0
75 17 5 0 0stage=4

stage=3

stage=2

stage=1

0 100 200 300
Months

Number at risk

(b) Coarse or Fine Pruning using LRT (α =
0.01, Exhaustive Search)

Figure 5.3: The Kaplan-Meier curves for the disease-free survival probabilities across
different stages obtained from lasso tree for breast cancer patients
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Figure 5.4: The cancer staging results obtained from lasso tree based on disease-free
survival for breast cancer patients
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Figure 5.5: The results for the disease-free survival probabilities across different stages
for prostate cancer patients (1. No pruning using OPERA; 2. Lasso tree with BIC after
using coarse pruning with LRT α = 0.01)

30.52 months with 98.00% observations being censored.

Three risk factors are considered for cancer staging: Neoplasm Disease Lymph Node Stage (American

Joint Committee on Cancer Code, ranging from T2a to T4), Tumor Stage (American Joint Committee

on Cancer Code, including N0 and N1), and Radical Prostatectomy Gleason Score for Prostate Cancer

(ranging from 6 to 10). Age is consistently adjusted as a continuous covariate throughout the staging

process.

The cancer staging results based on disease-free survival are analyzed using both the lasso tree and

OPERA, and the corresponding results are presented in Figure 5.5a, 5.5b, 5.6a, and 5.6b. After coarse

pruning using LRT (α = 0.01), both the lasso tree and OPERA yield the same two stages. After fine

pruning using LRT (α = 0.01, either using exhaustive search or the quadratic constraint), the lasso tree

has a very similar staging result to OPERA. The Kaplan-Meier curves for the two stages demonstrate

clear separation and exhibit a decent sample size in each stage, indicating reliable staging results. Due

to the high censoring rate and relatively small sample size compared to the number of categories defined

by the risk factors, a smaller number of stages is expected.
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Figure 5.6: The results for the disease-free survival probabilities across different stages
for prostate cancer patients (Lasso tree with BIC after using fine pruning with LRT
α = 0.01)

5.3 A TCGA Lung Cancer Dataset

The study aimed to compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC)

and identify new drivers of lung carcinogenesis. The exome sequences and copy number profiles of 660

ADC and 484 SqCC tumor/normal pairs were examined [Cam+16].

The dataset used for this analysis includes 660 lung ADC/normal paired exome sequences (including

274 previously unpublished cases, 227 cases from The Cancer Genome Atlas (TCGA) [Col+14], and 159

cases from the Imielinski cohort [Imi+12]). Additionally, 484 lung SqCC/normal paired exome sequences

were studied, comprising 308 previously unpublished cases and 176 cases from TCGA [Net+12]. The

goal was to compare the somatic profiles of lung ADC and SqCC and identify novel genetic alterations.

The Pan-Lung Cancer dataset consists of 1,144 patients, each with one corresponding sample. The

median overall survival time is 8.10 months, with 61.45% of samples censored and 14.16% of samples

missing.

Two risk factors, Lymph Node Stage (N stage, including N0, N1, N2, and N3) and Tumor Stage

(T stage, including T1, T2, T3, and T4), are used for cancer staging based on overall survival. Age is

consistently adjusted as a continuous covariate throughout the staging process. All types of OPERA

methods are applied, including OPERA with no pruning and OPERA with coarse or fine pruning using

LRT. The cancer staging results are depicted in Figure 5.8a and 5.8b, while the corresponding Kaplan-

https://www.cbioportal.org/study/summary?id=nsclc_tcga_broad_2016
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Meier curves are shown in Figure 5.7a and 5.7b. Well-separated curves indicate valid staging results,

with OPERA using coarse pruning with LRT (α = 0.01) achieving better separation than OPERA

without pruning, as indicated by the median survival times. In this case, coarse pruning demonstrates

the same performance as fine pruning using either exhaustive search or the quadratic constraint with

LRT (α = 0.01). Since using lasso tree only leads to 2 stages even without pruning, only the results

obtained from OPERA are presented for overall survival.

5.4 A TCGA Colorectal Cancer Dataset

The Colorectal Adenocarcinoma (TCGA, Firehose Legacy) dataset is derived from GDAC Firehose,

previously known as TCGA Provisional. It comprises 640 samples from 636 patients. The median

overall survival time is 21.75 months, with 78.46% of observations censored and 1.10% of observations

missing.

For cancer staging, two risk factors are considered: Neoplasm Disease Lymph Node Stage (including

N0, N1, and N2) and Tumor Stage (including T1, T2, T3, and T4) based on the American Joint

Committee on Cancer Code. Age is consistently adjusted as a continuous covariate throughout the

staging process. Two different survival outcomes, overall survival, and disease-free survival, are analyzed.

The corresponding results are presented in Figure 5.10b and 5.10a for overall survival, and in Figure

5.12b and 5.12a for disease-free survival. The Kaplan-Meier curves are shown in Figure 5.9b and 5.9a

for overall survival, and in Figure 5.11b and 5.11a for disease-free survival. The last stage remains

consistent across different outcomes and approaches. All survival curves demonstrate clear separation

after pruning, indicating robust staging results. For overall survival, fine pruning with LRT (α = 0.01)

using either quadratic constraint or exhaustive search leads to the same result with improved separation

over OPERA without pruning. Coarse pruning with LRT (α = 0.01) leads to only 2 stages, so the result

is not displayed. For disease-free survival, coarse pruning and fine pruning using exhaustive search with

LRT (α = 0.01) lead to the same result as lasso tree with BIC without pruning.Fine pruning using

quadratic constraint with LRT (α = 0.01) demonstrates a very similar staging result, differing only in

one node. Since using lasso tree with BIC only leads to 2 stages even without pruning, only the results

obtained from OPERA are presented for overall survival.

https://www.cbioportal.org/study/summary?id=coadread_tcga
http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/COADREAD/20160128/
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Figure 5.7: The Kaplan-Meier curves for the overall survival probabilities across different
stages obtained from OPERA for lung cancer patients
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Figure 5.8: The cancer staging results obtained from OPERA based on overall survival
for lung cancer patients
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Figure 5.9: The Kaplan-Meier curves for the overall survival probabilities across different
stages obtained from OPERA for colorectal cancer patients
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Figure 5.10: The cancer staging results obtained from OPERA based on overall survival
for colorectal cancer patients
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Figure 5.11: The Kaplan-Meier curves for the disease-free survival probabilities across
different stages obtained from OPERA for colorectal cancer patients
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Figure 5.12: The cancer staging results obtained from OPERA based on disease-free
survival for colorectal cancer patients
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5.5 A Breast Cancer Dataset from [Wan20]

There is an additional breast cancer dataset available from [Wan20], comprising 3,321 patients. The mean

follow-up time is 8.20 years, and the censoring rate is 79%. Two risk factors are considered: tumor grade

(I, IIA, IIB, III) and ER/PR/HER2 status (ER/PR+/HER2+, ER/PR+/HER2-, ER/PR-/HER2+,

ER/PR-/HER2-). Staging is based solely on overall survival outcome, while age and BMI (Body Mass

Index) are adjusted as continuous variables during the staging process. The cancer staging results are

presented in Figure 5.14a and 5.14b, accompanied by the corresponding Kaplan-Meier curves shown

in Figure 5.13a and 5.13b. All survival curves demonstrate clear separation, with each stage having a

substantial sample size, as indicated by the distinct median survival times between the last two stages.

Coarse pruning and fine pruning using exhaustive search with LRT (α = 0.01) lead to the same result

and prune down two stages to demonstrate better separation. Lasso tree with BIC used as the initial

method actually leads to the same result as OPERA.

5.6 Advanced Colorectal Neoplasia

The study included individuals aged 50 to 80 years who underwent their first-time screening colonoscopy

between December 2004 and September 2011[Lin+16]. The primary outcome of interest was advanced

neoplasia, which encompassed a tubular adenoma greater than 1 cm, a polyp with villous histology or

high-grade dysplasia, or colorectal cancer (CRC). Additional baseline characteristics can be found in

Table 5.1. For further analysis, both female and male patients were considered.

To address the substantial number of risk factors, we apply logistic regression with the lasso method

for variable selection, utilizing cross-validation and the R function cv.glmnet. We repeat this process 100

times, consistently identifying race, colonoscopy and polyp history, age, and cigarette smoking as the

top four relevant risk factors for male patients. For female patients, the algorithm also constantly selects

estrogen use as one of the risk factors. Since race lacks a specific ordering, we treat it as a covariate

requiring adjustment when applying OPERA. Colonoscopy and polyp history feature four categories:

screened with no polyps, screened with polyps, not screened, and unknown screening or polyps. The

first two categories follow an ordered prognosis, while the others do not. Age (≤ 65, 65+), cigarette

smoking (0, 0 < − < 20, 20+), estrogen use (regular user, non-user) are ordinal risk factors with total

orderings.

To assess the performance of different pruning methods with various initial approaches, we use a

10-fold cross-validation. Each iteration involves both training and testing processes. During training, we
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Figure 5.13: The Kaplan-Meier curves for the overall survival probabilities across different
stages obtained from OPERA for breast cancer patients
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Figure 5.14: The cancer staging results obtained from OPERA based on overall survival
for breast cancer patients
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utilize the training data to obtain stages. During testing, we fit a logistic regression model to the testing

data, incorporating stages and race as covariates. We calculate the corresponding Area Under the ROC

Curve (AUC) value for each testing dataset and compute the final Cross-Validated Area Under the ROC

Curve (cvAUC) [LPL15], along with its 95

Table 5.2 displays the cvAUCs for male patients, while Table 5.3 displays those for female patients.

Across all methods, for male patients, all the cvAUC values surpass 0.615, outperforming the results in

[Lin+16]. Similarly, for female patients, all methods yield cvAUC values higher than 0.618, also out-

performing the results in [Lin+16]. However, pruning does not enhance the cvAUC since the evaluation

metric favors more stages. Lasso tree methods outperform OPERA as initial methods, consistent with

Chapter 2’s findings.
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Table 5.1: Advanced colorectal neoplasia dataset baseline characteristics

Male

(N = 2162)

Female

(N = 2304)

Overall

(N = 4466)

Advanced colorectal neoplasia

0 1,932, 89.36% 2,161, 93.79% 4,093, 91.65%

1 230, 10.64% 143, 6.21% 373, 8.35%

Race

African American 65, 3.01% 77, 3.34% 142, 3.18%

Asian 30, 1.39% 43, 1.87% 73, 1.63%

Hispanic 18, 0.83% 17, 0.74% 35, 0.78%

White 2,049, 94.77% 2,167, 94.05% 4,216, 94.40%

Sex

Female 0, 0.00% 2,304, 100.00% 2,304, 51.59%

Male 2,162, 100.00% 0, 0.00% 2,162, 48.41%

Cigarette smoking

0 1,173, 54.26% 1,537, 66.71% 2,710, 60.68%

0<-<20 441, 20.40% 424, 18.40% 865, 19.37%

20+ 548, 25.35% 343, 14.89% 891, 19.95%

Number of relatives w/ CRC

0 1,555, 71.92% 1,430, 62.07% 2,985, 66.84%

1 433, 20.03% 575, 24.96% 1,008, 22.57%

2+ 174, 8.05% 299, 12.98% 473, 10.59%

Age

≤65 1,912, 88.44% 2,019, 87.63% 3,931, 88.02%

65+ 250, 11.56% 285, 12.37% 535, 11.98%

BMI

≤24.9 410, 18.96% 1,581, 68.62% 1,991, 44.58%

24.9<-≤29.9 975, 45.10% 723, 31.38% 1,698, 38.02%
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29.9+ 777, 35.94% 0, 0.00% 777, 17.40%

NSAID use

Non user 1,013, 46.85% 1,215, 52.73% 2,228, 49.89%

Regular user 1,149, 53.15% 1,089, 47.27% 2,238, 50.11%

Colonoscopy and polyp history

No screening 1,794, 82.98% 1,938, 84.11% 3,732, 83.56%

Screened and polyps 39, 1.80% 38, 1.65% 77, 1.72%

Screened no polyps 27, 1.25% 14, 0.61% 41, 0.92%

Unknown screen or polyps 302, 13.97% 314, 13.63% 616, 13.79%

Vegetable consumption

<5 73, 3.38% 141, 6.12% 214, 4.79%

≥5 2,089, 96.62% 2,163, 93.88% 4,252, 95.21%

Vigorous activity

0 545, 25.21% 840, 36.46% 1,385, 31.01%

0<-≤2 114, 5.27% 134, 5.82% 248, 5.55%

2<-≤4 161, 7.45% 203, 8.81% 364, 8.15%

4+ 1,342, 62.07% 1,127, 48.91% 2,469, 55.28%

Estrogen

Non user - 1,351, 58.64% 1,351, 30.25%

Regular user - 953, 41.36% 953, 21.34%
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Table 5.2: The cvAUCs for male patients across different methods

Initial pruning Stopping cvAUC Lower Upper

OPERA Coarse Pruning AIC 0.651 0.599 0.703

Coarse Pruning BS 0.652 0.600 0.704

Coarse Pruning LRT (0.01) 0.651 0.599 0.703

Coarse Pruning No Pruning 0.652 0.600 0.704

Exhaustive Search AIC 0.651 0.599 0.703

Exhaustive Search BS 0.652 0.600 0.704

Exhaustive Search LRT (0.01) 0.634 0.581 0.687

Exhaustive Search No Pruning 0.652 0.600 0.704

Quadratic Constraint AIC 0.651 0.599 0.703

Quadratic Constraint BS 0.652 0.600 0.704

Quadratic Constraint LRT (0.01) 0.636 0.581 0.691

Quadratic Constraint No Pruning 0.652 0.600 0.704

Lasso Tree (AIC) Coarse Pruning AIC 0.674 0.625 0.724

Coarse Pruning BS 0.677 0.631 0.723

Coarse Pruning LRT (0.01) 0.661 0.612 0.711

Coarse Pruning No Pruning 0.697 0.653 0.741

Exhaustive Search AIC 0.672 0.623 0.722

Exhaustive Search BS 0.695 0.651 0.740

Exhaustive Search LRT (0.01) 0.647 0.593 0.701

Exhaustive Search No Pruning 0.697 0.653 0.741

Quadratic Constraint AIC 0.676 0.628 0.724

Quadratic Constraint BS 0.696 0.651 0.740

Quadratic Constraint LRT (0.01) 0.640 0.588 0.692

Quadratic Constraint No Pruning 0.697 0.653 0.741

Lasso Tree (BIC) Coarse Pruning AIC 0.667 0.618 0.715

Coarse Pruning BS 0.688 0.641 0.736

Coarse Pruning LRT (0.01) 0.654 0.602 0.706

Coarse Pruning No Pruning 0.706 0.660 0.752

Exhaustive Search AIC 0.678 0.630 0.727



132

Table 5.2: The cvAUCs for male patients across different methods

Initial pruning Stopping cvAUC Lower Upper

Exhaustive Search BS 0.684 0.637 0.731

Exhaustive Search LRT (0.01) 0.643 0.590 0.697

Exhaustive Search No Pruning 0.706 0.660 0.752

Quadratic Constraint AIC 0.673 0.625 0.721

Quadratic Constraint BS 0.683 0.635 0.730

Quadratic Constraint LRT (0.01) 0.649 0.597 0.701

Quadratic Constraint No Pruning 0.706 0.660 0.752
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Table 5.3: The cvAUCs for female patients across different methods

Initial pruning Stopping cvAUC Lower Upper

OPERA Coarse Pruning AIC 0.719 0.651 0.787

Coarse Pruning BS 0.729 0.665 0.794

Coarse Pruning LRT (0.01) 0.715 0.643 0.786

Coarse Pruning No Pruning 0.729 0.665 0.794

Exhaustive Search AIC 0.717 0.647 0.788

Exhaustive Search BS 0.728 0.661 0.794

Exhaustive Search LRT (0.01) 0.704 0.631 0.778

Exhaustive Search No Pruning 0.729 0.665 0.794

Quadratic Constraint AIC 0.717 0.647 0.788

Quadratic Constraint BS 0.728 0.661 0.794

Quadratic Constraint LRT (0.01) 0.702 0.629 0.776

Quadratic Constraint No Pruning 0.729 0.665 0.794

Lasso Tree (AIC) Coarse Pruning AIC 0.791 0.734 0.849

Coarse Pruning BS 0.814 0.766 0.862

Coarse Pruning LRT (0.01) 0.760 0.688 0.832

Coarse Pruning No Pruning 0.812 0.763 0.860

Exhaustive Search AIC 0.794 0.734 0.853

Exhaustive Search BS 0.815 0.761 0.868

Exhaustive Search LRT (0.01) 0.756 0.685 0.828

Exhaustive Search No Pruning 0.812 0.763 0.860

Quadratic Constraint AIC 0.795 0.736 0.855

Quadratic Constraint BS 0.814 0.765 0.863

Quadratic Constraint LRT (0.01) 0.759 0.689 0.829

Quadratic Constraint No Pruning 0.812 0.763 0.860

Lasso Tree (BIC) Coarse Pruning AIC 0.780 0.713 0.847

Coarse Pruning BS 0.791 0.727 0.855

Coarse Pruning LRT (0.01) 0.749 0.675 0.823

Coarse Pruning No Pruning 0.792 0.729 0.854

Exhaustive Search AIC 0.782 0.718 0.847
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Table 5.3: The cvAUCs for female patients across different methods

Initial pruning Stopping cvAUC Lower Upper

Exhaustive Search BS 0.792 0.730 0.855

Exhaustive Search LRT (0.01) 0.750 0.677 0.823

Exhaustive Search No Pruning 0.792 0.729 0.854

Quadratic Constraint AIC 0.782 0.718 0.846

Quadratic Constraint BS 0.792 0.729 0.854

Quadratic Constraint LRT (0.01) 0.755 0.687 0.824

Quadratic Constraint No Pruning 0.792 0.729 0.854
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Chapter 6

Advanced Illness Patient Clustering

Throughout our development, OPERA has primarily focused on cancer staging problems, but its applica-

bility extends beyond that. OPERA is designed to handle various risk stratification questions that involve

ordinal risk factors, whether they possess total orderings or partial orderings. Additionally, OPERA has

the capability to adjust for multiple covariates and model both survival outcomes and binary outcomes.

By leveraging OPERA, patients with diverse characteristics can be effectively clustered into distinct risk

levels, referred to as stages, which exhibit a total ordering aligned with their corresponding prognostic

patterns.

An illustrative example of how OPERA, developed by the Health Innovation Program (HIP), extends

beyond cancer staging problems is its application in clustering patients with advanced illnesses. By

integrating advanced illness triggers (D) with age (A), palliative risk score (R), and count of frailty

diagnoses (F), OPERA facilitates the following objectives: (a) enhancing the existing HIP-compiled list

of potential triggers for end-of-life communication in advanced illness patients through the inclusion

of additional risk factors, and (b) assisting in the identification of patients approaching the end of

life, ensuring timely conversations about end-of-life care along the disease trajectory, and facilitating

appropriate recommendations for palliative care to those in need. This comprehensive approach ensures

that patients receive optimal support and care during their advanced illness journey.

Effective communication of care goals is a pivotal aspect of providing high-quality care to severely

ill patients, as emphasized by Bernacki in their work on Communication About Serious Illness Care

Goals[BB+14]. Engaging in end-of-life discussions not only contributes to an improved quality of life for

patients, but also leads to a reduction in unnecessary medical interventions, lowered healthcare costs, and

enhanced outcomes for families. To facilitate this process, HIP has devised an advanced illness trigger

https://hip.wisc.edu
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hierarchy that organizes advanced illness triggers into mutually exclusive groupings in a hierarchical

order. This following framework ensures a systematic approach to addressing the evolving needs of

patients with advanced illness:

• 01: Cancer

– Any Cancer Trigger

• 02: ESRD/CKD

– Any ESRD/CKD Trigger

• 03: Multiple Organ Failure with Cognitive Impairment

– 2+ Any Organ Failure Triggers (Heart Failure, Lung Failure, Liver Failure, or Brain Degen-

eration) with Cognitive Impairment Trigger

• 04: Multiple Organ Failure without Cognitive Impairment

– 2+ Any Organ Failure Triggers (Heart Failure, Lung Failure, Liver Failure,or Brain Degen-

eration) without Cognitive Impairment Trigger

• 05: Organ Failure with Cognitive Impairment

– Any Organ Failure Trigger(Heart Failure,Lung Failure, Liver Failure, or Brain Degeneration)

with Cognitive Impairment Trigger

• 06: Other Advanced Illness with Cognitive Impairment

– Any Other Advanced Illness Trigger with Cognitive Impairment Trigger

• 07: Organ Failure without Cognitive Impairment (Age 65+)

– Any Organ Failure Trigger (Heart Failure, Lung Failure, Liver Failure, or Brain Degenera-

tion) without Cognitive Impairment Trigger (Age 65+)

• 08: Other Advanced Illness without Cognitive Impairment (Age 65+)

– Any Other Advanced Illness Trigger without Cognitive Impairment Trigger (Age 65+)

• 09: Cognitive Impairment (Age 65+)

– Any Cognitive Impairment Trigger(Age 65+)
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• 10: No Organ Failure or Other Advanced Illness Triggers

– No Triggers

To enable effective clustering, a combination of several triggers was utilized, excluding the last trigger

as it was deemed irrelevant for patients without advanced illnesses. Specifically, triggers 03 and 04 were

consolidated into the category of multiple organ failure, while triggers 08 and 09 were merged into a single

category. In addition, the Health Innovation Program (HIP) developed a palliative risk score categorized

into six levels: very low risk, low risk, moderate risk, moderately high risk, high risk, and very high

risk. This risk factor follows a total ordering and is ordinal in nature. Notably, patients with moderate

risk and moderately high risk require further exploration to identify those who are in need of palliative

care. Consequently, very low risk and low risk were combined as Palliative Risk Score 1 (PRS1), while

moderate risk and moderately high risk were divided into PRS2 to PRS4 based on equal-sized palliative

risk intervals. High risk and very high risk were consolidated as PRS5.

The distribution of palliative risk values across different groups is depicted in Figure 6.1, where the

count is specified on the left y-axis and the density on the right y-axis. The sample sizes are listed at the

top of the figure. In addition to the palliative risk score (PRS), age groups (≤ 80, 80 − 90, > 90), and

the count of frailty diagnoses (0, 1, 2, 3, 4+) were utilized as risk factors. All three of these factors are

ordinal and have a total ordering. However, the new advanced illness trigger groups, which only consist

of seven categories, exhibit a partial ordering. This suggests a total ordering when cancer and end-stage

renal disease (ESRD) patients are excluded, and patients with cognitive impairment (age 65+) or other

advanced illnesses without cognitive impairment (age 65+) have better diagnoses than either cancer or

ESRD patients.

During the clustering process using OPERA, two binary indicators, gender and urbanity, were ad-

justed. For the analysis, time-to-the-first-event analysis was conducted, focusing on four different survival

outcomes: death, hospice utilization, hospitalization, and skilled nursing facility (SNF) utilization. The

follow-up period for these outcomes was 12 months. It is important to note that each patient was limited

to one episode and had at least one chronic condition. The study sample comprised 9,862 individuals who

were Medicare accountable care organization (ACO) beneficiaries. Claims and electronic health record

(EHR) data were utilized to create the advanced illness groupings. Additionally, 12-month baseline

variables were included in the analysis.

The results, presented in Figure 6.2, demonstrate the utilization of the composite outcome comprising

the four events. A comparison is made between the stages classified by OPERA and those developed by

HIP. The Kaplan-Meier curves reveal enhanced differentiation among the latter three stages classified
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Figure 6.1: The distribution of palliative risk values across different groups

by OPERA, evident from the significant disparities in median survival time for each stage. Notably, the

final stage, as classified by OPERA, exhibits a relatively smaller sample size, while stages 4 and 5 display

larger sample sizes. This observation suggests that a greater number of patients may be recommended

for palliative care intervention.

Given the distinct separation achieved using OPERA without pruning, no pruning is applied after

the initial classification. Coarse pruning using different criteria yields the same outcome as the result

obtained without pruning. With a considerable number of categories defined by risk factors, a parameter

tuning value of N = 10 is employed in Algorithm 3. The Kaplan-Meier curves illustrating the survival

probabilities for experiencing death or hospice are displayed in Figure 6.3. Notably, the early three

stages exhibit greater separation when using the stages obtained by OPERA compared to the risk levels

developed by HIP.

Furthermore, Figure 6.4 showcases the Kaplan-Meier curves illustrating the survival probabilities for

the different risk levels based on palliative risk values (PSV), while maintaining the same sample sizes

as the stages obtained from OPERA. These curves highlight the improved risk stratification achieved

by incorporating multiple risk factors rather than solely relying on PRS. The survival curves across

the stages obtained by OPERA, depicted in Figure 6.2a, show greater separation than those across the

corresponding risk levels using only PRS. Similar trends are observed when examining the visualization

of death and hospice in Figures 6.3a and 6.4b.
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The findings are summarized in Table 6.1, where each row represents a specific risk level developed

by HIP (ranging from R1 for very low risk to R6 for very high risk), and each column represents a specific

level of frailty (ranging from F0 for no frailty diagnoses to F4 for at least four frailty diagnoses). The

information for different stages is presented from stage 1 at the top to stage 6 at the bottom. In each

cell, the corresponding age (ranging from A1 for no older than 80 to A3 for older than 90) and advanced

illness triggers (ranging from D1 to D7, representing the new illness categories) are specified whenever

such a combination exists within the corresponding stage.

For example, stage 1 comprises patients with very low risk to moderately high risk, no older than

80, with cognitive impairment (age 65+) or other advanced illnesses without cognitive impairment (age

65+), and no frailty diagnoses. On the other hand, stage 2 consists of patients with very low risk to low

risk, no older than 80, with cognitive impairment (age 65+) or other advanced illnesses without cognitive

impairment (age 65+), and one to two frailty diagnoses, including cancer patients with no frailty.

It is important to note that moderately high risk cancer patients with no more than 3 frailty diagnoses

are still categorized as stage 3, while moderately high risk patients with multiple organ failures and

at least one frailty diagnosis are classified as stage 4. This indicates that some higher-risk patients

with additional risk factors falling into lower-risk categories can be assigned to lower stages, while some

relatively lower-risk patients with additional risk factors falling into higher-risk categories can be assigned

to higher stages. Only high-risk patients and very high-risk patients are considered for stage 5 and stage

6. As the count of frailty diagnoses increases, the severity of diseases decreases or patients become

younger, while controlling for risk level and stage.
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Figure 6.2: The Kaplan-Meier curves illustrating various stages based on the composite
outcome consisting of four distinct events
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Figure 6.3: The Kaplan-Meier curves depict the survival probabilities for experiencing
death and hospice across the same stages obtained by OPERA. These stages are deter-
mined based on a composite outcome composed of four events
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Figure 6.4: The Kaplan-Meier curves illustrate the survival probabilities for the different
risk levels based on palliative risk values (PSV), while ensuring that the same sample
sizes as the stages obtained from OPERA are maintained

Table 6.1: The summary of the results obtained by OPERA using the composite outcome
of four events

Stage =

1

F0 F1 F2 F3 F4

R1 [n =

834]

(A1,D7) [n = 834]

R2 [n =

65]

(A1,D7) [n = 65]

R3 [n =

10]

(A1,D7) [n = 10]

R4 [n =

1]

(A1,D7) [n = 1]

Stage =

2

F0 F1 F2 F3 F4

R1 [n =

1578]

(A1,D1) [n = 25] (A1,D7) [n = 964] (A1,D7) [n = 589]
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R2 [n =

453]

(A1,D1) [n = 44] (A1,D7) [n = 186] (A1,D7) [n = 223]

Stage =

3

F0 F1 F2 F3 F4

R1 [n =

1987]

(A1,D2,D3-

D6),(A2,D2,D3-

D7),(A3,D2,D6-

D7) [n = 594]

(A1,D1,D2,D3-

D6),(A2,D2,D3-

D7),(A3,D3-D7) [n

= 545]

(A1,D1,D2,D3-

D6),(A2,D2,D3-

D7),(A3,D5-D7) [n

= 355]

(A1,D1,D2,D3-

D7),(A2,D3-

D7),(A3,D7) [n

= 421]

(A1,D4-

D7),(A2,D5-D7) [n

= 72]

R2 [n =

2013]

(A1,D2,D3-

D6),(A2,D1,D2,D3-

D7),(A3,D6-D7) [n

= 174]

(A1,D1,D2,D3-

D6),(A2,D1,D2,D3-

D7),(A3,D2,D3-

D7) [n = 512]

(A1,D1,D2,D3-

D6),(A2,D2,D3-

D7),(A3,D2,D4-

D7) [n = 559]

(A1-A2,D1,D2,D3-

D7),(A3,D2,D3-

D7) [n = 530]

(A1-A2,D2,D3-

D7),(A3,D3-D7) [n

= 238]

R3 [n =

1184]

(A1,D1,D2,D3-

D6),(A2,D1,D2,D3-

D7),(A3,D1,D6-

D7) [n = 129]

(A1-A3,D1,D2,D4-

D7) [n = 270]

(A1-A2,D1,D2,D4-

D7),(A3,D2,D4-

D7) [n = 372]

(A1-A2,D1,D2,D4-

D7),(A3,D2,D7) [n

= 348]

(A1-A2,D1,D2,D7),

(A3,D2,D7) [n = 65]

R4 [n =

350]

(A1,D1,D3-

D6),(A2,D1,D2,D3-

D7),(A3,D1,D3) [n

= 40]

(A1-A2,D1,D2,D4-

D7),(A3,D1,D6-

D7) [n = 71]

(A1-A3,D1,D2,D4-

D7) [n = 141]

(A1-A2,D1,D4-

D7),(A3,D1,D7) [n

= 77]

(A1,D2,D1,D7),(A2-

A3,D7) [n = 21]

R5 [n =

24]

(A1,D3) [n = 1] (A1,D2),(A2,D4-

D6) [n = 3]

(A1,D2,D5-

D6),(A2,D2,D4-

D6),(A3,D4-D5) [n

= 16]

(A1,D6) [n = 1] (A1-A2,D7) [n = 3]

R6 [n =

2]

(A1,D7) [n = 1] (A1,D2) [n = 1]

Stage =

4

F0 F1 F2 F3 F4

R3 [n =

444]

(A1-A3,D3) [n =

36]

(A1-A3,D3) [n =

55]

(A1-

A2,D3),(A3,D3-

D6) [n = 76]

(A1-A3,D3-D6) [n

= 277]
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R4 [n =

495]

(A1-A3,D3) [n =

17]

(A1-A3,D3) [n =

31]

(A1,D2,D3),(A2-

A3,D2,D3-D6) [n =

162]

(A1-A3,D21,D3-

D6) [n = 285]

R5 [n =

166]

(A1-A3,D1) [n = 8] (A1-A3,D1) [n =

17]

(A1-

A2,D1,D3),(A3,D3)

[n = 23]

(A1,D1,D2,D3-

D5),(A2-

A3,D1,D2,D4-D6)

[n = 70]

(A1-A2,D2,D5-

D6),(A3,D2) [n =

48]

R6 [n =

42]

(A1,D1),(A2,D3) [n

= 5]

(A1-

A2,D1),(A3,D3) [n

= 6]

(A1,D1,D2),

(A2,D1,D4-D5),

(A3,D2,D4) [n = 21]

(A1,D2,D5),(A2-

A3,D2) [n = 10]

Stage =

5

F0 F1 F2 F3 F4

R5 [n =

91]

(A1,D3-

D4),(A2,D4),(A3,D4-

D5) [n = 91]

R6 [n =

28]

(A1,D3-

D4),(A2,D4),(A3,D4-

D5) [n = 28]

Stage =

6

F0 F1 F2 F3 F4

R5 [n =

62]

(A2-A3,D3) [n =

15]
(A1,D1),(A2,D1,D3),

(A3,D3) [n = 47]

R6 [n =

33]

(A2-A3,D3) [n = 3] (A1,D1),(A2-

A3,D1,D3) [n =

30]

1The combination R4F4A1D2 is present in both stage 3 and stage 4, which is due to the utilization
of PRS1 to PRS5 for clustering rather than the risk levels developed by HIP. In this particular case, R4
corresponds to different PRS levels, namely PRS2 and PRS3.
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Chapter 7

An R Package - OPERAP

This chapter introduces the OPERAP R package, designed to facilitate the implementation of the lasso

tree method and the OPEPA algorithm with pruning. The package offers flexibility in handling both

survival outcomes and binary outcomes, allowing for adjustment of non-risk-factor covariates during

model fitting. With OPERAP, cancer staging using ordinal risk factors can be performed, and the

staging results can be conveniently saved to a specified filepath.

When dealing with time-to-event outcomes, OPERAP also enables the generation of Kaplan-Meier

curves, providing a visual assessment of the effectiveness in separating different stages. The package

supports various pruning methods, including coarse pruning and fine pruning. Fine pruning can be

performed through exhaustive search or quadratic programming constraint.

Additionally, users can define different criteria to determine when to stop pruning. Options include

AIC (Akaike Information Criterion), the (integrated) Brier score, the likelihood ratio test, or a predefined

total number of stages. OPERAP offers a comprehensive toolkit for efficient and customizable cancer

staging analysis.

To illustrate the implementation of cancer staging using our package, we utilize the METABRIC

dataset discussed in Chapter 4. The dataset consists of 1,238 patients after removing missing values.

Three risk factors, namely Pam50, tumor grade, and neoplasm histologic grade, are employed for cancer

staging. Additionally, age at diagnosis can be incorporated as a non-risk-factor covariate. Within our

package, the pivotal function for conducting cancer staging is runOpera().

https://www.cbioportal.org/study/summary?id=brca_metabric
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7.1 Installation

To install our R package, we will need to use the devtools package. If we haven’t installed devtools

yet, we can do so by running the following code:

1 install.packages(’devtools ’)

Once we have devtools installed, we can proceed with installing our R package:

1 library(devtools)

2 devtools :: install_github("yzliu1995/operap")

Make sure to load the package after installation to access the functions and features provided by our

package.

1 library(operap)

7.2 Data

Once our package is loaded, we can proceed to explore the example dataset included within it. This

particular dataset originates from the well-known METABRIC study, which we previously mentioned

and discussed.

1 data("bric_bc_os")

7.3 Model Fitting

To facilitate cancer staging, there are two initial options available: utilizing OPERA or lasso tree. These

methods can be employed to initialize the stages, followed by employing pruning with various stopping

rules to refine and reduce the number of stages. In order to provide a comprehensive understanding of

this bottom-up approach and how it can be implemented in our R package, we will illustrate the process

step by step using our provided example dataset.

https://www.cbioportal.org/study/summary?id=brca_metabric
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7.3.1 No Pruning

OPERA

runOpera() is a crucial function to utilize when implementing our R package for cancer staging. Below

are explanations for the essential arguments of the function. To perform cancer staging without pruning

using OPERA, the following list of arguments needs to be specified:

ncat: A vector that indicates the number of levels for each risk factor. In our example dataset, we

have three risk factors, with 5 levels in the first one, 4 levels in the second one, and 3 levels in the third

one. Therefore, we specify it as c(5L, 4L, 3L).

dat: The dataset in the data.frame format. In this case, we specify it as bric bc os, which contains

the example dataset.

plt: A flag to determine whether to plot the figures for visualizing the risk categories. By default,

it is set to TRUE.

filepath: The path where all the results and figures should be saved. In our example, it is set as

”./results/no pruning/”. If the path does not exist, it will be automatically created. Note that there

must be a slash at the end of the file path string.

riskVariables: A vector containing the variable names of the risk factors used for staging. In

our example, the three variables are ”Pam50 + Claudin - low subtype”, ”Tumor Stage”, and

”Neoplasm Histologic Grade”.

riskFactors: A list specifying the levels for each risk factor in ascending order of prognosis. In our

example, it is represented as list(c(”LumA”, ”Normal”, ”LumB”, ”Her2”, ”Basal”), c(1, 2, 3,

4), c(1, 2, 3)). If a risk factor does not have a total ordering, we need to set the argument ifE =

TRUE and provide the partial orderings as edges in the network using the edges argument.

riskNames: A vector containing the names of the risk factors, used to rename them in the resulting

figures. In our example, they are ”a - Pam50”, ”b - Tumor Grade”, and ”c - Neoplasm Histologic

Grade”.

TimeN: The variable name for survival times. In our example, it is ”Overall Survival (Months)”.

yN: The variable name for a binary outcome. In this case, it is NULL since we are using a survival

outcome.

cenN: The variable name for censoring times. It should be numeric, with zeros indicating censored

observations and ones indicating events. In our example, it is ”censoringStatus”.

covN: The variable name(s) for covariates. In our example, it is ”Age at Diagnosis”.

withCov: Specifies whether any covariates need adjustment.
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type: The type of outcome, either ”surv” for survival outcome or ”bin” for binary outcome.

minObs: The minimum number of patients required in each stage. In our example, any number of

patients is allowed.

legend size: The size of the legend in the network of risk categories figure.

x pos: The horizontal position of the legend in the network of risk categories figure.

yratio: A ratio proportional to the number of levels in each factor, controlling the vertical position

of the legend in the network of risk categories figure.

yaxis min: The minimum value of the y-axis for the Kaplan-Meier curves.

xpos bs: The horizontal position of the label for the Brier score on the x-axis scale.

x label: The label of the x-axis for the Kaplan-Meier curves.

Additionally, there are several other parameters for figure configuration that can be passed to graph-

ics::title() and igraph::plot.igraph() through our function.

The crucial argument is to set useOPERA = TRUE since we specifically intend to employ OPERA

as the staging method. Below is an example of the code and its corresponding output:

1 r_bric_bc_cp_opera_os <- runOpera(ncat = c(5L, 4L, 3L),

2 dat = bric_bc_os ,

3 plt = T,

4 filepath = "./results/no pruning/",

5 riskVariables = c("Pam50 + Claudin -

low subtype", "Tumor Stage", "Neoplasm Histologic Grade"),

6 riskFactors = list(c("LumA", "Normal"

, "LumB", "Her2", "Basal" ), c(1, 2, 3, 4), c(1, 2, 3)),

7 riskNames = c("a - Pam50", "b - Tumor

Grade", "c - Neoplasm Histologic Grade"),

8 useOPERA = T,

9 TimeN = "Overall Survival (Months)",

10 cenN = "censoringStatus",

11 yN = NULL ,

12 type = "surv",

13 covN = "Age at Diagnosis",

14 withCov = T,

15 minObs = 0,
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16 # parameters for figures

17 cex.main = 1,

18 xpos_bs = 50,

19 x_label = "Months",

20 edge.width = 0.5,

21 edge.arrow.size = 0.1,

22 vertex.size = 11,

23 vertex.frame.color = NA ,

24 vertex.label.cex = 0.5,

25 vertex.label.color = "black",

26 legend_size = 0.7,

27 x_pos = -1.5,

28 vertex.color = "lightblue")

1 ## [1] "Find the stage 1"

2 ## mu a1b1c1 a2b1c1 a1b2c1 a1b1c2 a3b1c1 a2b2c1 a2b1c2 a1b3c1

a1b2c2 a1b1c3

3 ## -0.830 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.186 0.000

4 ## a4b1c1 a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b4c1 a1b3c2 a1b2c3

a5b1c1 a4b2c1

5 ## 0.000 0.000 0.000 0.000 0.305 0.146 0.000 0.197 0.412

0.000 0.000

6 ## a4b1c2 a3b3c1 a3b2c2 a3b1c3 a2b4c1 a2b3c2 a2b2c3 a1b4c2 a1b3c3

a5b2c1 a5b1c2

7 ## 0.000 0.000 0.544 0.146 0.000 0.591 0.544 0.253 0.613

0.000 0.000

8 ## a4b3c1 a4b2c2 a4b1c3 a3b4c1 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3

a5b3c1 a5b2c2

9 ## 0.000 0.741 0.146 0.000 0.591 0.544 0.591 0.613 0.613

0.000 0.741

10 ## a5b1c3 a4b4c1 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b4c1 a5b3c2

a5b2c3 a4b4c2
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11 ## 0.146 0.000 0.741 0.741 0.591 1.139 2.794 0.000 0.741

0.794 0.741

12 ## a4b3c3 a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3

13 ## 1.175 2.794 0.741 1.175 2.794 2.794

14 ## [1] "The best lambda = 0.5672"

15 ## Age_at_Diagnosis

16 ## 0.035

17 ## [1] "Find the stage 2"

18 ## mu a1b2c2 a2b2c2 a2b1c3 a1b3c2 a1b2c3 a3b2c2 a3b1c3 a2b3c2

a2b2c3 a1b4c2

19 ## 0.472 0.000 0.083 0.000 0.000 0.174 0.310 0.000 0.442

0.310 0.203

20 ## a1b3c3 a4b2c2 a4b1c3 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3 a5b2c2

a5b1c3 a4b3c2

21 ## 0.523 0.527 0.000 0.442 0.310 0.442 0.523 0.523 0.527

0.000 0.527

22 ## a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b3c2 a5b2c3 a4b4c2 a4b3c3 a3b4c3

a5b4c2 a5b3c3

23 ## 0.527 0.473 0.921 2.909 0.527 0.555 0.527 0.955 2.914

0.527 0.955

24 ## a4b4c3 a5b4c3 S1

25 ## 2.914 2.914 -0.362

26 ## [1] "The best lambda = 0.2838"

27 ## Age_at_Diagnosis

28 ## 0.035

29 ## [1] "Find the stage 3"

30 ## mu a2b2c2 a1b2c3 a3b2c2 a2b3c2 a2b2c3 a1b4c2 a1b3c3 a4b2c2

a3b3c2 a3b2c3

31 ## 0.196 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.154

0.000 0.000

32 ## a2b4c2 a2b3c3 a1b4c3 a5b2c2 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3

a5b3c2 a5b2c3

33 ## 0.000 0.000 0.000 0.154 0.154 0.154 0.000 0.561 2.015
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0.154 0.216

34 ## a4b4c2 a4b3c3 a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3 S1 S2

35 ## 0.154 0.586 2.015 0.154 0.586 2.015 2.015 -0.691 -0.379

36 ## [1] "The best lambda = 0.6952"

37 ## Age_at_Diagnosis

38 ## 0.035

39 ## [1] "Find the stage 4"

40 ## mu a4b2c2 a5b2c2 a4b3c2 a4b2c3 a3b3c3 a2b4c3 a5b3c2 a5b2c3

a4b4c2 a4b3c3

41 ## 0.285 0.000 0.000 0.000 0.000 0.353 2.382 0.000 0.000

0.000 0.394

42 ## a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3 S1 S2 S3

43 ## 2.436 0.000 0.394 2.436 2.436 -0.932 -0.622 -0.286

44 ## [1] "The best lambda = 0.2152"

45 ## Age_at_Diagnosis

46 ## 0.036

47 ## [1] "Find the stage 5"

48 ## mu a3b3c3 a2b4c3 a4b3c3 a3b4c3 a5b3c3 a4b4c3 a5b4c3 S1

S2 S3

49 ## 0.536 0.000 2.043 0.000 2.175 0.000 2.175 2.175 -1.338

-1.028 -0.691

50 ## S4

51 ## -0.418

52 ## [1] "The best lambda = 0.0982"

53 ## Age_at_Diagnosis

54 ## 0.036

55 ## [1] "Find the stage 6"

56 ## mu a2b4c3 a3b4c3 a4b4c3 a5b4c3 S1 S2 S3 S4

S5

57 ## -0.796 0.000 0.000 0.000 0.000 -3.541 -3.230 -2.894 -2.621

-2.213

58 ## [1] "The best lambda = 0.125"

59 ## Age_at_Diagnosis
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60 ## 0.036

61 ## [1] "The initial staging result :"

62 ## a1b1c1 a2b1c1 a1b2c1 a1b1c2 a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2

a1b1c3 a4b1c1

63 ## 1 1 1 1 1 1 1 1 2

1 1

64 ## a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b4c1 a1b3c2 a1b2c3 a5b1c1

a4b2c1 a4b1c2

65 ## 1 1 1 3 2 1 2 3 1

1 1

66 ## a3b3c1 a3b2c2 a3b1c3 a2b4c1 a2b3c2 a2b2c3 a1b4c2 a1b3c3 a5b2c1

a5b1c2 a4b3c1

67 ## 1 3 2 1 3 3 3 3 1

1 1

68 ## a4b2c2 a4b1c3 a3b4c1 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3 a5b3c1

a5b2c2 a5b1c3

69 ## 4 2 1 3 3 3 3 3 1

4 2

70 ## a4b4c1 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b4c1 a5b3c2 a5b2c3

a4b4c2 a4b3c3

71 ## 1 4 4 3 5 6 1 4 4

4 5

72 ## a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3

73 ## 6 4 5 6 6

Upon examining the files within our result directory, we can see the following files:

1 No Pruning with OPERA_K -M.pdf

2 No Pruning with OPERA_tree -like structure.pdf

3 No Pruning with OPERA_tree_ -like structure.html

4 No Pruning with OPERA_tree_ -like structure_files

5 tree -like structure.html

6 tree -like structure.pdf

7 tree -like structure_files
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The first file, titled No Pruning with OPERA K-M.pdf, contains the Kaplan-Meier curves represent-

ing different stages. The second file, named No Pruning with OPERA tree-like structure.pdf, displays

the network of risk factors in a tree-like structure, with the stages labeled. Additionally, the third file,

No Pruning with OPERA tree-like structure.html, is an interactive HTML file that enables visualization

of the network of risk factors with labeled stages. The files tree-like structure.html and tree-like struc-

ture.pdf represent the network structure before the stages are labeled. The two additional folders are

utilized for generating the HTML files.

The visualization of the first three files is depicted in Figures 7.1, 7.2, and 7.3. If users prefer each

stage to have a minimum number of patients (e.g., 30), they can modify the argument minObs as

minObs = 30. This adjustment enables coarse pruning to select the optimal staging result, ensuring

that each stage consists of at least 30 patients.

In the example above, we assume that each risk factor has a total ordering. However, our package

can also deal with some risk factor(s) with only partial ordering. The key is to set the correct edges

representing the partial ordering.

For example, if Pam50 is a partially ordered risk factor with the partial ordering as LumB ≤ Her2 ≤

Basal, and no ordering for either LumA or Normal with respect to other levels. The network of all three

risk factors will be composed of one sub-network associated with levels from LumB ≤ Her2 ≤ Basal,

and the other two sub-networks associated with LumA and Normal respectively. Below is the code that

shows how to define the edges in this scenario. To perform the cancer staging, users only need to add ifE

= TRUE and edges = edges. Note that there is no need to change the value passed to riskFactors

as we still want a1 to represent LumA, a2 to represent Normal, and so on.

1 # One sub -network associated with levels from ‘LumB <= Her2 <= Basal ‘

2 sub_1 <- edgesHasse(ncat = c(3L, 4L, 3L), e = c())

3 for(i in 1:3){

4 sub_1 <- gsub(paste0("a", i), paste0("e", 2+i), sub_1)

5 }

6 sub_1 <- gsub("e", "a", sub_1)

7

8 # The other two sub -networks associated with ‘LumA ‘ and ‘Normal ‘

9 sub_2 <- edgesHasse(ncat = c(1L, 4L, 3L), e = c())

10 sub_3 <-gsub("a1", "a2", sub_2)

11 edges <- c(sub_2, sub_3, sub_1)
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Figure 7.1: The Kaplan-Meier curves illustrating the stages obtained using OPERA,
without any pruning or restriction on the number of patients in each stage.
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Figure 7.2: The tree-like network of risk factors labeled with stages obtained using
OPERA, without any pruning or restriction on the number of patients in each stage.
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Figure 7.3: The interactive network of risk factors labeled with stages obtained using
OPERA, without any pruning or restriction on the number of patients in each stage.
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Lasso Tree

The crucial argument to note is to set useLassoT = TRUE instead of useOPERA = TRUE, as

we have chosen to utilize the lasso tree as the staging method. With this change, all other steps and

procedures can be followed in a similar manner to when we used OPERA. Moreover, the tolerance

accuracy for convergence can be adjusted by setting the value of eps lasso, which controls the speed at

which the algorithm converges. Additionally, during parameter tuning, we have the option to use the

AIC instead of the BIC by specifying useBIC = FALSE.

7.3.2 Pruning

To enable pruning, we need to specify the argument usePruning = TRUE. There are four different

stopping rules available: the likelihood ratio test with a pre-specified Type I error rate α, the AIC,

the (integrated) Brier score, or a predefined total number of stages. In our package, if we choose the

likelihood ratio test, we can set the argument useLRT = TRUE, and the corresponding α (e.g., 0.01)

can be specified using threshold = 0.01. Using the AIC, the (integrated) Brier score, or a predefined

total number of stages (e.g., 5) can be achieved by setting useAIC = TRUE, useIbs = TRUE, or

prefix stage = 5, respectively.

We recommend using the likelihood ratio test with an α = 0.01 when the final number of stages is

unknown, as it has shown superior performance in simulation studies. Alternatively, if the number of

stages is known in advance, using a predefined number is a suitable option. There are three fundamental

pruning methods available: coarse pruning, fine pruning using exhaustive search, and fine pruning using

quadratic constraint. In our package, coarse pruning can be implemented by setting coarse pruning

= TRUE, fine pruning using exhaustive search by setting fine pruning = TRUE, and fine pruning

using quadratic constraint by setting fine pruning quad = TRUE. It is important to choose only one

of the three fundamental pruning methods, depending on the available computational resources.

We recommend fine pruning using exhaustive search due to its superior performance in simulation

studies. However, it can be computationally expensive when the total number of risk categories is high.

Fine pruning using quadratic constraint and coarse pruning offer decent accuracy comparable to fine

pruning using exhaustive search but with less computational burden. Therefore, we suggest choosing

either fine pruning using exhaustive search, fine pruning using quadratic constraint, or coarse pruning

based on the computational feasibility in the specific scenario.

To demonstrate the implementation of pruning using our package, we will use the likelihood ratio

test with an α = 0.01 and apply fine pruning using exhaustive search. The same steps can be followed
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for other methods by specifying the corresponding arguments, as discussed earlier. The code snippet

and the resulting output are provided below:

1 r_bric_bc_fp_opera_os <- runOpera(ncat = c(5L, 4L, 3L),

2 dat = bric_bc_os ,

3 plt = T,

4 filepath = "./results/pruning/LRT/",

5 riskVariables = c("Pam50 + Claudin -

low subtype", "Tumor Stage", "Neoplasm Histologic Grade"),

6 riskFactors = list(c("LumA", "Normal"

, "LumB", "Her2", "Basal" ), c(1, 2, 3, 4), c(1, 2, 3)),

7 riskNames = c("a - Pam50", "b - Tumor

Grade", "c - Neoplasm Histologic Grade"),

8 useOPERA = T,

9 # adds the arguments for pruning

10 usePruning = T,

11 fine_pruning = T,

12 useLRT = T,

13 threshold = 0.01,

14 # Other arguments

15 TimeN = "Overall Survival (Months)",

16 cenN = "censoringStatus",

17 yN = NULL ,

18 type = "surv",

19 covN = "Age at Diagnosis",

20 withCov = T,

21 minObs = 0,

22 # parameters for figures

23 cex.main = 1,

24 xpos_bs = 50,

25 x_label = "Months",

26 edge.width = 0.5,

27 edge.arrow.size = 0.1,
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28 vertex.size = 11,

29 vertex.frame.color = NA ,

30 vertex.label.cex = 0.5,

31 vertex.label.color = "black",

32 legend_size = 0.7,

33 x_pos = -1.5,

34 vertex.color = "lightblue")

1 ## [1] "Find the stage 1"

2 ## mu a1b1c1 a2b1c1 a1b2c1 a1b1c2 a3b1c1 a2b2c1 a2b1c2 a1b3c1

a1b2c2 a1b1c3

3 ## -0.830 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.186 0.000

4 ## a4b1c1 a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b4c1 a1b3c2 a1b2c3

a5b1c1 a4b2c1

5 ## 0.000 0.000 0.000 0.000 0.305 0.146 0.000 0.197 0.412

0.000 0.000

6 ## a4b1c2 a3b3c1 a3b2c2 a3b1c3 a2b4c1 a2b3c2 a2b2c3 a1b4c2 a1b3c3

a5b2c1 a5b1c2

7 ## 0.000 0.000 0.544 0.146 0.000 0.591 0.544 0.253 0.613

0.000 0.000

8 ## a4b3c1 a4b2c2 a4b1c3 a3b4c1 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3

a5b3c1 a5b2c2

9 ## 0.000 0.741 0.146 0.000 0.591 0.544 0.591 0.613 0.613

0.000 0.741

10 ## a5b1c3 a4b4c1 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b4c1 a5b3c2

a5b2c3 a4b4c2

11 ## 0.146 0.000 0.741 0.741 0.591 1.139 2.794 0.000 0.741

0.794 0.741

12 ## a4b3c3 a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3

13 ## 1.175 2.794 0.741 1.175 2.794 2.794

14 ## [1] "The best lambda = 0.5672"

15 ## Age_at_Diagnosis
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16 ## 0.035

17 ## [1] "Find the stage 2"

18 ## mu a1b2c2 a2b2c2 a2b1c3 a1b3c2 a1b2c3 a3b2c2 a3b1c3 a2b3c2

a2b2c3 a1b4c2

19 ## 0.472 0.000 0.083 0.000 0.000 0.174 0.310 0.000 0.442

0.310 0.203

20 ## a1b3c3 a4b2c2 a4b1c3 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3 a5b2c2

a5b1c3 a4b3c2

21 ## 0.523 0.527 0.000 0.442 0.310 0.442 0.523 0.523 0.527

0.000 0.527

22 ## a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b3c2 a5b2c3 a4b4c2 a4b3c3 a3b4c3

a5b4c2 a5b3c3

23 ## 0.527 0.473 0.921 2.909 0.527 0.555 0.527 0.955 2.914

0.527 0.955

24 ## a4b4c3 a5b4c3 S1

25 ## 2.914 2.914 -0.362

26 ## [1] "The best lambda = 0.2838"

27 ## Age_at_Diagnosis

28 ## 0.035

29 ## [1] "Find the stage 3"

30 ## mu a2b2c2 a1b2c3 a3b2c2 a2b3c2 a2b2c3 a1b4c2 a1b3c3 a4b2c2

a3b3c2 a3b2c3

31 ## 0.196 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.154

0.000 0.000

32 ## a2b4c2 a2b3c3 a1b4c3 a5b2c2 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3

a5b3c2 a5b2c3

33 ## 0.000 0.000 0.000 0.154 0.154 0.154 0.000 0.561 2.015

0.154 0.216

34 ## a4b4c2 a4b3c3 a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3 S1 S2

35 ## 0.154 0.586 2.015 0.154 0.586 2.015 2.015 -0.691 -0.379

36 ## [1] "The best lambda = 0.6952"

37 ## Age_at_Diagnosis

38 ## 0.035
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39 ## [1] "Find the stage 4"

40 ## mu a4b2c2 a5b2c2 a4b3c2 a4b2c3 a3b3c3 a2b4c3 a5b3c2 a5b2c3

a4b4c2 a4b3c3

41 ## 0.285 0.000 0.000 0.000 0.000 0.353 2.382 0.000 0.000

0.000 0.394

42 ## a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3 S1 S2 S3

43 ## 2.436 0.000 0.394 2.436 2.436 -0.932 -0.622 -0.286

44 ## [1] "The best lambda = 0.2152"

45 ## Age_at_Diagnosis

46 ## 0.036

47 ## [1] "Find the stage 5"

48 ## mu a3b3c3 a2b4c3 a4b3c3 a3b4c3 a5b3c3 a4b4c3 a5b4c3 S1

S2 S3

49 ## 0.536 0.000 2.043 0.000 2.175 0.000 2.175 2.175 -1.338

-1.028 -0.691

50 ## S4

51 ## -0.418

52 ## [1] "The best lambda = 0.0982"

53 ## Age_at_Diagnosis

54 ## 0.036

55 ## [1] "Find the stage 6"

56 ## mu a2b4c3 a3b4c3 a4b4c3 a5b4c3 S1 S2 S3 S4

S5

57 ## -0.796 0.000 0.000 0.000 0.000 -3.541 -3.230 -2.894 -2.621

-2.213

58 ## [1] "The best lambda = 0.125"

59 ## Age_at_Diagnosis

60 ## 0.036

61 ## [1] "The initial staging result :"

62 ## a1b1c1 a2b1c1 a1b2c1 a1b1c2 a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2

a1b1c3 a4b1c1

63 ## 1 1 1 1 1 1 1 1 2

1 1
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64 ## a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b4c1 a1b3c2 a1b2c3 a5b1c1

a4b2c1 a4b1c2

65 ## 1 1 1 3 2 1 2 3 1

1 1

66 ## a3b3c1 a3b2c2 a3b1c3 a2b4c1 a2b3c2 a2b2c3 a1b4c2 a1b3c3 a5b2c1

a5b1c2 a4b3c1

67 ## 1 3 2 1 3 3 3 3 1

1 1

68 ## a4b2c2 a4b1c3 a3b4c1 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3 a5b3c1

a5b2c2 a5b1c3

69 ## 4 2 1 3 3 3 3 3 1

4 2

70 ## a4b4c1 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b4c1 a5b3c2 a5b2c3

a4b4c2 a4b3c3

71 ## 1 4 4 3 5 6 1 4 4

4 5

72 ## a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3

73 ## 6 4 5 6 6

74 ## [1] "The fine pruning has started using the exhaustive enumeration ."

75 ## [1] "The staging result after pruning down one stage with the

largest likelihood is"

76 ## a1b1c1 a2b1c1 a1b2c1 a1b1c2 a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2

a1b1c3 a4b1c1

77 ## 1 1 1 1 1 1 1 1 2

1 1

78 ## a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b4c1 a1b3c2 a1b2c3 a5b1c1

a4b2c1 a4b1c2

79 ## 1 1 1 2 2 1 2 2 1

1 1

80 ## a3b3c1 a3b2c2 a3b1c3 a2b4c1 a2b3c2 a2b2c3 a1b4c2 a1b3c3 a5b2c1

a5b1c2 a4b3c1

81 ## 1 3 2 1 3 3 3 3 1

1 1
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82 ## a4b2c2 a4b1c3 a3b4c1 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3 a5b3c1

a5b2c2 a5b1c3

83 ## 3 2 1 3 3 3 3 3 1

3 2

84 ## a4b4c1 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b4c1 a5b3c2 a5b2c3

a4b4c2 a4b3c3

85 ## 1 3 3 3 4 5 1 3 3

3 4

86 ## a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3

87 ## 5 3 4 5 5

88 ## [1] "The p-value equals 0.7048"

89 ## [1] "The staging result after pruning down one stage with the

largest likelihood is"

90 ## a1b1c1 a2b1c1 a1b2c1 a1b1c2 a3b1c1 a2b2c1 a2b1c2 a1b3c1 a1b2c2

a1b1c3 a4b1c1

91 ## 1 1 1 1 1 1 1 1 2

1 1

92 ## a3b2c1 a3b1c2 a2b3c1 a2b2c2 a2b1c3 a1b4c1 a1b3c2 a1b2c3 a5b1c1

a4b2c1 a4b1c2

93 ## 1 1 1 2 2 1 2 2 1

1 1

94 ## a3b3c1 a3b2c2 a3b1c3 a2b4c1 a2b3c2 a2b2c3 a1b4c2 a1b3c3 a5b2c1

a5b1c2 a4b3c1

95 ## 1 3 2 1 3 3 3 3 1

1 1

96 ## a4b2c2 a4b1c3 a3b4c1 a3b3c2 a3b2c3 a2b4c2 a2b3c3 a1b4c3 a5b3c1

a5b2c2 a5b1c3

97 ## 3 2 1 3 3 3 3 3 1

3 2

98 ## a4b4c1 a4b3c2 a4b2c3 a3b4c2 a3b3c3 a2b4c3 a5b4c1 a5b3c2 a5b2c3

a4b4c2 a4b3c3

99 ## 1 3 3 3 3 4 1 3 3

3 3
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100 ## a3b4c3 a5b4c2 a5b3c3 a4b4c3 a5b4c3

101 ## 4 3 3 4 4

102 ## [1] "The p-value equals 0.0045"

After inspecting the files in our result directory, the following files are observed:

1 Fine Pruning with Exhaustive Search Using the LRT with Alpha 0.01_K -M.

pdf

2 Fine Pruning with Exhaustive Search Using the LRT with Alpha 0.01 _tree -

like structure.pdf

3 Fine Pruning with Exhaustive Search Using the LRT with Alpha 0.01 _tree_

-like structure.html

4 Fine Pruning with Exhaustive Search Using the LRT with Alpha 0.01 _tree_

-like structure_files

5 No Pruning with OPERA_K -M.pdf

6 No Pruning with OPERA_tree -like structure.pdf

7 No Pruning with OPERA_tree_ -like structure.html

8 No Pruning with OPERA_tree_ -like structure_files

9 tree -like structure.html

10 tree -like structure.pdf

11 tree -like structure_files

It is important to note that we have the same set of files as obtained when using OPERA without

pruning. However, these files represent the results after pruning has been applied. Since the initial

staging is always performed before pruning, we can observe both sets of files within our result directory.

The first three files depicting the results after pruning are visualized in Figure 7.4, 7.5 and 7.6.
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Figure 7.4: The Kaplan-Meier curves illustrating the stages obtained using OPERA, after
pruning or restriction on the number of patients in each stage.
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Figure 7.5: The tree-like network of risk factors labeled with stages obtained using
OPERA, after pruning or restriction on the number of patients in each stage.



166

Figure 7.6: The interactive network of risk factors labeled with stages obtained using
OPERA, after pruning or restriction on the number of patients in each stage.
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Chapter 8

Summary and Discussion

8.1 Summary

Our primary research question revolves around cancer staging using ordinal risk factors. Previous at-

tempts have employed tree-based methods such as CART, but they were limited in generating flexible

grouping patterns, often resulting in rectangular shapes, as discussed in Chapter 1. To address this

limitation, the lasso tree was developed, which could accommodate two ordinal risk factors and survival

outcomes. Although it allowed for neighboring patterns like triangular shapes, it still struggled with

generating non-neighboring patterns. Consequently, our focus turned to OPERA, a method specifically

designed for two risk factors and survival outcomes, capable of generating grouping patterns that satisfy

the ordering constraints. In Chapter 2, we extended OPERA to accommodate multiple risk factors

and binary outcomes, while also comparing it to the extension of the lasso tree for the same scenarios.

Simulation studies in Chapter 2 and Chapter 3 demonstrated that OPERA performed comparably to

the lasso tree with neighboring patterns and exhibited substantial improvement with non-neighboring

patterns for survival outcomes and binary outcomes, considering varying numbers of risk factors.

To address the issue of overfitting or over-partitioning, we introduced pruning as an additional

step within the initial OPERA framework. This approach follows a bottom-up strategy similar to the

commonly employed pruning concept in tree methods. Pruning can be applied to both OPERA and

the lasso tree methods and has consistently demonstrated significant improvements in performance, as

highlighted in Chapter 2-4. It is noteworthy that while the lasso tree may not generate non-neighboring

patterns, it can still produce over-partitioned groups that can be refined through pruning to achieve

performance comparable to or even better than OPERA.



168

Simulation studies consistently supported the notion that pruning does not result in inferior per-

formance across various scenarios, regardless of the number of risk factors, outcome types, or the true

underlying patterns. Two types of pruning methods are commonly employed: fine pruning and coarse

pruning. In coarse pruning, all combinations of a stage are merged with another stage, while in fine

pruning, some combinations are merged with one adjacent stage, and others are merged with the other

adjacent stage. Both pruning methods can be implemented iteratively until a stopping criterion is met,

such as the likelihood ratio test (LRT), Brier Score (BS), or a predefined number of stages. Among all

criteria, without knowing the true number of stages, the LRT (α = 0.01) consistently stands out as the

best stopping rule, with very slight inferior performance in the worst-case scenario.

Across all simulation scenarios, coarse pruning consistently achieves performance comparable to fine

pruning, with a very slight inferior performance in the worst-case scenario. Coarse pruning is generally

recommended as it reduces computational burden without sacrificing much performance. When it comes

to real data, on which fine pruning is computationally achievable, people can easily try both coarse and

fine pruning using our R package operap in Chapter 7 and choose the result with better separation of

the survival curves or better staging results. Fine pruning can be realized through two approaches: a

brute-force method called exhaustive search and a quadratic programming constraint. Using a quadratic

programming constraint can achieve performance on par with exhaustive search without the need to

enumerate all possible solutions, resulting in a more efficient and effective pruning process when using

exhaustive search is not computationally achievable.

In Chapter 4, we attempt to discretize continuous risk factors and observe how our methods find the

true subgroups by combining risk categories with the same staging pattern. Simulation results demon-

strate the same conclusion that coarse pruning with LRT (α = 0.01) remains the best approach. In

Chapter 5, we utilize several cancer datasets with survival outcomes to perform cancer staging, consider-

ing other covariates as adjusting factors during the staging process. Both the lasso tree and OPERA with

pruning demonstrate reliable stages, as evidenced by well-separated survival curves. Notably, for binary

outcomes, our methods showcase superior performance compared to penalized logistic regression mod-

els. Moving on to Chapter 6, we extend the application of OPERA beyond cancer staging to address a

broader risk stratification problem. Specifically, we aim to cluster heterogeneous patients with advanced

illnesses into homogeneous groups. By incorporating multiple risk factors, our approach improves upon

the risk levels defined solely by a single variable known as the advanced illness trigger. The inclusion

of additional risk factors results in more distinct stratifications, leading to a refined system. This case

study serves as a demonstration of the versatility of our methods in tackling general clustering problems

while adhering to the ordering constraints.
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One widely known limitation of cancer staging research is the irreducible confounding effect from

treatments patients received during their disease prognoses. We also assume that patients can obtain

the best treatments they could have and focus on important baseline risk factors to predict the possible

disease prognoses for patients. Future work will also focus on addressing the scalability of our methods,

as the computational burden grows exponentially with an increase in the number of risk factors, even

without considering pruning. Pruning, in itself, can be computationally demanding when utilizing the

brute-force approach to fine pruning, and the computational cost escalates further with a higher number

of risk factors. However, computational concerns about pruning can be alleviated, since coarse pruning

can perform equally well as fine pruning with LRT (α = 0.01) as the stopping rule. One possible way to

deal with a large number of ordinal risk factors is to apply isotonic or monotonic regression models, which

can be more computationally efficient. In addition to scalability, further exploration of the type I error

rate in pruning with LRT is essential. This exploration will help identify the most effective approach

to handle the multiple comparison issue that arises from pruning. By delving into these areas, we aim

to enhance the efficiency and accuracy of our methods, paving the way for their broader application in

real-world scenarios.

8.2 Discussion

8.2.1 Risk Adjustors and Risk Factors

Risk adjusters, denoted as Z, are the non-risk-factor covariates we adjust for during staging. They are

the variables that would not appear in the final staging system, but during modeling, these variables

have been adjusted for or conditioned on. Usually, risk adjusters have no inherent ordering. Instead

of being conditioned on each category of a risk adjuster and leading to multiple staging systems (each

corresponding to a specific category of a risk adjuster), we adjust for risk adjusters during modeling and

control their impact on the outcome, which leads to one staging system on average across all categories

of all risk adjusters.

Risk factors, denoted as r, are the variables that would appear in the final staging system, which

clinicians can use to determine staging for patients. The difference between risk adjusters and risk factors

is that, based on the final staging system, patients with differences in risk adjusters but no differences in

risk factors are always in the same stage. However, patients with differences in risk factors are usually

not in the same stage, regardless of their differences in risk adjusters.

Choosing between risk factors and risk adjusters depends on the context of the diseases. Risk
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factors should be associated with staging, each of which has a monotonic relationship with the outcome

measure. However, risk adjusters are not necessarily associated with staging but may be associated with

the outcome measure or even act as a discriminatory variable. For instance, in some cancer studies, we

only adjust for age but do not use age as a risk factor, since age can be associated with survival but is

not necessarily directly related to stage.

8.2.2 The Total Number of Stages

The total number of stages can be determined by our staging methods without pre-specifying the total

number of stages. By reducing (or increasing) the weight for the penalty term to relax (or tighten) the

criterion used for classifying each stage, we can control either more (or fewer) stages in the end. Also,

pruning has the feature of reducing the number of stages, either in a statistical way or by using pre-fixed

stages.

In practice, clinical interpretation and complexity need to be considered when determining stages.

In cancer stages, clinicians usually use no more than 5 stages, with each stage demonstrating a different

survival rate. Currently, our pruning methods prune stages based on statistical significance when the

pre-fixed number of stages is not given. However, a small, statistically significant difference between

stages with similar outcome measures (e.g., median survival rates) should also be considered for merging

in clinical practice to facilitate clinical interpretation in staging.

8.2.3 Uncertainty Quantification

In our simulation studies, we calculate the estimated mean edge misclassification rate with its 95%

confidence interval to quantify its uncertainty for each simulation scenario. Due to the Monte Carlo

process, the estimated mean edge misclassification rate converges after 500 simulations, and we are able

to estimate the standard error and obtain the confidence interval. In the advanced colorectal neoplasia

study, we use a 10-fold cross-validation to calculate the estimated cross-validation AUC and its 95%

confidence interval.

In real data analysis or a simulation study, we can also use bootstrapping to quantify the uncertainty

of related statistics, such as the estimated number of stages. Bootstrapping is a resampling approach,

and each time, we can have a new dataset resampled from the original dataset. Depending on the type of

outcome, we can also resample the datasets conditional on risk adjusters to ensure an unchanged impact

from risk adjusters on the outcome measure.
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Appendix A

A.1 Topological Properties

Lemma A.1.1. Suppose we have a collection of total ordered sets S1, S2, ..., Sn, each with mi elements,

denoted as |Si| = mi. Consider the Hasse diagram of the poset (S1 × S2 × ... × Sn,≤), where the

partial order is defined component-wise. The total number of edges in this Hasse diagram is given by∑n
i=1(mi − 1)Πj ̸=imj .

Proof. Consider a set of elements (s1, s2, ..., sn) ∈ (S1 × S2 × ...× Sn,≤). If si is not fixed while all the

other elements in the set are fixed, then si can take on values from 1 to 2, 2 to 3, ..., mi − 1 to mi,

resulting in (mi − 1) edges. The total number of edges in the Hasse diagram for all possible values of

the other elements is denoted as Πj ̸=imj , and thus the number of edges for si is (mi − 1)Πj ̸=imj . To

obtain the total number of edges in the Hasse diagram, we sum over all i.

Lemma A.1.2. Let S1, S2, ..., Sn be total ordered sets, where Si has mi elements denoted as |Si| = mi.

Consider the Hasse diagram of the poset (S1 × S2 × ... × Sn,≤), where the partial order is defined

component-wise. The total number of rows in this Hasse diagram is given by
∑

i mi − n+ 1.

Proof. Suppose we have a set of elements arranged in a Hasse diagram, where the sum of all levels of

elements in each node in a row is equal to the sum in the preceding row plus one. Specifically, let the

sum in the first row be n, and the sum in the last row be
∑

i mi. Then, the total number of rows in this

Hasse diagram is
∑

i mi − n+ 1.

Lemma A.1.3. Consider the Hasse diagram of the poset (S1 × S2 × ... × Sn,≤), where S1, S2, ..., Sn

are total ordered sets with |Si| = mi elements. Let the number of nodes in the jth row of this Hasse

diagram be denoted by Nj . Then, we have Nj = N∑
i mi−n−j+2.
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Proof. Let N(j) denote the total number of nodes in the jth row of the Hasse diagram of the poset

(S1 × S2 × ... × Sn,≤), where S1, S2, ..., Sn are total ordered sets with |Si| = mi elements. The value

of N(j) can be obtained by solving the problem of balls in bins with limited capacity. Specifically,

N(j) is the number of ways to distribute j − 1 indistinguishable balls into n bins, where each bin has a

capacity of mi − 1 balls. Since the distribution of empty spaces is symmetrical to that of balls, we have

N(j) = N(
∑

i mi − n− j + 2).
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A.2 Important Mathematical Symbols

Table A.1: Important Mathematical Symbols

Letters Meanings

S poset

Si stage

y outcome

r risk categories or risk factors

Z covariates or risk adjustors

ξ coefficients for risk categories

α coefficients for covariates

l likelihood

γ differences between the coefficients for risk categories and the coefficient for the reference

level

µ coefficient for the reference level

η linear predictor

π probability of experiencing a binary outcome

β all coefficients

X design matrix

u the derivative of the likelihood with respect to linear predictor

A The second derivative, also known as the Hessian matrix, of the likelihood with respect

to the linear predictor

z linear predictor plus the inverse of the Hessian matrix multiplied by the first derivative

λ tuning parameter

D down-set

U residual set

m total number of stages

s an element in a poset

ζ coefficients for stages

AIC AIC value

BS BS value
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Table A.1: Important Mathematical Symbols

Letters Meanings

δ censoring
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